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A B S T R A C T

This paper presents the development, implementation, and validation of a macro-element suitable for the linear
analysis of innovative 3D plug-and-play joints between tubular columns and lightweight steel truss-girders. The
macro-element is based on the component method, accounts for the three-dimensional interaction between the
tube faces, and its components have a clear physical meaning. Simplified procedures are developed for the
closed-form computation of the stiffness matrix of the macro-element based on the geometric and mechanical
properties of the nodal zone. This facilitates practical application in everyday design scenarios. Furthermore,
the macro-element’s architecture is implemented in the framework of OpenSees as a standalone beam-to-
column joint finite element. Validation of the conceptual design is accomplished through parametric studies,
comparing its performance with models generated in higher-order finite element commercial software, Abaqus.
This research offers a valuable resource for the linear analysis and design of innovative 3D plug-and-play joint
connections in structural engineering, enhancing efficiency and reliability in construction practices.
1. Introduction

In the framework of the Inno3DJoints project [1], an innovative
three-dimensional (3D) plug-and-play moment resistant joint (P&PJ)
was developed for modular construction systems consisting of tubular
steel columns, cold-formed lightweight steel (CFS) truss-girders, and
cross-laminated timber (CLT) slabs, as shown in Fig. 1. For clarity,
a P&PJ system with only one truss-girder attached to the column is
depicted; however, in the most general case, four truss-girders with
different depths can be connected to the column. The main objective
of the Inno3DJoints project was the development of a structural system
that facilitates easy on-site (dis)assembly and transportation, enabling
structural reuse. This innovative system was specifically designed for
low to mid-rise buildings with a minimal carbon footprint in mind
[2,3]. At its current stage, the technology readiness level (TRL) of the
system stands at 4–5, signifying a relevant stage of development.

The Inno3DJoints plug-and-play joint system is composed of two
parts that allow connecting the CFS truss-girder to the tubular column,
named socket and plug, as shown in Fig. 2(a). The socket is made of
two Z-shaped plates, cold bent, welded symmetrically to the column‘s
face, and the plug consists of two parts, the Y-fork and the T-plug, which
are welded together, as presented in Fig. 2(a). The Y-fork is adjusted to
the width of the CFS truss-girder, and the T-plug has predrilled holes
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Fig. 1. The innovative 3D plug-and-play joint (P&PJ) system: overall view.

to facilitate the positioning inside the socket. These are aligned with
the top and bottom chords of the CFS truss-girder, and thus, the main
internal force applied on the joint by the CFS truss-girder is the axial
force acting along the longitudinal axis of the chords.

During the fabrication process in the steel workshop, the T-plug and
the Y-fork are welded to each other, the Y-fork is connected to the CFS
truss-girder by a simple bolted lap joint, and the socket is welded to
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Fig. 2. The innovative 3D plug-and-play joint system: socket and plug.
the column, as shown in Fig. 2(a). This joint configuration allows for
an easy assembly, as illustrated in Fig. 2(b), following these sequential
steps [3,4]:

1. the columns with the sockets previously welded to them are
placed in position;

2. the T-plug (with the CFS truss-girders attached to it) is in-
serted vertically, i.e. descending movement, in the existing gap
between the two pieces of the socket;

3. the T-plug and socket are bolted together;
4. the CLT slab is positioned and fastened to the CFS truss-girders.

Alternatively, the CFS truss-girders could be connected to the CLT
slab after the first step. Then, this entire system is inserted vertically
in position and bolted to the column — this reduces the construction
site hazards and increases the offsite prefabrication but could lead to
higher transportation costs.

In this paper, a mechanical model based on the component method
for the P&PJ system, compatible with Eurocode 3, Part 1-8 [5], is
presented and validated. Moreover, the model is used to derive a novel
macro-element that incorporates the 3D behaviour of tubular columns.
Subsequently, this macro-element is utilised to create a dedicated finite
element for beam-to-column P&PJ configurations. This finite element
is designed to facilitate the analysis and design of P&PJ systems within
the linear regime, specifically tailored for everyday design purposes.
Finally, this macro-element is implemented in OpenSees [6,7] as a
standalone beam-to-column joint finite element. For enhanced read-
ability of the work presented in this paper, a flowchart illustrating the
relationship between the analytical and finite element models and their
corresponding sections in the article is provided in Appendix D

2. State-of-the-art

2.1. Component method

The component method [8] is a simple, intuitive and versatile
procedure that evaluates the mechanical properties of the joints by
considering the diversity of the structural systems that result from
various load configurations, including static, dynamic and fire actions.
The originality of the component method is that it considers any joint
2

as a set of individual basic components that represent the effect of a
stress resultant in a physical portion of the joint.

The component method can be applied with different degrees of
refinement, ranging from dimensionless 0D lumped elements rotational
springs or linear springs to 3D complex macro-elements [9–13] and
different structural materials [14–16]. Nowadays, it is widely accepted
by the design community due to its implementation in EN 1993-1-8 [1].

The component method relies on three steps [17]:

1. identification of the basic components or simply components,
i.e. the pairs part of the joint and internal forces that are relevant
to one, or more, mechanical properties of the joint, namely
strength, stiffness or ductility;

2. characterisation of the intrinsic behaviour of each component,
e.g., the force deformation of each part of the joint;

3. assembly of the components, i.e. the definition of the spatial
arrangement and connectivity of the components.

The output of the component method is a mechanical model, i.e. a
macro-element model, that simulates the behaviour of the joint under
the stress fields for which it was developed. However, for ease of
implementation, some simplifications are usually taken. For example,
instead of a macro-element model, a lumped model is considered where
the behaviour of the joint is accounted for through rotational 0D
elements positioned at the beams’ ends.

Therefore, to achieve a higher degree of consistency between the
classical design procedure for traditional beam-to-column steel joints
and the P&PJ system, a macro-element that follows the component
method is developed for the design and analysis of the P&PJ system
proposed in the Inno3DJoints project [1].

2.2. Macro-element modelling approach

The macro-element modelling technique of beam-to-column joints
has gained significant attention in recent years due to its ability to
analyse the joint independently from the connecting members in a
structure. This technique is commonly used in connections between
steel members with I/H cross-sections. In these connections, the be-
haviour of the joint is not represented by rotational 0D elements at the
ends of the beams but rather is explicitly modelled using a system of
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multiple 0D elements and rigid links, each representing a specific com-
ponent with its own model. As a result, the multiple joints, connections,
and web panel are treated together in a single joint macro-element.

Several authors have applied this technique. For example, Bayo
et al. [18–22] devised multiple 2D macro-elements for internal and
external semi-rigid joints between I/H elements using finite-sized de-
formable beam elements for global analysis of frames. Similarly, Costa
et al. [23] formulated two-dimensional macro-element models for joints
with equal and unequal beam depths between I/H elements using
lumped 0D linear elements combined with rigid links, which Simões
da Silva et al. [13] expanded to 3D joints.

Harada and Simões da Silva have conducted extensive research on
the modelling of I/H beam-to-tubular column joints without diaphragm
plates [24–26]. They introduced a new joint component called the
cross-section component, which represents the local deformation of the
rectangular hollow section (RHS) in the beam-to-column joint region.
The behaviour of the joint in this region is complex because the out-of-
plane behaviour of the column plates is interdependent. Additionally,
they developed and validated a macro-element that includes the new
cross-section component for 3D joints. The macro-element was able to
accurately reproduce the interaction between the four column plates in
I/H beam-to-RHS column joints under various loading configurations,
particularly when the joint behaviour was nonlinear.

2.3. Existing beam-to-column joint finite elements

Although the macro-element modelling technique is frequently used
by researchers, their conceptual macro-elements are rarely imple-
mented as joint finite elements in finite element software. This lim-
itation hinders their utilisation for global analysis of structures and
restricts their accessibility to a broader community of users.

For example, the joint element library of the OpenSees [27] has only
four joint finite elements:

1. a beam-to-column joint model for simulating the earthquake
response of reinforced concrete frames in 2D nonlinear analy-
sis [28,29];

2. a beam-to-column joint for simulation and damage models for
performance assessment of reinforced concrete joints in 2D and
3D, under cyclic loading, with the capability of integrating both
geometric and material nonlinearities [30];

3. a 2D planar panel zone element [31], whose analytical formu-
lation is also implemented in HybridFEM software and used for
dynamic time history analysis of 2D inelastic framed structures
and real-time hybrid simulation [32];

4. a 2D elastic tubular joint that incorporates the effects of the
joint’s flexibility to produce a more realistic response for offshore
structures [33].

However, the joint element library of OpenSees can be consid-
ered extensive when compared to other commercial finite element
software [34–37], as it includes several finite elements for modelling
beam-to-column nodes. In conclusion, there is a need to create and
utilise joint finite elements, particularly for steel and steel-concrete
composite beam-to-column joints and for 3D applications.

3. Macro-modelling of P&PJ systems with one CFS truss-girder

The application of the component method to the Inno3DJoints
project [38] resulted in a mechanical model that enables smooth anal-
ysis and design of structures built with the P&PJ system. The relevant
components for the simplest P&PJ configuration, in which only one
truss-girder is connected to the column, are shown in Fig. 3. Addition-
ally, Fig. 3 shows the component model for a joint whose mechanical
properties can be found in [38] – the components of this model can
3

Fig. 3. Component model for a P&PJ with one truss-girder: top view (left), side view
(top right) and simplified representation of the component model (bottom left).
Source: Adapted from [39].

easily be lumped into a single 0D element, i.e. a linear spring, as
follows:

1
𝑘lumped

=
∑ 1

𝑘𝑖
(1)

where 𝑘𝑖 is the stiffness of each component [39]. The strength of
the lumped 0D element, 𝑓lumped, is the minimum strength of all the
components, thus:

𝑓lumped = min
(

𝑓𝑖
)

(2)

where 𝑓𝑖 is the strength of each component [39].
In P&PJ configurations with multiple CFS truss-girders connected to

the column, the determination of the stiffness and strength of the tube
components relies on the simultaneous application of forces on all tube
faces. This necessity arises from the achievement of a 3D interaction
between the column faces, which is demonstrated by both experimental
findings and numerical investigations [25,26,40].

Hereinafter, the relevant components of the P&PJ system are clas-
sified into two categories: connection components and tube components.
The connection components describe the mechanical behaviour of the
column side wall, welds, socket, bolts, plug, and CFS truss-girder’s ends,
while the tube component represents the mechanical behaviour of the
tube faces and their interaction.

4. Macro-element development for 3D interaction

4.1. Column macro-element concept

In terms of individual components, the difference between configu-
rations with one or more truss-girders connected to the column is that,
in the latter case, the tube components are treated separately and not
included in the arrangement shown in Fig. 3.

The 3D interaction between the column faces is accounted for
using a macro-element approach. To consider both bending and shear
deformation of the column segment between the two joints and/or to
analyse truss-girders with different depths, it was found more suitable
to model each joint independently with separate macro-elements, as
shown in Fig. 4(a). Finally, the behaviour of the tube components is
described by the mechanical model shown in Fig. 4(b), but without the
inclusion of the connection components, and referred to as the column
macro-element (CME).
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Fig. 4. Macro-element modelling approach of the P&PJ system.
Fig. 5. Definition of the stiffness of the tube components.
The CME has two types of components: the face component (F) and
the interaction component (I). The physical meaning of these compo-
nents can be understood through the definition of their stiffness for a
generic column face, i.e. face A, shown in Fig. 5:

• face component’s stiffness (𝑘F) – the force that produces a unitary
outward out-of-plane displacement on face A, when simultane-
ously unitary inward out-of-plane displacements are imposed on
the adjacent faces, i.e. on faces B and D in Fig. 5(b);

• interaction component’s stiffness (𝑘I) – the force that keeps null
the out-of-plane displacements on two parallel faces, e.g. faces
B and D in Fig. 5(c), while a unitary out-of-plane displacement
is imposed on the analysed face of the tube, i.e. on face A of
Fig. 5(c).

Based on this definition, it can be seen that a square cross-section
requires only one type of face component, 𝑘F, because all tube faces
have the same length. However, the rectangular cross-section has two
different face lengths, requiring the use of two types of face compo-
nents: 𝑘F.L1 and 𝑘F.L2. On the other hand, only one type of interaction
component, 𝑘I, is needed for both cross-sections.

4.2. Column macro-element validation

4.2.1. General procedure
To validate the concept of the CME, the following steps were taken:

1. computation of the stiffness of the tube components using an
higher-order finite element model; in this case, Abaqus [34] was
4

used and the resulting model is referred to as the refined finite
element model (RFEM);

2. assembling of the stiffness matrix for the CME model;
3. selection of a load pattern (LP);
4. computation of the out-of-plane displacements of the column

faces for the selected LP using the RFEM;
5. computation of the out-of-plane displacements of the column

faces for the selected LP using the CME model;
6. comparison of the results between models (RFE vs. CME) –

ideally, they should be identical or within an acceptable range
of error.

Following the notations of the column faces from Fig. 5, the stiffness
of the face components for faces A and C, and B and D becomes 𝑘AC

F
and 𝑘BD

F , respectively. The stiffness of the interaction component is
denoted as 𝑘I. For the set of coordinates represented in Fig. 4(b), the
out-of-plane displacements, 𝐔CME, of the column faces are:

𝐔CME =
[

𝑈I 𝑈II 𝑈III 𝑈IV
]𝑇 (3)

To remove the rigid body movements of the CME, it was assumed
that node 5 (Fig. 4(b)) is fixed; thus, the stiffness matrix for the
beam-to-column joint in this specific case is:

𝐊CME =

⎡

⎢

⎢

⎢

⎢

⎢

𝑘AC
F + 2 × 𝑘I 𝑘I 0 𝑘I

𝑘I 𝑘BD
F + 2 × 𝑘I 𝑘I 0

0 𝑘I 𝑘AC
F + 2 × 𝑘I 𝑘I

BD

⎤

⎥

⎥

⎥

⎥

⎥

(4)
⎣
𝑘I 0 𝑘I 𝑘F + 2 × 𝑘I⎦
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Fig. 6. Schematic representation of the Abaqus models.

Fig. 7. Geometric properties.

For a random LP, the applied forces, 𝐏CME, are:

𝐏CME =
[

𝑃I 𝑃II 𝑃III 𝑃IV
]𝑇 (5)

Therefore, the out-of-plane displacements of the column faces,
𝐔CME, become:

𝐔CME = 𝐊−1
CME ⋅ 𝐏CME (6)

4.2.2. Numerical models
The conceptual validation of the CME for the P&PJ system was

conducted using computational models developed within the Abaqus
software framework [34].

While conventional practice typically involves the creation of com-
plete finite element models (CFEMs) encompassing a comprehensive
representation of all system components, including the column, socket,
T-plug, bolts, and welds, a deliberate departure from this standard ap-
proach was undertaken in favour of constructing the most streamlined
and refined finite element models (RFEMs) feasible.

This modified approach resulted in the construction of models
representing the column and the two specific regions corresponding to
the contact interface between the socket and the column, referred to as
socket faces, as represented in Fig. 6(b).

The decision to adopt this approach was driven by the substan-
tial computational time demands associated with CFEMs, which were
necessitated by the comprehensive analysis outlined in Section 6. Fur-
ther details explaining the rationale behind this simplification will be
provided later in this section.

It is important to note that the modelling effort concentrated ex-
clusively on a single joint, specifically the top chord or ‘Joint 1’, as
depicted in Fig. 4(a).

Refined Finite Element Models (RFEMs) The specimens chosen for con-
cept validation featured a square hollow section (SHS) column with
dimensions as shown in Fig. 7(a) and a height of 3000mm. The col-
umn material followed a linear-elastic constitutive relation defined by
Young’s modulus, 𝐸 = 210GPa, and Poisson’s ratio, 𝜈 = 0.3 [41].

The column part was built with solid brick elements employing re-
duced integration (C3D8R), whereas the socket faces are represented by
5

shell discrete rigid elements (R3D4). In compliance with the software
requirements, a reference point (RP) is defined at the centre of the
socket faces, as depicted in Fig. 6(b) with 𝑖 denoting the identifier for
the column face. It is noteworthy that the motion of the rigid body is
solely governed by this RP, thereby ensuring uniform translation and
rotational behaviour for all points situated on the socket faces.

The solid and shell elements are linked using a surface-to-surface
tie kinematic constraint, effectively preventing any relative motion
between these two surfaces.

The column part exhibits rounded corners, with a fully-fixed bound-
ary condition applied to mid-rounding nodes along its height to pre-
vent rigid body motions. Additionally, in-plane rotation of the RP is
restrained.

The forces and displacements simulating the demands coming from
the socket are assigned to the RPs.

In the proximity of the joint, at a distance equal to the socket’s
height, the column’s mesh size is maintained at approximately 5mm.
Beyond this region, a single, biased mesh strategy is applied to the
column’s edges, resulting in a gradual transition from 5mm at the joint
region to 50mm at the column’s ends. The mesh assignment is shown
in Fig. 8. Additionally, to prevent shear locking, four elements along
the thickness of the column were considered.

The main characteristics of the RFEMs outlined above result from a
series of parametric studies involving mesh, geometry, and boundary
conditions, detailed in the subsequent section. These studies aimed
to achieve mesh-independent results and ensure the local behaviour
of the tube within the joint region remained unaffected by boundary
conditions, mesh size, and column height variations. These calculations
were performed for LP ‘01’ from Fig. C.1 – and a socket configuration
with 𝐿𝑆𝐶 = 20mm (Fig. 7(b)). It is noteworthy that although the
parametric studies focused on SHS, their conclusions are applicable to
RHS as well.

The generation of RFEMs using Abaqus, as exemplified earlier
and employed in this research, can be easily accomplished using the
‘abqTCphd’ Abaqus RSG plug-in [42] developed in Python [43]. This
plug-in comprises five modules, namely geometry, material, mesh, load,
analysis, and job, providing a comprehensive set of parameterisation
capabilities. Consequently, users are empowered to fully customise
and adjust various aspects of the simulation process. Furthermore,
comprehensive video tutorials are available on YouTube, covering the
processes of downloading and installing the plug-in [44], as well as
generating models using it [45].

The influence of mesh size on the results was investigated by testing
three mesh sizes (10.0mm, 5.0mm and 2.5mm) for the column.

The out-of-plane displacements of the loaded column face along the
symmetry longitudinal section (‘H1’) and a symmetry transversal cross-
section (‘W0’) of the column for the considered mesh sizes are shown
in Figs. 9(a) and 9(b), respectively. Notably, both ‘H1’ and ‘W0’ exhibit
identical, mesh-independent results for mesh sizes of 5.0mm (‘m 5.0’)
and 2.5mm (‘m 2.5’). Consequently, a mesh size of 5.0mm is determined
as the upper limit for the uniform mesh configuration.

Nevertheless, an exploration into variations in mesh size along the
column’s height was undertaken by implementing localised seed and
bias parameters, aiming to reduce the total number of finite elements
and computational demands. Consequently, the mesh size was set
to 5.0mm in the joint region and progressively increased to 50.0mm
towards the column’s extremities (‘m 5.0 w/ bias’). As it can be seen
in Fig. 9 this model with biases and seeds (‘m 5.0 w/ bias’) provides
the same results when compared to the uniform mesh model (‘m 5.0’).
Therefore, ‘m 5.0 w/ bias’ is established as the final adopted mesh
configuration for the column in this study, as further detailed in Fig. 8.

A preliminary investigation conducted using simplified cross-section
models indicated that the deformation of the column’s cross-sections,
due to out-of-plane forces applied to the column faces, results in
negligible displacements at the external corners of the tubes. Conse-
quently, a method to distinguish between the displacements caused by
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Fig. 8. Tubular columns: mesh assignment.
Fig. 9. Column out-of-plane deformation under different uniform mesh sizes.
Fig. 10. BC and rounded corners analysis: cross-sectional view of the column.

cross-sectional deformation and the rigid body displacements of these
cross-sections in the FE models is to apply displacement constraints to
the nodes located at the external corners of the columns. However, it
is imperative to acknowledge that the considered tubes have rounded
corners, a characteristic inherent to their cold-bending manufacturing
process. The objective of this investigation was to ascertain the mag-
nitude of deformation in tube cross-sections induced by out-of-plane
forces on column faces and formulate approaches for confining these
displacements within the FE models, considering the rounded corners
of the tubes.

Three models were developed, one with straight corners (‘w/o RC
- pt’) and the other two with rounded corners. The presence of the
rounded corners introduced ambiguity in the application of boundary
conditions. To prevent rigid body movement of the cross-section and
maintain other deformation modes, fixed boundary conditions were
tested in two distinct regions: (i) along the edges of the rounded corners
(‘w/ RC - ln’) and (ii) at the mid-rounding nodes (‘w/ RC - pt H’). These
three distinct boundary condition scenarios were applied uniformly
across the entire height of the column and are visually represented at
the cross-sectional level in Fig. 10.

The overall deformation of the cross-sections is shown in Fig. 11 for
all three models. Fig. 11(b) demonstrates that by constraining the entire
rounded corner’s region, the interaction between the column faces is
prevented, causing the column faces to behave like four independently
loaded plates rather than a tubular cross-section. As a result, RFEMs
with this type of boundary condition were not considered further in
this work.
6

Fig. 11. BC and rounded corners analysis: deformed shape (U magnitude) in section
W0.

The comparison between Figs. 11(a) and 11(c) shows that the
inclusion of rounded corners has a notable impact on the displace-
ments in the loaded column face and, thus, should be considered
when conducting further analysis. Specifically, it was found that there
was a 7.96% increase in displacement on the loaded face, which also
had a ripple effect on the adjacent faces. However, the RFEM with
straight corners (Fig. 11(a)) presents excessive local distortion in the
proximity of the corners. This phenomenon results from using finite
elements with a reduced integration scheme combined with the type
and position of the applied boundary condition. As suggested by the
software’s manual [34], a potential solution to this problem is the use
of finite elements with hybrid formulation, e.g., C3D8H. Nevertheless,
the model with straight corners is not used beyond this paper section.
Therefore, the geometry and BC application of the model ‘w/ RC - pt
H’ (Fig. 10(c)) represents the adopted final configuration.

Furthermore, to evaluate the effectiveness of the ‘w/ RC - pt H’
model in preventing rigid body movement while preserving the cross-
sectional deformation modes, a new model, ‘w/ RC - pt E’, was created.
In this new model, the displacement restrictions are applied solely to
the nodes at the column’s ends. Fig. 12 illustrates the 3D deformed
shapes of the full models, while Fig. 13 displays the deformations of
their cross-sections in the ‘W0’ section in 2D.

To compare the deformation shapes of the cross-sections in ‘w/ RC -
pt H’ and ‘w/ RC - pt E’ models, the rigid body movement component of
the cross-section was subtracted from the latter model. The deformed
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Fig. 12. BC analysis: deformed shape (U magnitude) in 3D.
Fig. 13. BC analysis: deformed shape (U magnitude) in 2D in section ‘W0’.
Fig. 14. CFMEs: assembly (top view); socket (left - side view, right - top view); T-plug
(left - side view, right - top view) and bolt (side view).

shapes of the cross-sections in both models, ‘w/ RC - pt H’ and ‘w/
RC - pt E’, after eliminating the rigid body component, are depicted
in Fig. 13(c). Since identical results are obtained from both models,
the final adopted boundary condition type is ‘w/ RC - pt H’ because it
requires less mathematical manipulation.

Complete Finite Element Models (CFEMs) To ensure that the previ-
ously presented refined finite element models (RFEMs) yield good
results, complete finite element models (CFEMs) were created based
on the models developed for the numerical calibration and study of
the behaviour of the P&PJ components [4].

These models are highly complex because, in addition to the col-
umn, they include all the other parts of the joint, which are modelled
independently: socket, weld, T-plug, and two bolts. For clarification,
a schematic representation of both types of solid elements FE models,
i.e. CFEMs and RFEMs, is depicted in Fig. 6.

The weld in the CFEMs was confined to the external surface of
the socket, aligning with the real-world scenario where welding was
feasible exclusively from one side. The length of the weld was computed
as 𝑙𝑤 = 0.7 × min(𝑡𝐶 , 𝑡𝑆 ), where 𝑡𝐶 and 𝑡𝑆 denote the respective
thicknesses of the column and socket. The geometry of the weld, socket,
T-plug and bolts is shown in Fig. 14. The height of the column is
3000mm.
7

All the joint components were modelled using C3D8R finite ele-
ments, with the mesh configuration for the column shown in Fig. 8. For
the weld, bolts, socket, and T-plug, a meshing strategy was established
through a mesh sensitivity study, in which mesh sizes of 2.5mm and
5.0mm were tested. Since both mesh sizes yielded identical results, a
mesh size of 5.0mm was subsequently employed in this study.

The FE models incorporate a general contact formulation, with the
selection of hard contact for normal behaviour and a friction coefficient
of 0.2 [46] applied to tangential behaviour. The contact interactions
involving the socket and column, as well as the weld, socket, and
column, are established by employing tie constraints.

A reference point (RP) was defined at the T-plug’s end, as illus-
trated in Fig. 6(a), and connected to all surface nodes through a
multi-point constraint (MPC). This RP was used to apply out-of-plane
loads/displacements to the column faces, with all its remaining degrees
of freedom (DOFs) constrained.

The column’s boundary conditions match those used for the RFEMs
(Fig. 10(c)).

The preloading of the bolts required a four-step analysis [47], as fol-
lows: (i) Initial Step: In this stage, boundary conditions and interaction
definitions were established; (ii) Step 1: Initially, the bolt was preloaded
with a small value to initiate contact element activation; (iii) Step 2:
Subsequently, the bolt underwent preloading with the actual prescribed
value; and (iv) Step 3: Finally, the bolt was fixed at its current length,
and external load was applied.

Validation of the RFEMs The significance of tube face deformation was
crucial for the comprehensive assessment of overall joint deformation
and was the key parameter considered.

The FE models used to assess the results of the RFEMs considered
various thicknesses of the tubular column face, denoted as 𝑡𝐶 (i.e. 10,
8, 6, and 4 mm), and two joint configurations: one beam corresponding
to the LP ‘01’, and two beams corresponding to the LP ‘02 CV’. The LPs
are presented in Fig. C.1.

In the RFEMs, the out-of-plane displacements of the column faces
were obtained from the reference points (RP𝑖, where 𝑖 represents the
specific face designation - Fig. 6(b)) defined on the socket faces. Con-
versely, the CFEMs employed an average displacement value calculated
from points situated at the external intersection between the socket and
the column (P𝑖 - Fig. 15), wherein P𝑖 = (P𝑖−1 + P𝑖−2)∕2,
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Fig. 15. Points locations on the column for out-of-plane displacement measurement.

Table 1
Results validation: RFEMs vs. CFEMs with 1 beam [mm].
𝑡𝐶 RFEMs CFEMs 𝜀1

RP1 P1

10 −4.27 −4.55 6.20
8 −8.79 −9.30 5.46
6 −19.28 −20.37 5.32
4 −44.48 −48.53 8.35

Table 2
Results validation: RFEMs vs. CFEMs with 2 beams [mm].
𝑡𝐶 RFEMs CFEMs 𝜀1 𝜀2

RP1 RP2 P1 P2

10 −2.84 2.84 −3.01 3.01 5.58 5.58
8 −5.25 5.25 −5.58 5.58 6.07 6.07
6 −11.62 11.62 −12.37 12.37 6.04 6.04
4 −33.37 33.37 −34.75 34.75 3.95 3.97

Table 3
Tube components stiffness [kN∕m].

SC 𝐿SC [mm] 𝑘AC
F 𝑘BD

F 𝑘I

01 20 62.33 10.87 12.58
02 40 78.74 9.97 15.96
03 90 187.32 0.75 34.27

The differences between RFEMs and CFEMs results were quantified
using 𝜀𝑖 as defined in Eq. (7).

𝜀𝑖 =
P𝑖 − RP𝑖

P𝑖 × 100 (7)

Analysis of the results in Tables 1 and 2 revealed that for config-
urations with one beam, the discrepancy between RFEMs and CFEMs
fell within the range of 5.32% to 8.35%, and for configurations with
two beams, it varied from 3.95% to 6.07%. These error ranges are
considered acceptable, supporting the use of RFEMs as an alternative
to CFEMs.

4.2.3. Validation of the CME using RFEMs
The validation employed three simplified RFEMs, featuring a rectan-

gular hollow section (RHS) as depicted in Fig. 7(a). These RFEMs were
distinguished by distinct socket configurations (SCs), primarily defined
by the variable distance between the socket faces, 𝐿SC (Fig. 7(b)). Of
significance is the fact that all column faces shared the same SC. The
SC naming, the distance between the sockets and the stiffness of the
column components obtained from RFEMs using the procedure from
Section 4.1 are presented in Table 3.

To validate the concept of the CME, three LPs were used: ‘02 CV’,
‘03 V01’, and ‘04 H’, from Fig. C.2. These LPs respectively represent
the effects in the top chord joint of gravity loads on a corner joint, the
effects of gravity loads on an external joint, and the effects of horizontal
loads on an internal joint. Each LP was assigned a dummy value of
𝑃 = 1.000 kN.

The out-of-plane displacements of each tube face are presented in
Table 4 for both RFEMs and CME across all SC and LP cases. The table
also displays relative errors, 𝜀𝑗 (where 𝑗 represents the column face
designation, i.e. I, II, III, or IV), as defined by Eq. (8). These relative
8

errors are consistently low, primarily originating from deformation
modes not considered by the CME model. This suggests that the CME
can effectively account for the 3D interaction between the column
faces.

𝜀𝑗 =
𝑈RFE − 𝑈CME

𝑈RFE
× 100 (8)

4.3. Extended macro-element

The usability of the macro-element (Fig. 4(b)) was extended and
integrated into a beam-to-column joint finite element that considers both
tube and connection components. The new joint finite element was
developed to allow modelling other types of loads and deformations
not accounted for explicitly, e.g., the transversal deformation and
rotation in each connection. Accordingly, in addition to the macro-
element shown in Fig. 4(b), the beam-to-column joint finite element
also includes 3D springs with six DOFs, corresponding to three linear
springs and three rotational springs, enabling the modelling of any
desired behaviour for the connection. The beam-to-column joint finite
element is depicted in Fig. 16.

5. Beam-to-column joint finite element formulation

5.1. Overview

The beam-to-column joint finite element has the following main
characteristics:

• five external nodes (1 to 5) with six DOFs each (DOF 1 to DOF 30),
which are compatible with traditional 1D frame elements used to
model columns and truss-girders where:

– nodes 1 to 4 connect the chords of the CFS truss-girders to
the column;

– node 5 connects the column;

• four internal nodes with one DOF each (iDOF 1 to iDOF 4), which
are required to create a kinematically determined element;

• thirty-two components represented by 0D elements, as described
in Table 5, where XYZ refers to the coordinate system used for
the implementation of the element, as seen in Fig. 16.

5.2. Mathematical formulation

For a first-order analysis and a linear elastic behaviour assigned to
the joint finite element’s components (Fig. 16), the equilibrium relation
between nodal forces and internal forces in the components can be
expressed as:

𝐟 = 𝐁 ⋅ 𝐏 (9)

where 𝐟 (32 × 1), 𝐁(32 × 34), and 𝐏(34 × 1) are the vector of internal
forces in components, equilibrium matrix, and vector of nodal forces,
respectively. Accordingly,

𝐟 =
[

𝑓1 ... 𝑓32
]𝑇 (10)

where 𝑓𝑖 is the internal force in component 𝑖, and

𝐏 =
[

𝑃ext,1 ... 𝑃ext,30 𝑃int,1 ... 𝑃int,4
]𝑇 (11)

where 𝑃ext,𝑖 and 𝑃int,𝑗 are the nodal force in external DOF 𝑖 and nodal
force in internal DOF 𝑗, respectively.

The linearised compatibility relation between the deformations in
the components and the nodal displacements can be expressed as:

∆ = 𝐀 ⋅ 𝐔 (12)
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Table 4
Results validation: RFE vs. CME [mm].
LP SC RFE (Abaqus) CME (column macro-element) 𝜀𝑗

𝑈I 𝑈II 𝑈III 𝑈IV 𝑈I 𝑈II 𝑈III 𝑈IV 𝜀I 𝜀II 𝜀III 𝜀IV

01
01 3.661 26.152 7.914 1.494 3.557 26.241 7.871 1.506 2.84 −0.34 0.55 −0.79
02 3.216 22.743 5.935 1.047 3.140 22.826 5.898 1.051 2.38 −0.36 0.63 −0.31
03 1.959 14.324 2.015 0.088 1.925 14.404 1.983 0.028 1.72 −0.56 1.61 67.52

02
01 −9.204 21.201 9.204 6.446 −9.308 21.247 9.308 6.500 −1.13 −0.21 −1.13 −0.85
02 −7.091 18.370 7.091 5.420 −7.170 18.413 7.170 5.463 −1.11 −0.24 −1.11 −0.79
03 −2.646 11.734 2.646 2.677 −2.687 11.774 2.687 2.658 −1.56 −0.34 −1.56 0.71

03
01 11.576 27.647 11.576 27.647 11.429 27.747 11.429 27.747 1.27 −0.36 1.27 −0.36
02 9.151 23.790 9.151 23.790 9.037 23.876 9.037 23.876 1.24 −0.36 1.24 −0.36
03 3.975 14.412 3.975 14.412 3.908 14.432 3.908 14.432 1.66 −0.14 1.66 −0.14
Fig. 16. Extended macro-element: beam-to-column joint finite element.
e

c

Table 5
Components deformations direction in the local coordinate system of the element.

Components Deformation mode

1, 7, 13, 19, 26, 28 Linear deformation in X direction
2, 8, 14, 20 Linear deformation in Y direction
3, 9, 15, 21, 25, 27 Linear deformation in Z direction
29, 30, 31, 32 Linear deformation in ZX plane
4, 10, 16, 22 Angular deformation after X axis
5, 11, 17, 23 Angular deformation after Y axis
6, 12, 18, 24 Angular deformation after Z axis

where ∆(32×1), 𝐀(32×34), and 𝐔(34×1) are the vector of deformation in
components, compatibility matrix, and vector of nodal displacements,
respectively. Therefore,

∆ =
[

𝛥1 ... 𝛥32
]𝑇 (13)

=
[

𝑈ext,1 ... 𝑈ext,30 𝑈int,1 ... 𝑈int,4
]𝑇 (14)

here 𝛥𝑙 is the deformation in component 𝑙, and 𝑈ext,𝑖 and 𝑈int,𝑗 are
he generalised displacement in external DOF 𝑖, and the displacement
n internal DOF 𝑗, respectively.

Each row 𝑖 of the compatibility matrix 𝐀 shows the deformation in
he components when a unitary generalised displacement is assigned
o DOF 𝑖, while the other DOFs are kept null, e.g., element 𝑎𝑖𝑗 is the
eformation in component 𝑖 when a unitary generalised displacement
s assigned to DOF 𝑗, while the other DOFs are kept null.

The following sign convention is used to compute the deformations
9

n components:
• axial deformation components — positive for elongation and
negative for shortening;

• shear deformation components — positive according to the sign
convention from the strength of materials, assuming that the 0D
element is oriented according to the local reference axis parallel
to it;

• bending deformation components — positive according to the
sign convention from the strength of materials assuming that
the 0D element is oriented according to the local reference axis
parallel to it;

• torsion deformation components — positive if, according to the
right-hand rule, the rotation vector points outward from the
component and negative if it points inward.

In order to make the reading and writing process of this document
asier, only the non-zero elements of the compatibility matrix, 𝐀, of the

proposed joint finite element (Fig. 16) are included in Table 6.
Finally, the constitutive relation of the components can be written

as:

𝐟 = 𝐤j ⋅∆ (15)

where 𝐤j(32 × 32) is a diagonal matrix with 𝑘j(𝑖, 𝑖) being the stiffness of
omponent 𝑘.

In the scope of small deformations, the dual relation between com-
patibility and equilibrium leads to the following:

𝐏 = 𝐀𝑇 ⋅ 𝐟 (16)

By introducing Eqs. (12) and (15) into Eq. (16), the vector of
external forces becomes:

𝐏 = 𝐀𝑇 ⋅ 𝐤 ⋅ 𝐀 ⋅ 𝐔 = 𝐊 ⋅ 𝐔 (17)
j j
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Table 6
The non-zero elements of the compatibility matrix 𝐀.

Value Elements of compatibility matrix 𝐀

1 𝑎1,1; 𝑎2,2; 𝑎3,3; 𝑎5,5; 𝑎6,6; 𝑎7,7; 𝑎9,9; 𝑎10,10; 𝑎11,11; 𝑎12,12; 𝑎16,16; 𝑎20,20; 𝑎8,26; 𝑎13,25; 𝑎14,26; 𝑎16,28; 𝑎17,29; 𝑎18,30; 𝑎21,27; 𝑎22,28; 𝑎23,29; 𝑎24,30; 𝑎15,33; 𝑎19,34; 𝑎25,31; 𝑎26,32;
𝑎27,27; 𝑎28,25; 𝑎29,25; 𝑎31,25; 𝑎31,27; 𝑎32,27; 𝑎29,31; 𝑎32,32

−1 𝑎4,4; 𝑎8,8; 𝑎13,13; 𝑎14,14; 𝑎15,15; 𝑎17,17; 𝑎18,18; 𝑎19,19; 𝑎21,21; 𝑎22,22; 𝑎23,23; 𝑎24,24; 𝑎1,25; 𝑎2,26; 𝑎4,28; 𝑎5,29; 𝑎6,30; 𝑎9,27; 𝑎10,28; 𝑎11,29; 𝑎12,30; 𝑎20,26; 𝑎25,27; 𝑎26,25; 𝑎3,31; 𝑎7,32;
𝑎29,27; 𝑎30,25; 𝑎30,27; 𝑎32,25; 𝑎27,33; 𝑎28,34; 𝑎29,34; 𝑎31,33; 𝑎31,34; 𝑎32,33

0.5 ⋅ 𝑑𝑐𝑋 𝑎8,30; 𝑎9,29; 𝑎20,30; 𝑎21,29
0.5 ⋅ 𝑑𝑐𝑍 𝑎2,28; 𝑎14,28
−0.5 ⋅ 𝑑𝑐𝑍 𝑎1,29; 𝑎13,29
f
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Fig. 17. Class diagram for the beam-to-column joint finite elements.

from which the stiffness matrix 𝐊j(34×34) of the joint finite element is
btained:

j = 𝐀𝑇 ⋅ 𝐤j ⋅ 𝐀 (18)

Since no external forces will be considered in the internal DOFs, the
stiffness matrix 𝐊j can be statically condensed to be explicitly expressed
in terms of the displacements of the external nodes. Therefore, the
vector of nodal forces (Eq. (11)) and vector of nodal displacements
(Eq. (14)) are split into 2 sub-vectors as follows:

𝐏 =
[

𝐏ext 𝐏int
]𝑇 (19)

𝐔 =
[

𝐔ext 𝐔int
]𝑇 (20)

where 𝐏ext and 𝐔ext are (30 × 1), while 𝐏int and 𝐔int are (4 × 1).
Therefore, Eq. (17) yields into:

𝐊j 𝐔 =
[

𝐊ext 𝐊ie
𝐊ei 𝐊int

] [

𝐔ext
𝐔int

]

(21)

where 𝐊ext is (30 × 30), 𝐊int is (4 × 4), 𝐊ie is (30 × 4) and 𝐊ei is (4 × 30),
rom which the condensed stiffness matrix, 𝐊cond

j (30 × 30), is derived:

cond
j = 𝐊ext −𝐊ie ⋅

(

𝐊int
)−1

⋅𝐊ei (22)

5.3. Implementation in OpenSees

The proposed beam-to-column joint finite element is implemented
in the architecture of OpenSees as the Inno3DPnPJoint Class [48], as
presented in Fig. 17. The detailed implementation and the list of meth-
ods comprising the Inno3DPnPJoint Class is provided in Appendix A.
Additionally, the user manual for the joint finite element is given
in Appendix B.

6. Tube components stiffness

6.1. Equivalent frame-models

The mechanical properties of the components of the P&PJ are
computed using some of the already available models in the Eurocode
3, Part 1-8 [5] in conjunction with other models for stiffness developed
in the scope of Inno3Djoints project [39].

Although the stiffness of the tube components (𝑘F and 𝑘I) can
be computed using higher-order finite element models, as shown in
10
Section 4.2, or derived from experimental results, these procedures are
time-consuming and impractical for design purposes, thus the need for
more straightforward methods.

Since a simple and straightforward procedure is desired for the
computation of the stiffness of the components, equivalent frame-models
(EFM) are used, also known in the research field of tubular structures as
ring model [26,49]. The EFM are an attractive procedure because they
allow for defining the stiffness of the components analytically.

The basic principle behind the EFM is to represent the behaviour of
a tubular column in the beam-to-column joint region using a planar
frame-model composed of Euler–Bernoulli elements representing the
tube faces at the cross-section level. The forces and deformations on
the tube faces, which originate from the beam/truss-girder elements
of the structure, are represented by forces and displacements in the
spans of the frame-elements. In these EFM, the frame-elements are fully
connected at their ends, i.e. in the corners, to account for the inter-
action between the tube faces. The frame-model has pinned supports
at the four corners; thus, the cross-section’s overall distortion is not
considered. To utilise the Euler–Bernoulli elements, the EFM concept
requires the definition of the geometry and boundary conditions of the
frame-model, as well as a bending stiffness parameter for the linear
elements of the frame, named equivalent bending stiffness, 𝐸𝐼 .

According to the literature review, existing EFM are only suitable
or square tubular cross-sections and do not account for the size of the
loaded region’ of the joint, e.g., the size of the socket in P&PJ, in the
nteraction between the column faces. To address these limitations, 2
ew main EFM are presented, as follows:

• Harada extended frame-model for rectangular cross-sections (HR-
EFM shown in Fig. 18(a)) – represents an expansion of the model
initially developed by Harada [25,26] for square cross-section
tubes to encompass rectangular cross-sections. However, by en-
suring equal dimensions for both faces of the tube, i.e. 𝐿1 = 𝐿2
in Fig. 18(a), the initial formulation by Harada is achieved.

• Proposed frame-model for rectangular cross-sections (PR-EFM shown
in Fig. 18(b)) – is a model that accounts for the size of the
P&PJ and is applicable to both square and rectangular cross-
section tubes.

In the P&PJ, the connection is defined as the contact region between
the sockets and column (Fig. 6). However, in the PR-EFM formulation,
the connection includes the contact region and the region between the
sockets as a single, larger rigid region with a finite length, 𝑏, and an
nfinite bending stiffness, 𝐸𝐼∞. This approach simplifies the process of
ccounting for the size of the sockets.

In Fig. 18, 𝐿1 and 𝐿2 denote the width and length of the tubes,
espectively. The distances from the socket to the column’s corner along
he width and length are denoted by 𝑎 and 𝑐, respectively. The thickness
f the tube, 𝑡𝑐 , is not represented graphically; however, it is considered
he same on all four sides.

.2. General procedure

The analytical computation of the stiffness of the tube components,
F and 𝑘I, based on the definition presented in Section 4 using the EFM
equires first the computation of the stiffness matrix associated with the
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Fig. 18. Equivalent frame-models (EFM).
ut-of-plane displacements at mid-span of each frame-element. This cal-
ulation can be done using various strategies; however, since the EFM
re often highly redundant structures, the analytical determination of
ube components may be more complex than desired.

Therefore, rather than calculating the full stiffness matrix of the
FM and condensing it to express it in terms of the out-of-plane
ranslation at the frame-elements’ mid-span, an alternative procedure
as adopted. Following Harada [26], a procedure that involves the

election of four load patterns (LP-EFM) that, through symmetry consid-
rations, allow for the easy computation of the out-of-plane mid-span
isplacements of the frame-elements to obtain the condensed stiffness
atrix directly. These load patterns are shown in Fig. 19. The procedure

nvolves solving a 16 × 16 linear system of equations corresponding to
he condensed stiffness matrix of the EFM for the DOF corresponding
o the out-of-plane deflections of the tube faces.

Taking advantage of the symmetry considerations for the LP-EFM,
he calculation of the frame-element’s mid-span deflection was per-
ormed on 1/4 of the EFM, referred to as the simplified EFM and
hown in Fig. 20(b). For each simplified EFM, the mid-span deflec-
ion of the frame-elements is computed using the classic displacement
ethod, which only requires the formulas for fixed-fixed and fixed-slide
uler–Bernoulli elements. The full calculation procedure consists of the
ollowing steps:

1. identification of the boundary conditions of the simplified EFM;
2. identification of the kinematic DOFs of the simplified EFM —

in all cases, the simplified EFM has only one DOF when the
fixed-fixed and fixed-slide Euler–Bernoulli elements are used: 𝑑;

3. computation of the stiffness corresponding to the DOF: 𝑘LP-EFM𝑖;
4. computation of the displacement at the simplified EFM frame-

elements’ ends (mid-span deflections of the full EFM) caused by
a unit displacement imposed on the DOF: 𝐔𝑑=1

LP-EFM𝑖;
5. computation of the fixation forces in the DOF 𝑑 caused by the

LP-EFM: 𝑟LP-EFM𝑖
6. computation of the deflection at the frame-elements’ ends caused

by the LP-EFM when the DOF is restrained: 𝐔𝑃
LP-EFM𝑖;

7. computation of the displacement in the DOF associated with the
LP-EFM: 𝑑LP-EFM𝑖;

8. computation of the displacement at the simplified EFM frame-
elements’ ends caused by the actual displacement: 𝐔𝑑

LP-EFM𝑖;
9. computation of the displacement at the simplified EFM frame-

elements’ ends caused by the LP-EFM using the principle of
11

superposition of effects: 𝐔LP-EFM𝑖. a
Fig. 19. Load patterns used to compute the stiffness matrix of EFM.

After obtaining the final displacement for every LP-EFM, the matrix
𝐅EFM is constructed, inverted, and multiplied with the matrix of exter-
nal forces, 𝐏EFM, to obtain the condensed stiffness matrix of the EFM,
𝐊EFM.

A worked example is provided below for the HR-EFM under LP-
EFM2. In this example, the deflection, simplified frame, stiffness co-
efficients, and restraining forces are shown from Figs. 20(a) to 20(d).

The simplified EFM has only one DOF, i.e. rotation: 𝑑 (Fig. 20(c));
thus, the stiffness is:

𝑘LP-EFM2 =
2 𝐸 𝐼1
𝐿1

+
2 𝐸 𝐼2
𝐿2

(23)

where 𝐼1 and 𝐼2 are the fictitious second moments of inertia of the top
nd right frame-elements of the EFM (Section 6.3).
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Fig. 20. HR-EFM: under LP-EFM2.

The out-of-plane displacements of column faces are:

𝐔𝑑=1
LP-EFM2 =

[

𝑈𝑑=1
III

𝑈𝑑=1
II

]

=

⎡

⎢

⎢

⎢

⎣

𝐿1
4

−
𝐿2
4

⎤

⎥

⎥

⎥

⎦

(24)

where 𝑈III and 𝑈II are the out-of-plane displacements along coordinates
III and II of the column caused by a unitary displacement, 𝑑 = 1
(Fig. 18).

The forces required in the DOF 𝑑 to have zero displacement, 𝑑 = 0,
(Fig. 20(d)) are:

𝑟LP-EFM2 =
𝑃 𝐿1
8

+
𝑃 𝐿2
8

(25)

and the corresponding out-of-plane displacements in the column faces
are:

𝐔𝑃
LP-EFM2 =

[

𝑈𝑃
III

𝑈𝑃
II

]

=

⎡

⎢

⎢

⎢

⎢

⎣

−
𝑃 𝐿3

1
192 𝐸 𝐼1
𝑃 𝐿3

2
192 𝐸 𝐼2

⎤

⎥

⎥

⎥

⎥

⎦

(26)

Accordingly, from statics, the displacement 𝑑 caused by the LP-
EFM2 in HR-EFM is:

𝑑LP-EFM2 =
(

𝑘LP-EFM2
)−1

⋅
(

−𝑟LP-EFM2
)

= −
𝐿1 𝐿2 𝑃

(

𝐿1 + 𝐿2
)

( ) (27)
12

16 𝐸 𝐼1 𝐿2 + 𝐼2 𝐿1
nd the out-of-plane displacements of the column faces caused by the
isplacement 𝑑LP-EFM2 becomes:

𝐔𝑑
LP-EFM2 = 𝐔𝑑=1

LP-EFM2 ⋅ 𝑑LP-EFM2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−
𝐿2
1 𝐿2 𝑃

(

𝐿1 + 𝐿2
)

64 𝐸
(

𝐼1 𝐿2 + 𝐼2 𝐿1
)

𝐿1 𝐿2
2 𝑃

(

𝐿1 + 𝐿2
)

64 𝐸
(

𝐼1 𝐿2 + 𝐼2 𝐿1
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(28)

Finally, the out-of-plane displacements of the column faces caused
by LP-EFM2 on the HR-EFM are:

𝐔LP-EFM2 = 𝐔𝑑
LP-EFM2 + 𝐔𝑃

LP-EFM2 =

[

𝑈LP-EFM2
III

𝑈LP-EFM2
II

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−
𝐿2
1 𝑃

(

𝐼2 𝐿2
1 + 4 𝐼1 𝐿1 𝐿2 + 3 𝐼1 𝐿2

2
)

192 𝐸 𝐼1
(

𝐼1 𝐿2 + 𝐼2 𝐿1
)

𝐿2
2 𝑃

(

3 𝐼2 𝐿2
1 + 4 𝐼2 𝐿1 𝐿2 + 𝐼1 𝐿2

2
)

192 𝐸 𝐼2
(

𝐼1 𝐿2 + 𝐼2 𝐿1
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(29)

The out-of-plane displacements of the other column faces, namely
for coordinates I and IV, i.e. the bottom and left frame-elements, can
be calculated similarly due to the double symmetry conditions.

After repeating this process for all LP-EFM depicted in Fig. 19,
i.e. four times, the load matrix, 𝐏EFM is constructed for the full EFM.
This load matrix is a concatenation of the load vectors of each LP-EFM,
𝐩LP-EFM𝑖, which are constructed in a counterclockwise direction starting
from the bottom face. Thus,

𝐏EFM =
[

𝐩LP-EFM1 𝐩LP-EFM2 𝐩LP-EFM3 𝐩LP-EFM4
]

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑃 −𝑃 0 −𝑃
𝑃 𝑃 𝑃 0
𝑃 −𝑃 0 𝑃
𝑃 𝑃 −𝑃 0

⎤

⎥

⎥

⎥

⎥

⎦

(30)

Similarly, the matrix, 𝐅EFM, is a concatenation of the out-of-plane
displacements associated with each LP-EFM, i.e. column 𝑖 contains the
displacement from LP-EFM𝑖:

𝐅EFM =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈LP-EFM1
III 𝑈LP-EFM2

III 𝑈LP-EFM3
III −𝑈LP-EFM4

III

𝑈LP-EFM1
II 𝑈LP-EFM2

II 𝑈LP-EFM3
II 𝑈LP-EFM4

II

𝑈LP-EFM1
III 𝑈LP-EFM2

III 𝑈LP-EFM3
III 𝑈LP-EFM4

III

𝑈LP-EFM1
II 𝑈LP-EFM2

II − 𝑈LP-EFM3
II 𝑈LP-EFM4

II

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(31)

Lastly, the stiffness matrix for the HR-EFM, 𝐊EFM, is calculated:

𝐊EFM = 𝐏EFM ⋅
(

𝐅EFM
)−1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑘11 𝑘12 𝑘13 𝑘14
𝑘21 𝑘22 𝑘23 𝑘24
𝑘31 𝑘32 𝑘33 𝑘34
𝑘41 𝑘42 𝑘43 𝑘44

⎤

⎥

⎥

⎥

⎥

⎦

(32)

from which the stiffness coefficients are obtained:

𝑘11 = 𝑘33 =
48 𝐸 𝐼1

(

𝐼1 𝐿2 + 4 𝐼2 𝐿1
)

𝐿3
1
(

𝐼1 𝐿2 + 𝐼2 𝐿1
)

(33)

𝑘22 = 𝑘44 =
48 𝐸 𝐼2

(

4 𝐼1 𝐿2 + 𝐼2 𝐿1
)

𝐿3
2
(

𝐼1 𝐿2 + 𝐼2 𝐿1
)

(34)

𝑘12 = 𝑘14 = 𝑘21 = 𝑘23 = 𝑘32 = 𝑘34 = 𝑘41 = 𝑘43

=
72 𝐸 𝐼1 𝐼2

𝐿1 𝐿2
(

𝐼1 𝐿2 + 𝐼2 𝐿1
)

(35)

𝑘13 = 𝑘24 = 𝑘31 = 𝑘42 = 0 (36)

Furthermore, by applying the same procedure to the PR-EFM, the
stiffness coefficients become:

𝑘11 = 𝑘33 =
6 𝐸 𝐼1

(

4 𝐼2 𝑎 + 𝐼1 𝑐
)

𝑎3
(

𝐼2 𝑎 + 𝐼1 𝑐
) (37)

22 = 𝑘44 =
6 𝐸 𝐼2

(

𝐼2 𝑎 + 4 𝐼1 𝑐
)

3
( ) (38)
𝑐 𝐼2 𝑎 + 𝐼1 𝑐
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𝑘

b
m
c

𝑘

a

𝑘

𝑘

6

o
o
a
f
a
b
m
r

𝑆

𝑘

𝑘

0

𝑘12 = 𝑘14 = 𝑘21 = 𝑘23 = 𝑘32 = 𝑘34 = 𝑘41 = 𝑘43

=
9 𝐸 𝐼1 𝐼2

𝑎 𝑐
(

𝐼2 𝑎 + 𝐼1 𝑐
)

(39)

13 = 𝑘24 = 𝑘31 = 𝑘42 = 0 (40)

The stiffness of the column components (𝑘F and 𝑘I) can be obtained
y setting the stiffness matrix given by Eq. (4) equal to the stiffness
atrix given by Eq. (32). Accordingly, the stiffnesses of the tube

omponents for the HR-EFM become:

AC
F, HR-EFM =

48 𝐸 𝐼1
(

− 3 𝐼2 𝐿2
1 + 4 𝐼2 𝐿1 𝐿2 + 𝐼1 𝐿2

2
)

𝐿3
1 𝐿2

(

𝐼1 𝐿2 + 𝐼2 𝐿1
)

(41)

𝑘BD
F, HR-EFM =

48 𝐸 𝐼2
(

𝐼2 𝐿2
1 + 4 𝐼1 𝐿1 𝐿2 − 3 𝐼1 𝐿2

2
)

𝐿1 𝐿3
2
(

𝐼1 𝐿2 + 𝐼2 𝐿1
)

(42)

𝑘I, HR-EFM =
72 𝐸 𝐼1 𝐼2

𝐿1 𝐿2
(

𝐼1 𝐿2 + 𝐼2 𝐿1
) (43)

nd for the PR-EFM are:

AC
F, PR-EFM =

6 𝐸 𝐼1
(

− 3 𝐼2 𝑎2 + 4 𝐼2 𝑎 𝑐 + 𝐼1 𝑐2
)

𝑎3 𝑐
(

𝐼2 𝑎 + 𝐼1 𝑐
) (44)

BD
F, PR-EFM =

6 𝐸 𝐼2
(

𝐼2 𝑎2 + 4 𝐼1 𝑎 𝑐 − 3 𝐼1 𝑐2
)

𝑎 𝑐3
(

𝐼2 𝑎 + 𝐼1 𝑐
) (45)

𝑘I, PR-EFM =
9 𝐸 𝐼1 𝐼2

𝑎 𝑐
(

𝐼2 𝑎 + 𝐼1 𝑐
) (46)

.3. Second moment of inertia of 1D elements for the EFM

The mechanical properties for the EFM are based on the work
f Neves and Gomes [50], and Simões da Silva et al. [51] on the
ut-of-plane behaviour of the column’s web plate in beam-to-minor-
xis column joints. The model developed by Neves and Gomes (NGM)
ocuses on the out-of-plane force–deformation relation curve for a rect-
ngular plate with two opposite sides fixed and a central region loaded
y a rigid-rectangular plate, as shown in Fig. 21. According to this
odel, the initial stiffness, 𝑆𝑖, of the out-of-plane force–deformation

elation is:

𝑖 =
16 𝐸 𝑡3𝑐

𝐿2
𝛼 + (1 − 𝛽) tan 𝜃

(1 − 𝛽)3 +
10.4

(

𝑘1 − 𝑘2 𝛽
)

𝜇2

(47)

where:

𝑓 − width of the rigid plate;
𝑢 − height of the rigid plate;
𝐿 − width of the plate;
𝑡𝑐 − thickness of the plate;

𝛽 =
𝑓
𝐿

𝛼 = 𝑢
𝐿

𝜃 = 35 − 10 𝛽 (in degrees)

𝜇 = 𝐿
𝑡𝑐

1 = 1.5

2 = 1.63

The NGM is valid under the following geometrical conditions:

0 ≤ 𝛼 ≤ 0.2

.08 ≤ 𝛽 ≤ 0.8

10 ≤ 𝜇 ≤ 50

(48)

Although the NGM focuses on the out-of-plane behaviour of a single-
column plate, it is used in the current research due to the absence of
13
Fig. 21. Neves–Gomes Model (NGM).
Source: Adapted from [50]

Fig. 22. Neves–Gomes Model adapted to innovative plug-and-play joints (schematic
representation).

a more suitable formulation. As a result, the tube faces are considered
as four isolated column plates interacting with each other. However,
applying this methodology to the P&PJ results in some limitations; for
example, the region between the socket faces is considered rigid, as
shown in Fig. 22.

The bending stiffness is determined so that the deflection of the
frame-elements matches the out-of-plane deformation of the column
plate. Therefore, the deflection, 𝛿1, caused by a load, 𝑃 , on an effective
strip of size 𝑓 ×𝑙eff, positioned centrally as in Fig. 21, and with a second
moment of inertia of 𝐼 , is computed considering a 1D element with
fixed BCs at both ends:

𝛿1 =
𝑃 𝑒3

24 𝐸 𝐼
(49)

In the NGM, the out-of-plane deformation, 𝛿2, of an isolated single
column plate is obtained from the initial stiffness, 𝑆𝐼 :

𝛿2 =
𝑃
𝑆𝑖

(50)

By setting the right-hand side of Eq. (49) equal to the right-hand
side of Eq. (50), the bending stiffness of the frame-elements becomes:

𝛿1 = 𝛿2 → 𝐸𝐼 = 𝑒3

24
𝑆𝑖 (51)

Following the same principle, the second moment of inertia of the
frame-elements of the HR-EFM are:

𝐼1,HR-EFM =
𝐿3
1

192 𝐸
𝑆𝑖 (52)

𝐼2,HR-EFM =
𝐿3
2

192 𝐸
𝑆𝑖 (53)

and of the PR-EFM are:

𝐼 = 𝑎3 𝑆 (54)
1,PR-EFM 24 𝐸 𝑖
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𝐼2,PR-EFM = 𝑐3

24 𝐸
𝑆𝑖 (55)

To enhance the computational process for determining the ini-
ial stiffness (Eq. (47)), the second moment of inertia for the frame-
lements (Eqs. (52) to (55)), and the stiffness properties of tube com-
onents (Eqs. (41) to (46)) in the context of the Inno3DPnPJoint
eam-to-column finite element a dedicated Jupyter notebook [52]
as developed. This notebook is publicly accessible on GitHub [53],
llowing for dynamic launching via Binder [54]. Furthermore, a video
utorial is available on YouTube, providing instructions on utilising the
otebook effectively [55]. Consequently, users have the capability to
djust parameters, replicate calculations, and generate configurations
nd models tailored to their research objectives.

. Validation

The validation of the beam-to-column joint finite element imple-
ented in OpenSees [7] was carried out by comparing it to RFEMs

uilt in Abaqus [34] using the procedure described in Section 4.2.2.
he results are presented in terms of the out-of-plane displacements of
ach column face individually.

The validation models were built varying the following aspects:

1. cross-sections: 2, namely SHS and RHS (Fig. 7(a));
2. LP: 10 for SHS (Fig. C.1) and 17 for RHS (Fig. C.2);
3. SC: 4, with 𝐿SC equal to 0mm, 40mm, 90mm and 140mm

(Fig. 7(b));
4. EFM: 2, namely HR-EFM and PR-EFM (Fig. 18); the EFM for

the square cross-section is obtained by equating the length and
width in the rectangular formulation, i.e. 𝐿1 = 𝐿2 and 𝑎 = 𝑐;

5. since the rounded corners of the tubular element could lead
to uncertainty when it comes to choosing the correct width of
the column’s plate, i.e. 𝐿 in Fig. 21, which is needed in the
computation of 𝑘F and 𝑘I for the EFM, 2 cases were analysed:

(a) R0 – when the length of the column plate is equal to the
distance between the exterior of any two parallel column
faces, i.e. the radius is neglected, thus, 𝐿 = 200mm, and
𝐿1 = 200mm and 𝐿2 = 300mm for the SHS and RHS,
respectively;

(b) R1 – when the length of the column plate is equal to
the distance between the radii of a face, i.e. the radius
is considered, thus, 𝐿 = 177mm, and 𝐿1 = 177mm and
𝐿2 = 277mm for the SHS and RHS, respectively;

6. the RHS presents 2 sub-configurations based on the moment of
inertia:

(a) IF – when each column face is assigned its corresponding
moment of inertia, i.e. 𝐼1 and 𝐼2;

(b) IEq – when each column face is assigned an average
moment of inertia, i.e. 𝐼𝑒𝑞 = avg(𝐼1, 𝐼2).

The aforementioned aspects lead to a pool of 160 models for the
SHS (i.e. 2 EFM × 2 radius × 10 LP × 4 SC) and 544 models for the
RHS (i.e. 4 EFM × 2 radius × 17 LP × 4 SC). As the main objective is to
evaluate the 3D interaction between the column faces, the connection
components are assumed to have infinite stiffness.

The deformation of SHS and RHS cross-sections for all LP with
‘SC02’ is presented in Figs. C.3 and C.4, respectively.

The out-of-plane displacements of the column faces between the
Abaqus and OpenSees models are compared using the standard devi-
ation, 𝑆𝐷, and coefficient of determination, 𝑅2, defined by Eqs. (56)
and (57), respectively.

𝑆𝐷 = 𝑠𝑡𝑑
(𝑑𝑖𝑠𝑝OpenSees

)

(56)
14

𝑑𝑖𝑠𝑝Abaqus
Table 7
𝑅2 for SHS.

EFM Radius Face A Face B Face C Face D

HS-EFM R0 0.86 0.88 0.70 0.70
PS-EFM R0 0.86 0.88 0.70 0.70

HS-EFM R1 0.97 0.97 0.92 0.94
PS-EFM R1 0.97 0.97 0.92 0.94

Table 8
𝑆𝐷 for SHS.

EFM Radius Face A Face B Face C Face D

HS-EFM-IF R0 0.22 0.43 0.31 0.61
PS-EFM-IF R0 0.22 0.43 0.31 0.61

HS-EFM-IF R1 0.27 0.34 0.31 0.46
PS-EFM-IF R1 0.27 0.34 0.31 0.46

Table 9
𝑅2 for RHS.

EFM Radius Face A Face B Face C Face D

HR-EFM-IF R0 0.73 0.85 0.75 0.85
HR-EFM-IEq R0 0.75 0.83 0.77 0.83
PR-EFM-IF R0 0.74 0.81 0.76 0.81
PR-EFM-IEq R0 0.80 0.75 0.82 0.77

HR-EFM-IF R1 0.95 0.96 0.94 0.96
HR-EFM-IEq R1 0.95 0.93 0.95 0.94
PR-EFM-IF R1 0.94 0.97 0.93 0.97
PR-EFM-IEq R1 0.94 0.96 0.92 0.96

Table 10
𝑆𝐷 for RHS.

EFM Radius Face A Face B Face C Face D

HR-EFM-IF R0 0.58 0.37 1.87 0.59
HR-EFM-IEq R0 0.58 0.44 1.76 0.62
PR-EFM-IF R0 1.46 0.36 2.18 1.35
PR-EFM-IEq R0 1.65 0.36 2.20 1.60

HR-EFM-IF R1 0.59 0.32 0.96 0.59
HR-EFM-IEq R1 0.47 0.39 0.73 0.54
PR-EFM-IF R1 1.43 0.29 2.01 1.47
PR-EFM-IEq R1 1.50 0.30 1.85 1.62

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

(57)

where 𝑆𝑆𝑟𝑒𝑠 and 𝑆𝑆𝑡𝑜𝑡 represent the residual sum of squares and the
total sum of squares, i.e. proportional to the variance of the data,
respectively. The ‘ideal’ case is characterised by a coefficient of deter-
mination equal to 1, 𝑅2 = 1, indicating that the regression line fitting
the data is linear and given by:

𝑦 = 𝑚 𝑥 + 𝑏 , with 𝑚 = 1 and 𝑏 = 0 (58)

The standard deviation and coefficient of determination are pre-
sented for the SHS in Tables 7 and 8, and for the RHS in Tables 9 and
10. The calculations are performed for each EFM at the face level.

The coefficients of determination from Tables 7 and 9 show that
a higher degree of correlation is achieved in the R1 case for both
SHS and RHS. Additionally, in the SHS case, both HS-EFM and PS-
EFM produce the same results, indicating that the size of the joint,
i.e. socket, does not affect the results (Table 7). For the RHS case, a
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Fig. 23. PS-EFM-R1.
higher degree of correlation is observed when using IEq with R0, and IF
with R1 (Table 9). These conclusions are also evident from the standard
deviation.

The out-of-plane displacements extracted from the centre point of
each column face from both Abaqus and OpenSees are plotted against
each other in Figs. 23 and 24 for PS-EFM-R1 and PR-EFM-IF-R1,
respectively. In an ideal case, in which there is equality between the
displacements from the two software, the results, i.e. red dots: res,
would be distributed along a line that passes through the origin and
has a unit gradient, 𝑦 = 𝑥, i.e. black dashed line: t/l. Although this
is not the case, the displacements obtained from OpenSees using the
beam-to-column joint finite element are in good agreement with those
obtained from Abaqus.

8. Conclusions

This research presented the comprehensive development, imple-
mentation, and validation of a novel macro-element developed espe-
cially for the innovative three-dimensional plug-and-play joints be-
tween tubular columns and lightweight steel truss-girders proposed
within the Inno3DJoints project [1]. In addition, this macro-element
proves highly suitable for the linear analysis conducted in everyday de-
sign practices. Moreover, the macro-element is based on the component
15
method, whereby its stiffness and geometric parameters have a clear,
physical, and intuitive meaning. Furthermore, the stiffness parameters
for the model can be obtained from higher-order finite element models,
experimental tests, or equivalent frame-models.

In this research, equivalent frame-models were developed for SHS
and RHS cross-sections with consideration given to the size of the joint.
As there is currently no better alternative, the Neves–Gomes Model
was used to derive analytical expressions for the stiffness parameters
required for the macro-element. This assumption should be revisited
once a more straightforward method for calculating the mechanical
properties of the innovative plug-and-play joints becomes available.

The concept of the macro-element was validated against higher-
order finite element models developed in Abaqus and was subsequently
implemented as a standalone beam-to-column joint finite element in
the OpenSees framework. The Inno3DPnPJoint command can be used
to generate this element.

A comprehensive parametric study was conducted to evaluate the
beam-to-column joint finite element outputs when its required stiffness
parameters are determined using equivalent frame-models. The results
obtained using the joint finite element in OpenSees were compared to
those from higher-order finite element models developed in Abaqus and
showed good agreement.
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Fig. 24. PR-EFM-IF-R1.
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Appendix A. Inno3DPnPJoint: implementation in OpenSees

The Inno3DPnPJoint Class is a child of the base abstract Element
Class, as presented in Fig. 17. The Element Class consists of several
virtual methods defined by the children of the class. These methods
dynamically allocate and deallocate memory for an instance of the
class, initialise an instance of the class, perform inquiry and access
tasks, and generate and return an element tangent matrix and residual
vector, as described in [28].

The programming language used to code the proposed beam-to-
column joint is C++ [56]. The integrated development environment
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used to compile the OpenSees source code is Microsoft VisualStudio
2019 [57].

For the development of any new finite element ideas, two files must
be coded: a header file (*.h) and a main (implementation) file (*.cpp).
The former file defines the interface and variables for the new class,
which should be a subclass of the Element Class, while the latter file
explains in detail the functions of the constructors, destructor, and
other methods.

The proposed beam-to-column joint element requires an internal
solution to determine the internal nodal displacements that satisfy the
internal equilibrium of the element. In addition, the presence of the
internal DOFs in the proposed model and the nonlinear behaviour of
the components enforce an internal iteration scheme to be implemented
at compilation time, i.e. not at run time.

A.1. Transformation matrix

To remove any coordinate-/sign-related restrictions for the user in
defining the joint, i.e. to allow the user to define the beam-to-column
joint element in any desired position in the 3D space, a transformation
matrix is added to the code through the formTransfMat() method
(Table A.1). This matrix, 𝐓𝐫𝐚𝐧𝐬𝐟 (30 × 30), is derived from the vectors
ontaining the coordinates for nodes 1 and 2 and the coordinates of
heir cross-product. First, a verification is made to ensure that the
orms of these three vectors are different from 0. Then, a transforma-
ion sub-matrix, 𝐓𝐫𝐚𝐧(3 × 3), is constructed by dividing the coordinates
f the three vectors by their norms. Finally, the transformation ma-
rix 𝐓𝐫𝐚𝐧𝐬𝐟 is obtained by assembling the sub-matrix 𝐓𝐫𝐚𝐧 10 times
iagonally.

The transformation matrix 𝐓𝐫𝐚𝐧𝐬𝐟 is then used in the following
ethods presented in detail in Table A.1

• getGlobalDispls(. . . ) – in the OpenSees input file, i.e. *.tcl or
*.py, the joint element is defined in the global coordinate system;
therefore, the coordinates of the five nodes defining the joint
element are transformed into the local coordinate system;

• formR(. . . ) – the local residual force vector of the element, con-
tains the values related to both the external and internal DOFs;
thus, the ones associated with the external DOFs are transformed
back, from the local to the global coordinate system;

• formK(. . . ) – the condensed local stiffness matrix of the element,
is transformed from the local to the global coordinate system;

• getResponse(. . . ) – the committed displacements associated with
the external DOFs are transformed back from the local to the
global coordinate system.

.2. Element class

The methods comprising the Inno3DPnPJoint Class are listed in
17

able A.1 and are adapted from [28].
Appendix B. Inno3DPnPJoint user manual

B.1. Element info

The proposed beam-to-column joint finite element can be viewed as
a 2D plate in a 3D space defined by five external nodes (Fig. 16), each
having six DOFs. This element configuration is suitable for rectangular
and square cross-sections. Furthermore, it allows for the simulation
of all types of joints: central, edge, and corner, with some nodes,
potentially not being connected to any beam/truss-girder or column
elements.

B.2. Command line and input arguments

The Inno3DPnPJoint beam-to-column joint element can be con-
structed using the command input lines given below with the input
arguments listed in Table B.1.

• cmd input line for *.tcl files:

element Inno3DPnPJoint $eleTag <$Node1 $Node2
$Node3 $Node4 $Node5> <$SprMatTag01 …
$SprMatTag32>

cmd Example:

element Inno3DPnPJoint 99 101 102 103 104 105 1 2 3 4
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32

# constructs an Inno3DPnPJoint joint element with ele-
ment tag 99, that is connected to nodes 101, 102, 103, 104
and 105 and uses for the components’ behaviour the uniaxial
material object tags from 1 to 32.

• cmd input line for *.py files:

element(‘Inno3DPnPJoint’, $eleTag, <$eleNode1,
$eleNode2, $eleNode3, $eleNode4>, <$SprMatTag01,
…, $SprMatTag32>)

B.3. Node definition requirements

The nodes must be defined in a specific order and have coor-
dinates that meet the requirements of coplanarity, perpendicularity,
collinearity, centrality, and dimensionality to successfully create the
beam-to-column joint finite element. These requirements ensure that
the coordinates of the five nodes given as input by the user create a
2D plane in 3D space. These checks can be found in the setDomain
method (Table A.1).

B.3.1. Input order
The nodes should be defined in a counterclockwise direction. For

example, if the element is created in the X-Z plane, the node’s input or-
der should be as follows: 1/bottom, 2/right, 3/top, 4/left, and 5/centre,
as shown in Fig. 16. However, the joint can be defined in any plane if
the node order definition is adapted accordingly.

B.3.2. Coplanarity
The equation of the plane passing through nodes 1, 2, and 3 is

calculated to ensure that the nodes lie in the same plane. Then, a
check is performed to see if nodes 4 and 5 satisfy this equation. If the
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Table A.1
Methods Comprising the Inno3DPnPJoint Class (

[

PU
]

– Public,
[

PR
]

– Private).

Method name Description

Constructor
[

PU
]

Inno3DPnPJoint(...) Initializes an object of the class.

Destructor
[

PU
]

Inno3DPnPJoint() Performs dynamic storage deallocation.

Inquiry and access methods
[

PU
]

virtual int getNumExternalNodes() Returns the number of external nodes of the element.
[

PU
]

virtual const ID &getExternalNodes() Returns pointers to the specified node tags.
[

PU
]

virtual getNodePtrs() Returns pointers to the specified node tags.
[

PU
]

virtual int getNumDOF() Returns the number of DOFs of the element.
[

PU
]

virtual void setDomain() Required for checking the DOFs and associativity with the node.
[

PU
]

virtual const Matrix &getTangentStiff() Returns the local stiffness matrix of the element at the global assembly stage for all the elements.
[

PU
]

virtual getInitialStiff() Returns the local stiffness matrix of the element at the global assembly stage for all the elements.
[

PU
]

virtual const Vector &getResistingForce() Returns the local residual force vector at the stage of global assembly.
[

PU
]

virtual int getResponse(...) Returns element specific responses.
[

PU
]

virtual setResponse(...) Contains the valid output(s) for the element.
[

PU
]

virtual void Print(...) Prints out element data.
[

PU
]

virtual int displaySelf() Displays element graphically.

Element solution methods
[

PR
]

void getGlobalDispls(...) Returns a set of converged displacements for the five external nodes of the element.
[

PR
]

void getBCJoint() Returns the compatibility matrix.
[

PR
]

void getdDef_du() Extracts from the compatibility matrix the rows and columns related to internal DOFs.
[

PR
]

void getdg_df() Transposes the dDef_du matrix.
[

PR
]

void matDiag(...) Takes in the vector containing the stiffness of the components as input and converts it to a diagonal matrix of
components.

[

PR
]

void getMatResponse(...) Takes in the displacements as input and returns the tangent and residual forces based on the material specified by the
user.

[

PR
]

void formR(...) Forms the local residual force vector of the element.
[

PR
]

void formK(...) Forms the local stiffness matrix of the element.
[

PR
]

void formTransfMat() Forms the transformation matrix used to transform from global to local coordinates.
[

PR
]

double getStepSize(...) Determines the step size to be used for line search if there is a convergence problem with the internal equilibrium.
This method increases the robustness of the element.

[

PU
]

virtual int commitState() Commits the displacement at each node once the internal equilibrium criteria for the element are met.
[

PU
]

virtual int revertToLastCommit() Returns to the last committed state if the analysis fails.
[

PU
]

virtual int revertToStart() Returns to the start if the analysis fails.
[

PU
]

virtual int update() Updates the displacements at the external nodes of the element.
Table B.1
Input arguments for Inno3DPnPJoint joint element.

Input $args Description

$eleTag An integer tag identifying the element in the domain

$Node1 An integer tag indicating the node 1
...
$Node5 An integer tag indicating the node 5

$SprMatTag01 An integer tag indicating the uniaxial materials for
component 1

...
$SprMatTag32 An integer tag indicating the uniaxial materials for

component 32
18
condition is met, all five nodes are coplanar, and the analysis continues.
Contrarily, the analysis exits and displays this error message:

ERROR: Inno3DPnPJoint::setDomain – Node 4 does NOT
belong to plane created by Node 1, Node 2 and Node 3.
Check node coordinate definition.

or

ERROR: Inno3DPnPJoint::setDomain – Node 5 does NOT
belong to plane created by Node 1, Node 2 and Node 3.
Check node coordinate definition.

B.3.3. Perpendicularity

If the coplanarity requirement is fulfilled, the dot product of the
vectors between nodes 1 and 3 and nodes 2 and 4 is calculated. If

the result is 0, the two vectors are perpendicular, so the condition is
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Table B.2
Common errors.

Description Displayed error message

Number of input
arguments is wrong,
i.e. different than 38

WARNING error insufficient. arguments.
Want: element Inno3DPnPJoint eleTag? Node1?
Node2? Node3? Node4? Node5? Spring01?
Spring02? ... Spring32?.

Number of external
nodes is wrong, i.e.
different than 5

ERROR: Inno3DPnPJoint::Inno3DPnPJoint() eleTag
failed to create an ID of size 5.

Constructor fails to get
copy of material and/or
the copy is not valid

ERROR: Inno3DPnPJoint::Constructor failed to get
a copy of material matTag.

Constructor fails to set
pointer to external
nodes

ERROR: Inno3DPnPJoint::setDomain. Node pointer
is NULL. Node nodeTag does not exit in the
domain.

The domain is null ERROR: Inno3DPnPJoint::setDomain — Domain is
null.

Number of DOFs is
wrong, i.e. different
than 6

ERROR: Inno3DPnPJoint::setDomain — number of
DOF associated with the nodes is incorrect.

Number of spring
requested as output is
out of range (1–32)

ERROR: Inno3DPnPJoint::setResponse number of
springs out of range: springNo.
Spring numbers go from 1 to 32.

satisfied, and the analysis continues. Contrarily, the analysis exits and
displays this error message:

ERROR: Inno3DPnPJoint::setDomain – vector of Node 1 &
Node 3 not perpendicular to vector of Node 2 & Node 4.
Check node coordinate definition.

B.3.4. Collinearity

The sets of nodes 1, 5, 3, and 2, 5, 4 need to be collinear, so four
vectors are created between the centre node, i.e. node 5, and the edge
nodes, i.e. nodes 1, 2, 3, and 4, and their cross-product is calculated. If
the result is 0, the two sets of nodes are collinear, so the condition is
19
satisfied, and the analysis continues. Contrarily, the analysis exits and
displays this error message:

ERROR: Inno3DPnPJoint::setDomain – Node 1, Node 5 and
Node 3 are not collinear. Check node coordinate definition.

or

ERROR: Inno3DPnPJoint::setDomain – Node 2, Node 5 and
Node 4 are not collinear. Check node coordinate definition.

B.3.5. Centrality and dimensionality
The edge nodes should be defined at the centre of each column

face so the norms of the four vectors from the collinearity check are
calculated and compared. There are three possible outcomes for this
comparison: (i) all norms are equal, indicating that the tube is square,
(ii) two sets of two equal norms are obtained, indicating that the tube is
rectangular, and (iii) none of the previous conditions are met, in which
case the analysis exits and displays an error message:

ERROR: Inno3DPnPJoint::setDomain – nodes are not lo-
cated at the center of the column face. Check node
coordinate definition.

In addition, the dimensions of the joint should be large enough to
avoid division by 0. If this occurs, it is advised to change the units.
To ensure this, the norms of the four vectors should be greater than
a specific value set to 1𝑒−3. If this condition is met, the analysis
continues. Contrarily, the analysis exits and displays this error message:

ERROR: Inno3DPnPJoint::setDomain – length or width <=
1e-3, division by zero occurs. Increase joint size.

B.4. Common errors

There exists a multitude of error messages that may manifest due
to various factors, supplementing those that arise from unmet node
definition requirements. For illustrative purposes, Table B.2 presents
a compilation of the most frequently encountered error messages.

B.5. Output recorders

B.5.1. Element level
The outputs at the element level can be requested using the follow-

ing recorder commands:
Table B.3
Output $args at element level.
Output $args C++ output variable Description

Name Size

extDisp UeprCommit_G 30 × 1 Returns the displacement for the external DOFs.
extdisp

intDisp UeprIntCommit 4 × 1 Returns the displacement for the internal DOFs.
intdisp

Disp UeprCommit_G & 34 × 1 Returns the displacement for the external and internal DOFs.
disp UeprIntCommit

Reaction R 34 × 1 Returns the global residual forces for all DOFs.
reaction

matStress

MaterialPtr->getStress() 32 × 1 Returns the stress values from the joint’s components.matstress
Stress
stress

matStrain

MaterialPtr->getStrain() 32 × 1 Returns the strain values from the joint’s components.matstrain
Strain
strain

matStressStrain

64 × 1 Returns the stress and strain values from the joint’s components.matstressstrain MaterialPtr->getStress()
StressStrain MaterialPtr->getStrain()
stressStrain
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Fig. C.1. LPs for SHS.
Fig. C.2. LPs for RHS.
• input line for *.tcl files:

recorder Element <-file $fileName> <-time> <-ele $ele-
Tag> $arg

• input line for *.py files:

recorder(’Element’, ’-file’, ’fileName’, ’-time’, ’-ele’, ’ele-
Tag’, ’$arg’)
20
The list of valid inputs for the argument, $arg, at element level, is
given by Table B.3.

B.5.2. Component level

The outputs at the component level can be requested using the
following recorder commands:
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Table B.4
Output $arg at component level.

Output $args C++ output variable Description

Name Size

spring

MaterialPtr[springNo] 1 × 2
Returns a pair of
stress–strain for
each time step.

-spring
material
-material

Fig. C.3. Cross-section deformation in W0 for SHS for all LPs with SC02.

• input line for *.tcl files:

recorder Element <-file $fileName> <-time> <-ele $ele-
Tag> <$arg $sprNo stressStrain>

• input line for *.py files:

recorder(’Element’, ’-file’, ’fileName’, ’-time’, ’-ele’, ’ele-
Tag’, ’$arg’, ’sprNo’, ’stressStrain’)

The list of valid inputs for the argument, $arg, at the component
evel is given by Table B.4.

ppendix C. Load patterns and cross-section deformation

The load patterns (LPs) used throughout this research are illustrated
n Figs. C.1 and C.2 for the SHS and RHS, respectively. These LPs
epresent gravitational and horizontal loading on corner, edge, and
nternal joints. In Figs. C.1 and C.2, each set of graphs includes: (i) on
he left side, 3D representations of the tubular column and top chord of
he CFS truss-girders (referred to as ‘Joint 1’ in Fig. 4(a)), along with the
pplied LP; and (ii) on the right side, 2D representations of the tube’s
ross-section and the 2D equivalent of the applied 3D LP.

In addition, the deformations of SHS and RHS cross-sections for all
Ps with ‘SC02’ are presented in Figs. C.3 and C.4, respectively.

ppendix D. Analytical and FE models mapping

The work done for the development of the beam-to-column joint
inite element in this manuscript comprises two stages: ‘Stage 1: Valida-
ion of the CME Concept’ and ‘Stage 2: Validation of the
nno3DPnPJoint FE’. Fig. D.1 illustrates the mapping between the
nalytical and finite element models, including the associated software
sed for computation and their respective sections detailed in the
rticle.
21
Fig. C.4. Cross-section deformation in W0 for RHS for all LPs with SC02.



Journal of Constructional Steel Research 214 (2024) 108436C.V. Miculaş et al.
Fig. D.1. Workflow: mapping between analytical and finite element models.
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