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Detecting Distractions in Human Manual Control
Tasks Using Machine Learning

Y. D. Li, Author, D. M. Pool, Supervisor, and M. Mulder, Supervisor

Abstract—Technological devices are ubiquitous, think of for
example smartphones and in-vehicle information systems. Both
can contribute towards distracted driving where the visual field
of the human controller is shifted away from the primary control
task. In this paper a neural network model is trained using the
InceptionTime architecture and used to detect distractions in
pursuit and preview tracking tasks. For this purpose an exper-
iment has been designed to collect data in which participants
are distracted using a visual distraction called the Surrogate
Reference Task (SuRT). It was found that distractions are easier
to detect in tracking tasks with pursuit displays instead of
preview displays. This is because in preview displays the future
target trajectory is shown to the human controller, resulting in a
lower tracking error compared to pursuit displays. Apart from
the tracking error, the InceptionTime neural network was also
trained using the time-series data of the control input and system
output. Important characteristic of distracted data found were
a reduced control input and higher tracking errors, which may
have helped in detecting distractions. The classification models
were able to predict data samples correctly with an accuracy of
80.78% and 61.66% in pursuit and preview tracking tasks with
distractions, respectively. Lastly, individualised models showed
better performance when compared to ‘one-size-fits-all’ models.
Results show clear opportunities for applying neural network
models in real-time to detect distractions for increasing safety in
human operated machines.

Index Terms—Cybernetics, manual control, tracking task,
detecting distractions, eye tracker, machine learning.

NOMENCLATURE

API Application Programming Interface
AUC Area Under Curve
CE Controlled Element
DR-ce (Data) Preview, Continuous,

Easy Distractions
DR-ch (Data) Preview, Continuous,

Hard Distractions
DR-n (Data) Preview (no distractions)
DR-pe (Data) Preview, Prompted, Easy Distractions
DR-ph (Data) Preview, Prompted, Hard Distractions
DS-ce (Data) Pursuit, Continuous,

Easy Distractions
DS-ch (Data) Pursuit, Continuous,

Hard Distractions
DS-n (Data) Pursuit (no distractions)
DS-pe (Data) Pursuit, Prompted, Easy Distractions
DS-ph (Data) Pursuit, Prompted, Hard Distractions
DUECA Delft University Environment

for Communication and Activation
GPU Graphics Processing Unit
HC Human Controller
HMI Human-Machine Interaction

IVIS  In-vehicle information system
LCD  Liquid Crystal Display
ML Machine Learning
MRT  Multiple Resource Theorem
MR-¢ (Model) Preview, trained on Combined
(easy & hard) Distractions
MR-e (Model) Preview, trained on Easy Distractions
MR-h (Model) Preview, trained on Hard Distractions
MS-¢  (Model) Pursuit, trained on Combined
(easy & hard) Distractions
MS-e (Model) Pursuit, trained on Easy Distractions
MS-h  (Model) Pursuit, trained on Hard Distractions
NN Neural Network
RMS  Root Mean Square
ROC  Receiver Operating Characteristics
SuRT  Surrogate Reference Task

I. INTRODUCTION

RAVEL by passenger vehicles is the deadliest trans-

portation method on a per-mile basis compared to air,
rail, and bus travel [5]. Cars are also more accessible to the
general public where the road safety depends on the individual
traffic behaviour of users. People might over-speed, violate
traffic rules, fail to understand signs or are simply not paying
attention. Distracted driving is one of the main risk factors in
road accidents!, and is often related to use of smartphones
and in-vehicle information systems (IVIS). Both contribute
towards distracted driving since people take their eyes off
the road and shift their attention elsewhere. Creating a tool
that can objectively and non-intrusively detect when people
are distracted may help in contributing towards a safer road
environment and reduce the number of traffic accidents.

For this purpose, the tracking task is used to investigate
whether it is possible to detect distractions in manual control
tasks. To be certain distractions can be detected in real-life
use cases such as driving a car or flying an aircraft, it should
be demonstrated that it works in simpler tasks first.

Literature about detecting distractions in manual control
tasks mainly focuses on driver distraction. This includes
defining what a distraction is, methods to monitor distractions,
and mitigation techniques [17, 18, 19]. Distractions can be
in the form of a manual, visual or cognitive distraction [2],
while detection methods can vary from vision to sensor-based
approaches or a combination of both [10]. The focus of this
paper is put on detecting visual distractions using a sensor-
based approach.

Uhttps://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries



The sensor-based approach can make use of already existing
sensors in vehicles, and if necessary small adjustments could
be made to these. Using the data collected from the sensors, a
‘driving performance’ profile is created from which a neural
network should be able to predict whether the driver is
distracted or not. Ersal et al. used only the pedal position
data and a Support Vector Machine model to calculate the
probability of the driver being distracted [8]. Other common
driving performance parameters that were used in previous
research were related to steering wheel parameters, speed and
lane-offset [3, 8, 13, 14, 18, 19, 24].

Concerning the tracking task, successful application of
machine learning models for classification tasks has only been
achieved in recent years. This included classifying human pilot
skill [9] and human behaviour with various display types [21]
in tracking tasks. This means that there is a possibility of
deploying ML models for the purpose of detecting distractions
in tracking tasks. Nokhai et al. have already carried out an
experiment in which participants were presented with a mild
visual and cognitive distraction whilst doing the tracking task
[15]. Results have shown that training accuracies of up to
81.6% could be achieved.

The objective is to be able to detect when people are dis-
tracted in manual control tasks. For this purpose, the classical
tracking task is used with a secondary task, the Surrogate
Reference Task (SuRT), as distraction. Data collected from
experiments are used to train a Neural Network, using the
InceptionTime architecture, to detect distractions.

In the experiment, subjects will do tracking runs with both
a pursuit and preview display in three different tracking con-
ditions: 1) no distractions, 2) continuous distractions, and 3)
prompted distractions. Data obtained from tracking conditions
with no distractions and continuous distractions will be used
to train the neural network as normal and distracted data,
respectively. Runs with prompted distractions will instead be
used to test the neural network models that have been trained.

Furthermore, two difficulty levels were used for the distrac-
tions by changing the size of the target circle in the SuRT. This
was done to investigate how the neural network performed
based on various tracking performances. It is hypothesized that
hard distractions are easier to detect than easy distractions.

Model performance will be compared between the two
different display types, and it is investigated whether a ‘one-
size-fits-all’ or individualized model would be more opti-
mised to detect distractions for different individuals. It is
hypothesized that distractions are easier to detect in case of
pursuit displays since tracking errors would be larger without
having the preview time present in preview displays. And an
individualized model may be more favourable since it will be
only trained based on the tracking data of the individual and
will not be influenced by data of others.

The structure of this paper is as follows. In section II the
experimental set up and conditions are explained, followed by
the methodology in section III. The results are presented in
section IV. Finally, a discussion and conclusion is given in
section V and section VI, respectively.

II. EXPERIMENT

The experiment described in this section has been approved
by the HREC (Human Research Ethics Committee) of Delft
University of Technology. Application titled: Measuring Dis-
tractions in Human Manual Control Data, #3010

A. Apparatus

The experiment was conducted in the Human-Machine In-
teraction (HMI) Laboratory located at the Technical University
of Delft, Faculty of Aerospace Engineering. See Figure 1.

Fig. 1. Experiment set up in the HMI Lab. The participant will be sitting on
the right (blue) seat and controls the side-stick.

The participants were seated on the right-hand ‘aircraft’
side (blue seat in Figure 1) from which the participant had
to complete several tracking tasks with a Surrogate Reference
Task (SuRT) serving as a distraction. The equipment used in
this experiment were [1]:

o A fully adjustable aircraft seat, from a Breguet Atlan-

tique, installed on the right-hand side.

« A control-loaded hydraulic side stick, with +30° excur-

sion in roll and £22° excursion in pitch @

o An 18” LCD panel with a 1280 x 1024 pixel resolution

as the primary control task display.

e An Android tablet on which the SuRT app, developed by

the German Aerospace Center [6], was installed.

« An eye-tracker from Pupil-labs, Pupil Core headset vari-

ant [11], see Figure 2.

The head-worn eye tracker from Pupil Labs Core?, see
Figure 2, was used to record eye and head movements of the
participants. This was done in order to determine objectively
when a participant was distracted,

Figure 3 shows a schematic of the experiment set up
including distances from the subject to the screens of the
primary and secondary tasks, which is 74 cm for both. When
the subject is doing one of the presented tasks, the other task
is outside the human field of view of 150° [20].

B. Tracking Tasks

For the experiment, pursuit and preview tracking tasks were
used as the primary task. The tracking tasks were performed

Zhttps://docs.pupil-labs.com/core/



Fig. 2. Pupil Labs head-worn eye tracker.

.
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Fig. 3. Schematic of the experiment set up with dimensions.

on the head-down LCD display in front of the participant. An
example of how the tracking task is displayed can be seen in
Figure 4. The objective here is to minimise the tracking error,
e(t). For a preview/pursuit display the tracking error is the
distance between symbols representing the controlled element
(CE) output and the target. The CE can be controlled with the
side-stick on the right-hand side of the seat. The tracking tasks
simulated single integrator controlled dynamics (rate control).

P
Jarget

Controlled
Element

Outputo
PROMPT

Fig. 4. Schematic representation of the pursuit and preview tracking display.
The goal is to steer the state (circle) to the target (plus). The preview trajectory
is either present or not.

The tracking task is a closed-loop manual control task
composed of 5 signals as a function of time:

o fi(t), target signal.

o fa(t), disturbance signal.

e e(t), error signal.

 u(t), HC input signal.

 x(t), output signal.

The relation between the tracking signals is shown in
Figure 5.

fd(t)l
f® ([t t+ 1) o u(t) .
i ' anlpulatﬂr| |
(1) - e(t), x(t) Hue " stiek) | |

Fig. 5. Block diagram of a closed-loop manual control tasks

In the experiment, the preview and pursuit display types
were used. The difference between these display types is the
preview time, 7, present in preview displays which shows the
future trajectory of the target signal, see Figure 4. In real-life
manual control tasks the Human Controller (HC) often has
access to preview information [7], the future trajectory that
should be followed. Examples are driving a car or controlling
an aircraft on approach.

However, this preview information could be limited in
some conditions. Think of driving in the dark with only the
headlights turned on or when the view is hampered due to
fog. With limited preview information, it is more important
to be not distracted and to focus on the trajectory ahead and
it’s surroundings. Since in a dynamic environment changes
can happen at any moment, and the reaction time is shorter
compared to normal conditions.

Thus, the preview display type was used to collect data in
a so-called ‘normal’ condition where the view of a HC would
not be obstructed. And the pursuit display type was used to
collect data in conditions with no visibility (7, = 0s). The
choice for choosing these two display types was to mimick the
extremes of tracking conditions with or without preview time.
It was expected that distractions would have a larger effect on
the tracking performance of HCs in pursuit conditions since
the future trajectory is not known and there is few opportunity
to mitigate the effects caused by distractions.

The tracking task used in this experiment was based on
earlier experiments designed by van der El et al. [7]. In the
experiment by van der El, multisines were used to create the
forcing functions that represents the target signal, f;. A total
of 5 forcing function variations were available to choose from
for a tracking run. And a disturbance function, fy(t) was
present on the controlled element. The parameters used in this
experiment are:

« Single integrator dynamics (rate control) for the Con-
trolled Element (CE)

— Gain, Kcg = 1.50
« Forcing function settings

— Bandwidth (rad/s) = 2.5

— Target gain, K;; = 1.00

— Disturbance gain, Kyq = 1.00
o Stick settings

— Stick gain, K, = 10.00



C. Secondary Task

The secondary task in the experiment served as a distraction
for the participant whilst performing the primary tracking task.
This secondary task was the so-called ‘Surrogate Reference
Task’ (SuRT) of which an example is shown in Figure 6. The
objective is to find and select the target circle (largest circle) in
the midst of a set of smaller circles called ‘distractors’. After
selecting the target circle, a new SuRT screen is generated,
placing the target circle and ‘distractors’ randomly at new
positions. The SuRT was shown on a tablet positioned at
eye-height of the participant, at a 90° angle from the LCD
screen, held in place with a adjustable tablet holder, as can
be seen in Figure 1. Placing the tablet this way required the
participant to deliberately look away from the primary task
screen. The reason for choosing the SuRT as the secondary
task is based on the Multiple Resource Theorem (MRT) by
Wickens [23]. This theorem states that the performance of a
task worsens when dimensions are shared between concurrent
tasks. Since the tracking task is a spatial demanding task, a
secondary visual task would cause the strongest interference.

Q Distractor Circles O
O Target Circle

O O 0O

Fig. 6. Example of the SuRT used as a secondary task (The largest circle is
the ‘target’ circle, whereas the smaller circles are called ‘distractor’ circles).

For the experiment it was decided to use two variations of
the SuRT, an easy and hard variation. In a previous experiment
conducted by Nokhai et al. [15] in which participants were also
distracted whilst doing the tracking task, it was concluded that
the neural network had difficulties in detecting distracted data
based on the secondary task used in that experiment. For the
preview and pursuit display type data, training accuracies of
only 72.1% and 81.6% were reached, respectively. A possible
explanation was that the distraction used during this experi-
ment by Nokhai et al. was not visually demanding enough.
Participants had to say what color was shown on a projector
screen located at 90° angle with respect to the primary screen.
The data collected from the two different SuRT difficulties
were used to analyse the limitations of the neural network
being able to detect distractions in manual control data.

In both easy and hard variation of the SuRT, a total of 49
‘distractor’ circles and 1 target circle were present. The varia-
tion in difficulty was implemented by adjusting the diameter of
the ‘distractor’ circles. In easy difficulty, the ‘distractor’ circles
had a diameter of 4 mm. And in hard difficulty, the ‘distractor’
circles had a diameter of 7 mm. The diameter of the target
circle remained unchanged, namely 8 mm. The design choices

for the circle diameters were based on the values used in the
experiments conducted by Petzoldt et al. [16].

D. Variation in Distractions

In each tracking run, the participant’s tracking input was
measured for 128 seconds, where the first 8 seconds composed
of the run-in time needed to stabilize control of the system.
Tracking data of participants in normal tracking conditions
were collected (without distractions) for both preview and
pursuit display types. For tracking runs involving distractions,
two variations were used as can be seen in Figures 7a and 7b.

80 20 40 60 80 100 120
t[s]
(a)
2s 9.4s 9.6s
H —_— —_—

(b)

Fig. 7. Tracking run with distractions showing type 1 with continuous
distractions in 7a and type 2 with prompted distractions in 7b.

1) Continuous Distractions: In the first trail type, Figure
7a, participants were tasked with completing the secondary
task continuously, whilst doing the tracking task. The partic-
ipants were instructed that the primary and secondary tasks
were equally important. The tracking task performance was
calculated after each run based on the root-mean-square-error
(RMSE). And the performance of the secondary task could
be tracked by a predefined scoring system. Each time the
participant finds and selects the target circle, a score of 100
points were awarded. If the subject managed to find two
subsequent circles within 3 s, an additional 100 points were
awarded on top of the previous awarded point. Thus, a streak
of 4 subsequent correctly selected circles resulted 1,000 points
(100 + 200 + 300 + 400 = 1,000). Whenever a subject selected
a ‘distractor’ circle, 100 points were deducted from the total
score and the points streak was reset back to 100 points.
During the trial type 1 tracking runs a target score of 2,000
had been set which participants had to reach.

2) Prompted Distractions: Tracking run trial type 2 con-
sisted of 6 distractions per run. Figure 7b shows that the
distractions occurred in different periods of 9.6 seconds. In
these 9.6 second periods, distractions occurred randomly in
one of the five, 2 second time slots which were equally
spaced apart. The minimum and maximum time between two
consecutive prompts were, thus 9.4 s and 24.6 s, respectively.
During the tracking run a prompt would appear on the screen
of the primary task, see Figure 4, with the text ‘Please find
the large circle!’. This meant that the subject had to do the
secondary task.



3) Comparison Between Distraction Types: Data of track-
ing run trial type 2 consist of both normal and distracted
tracking data. The same could be said for trial type 1, since the
participant also had to focus on the tracking task. However,
whether the time in-between secondary task completions was
sufficient enough for the participant to reach a steady tracking
state cannot be said with confidence. The time of separation
between distractions in tracking run trial type 2 does allow for
a return to steady state tracking conditions.

The neural network models were trained using the data
collected from normal tracking conditions (no distractions) and
trial type 1 tracking runs. The performance of these neural
network models were then tested using tracking data collected
for trial type 2 tracking runs. A tracking run containing a mix
of normal and distracted data, trial type 2, is a more realistic
representation of how a person could be visually distracted
when driving a car compared to being distracted continuously
for a longer period of time. A visual comparison between the
two different trial types can be seen in Figure 8.

In Figure 8, the left column containing subfigures show the
forcing function and controlled element output ( 8a), control
input ( 8c), and eye tracker data for detecting screen 1 or 2
( 8e) for trial type 1. The same is shown for trial type 2 in the
right column. There is a clear distinction between the amount
of distracted data that can be obtained by using trial type 1
compared to trail type 2 as shown in 8e and 8f, respectively.

E. Execution

1) Participants: A total of 10 students and employees from
the faculty of Aerospace Engineering at Delft University of
Technology participated in the experiment. All participants
were right-handed, their age range varied from 20 to 55+
years old. The participants were only required to select an
age range and not mention their exact age due to privacy
reasons. Furthermore, participant either had good vision or
corrected vision in order to follow the target signal and find
the target circle appropriately in the primary and secondary
tasks, respectively.

2) Experiment Design: The complete experiment consisted
of 10 conditions, 5 per display type, see Table I,

TABLE I
COMBINATIONS OF EXPERIMENT TRACKING CONDITIONS.

Tracking conditions

Preview PR,-,- PR,C,E PR,C, H
PR,PE PR,PH
Pursuit PS, -, - PS,C,E PS,C,H
PS, P E PS, P, H

with the following definitions for the letters shown in
Table I:
« tracking display type: preview (PR) or pursuit (PS)
layout,
« secondary task difficulty: easy (E) or hard (H) variation,
« variation in distractions: continuous (C) or prompted
(P) distractions.
Due to the amount of conditions, the experiment had been
split up in two sessions. One session consisted of conditions

with only a pursuit display and the other session would then
only consist of runs with a preview display. In order to balance
the order in which the subjects would do the different tracking
conditions in, 2 Latin squares had been created. One for
pursuit sessions and the other for preview sessions. These
Latin Squares can be found in Appendix A.

3) Experiment Procedure: At the start of the experiment
sessions, participants were briefed on the experiment proce-
dure and tasks that had to be performed. Once the participant
was seated in the chair, the eye tracker would be worn on
the head. The front camera used to see where the subject is
looking was then calibrated to capture the entire screen of the
primary and secondary tasks.

Each sessions consisted of 30 tracking runs, of which the
first 5 runs consisted of training runs. This was done to
familiarise the subjects with the 5 conditions they would do
during the session. And every tracking condition was done
in blocks of 5 runs after each other, with each block taking
approximately 12 minutes. The order in which the conditions
were done was based on the Latin square. It should be noted
that each run took 128 s to complete, and the first tracking
run of each condition was considered to be a training run
as well. Thus 4 runs per tracking condition were considered
as usable data. Furthermore, the tracking and SuRT score,
whenever applicable were noted down after each run. A break
of 10 minutes was scheduled half way into the experiment,
thus after 15 runs, and participants could ask for extra breaks
in between blocks if needed. In total, each experiment session
took between 1.5 to 2 hours.

III. DATA PROCESSING

This section explains what kind of data had been collected
from the experiment and how they have been processed. Fur-
thermore, it includes parameters used for training the Neural
Networks (NN) and data analysis methods used to obtain the
results.

A. Data Collection

The data collected from the primary tracking tasks consisted
of time series data, sampled at a rate of 100 Hz. The eye-
tracker provided data about the head position of the partici-
pants based on a surface tracker plugin provided by Pupil Labs.
The surface tracker uses AprilTags to define planar surfaces
in the experimental environment. In this case tags from the
tag36h11 family were used to define two surfaces, one for
the primary tracking screen and one for the secondary task
tablet (4 tags per surface, 1 placed on each corner). Thus, an
objective measurement of the screen where participants were
looking, was obtained from the frontal camera detecting the
tag of the corresponding surface. An example of what kind of
data the Pupil Labs surface tracker collected, was shown in
Figure 8e and Figure 8f.

The data collected using the surface tracker plugin of the
eye tracker were called ‘Screen 1°, and ‘Screen 2’. Green in
Figure 8e and Figure 8f means that a tag was detected at a
certain time instant for screen 2, for periods highlighted in red
the a tag corresponding to screen 1 was detected. Using the
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Fig. 8. Comparison between tracking runs with continuous (left) and prompted (right) distractions.

Pupil Core Network API, real-time eye tracker data could be
accessed and synchronised with the tracking task data in the
DUECA simulation software used for the experiment.

B. Data Labelling

Based on the eye-tracker data, it could be determined
when the participant was distracted by the secondary task. A
participant was considered to be distracted during periods in
which the camera detected one of the AprilTags used to define
the surface of the tablet, since this meant that the participant
was engaged in the secondary task. Whenever the frontal
camera was not able to detect a tag, the data were considered
as distracted since this could happen when the participant was
turning their head between screens.

Before the segmented parts of distracted data in a complete
tracking run could be used for training NN models, they had
to be labelled first. Depending on how long a participant was
distracted, these segments could vary from as little as 0.3 s
to 6 s. However, a problem arose in deciding how to label
training samples as normal or distracted data. Take for example
the experiment data collected by Nokhai et al.[15] and NN
training parameters used by Verkerk et al. [21]. The samples
had a window size of 1.5 s with an overlap of 0.75 s between
samples as shown in Figure 9. A sample consists of time-
series data, which is sampled at 100 Hz. This means that each
sample contains 150 data points for every time signal.

Figure 9 shows that some samples contain only normal or
distracted data, highlighted in grey and green, respectively.
Red coloured samples contain both normal and distracted
data. For this problem, it was decided to label samples with
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Fig. 9. Consideration in labelling time series samples as distracted or normal.

only distracted data (green) and a mix of both distracted and
normal data (red) as ‘distracted’. Samples with only normal
data (grey) were labelled as ‘non-distracted’. Within the red
colored samples, the head of the participant began to turn,
shifting the field of view away from or back to the primary
tracking task. This meant that the participant did not receive
any new information of the tracking task, and could therefore
be considered as distracted.

C. Data Processing

The data samples used to train the NN consist of the
following tracking signals:

e e(t), error signal.

e ¢&(t), error signal derivative.

o u(t), HC input signal.

 4(t), HC input signal derivative.

o x(t), output signal.

e &(t), output signal derivative.



Various combinations of these six signals were considered
by Verkerk et al. in classifying human control behaviour in
tracking tasks with different display types using the Incep-
tionTime NN [21]. The highest model accuracy of 95% was
reached by using all signals, e(t), é(t), u(t), @(t), x(t), and
z(t) [21].

Furthermore, the data samples are also normalised per run
such that the samples are scaled appropriately [22]. This way
the magnitudes of each signal in the tracking data could not
affect the learning process of the neural net. For example, the
tracking error present in distracted data is generally greater
compared to normal tracking data. Normalisation prevents the
NN from learning the magnitude of error signals.

After the data had been prepared, all samples used to train
the neural network were randomly allocated to a training set
(80%) or validation set (20%) for training and validation,
respectively. The validation set was used to see how well the
model performed on the training data. Eventually, the models
were tested using test data from prompted tracking runs. The
next step was determining the hyperparameters for training
the NN. Based on prior work of Verkerk et al. and Kiselev
et al., the hyperparameters used to train the neural network
are shown in Table II [21, 12]. The hyperparameters had been
optimised to classify different display types in tracking tasks
and have not been optimised for this particular classification
task.

TABLE 11
CONFIGURATION OF THE HYPERPARAMETERS USED FOR TRAINING THE
NEURAL NETWORK [21, 12].

Parameter Value
Batch Size 64
Epochs 25
Bottleneck No
Kernel Size 64
Number of Filters 24
Max. Learning Rate 0.00275

Use Residual Connections  No
Weight Decay
Batch Normalization No

The models were trained on a P5000 GPU provided by Pa-
perspace’ through a virtual machine. And the implementation
of the neural networks were set-up in Python (version 3.9)
using the packages tsai (version 0.3.7), fastai (version 2.7.12),
PyTorch (version 1.12.0), pathlib (version 1.0.1). Furthermore,
wandb (version 0.15.11) [4] was used to save and export
trained models.

D. Data Analysis

Using the data collected from the experiment, and after
processing and labelling the data, the steps in Figure 10 were
taken to analyse the data.

The steps in Figure 10 include evaluating the distractions
caused by SuRT and the performance of tracking tasks based
on the RMS of tracking error and control input. The neural
network models are analysed on performance based on the

3https://www.paperspace.com/

Step 0. Evaluation of SuRT Distractions
Ve ™\
0.1 Evaluation of SuRT scores in tracking runs with
trial type 1 distractions.
0.2 Analysis of the distractions cause by SuRT
(duration & response times).
0.3 RMS analysis on tracking data.

Step 1. Classification Performance

‘continuous' distraction data.

-
-

Training and validation of models using ‘

Step 2. Classifier Test Performance

-

‘ 2.1 Testing of models using 'prompted' distraction ‘

data.

Step 3. Individual Classifiers

3.

Y

Training and validation of individualised models

using ‘continuous' distraction data.

3.2 Testing of individualised models using
‘prompted' distraction data.

3.3 Comparison between 'One-size-fits-all' and

individualised models

Fig. 10. Steps taken in the data analysis process.

training and validation data. These models are then tested
using tracking runs with prompted distractions and evaluated
on it’s ability to detect distractions. At last, individualised
models are also trained and compared against the performance
of ‘One-size-fits-all’ models.

1) Evaluation of Distractions: During tracking runs with
trial type 1 (continuous) distractions, participants are asked to
reach a SuRT score of 2,000 points. The SuRT score can be
seen as a metric of how distracted a person was during the run.
Someone with a high SuRT score means that more distracted
data of this person are available to train the classifiers with,
which may have an influence on how well the model performs
in detecting distractions.

Furthermore, the reaction time to a prompt and the time it
takes to complete distraction are calculated for tracking runs
with trial type 2 (prompted) distractions. This is done to see
whether the preview time has an influence on the reactions
time. And it can become clear whether there are differences
between the easy and hard difficulty of the secondary task.

Lastly, an analysis was done on tracking signals of ‘nor-
mal’ and ‘distracted’ data collected from tracking runs using
prompted distractions. The root mean square of the tracking
error and control input signals were calculated for entire runs
and individual samples. The RMS tells something about the
tracking performance of HCs in general and how distractions
affected them.

2) Neural Network Models: A total of 6 different NN
models were trained for further analysis.
o Pursuit

1) MS-e: trained using PS tracking data in normal
conditions and with E distractions.



2) MS-h: trained using PS tracking data in normal
conditions and with H distractions.
3) MS-c: trained using PS tracking data in

conditions and with E and H distractions.

normal

e Preview

1) MR-e: trained using PR tracking data in normal
conditions and with E distractions.

2) MR-h: trained using PR tracking data in normal
conditions and with H distractions.

3) MR-c: trained using PR tracking data in normal
conditions and with E and H distractions.

With a total of 10 participants, the amount of samples used
available to train the NNs are presented in Table III:

TABLE III
NUMBER OF SAMPLES PER DISPLAY TYPE, NORMAL AND DISTRACTED
(EASY AND HARD) TRACKING DATA.

Display Normal Distracted (easy) Distracted (hard)
Pursuit 6,320 6,320 6,320

(after filtering) 6,318 3,694 4,058
Preview 6,320 6,320 6,320

(after filtering) 6,320 3,212 4,314

It should be noted that the number of samples for distracted
data (6320), mentioned in Table III is the maximum possible
amount of distracted samples. The tracking runs from which
distracted data is obtained also contain normal tracking data.
During the labelling process, data labelled as ‘normal’ were
filtered out and not used for training the neural network
models. The amount of data samples for pursuit display in
normal tracking condition happens to be 6,318. This may be
the result of a subject looking at the screen of the secondary
task by accident.

3) Metrics: The performance of the models was assessed
based on the model accuracy using the validation data set
(from trial type 1 distractions) after training. The accuracy
is defined as follows:

(TP +TN)
(TP +TN + FP + FN)

accuracy = Q8

where T and F denote true and false classification of samples
for positives (P, non-distracted) and negatives (N, distracted),
respectively. Each model type is trained 10 times in order to
see how well the neural network is able to classify the training
data over multiple training runs. Furthermore, ROC (Receiver
Operating Characteristic) curves are plotted for all models
using test data. The test data are obtained from the prompted
tracking runs in which the subjects are only distracted six times
at random moments during a run. The ROC shows how well
each model performs on test data and the prediction accuracy
of each model for every subject is noted.

Predictions made by the model were based on the decision
threshold of 0.5 and the probability, ranging from O to 1,
of a sample belonging to a certain class. In this research, a
probability close to 1 means that the sample was considered
to belong to the class ‘distracted’, whereas a probability of 0
indicated it belongs to a ‘normal’ sample.

The decision threshold of a model determines what the
minimum probability of a prediction should be in order for
it to be a ‘distracted’ sample. For a two class classification
problem, the default threshold was set at 0.5. Thus, a sample
with prediction probability of 0.6 would mean that it was
classified as ‘distracted’. A low decision threshold generally
results in a lot of false positives. High threshold values on the
other hand reduce the number of false positives, but may result
in fewer true positives. The threshold is a hyperparameter that
can be optimised using ROC curves. This will however not be
investigated in this paper and is left for further research.

Finally, individualised models are also trained using data
of 1 specific subject. These models are used to make a
comparison between ‘one-size-fits-all’ models based on the
classification accuracy of data from prompted tracking runs.
This is done in order to see whether a individualised model
would be preferred for further research.

From the data analysis the following findings are expected:

¢ A reduced control input during distractions.

o A better accuracy in classifying distractions for models
trained on pursuit data.

o Models trained with hard distractions perform better than
models trained with easy distractions.

« Individualised models perform better than ‘One-size-fits-
all’ models.

IV. RESULTS
A. SuRT Distractions

The SuRT was used as a secondary task in tracking tasks
where participants were continuously distracted or only at
prompted moments. In order to see how well the SuRT is
able to distract participants, the SuRT scores, response time,
time to complete the secondary task and tracking performance
based on root means square (RMS) error (e) and input (u) are
presented.

1) SuRT score: Subjects were asked to reach a score of
2,000 or higher in the SuRT task in tracking conditions with
trial type 1 distractions. Thus, one subject could have been
distracted for a longer period of time compared to another
subject by doing the SuRT task more often. The obtained
SuRT scores have been averaged over the 4 tracking runs per
condition and are shown in Table IV.

TABLE IV
AVERAGE SURT SCORES OF EVERY SUBJECT FOR TRACKING CONDITIONS
WITH CONTINUOUS DISTRACTIONS.

DS-ce DS-ch  DR-ce  DR-ch

Subject Score Score Score Score
1 6,175 3,650 3,425 2,550

2 2,975 1,875 2,950 2,150

3 2,650 2,350 3,100 2,600

4 2,050 1,900 2,500 1,925

5 204,600 2,925 2,150 2,575

6 2,425 2,050 2,675 2,175

7 22,275 2,400 2,900 2,200

8 2,875 2,050 6,175 2,200

9 2,325 1,675 2,225 1,475
10 17,450 2,825 7,700 2,100
Median 2,925 2,200 2,925  2,187.5




Table IV shows that only 3 subjects were not able to reach a
score of 2000, subjects 2, 4, and 9. These cases all happened
to be during tracking runs with hard distractions. From the
SuRT scores it can be seen that most subjects took a lot of time
finding the target circle in the SuRT task in hard conditions.
Namely, the scores for DS-ce and DR-ce are significantly
higher, take for example the scores of subjects 1, 8, and 10.

2) SuRT Distractions: Apart from the SuRT scores, the
difference in secondary task difficulty can also be found in
the time it takes for subjects to find the target circle. For this
purpose, the duration of the secondary task and response time
of all subjects have been computed using data collected in
tracking runs with prompted conditions. The response time and
duration can be seen in Figure 11 and Figure 12, respectively.
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Fig. 11. Response time of subject reacting to the prompt asking to complete
the secondary task.
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Fig. 12. The duration of subjects to complete the secondary task.

Figure 11 shows that participants took on average 1.1 s to
respond to the prompt and look at the tablet on which the
secondary task was presented. The time difference between
tracking runs using a pursuit and preview display is negligible.

In Figure 12 a large difference can be seen between the time
it takes to find the target circle in easy or hard mode. It took on
average 0.82 s to complete the easy difficulty secondary task,
whereas for the hard difficulty the average time was 1.75 s. The
time for subjects to complete the easy and hard secondary task
varied from 0.3 s to 4.0 s and 0.6 s to 14 s, respectively. For
a more quantitative comparison, the percentage of distractions
with a duration lower than 2 s is presented in Table V, since
the average time to complete the hard distraction is 1.88 s.

TABLE V
NUMBER OF COMPLETED SECONDARY TASKS WITH A DURATION LOWER
THAN 2 S.
DS-pe DS-ph  DR-pe DR-ph
Nr. Distractions 231 133 216 127
96.3%  554%  90.0% 52.9%

3) Tracking performance: The RMS error and input were
computed for complete tracking runs in all tracking conditions.
The RMS error and input show how well a subject performed
the tracking run and the amount of control input needed to
follow the target signal. Since the models were trained using
data from the tracking conditions DS-n, DS-ce, DS-ch for
pursuit, and DR-n, DR-ce, DR-ch for preview, these data sets
were analysed first. Starting with the RMS error, the results
for pursuit and preview display data are plotted in Figure 13
and Figure 14, respectively.
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Fig. 13. RMS error of tracking runs performed by all 10 subjects in DS-n,
DS-ce, and DS-ch conditions.

4) RMS error: Figure 13 to 15 show the RMS(e) and
RMS(u) for all subjects together (left plots, N=40) and each
individual subject (right plot, N=4). Figure 13 shows that the
RMS error in PS tracking conditions (without distraction)
is the lowest. When a secondary task was introduced, the
tracking performance became worse as can be concluded from
an increase in RMS error for all subjects. The DS-n RMS
error was in between 0.2 and 0.3 inch, for DS-ce and DS-ch
the RMS error increased to values above 0.3 and 0.4 inch,
respectively.

In Figure 14 the RMS error for preview data are shown,
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Fig. 14. Root mean square (RMS) error of tracking runs performed by all
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the average RMS error was smaller compared to pursuit data.
The tracking performance in normal conditions (DR-n) stayed
below 0.17 inch, whereas when subjects were tracking with a
hard distraction (DR-ch) the RMS error could reach 0.7 inch
with the lowest being 0.18 inch. Tracking performance with
an easy distraction (DR-ce) showed a lower spread in RMS
error, namely between 0.33 and 0.13 inch.

5) RMS input: The RMS input data obtained from pursuit
tracking tasks can be found in Figure 15. When looking at
the data in Figure 15, there is no clear general trend. For
subjects 3, 5, 9, the RMS input seems to decrease with
increasing difficulty of the distraction. The same could be said
for subjects 1 and 2, however the RMS input in tracking runs
with a hard distraction was higher compared to when there was
a easy distraction. On the other hand, the RMS input increases
with increasing secondary task difficulty for subjects 6 and 8.
And subjects 4, 7, and 10 appear to have a nearly constant
RMS input regardless of any distraction.

The RMS input for PR data in Figure 16 show a value
around 0.45 inch for tracking runs with preview only. How-
ever, when comparing the data with distractions (DR-ce and
DR-ch) no correlation is found between the RMS input and
difficulty of the distraction. Data from subject 9 show a great
decrease in RMS input whereas it increases for subject 4 with
increasing distraction difficulty.

B. Classification Performance

The neural networks were trained using the samples col-
lected from normal and continuous distracted conditions of all
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Fig. 15. RMS input of tracking runs performed by all 10 subjects in DS-n,
DS-ce, and DS-ch conditions.
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subjects. Data from the two different tracking displays, pursuit
or preview, were used separately. Regarding the difficulty level
of the distraction, the neural networks were trained on solely
easy or hard difficulty data as well as both data types together.
For each model, 10 training runs have been completed of
which the validation accuracies are presented in Table VI.

TABLE VI
VALIDATION ACCURACY OF ALL 6 MODELS SHOWING THE MAXIMUM,
MINIMUM, AND AVERAGE ACCURACY OF 10 TRAINING RUNS.

Model MS-e MS-h MS-c
Max. Accuracy 99.24%  100.0%  99.49%
Min. Accuracy 98.37%  99.81%  99.06%

Average Accuracy 98.74%  99.93%  99.27%

Model MR-e MR-h MR-c
Max. Accuracy 96.13%  99.82%  97.80%
Min. Accuracy 94.50%  99.66%  96.50%

Average Accuracy 95.71%  99.77%  97.27%

From Table VI it can be seen that all trained models have a
high validation accuracy, well above 94%, using the labelling
method described in subsection III-B. It can be seen that
models trained using pursuit data achieve a higher validation
accuracy compared to the respective counterparts trained using
preview data. The same can be said about models trained
using hard or easy distracted tracking data: both the MS-
h and MR-h models have a higher accuracy than the MS-e
and MR-e models. The accuracy of MS-c and MR-c models
is inbetween the accuracy of MS-e/MS-h and MR-e/MR-h
models, respectively. In order to see how well the MS-c and
MR-c models are able to make predictions, a breakdown of
the samples used to train the MS-c and MR-c models is given
in Table VII.

TABLE VII
BREAKDOWN OF THE TRAINING DATA FOR TRAINING THE MS-C AND
MR-C MODELS.

Data  Total Samples True False Accuracy
DS-n 6,318 6,300 18 99.72%
DS-ce 3,694 3,680 14 99.62%
DS-ch 4,058 4,058 0 100.0%
DR-n 6,320 6,290 30 99.53%
DR-ce 3212 3,167 45 98.60%
DR-ch 4,314 4,312 2 99.95%

Table VII shows the number of samples per data type. DS-
n/DR-n are samples from normal tracking data, whereas the
acronyms in Table VII ending in ce or ch are samples from
distracted tracking data caused by an easy or hard distraction,
respectively. It can be seen that when training a model with
both easy and hard distracted data, samples with a hard
distraction are easier to predict correctly compared to samples
with an easy distraction. However, the difference in accuracy
very is small, 0.38 and 1.35 percentage points for pursuit and
preview, respectively.

C. Classifier Test Performance

In order to test the accuracy of the six models that were
trained in detecting distractions, data samples of the prompted
tracking runs were used. In prompted runs, subjects were
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asked to complete the secondary task at random time instances
during the entire 120 s of a single tracking run.

1) Detection Probability: An example of such prompted
run can be seen in the top graph of Figure 17. This tracking run
was performed by Subject 3 with prompted easy distractions.
The blue and red lines represent the forcing function (target)
and output (controlled element), respectively, The yellow pulse
functions represent the times when the participant was asked
to complete the secondary task. An observation that can be
made by comparing the forcing function, output, and prompt
signals is an increase in tracking error right after or during the
prompt when the subject is distracted. The goal for the models
is to detect these occurrences in a tracking run and label the
data as distracted.

The bottom graph of Figure 17 shows the detection proba-
bility produced by the PSE model for a run with easy distrac-
tions. The moments in time when the subject is looking at the
secondary screen, recorded by the eye tracker, are highlighted
in blue. After the prompt has appeared, an increase in detection
probability can be seen which also corresponds with when
the subject is not looking at the tracking task. Looking at the
forcing function and output, deteriorated tracking performance
of the subject when distracted is also visible.

During the experiment sessions, every subject completed
five tracking runs in each condition of which only data from
the last four runs were used. In order to analyze how well
the PSE model is able to detect easy distractions of subject
3, the detection probabilities produced by the PSE model
for all prompted easy runs have been plotted in Figure 18.
The light blue coloured rectangle visible in Figure 18 are
the time periods in which the subject is asked to complete
the secondary task, see Figure 7. The overall trends of the
detection probability curves are as expected. The detection
probability increases to 1 within or closely after each coloured
rectangle and stays mostly O outside of these periods. For a
decision threshold of 0.5, the total accuracy of the MS-e model
for predicting the samples of subject 3 in Figure 18 is 93.99%.

Having shown the results of the MS-e model for detecting
easy distractions, the same has been done for the MS-h model
which detects hard distractions. The forcing function, system
output and detection probability of Subject 10, Run 2 for the
prompted hard conditions (DS-ph) can be seen in Figure 19.
Figure 19 shows that the MS-h model is not able to detect all 6
prompted distractions in this particular run. And it has trouble
in classifying non-distracted data as normal. By comparing
the easy distractions in Figure 17 with the hard distractions
in Figure 19, a clear difference can be seen in the duration of
each distraction. Hard distractions take on average longer to
complete as found in Figure 12.

The accuracy of all other models for classifying samples
from prompted runs with easy or hard distractions can be
found in Figure 20. Figure 20 shows that not all models were
able to reach high accuracies when classifying samples ob-
tained from prompted tracking runs. Furthermore, all models
show inconsistency in accuracy when comparing results of
different subjects. For example, the MR-e model is able to
classify samples of subjects 1, 6, 8, and 10 with accuracies
above 80%, whilst the accuracy for the other subjects is below
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Fig. 17. Forcing function (target), system output 17a, and detection probability 17b of a prompted (P) tracking run (subject 3, run 1) with easy distraction

(PSE model).
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Fig. 18. Detection probability of all prompted (P) tracking runs performed by subject 3 with easy distractions (MS-e model). Decision threshold = 0.5.
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60%. The models are able to classify prompted runs with
easy distractions much better compared to prompted runs with
hard distractions. Furthermore, the pursuit models (green and
red) show an overall better performance compared to preview
models (blue and orange). The average prediction accuracy of
each model shown in Figure 20 is presented in Table VIII. The
low prediction accuracy of some models could suggest that
personalised models may be needed to increase performance.

TABLE VIII
AVERAGE MODEL PREDICTION ACCURACY AND THE CORRESPONDING
DATA USED.
Model Data Accuracy Model Data Accuracy
MS-e DS-pe 80.78% MR-e  DR-pe 57.36%
MS-h  DS-ph 48.09% MR-h  DR-ph 33.78%
MS-c DS-pe 80.78% MR-c  DR-pe 61.66%
DS-ph 41.82% DR-ph 29.15%

2) Receiver Operating Characteristic (ROC): The classifi-
cation threshold for determining whether a sample was from
normal or distracted data, was set to 0.5. This threshold value
was used to produce the results of Figure 18 and Figure 20. In
order to see if the classification accuracy of the models would
improve by choosing a different threshold, ROC (Receiver
Operating Characteristic) curves of all models were generated.
A ROC curve also shows how well a model is able to predict
in a classification problem. The ROC curves of the pursuit
and preview models can be seen in Figure 21 and Figure 22,
respectively.

The corresponding AUC (Area Under the Curve of the
Receiver Operating Characteristic) values of all ROC shown
in Figure 21 and Figure 22 are presented in Table IX.

Figure 21 shows that the MS-e model has the best perfor-
mance (AUC = 0.8688), followed by the MS-c model when
tested on easy distraction data only (AUC = 0.8509). The
worst performance can be found for models trained to detect
hard distractions. The ROC curves for the preview models in
Figure 22 on the other hand show little to no difference when
compared to each other. Overall, a clear observation that can
be made is that pursuit models have a better performance than
preview models. The AUC of all pursuit models are higher
than the highest preview model (MR-e) AUC score of 0.6405.

TABLE IX
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runs with hard distractions, which can be found in Figure 23.
Figure 23 shows that the MS-e and MR-e models perform the
best for pursuit and preview data with hard distractions even
though both models are trained with data of easy distractions.
The AUC corresponding to the two curves are presented in
Table IX. The AUC score for the MS-e model with predictions
made on DS-ph data is 0.7885, which is 9.24% lower than
using DS-pe data. For the MR-e model, the AUC score is
0.6308, being almost equivalent the result using DR-pe data.

D. Individualised vs. ‘One-size-fits-all’ Models

Based on the results found in Figure 20, it would also be
interesting to see how well subject-specific neural network
models would perform. These models are trained and tested
solely on tracking data of the specific subject. The validation
accuracy of the individual models can be found in Appendix
B. Note that the prediction accuracy for models trained with
hard distractions are left out for clarity and because of the
unsatisfactory performance in Figure 20, see Appendix D.
The prediction accuracy of the individual pursuit and preview
models can be found in Figure 24 and Figure 25, respectively.

The dashed lines in Figure 24 and Figure 25 represent
the model accuracies seen in Figure 20, thus the prediction
accuracy of the ‘one-size-fits-all’ MS-e or MR-e model tested
on data of each individual subject. The circles represent the
prediction accuracy of subject specific models.

Figure 24 shows that the subject-specific models do not
always perform better compared to the general models. This
is the case for subjects 1, 7, and 10, where the MS-e and
MS-c (easy) models perform worse. For preview models in
Figure 25, the subject specific models only perform signifi-
cantly better for subjects 2 and 3. For other subjects a drop
or no change in performance can be seen. When comparing
the averaged accuracy of all subject, a decrease in accuracy is
found for the MR-e and MR-c (easy) models.

The average model prediction accuracy for both the ‘one-
size-fits-all’ and personalised models are reported in Table X
and Table XI for pursuit and preview, respectively. The tables
show that individual models perform better than ‘one-size-fits-
all’ models on average, except for MS-c/MR-c models when
predicting DS-pe/DR-pe data, respectively.

TABLE X
AUC OF ALL MODELS AND THE CORRESPONDING DATA USED FOR AVERAGE MODEL PREDICTION ACCURACY OF ‘ONE-SIZE-FITS-ALL’ AND
PREDICTIONS. PERSONALISED PURSUIT MODELS.
Model _ Data AUC Model _ Data AUC Model Data ‘One-size-fits-all’  Personalised A Difference
MS-e DS-pe  0.8688 MR-¢e  DR-pe  0.6405 MS-e  DS-pe 80.78% 83.50% 2.72%
DS-ph  0.7885 DR-ph  0.6308 MS-h  DS-ph 48.09% 71.06% 22.97%
MS-h DS—ph 0.6758 MR-h DR-pl’l 0.6225 MS-c Ds_pe 80.78% 79.02% -1.76%
MS-c DS-pe  0.8509 MR-c  DR-pe  0.6436 DS-ph 41.82% 61.63% 19.81%
DS-ph  0.7452 DR-ph  0.6105
DS-pc  0.7897 DR-pc  0.6452

The ROC curves and AUC values of all models have been
have plotted separately, together with the ROC curves of
each subject data set separately on the respective models. The
results can be found in Appendix F.

3) Cross-validation: The ROC curves of the 6 classification
models have been plotted on data obtained from prompted

V. DISCUSSION & RECOMMENDATIONS

The main research objective of this paper is to train and test
a neural network model that is able to detect when a human
controller is distracted when performing a tracking task. The
classifier uses the InceptionTime neural network architecture
with a time window of 1.5 s. Training data consisted only
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Fig. 20. Accuracy of all 6 models when predicting samples from prompted runs.
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Fig. 21. ROC curves of all pursuit models generated with corresponding
easy/hard distraction samples.
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Fig. 22. ROC curves of all preview models generated with corresponding
easy/hard distraction samples.

TABLE XI
AVERAGE MODEL PREDICTION ACCURACY OF ‘ONE-SIZE-FITS-ALL’ AND
PERSONALISED PREVIEW MODELS.

Model Data ‘One-size-fits-all’  Personalised A Difference

MR-e  DR-pe 57.36% 61.57% 4.21%
MR-h  DR-ph 33.78% 44.03% 10.25%
MR-c  DR-pe 61.66% 55.30% -6.36%

DR-ph 29.15% 34.29% 5.14%

of the system output, z, control input, u, the tracking error,
e, and their respective derivatives. A total of 6 ‘one-size-
fits-all’ classifier models have been trained and were able
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Fig. 23. ROC curves of all models generated on data from prompted runs
with hard distractions

to produce good results. The highest validation accuracy was
100.0% while the lowest was 94.50%. When the classifiers are
evaluated on test data, the accuracy dropped to 80.78% and
with the lowest being 29.15%. In the following paragraphs,
the results from section IV will be interpreted in order to
point out challenges to which possible resolutions are given.
Additionally, limitations of this research and recommendations
for future work are given.

In this research a total of 6 ‘one-size-fits-all’ neural network
models have been trained to detect distractions. The validation
accuracy of all models indicate that there is a distinct differ-
ence between the normal and distracted tracking data. Even
so, between the data of easy and hard distractions, both of
which are used the train the MS-c and MR-c models. Average
validation accuracies of 95.71% and 97.27% are reached for
the MS-c and MR-c model, respectively. This means that
using data of both easy and hard distractions, high validation
accuracies can be obtained.

Furthermore, the validation accuracy also shows that con-
tinuously distracting subjects is a viable way of collecting a
large number of samples of distracted data. For tracking runs
with easy or hard distractions, 54.62% and 66.23% of the total
amount of samples could be labelled as distracted, respectively.
Tracking runs with continuous distractions allow participant to
decide for themselves when and how many times they would
like to complete the secondary task. However, a minimum
score should be set to encourage subject to do the secondary
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Fig. 25. Accuracy of preview models when predicting samples from prompted runs with easy distractions.

task. The difficulty of doing both the primary and secondary
task may discourage subjects to do the secondary task, as
informally mentioned by subject 2 during the experiment
sessions. When distractions in tracking runs are prompted
only a set amount of data samples can be collected. The
amount of prompts could be increased, but depending on the
time between prompts and difficulty of the secondary task,
the time needed to complete it might not be enough. All in
all, distracting participants continuously is a better way of
collecting samples with distracted data compared to distracting
participants a fixed amount of times.

Tracking runs with prompted distractions can be used to
test the classification models that have been trained using the
data from normal and continuous distracted tracking data. In
this research six prompts were spaced apart from each other in
such a way that subjects would have sufficient time to return
in a steady-state tracking condition. An example of how a
prompted run can be used in detecting distractions with a
neural network was shown in Figure 17. This example shows
the capabilities and promising results of how neural networks
could be applied. When the subject was prompted and doing
the secondary task, the neural network could detect this, and
returned a detection probability of 1. Thus, continuous and
prompted distractions are similar to each other, since a model
trained on continous distractions is able to detect prompted
distractions.

After analysing the prompted runs for all model types per

subject (see Figure 20), insightful results were found. Overall,
models trained with pursuit data perform, on average, 39.4%
better compared to preview models. The reason behind this is
that the preview display in preview tasks allows the subject
to see the future trajectory of the target. The preview display
explicitly shows how the target will behave when doing the
secondary distraction. This is an advantage which is missing
in pursuit displays, leading to lower tracking errors with the
preview display. It should be noted that the tracking error also
depends on the preview time, 7, shown to the subject [7]. The
main finding is in line with the hypothesis that it is easier to
detect distractions in pursuit data compared to preview data.

Furthermore, the models performed better when detecting
data samples of easy distractions as opposed to hard dis-
tractions. It was expected that hard distractions would be
easier to detect than easy distractions. Following the results
from Figure 20 this is not the case. A possible explanation
for why models trained with hard distractions have a worse
performance in detecting distractions could be that there is
a large variation in tracking performance. When a subject is
distracted with a hard distraction, it could take up to 6 s to
find the target circle (ignoring outliers). This means that large
variations in tracking data for hard distractions is possible,
which was also seen in the RMS error and input analysis.
Hard distracted data span over a larger error or input range.
Therefore, normal samples could be seen as a distraction,
resulting in a lower prediction accuracy as shown in Figure 19.



Looking at the ROC curves in Figure 23, a model trained
with data of easy distractions only has a better performance
in classifying normal samples from distracted samples. This
could be caused by the large variation in tracking performance.
Thus, samples from hard distractions can be problematic in
training classifiers for detecting distractions, as normal data
can be classified as distracted data.

Another reason for the bad performance of the models for
detecting hard distractions may be the result of the labelling
method. In this research, samples were labelled as distracted
if the samples contained distracted data. Thus, a sample
containing a mix of non-distracted and distracted data would
also be labelled as distracted. This method of labelling seemed
to be viable due to the high validation accuracies achieved
by all trained classification models. It may be insightful to
investigate whether using samples with only distracted data
can improve the test accuracy of models.

Whether data were considered as distracted was based on
the eye tracker data which had information about which screen
a participant was looking at. In the experiments, the eye tracker
only kept track of which screen was seen using the frontal
camera. The accuracy could be improved by also taking into
account the gaze of the subject by using the pupil cameras.
However, due to technical problems this was not taken into
consideration. In the end, using only the frontal camera the
data was accurate to tell when someone was distracted.

The configuration of hyperparameters were chosen based
on the research conducted by Verkerk et al.[21] and Kiselev
et al.[12] on the implementation of the InceptionTime archi-
tecture for classifying time-series data of tracking tasks. Since
the problem in this research is about classifying non-distracted
and distracted data in tracking tasks, the same hyperparameters
were used. The validation accuracies show that this was a
viable choice.

The test accuracies compared to the validation accuracies
were lower, the best results were 80.78% and 61.66% for
pursuit and preview, respectively. The AUC values showed that
the accuracy for some models could be improved, especially
the models trained to detect hard distractions. The ROC can
help in finding the optimal decision thresholds for classifying
samples. Thus, it is recommended to investigate what the
optimal decision threshold would be for theses models.

However, the models do not perform equally well between
different subjects. A reason for this could be that the classifier
models are not subject-specific. Meaning, the current models
have been trained with data of all subjects together instead
training an individual-specific model for each subject, using
only the respective subject’s data. Take for example the MR-e
model in Figure 20, the test accuracy also show fluctuating
performance between subjects in classifying samples. The
model is able to reach accuracies higher than 80% for subjects
1, 6, 8, and 10. The accuracy for the other subjects is worse,
the lowest being 29.11% (Subject 5), which is below chance
level for a 2-class classifier. A ‘one-size-for-all’ model is thus
not the a good method to achieve high classification accuracies
for all subjects.

Subject-specific models have also been trained and tested in
order to investigate whether subject-specific or general models
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perform better. Results from comparing pursuit models show
that for 6 out of 10 participants, an personalised model works
better. This is true for 7 out of 10 participants in case of
preview models. By personalising the neural network models,
the classification accuracy increases in general for both pursuit
and preview data.

To conclude, the detection of distractions in tracking tasks
using machine learning is feasible, since high validation and
test accuracies have been achieved. It is proven that it is
easier to detect distractions when a pursuit display shown
compared to preview displays. A reduced control input is given
to the control stick when subjects are distracted. However,
samples caused by easy distractions are easier to detect than
ones caused by hard distractions. And individualised models
perform better compared to ‘one-size-fits-all’ models.

The ultimate goal of this research is to improve the safety
of human-operated vehicles, whether it is in the sky or on the
ground, by detecting distractions in control tasks. This paper
is a first step towards this direction in which experiments have
been performed, for a primary tracking task and a secondary
SuRT task as a distraction.

Recommendations for further research on this topic is to
test the classification model in real-time. Since this would be
the only way to apply neural networks to detect distractions.
Possible mitigation strategies could also be considered in case
a detection is detected in order to warn or help the human
operator to regain control.

VI. CONCLUSION

The purpose of this research is to detect distractions in
human manual control tasks using machine learning and to
investigate how to best train classifiers (individualised or
’one-size-fits-all’ models). The InceptionTime neural network
architecture was trained and tested using collected experiment
data (10 participants) from tracking tasks with pursuit and
preview displays. Distractions are easier to detect in case
of pursuit displays compared to preview displays with test
accuracies of 80.78% and 61.66%, respectively. When humans
are distracted the control input is reduced since the primary
task is neglected. And distractions caused by easy secondary
tasks are easier to detect than ones caused by hard tasks.

The success of being able to detect distractions in tracking
tasks using machine learning shows promise towards real-time
use cases.
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Experiment Documents

In this appendix the experiment documents are presented, these are:

» Experiment Briefing: Before the experiment session, participants were briefed on the experiment.
This includes the objective, set-up, procedure as well as the rights participants have for participat-
ing in the experiment.

» Experiment Consent Form: Participants were asked at the start of the first experiment session to
fill in the ‘Experiment Consent Form’

* Latin Square: For the experiment, data collected from 10 participants were used. In each session,
five tracking conditions were done with either a pursuit or preview display. In order to balance the
order in which the tracking conditions were completed, two Latin squares were created.
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Experiment Briefing

Measuring distractions in human manual control tasks

Thank you for your participation. This experiment is part of a MSc thesis research project that aims to
measure the effects of distraction in manual tracking tasks. The experiment is performed in the
Human-Machine Interaction Laboratory (HMILab) at TU Delft’s Faculty of Aerospace Engineering. This
briefing will give an overview of the experiment and explains what is expected from the participants.
Please read this document carefully. Should any questions or comments remain, always feel free to
discuss these with the researcher conducting the experiment.

Experiment Objective

An ability to monitor manual control behavior is essential for improving safety in human-controlled
vehicles. This experiment is meant to collect data on human tracking behavior under visual
distractions.

Experiment Set-up

The “HMILab” (Fig. 1), a fixed-base simulator set-up at TU Delft’s Faculty of Aerospace Engineering, is
used to investigate interaction between human operators and controlled elements. You are asked to
take place in the right chair, where you can control the side-stick with your right hand. On the head-
down display in front of you, you will look at one of the tracking display types (Fig. 2), with the objective
to minimize the tracking error, e(t). For a preview/pursuit display (Fig. 2) the tracking error is the
distance between the controlled element output and the target. On a touchscreen tablet positioned
on your left-hand side, a “Surrogate Reference Task” will be presented where your goal is to find and
select the target circle (largest circle) (Fig. 3) in the midst of smaller circles called “distractors”. During
your tracking runs, you will be prompted on your tracking display to complete this secondary task.
Several runs are collected, and per run, your tracking input will be measured for 128 seconds, where
the first 8 seconds compose the run-in time needed to calibrate the identification software.
Throughout the experiment, your eye and head movements will be recorded with a head-worn eye
tracker (Pupil Labs Core, see Fig. 4) to objectively detect when distraction occurs.

Controlled
Element Reference

Output o +

\\;‘\\\ “ AN £y .

Figure 1: lllustration of HMI Lab. The participant will be sitting on the right Figure 2: Sketch of the HMI Lab
(blue) seat and controls the side-stick. The participant will have to look at pursuit/preview tracking display.

a tablet on the left.



Figure 3: Example of the “Surrogate Reference Task ” display on the left hand i:igure 4: Pupil Labs head-worn eye

side. The target circle and distractors are randomly repositioned after tracker. Source: https://docs.pupil-
selecting the target circle. labs.com/core/

Experiment procedure

During the experiment, you are tasked with making the controlled element state follow the target in
case of a pursuit/preview display by giving tracking input to the side-stick. These tasks always include
a single integrator controlled element (rate control). During the experiments, you will be prompted to
do the secondary task on the tablet on your left-hand side. All tracking runs collect performance in a
specific score, which will be communicated to you by the researcher. You will be asked to complete a
number of repeated tracking runs and the experimenter will notify you when sufficient data has been
collected. Periodically, you will be asked to take a short (i.e., 15 minute) break to avoid fatigue. Should
more breaks be required, you can request them at any moment. Prior to data collection, a short period
of time will be needed for calibration of the eye tracker. Conducting the full experiment takes
approximately 2-3 hours.

Your Rights & Consent

Experiment participation is voluntary. Should you feel uncomfortable, you can decide to stop your
participation at any time. By participating in the experiment you agree that the collected data may be
published. Your personal data will remain confidential and anonymous, only the researcher can link
the collected data to a specific participant. To ensure you understand and comply with the conditions
of the experiment, you will be asked to sign an informed consent form.

Contact information researcher: Contact information research supervisor
David Li Dr. ir. Daan M. Pool
y.d.li@student.tudelft.nl d.m.pool@tudelft.nl

Thank you again for participating!



Experiment Consent Form

Measuring distraction in human manual control tasks

| hereby confirm, by ticking the box, that:

1.

| volunteer to participate in the experiment conducted by the researcher (David Li), under
supervision of dr.ir. Daan Pool, from the Faculty of Aerospace Engineering of TU Delft. |
understand that my participation in this experiment is voluntary and that | may withdraw
(“opt-out”) from the study at any time, for any reason.

| have read the briefing document and | understand the experiment instructions, and have
had all remaining questions answered to my satisfaction.

| understand that taking part in the experiment involves performing manual tracking tasks
in the HMILab simulator at TU Delft with an additional side-task shown on a “distractor”
display. | understand that only the pseudonimized recorded time traces of the tracking
tasks, eye tracking data, and side-task performance are saved and used for data analysis.

| confirm that the researcher has provided me with detailed safety and operational
instructions for the HMILab simulator (simulator setup, electro-hydraulic side stick,
emergency procedures) used in the experiment. Furthermore, | understand the
researcher’s instructions for guaranteeing the experiment’s compliance with current
COVID-19 guidelines, and that this experiment shall at all times follow these guidelines.

| understand that the researcher will not identify me by name in any reports or publications
that will result from this experiment, and that my confidentiality as a participant in this
study will remain secure. Specifically, | understand that any demographic information |
provide (gender, handedness, age range, see next page) will only be used for reference
and always presented in aggregate form in scientific publications.

| understand that this research study has been reviewed and approved by the TU Delft
Human Research Ethics Committee (HREC). To report any problems regarding my
participation in the experiment, | know | can contact the researchers using the contact
information below.

My Signature Date

My Printed Name Signature of researcher

Contact information researcher: Contact information research supervisor:

David Li dr. ir. Daan Pool
y.d.li@student.tudelft.nl d.m.pool@tudelft.nl



Participant Demographic Information

Measuring distraction in human manual control tasks

Age range:
o 18-19
o 20-24
o 25-29
o 30-34
o 35-39
o 40-44
o 45-49
o 50-55
o 55+

Handedness:

o Left handed
o Right handed
o Ambidextrous

Gender:

Participant number:
(filled out by the researcher)

Contact information researcher: Contact information research supervisor:
David Li dr. ir. Daan Pool
y.d.li@student.tudelft.nl d.m.pool@tudelft.nl
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Validation Accuracy

The validation accuracy of all ‘one-size-fits-all’ and subject specific models are shown in this appendix.
Each boxplot is based on the validation accuracy of 10 separate training runs (N = 10).

B.1. ‘One-size-fits-all’ Models
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Figure B.1: Validation accuracy of all ‘one-size-fits-all’ models.
B.2. Subject Specific Models
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Figure B.2: Validation accuracy of MS-e ‘one-size-fits-all’ and subject specific models.
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Figure B.3: Validation accuracy of MS-h ‘one-size-fits-all’ and subject specific models.
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Figure B.4: Validation accuracy of MS-c ‘one-size-fits-all' and subject specific models.
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Figure B.5: Validation accuracy of MR-e ‘one-size-fits-all' and subject specific models.
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Figure B.6: Validation accuracy of MR-h ‘one-size-fits-all’ and subject specific models.
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Figure B.7: Validation accuracy of MR-c ‘one-size-fits-all’ and subject specific models.
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Confusion Matrix

The confusion matrices for ‘one-size-fits-all’ and subject-specific models are shown in this appendix.

C.1. ‘One-size-fits-all’ Models

Table C.1: Confusion matrix for MS-e ‘one-size-fits-all’ model.

Table C.4: Confusion matrix for MR-e ‘one-size-fits-all’ model.

Total Accuracy Predicted Total Accuracy Predicted
98.76% Normal Distracted 95.26% Normal Distracted
Normal 98.58% 1.42% Normal 96.27% 3.73%
Actual 12322 178 Actual 12289 476
Distracted 1.06% 98.94% Distracted 5.74% 94.26%
77 7184 365 5992

Table C.2: Confusion matrix for MS-h ‘one-size-fits-all’ model.

Table C.5: Confusion matrix for MR-h ‘one-size-fits-all’ model.

Total Accuracy Predicted Total Accuracy Predicted
99.94% Normal Distracted 99.79% Normal Distracted
Normal 99.87% 0.13% Normal 99.64% 0.36%
Actual 12639 16 Actual 12594 45
Distracted 0.00% 100.0% Distracted 0.06% 99.94%
0 8129 5 8563

Table C.3: Confusion matrix for MS-c ‘one-size-fits-all’ model.

Table C.6: Confusion matrix for MR-c ‘one-size-fits-all’ model.

Total Accuracy Predicted Total Accuracy Predicted
99.21% Normal Distracted 97.12% Normal Distracted
Normal 98.78% 1.22% Normal 96.09% 3.91%
Actual 12447 154 Actual 12186 496
Distracted 0.35% 99.65% Distracted 1.85% 98.15%
54 15239 277 14672
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C.2. subject-specific Models (MS-e)

Table C.7: Confusion matrix for MS-e subject-specific model
(Subject 1).

Table C.12: Confusion matrix for MS-e subject-specific model
(Subject 6).

Total Accuracy Predicted Total Accuracy Predicted
97.70% Normal Distracted 90.66% Normal Distracted
Normal 97.71% 2.29% Normal 97.24% 2.76%
Actual 1195 28 Actual 1164 33
Distracted 2.31% 97.69% Distracted 15.92%  84.08%
20 846 71 375

Table C.8: Confusion matrix for MS-e subject-specific model
(Subject 2).

Table C.13: Confusion matrix for MS-e subject-specific model
(Subject 7).

Total Accuracy Predicted Total Accuracy Predicted
93.77% Normal Distracted 99.71% Normal Distracted
Normal 87.34% 2.66% Normal 99_84% 0.16%
1206 33 1244 2
Actual 0 0 Actual 5 .
Distracted 979/0 9021 /o Distracted 042 /o 9958/0
52 479 4 953

Table C.9: Confusion matrix for MS-e subject-specific model
(Subject 3).

Table C.14: Confusion matrix for MS-e subject-specific model
(Subject 8).

Total Accuracy Predicted Total Accuracy Predicted
94.87% Normal Distracted 93.31% Normal Distracted
Normal 87.99% 2.01% Normal 96.23% 3.77%
Actual 1268 26 Actual 1200 47
Distracted 8.26% 91.74% Distracted 9.62% 90.38%
55 611 58 545

Table C.10: Confusion matrix for MS-e subject-specific model
(Subject 4).

Table C.15: Confusion matrix for MS-e subject-specific model
(Subject 9).

Total Accuracy Predicted Total Accuracy Predicted
93.23% Normal Distracted 97.91% Normal Distracted
Normal 98.11% 1.89% Normal 98.53% 1.47%
Actual 1249 24 Actual 1340 20
Distracted 11.66%  88.34% Distracted 2.71% 97.29%
57 432 16 575

Table C.11: Confusion matrix for MS-e subject-specific model
(Subject 5).

Table C.16: Confusion matrix for MS-e subject-specific model
(Subject 10).

Total Accuracy Predicted Total Accuracy Predicted
95.81% Normal Distracted 99.33% Normal Distracted
Normal 86.28% 3.72% Normal 99.51% 0.49%
1243 48 1224 6
Actual 0 0 Actual \ .
Distacteg  467%  95.33% Distracteq  0-85%  99.15%
55 1123 9 1047
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C.3. subject-specific Models (MS-h)

Table C.17: Confusion matrix for MS-h subject-specific model
(Subject 1).

Table C.22: Confusion matrix for MS-h subject-specific model
(Subject 6).

Total Accuracy Predicted Total Accuracy Predicted
99.03% Normal Distracted 99.06% Normal Distracted
Normal 9935% 065% Normal 9920% 080%
Actual 1218 8 Actual 1235 10
Distracieq  1:30%  98.70% Caracteg 109%  98.91%
12 914 7 638

Table C.18: Confusion matrix for MS-h subject-specific model
(Subject 2).

Table C.23: Confusion matrix for MS-h subject-specific model
(Subject 7).

Total Accuracy Predicted Total Accuracy Predicted
97.95% Normal Distracted 99.57% Normal Distracted
Normal 98.54% 1.46% Normal 99.75% 0.25%
Actual 1279 19 Actual 1208 3
Distracted 2.63% 97.37% Distracted 0.61% 99.39%
16 593 6 979

Table C.19: Confusion matrix for MS-h subject-specific model
(Subject 3).

Table C.24: Confusion matrix for MS-h subject-specific model
(Subject 8).

Total Accuracy Predicted Total Accuracy Predicted
98.18% Normal Distracted 96.75% Normal Distracted
Normal 99.28% 0.72% Normal 97_92% 2.08%
1233 9 1223 26
Actual 0 0 Actual : .
Distracted 2.92% 97.08% Distracted 4.41% 95.59%
25 831 30 650

Table C.20: Confusion matrix for MS-h subject-specific model
(Subject 4).

Table C.25: Confusion matrix for MS-h subject-specific model
(Subject 9).

Total Accuracy Predicted Total Accuracy Predicted
97.37% Normal Distracted 99.21% Normal Distracted
Normal 99.12% 0.88% Normal 98.88% 1.12%
Actual 1240 1 Actual 1241 14
Distracted 4.37% 95.63% Distracted 0.45% 99.55%
30 656 4 876

Table C.21: Confusion matrix for MS-h subject-specific model
(Subject 5).

Table C.26: Confusion matrix for MS-h subject-specific model
(Subject 10).

Total Accuracy Predicted Total Accuracy Predicted
95.18% Normal Distracted 99.80% Normal Distracted
Normal 95.35% 4.65% Normal 99.61% 0.39%
Actual 1250 61 Actual 1275 5
Distracieg  498%  95.02% Distracieg  000%  1000%
45 859 0 172
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C.4. subject-specific Models (MS-c)

Table C.27: Confusion matrix for MS-c subject-specific model
(Subject 1).

Table C.32: Confusion matrix for MS-c subject-specific model
(Subject 6).

Total Accuracy Predicted Total Accuracy Predicted
99.06% Normal Distracted 96.87% Normal Distracted
Normal 9851% 149% Norma| 9751% 249%
1187 18 1291 33
Actual 0 0 Actual . \
Distracteg  0-38%  99.62% Dictracieq 378%  96:22%
7 1812 42 1070

Table C.28: Confusion matrix for MS-c subject-specific model
(Subject 2).

Table C.33: Confusion matrix for MS-c subject-specific model
(Subject 7).

Total Accuracy Predicted Total Accuracy Predicted
97.05% Normal Distracted 99.52% Normal Distracted
Normal 97.04% 2.96% Normal 99_35% 0.65%
1246 38 1227 8
Actual 0 0 Actual ! .
Distracted 295 /o 9705 /o Distracted 031 /o 9969 /o
36 1186 6 1923

Table C.29: Confusion matrix for MS-c subject-specific model
(Subject 3).

Table C.34: Confusion matrix for MS-c subject-specific model
(Subject 8).

Total Accuracy Predicted Total Accuracy Predicted
97.15% Normal Distracted 95.75% Normal Distracted
Normal 97.73% 2.27% Normal 95.04% 4.96%
Actual 1208 28 Actual 1168 61
Distracted 3.44% 96.56% Distracted 3.55% 96.45%
51 1430 44 1197

Table C.30: Confusion matrix for MS-c subject-specific model
(Subject 4).

Table C.35: Confusion matrix for MS-c subject-specific model
(Subject 9).

Total Accuracy Predicted Total Accuracy Predicted
97.54% Normal Distracted 98.46% Normal Distracted
Normal 9806% 194% Normal 9753% 274%
1210 24 1226 31
Actual 0 0 Actual : .
Distracted 2.97% 97.03% Distracted 0.61% 99.39%

Table C.31: Confusion matrix for MS-c subject-specific model
(Subject 5).

Table C.36: Confusion matrix for MS-c subject-specific model
(Subject 10).

Total Accuracy Predicted Total Accuracy Predicted
94.90% Normal Distracted 99.21% Normal Distracted
Norma 9250%  750% Norma 9870%  1.30%
Actual 1160 94 Actual 1287 17
Distracieq  269%  97.31% Distracieq  027%  99.73%
55 1986 6 187
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C.5. subject-specific Models (MR-e)

Table C.37: Confusion matrix for MR-e subject-specific model
(Subject 1).

Table C.42: Confusion matrix for MR-e subject-specific model
(Subject 6).

Total Accuracy Predicted Total Accuracy Predicted
99.93% Normal Distracted 84.27% Normal Distracted
Normal 99.85% 0.15% Normal 96.06% 3.94%
1363 2 1171 48
Actual 0 0 Actual O .
Distracted 0.00% 100.0% Distracted 27.52%  72.48%
0 785 131 345

Table C.38: Confusion matrix for MR-e subject-specific model
(Subject 2).

Table C.43: Confusion matrix for MR-e subject-specific model
(Subject 7).

Total Accuracy Predicted Total Accuracy Predicted
92.67% Normal Distracted 99.14% Normal Distracted
Normal 96.95% 3.05% Normal 99_43% 0.57%
1238 39 1228 7
Actual 0 0 Actual ¢ .
Distracted 11.60%  88.40% Distracted 1.16% 98.84%
53 404 7 598

Table C.39: Confusion matrix for MR-e subject-specific model
(Subject 3).

Table C.44: Confusion matrix for MR-e subject-specific model
(Subject 8).

Total Accuracy Predicted Total Accuracy Predicted
98.40% Normal Distracted 92.28% Normal Distracted
Normal 98.32% 1.68% Normal 91.88% 8.13%
Actual 1228 21 Actual 1176 104
Distracted 1.53% 98.47% Distracted 7.32% 92.68%
11 709 50 633

Table C.40: Confusion matrix for MR-e subject-specific model
(Subject 4).

Table C.45: Confusion matrix for MR-e subject-specific model
(Subject 9).

Total Accuracy Predicted Total Accuracy Predicted
98.92% Normal Distracted 98.85% Normal Distracted
Normal 99.53% 0.47% Normal 98.82% 1.18%
Actual 1262 6 Actual 1255 15
Distracted 1.69% 98.31% Distracted 1.12% 98.88%
10 580 10 883

Table C.41: Confusion matrix for MR-e subject-specific model
(Subject 5).

Table C.46: Confusion matrix for MR-e subject-specific model
(Subject 10).

Total Accuracy Predicted Total Accuracy Predicted
92.59% Normal Distracted 99.78% Normal Distracted
Normal 94.99% 5.01% Normal 99.69% 0.31%
Actual 1176 62 Actual 1302 4
Distracted 9.82% 90.18% Distracted 0.13% 99.87%
49 450 1 783
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C.6. subject-specific Models (MR-h )

Table C.47: Confusion matrix for MR-h subject-specific model
(Subject 1).

Table C.52: Confusion matrix for MR-h subject-specific model
(Subject 6).

Total Accuracy Predicted Total Accuracy Predicted
99.95% Normal Distracted 99.73% Normal Distracted
Normal 1000% 000% Normal 9983% 017%
Actual 1322 0 Actual 1162 2
Distracieg  0-10%  99.90% Distracieg  037%  99.63%
1 981 3 801

Table C.48: Confusion matrix for MR-h subject-specific model
(Subject 2).

Table C.53: Confusion matrix for MR-h subject-specific model
(Subject 7).

Total Accuracy Predicted Total Accuracy Predicted
99.29% Normal Distracted 100.0% Normal Distracted
Normal 99.26% 0.74% Normal 100.0% 0.00%
Actual 1214 ? Actual 1255 0
Distracted 0.68% 99.32% Distracted 0.00% 100.0%
7 1025 0 855

Table C.49: Confusion matrix for MR-h subject-specific model
(Subject 3).

Table C.54: Confusion matrix for MR-h subject-specific model
(Subject 8).

Total Accuracy Predicted Total Accuracy Predicted
99.25% Normal Distracted 99.77% Normal Distracted
Normal 99.19% 0.81% Normal 99.70% 0.30%
Actual 1222 10 Actual 1310 4
Distracted 0.69% 99.31% Distracted 0.15% 99.85%
6 858 1 660

Table C.50: Confusion matrix for MR-h subject-specific model
(Subject 4).

Table C.55: Confusion matrix for MR-h subject-specific model
(Subject 9).

Total Accuracy Predicted Total Accuracy Predicted
100.0% Normal Distracted 99.54% Normal Distracted
Normal 100.0% 0.00% Normal 99.30% 0.70%
Actual 1293 0 Actual 1273 9
Distracted 0.00% 100.0% Distracted 0.21% 99.79%
0 730 2 938

Table C.51: Confusion matrix for MR-h subject-specific model
(Subject 5).

Table C.56: Confusion matrix for MR-h subject-specific model
(Subject 10).

Total Accuracy Predicted Total Accuracy Predicted
99.41% Normal Distracted 100.0% Normal Distracted
o 9881%  119% o 100.0%  0.00%
1247 15 1335 0
Actual 0 0 Actual N .
Distracieg 8350%  71.06% tecteq 000%  100.0%
0 709 0 1100
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C.7. subject-specific Models (MR-c )

Table C.57: Confusion matrix for MR-c subject-specific model
(Subject 1).

Table C.62: Confusion matrix for MR-c subject-specific model
(Subject 6).

Total Accuracy Predicted Total Accuracy Predicted
99.87% Normal Distracted 94.32% Normal Distracted
Normal 9985% 015% Normal 9597% 403%
Actual 1292 2 Actual 1215 51
Distracted 0.11% 99.89% Distracted 7.34% 92.66%
2 1870 89 1124

Table C.58: Confusion matrix for MR-c subject-specific model
(Subject 2).

Table C.63: Confusion matrix for MR-c subject-specific model
(Subject 7).

Total Accuracy Predicted Total Accuracy Predicted
97.82% Normal Distracted 99.73% Normal Distracted
Normal 97.07% 2.93% Normal 99_52% 0.48%
1224 37 1254 6
Actual 0 0 Actual : .
Distracted 1.42% 98.58% Distracted 0.07% 99.93%
21 1461 1 1474

Table C.59: Confusion matrix for MR-c subject-specific model
(Subject 3).

Table C.64: Confusion matrix for MR-c subject-specific model
(Subject 8).

Total Accuracy Predicted Total Accuracy Predicted
98.96% Normal Distracted 94.77% Normal Distracted
Normal 98.04% 1.96% Normal 91.10% 8.90%
Actual 1200 24 Actual 1105 108
Distracted 0.13% 99.87% Distracted 1.55% 98.45%
2 1595 21 1330

Table C.60: Confusion matrix for MR-c subject-specific model
(Subject 4).

Table C.65: Confusion matrix for MR-c subject-specific model
(Subject 9).

Total Accuracy Predicted Total Accuracy Predicted
99.60% Normal Distracted 99.21% Normal Distracted
Normal 99.36% 0.64% Normal 98.59% 1.41%
Actual 1233 8 Actual 1256 18
Distracted 0.16% 99.84% Distracted 0.16% 99.84%
2 1251 3 1822

Table C.61: Confusion matrix for MR-c subject-specific model
(Subject 5).

Table C.66: Confusion matrix for MR-c subject-specific model
(Subject 10).

Total Accuracy Predicted Total Accuracy Predicted
98.37% Normal Distracted 99.89% Normal Distracted
Normal 97.69% 2.31% Normal 99.77% 0.23%
Actual 1186 28 Actual 1320 3
Distracted 0.96% 99.04% Distracted 0.00% 100.0%
11 1135 0 1946
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Performance ‘One-size-fits-all’ vs
Individualised Model

The test accuracy of the pursuit and preview models are shown in Figure D.1 and Figure D.2, respec-
tively. In these figures the test accuracy of both ‘one-size-fits-all’ and individualised models are shown.
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Figure D.1: Accuracy of all pursuit models when predicting samples from prompted runs.
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Figure D.2: Accuracy of all preview models when predicting samples from prompted runs.
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Test Accuracy

In this appendix the accuracy of all models are presented tested on data collected from runs with
prompted distractions. Models trained on detecting easy distractions are tested on its performance to
detect easy distraction. The same logic holds for models used to detect hard distractions. And models
trained on both easy and hard distractions are tested to detect easy and hard distractions separately.

E.1. MS-e

Table E.1: Average test accuracy of each subject for ‘one-size-fits-all’ MS-e model.

Rank Subject Accuracy TP FP TN FN

1 3 93.99% 530 20 64 18
2 2 92.09% 521 40 61 10
3 7 86.23% 486 71 59 16
4 1 85.76% 470 83 72 7
5 8 82.59% 470 93 52 17
6 10 80.85% 450 81 61 40
7 6 79.59% 463 104 40 25
8 4 77.22% 422 131 66 13
9 5 77.85% 437 125 55 15
10 9 51.58% 252 302 74 4

Table E.2: Average test accuracy of each subject for subject-specific MS-e models.

Rank Subject Accuracy TP FP TN FN
95.25% 540 10 62 20
9193% 519 34 62 17
9146% 535 32 43 22
90.19% 508 53 62 9
86.87% 502 60 47 23
86.08% 494 69 50 19
83.23% 453 100 73 6
75.32% 381 150 95 6
71.52% 387 170 65 10
63.13% 328 226 71 7

SO NOOAWN=
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E.2. MS-h

Table E.3: Average test accuracy of each subject for ‘one-size-fits-all’ MS-h model.

Rank Subject Accuracy TP FP TN FN

1 4 79.27% 412 106 89 25
2 3 75.79% 384 134 95 19
3 10 57.71% 162 172 145 53
4 8 49.05% 223 316 87 6
5 9 48.89% 202 305 107 18
6 2 46.52% 189 320 105 18
7 5 46.04% 209 326 82 15
8 6 37.03% 142 380 92 18
9 7 27.85% 39 451 137 5
10 1 21.84% 14 491 124 3

Table E.4: Average test accuracy of each subject for subject-specific MS-h models.

Rank Subject Accuracy TP FP TN FN

1 3 92.72% 491 27 95 19
2 8 88.45% 482 &7 77 16
3 4 88.29% 483 35 75 39
4 9 78.01% 391 116 102 23
5 10 73.10% 286 148 176 22
6 5 71.99% 378 157 77 20
7 2 68.51% 322 187 111 12
8 6 56.65% 255 267 103 7
9 1 48.58% 186 319 121 6
10 7 4430% 144 346 136 6

E.3. MS-c (easy distraction)

Table E.5: Average test accuracy on easy distractions of each subject for ‘one-size-fits-all’ MS-c model.

Rank Subject Accuracy TP FP TN FN

1 2 93.35% 530 31 60 11
2 3 9146% 526 24 52 30
3 7 87.50% 494 63 59 16
4 1 85.76% 474 79 68 11
5 6 82.59% 484 83 38 27
6 10 81.49% 466 65 49 52
7 4 80.38% 441 112 67 12
8 8 79.59% 453 110 50 19
9 5 7769% 441 121 50 20
10 9 47.94% 230 324 73 5
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Table E.6: Average test accuracy on easy distractions of each subject for subject-specific MS-c models.

Rank Subject Accuracy TP FP TN FN

1 3 96.25% 539 11 63 19
2 4 90.19% 506 47 64 15
3 6 89.56% 523 44 43 22
4 8 84.65% 482 81 53 16
5 2 82.91% 462 99 62 9
6 10 77.69% 403 128 88 13
7 5 77.22% 438 124 50 20
8 1 75.47% 402 151 75 4
9 7 61.55% 322 235 67 8
10 9 556.70% 283 271 69 9

E.4. MS-c (hard distractions)

Table E.7: Average test accuracy on hard distractions of each subject for ‘one-size-fits-all’ MS-c model.

Rank Subject Accuracy TP FP TN FN

1 4 66.77% 321 197 101 13
2 3 53.64% 228 290 1M1 3
3 10 46.99% 1256 309 172 26
4 5 46.68% 212 323 83 14
5 8 42.88% 180 359 91 2
6 2 42.72% 154 355 116 7
7 9 37.18% 114 393 121 4
8 6 34.73% 112 400 104 6
9 7 22.94% 6 484 139 3
10 1 22.63% 16 489 127 O

Table E.8: Average test accuracy on hard distractions of each subject for subject-specific MS-c models.

Rank Subject Accuracy TP FP TN FN

1 3 92.09% 476 42 106 8
2 4 89.08% 470 48 93 21
3 8 7595% 393 146 87 6
4 9 67.88% 313 194 116 9
5 5 66.61% 338 197 83 14
6 6 64.87% 308 214 102 8
7 10 53.96% 156 278 185 13
8 2 4937% 196 313 116 7
9 1 29.59% 63 442 124 3
10 7 26.90% 29 461 141 1
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E.5. MR-e

Table E.9: Average test accuracy of each subject for ‘one-size-fits-all’ MR-e model.

E.6. MR-h

Rank Subject Accuracy TP FP TN FN
1 1 8133% 456 98 58 20
2 6 87.97% 534 34 22 42
3 8 79.11% 479 78 21 54
4 10 78.48% 467 53 29 83
5 7 59.02% 320 236 53 23
6 4 50.79% 256 290 65 21
7 2 38.61% 192 376 52 12
8 9 37.66% 171 385 67 9
9 3 31.49% 120 428 79 5
10 5 29.1% 101 424 83 24

Table E.10: Average test accuracy of each subject for subject-specific MR-e models.

Rank Subject Accuracy TP FP TN FN
1 6 90.51% 533 35 39 25
2 2 87.97% 514 54 42 22
3 8 83.39% 515 42 12 63
4 3 75.00% 417 131 57 27
5 4 63.29% 335 211 65 21
6 5 50.63% 240 285 80 27
7 9 46.99% 236 320 61 15
8 7 43.35% 210 346 64 12
9 1 41.30% 194 360 67 11
10 10 33.23% 122 398 88 24

Table E.11: Average test accuracy of each subject for ‘one-size-fits-all’ MR-h model.

Rank Subject Accuracy TP FP TN FN
1 8 41.30% 168 357 93 14
2 2 40.82% 173 345 85 29
3 6 40.82% 151 351 107 23
4 10 38.29% 90 365 152 25
5 5 37.66% 144 373 94 21
6 7 37.34% 134 371 102 25
7 3 31.17% 88 431 109 4
8 4 23.58% 0 483 149 O
9 1 23.42% 55 479 93 5
10 9 23.42% 4 484 144 O
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Table E.12: Average test accuracy of each subject for subject-specific MR-h model.

Rank Subject Accuracy TP FP TN FN
80.38% 436 83 72 41
61.55% 332 193 57 50
59.02% 269 233 104 26
4541% 202 316 85 29
43.04% 159 346 113 14
29.59% 47 436 140 9
29.27% 50 438 135 9
39.08% 146 371 101 14
28.16% 1 454 177 O
24.84% 61 473 96 2

SO NOOAWN=
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E.7. MR-c (easy distractions)

Table E.13: Average test accuracy on easy distractions of each subject for ‘one-size-fits-all’ MR-c model.

Rank Subject Accuracy TP FP TN FN
9241% 491 29 93 19
88.92% 542 26 20 44
88.29% 506 48 52 26
83.39% 513 44 14 61
66.61% 371 185 50 26
55.38% 286 260 64 22
44.94% 230 338 54 10
44.62% 217 339 65 M

33.86% 138 410 76 8

2991% 13 412 76 31
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Table E.14: Average test accuracy on easy distractions of each subject for subject-specific MR-c model.

Rank Subject Accuracy TP FP TN FN

1 8 90.51% 508 49 64 11
2 6 85.60% 507 61 34 30
3 3 68.04% 362 186 68 16
4 2 62.66% 341 227 55 9
5 4 556.38% 288 258 62 24
6 9 4193% 196 360 69 7
7 1 41.46% 190 364 72 6
8 7 39.24% 186 370 62 14
9 5 36.08% 136 389 92 15
10 10 32.12% 116 404 87 25
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E.8. MR-c (hard distractions)

Table E.15: Average test accuracy on hard distractions of each subject for ‘one-size-fits-all’ MR-c model.

Rank Subject Accuracy TP FP TN FN

1 6 39.08% 134 368 113 17
2 7 37.66% 125 380 113 14
3 5 36.71% 132 385 100 15
4 8 32.75% 108 417 99 8
5 10 30.70% 19 436 175 2
6 2 28.64% 75 443 106 8
7 4 23.58% 0 483 149 O
8 9 23.10% 2 486 144 O
9 3 21.84% 25 494 113 O
10 1 17.41% 14 520 96 2

Table E.16: Average test accuracy on hard distractions of each subject for subject-specific MR-c model.

Rank Subject Accuracy TP FP TN FN

1 3 64.87% 317 202 93 20
2 6 4763% 186 316 115 15
3 2 45.73% 189 329 100 14
4 5 31.96% 97 420 105 10
5 8 33.23% 122 403 88 19
6 7 28.32% 59 446 120 7
7 10 28.01% 0 455 177 O
8 4 23.89% 2 481 149 O
9 9 22.94% 1 487 144 O
10 1 16.30% 5 529 98 O
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Receiver Operation Characteristics
Curve

The Receiver Operation Characteristics (ROC) curve of the 6 classification models based on data of
individual subjects are plotted in this appendix. Each figure is produced using 1 classification model, for
example the MS-e model in Figure F.1. The colored lines show the ROC curves of individual subjects
whereas the black line corresponds to data of all subjects.
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F.1. Pursuit Models
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Figure F.1: ROC of the MS-e model and individual subjects for
predicting easy distracted data.
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Figure F.2: ROC of the MS-h model and individual subjects for
predicting hard distracted data.
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Figure F.3: ROC of the MS-c model and individual subjects for
predicting easy distracted data.
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F.2. Preview Models
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Figure F.6: ROC of the MR-e model and individual subjects for  Figure F.9: ROC of the MR-c model and individual subjects for
predicting easy distracted data. predicting hard distracted data.
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Figure F.8: ROC of the MR-c model and individual subjects for
predicting easy distracted data.
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RMS Error and Input (Samples)

The data from tracking runs with prompted distractions are analysed on tracking performance. Now the
RMS error and input of every sample with distracted data has been plotted of every subject separately.
For completeness the RMS error or input of the training data are also shown.

G.1. RMS error of samples

The RMS error for normal and distracted pursuit data are presented in Figure G.1 and Figure G.2, re-
spectively. The results for normal and distracted preview data can be found in Figure G.3 and Figure G.4,
respectively.
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view tracking runs with prompted distractions. preview tracking runs with prompted distractions.

The distracted samples in Figure G.2 show in general a higher RMS error (0.15 on average) com-
pared to samples from PSN data. This can also be concluded by comparing Figure G.1 with Figure G.2.
The RMS error for normal samples in the test data is about the same as expected with a some outliers.
Samples obtained from hard distractions show a large variation in RMS error, ranging from 0.1 to 2.0
inches. When it comes to samples from easy distractions the range is approximately 0.1 to 1.2 inch,
thus overlapping with the data of hard distractions. However, comparing the median of each boxplot for
every subject, the RMS error of hard distractions is still higher on average than for easy distractions.
The same could be said for the results in Figure G.4 where preview data are shown.

G.2. RMS input of samples
The RMS input of the both normal and distracted samples for pursuit and preview data are plotted in
Figure G.5, Figure G.6, Figure G.3, and Figure G.4.

The RMS input in Figure G.5 of DS-n, DS-ce, and DS-ch data show a decrease in input given by the
human controller on average for distracted samples. When comparing the RMS input of normal data in
Figure G.5 with the RMS input of distracted data in Figure G.6, a clear distinction in control input can be
found.

In preview tracking tasks, the RMS input of DR-ce and DR-ch data are similar, as can be seen in
Figure G.7. And by comparing the data in Figure G.7 and Figure G.8, the input when distracted is in
general still lower compared to normal tracking data.
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Test Data
Figure G.6: RMS input of individual distracted samples from Figure G.8: RMS input of individual distracted samples from

pursuit tracking runs with prompted distractions.



Figure G.1, Figure G.2, Figure G.3 and Figure G.4 show the RMS error of individual samples con-
taining normal or distracted data per subject for pursuit or preview tracking tasks. As expected the error
increases with increasing difficulty of the secondary task. And a clear distinction can be made in how
large the tracking error is between normal and distracted samples for both pursuit and preview displays.
The RMS error of the individual subjects are higher than DS-ce, DS-ch, DR-ce, and DR-ch runs because
these boxplots also contain tracking data without distractions. When the models were trained, samples
without distracted data were filtered out.

The RMS behaviour of the control input are presented in Figure G.5, Figure G.6, Figure G.3 and
Figure G.8 for both sample types in pursuit and preview. When subjects are distracted in pursuit, it
is more clear that the control input decreases compared to normal tracking conditions. In pursuit the
subject does not know the future trajectory of the target signal and will therefore most likely give no
control inputs. And for hard distractions the input is less compared to easy distractions, since it would
take more time to find the target circle. In preview, the decrease in control input is less prominent.
Subjects 4 and 10 give at times more control input, whereas this is lower or does not change for other
subjects.

After analysing and interpreting the RMS error and input of the tracking data it is clear that subjects
have different tracking strategies and performance.
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Detection Probability

H.1. Subject 3, Run 1 (DS-ph)

The forcing function, system output and detection probability of Subject 3, Run 1 for the prompted hard
conditions (DS-ph) can be seen in Figure H.1 and Figure H.2. The figures show that the MS-h model
is able to detect all 6 prompted distractions in this particular run. The model is also able to detect a
distraction despite of the small tracking error at approximately t = 17s.

target
output
prompt signal

t[s]

Figure H.1: Forcing function (target) and system output of a prompted (P) tracking run (subject 3, run 1) with hard distraction
(MS-h model)

probability
[ Jeyetracker data

Detection Probability [-]

Figure H.2: Detection probability of a prompted (P) tracking run (subject 3, run 1) with hard distraction (MS-h model)
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H.2. Cumulative Detection Probability

Figure H.3 and Figure H.4 show the averaged cumulative detection probability (N = 40) for pursuit and
preview models, respectively. The highlighted blue areas are periods in which a prompt is shown at a
random instant to the subject. Thus, it is not possible to reach an average detection probability of 1
since a prompt could appear at the start or at the end of a highlighted area in different tracking runs.
For a good performing model it is expected that the average detection probability would be higher in the
highlighted areas compared to periods in which no prompts would be shown.

The best performing model based on the test accuracy was the MS-e model and in Figure H.3 peaks
and valleys can be seen alternating with the highlighted and non-highlighted areas. For bad performing
models such as MR-h in Figure H.4, the average detection probability is nearly 1 along the entire tracking
runs. This means that the model classifies the majority of both non-distracted and distracted samples
as distracted.
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Figure H.3: Averaged cumulative detection probability for tracking runs with prompted distractions.
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Figure H.4: Averaged cumulative detection probability for tracking runs with prompted distractions.
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Introduction

Travel by passenger vehicles is by far the deadliest transportation method on a per-mile basis in the
United States [6]. Comparing this to air, rail, and bus travel, much lower death rates are found as can
be seen in Figure 1.1. In the European Union similar results are found in the period of 2001-2002. The
number of deaths per 100 million person kilometres for passenger vehicles is 0.7, for busses, railroad
passengers, and scheduled airlines the numbers are 0.07, 0.035, and 0.025, respectively [5]. Cars are
more accessible to the general public where the road safety depends on the individual traffic behaviour
of users. People might over-speed, violate traffic rules more easily, fail to understand signs or are simply
not paying attention. Distracted driving is one of the main risk factors in road accidents for which a step
towards a feasible mitigation solution is created in this report.

0.8

o
R

Deaths per 100,000,000 passenger miles
g

2008 2010 2012 2014 2016 2018 2020

@ Passenger vehicles Buses Railroad passenger trains @ Scheduled airlines

Figure 1.1: Passenger death rates in the United States between 2007 and 2022. (Deaths per 100,000,000 passenger miles)[6]

The goal of the research presented is to be able to detect when people are distracted in control tasks.
In this day and age technological devices are everywhere, think of smartphones and in-vehicle informa-
tion systems. Both are a contributor towards distracted driving since people have to take their eyes of
the road and shift attention to somewhere else [50]. Creating a tool that can detect when people are
distracted may help in contributing towards a safer road environment and reduce the number of traffic
accidents [46]. Furthermore, such a tool can make decisions easier when determining who is liable in
accidents in case there is hard evidence in the form of for example camera footage.

The purpose of this report is to gain insights in developing a tool for detecting distractions in human
pilot tracking tasks using machine learning. Research was conducted after the successful application of

"https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
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machine learning models in this research area. This included classification models for human pilot skill
[16] and human behaviour in tracking tasks with various display types [59]. On the basis of a literature
study on topics such as driver distraction, task demand, and anomaly detection techniques, decisions
are made on the approach of answering the main research question.

The structure of this report is as follows, Appendix 2 defines a definition of distraction based on related
work such as research on driver distraction. In Appendix 3 methods for detecting distractions are dis-
cussed, covering both vision based and sensor based approaches using machine learning techniques.
In order to detect distraction in manual tracking tasks, data of distracted people should be generated
first. Therefore, Appendix 4 investigates how for instance secondary tasks can distract people. Further-
more, challenges in, and aspects of anomaly detection are elaborated upon in Appendix 5. Preliminary
simulations are conducted in Appendix 6 together with a discussion of results, followed by the research
planin Appendix 7. Lastly, Appendix 8 holds the conclusion on the preliminary report regarding detecting
distractions in human pilot tracking tasks.
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Distractions

The definition of distraction given by Cambridge is “something that prevents someone from giving their
attention to something else” !. A distraction could for example be a push notification alerting you to check
your phone whilst working or when someone is talking to you during lectures when you only want to pay
attention to the professor. There are many more examples that one could think of, but in the light of the
current research problem, the focus is put on detecting distractions in manual control tasks. section 2.1
defines what distraction is in the field of research and section 2.2 presents chapter takeaways.

2.1. Definition of Distraction

A general concern for road safety are distractions and inattention of drivers. With the increase of cell
phone usage by drivers and in-vehicle touchscreens, distractions are becoming a growing issue in many
countries [41]. Studies have found that simulated driving tasks are compromised by tasks intended to
replicate phone conversations, whether using hand-held or hands-free phones, and may be further com-
promised by the physical distraction of handling phones [33].

This has also led to more research on the topic of detecting distractions, mainly concerning road
users such as car drivers. Examples of this can be found in the paper by Tango et al. [53] where real-
time detection systems of driver distraction using machine learning are investigated due to the increase
of in-vehicle information systems (IVIS). Furthermore, Torkkola et al. [54] explored options in detecting
driver inattention by letting participants in the experiment perform secondary tasks.

In some published articles the word “inattention” is also used as a synonym for distraction even
though there is a small difference in meaning. Inattention is defined as “failure to give attention” by
Cambridge 2. An example of inattention would be failing to pay attention to the driving task, perhaps
due to fatigue. A difference between the definition of distraction and inattention is that there is a com-
peting task removing your attention from the main tasks. Thus, distraction can be considered to be
inattention, but not the opposite. It is therefore important to note the definition of the authors with re-
spect to distraction and inattention in order to determine whether the research is important to ones own
research problem.

Regan et al. has collected a sample of 14 definitions for driver distraction in which distraction is
considered as a subset of inattention [45]. A few examples are:

+ Diversion of attention from the driving task that is compelled by an activity or event inside the
vehicle [55].

+ A shift in attention away from stimuli that is critical for safe driving toward stimuli that are not related
to safe driving [51].

"https://dictionary.cambridge.org/dictionary/english/distraction
2https://dictionary.cambridge.org/dictionary/english/inattention
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» Any activity that takes the attention of a driver away from the task of driving [44].

In most definitions five elements of distraction are present, sources, location of sources, intentionality,
process and outcome [45]. These are listed in Table 2.1 with examples for each element.

Table 2.1: Common Elements of Distraction Definitions and Examples of Each Element [45].

Source Location of Source Intentionality Process Outcome

Object Internal activity _ Compelled by  Disturbance Delayed response
(e.g., daydreaming)  Source of control

Person Inside Vehicle Driver’s choice Diversion Degraded longitudinal

of attention and lateral control
Misallocation Diminished situation
of attention awareness
Degraded decision
making
Increased crash risk

Event Outside Vehicle

Activity

In order for someone to be distracted there must be one or more sources, this could be a person
talking in the car or some activity happening outside of the vehicle. For the general definition of dis-
traction the location of the source does not matter. Furthermore, the driver could be compelled by a
source in which he has to divert attention to it or the driver may willingly choose to be distracted, such
as texting unnecessarily whilst driving. When a driver is distracted, there is normally a process tied to
distributing the attention. This process could be a diversion or misallocation of attention. The outcome
of being distracted mentioned in various definitions are for example a slower reaction time or a worse
performance. However, defining specific outcomes are open to doubt since it may be subject to a par-
ticular combination of measures or events [45].

2.2. Chapter Takeaways

Due to an increase of mobile devices and in-vehicle information systems in cars, the risk of being dis-
tracted whilst driving has increased. This poses a danger to others and has led to more road traffic
incidents. Extensive research has been performed on driver distraction, however in literature distraction
has been given various definitions. As presented in Table 2.1, most definitions include the following
elements:

» Source: something that distracts the driver.

 Location: the location of the source.

Intentionality: why was the driver distracted?
» Process: what happens during the distraction.

» QOutcome: the result of the distraction.

In this research, the subject will be distracted deliberately in order to collect data of human opera-
tors doing a control task. When designing the experiment, the various elements found in definition of
distractions can help in forming a good task objective and experimental set-up.
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Detecting Distractions

The ultimate goal is to be able to detect when a human operator is distracted during manual control tasks.
When a driver is distracted, it creates a dangerous environment for other road users. This is unwanted
and therefore a tool which can detect distractions can notify the driver when he is distracted. This chapter
will present previous related work to detecting distractions of car drivers. section 3.1 presents current
vision and sensor-based approaches, section 3.2 introduces information about variables and displays
related to the tracking task. Finally, chapter takeaways are presented in section 3.3.

3.1. Current Approaches

As mentioned in Appendix 2, driver distraction is one main contributor to car accidents. In order to
reduce such accidents, attempts have been made to detect driver distractions. This can be in the form
of manual, visual or cognitive distraction and detection methods can vary from vision to sensor-based
approaches or a combination of both [17]. In other research done about this topic, the distractions are
generally provoked by introducing a secondary task besides the primary driving task [60][32][11][28]. A
more detailed discussion is presented in Appendix 4. Whereas the current section discusses vision and
sensor-based driver distraction detection methods in subsection 3.1.1 and subsection 3.1.2, respectively.

3.1.1. Vision-Based Approach

Vision-based detection methods generally require additional equipment such as video cameras com-
pared to sensor-based approaches. A study by Miwata et al. for example detects distracted driving
behaviour based on the driver's hand movements using computer vision [37]. But vision is not only
limited to cameras, Thermal Imaging (TI) systems can also be used. The skin temperature can be mea-
sured using Tl in the supraorbital region to determine participants mental activities. When participants
were performing secondary tasks, considerable skin temperature increase could be observed due to
altered blood supply to the supraorbital regions [60].

Figure 3.1: The supraorbital signal was extracted from the mean thermal footprint of the pink colored region [60].
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On each thermal clip the region of interest is set such that the entire supraorbital region is taken
into account as can be seen from Figure 3.1. Using this small area the mean temperature is computed,
thus from a 2D thermal image a 1D signal is obtained. Due to noise and imperfections in the tracking
process, a Fast Fourier Transform is applied to reduce the noise [57].

Mental loading
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Figure 3.2: The graph illustrates the mental loading of the mean participant for the various segments. The black colored datapoints
represent single tasking. The blue colored data-points represent dual tasking [60].

The results of the research presented in Figure 3.2 show that Tl can distinguish between cognitive
and visual distractions. The secondary tasks performed during the experiment were a talking task and
texting task, both using cellphones, for simulating cognitive and visual distraction, respectively. It is clear
that visual distractions cause a higher mental loading compared to cognitive distractions, since one has
to look away from the road. This result can also be found in the driving performance measured during

the experiment [60].

Another visual approach in detecting driver distraction is using eye-trackers (or head-trackers), which
seems to be the most popular method [10][36][39][18][26][28][25][64]. Masood et al. uses Convolutional
Neural Networks (CNN) to classify 10 classes of different driver behaviour, which are the most common
activities which lead to distraction while driving [32]. With 1 class being labelled as safe driving and the
remaining 9 as distracted driving. Sample images for each class are shown in Figure 3.3 to Figure 3.12.

Figure 3.3: Safe driving.
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Figure 3.5: Calling using right hand.

Figure 3.8: Operating the radio.

Figure 3.10: Reaching behind. Figure 3.11: Doing makeup while driving. ~ Figure 3.12: Talking to passenger.

The images of distracted people vary from actions such as talking on the phone in Figure 3.5 to
putting on makeup in Figure 3.11. By defining classes which are connected to action also helps in de-
tecting the cause of distraction. It is reported that the CNN models, VGG16 and VGG19, can classify
the 10 classes with an accuracy of 99% [32]. However, it is difficult to know whether are all possible
options of distracted driving behaviour is captured in the 9 most common classes for distracted driving.

Apart from only taking into account eye-movements, Liu et al. also captured the head movement of
drivers to classify driver states: attentive or distracted [28]. The eye and head movement data consist of
the number of blinks, blink frequency [Hz] and duration [s] as well as the head position [m] and rotation
in Euler angles [rad]. The head position is measured relative to a World Coordinate, where the origin is
fixed at the middle point between two cameras of the eye tracker [28]. A semi-supervised approach is
used to reduce labeling costs, and reaches an accuracy of 97.2%.

3.1.2. Sensor-Based Approach

The Sensor-based approach can make use of already existing sensors in the car, if necessary small
adjustments could be made to these. The goal is to create a driving performance profile from which a
neural network should be able to predict whether the driver is distracted or not.

Starting with a simple example, Ersal et al. [11] developed a model-based analysis for detecting driver
distraction using only the pedal position and secondary tasks. It has the potential to use baseline driving
characteristics to predict distracted behaviour. Participants were asked to drive in a simulator while they
performed a visual secondary task in which they had to match icons. The actual pedal position and
predicted pedal position were compared to each other in order to obtain the residuals of pedal positions
as can be seen in Figure 3.13. The data is then used to train a Support Vector Machine (SVM) model
which is able to produce a probability of distraction shown in Figure 3.14.
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Probability of distraction
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] 50 100 150
Instance index

Figure 3.14: Probability of distraction for test instances, as pre-
dicted by the SVM. The shaded region indicates the instances
from driving with secondary tasks, whereas the instances in the
clear region are from normal driving [11].

Figure 3.13: Residuals of pedal position while driving with sec-
ondary tasks. The shaded rectangles are the time windows from
assignment to completion of the task. The dashed lines mark
the 20 interval [11].

The trained model is applied to the pedal position of each participant’s experiment data from which an
classification accuracy is obtained. Figure 3.15 shows the accuracy obtained in [11] for 16 participants.
It is noticeable that some participants have low accuracy numbers, this means that for some participants
it is difficult to differentiate between normal and distracted behaviour. Therefore, the accuracy could also
be used as a metric to define how difficult a task is. A general model which detects driver distraction
might thus be difficult to develop. However, more sensors and driving parameters can be used and
personalised models can be created.
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Figure 3.15: Classification accuracy across drivers using the moving average and standard deviation of residuals [11].

Other sensor features that can be used are for example the steering wheel of the car, speed and
lane keeping performance. Table 3.1 shows common driving performance parameters that are used in
research about detecting driver distractions. The most common feature is the steering wheel from which
different steering characteristics such as the steering wheel angle, steering rate, or steering entropy. The
steering entropy measures how consistent or random the steering wheel angle is in a certain condition
compared to baseline driving [20]. This can be calculated from a time-series history of steering angle
data [42]. Li et al. [23] studied distraction detection techniques using multiple features as presented in
Table 3.1 and was able to reach an overall accuracy of 95% using SVM. A better result compared to the
findings of Ersal et al. which only used the pedal position. Other researchers in Table 3.1 using multiple
features were also able to produce high accuracy values.
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Table 3.1: Accuracy and common features used in driver distraction detection following a sensor based approach.

] | Pedal Position | Steering Wheel [ Range/TTC | Speed | Lane Offset | Accuracy |

Ersal et al. [11] X 731 %
Li et al. [23] X X X 95.0 %
Tango et al. [53] X X X X X 95.3%
Aksjonov et al. [3] X X 86.5 %
Torkkola et al. [54] || x X X 92.7%
Nakano et al. [38] || x X X 86.0%

Lastly, Liang et al. combines eye-movement tracking with the driving performance of drivers when
they are distracted cognitively [24]. The driving features taken are the standard deviation of the steering
wheel position and lane position as well as the mean of the steering error. The eye data includes features
such as pursuit duration, distance, direction and speed, the blinking frequency and eye fixation position
and duration. Figure 3.16 shows the results of SVM models. Driving data alone demonstrates worse
accuracy when compared to any combination including eye data.
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Figure 3.16: SVM testing accuracy and sensitivity for the feature combinations [25].

3.2. Tracking Task

For detecting distractions in manual control tasks, a tracking task could be performed in conjunction with
a secondary task [11]. A tracking task is a control task in which a human operator (HO) tracks a target
with the controlled element (CE). The target, f;(t) is tracked by generating a control input u(t) while the
CE is perturbed by disturbance f;(t) [7]. The goal is to minimise the tracking error, e(t):

e(t) = fe(t) — x(t), 3.1)

where x(t) is the CE output.

The classical tracking task can be displayed on a screen with 3 different possible layouts, a com-
pensatory, pursuit and preview layout. The pursuit and preview display show the target signal whilst the
compensatory display only shows a reference point. The difference between the pursuit and preview
display is the look ahead time of, 7,,.

68
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Figure 3.17: Layouts of pursuit/preview (a) and compensatory (b) displays [7].

Prior work done on tracking tasks involving machine learning models are for example classifying
human pilot skill levels [16] and classifying human control behaviour based on display types [59][19].
In these studies various combinations of variables have been considered. Results show that for differ-
ent research purposes, different combinations of variables reach the highest obtained accuracy. For
classifying pilot skill levels the variables u, 1, e, and é were used, reaching an accuracy of 92% using a
ResNet CNN architecture [16]. Whereas for the other research question the variables u, 1, e, ¢, x, and x
were used. The highest accuracy turned out to be 93%, however a different neural network architecture
had been used, namely InceptionTime [59]. The use of different NN architectures could be an alternate
explanation for the use of different variables.

3.3. Chapter Takeaways

Researchers are developing methods to detect distractions in an attempt to reduce traffic accidents
caused by distracted drivers. Various approaches have been studied, varying from vision to sensor-
based approaches.

Vision-based approaches typically require additional equipment such as eye-trackers or thermal
imaging cameras. These methods can be costly and can form an obstruction for drivers. Besides these
downsides, promising results have been achieved with neural network models reaching accuracies of
up to 99%.

Sensor-based approaches on the other hand can make use of readily available sensors in the car
such as the steering wheel or pedals. In most cases multiple sensor features have to be used to achieve
good results. Furthermore, combining of sensor features and eye-trackers result in a higher accuracy.

The most straightforward method in this research is a sensor-based approach, since the goal is to
detect distractions in a manual control task. The difference between driving a car and the tracking task
is the importance of being aware of the surrounding environment where a vision-based approach may
be interesting to track head or eye movements. However, in a tracking task the focus is on the screen
showing the target and the controlled element. Furthermore, a secondary task (distraction) has to be
implemented in to create distracted data in the primary task. The sensor based approach can make use
of different features such as the error ¢, input u and output x collected from the tracking task.
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Task Demand

In order to produce data with distracted people that can be used in developing a tool used to detect
distractions, people need to be distracted first. This can be done by introducing a secondary task next to
the primary task, which in this project is the tracking task. For this purpose, literature is gathered about
task load. Information about resource allocation is presented in section 4.1. Examples of secondary
tasks in other research are given in section 4.2. Furthermore, information related to the tracking task
and chapter takeaways can be found in section 4.3 and section 4.4, respectively.

4.1. Multiple Resource Theory

Multitasking can increase a person’s workload depending on the nature of the task. Resources have
to be dedicated to each task in for example cognitive or visual terms. Therefore, Wickens created a 4
dimensional model called the Multiple Resource Theory (MRT), shown in Figure 4.1, used to determine
the performance of humans when resources need to be shared between concurrent tasks [62]. The 4
dimensions are:

1. Processing stages (perception/cognition and response activity),
2. Processing Codes (spatial or verbal activity),
3. Perceptual Modalities (visual or auditory inputs), and

4. Visual Processing (focal or ambient vision).

According to the model, the execution of a task worsens when dimensions are shared between
concurrent tasks. For example, a visual-perception and auditory-cognitive task do not have any common
dimensions, leading to little interference. However, a visual-perception and auditory-perception task do
share 1 dimension and are thus prone to greater interference.
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Figure 4.1: Dimensional representation of multiple resources [62].

In the stages of processing the interference depends on human perception/cognition or the response
a human decides to take and how to execute it. The MRT considers perceptual and cognitive activity
to share the same resources, whilst response activity has its own resources available. The reason is
that during multitasking, speech and motor activity (responses) are often controlled in the frontal regions
of the brain (in particular, the central sulcus) while perceptual and language comprehension tend to
be undertaken in the posterior section of the central sulcus [29]. Furthermore, the prediction is made
that the interference is high between resource demanding perceptual/cognitive tasks involving working
memory to store information [61]. For example performing the following two tasks at the same time:
understanding speech while rehearsing a speech.

The processing codes refer to the spatial and verbal activity that are separate and different from the
stages of processing, perception, cognition and responses. The separation of resources could be seen
as an explanation for low task interference when giving manual and verbal responses simultaneously.
Typical spatial or verbal activities are for example a tracking task or speaking, respectively.

Modalities are considered to be the inputs of the system, how humans perceive a task. This can
either be perceived visually or auditory. Once again, cross-modal time sharing such as visual-auditory
task cause more interference compared to intra-modalities such as two visual tasks [29]. The actions
considered to be a visual or auditory modality are for example looking at the environment or listening to
instructions, respectively.

Finally, visual processing is the last dimension in the MRT model. There are two visual processing
types, focal and ambient vision. Focal vision is used for capturing details, object/pattern recognition and
other high acuity tasks. The human central visual field, in which we can see sharp (i.e., foveal vision), is
very small compared to the peripheral vision which is very large. peripheral vision is linked to ambient
vision, which helps in getting a sense of orientation in the environment [29].

4.2. Secondary Tasks

A notable cause of distractions during driving are secondary tasks, these can vary from reading a mes-
sage on the phone to talking to the person in the passengers seat. The introduction of a new task leads
to re-allocation of resources from the primary driving task to the new secondary task. This can cause an
overall degraded performance or adaptive behaviour in completing both tasks. Kimura et al. studied the
driver’s attentional resource allocation to visual, cognitive and response processing by measuring phys-
iological measures [18]. A slalom course with four driving conditions, speed (fast & slow) and path width
(narrow & wide) are introduced to the participant. The results mainly showed changes in resources
allocated to cognitive and visual processing for the different conditions with little change in response
processing. Research performed on detecting driver distraction also includes a secondary task mainly
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focused on either introducing a cognitive or visual load.

4.2.1. Cognitive Tasks

Secondary cognitive tasks in driving experiments are used to induce a mental load on the driver. This
can be done in many ways and for a variety of reasons. For example, measuring the driving performance
or to detect and prevent distractions. The HASTE (Human Machine Interface and the Safety of Traffic in
Europe) project explored the relationships between task loads and risks in the context of safety critical
driving scenarios by employing secondary tasks [47].

The cognitive task used in the HASTE project was based on the visual Continuous Memory Task
mentioned by Veltman [58]. Since the task initially required visual stimulation, thus inducing visual loads,
it has been modified to an auditory task. The new task called Auditory Continuous Memory Task (ACMT)
would only create an additional cognitive load on the participants [13] [10]. The goal is to remember the
amount of times a target has been heard in a sequence of non-target sounds. An example sequence is
shown in Figure 4.2 where the letters A, B, C, and D represent target sounds and X is considered to be
a non-target sound.

A (K {8 e X X b A o X X
o o K o X 8 o X (X X o X (X ol A

Figure 4.2: Auditory Continuous Memory Task example sequence with 4 target sounds A, B, C, and D.

It should be noted that participants would have to keep track of multiple counts, since each target
sound is counted separately. The correct result from Figure 4.2 would therefore be A=3,B=2,C =
1, and D = 2. Furthermore, the difficulty of the task can be adjusted by increasing or decreasing the
number of target sounds.

Another cognitive load task is the auditory-nonverbal version of the n-back task [39] [40]. A sequence
of numbers between 0 and 9 are played through an audio device. The goal is to detect the instance at
which the same number is played n numbers ago. An example of the task is shown in Figure 4.3.

1waaann1@

Figure 4.3: Examples of the n-back task, showing variations of n = 1 (top) and n = 2 (bottom).

In case of the 1-back task, the participant should notify the experiment instructor when the highlighted
number 1 has been heard, since the previous number was also 1. For the 2-back task this is the case
for the highlighted number 7, since 2 numbers ago number 7 was heard.

Other simple cognitive tasks include having a conversation with someone on the phone [60] or an-
swering math questions which can vary in difficulty [34].

4.2.2. Visual Tasks

Secondary visual tasks are meant to shift someones attention away from, for example the primary driving
task, in a visual manner. In current distraction detection approaches eye-trackers are often used to help
determining whether someone is distracted as explained in subsection 3.1.1. Furthermore, eye-trackers
can also be used for labelling or confirmation purposes. Since driving is mainly a visual task where it
is important to observe the dynamic environment, it is easy to employ a secondary visual task to take
someone’s attention away from the road and to distract people.
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In the HASTE project secondary visual tasks were also employed to study the effects increased of
visual load on driving behaviour [13]. The task design is based on Treisman’s feature integration theory
[56] which states that the speed at which a visual target is identified within a display is affected by its
visual similarity to other objects in the display [10]. When multiple visual characteristics, such as shape
and colour, have to be distinguished from each other the reaction time increases. Therefore, the diffi-
culty of the task can be altered by implementing multiple shapes, colours, orientation, etc.

The visual task in the HASTE project is the arrow task in which the participant has to determine
whether an arrow pointing upwards was present in a matrix filled with arrows. An example can be seen
in Figure 4.4.
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Figure 4.4: The visual arrow task.

Ersal et al. used a visual search task in which the participant had to locate and match several pairs
of “scouts” and “targets” which appeared randomly on a touchscreen next to the driving task [11]. An
example is shown in Figure 4.5 where three pairs are shown.

Figure 4.5: "scouts” (vehicle) and "targets” (person) secondary visual task.

The participants had to match the correctly numbered “scout” and “target” pictures by selecting them
on a screen. Thus, a participant would first select scout 1 and target 1, after which a button is pressed to
complete the assignments. This was repeated for the remaining pictures [11]. The “scout & target” task
is a find and match exercise of which the difficulty could be varied by changing the icons and omitting
the numbering of icons. Icons with similar shapes would be more difficult to match.
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Other visual task include sending messages on the phone whilst driving [60] or reading numbers
from a screen [36]. Another popular task is a surrogate visual research task (SURT), Figure 4.7, which
mimics the in-vehicle display system (IVIS) [53]. Most modern cars have a IVIS on which the driver
can navigate to a destination, turn on the radio or use some other functionality. The IVIS is therefore
also considered as a possibility of distraction [30][25][2][43]. These tasks are for example a simple IVIS
menu navigation task, inserting a destination in the navigation menu or finding a certain radio station.

4.3. Tracking Task

With a variety of possible secondary tasks which can be employed next to the primary tracking task,
the next step is to find the most suitable task in order to distract people. From the viewpoint of the
Multiple Resource Theory the tracking task can be placed as any other task into the 4 dimensional
representation of multiple resources shown in Figure 4.1. The tracking task requires the participant to
track a target with the controlled element. This would require foveal vision for vision processing, since
the human operator needs sharp vision to minimize the tracking error. The modalities of the task can
therefore also be considered to be visual, since no auditory inputs are necessary to complete the track-
ing task. Furthermore, the tracking task is a spatial activity requiring motor responses for moving the CE.

From the MRT analysis it can be seen that secondary visual tasks would share more of the same
resources needed to do a tracking task compared to secondary cognitive tasks. Petzoldt et al. [43]
investigated the possibilities of measuring driver distraction using the so called critical tracking task
(CTT) shown in Figure 4.6 as the primary task. The CTT is similar to the compensatory tracking task
since only a target and reference point is shown with the goal of minimising the error.
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Figure 4.6: Critical tracking task (CTT); example screen [43].

Both cognitive and visual secondary tasks were used to distract participants in [43]. The cognitive
task is a simple counting task where participants are asked to count forwards in steps of either 2 or 5
from 212 or 45, respectively. A more difficult version required participant to count backwards in steps
of 6 from 831, or in steps of 7 from 581. The visual task is performed on a second screen on which the
participant has to find the target object in the midst of “distractors”. An example of the task can be seen
in Figure 4.7.
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Figure 4.7: Surrogate reference task (SURT); example screen[43].

The target has a different size compared to the distractors, namely 9 mm and 8 mm in diameter re-
spectively. The difficulty could be varied by minimizing the size difference between the target and other
objects.

The performance of the participants doing the tracking task was measured by the mean deviation
in millimeters. For the experiment, 5 different variations and a total of 10 runs were performed (2 runs
per variation). The variations were a baseline run with no secondary tasks and 2 runs including either a
cognitive or visual task with a easy or hard difficulty. The result of the experiment is shown in Figure 4.8
with a total of 24 participants.
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Figure 4.8: Mean deviation from centre position when cognitive or visual secondary tasks are performed in comparison with the
baseline experiment [43].

Figure 4.8 shows a mean deviation of 7 mm for the baseline runs, meaning that participants will still
show deviations in the critical tracking task even when there are no distractions. When comparing the
baseline to runs with secondary cognitive tasks a slight increase of approximately 2 to 5 mm in mean
deviation can be seen depending on the task difficulty. Runs with the secondary visual task show a
much larger increase in mean deviation with differences of 25 to 35 mm compared to the baseline. An
explanation of this result can be given based on the multiple resource theory by Wickens. Since both
the CTT and visual search task require the same resources for visual perception, the information can
not be processed simultaneously resulting in a worse performance of the primary task. The cognitive
task shared little resources with the CTT resulting in little interference between both tasks as can be
concluded from the results.
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4.4. Chapter Takeaways

When a person is able to focus on a singular task, instead of multitasking, the results will show a better
performance. This is because when people have to do two or more tasks at the same time, resources
that process information have to be shared between the tasks. Wickens’ Multiple Resource Theory
(MRT) discusses this, in general terms tasks which require the same processing resources for exam-
ple visual perception will cause greater interference compared to tasks that require different resources
such as visual perception and auditory perception. The higher the interference the more difficult it is for
humans to perform both tasks well.

Regarding experiments in task demand two main types of secondary tasks are used, these are cog-
nitive and visual tasks. Examples of cognitive tasks are memory or counting tasks. Visual tasks consist
of finding irregularities in patterns (search tasks) and texting.

Based on the MRT, a secondary task can be designed for the experiment in this research that will
distract participants sufficiently. The tracking task is a task that requires visual perception, precision and
a manual response. According to the MRT and previous research it is evident that cognitive tasks have
little impact on tracking results. Visual tasks on the other hand are a better tool for distracting people
since the human operator has to take in visual information from both tasks.

Furthermore, it could be of interest to investigate to what extent a neural network is able to detect

distractions. The visual secondary task can be modified to change the difficulty in order to research this
question.
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Anomaly Detection

The aforementioned work uses time series classification models in which various time series signals are
labelled [11][53][54][22]. A neural network is trained to recognize the different patterns and structures
of the labelled signals and to classify them into the appropriate classification classes. However, due
to the nature of the research problem and a lack of readily available time-series human control data of
distracted pilots, a different approach is considered. Namely, anomaly detection. Anomaly detection in
machine learning aims at finding unexpected or off-nominal events in data streams, commonly referred
to as anomalous events [48]. section 5.1 discusses current challenges in anomaly detection techniques
whereas section 5.2 discusses interesting aspects to this matter. section 5.4 holds the takeaways of this
chapter.

5.1. Challenges in Anomaly Detection

The main principle in anomaly detection is to have a model trained to recognize normal behaviour and
to identify the irregularities. Even though the approach is simple, in general there are still challenges
which have to be tackled depending on the problem itself. Some challenges are for example:

1. Definition of Normal: It is difficult to determine whether every aspect that is deemed to be normal
is covered in the data used to train the neural network. Abnormal behaviour that shows little to
no difference compared to what is considered as normal, may result in false positives or false
negatives.

2. Evolving Behaviour: Depending on the area of application, normal behaviour may change over
time. In this case the model should be adaptable and change which the current trends. In the past
where the norm was to shop in physical stores, a large group of consumers has shifted to shopping
online as new technological advancements are made through the years [31]. To accommodate
these changes, stores had to devise new strategies in order to adapt.

Data related challenges could be present in the limited availability of labelled data, growth in data
size resulting in an increase for the need of computing resources, or noisy data making it more difficult
to distinguish between normal and abnormal behaviour.

5.2. Aspects of Anomaly Detection

Every research problem is unique and involves a wide variety of aspects that have to be taken into
account. Aspects that are important for an anomaly detection problem could be in the nature of the
input data, anomaly types, detection techniques and the output.

5.2.1. Input Data
The input data can be referred to as for example data points, vectors, or observations taken at an in-
stance. When grouped together they describe a certain system. These instances are described by
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attributes such as dimension or characteristics which can be of the type binary, categorical or continu-
ous. A data instance can consist of only one attribute or multiple attributes, which are called univariate
or multivariate, respectively [52].

The attributes play the biggest role in determining which anomaly detection techniques should be
used [4]. For example, statistical techniques may require different statistical models depending whether
the input data is continuous or categorical. Anomaly detection techniques can be based on point data,
in which it is assumed that there is no relationship between the data instances. However, in most cases
there is a certain relationship, examples are sequence data such as time-series data in pilot control
tasks, spatial data where neighbouring instances affect each other in ecological data and graph data
when different vertices are connected with each other.

5.2.2. Anomaly Types

A different aspect is the type of anomaly which should be detected in the problem, a total of three
anomaly types can be identified. These are:

1. Point Anomalies: The simplest form of an anomaly is considered to be a point example. This is
visualised in Figure 5.1 where points A and B are point anomalies since they are different from
the normal data points. Point anomalies can for example be applied in detecting suspicious bank
transactions. For simplicity reasons only the amount spent is taken into account, when a person
suddenly spends a lot more than usual it can be considered a point anomaly.

N:

Figure 5.1: Data instances including point anomalies in 2D space.

2. Contextual Anomalies: Contextual anomalies only apply to a certain context, thus an anomaly in
context A may be considered as normal in context B, also known as a conditional anomaly [49].
It is important to formulate the context of the problem when trying to detect anomalies, which is
explained by Figure 5.2.
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Figure 5.2: Contextual anomaly t, in a temperature time series. Note that the temperature at time t, is same as that at time t,
but occurs in a different context and hence is not considered as an anomaly [4].

A data point can be defined by contextual attributes and behavioural attributes. A contextual at-
tribute is used to determine the context of that point, for example the time stamp in time-series
data. Or the longitude and latitude of a location in a spatial data set. Furthermore, behaviour
attributes are non-contextual, which is for example the average temperature at a location when
considering a spatial data set.

3. Collective Anomalies: If a group of data points behaves abnormal compared to the rest of the
data set it is called a collective anomaly. An example can be seen in Figure 5.3 showing an
electrocardiogram of an human. The collective anomaly is highlighted in red, since the particular
value is present for a much longer time than expected.
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Figure 5.3: Collective anomaly in an electrocardiogram due to an atrial premature contraction [12].

5.2.3. Anomaly Detection Techniques

Detecting anomalies can be performed in several ways, it varies from supervised to unsupervised meth-
ods wherein the difference lies in data labelling.

Supervised anomaly detection uses labelled data for both the normal and abnormal instances. The
model is trained to classify data into two classes, from which it should be able to predict whether the
newly presented data correspond to the normal or anomaly class. This approach is shown in Figure 5.4.
The model is trained to classify 3 classes in the visualisation. The training data consists of three classes
as represented by the 3 different labels (colors). A model with an accuracy of 100% is able to classify
all 3 classes perfectly. When using the test data, which is the same as the unlabelled training data (gray
points), the same result should be reported.
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Figure 5.4: Supervised anomaly detection. Example of a 3 class classification problem.

Semisupervised anomaly detection techniques are useful in cases when there is a limited amount
of anomalous data. The training and test datasets only include data from normal cases (no anomalies),
thus any deviations from the learned model will be seen as an anomaly. This one-class classification
approach are more widely applicable to supervised techniques as it is more difficult to capture all possible
anomalous data and to label them. The semisupervised approach is visualised in Figure 5.5. It can be
seen that first only normal data (white) is used for training the model. When the model is tested with
test data, containing both normal and anomalous data, it is able to recognize what is considered to be
normal (classified as green by the model), marking unfamiliar data as anomalies (classified as red by
the model).

Training Data

Test Data

Figure 5.5: Semisupervised anomaly detection.

Unsupervised anomaly detection does not include any data labelling. Thus it is not known what the
normal or abnormal state is. In order to detect anomalies, the assumption is made that normal data
appear more frequent or grouped together compared to anomalies. Figure 5.6 shows an example of
unsupervised models where unlabeled data is used. When the unlabeled data is fed through the model,
it looks at the data distribution and separates data instances into two groups, normal data (green) and

anomalies (red).
(8% O~ }—gescons]
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Figure 5.6: Unsupervised anomaly detection.

5.2.4. Ouput
The last aspect in anomaly detection is to determine how to present the abnormalities in a meaningful
way. The two most commons ways to do so are giving scores or using labels [4].

1. Scores: The scoring methods assign each data instance with a score. And depending on the

scale used it can be determined whether the data is considered to be anomalous. To filter out the
particular data instances, a cut-off threshold can be set.
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2. Labels: This technique assigns labels to every data instance as either ‘normal’ or ‘anomalous’.
This binary approach classifies the data instances based on the mentioned scores.

5.3. Anomaly Detection Models
For the purpose of anomaly detection, several algorithms have already been developed of which most
are readily available in python libraries. These libraries contain algorithm for anomaly detection in point

data (PyOD) [14], time-series (TODS) [21], and graph data (PyGOD) [27].

Han et al. compared several anomaly detection models on 57 data sets by reporting the area under
curve Receiver operating characteristic (AUCROC) as shown in Figure 5.7 [14].
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Figure 5.7: Boxplot of AUCROC (@1% labeled anomalies) on 57 data sets; un-, semi-, and fully supervised methods are denoted
in light yellow, green, and purple, respectively [14].

The models consist of un-, semi-, and fully supervised methods. Figure 5.7 shows that when 1% of
the labelled data is considered as an anomaly, the AUCROC for each model is comparatively the same.
However, when the percentage of labelled data samples increases, the AUCROC of semi-, and fully
supervised methods increase as well. This results is presented in Figure 5.8, where the percentage of

labelled anomalies is increased to 10%.
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Figure 5.8: Boxplot of AUCROC (@10% labeled anomalies) on 57 data sets; un-, semi-, and fully supervised methods are denoted
in light yellow, green, and purple, respectively [14].

5.4. Chapter Takeaways

The idea of anomaly detection is simple: find the abnormality in a large group of normal data. However,
there are still many challenges that have to be overcome. It is difficult to train a neural network on what
is considered to be normal. This could be due to lack of available data, changing trends through time,
or noisy data. A step in the good direction is to analyse the aspects of the problem and to use the ap-

propriate anomaly detection approaches for solving a case.

Important aspects to think of are:

+ Input Data: the availability and type of data; Is the data labelled or unlabelled? How much data is
available? Does the data contain images or time series data?

» Anomaly Types: there are three main types of anomalies.
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— point anomalies are single outliers in a data set.

— contextual anomalies are for example freezing temperatures during summer instead of in
winter times.

— Collective anomalies are a group of data points that show abnormal behaviour.
» Anomaly Detection Techniques:
— Supervised anomaly detection only uses labelled data (normal and abnormal data) to train
the model.

— Semisupervised anomaly detection uses labelled data of what is considered to be normal to
train the model.

— Unsupervised anomaly detection does not use labelled data, it relies on the network itself to
recognize anomalies.

» Output: the desired way to indicate an anomaly, can be done using scores or labels.

The problem in detecting distractions lies in the limited amount of data available of distracted people
doing the tracking task. Because of the sheer amount of available normal-labelled data, a supervised
anomaly detection method is recommended. The anomalies can be considered as collective anomalies
since the tracking task generates time series data and little context is needed, compared to the example
given in Figure 5.2, to understand what is deemed as normal.
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Preliminary Simulation

For the final implementation of detecting distractions in manual control data, preliminary simulations
have been performed to understand neural networks and its implementations. In section 6.1 the various
simulations performed in this chapter are listed. Furthermore, section 6.2, section 6.3, and section 6.4
present the methods and results of the simulations. The tracking error in tracking tasks are analysed in
section 6.5. Finally, the chapter takeaways are presented in section 6.6.

6.1. Simulations

The simulations that have been performed, provide a better understanding into the work that has been
done by other student and how to solve the main problem. For this purpose the following 3 simulations
have been conducted:

1. Classifying the response of pilot control tasks based on display types using deep neural networks
[19].

2. An initial set up for detecting anomalies using display type data.

3. Detecting distractions using tracking data with distracted people.

The first simulation is based on prior work done by Kiselev [19] in which the three different display
types used in control tasks are classified using a neural network called InceptionTime based on 1.5-
second time series data samples. An additional data set had been collected in which the controlled
element dynamics had single integrator properties compared to the data from van der El. et al [9].
Using the data set of the first simulation, a new model is trained with only one display type. The goal of
the second simulation is for the model to indicate the detection of an anomaly when the other display type
data are fed to the trained model. In the third simulation, a model is trained using data with distractions
and analyzed on how well it is able to detect distractions.

6.2. Classification Simulation

The tracking task is used as a tool to study how a human operator adapts to changes in task variables
whilst keeping the experiment conditions the same as much as possible. A total of four task variables
were identified in the pilot-vehicle system by McRuer [35]. These are presented in Figure 6.1
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Figure 6.1: Task variables affecting the pilot-vehicle system for a pursuit/preview display [8].

The manipulator can be considered as a passive stick of which the dynamics can be safely ignored.
The controlled element represents the dynamics between human control inputs and the state of system
that is controlled. The third task variable is the forcing function. Depending on the type of tracking task,
a target signal, f;(t), has to be followed in a following task. This target signal is a sum of sinusoids from
which a quasi-random signal can be created. In the other task a disturbance, f;(¢t), is forced on the
controlled element in a disturbance task. Lastly, the display, discussed in section 3.2 is the final variable
which can be changed. The 3 main display types are a compensatory, pursuit and preview display.

The main goal of the first simulation is to classify human control responses by display types. The
neural network used for this simulation is called InceptionTime, an ensemble of deep Convolutional Neu-
ral Network models [15]. InceptionTime was introduced to improve upon a previous machine learning
model called HIVE-COTE for Time Series Classification (TSC) problems to reduce training times. TSC
in machine learning deals with the categorization of time series data, which are also produced in tracking
tasks.

The data used in the simulation comes from experiments done by van der El et al. [8] and Kiselev
[19]. In these tracking task experiments, the three different display types were used with the only differ-
ence being the controlled element dynamices (CED). Van der El's data consists of experiments using a
double integrator (DI) CED while Kiselev’'s experiment CED was a single integrator (Sl) which is easier
to control by human operators (HO). A SI means that the HO controls the velocity of the controlled ele-
ment, for DI dynamics this would be the acceleration of the controlled element.

From the experiments the following signals were recorded and used as time series data, sampled at
a rate of 100 Hz:

 t, time.

* f:(t), target signal.

* fa(t), disturbance signal.

* e(t), error signal.

* u(t), HO input signal.

» x(t), output signal.

The neural networks were trained using a machine learning platform called Weights and Biases
(WandB)'. This tool allows for tracking, comparing, and visualizing ML experiments by importing and
initializing it in the Python script. The hyper-parameters used for training the model are shown in Ta-

ble 6.1. The combination of these parameters were determined by Kiselev and are optimised to obtain
the highest accuracy possible for the classification model.

"https://wandb.ai/site
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Table 6.1: Hyper-parameters used for training neural network.

| Parameter | Value |

Batch Size 64
Epochs 25
Bottleneck No
Convolutional Dropout | 0.05
Kernel Size 64

No. Convolutional Filter | 24

Max. Learning Rate 0.00275
Residual Connection No
Weight Decay 0.05
Batch Normalization No

Apart from the hyper-parameters in Table 6.1 the variables, e, u, x, and their derivatives of the time
series data are used with time windows of 1.5 s [19]. Furthermore, 80% of the data is used for training
and the remaining 20% is used for validation. The training process and final results are visualized in
Figure 6.2 showing a steady increase in model accuracy. With increasing steps in the training process,
the model is able to recognize the data from different display types better, causing the slow increase in
accuracy.

accuracy

0.76 steps
5k 10k 15k

Figure 6.2: Model accuracy of 5 different training runs as a function of steps. Each run consists of 25 epochs.

Figure 6.2 shows a steady increase in model accuracy with increasing steps. Each line represents a
single training run using the single integrator data, and each point on a line represents an epoch. Starting
from an average accuracy of 0.78, the curves eventually converge to an average of 0.92. Similar results
are also obtained for the double integrator data set. To get a better idea of the predictions made by the
model, confusion matrices are also created, these are found in Table 6.2 and Table 6.3 for the Sl and DI
data set, respectively.

Table 6.2: Confusion Matrix of the S| data set (C = Compen- Table 6.3: Confusion Matrix of the DI data set (C = Compen-

satory, P = Pursuit, PR = Preview). satory, P = Pursuit, PR = Preview).
Total Accuracy Predicted Total Accuracy Predicted
91.83% C P PR 95.38% Cc P PR
c 93.31% | 6.68% 0.01% c 99.87% | 0.09% 0.04%
_ 19999 1431 2 _ 21168 20 8
S P 17.32% | 82.63% | 0.05% S P 7.13% | 89.96% | 2.90%
2 3571 17041 11 3 1499 | 18902 610
PR 0.21% 0.24% | 99.55% PR 1.73% 1.97% | 96.30%
45 53 21546 372 422 20657
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The confusion matrices show the number of samples predicted labels against the actual label. The
confusion matrices show a total accuracy of 91.83% and 95.38% for the Sl and DI data set, respectively.
This resultis in accordance with the findings of Kiselevs work, which this analysis was meant to replicate,
and where equivalent accuracies of 91.66% and 95.42%, respectively, were reported [19]. Therefore, a
successful replication of Kisilevs work has been achieved.

6.3. Anomaly Detection

In preparation of detecting anomalies in time series data, a neural network using the same parameters
as in section 6.2 is trained for two class classification. The two classes are:

1. Preview display data

2. Compensatory/Pursuit display data

When time series data is fed to the model it should be able to give a probability whether it ‘thinks’ the
data sample corresponds to preview data. This is done for two cases in which only preview data is fed
to the model and when only pursuit data is used. Figure 6.3 shows the probability for classifying data
as preview data, in this case the data set used to train the model consisted of 75% preview data and
25% pursuit/compensatory data. The preview time series data used to produce the results in Figure 6.3
is shown in Figure 6.4.

1.2
1.07
0.8
0.61
0.41
0.2
0.0

Detection Probability

0 20 40 60 80 100 120
t [s]

Figure 6.3: Probability of preview data samples classified as preview data for a single run.
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Figure 6.4: Time series data corresponding to a preview display tracking task (blue = output, orange = target). Figure shows 120
seconds of tracking data starting fromt =8 s. t = 8 s corresponding to t = 0 s in Figure 6.3.

The probability shown in Figure 6.3 corresponds with the expected result. For the majority of the time
series data shown the probability is close to 1. However, between t = 25 sto t = 65 s the probability is
lower, the lowest value being approximately 0.6. An explanation for this behaviour could be the larger
errors found in this particular preview time series data set making it look more like compensatory or
pursuit data. However, this is only a speculation and may not be representative to the complete data
set since the probabilities of Figure 6.3 was obtained using only data of 1 run.

The simulation described for classifying preview data is also done for a data set containing only
pursuit data. The result of this simulation is shown in Figure 6.5 with the corresponding pursuit time
series data in Figure 6.6.
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Figure 6.5: Probability of pursuit data samples classified as preview data.
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Figure 6.6: Time series data corresponding to a pursuit display tracking task (blue = output, orange = target). Figure shows 120
second of tracking data of starting from t = 8 s corresponding to t = 0 s in Figure 6.5.

Figure 6.5 shows that the probability of the samples correspond to a preview display are near 0 as
expected. This result shows that only from t = 80 s onwards, the probability increases by a small per-
centage, staying below a probability of 0.2. The neural network architecture InceptionTime is thus able
to distinguish and classify different display types well at an acceptable level of accuracy shown here and
by the results of section 6.2.

The next step is to see whether the neural network can differentiate between the preview display
data and the other two types of displays when the model is only trained on preview data. By training the
data on only one display type, the problem turns from data classification to detecting anomalies. The
results of this simulation are shown in Figure 6.7 and Figure 6.8. Apart from the preview data, the model
is tested using compensatory and pursuit data, respectively.

1.2

Comp data | Preview data
— | —

1.0

0.81 - S —
0.6

0.4

Detection Probability
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0.0 — ’ ‘ - y : —
0 20 40 60 80 100 120
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Figure 6.7: Probability of compensatory or preview data samples being classified as preview data, averaged over 180 runs.
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Figure 6.8: Probability of pursuit or preview data samples being classified as preview data, averaged over 180 runs.

Figure 6.7 shows the results where compensatory and preview display data are used. And the re-
sult in Figure 6.8 are generated with pursuit and preview data. From both figures it can be noticed that
the probability of the samples corresponding to preview data are nearly the same and only differ by an
average of 0.1. An explanation for this result is that the model is only trained using one class of data
(preview) while it is tasked to classify between two data classes (preview and compensatory/pursuit).
The model has therefore little knowledge of how compensatory and pursuit data look like.

In addition to this, tracking data from different display types can show many similarities. Take for
example the preview and pursuit data in Figure 6.4 and Figure 6.6. The data of different display types
can be seen as clusters as presented in Figure 6.9. And overlapping parts of the different clusters may
have contributed to the small difference in probability between preview and other types of data.

Figure 6.9: Example data clusters of compensatory, pursuit and preview tracking data.

When a model does not have any knowledge of how the different classes may look like in a two
class classification task, the classification probability would most likely be split 50:50. In this case, the
model has an idea of how preview data looks like and would therefore generate a higher classification
probability for preview data. In Figure 6.7 and Figure 6.8, the probability for classifying preview data as
preview data is around 0.8 in both figures. When it comes to either compensatory or pursuit data, the
probability of it being classified as preview data is approximately 0.7.

A possible solution to this problem is to use a few positive samples (distracted data) when training
the anomaly detection model as proposed by Xue et al. [63]. An autoregressive model (AR) with a
recurrent network as backbone has been modified with either a margin loss function or an auxiliary
classification loss function. The results showed that the normal AR model would only reach an average
detection rate of 0.6498. The modified auxiliary and margin model reached averages of 0.8152 and
0.8110, respectively, showing much better results.
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6.4. Detecting Distractions

Moving away from the classification problem of display types, the goal now is to detect actual distractions
in tracking tasks. Figure 6.10 shows the time series data of the forcing function and output of a tracking
task with a preview display. The difference between a normal tracking task is the addition of distractions
which are visualized by square pulses with a duration is 2 seconds (6 distractions per run).

forcing function
output

I A distraction

T
T

t[s]

Figure 6.10: Time series data corresponding to a preview display tracking task including distractions.

The data which will be used for the preliminary simulation of detecting distractions is collected by
Nokhai? and consists of preview and pursuit tracking data including distractions. The secondary task
used as a distraction in a tracking run was identifying colours projected onto a screen, positioned at an
angle of 90°. An example screen is shown in Figure 6.11

Figure 6.11: Sketch of the “distractor” display showing a red square.

Before the data can be used to train a model, each distraction has to be labelled first. From the
experiment performed by Nokhai it is known that each distraction had a duration of 2 seconds. However,
for the simulations a time window of 1.5 seconds and data overlap of 0.75 seconds will be used, the
same values used by Kiselev [19]. From Figure 6.12 it can be seen that a decision has to be made to
determine what is considered as distracted.

2reference not available
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Figure 6.12: Consideration in labelling time series sample as distracted or normal.

Figure 6.12 shows that some samples contain both distracted and normal data, but only 1 sample
contains true distracted data (highlighted in green). For the preliminary simulation, it was decided to use
only the green sample as distracted data. This way samples labelled as distractions are guaranteed to
consist of only distracted tracking data.

Using InceptionTime, two models have been trained using preview and pursuit data separately with
the same parameters in Table 6.1. The confusion matrices for the preview model and pursuit model are
presented in Table 6.4 and Table 6.5, respectively.

Table 6.4: Confusion matrix of the preview model (N = Normal, Table 6.5: Confusion matrix of the pursuit model (N = Normal,

D = Distracted). D = Distracted).
Total Accuracy Predicted Total Accuracy Predicted
61.27% N D 71.27% N D
_ N 98.92% | 1.08% _ N 98.92% | 1.08%
s 19216 209 s 19281 21
© 76.39% | 23.61% ° 56.38% | 43.63%
< b 576 | 178 < b 451 | 349

The preview model has an accuracy of 61.3%, whilst the pursuit model has a higher accuracy of
71.27%. Table 6.4 shows that 76.4% of the samples containing distractions are classified as normal,
in Table 6.5 this percentage is 56.38%. In a tracking task with a preview display, the participant is able
to see a few seconds ahead of time and therefore knows what the trajectory would be, whilst being
distracted for approximately a second. The behaviour of the human controller when being distracted in
a tracking task might thus be almost the same in normal conditions. For pursuit data the difference in

behaviour should be greater compared to preview data, because the human operator does not know the
future trajectory of the forcing function.

Furthermore, the limited amount of distracted data compared to the amount of normal used in training
may also be a cause for the low accuracies of both models. Each run only consists of 6 distracted
samples, in comparison to the 154 normal samples. A solution to this problem is to reduce the number
of normal samples used in the training process. In order to test this, two new models are trained using 1
distracted sample for every 4 normal samples. The confusion matrices of the new preview and pursuit
model are presented in Table 6.6 and Table 6.7, respectively.
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Table 6.6: Confusion matrix of the preview model trained using Table 6.7: Confusion matrix of the pursuit model trained using
a 4 to 1 ratio of normal and distracted data (N = Normal, D = a 4 to 1 ratio of normal and distracted data (N = Normal, D =

Distracted). Distracted).
Total Accuracy Predicted Total Accuracy Predicted
72.09% N D 81.63% N D
_ N 75.26% | 24.74% _ N 84.08% | 15.92%
S 572 188 S 639 121
© 31.07% | 68.93% k3] 20.82% | 79.18%
< b 298 661 < b 197 749

Table 6.6 and Table 6.7 show an improvement for both the preview and pursuit model, with accuracies
of 72.1% and 81.6%, respectively. The trained models were hereafter saved and exported to analyse
the detection probability of distractions for single runs. Figure 6.13 shows the detection probability of
every sample in a single run in blue, the orange bars are the instances (samples) where the distraction
takes place.
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Figure 6.13: Detection probability of distractions for a single preview run highlighting distracted samples (subject 5, run 7).
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Similarly to Figure 6.13, Figure 6.14 shows the detection probability of the same single run, preview
tracking data (subject 5, run 7). However, the orange bars in Figure 6.14 represent the predicted dis-
tracted samples. It can be seen that more samples are classified as distracted by the model compared
to the 6 actual distracted samples in each tracking run.
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Figure 6.14: Detection probability and classification of distractions for a single preview run (subject 5, run 7).
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The same has also been done for pursuit data, the results can be found in Appendix A. The confusion
matrices of both single preview and pursuit runs are presented in Table 6.8 and Table 6.9, respectively.
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Table 6.8: Confusion matrix of a single preview run (subject 5, Table 6.9: Confusion matrix of a single pursuit run (subject 5,

run 7). run 7).
Total Accuracy Predicted Total Accuracy Predicted
77.85% N D 81.01% N D
_ N 77.63% | 22.37% _ N 80.26% | 19.74%
s 118 34 s 122 30
b1 0 0 b1 0 0
&J D 16.16/0 83.23/0 2 D 0.030/0 10060A>

The confusion matrices show that most distractions in these particular runs can be detected. How-
ever, a significant amount of normal samples have been classified as distracted. A possible solution to
reduce this number, is to increase the threshold at which a sample is deemed as distracted. Currently,
the threshold has been set to 0.5.

In order to test this solution, increments of 0.1 have been taken, starting from the original decision
threshold of 0.5 up to 0.9. The value of 0.95 has also been taken into account in this analysis for a
better comparison at high threshold values. Figure 6.15 shows the classification of distracted samples
at a decision threshold of 0.95 in a single run for subject 5, run 7. The classification results of the other
threshold values of this particular run can be found in Appendix A.

) 0 20 a0

Figure 6.15: Detection probability and classification of distractions for a single preview run with a decision threshold of 0.95 for
classifying distracted samples (subject 5, run 7).
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By comparing Figure 6.15 with Figure 6.14, a clear distinction can be found in the number of samples
that have been classified as distracted. At the higher decision threshold of 0.95, only 18 samples are
classified as distracted. To get a better idea of how the classification of samples has changed the confu-
sion matrices in Table 6.10 and Table 6.11 are presented for the preview and pursuit model, respectively.
The detection probability and classification results with varying threshold values for the pursuit tracking
run can be found in Appendix A

Table 6.10: Confusion matrix of a single preview run with a deci- Table 6.11: Confusion matrix of a single pursuit run with a deci-
sion threshold of 0.95 for classifying distracted samples (subject  sion threshold of 0.95 for classifying distracted samples (subject

5,run 7). 5,run 7).
Total Accuracy Predicted Total Accuracy Predicted
91.14% N D 89.97% N D
_ N 91.45% | 8.55% _ N 89.47% | 10.53%
S 139 13 S 136 16
- 0 0 - 0 0
2 D 16.16/0 83.23/0 2 D 0.0(())0A> 10060/0

Table 6.10 shows the confusion matrix of the preview model with a decision threshold of 0.95, the only
difference with Table 6.8 is the change in classification of actual normal samples. Fewer normal samples
have been classified as distracted. The same can be said about the pursuit model in Table 6.11. By
increasing the decision threshold, the accuracy of both models have increased to around 90%. 91.14%
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and 89.97% for the preview and pursuit model, respectively.

In the interest of determining whether increasing the decision threshold would increase the model
accuracy in general, 4 other single tracking runs (2 preview, 2 pursuit) have been randomly selected and
tested on the preview or pursuit model. The model accuracy at different decision thresholds between
0.5 and 1 have been plotted in Figure 6.16. For the results of the pursuit model, see Appendix A.
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Figure 6.16: Model accuracy with varying decision threshold for classifying distracted samples, preview data.

Figure 6.16 shows the model accuracy of three different preview runs. The general trend is that the
accuracy does indeed increase by increasing the threshold. The highest accuracy achieved is 93.04%,
corresponding to subject 2, run 6. The same conclusion is also found for the pursuit run, where the
highest accuracy is 92.41%.

6.5. Tracking Error

Apart from training machine learning models to detect distractions, it might also be interesting to look at
the tracking error in a tracking task. When a participant is distracted, it can be expected that the tracking
error would increase since the focus of the participant has been shifted from the primary tracking task
to the secondary task.

First, it is important to know when the participant is distracted. From Figure 6.17 it can be seen that
6 distractions occur in a single run within 6 different periods of 10 seconds. In these 10 second periods,
distractions occur randomly in 1 of the 5, 2 second slots available.
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Figure 6.17: visualisation of possible distraction occurrences in a single run.

In order to analyse the tracking error, the absolute error at each and every specific time instance,
for example t = 21 s, in each preview run has been summed up and averaged. The results of this
procedure can be seen in Figure 6.18 and Figure 6.18 for all preview and pursuit runs, respectively.
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Figure 6.18: Average error of the all individual preview runs.
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Figure 6.19: Average error of the all individual pursuit runs.

The sections in which distractions occur have been marked with a red border. It can be noted that the
average error in preview data are lower compared to pursuit data. Furthermore, the distractions do seem
the increase the tracking error. This effect can be better observed from Figure 6.20 and Figure 6.21 for
preview and pursuit data, respectively.
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error
error

Figure 6.20: Sum of the average error in preview tracking tasks ~ Figure 6.21: Sum of the average error in pursuit tracking tasks
for each section. for each section.

Aside from the distractions causing spikes in the tracking error, the forcing function itself could also
contribute to an increase of error. At moments where the forcing function suddenly changes moving
direction from left to right or vice versa, the human controller needs to react to this sudden change and
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will most likely overshoot the target signal. This is also visible in Figure 6.22 and Figure 6.23 showing
the average preview and pursuit error, respectively.
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Figure 6.23: Average pursuit error of forcing function 5 (blue = error, light blue = forcing function).

It seems however that this effect could be neglected, since Figure 6.20 and Figure 6.21 already
showed that section with possible distractions do have a higher tracking error average compared to
normal sections.

6.6. Chapter Takeaways

The preliminary simulations provide new insights on the capabilities and limitations of what is possible
in relation with the research problem: detecting distractions in human pilot control tasks using machine
learning. InceptionTime, a deep convolutional neural network has been used to train the models.

The first simulation, classification of human control responses based on display types, showed that
the InceptionTime architecture can reach high accuracies for both single and double integrator dynamics
of the controlled element.

When moving from a 3 class to a 2 class classification problem with preview display and compen-
satory/pursuit displays the model was still be able to differentiate the different display types. The proba-
bility of samples corresponding to preview display, when preview or pursuit data are fed to the NN model
were appropriate. This was the case since the model was still trained using 3 different display type data.

However, when the model is only trained with preview data it had a more difficult time in differentiat-
ing between the preview display and other display types. This could be caused by different display type
data having some overlapping characteristics and most machine learning architectures are developed
for image recognition.

Finally, NN models have been trained using tracking data in which subject have been distracted with
a secondary task. Results showed that when all of the tracking data are used, the accuracy is lower
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compared to models trained on data where the ratio of normal and distracted data have a ratio of, for
example, 4:1. In addition to this, increasing the decision threshold for classifying samples as distracted
increases the accuracy even more. Accuracies of up to 93.04% and 92.41% have been reached for the
preview and pursuit model, respectively. Furthermore, the tracking error in the tracking runs have been
analysed and shows indeed that distractions do cause a small increase.

Following from the preliminary analysis, it is decided to use the InceptionTime neural network ar-
chitecture for the final phase of the research. This is the same NN architecture used by Verkerk [59]
and Kisilev [19] for classifying time-series data. This data is obtained from experiments involving the
classical tracking task, which is also used in this research project.
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Research Plan

The Preliminary phase of this research project helped gaining a better understanding of the research
topic, Detecting Distractions in Human Manual Control Tasks Using Machine Learning, and the possible
tools that can be used the execution phase.

Following from the preliminary phase it is clear that an experiment has to be designed to collect data
of distracted people doing a control task. And how the data will be used to reach the research objective.

7.1. Experimental Design

The research consists of an experimental part using the Human-Machine Interaction (HMI) Laboratory
located at the Technical University of Delft, Faculty of Aerospace Engineering. The HMI is a fixed base
simulator for cars or aircraft which can also be used for experiments with control tasks of visual perception
research [1]. An illustration of the HMI lab can be seen in Figure 7.1, showing the experiment room
where the subjects are doing the experiment and the experimenter is controlling the simulation from an
observation room. The observation room contains the computers that are used to control the various
devices in the lab.

Figure 7.1: lllustration of HMI Lab. The participant will be sitting  Figure 7.2: Sketch of HMI Lab tracking display [7]. The goal is
on the right (blue) seat and controls the side-stick. The partici- to steer the state (circle) to the target (plus). The preview tra-
pant will have to look at the screen on the left [1]. jectory line is either present or not.

The participant will be seated on the ’aircraft side’ (blue seat in Figure 7.1) from which the the partic-
ipant will complete several tracking tasks with a to be determined secondary task used as a distraction.
The equipment used to do this perform this experiment are [1]:

+ A fully adjustable aircraft seat, from a Breguet Atlantique, installed on the right-hand side.
A control-loaded hydraulic side stick, with +30° excursion in roll and +22° excursion in pitch.
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» Two 18” LCD panels for the instrument displays, one installed in portrait mode, both displays with
a 1280 x 1024 pixel resolution.

Furthermore, a visual projection system is available which use a three-sided projection screen. This
allows for 180° field of view that can be used for displaying visual distractions. The participant will have
to remove its eyes from the primary tracking task and focus on what is displayed on the screens. Options
for generating the projected image are using OpenSceneGraph, OGRE or FlightGear image generation

[1].

The tracking task is displayed on one of the screens in front of the participant, representative of what
is shown in Figure 7.2. The goal is to minimise the error (difference) between the controlled element
(circle) and the target (plus). The preview trajectory line shows the trajectory of the target for a certain
time, 7,,. Each tracking task run has a duration of 128 seconds of which only 120 seconds of data will
be used. The first 8 seconds is considered as a run-in time that allows participants to adjust of focus on
the task. Furthermore, the data is collected at a sample rate of 100 Hz.

The following steps are taken to design and do the actual experiment:

1. Design a visual secondary task used to distract subjects, if possible include varying task difficulties.
2. Decide the scope of the control task: controlled element dynamics, display types.
3. Integrate and test the secondary task with the control task.

4. Invite participants to the experiment for data collection.

7.2. Data Processing

The second part includes data processing and training/applying ML models. The program used for data
processing is MATLAB since the data is collected in a . dat file and the base code to process the data
is readily available from previous research [7][19]. The machine learning code is written in Python with
imported scientific libraries such as Numpy & Scipy and machine learning libraries like torch, tsai, and
fastai. These ML libraries are used to support the InceptionTime neural network architecture properly.
Tracking task data consist of multivariate time-series data which is different from the purpose what most
ML models are designed for, recognising images [32][60].

Training and documentation of the ML models are done through an online API called Weights and Bi-
ases (WandB)' which visualized and stores each training cycle. Furthermore, the models are uploaded
onto a virtual computer with a GPU provided by Paperspace?. This significantly reduces computing
times compared to a laptop CPU. The only limitation is the availability of these GPUs as they are not
always available. After training the model, the weights in the neural network can be exported and used
for various applications.

The steps taken in the data processing phase will be:
1. Collectand process the tracking data by categorising it by display type and secondary task difficulty.

2. Prepare data used to train the ML model (formatting and labelling).

3. Analyse how well the model is able to detect distractions based on secondary task difficulty.

"https://wandb.ai/site
2https://www.paperspace.com/
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Conclusion

The goal of this preliminary report is to provide a theoretical foundation for the main research phase,
which is creating a tool for detecting distractions in human pilot control tasks using machine learning.
A literature study is performed on current approaches in detecting driver distraction and task demand,
as well as anomaly detection techniques. Furthermore, results of several preliminary simulation are
presented.

First, definitions of distraction are analysed in literature. In general each definition mentions a source,
the location of the source, intentionality, process, and outcome. For the tracking task, a fitting definition
of distraction with the goal of generating data of distracted people would be:

A visual secondary task presented to the pilot at a certain angle from the display diverting the atten-
tion away from the primary tracking task resulting in an increase of error.

In current studies, researchers have approached detection of driver distraction with vision and sensor
based methods. Vision-based methods have been able to reach higher accuracies in general. However,
for the tracking tasks it is recommended use a sensor based approach. Furthermore, successful appli-
cation of machine learning models have been developed for classification problems using time-series
data obtained from tracking tasks. The main variables used to train these models are the error ¢, input
u, output x, and its respective derivatives.

Producing data of distracted people in tracking tasks for training models will require some sort of
secondary task during runs. According to the Multiple Resource Theory and research done on task
demand, the ideal secondary task would be vision based.

Data of distracted people can be considered as anomalies since it does not represent normal be-
haviour during a tracking task. And taking in mind that only limited data of distracted people is available
for this purpose. When following a supervised ML approach using data including distracted people, pos-
itive results have been obtained by training a model with the InceptionTime architecture. It is important
to keep a reasonable ratio between normal and distracted samples in the data set used for training.
And improvements in the results are also achieved by increasing the decision threshold for classifying
a sample as distracted.
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Appendix

A.1. Pursuit run (subject 5, run 7)
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Figure A.1: Detection probability of distractions for a single pursuit run (subject 5, run 7).
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Figure A.2: Detection probability and classification of distractions for a single pursuit run (subject 5, run 7).
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A.2. Varying Threshold (preview subject 5, run 7)
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Figure A.3: Detection probability and classification of distractions for a single preview run, decision threshold = 0.5 (subject 5, run
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Figure A.5: Detection probability and classification of distractions for a single preview run, decision threshold = 0.7 (subject 5, run
7).
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Figure A.6: Detection probability and classification of distractions for a single preview run, decision threshold = 0.8 (subject 5, run

7).
0 20 40

Figure A.7: Detection probability and classification of distractions for a single preview run, decision threshold = 0.9 (subject 5, run

7).
0 20 40

Figure A.8: Detection probability and classification of distractions for a single preview run, decision threshold = 0.95 (subject 5,
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A.3. Varying Threshold (pursuit subject 5, run 7)
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Figure A.9: Detection probability and classification of distractions for a single pursuit run, decision threshold = 0.5 (subject 5, run
7).
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Figure A.10: Detection probability and classification of distractions for a single pursuit run, decision threshold = 0.6 (subject 5, run
7).
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Figure A.11: Detection probability and classification of distractions for a single pursuit run, decision threshold = 0.7 (subject 5, run
7).
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Figure A.12: Detection probability and classification of distractions for a single pursuit run, decision threshold = 0.8 (subject 5, run
7).
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Figure A.13: Detection probability and classification of distractions for a single pursuit run, decision threshold = 0.9 (subject 5, run
7).
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Figure A.14: Detection probability and classification of distractions for a single pursuit run, decision threshold = 0.95 (subject 5,
run 7).
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A.4. Model Accuracy vs. Decision Threshold (Pursuit)
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Figure A.15: Model accuracy with varying decision threshold for classifying distracted samples, pursuit data.
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