
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Trajectory Optimization
Methods for Low-Thrust
Kuiper Belt Flyby Missions
MSc Thesis
Kevin De hulsters





Trajectory Optimization
Methods for Low-Thrust

Kuiper Belt Flyby
Missions

by

Kevin De hulsters

to obtain the degree of Master of Science
at Delft University of Technology

to be defended publicly on Wednesday February 15, 2023 at 14:00.

Student number: 4649486
Project duration: February 14, 2022 - January 31, 2023
Institution: Delft University of Technology
Place: Faculty of Aerospace Engineering, Delft
Supervisor: Ir. R. Noomen
Thesis committee: Dr. D.M. Stam, committee chair

Dr. S. Speretta, external committee member
Ir. R. Noomen, daily supervisor

Cover Image: Enhanced color view of Charon, a moon of Pluto, captured by New Horizons in 2015. Copyright of
NASA/JHUAPL/SwRI [84].





Preface
I can still vividly remember when I first visited TU Delft during one of the open days in my final year
of high school. Now, more than five years later I’m nearing the end of my time as a student at the
university. I guess people are indeed correct when they tell you how fast time goes by.

For the last year I’ve spent most of my time either at my internship or working on this thesis project, in
the form of a literature study and the actual thesis. Space has always been one of my biggest inter-
ests since I was young so I truly feel fortunate that I have been able to perform my study in a topic I
adore. This specific thesis looks at trajectories towards Kuiper belt objects, a research topic inspired
by incredible achievements by scientists and engineers who captured beautiful images of Pluto and
Charon with their New Horizons mission. One of those images is shown on the front page. And it is
also possible due to previous work by students such as L. van der Heyden and T. Roegiers. I want to
thank them for their amazing work. As they say we always build on the knowledge of those before us.
I also want to thank students and professors who helped me during my thesis by answering questions
and helping me learn the ins and outs of Tudat: M. Avillez and D. Dirkx.

Besides my thesis I have also spent quite some time the last few years on side projects such as a video
game called Invertigo which I have been developing together with other students. I want to thank all
my fellow-developers at Invertigo for being flexible with work hours due to my thesis. Since February
2022 I’ve spent four out of five workdays per week on my thesis and the remaining day on Invertigo. I
also want to thank my supervisor Ir. R. Noomen for his wisdom and tips throughout all these months
as well as for allowing me to take a combined two months off from work for vacation as well as to be
with family which flew over from Mexico. While on that topic, I would also like to thank my family for all
their support. Not only during this thesis project, but during my entire university career.

By removing the vacation and Invertigo time I’m left with slightly less than eight months spent on the
thesis from the first meeting with my supervisor to my thesis defense. And I must say that I thoroughly
enjoyed it, even though it did get a bit busy near the end of it. And last, but certainly not least I want to
thank my friends for supporting me throughout the whole thesis process, friends I could always go to
for advice or just to vent some thoughts. I’m not going to try to name everyone out of fear of leaving
people out, but you all know who you are.

Kevin De hulsters
Delft, January 2023

ii





Summary
The Kuiper belt, a circumstellar disk beyond Neptune, is one of the last mostly unexplored regions in the
Solar System. Due to the antiquity of some of the bodies in this region, exploration of the Kuiper belt
can greatly increase humanity’s understanding of the Solar System’s formation and evolution. How-
ever, to date the New Horizons mission is the only one to have actively explored objects in the Kuiper
belt. Furthermore, previous studies of Kuiper belt object (KBO) missions as well as current proposals
mainly use conventional high-thrust propulsion. The use of low-thrust propulsion for KBO missions is
a mostly unexplored topic and has the potential to improve the payload mass of the mission due to
the high efficiency of its propellant. Therefore, this thesis can be considered as a feasibility study and
aims to answer the following research question: ”What methodology is required to optimize realistic
low-thrust trajectories with the goal of Kuiper belt object flybys?”.

The goal of the found methodology is to be able to construct low-thrust flyby missions with at least
two KBOs in a single mission. This is to be done with current technologies in terms of the available
power, encapsulated in the research question with the word ’realistic’. To simplify the problem, the
hyperbolic excess velocity from the departure at Earth as well as the use of powered gravity assists are
neglected. To obtain the required velocity to reach and enter the Kuiper belt and to shape the trajectory
the methodology assumes a gravity assist with both Jupiter and Neptune. For this mission a launch
window between 2040 and 2050 is considered. The trajectory is modelled using Tudat with a patched-
conics assumption and spherical shaping as the trajectory parameterization method. Python-based
code is used to perform the trajectory calculations.

For the optimization problem a two-objective problem is constructed with ∆V and the time-of-flight
as objectives. MOEA/D is the chosen optimizer for this purpose and has been tuned with low-thrust
problems for optimal performance. The optimization problem is split into two phases: one phase up
to and including the first KBO flyby and a second phase to find subsequent flybys. A methodology is
constructed which switches between high-thrust and low-thrust legs to constrain the input space for
the low-thrust optimization problem as a workaround for the sensitivity of the low-thrust solution. Fur-
thermore, certain trajectory legs are tackled separately to allow the low-thrust optimizer to converge.
To expand the trajectory to a second KBO flyby this method is insufficient and new methods need to
be constructed. By using close-approach graphs, using a larger pool of KBOs, and optimizing multiple
KBO flybys at the same time a second KBO flyby is found.

The result of the thesis is a robust method to find KBO flyby trajectories with low-thrust propulsion. To
illustrate this a number of low-thrust trajectories to KBOs are discussed including a flyby mission of
Albion with a total ∆V of 9.68 km/s and a time-of-flight of 27.0 years, after local refinement cycles and
a sensitivity study. A two-KBO flyby mission with K13WB4G and K15RS1R requires roughly 10.52
km/s of ∆V and a time-of-flight of 33.2 years. These two trajectories have mass propellant fractions
of 1.39 and 1.43 after departure from Earth, respectively. With the high-thrust optimization method
many more two-KBO flyby missions can be found, but it is not possible to convert these to low-thrust
missions due to limitations of the spherical shaping method. No direct comparison is performed with
high-thrust trajectories in this thesis, which would require an analysis of missions with higher launch
energy values. However, based on results from other research it is concluded that at the very least the
results found in this thesis are comparable or in some cases even more optimal than the mass fraction
found in proposed high-thrust KBO missions.

Further analysis regarding the frequency of more distant KBO flybys during the main mission indicates
that to perform such distant flybys with known KBOs it is not sufficient to rely on random encounters.
Instead, such distant flybys should also actively be searched for in the objective description. A check
with the real-life implications of the found missions indicates that launch windows are in the order of
a few weeks and that for the majority of the mission time the thrust magnitude is below the maximum
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thrust available with modern low-thrust propulsion. The use of a higher launch energy can resolve
the increased thrust and thus power requirement in the initial mission phase where the thrust limit is
exceeded.

In conclusion, a methodology which relies on switching between high-thrust and low-thrust trajectories
and separately analyzing trajectory legs is developed to constrain the inputs for the low-thrust two-
objective optimization problem and to come up with realistic solutions for the KBOmission. With the use
of an evolutionary algorithm this allows for the design of many single-flyby KBO missions. Expanding
this methodology to multiple KBO flybys is possible but challenging, in large part due to the limitations
of the spherical shaping parameterization in terms of its requirements regarding trajectory curvature,
the manner in which it solves for its free coefficient, and in general the high sensitivity to changes in the
input space. Therefore, further study of the method is recommended with changes to spherical shaping
or with other low-thrust shape-based trajectory parameterization methods. Nevertheless, the results
show that the design and optimization of low-thrust KBO missions is possible and that the resulting
trajectories are realistic in terms of the propellant mass fraction and thrust levels, thus firmly putting
another propulsion possibility on the table when deep-space Kuiper belt missions are designed.
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i Initial/Current iteration
i+1 Next iteration number
KBO Related to a Kuiper belt object
J Jupiter
N Neptune
n Normal component
r Radial component
t Tangential component
x Cartesian x-component
y Cartesian y-component
z Cartesian z-component

θ Azimuthal component
ϕ Elevation component
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Introduction

Developments in the spaceflight sector have lead to successful missions to most major bodies in the
Solar System. All of the planets and many of their moons have been explored by at least one space
mission. Despite this, there are vast regions of the Solar System which are almost completely unex-
plored. The Kuiper belt is a circumstellar disc which extends roughly from 30 to 50 AU from the Sun. It
is scattered with rocky and icy bodies, ranging in size from small asteroids to dwarf planets [33]. Many
of these bodies have been in the Kuiper belt for billions of years. As such, they are the closest avail-
able in-situ representation of the primordial state of the Solar System. The study of the Kuiper belt can
therefore greatly increase humankind’s understanding of the origin and evolution of the Solar System
as well as the general mechanics of stellar systems [113]. Multiple space missions such as Voyager
1 and 2 as well as Pioneer 10 and 11 have already passed through the Kuiper belt. However, it was
not until the New Horizons mission that a spacecraft performed a close approach with a Kuiper belt
object (KBO). New Horizons performed a flyby of Pluto in 2015 and later also of KBO 486958 Arrokoth
in 2019 [83]. This final KBO flyby was only decided upon until shortly before the Pluto flyby. As of 2021
New Horizons has also left the Kuiper Belt [86].

The main limiting factor of the previously mentioned missions is their high radial velocity, which causes
them to only spend a brief time in the Kuiper belt. For example, New Horizons left the region after
only six years [86]. While New Horizons has been of monumental value for the scientific community, a
new mission which could stay inside the Kuiper Belt for a longer amount of time could visit more KBOs
and expand on its findings. By visiting more KBOs, information on a diverse selection of bodies in the
Kuiper belt can be gathered [113], which will increase the knowledge of these ancient areas of the Solar
System greatly. This thesis builds on a previous study by L. van der Heyden [43], whose work indicates
that long-term trajectories which stay in the Kuiper belt for more than 100 years are feasible by means
of multiple gravity assists (GAs) and deep space maneuvers (DSMs).

The next step, which will be performed in this thesis, is to look at the methodology required to opti-
mize Kuiper belt missions. Unlike the long-term trajectories analyzed by L. van der Heyden, this thesis
specifically looks at optimizing close flyby trajectories with KBOs. This will be done with the TU Delft
astrodynamics toolbox (Tudat), a framework developed by TU Delft [21]. The flybys analyzed concern
close approaches like the ones performed by New Horizons with Pluto and Arrokoth. Later in the thesis
the possibility of more distant flybys, which only allow partial scientific measurements, is analyzed as
well.

Previous work on KBO missions has mainly regarded the use of high-thrust propulsion. The use of
low-thrust propulsion for a KBO mission is a mostly unexplored topic and could be beneficial for a
flyby mission due to the large associated ∆V requirements. The methodology to tackle deep-space
high-thrust missions already exists, but such a plan of attack is less readily available for low-thrust op-
timization. This thesis can be considered as a feasibility study and combines the KBO trajectory and
low-thrust topics by means of the following research question:
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”What methodology is required to optimize realistic low-thrust trajectories with the goal of Kuiper belt
object flybys?”

To fully answer this research question, the following set of subquestions can be identified:

• How is the science return of a KBO flyby mission defined?
• Which thrust parameterization and physics description is best used for the low-thrust trajectory
design and how does this need to be implemented in Tudat?

• What is the best performing optimizer including tuning for a low-thrust flyby mission?
• What is the optimal planetary gravity assist sequence for Kuiper belt trajectories?
• What is the required optimization strategy to expand the trajectory to the Kuiper belt with optimal
objective values?

• What kind of Kuiper belt flyby trajectories are possible with the found optimization strategy?
• How many distant flybys can one expect to encounter during a long-term Kuiper belt mission?
• What impact does a sensitivity study of the inputs of the trajectory have on the found optimal
Kuiper belt trajectories?

• How feasible are the found Kuiper belt flyby trajectories with current power and low-thrust propul-
sion technologies?

• How does the wet-to-dry mass fraction of the designed low-thrust missions compare to potential
high-thrust missions?

These subquestions are tackled one by one throughout this thesis. In larger terms the thesis is split
into three parts. The first part, preparation, looks at all the heritage analyses and theory required to
prepare the study of KBO missions. Background information on the topic is provided in Chapter 2. This
concerns the Kuiper belt, past missions, and low-thrust propulsion in general. Afterwards, the specific
mission scenario for this project is described in Chapter 3. This is followed by a chapter on astrody-
namics used in this thesis in Chapter 4. Together, the aforementioned chapters answer the first two
subquestions regarding the science return and the physics description of the mission.

The second part of the thesis looks at the implementation of the new low-thrust KBO optimization
method and strategy. Chapter 5 discusses the trajectory implementation in Python code as well as the
verification of the code. The selection and tuning of the optimizer is discussed in Chapter 6. The final
part of the thesis, application, discusses the methods to construct KBO flybys and provides examples
of KBO flybys and the conclusions based on the findings. This part starts with the construction of
low-thrust optimization methods for single-KBO flyby trajectories and multiple-KBO flyby trajectories in
Chapters 7 and 8, respectively. Chapter 9 shows the final found trajectories as well as results regarding
distant flybys, the thrust profile, and the sensitivity study. These results will also indicate the feasibility
of the trajectories and this thus regards the ’realistic’ term within the research question. The thesis is
concluded with conclusions and recommendations for future work in Chapters 10 and 11, respectively.



Part I

Preparation

3





2
Background

This chapter provides relevant background information for the thesis. Firstly, more information is given
about the Kuiper belt in terms of its history, structure, and scientific relevance. Secondly, relevant her-
itage missions and research papers are discussed. Finally, a brief summary of the chapter is provided.

2.1. Kuiper belt
The end goal of this thesis project is to have a methodology to design a Kuiper belt exploration mission
with example trajectories. This section explains what the Kuiper belt is and how it came to be. Further-
more, the current structure of the Kuiper belt is discussed as well as its scientific relevance and objects
of interest.

2.1.1. History and evolution
The Kuiper belt is a circumstellar disk or torus-shaped band of icy objects, which can be found beyond
the outer planet Neptune [54]. To understand the state of the Kuiper belt it is important to know the
history of the Solar System. In the early stages of the Solar System the stellar disk around the Sun
coalesced into larger bodies, eventually forming the planets of today. However, not all of the matter
in the disk ended up in planetary systems. Under influence of the outer planets, many smaller objects
in the Solar System were organized into different regions such as the asteroid belt between Mars and
Jupiter. This also resulted in multiple groups of bodies beyond Neptune, the so-called trans-Neptunian
objects (TNOs). These objects inhabit the Kuiper belt, the scattered disc, and the hypothesized Oort
cloud [33]. While the precise origin of the Kuiper belt is still heavily debated, one of the most commonly
accepted models for the Solar System’s and thus also the Kuiper belt’s formation is the so-called Nice
model.

The Nice model describes the migration of the four giant planets of the Solar System. Specifically, it
addresses the migration of Uranus and Neptune to the outer regions of the Solar System with more
eccentric orbits [52]. Migration of the planets is caused by two different processes: the torque from the
protoplanetary disk (type I and type II migration) and planetesimal-induced migration [54]. The latter
process is considered to have been dominant in the creation of the current TNO structure.

Gravitational stirring by Uranus and Neptune caused minor objects to move closer to the Sun and
thus closer to Saturn and Jupiter. Once they reached Jupiter they would often be catapulted to the
Oort cloud [54]. The changes in angular momentum conversely moved these planets outwards, while
Jupiter moved slightly inward due to expelling bodies to the Oort cloud [54]. This migration resulted
in the formation of resonance objects and high-eccentricity orbits, especially with Neptune [54]. Later
stabilization of the planetary orbits and crossing of planetary mean-motion resonances caused another
migration of planets and planetesimals and eventually resulted in the different categories of TNOs that
can currently be found [52]. Note that the Nice model does not account for all features of the Solar
System, which is why it has been modified over the years and other hypotheses regarding planetary
migration exist as well. The current distribution of objects is shown in Figure 2.1 [20].
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Figure 2.1: An overview of the distribution of objects in and near the Kuiper belt in terms of their semi-major axis (a) and their
eccentricity (e) [20]. Resonant objects and scattered objects are indicated by plus-symbols. The cold classical population is

indicated in blue, the hot population in red, and intermediate objects in purple. The dashed lines indicate resonance bands with
Neptune. The meaning of these different categories of TNOs is explained in the next subsection.

2.1.2. Current state
The Kuiper belt currently consists of multiple distinct groups of objects with varying properties, origins,
and reasons for study. Therefore, this subsection discusses the structure, composition, and distribution
of the Kuiper belt.

As already mentioned, the Kuiper belt is located beyond the orbit of Neptune. Neptune’s orbit has a
semi-major axis of roughly 30.1 astronomical units (AU) [54]. Any object with a semi-major axis be-
yond this orbit is considered to be a TNO. Kuiper belt objects (KBOs) are a subset of TNOs. While the
precise definition of the Kuiper belt is not absolute, generally it is considered to refer to a region 30 to
50 AU from the Sun [68]. Note that different definitions of the Kuiper belt do exist, but that the 30 - 50
AU boundary will be used for this thesis. Because of this limitation not all TNOs are included in the
research. Two collections of objects that are excluded from the analysis are the scattered disk objects
(SDOs) and detached objects. The orbits of objects in the scattered disk are fundamentally different
from those in the Kuiper belt. As the name implies these bodies have been scattered by the giant
planets and are still being perturbed by Neptune [62]. Because of this they have higher eccentricities
and inclinations than most KBOs and often have aphelions many times larger than the outer extent of
the Kuiper belt [118].
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Beyond these, there are also the so-called detached or scattered-extended objects [25]. The perihelia
of these objects are far beyond Neptune’s orbit and therefore these objects are minimally affected by
the bodies in the Solar System besides the Sun. The most distant objects of this sub-class fall under
the category of Sednoids such as Sedna itself, which has an aphelion of over 900 AU [86]. Due to their
high inclination and often distant location to the Sun, SDOs and detached objects are not included in
the trajectory design for this research. Analysis of missions to any of the excluded groups of objects is
recommended for future research.

The remaining TNOs are the KBOs which will be studied during this thesis. Information on these
objects is taken from the Minor Planet Center (MPC), a database which keeps track of all objects in the
Solar System [15]. The list of objects which is considered to be part of the Kuiper belt in this research
concerns all objects with a semi-major axis between 30.0 and 50.0 AU. A full plot of the position of all
KBOs with a semi-major axis between 30 and 50 AU as of 2021 is shown in Figure 2.2. This filtered
list consists of more than 3000 catalogued objects.

Figure 2.2: The position of the catalogued celestial objects with a semi-major axis between 30 and 50 AU and a distance from
the Sun below 100 AU as of 2021. The black lines mark the defined 30 - 50 AU edges of the Kuiper belt region. Own work

using raw data from [15].

These KBOs consist of distinct families. The first one is the classical belt, also known as cubewanos.
The classical belt consists of stable objects with a semi-major axis smaller than 48 AU [52]. These
bodies usually have small eccentricities below 0.1 and make up the majority of known KBOs [118].
This group of bodies best represents the original expectations of the Kuiper belt: stable bodies beyond
Neptune which are not directly impacted by the outer planets [33]. The classical belt consists of a dy-
namically cold and hot population. The cold population has low inclinations below 4 or 5 degrees [34]
and is theorized to have formed within the Kuiper belt [68]. The hot population has larger inclinations
up to tens of degrees and likely formed near Neptune a long time ago before being scattered during
planet migration [68].
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The other main category consists of resonant TNOs such as Neptune trojans, plutinos, and twotinos.
They are also in stable orbits, but are locked in some way with Neptune [68]. The trojans are in a
1:1 resonance with Neptune [64] with a semi-major axis of roughly 30 AU. The plutinos are in a 3:2
resonance with a semi-major axis around 39 AU [33]. As the name suggests this resonance band also
contains Pluto. Twotinos are in a 2:1 resonance with Neptune with a semi-major axis around 47.8 AU
[33]. This region denotes a clear boundary beyond which not many KBOs have been discovered [33].
Still different resonance bands exist or have been theorized as far out as 5:1 at 88 AU [25]. These
bands are also visualized in Figure 2.1. The existence of more resonance bands and the lack of bodies
in certain regions is not yet fully understood and could benefit greatly from in-situ measurements. This
and more scientific reasons to visit the Kuiper belt again are discussed in the next subsection.

2.1.3. Scientific relevance
The New Horizons mission has given the scientific community much information about the character-
istics of the Pluto-Charon system and by extension the Kuiper belt. However, this does not mean that
all research questions about the Kuiper belt have been answered. While this thesis only focuses on
trajectory design methodology and optimization to the Kuiper belt, it is still important to have a good
understanding of the scientific relevance of such a mission, if only to define a proper objective function
for the current research.

As has already been mentioned earlier in this chapter, the Kuiper belt is the closest representation of
the primordial phase of the Solar System. The cold classical belt is an especially good analog since it
consists of bodies which formed and have remained in the Kuiper belt since the early life of the Solar
System. As such, further close-up study of the Kuiper belt can answer questions about the conditions
during the early Solar System and about theories regarding Solar System formation and evolution.
Theories regarding comet formation and evolution could strongly benefit from in-situ measurements
of KBOs that can be compared with already existing comet measurements [93]. The study of multi-
ple KBOs in a single mission is highly recommended since it allows more information to be gathered
concerning the diverse properties of the bodies [93]. KBO missions with close flybys would also allow
measurements of any volatiles or organic compounds that might be present on these distant bodies [93].

The discovery of many different classes of KBOs, as explained in the previous subsection, also means
that the study and comparison of different types of KBOs is a valuable research objective [129]. By
having a better understanding of the different characteristics of the varying types of KBOs, current un-
derstanding of the Kuiper belt and its evolution can be validated or updated. The study of different
classes of KBOs has also been mentioned in a proposal for a New Horizons follow-up mission, specifi-
cally to determine the structure of the now long gone proto-planetary disk and how planetary accretion
took place in the early Solar System [93]. The discovery of many binary objects as well as ring systems
around KBOs has resulted in a large number of science questions which can only be answered by
means of close observation [129]. Specific analyses of different classes of KBOs in one mission or vis-
its to binary objects and ring systems are not specifically analyzed in this thesis, but are recommended
beyond the preliminary design stage. More details regarding instrumentation options to answer these
science questions follow in Chapter 3.

2.1.4. Objects of interest
Thousands of bodies have already been identified in the Kuiper belt [15] with many more expected to
exist. During the trajectory design stage of this thesis, optimization will be performed with all bodies
as well as with a subset of the database. For this subset a list with objects of interest is determined.
One immediate body of interest would be Pluto as well as its moons. The Pluto-Charon system has
already been visited by New Horizons in 2015. However, the findings by New Horizon have resulted
in more science questions which would benefit from another flyby of the dwarf planet. Another highly
recommended body to visit is Triton. Imagery of Pluto and Triton can be seen in Figure 2.3 [95] [87].
While not currently in the Kuiper belt, Triton is a moon of Neptune and most likely originated in the
Kuiper belt [30]. During the migration of the outer planets Triton was captured by Neptune [54]. Since
a gravity assist with Neptune is a realistic option in order to get the appropriate bending angle for a long
Kuiper belt trajectory, a close approach of Triton would be a welcome by-product.
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Figure 2.3: A multispectral composite image of Pluto made by New Horizons (left) [95]. A global color mosaic of Triton made
by Voyager 2 during its flyby of Neptune (right) [87].

Another important parameter to determine bodies of interest is whether they can realistically be reached
by a space mission. Due to the uncertainty in the future positions of KBOs, margins have to be taken
into account in the propellant budget. Bodies for which this uncertainty is too high are preferably not
included in the nominal description for trajectory design in this thesis project. A definitive selection of
the bodies which will be considered based on this limiting factor is given in Chapter 3.

Furthermore, preference is given to the brightest objects since they can be easily detected and would
result in a larger scientific data return. One of these large objects in the Kuiper belt is Haumea, which
is also special due to its ring system, shown by means of an artist illustration in Figure 2.4 [4]. Specific
preference could be given to bodies in the cold classical belt for previously mentioned science reasons.
Giving a higher priority to other named objects is also recommended, since giving non-standard names
to bodies is usually only done when they are of specific interest to the scientific community.

Figure 2.4: An artistic illustration of Haumea, an egg-shaped Kuiper belt object with a faint ring system [4].
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It is also important to state what it means to ’visit’ a KBO. The first type of visit regards close flybys
(CFBs) which allow full scientific analyses. Based on the New Horizons flight path this is considered to
be at a distance of 3,500 - 10,000 km [114]. Another type of flyby would be a distant flyby (DFB). This
is a flyby during which some extended scientific measurements could take place while still staying at
a large distance to the body. Based on the mission proposal for the Trident flyby of Triton the limiting
distance for such a DFB is placed at 9 million km [30]. A final option would be very distant flybys
(VDFBs), which are only close enough to allow basic detection of a KBO. Depending on the brightness
of the KBO this distance ranges from 0.07 to 1.34 AU [42]. During this thesis only CFBs will be directly
analyzed to simplify the optimization problem. However, near the end of the report it is checked how
many DFBs and VDFBs are found as a by-product in the optimal trajectories.

2.2. Low-thrust theory
As was already mentioned in the introduction, the trajectories in this thesis are designed by using low-
thrust propulsion. The precise parameterization and mathematical description of low-thrust theory is
given in Chapter 4. This section will provide a brief overview regarding the definition of low-thrust propul-
sion and why it is chosen as the final propulsion method in this thesis instead of high-thrust propulsion.

All Kuiper belt missions to date have made use of high-thrust propulsion. This method burns propellant
on its own once ignited and its large mass flow means that all of the mission’s ∆V can be delivered
in only a fraction of the mission lifetime. The total ∆V capabilities of different high-thrust deep-space
mission are given in Table 2.1. This ∆V excludes any contributions by the launch vehicle. The ∆V
is calculated using Equation 2.1 where g0 is the standard gravity constant, m0

mf
is the ratio between

the initial and final mass of the spacecraft, and Isp is the specific impulse which is an indication of the
efficiency of the propulsion method. These∆V levels are reasonable for KBO missions as indicated by
L. van der Heyden’s conclusions [43]. However, much research has already been performed towards
this option and just because it is a possibility does not mean it is the only option worth studying.

∆V = Ispg0ln(
m0

mf
) (2.1)

Table 2.1: An overview of the relevant capabilities of different high-thrust missions [73] [74] [70] [71] [69] [29] [72].

Mission m0

mf
[-] ∆V [m/s] Thrust [N]

Voyager (1 and 2) 1.14 280 3.6
Pioneer (10 and 11) 1.16 320 9
New Horizons 1.19 370 17.6
Rosetta 2.36 2700 40
Stardust 1.28 530 8

Low-thrust electrostatic electric propulsion ionizes the propellant and then expels it using electrodes
[56]. The thrust levels of these systems are orders of magnitude smaller than of high-thrust propulsion,
as shown in Table 2.2. However, since these systems can remain active during a large portion of
the mission or even the entire mission, combined with the very high Isp, the total ∆V generated by
these systems is larger than with conventional propulsion methods. This results in more freedom of
movement and could thus benefit a long mission such as one to the Kuiper belt. All mentioned low-
thrust missions make use of ion engines as opposed to other low-thrust methods due to the simplicity
of ion propulsion and its widespread usage as the low-thrust propulsion method to date. Therefore, ion
propulsion is the only low-thrust method considered for this thesis project.

Table 2.2: An overview of the relevant capabilities of different low-thrust missions [78] [110] [82] [102].

Mission Isp [s] m0

mf
∆V [km/s] Thrust [mN]

Dawn 3100 1.63 14.9 91
Deep Space 1 3300 1.30 8.5 91
Hayabusa 3000 1.34 8.6 24
Hayabusa 2 3000 1.24 6.3 28
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The main issue with low-thrust propulsion is that the thrust levels mentioned here might be too low to
shape trajectories fast enough for the Kuiper belt mission. The limitation of this shaping ability will be
one of the main takeaways from this research. In the outer regions of the Solar System, nuclear-based
radioisotope thermoelectric generators (RTGs) are the only reliable modern-day power source due to
the low power levels that can be delivered by photovoltaic cells farther away from the Sun. Other
methods such as batteries and fuel cells are not capable in view of the required mission times as of
now, as is shown in Figure 2.5 [2].

Figure 2.5: Power systems for space missions as a function of the electrical output and the mission time [2].

Using Equation 2.2 [35], where W is the power in W and η is the thrust efficiency (80% for Xenon ion
engines) and with a specific impulse of 3000 s [17], it is found that three RTGs (900 W) can deliver
roughly 49 mN of thrust. This is based on 300 W BOL (beginning of life) power per RTG [7]. The thrust
value becomes lower over time due to degradation of RTGs. Research by J. Melman indicated that
low-thrust propulsion was insufficient for a transfer mission to Neptune due to the power requirements
[58]. However, this research did not analyze the possibilities of gravity assists in combination with low-
thrust trajectories. Note that a hybrid system which uses solar power in the inner Solar system and
nuclear power beyond is also a potential solution, but is deemed out of scope for this thesis.

Furthermore, one of the conclusions of this research could be that current RTGs are incapable of suf-
ficiently powering a low-thrust Kuiper belt mission, but that an upcoming nuclear system such as an
advanced Stirling radioisotope generator (ASRG) might be sufficient [66]. All in all, there is a distinct re-
search gap towards the analysis of low-thrust propulsion for multi-KBO flyby missions and whether the
power levels can be attained with modern technologies. L. van der Heyden also mentioned low-thrust
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propulsion as an interesting topic for further study due to this very reason [43]. Therefore, a study to-
wards low-thrust KBO missions is deemed to add a greater body of work to the scientific understanding
of deep-space missions than analyzing the same problem with high-thrust propulsion.

T = η
2W

Ispg0
(2.2)

2.3. Mission heritage
Multiple missions have already been sent to the Kuiper belt. The only one of thesemissions to be sent to
this region for specific study within the Kuiper belt is New Horizons. Nevertheless, the conclusions from
previous missions can be crucial for the trajectory design in this thesis research. Therefore, previous
deep-space missions are briefly discussed. This is followed by a slightly more detailed description of
the New Horizons mission. Previous low-thrust and flyby missions are also discussed, even if they did
not occur in the Kuiper belt, as they are also relevant to this study. Finally, a few mission proposals are
mentioned.

2.3.1. Previous deep-space missions
The spacecraft most distant from Earth currently is Voyager 1, which entered the 30 AU mark of the
Kuiper belt in 1989 [86]. Both the Voyager 1 and Voyager 2 probes used a gravity assist with Jupiter
in order to increase their heliocentric velocity. Voyager 1 performed a gravity assist with Jupiter and
Saturn while Voyager 2 had additional gravity assists with Uranus and Neptune [81]. The latter mission
remains the only mission to have visited Uranus and Neptune to date. Gravity assists have also been
used for the Pioneer 10 and 11 missions, two other spacecraft which passed through the Kuiper belt.
Pioneer 10 is the first spacecraft to enter the Kuiper belt, doing so in 1983 [86]. Note that a gravity assist
with Jupiter is already sufficient to send a spacecraft on an escape trajectory from the Solar System
[67], the other gravity assists were added due to the added scientific value of the flybys. However, for
the work in this thesis the combination of multiple gravity assists would be of use as well since it allows
more detailed and flexible shaping of the trajectory.

Both the Voyager and Pioneer missionsmade use of high-thrust propulsion and were powered by RTGs.
While all of these missions passed through the Kuiper belt, none of them visited a KBO. Furthermore,
all of these spacecraft have already left the 50 AU outer border of the Kuiper belt many years ago and
thus did not spent a long time in the Kuiper belt. This was due to the high heliocentric radial velocities
of the spacecraft. The trajectories of the Voyager and Pioneer missions are visualized in Figure 2.6. A
larger bending angle during the gravity assists could extend the period that a spacecraft can remain in
the Kuiper belt and is thus a desired property for the trajectories in this thesis. The only mission that
did manage to study a KBO is New Horizons, which is discussed in the next subsection.

2.3.2. New Horizons
The New Horizons mission was launched in 2006 with the goal to explore the Pluto-Charon system
and to gather information about the current state of the Kuiper belt as well as its history and evolution.
This last goal also relates to the evolution of the Solar System in general. In 2015 New Horizons made
its closest approach of Pluto at a distance of roughly 12,500 km from the surface [83]. This resulted
in the first close study of Pluto and its moons. In order to reach Pluto, New Horizons only performed
a gravity assist with Jupiter. Like the previously mentioned missions, New Horizons exclusively made
use of high-thrust propulsion. Figure 2.7 gives an overview of the trajectory of New Horizons [76].
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Figure 2.6: The trajectory of the Pioneer and Voyager missions [81].

Figure 2.7: The trajectory of New Horizons up until the arrival at Arrokoth / 2014 MU69. The bodies are all shown in their
position as of the 18th of December, 2018 [76].

After the flyby with Pluto the original mission of New Horizons was complete. However, with still some
propellant left it was analyzed whether it was possible to visit another KBO while New Horizons was
flying through the Kuiper Belt. This eventually lead to a course correction in order to pass by 486958



2.3. Mission heritage 14

Arrokoth at a distance of only 3,500 km [83]. A visual composite of Arrokoth made during the flyby
is shown in Figure 2.8. New Horizons shows that it is indeed capable to successfully perform flybys
of KBOs and that small correction burns are sufficient to resolve the uncertainties of the flyby objects.
Since the decision to perform a flyby with Arrokoth was only made shortly before the Pluto flyby, the
spacecraft had very limited maneuverability [89]. By planning a KBO flyby sequence in advance that
is not linked to Pluto, as is done in this thesis, the possible number of flyby objects could potentially
increase.

Figure 2.8: An enhanced color-composite image of Arrokoth made by New Horizons during its flyby of the KBO in 2019 [117].

2.3.3. Proposed missions
Considering that there are many research questions yet to be answered regarding the Kuiper belt and
the Solar System’s origin, it makes sense that space agencies and institutions also have concepts
about potential future missions. Such proposed missions are discussed in this subsection.

One of the proposed missions was a potential follow-up to New Horizons called New Horizons II. The
proposal for the mission was to reach the Kuiper belt by means of a gravity assist with Jupiter, followed
by another one with Uranus or Neptune [77]. The final proposal contained a Uranus flyby instead of
a Neptune flyby since this was the only body that could be reached during the planned mission time
frame. An overview of a proposed trajectory is shown in Figure 2.9 [77]. The planetary flybys would
be followed by one or several KBO flybys, possibly including another flyby of Pluto. The review panel
for the New Horizons II mission proposal determined that there is still sufficient scientific reasoning for
a new Kuiper belt mission, even though the results are not expected to be as paradigm altering as the
original New Horizons mission [93]. The mission is described as technically feasible, but could not be
performed mainly due to a lack of Pu-238 which would be required for the RTGs of the spacecraft [93].

However, since the mission review in 2005 the situation has changed sufficiently to reconsider the
possibility of a Kuiper belt mission. A major issue for the follow-up KBO mission in 2005 evaluation
was the lack of Pu-238 for the RTGs. However, the production of Pu-238 for space purposes has
increased again with Idaho National Laboratory (INL) on track to produce 1.5 kg per year by 2026
[90]. Since the time scale of the mission is now much larger with a less strict launch window, a flyby
with Neptune or any other planet is most likely possible in the research context and thus changes the
possibilities for the KBO mission.
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Figure 2.9: The proposed trajectory for New Horizons II. This mission would perform gravity assists with Jupiter and Uranus
and end with a flyby of 1999 TC36 [77].

Furthermore, the New Horizons II review panel only analyzed high-thrust missions since low-thrust
propulsion was not developed enough yet for use in such a large mission. Nowadays low-thrust propul-
sion efficiency and power has increased considerably as shown by multiple missions discussed in the
next subsection. Besides, one of the questions in this research is to analyze how feasible low-thrust
propulsion is for a Kuiper belt flyby mission. If the answer to this question would be that current low-
thrust propulsion or RTG power generation is not yet powerful enough, that would be a viable answer
in this research context. For the New Horizons II review panel this would not have been an interesting
analysis to perform since they were concerned with the practical organization of a mission in the near
future. For these reasons, the conclusions of the New Horizons II review panel not to pursue another
KBO flyby mission can co-exist with the research question in this thesis project.

The New Horizons II mission is not the only proposed mission to the Kuiper belt. The Trident mission
proposal is to travel to Neptune to study both Neptune and its moon Triton, a captured Kuiper belt object
[101]. The mission uses an EVEEJN gravity-assist sequence; the Earth and Venus flybys in the begin-
ning are able to reduce the total ∆V for the launch [60]. The abbreviation stands for the first letters
of the flyby bodies in chronological order. After its flyby of Neptune and Triton, the Trident spacecraft
would also end up in the Kuiper belt and could then possibly perform a KBO flyby similar to the one
New Horizons performed.

A final proposed set of missions is the IHP-1 and IHP-2, both short for Interstellar Heliocentric Probe.
These missions would also perform a gravity assist with Jupiter, followed by a flyby of Triton and a
KBO [131]. However, the main purpose of this mission is the study of the heliospheric boundary and
its structure. Specifically, it is theorized that the tail of the heliosphere is larger than its head, the latter
being the only side that has been explored with deep-space missions to date [131]. All in all, these
missions indicate the design of missions to KBOs is theoretically feasible and requires gravity assists,
most of the time with Jupiter and Neptune and possibly with additional ones with Earth or Venus.
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2.3.4. Low-thrust and flyby missions
Missions to the Kuiper belt are not the only heritage missions that are relevant to this study. Since
the research question focuses on low-thrust flyby missions, other past missions involving low-thrust
propulsion and/or flybys are also valuable as background information.

The first NASA (National Aeronautics and Space Administration) exploratory mission to use low-thrust
(ion) propulsion is Dawn, launched in 2007 [78]. It was preceded by a technology demonstration of
low-thrust propulsion with the Deep Space 1 mission in 1998. Dawn performed a gravity assist with
Mars and subsequently entered an orbit around Vesta and later on around Ceres. With a total ∆V of
roughly 11 km/s after the high-thrust launch [14], Dawn clearly showed the increased capabilities of low-
thrust propulsion with regards to maneuverability in space. The 11 km/s value is slightly lower than the
14.9 km/s value mentioned in Table 2.2 since the table assumes perfect conditions. The full trajectory
of Dawn is shown in Figure 2.10. A few years prior in 2003 JAXA (Japan Aerospace Exploration
Agency) also launched an ion engine mission called Hayabusa. This mission rendezvoused with the
asteroid Itokawa and brought surface samples back to Earth [102]. The follow-up mission Hayabusa2,
launched in 2014, performed a similar mission by returning samples from the asteroid Ryugu [102].
The Hayabusa2 mission is still active and will perform two more asteroid flybys in 2026 and 2031 [44].
These missions show that performing flybys using low-thrust propulsion is feasible. Even the use of
landers is a realistic capability. Due to the complexity of the trajectory design to the Kuiper belt, the
additional use of landers is excluded from analysis in this thesis. However, it is recommended to study
in further work.

Figure 2.10: The trajectory of the Dawn mission [103].

Two final missions to note are Rosetta and Stardust. Both of thesemissions used high-thrust propulsion,
but they are still relevant to this project. Rosetta was an ESA (European Space Agency) mission
launched in 2004, which performed flybys of three different asteroids [5]. Gravity assists with the Earth
and Mars were required to gain the required velocity and to shape the trajectory. NASA also performed
amulti-asteroid flybymission, Stardust, which used additional flybys with Earth in order to reach its three
targets [72]. The important lesson from these missions for this thesis is that the planning of trajectories
towards asteroids, even asteroids with relatively uncertain ephemerides, is possible by using a buffer
in the propellant budget. As the spacecraft nears the target, updated ephemerides based on Earth-
observations or visual detections by the spacecraft itself can be used to adjust the trajectory. The
calculation of this buffer is not considered during this thesis, but recommended for future research.
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2.4. Research heritage
Besides mission heritage there is also a large body of research heritage consisting of previous thesis
projects as well as other academic research. First the thesis by L. van der Heyden is discussed since
this thesis partly functions as a follow-up to his research. Afterwards, other relevant theses at TU Delft
are mentioned as well as various academic papers on the topic of the Kuiper belt and flyby missions.

The research by L. van der Heyden was aimed at finding trajectories with a long time period in the
Kuiper belt. The research used a high-thrust launch vehicle (LV), followed by high-thrust DSMs and
gravity assists with various planets [43]. The trajectory was propagated by means of a patched-conics
method. Besides the time in the Kuiper belt, the total mission time and ∆V used were also taken into
account for the optimization. The conclusion of this thesis was that trajectories with a Kuiper belt period
in excess of 100 years are feasible [43]. These trajectories are capable with modern launch vehicles.
The most optimal trajectories have a VVEJS, EVEEJN or JN gravity-assist sequence [43]. An example
of one of the found JN sequences is shown in Figure 2.11 [43].

Figure 2.11: The optimal found trajectory in the thesis by L. van der Heyden for a long Kuiper belt mission with minimal ∆V
using a JN gravity-assist sequence [43].
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Other master theses at TU Delft have also delved into topics relevant for this project. A thesis by M.B.
Penas analyzed the use of a grid-search method for a multi-KBO flyby mission with a low fidelity. The
research indicates that the design of flyby missions in this manner is possible [98], even though the
launch energy and ∆V results were not as optimal as in the research by L. van der Heyden. This
thesis is distinctly different from the current topic since it only looked at high-thrust propulsion. Other
less related but still somewhat relevant thesis projects regard a high-thrust optimization for a Neptune
flyby [58] and a study to include coasting periods in low-thrust propulsion arcs [36]. However, the study
of the Kuiper belt in combination with low-thrust propulsion is still an unexplored topic in these works.

Academic research outside of the TU Delft has also been looking at the possibility for missions to the
outer regions of the Solar System. One example is a study for a flyby of Sedna, a TNO which lies be-
yond the traditional Kuiper belt. It was found that an Earth and Jupiter gravity-assist sequence would
allow an optimal flyby of Sedna [132]. More research towards TNOs such as Pluto, Quaoar, Make-
make, Eris, and Lempo gave a similar result that a Jupiter gravity assist would feasibly allow a KBO
flyby [57] [108] [19], while the addition of a longer gravity-assist sequence could lower the required ∆V
[107]. Note that all these papers only analyzed a single KBO flyby and used high-thrust propulsion.
One of the few exceptions is a study for a short-term single high-thrust mission to Huya and Quaoar
with promising results [47].

Research towards low-thrust deep-space trajectories also exists. However, this is mostly aimed at
missions towards the outer planets instead of the Kuiper belt. Examples aremissions to Jupiter [49] [61],
the Jovian moons [26] [51] [120] and Neptune [92]. Specific low-thrust mission design towards Uranus
and Neptune indicates that low-thrust propulsion could be more efficient than high-thrust propulsion
for this purpose [50]. Research towards low-thrust Kuiper belt missions for example consists of a
comparison between low- and high-thrust payloads and once again indicates that a mission to a KBO
such a Quaoar can be done more efficiently with low-thrust propulsion [6]. Other low-thrust research
has been aimed at analytically calculating low-thrust transfers [35] [106], but without the analysis of
Kuiper belt missions. All research so far seems to indicate that low-thrust KBO missions are feasible,
but a complete optimization methodology and result for long-term KBO missions has not been found,
thus validating the potential of the research question of this thesis project.

2.5. Summary
This chapter has given an overview of the relevant background required to understand the setup for this
thesis project. The Kuiper belt, a region 30 to 50 AU from the Sun, is the target area for missions in this
report. The region contains many primordial bodies and as such can give more information about the
formation and history of the Solar System. SDOs and detached objects will not be considered during
this thesis, leaving a list of roughly 3000 catalogued objects. Specific objects of interest are bodies in
the cold classical belt, named objects or the brightest bodies in general.

Furthermore, a background study of low-thrust propulsion theory shows that, while thrust levels are
orders of magnitude lower than those of high thrust, the total ∆V delivered during low-thrust missions
can be many times higher in the order of 10+ km/s. This makes low-thrust propulsion an interesting
option for long-term missions with objects that are far removed from each other as the additional ∆V
provides extra maneuverability.

Multiple missions have already visited the Kuiper belt, though New Horizons is the only one to have
visited a KBO as well. The heritage missions indicate that a gravity assist with Jupiter is most likely
required. Earlier gravity assists with the inner planets can be used to decrease the total launch ∆V ,
while gravity assists with other outer planets can also be used to shape the trajectory. The success
of New Horizons as well as the planning of other deep-space missions indicates that KBO flybys are
realistic to perform. However, no low-thrust missions have ever been done in this region, thus leaving
a research gap. Academic research towards KBO missions is also abundant and shows promising
results. But once again the combination of low-thrust propulsion and KBO flybys is almost untouched
and justifies the research question and subquestions of this thesis.



3
Mission description

This chapter provides an overview of the mission profile to be studied in this thesis project. First the
trajectory scenario for the mission is described as well as its science return. This is followed by a brief
description of decisions regarding relevant spacecraft subsystems. Afterwards the decision variables
or inputs for the mission are described, as well as constraints and specific objectives. A list of top-level
requirements for the mission is also provided. The decisions in this chapter mostly follow from the
literature study that preceded this thesis and is recommended material in case one wants to get a more
extensive overview of the background information behind these decisions [45].

3.1. Trajectory scenario
The mission to be designed in this project will perform flybys of one or multiple KBOs. The mission
starts with a launch from Earth followed by a number of gravity assists with planets in the Solar System.
After entering the Kuiper belt, the spacecraft will perform close flybys with KBOs. This analysis will start
aiming for a flyby with a single KBO and it will then be extended to more flybys. A literature study of
heritage research in Chapter 2 indicates that missions with at least two KBO visits have already been
designed using high-thrust propulsion. Therefore, the goal is for the methodology to result in trajecto-
ries with at least a similar number of close KBO visits.

In the final phase of the trajectory analysis it will also be analyzed how many DFBs and VDFBs are
possible. These type of flybys would allow partial scientific analysis. Since no previous research has
looked into these distant flybys and their occurrence, it is difficult to put a number on them. As such
no minimum requirement is put on them, but the study later in this thesis will provide an indication how
many DFBs/VDFBs should be expected if one does not optimize for them specifically.

3.2. Science return
The science return is one of the crucial elements of any mission. An extensive science requirement
description is out of the scope of this research. It is only analyzed whether a science case for a KBO
mission exists, as described in Chapter 2, and then the rest of the thesis focuses on trajectory design.
Detailed science return descriptions are recommended for further research. Based on a literature
search regarding instrumentation used in previous deep-space and KBO missions, the following list of
instruments is assumed to be present for the science payload:

• VIR/IR imaging system [79] [102]
• IR/VIS/UV spectrometer [105]
• Photopolarimeter [80]
• Radio science system [73]
• Magnetometer [24]
• Solar wind/plasma spectrometer [80]
• Dust particle detector [18]
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• Accelerometer [18]
• Ultra-stable oscillator [18]

The above list is cited from the literature study [45] and a more extensive discussion regarding the
inclusion of these instruments can be found there. The overview of instruments is relevant for this
thesis since it is required for estimates regarding spacecraft mass and power as well as decisions
regarding the distance to KBOs during flybys.

3.3. Spacecraft subsystems
A detailed design of the spacecraft subsystems is out of the scope of this thesis and is recommended
for future research. Communication subsystems, power distribution systems, data storage systems,
and many other subsystem-related topics are not discussed in this thesis. However, it is impossible to
perform trajectory design without some decisions regarding the subsystems, for example the decision
to use low-thrust propulsion. Therefore, the relevant spacecraft subsystem decisions for this project
are discussed in the following subsections.

3.3.1. Propulsion
The decision for the propulsion subsystem was already discussed in Chapter 2 including the reason-
ing why low-thrust propulsion will be tackled in this thesis. The trajectory legs in this thesis will make
use of continuous low-thrust propulsion. The inclusion of coasting phases, periods in the arc without
thrust, is recommended for future research, but is not tackled in this thesis as it would add more free
variables and as such complexity. Previous thesis work by A.M. Gonzalez concludes that the inclusion
of coasting phases in low-thrust arcs can reduce the peak acceleration, but only recommends it to be
done after the first-order design stage [36].

The propulsion subsystem will make use of ion engines with Xenon as propellant which is the most
common propellant for low-thrust spaceflight [125]. This means that the engines will have an Isp of
3000 s. Degradation of the propulsion subsystem will be neglected and all degradation of thrust is
assumed to be caused by a reduction in power, discussed in the next subsection. A study regarding the
impact of long travel times on the thrust delivered by ion engines is recommended for future research.

3.3.2. Power
In order for low-thrust propulsion to work a continuous power supply to the propulsion subsystem is
required. Furthermore, power is required for the instruments on the spacecraft as well as power which
is needed for the spacecraft to perform its other station-keeping tasks. The main power source for most
space missions comes from solar radiation, using solar panels. However, as discussed in the previ-
ous chapter, the use of solar power for deep-space missions is infeasible since solar power reduces
quadratically with the distance from the Sun. This means that at the 30 AU border of the Kuiper belt
the power density due to the Sun is (1/30)2 = 900 times smaller than at Earth. Therefore, all deep-
space missions to date have used nuclear power, specifically RTGs. RTGs make use of Pu-238 as
their power source, which has a theoretical degradation rate of 0.79% per year [8]. Due to other issues
such as thermoelectric degradation [41], the degradation rate in reality is slightly higher. The average
degradation rate of the Voyager probes based on their power decrease from BOL to 2011 is roughly
1.6% per year [37]. This value will be used for the thesis.

A single GPHS-RTG requires 7.8 kg of Pu-238 and delivers 300 W of power at BOL [7], which would
thus be reduced to roughly 60 W after 100 years as follows from the calculation in Equation 3.1. Here
W represents the power generated at two points in time separated by ty, the time in years and with a
yearly degradation rate of the power system of dr. The stockpile of Pu-238 was the major limiting factor
in many recent deep-space mission proposals such as New Horizons II. However, the production of
Pu-238 is increasing again and is set to become 1.5 kg per year by 2026 [90]. In combination with the
departure date constraint, discussed in Section 3.4, this would allow for the production of three RTGs
and thus 900 W of power before launch. This is the most optimistic scenario, but to prevent a reduction
of design space during this preliminary study this case of three RTGs is used. If this power source is
deemed insufficient then novel power source such as the ASRG or NASA’s Kilopower reactor can be
considered [31] [16].
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W1 = W0 ∗ dtyr = 300 ∗ 0.984100 ≈ 60W (3.1)

The final relevant aspect of the power subsystem is how the power is distributed. The mass and total
power level required for the instruments mentioned in Section 3.2 are shown in Table 3.1. This means
that on average 42.2 W of power will be needed when the instrumentation system is active and 82.2
W is needed upon closest approach during CFBs when the radio-science system is also active.

Table 3.1: An overview of the proposed set of instruments for the KBO mission taken from [18] [80]. The radio-science system
is only needed at closest approach and thus does not count towards the total average power. The sum of the power column
excluding the radio-science system is 42.2 W and 82.2 W if the radio-science system is included. The table is directly cited

from the literature study [45].

Instrument Mass [kg] Power [W]
VIS/IR imaging system 8.6 5.0
IR/VIS/UV spectrometers 5.0 12.0
Photopolarimeter 4.4 2.4
Radio-science system 3.0 40.0
Magnetometer 3.3 3.0
Solar wind/plasma spectrometer 3.7 2.3
Dust particle detector 3.5 9.0
Accelerometer 3.5 3.0
Ultra-stable oscillator 1.5 5.5
Probe/lander N/A N/A
Total 36.5 42.2 - 82.2

Based on similar missions such as New Horizons it can safely be assumed that the instrumentation
subsystem will work for an almost negligible fraction of the total flight time. Therefore, it is assumed
that either the full instrumentation suite is active and the thrust system is inactive (42.2 - 82.2 W) or that
the thrust system is active and the rest of the spacecraft is in hibernation mode. Other power usages
that fall outside of the spacecraft’s hibernation mode such as short bursts for communication with Earth
are neglected.

3.3.3. Spacecraft mass
The spacecraft dry mass is based on the instrumentation-to-dry mass ratio for the New Horizons space-
craft. The instruments on the New Horizons together weigh 30.4 kg and the dry mass of the spacecraft
is 401 kg [124]. By comparing this to the estimated instrument mass of 36.5 kg for this mission in
Table 3.1 this results in a dry mass for this thesis of 481 kg, rounded to 500 kg for simplicity and since
the instrument list is not definitive. In Table 2.2 it can be seen that Dawn performed its mission with a
value of 1.63 for m0

mf
. To keep the design space as big as possible a maximum value of 2 for m0

mf
will

be assumed. This results in a maximum dry mass m0 of 1000 kg. Excluding gravity losses, this would
result in a total available low-thrust ∆V of roughly 20.4 km/s after decoupling from the launch vehicle.
This will be considered as the maximum allowable ∆V for this mission.

3.3.4. Launch system
All the spacecraft subsystems so far have only discussed the eventual spacecraft itself. However, in
order to put the spacecraft on its initial escape trajectory from Earth, a high-thrust launch vehicle is
required. The launch itself will be modelled as an instantaneous ∆V boost which puts the spacecraft
on its first trajectory leg. Any extended analysis of the launch is out of scope. However, a brief analysis
of launch systems is done to understand which ones are realistic for use in this mission and what the
relation is between the mass and launch energy.

An overview of modern launch vehicles (LVs) is given in Figure 3.1. This plot shows the launch en-
ergy, C3, in km2/s2 as a function of the spacecraft wet mass in kg. The C3 of space missions varies
depending on the mission type. The deep-space missions that eventually entered the Kuiper belt have
C3 values ranging from 87 km2/s2 (Pioneer 11) to 158 km2/s2 (New Horizons) [129]. New Horizons
gained its additional C3 by using a third stage on top of the launch vehicle [88]. The heritage values
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indicate that only the most powerful launch vehicles such as the Vulcan 6 and Falcon Heavy Expend-
able are suitable options. Trident’s mission proposal only uses a C3 value of 26 km2/s2 and gains its
additional velocity from extra gravity assists [60]. Results by L. van der Heyden also indicate that C3

values of roughly 20 km2/s2 are possible if multiple gravity assists are performed in the inner Solar Sys-
tem and roughly 80 km2/s2 if only gravity assists with the outer planets are done [43]. Because of this
result and the table of launch vehicles a limit at 100 km2/s2 is placed for the launch energy in this thesis.

Figure 3.1 indicates that this is only possible with the aforementioned maximum mass of 1000 kg if LVs
such as the Vulcan or Falcon Heavy are used. Even then additional stages, similar to New Horizons,
have to be used near the upper bound for C3 of 100 km2/s2 as then both LVs can only carry roughly
750 kg [75]. The launch adds complexity to the optimization process by adding an excess velocity
as well as orientation angles of that velocity. If complexity becomes an issue during the optimization
process, setting the C3 to 0 km2/s2 could be a method to reduce the complexity. This would represent
a launch into a parabolic trajectory which would then become hyperbolic due to the additional ∆V of
the low-thrust propulsion system. An analysis with high-velocity launches would then be recommended
for future study.

Figure 3.1: The launch energy of a range of different common launch vehicles as a function of the wet mass [75]. Negative C3

values indicate that the spacecraft has insufficient energy to escape from Earth.

3.4. Decision variables
The variables for the trajectory settings in this thesis are split into three categories: decision variables,
constraints, and objectives. First the decision variables are discussed. The decision variables are the
inputs and other free parameters in the problem.

3.4.1. Departure date
Having too wide of a range for the departure date can result in an abundance of options and therefore
inefficient optimization. On the one hand, it is important that the departure date is not too far in the
future in order to limit uncertainty errors and to prevent the report from being outdated by the time of
the desired launch date. On the other hand, enough time is required to allow for the Pu-238 production
which is required for three RTGs. Based on the Pu-238 production rate an earliest launch date of
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January 1, 2040 is chosen. A time window of 10 years is chosen to allow enough time for different
optimal planet positions for gravity-assist combinations, thus until January 1, 2050. Specifically, the
optimal Jupiter - Neptune alignment has a return period of 13 years and will thus occur once within this
time period in 2043, as L. van der Heyden found another instance of this alignment is with a launch in
2030 [43]. Since the low-thrust trajectories in this thesis are slower than their high-thrust counterparts,
the precise date of this optimal alignment might shift for low-thrust trajectories. Due to the departure
date another decision variable, the departure position state, is also defined. This state is equal to the
position of Earth at launch.

3.4.2. Time-of-flight
The complete time-of-flight of the mission is not a single decision variable. However, the time between
the start and end of each trajectory leg is a direct input to the system. In accordance with other Kuiper
belt studies [57] [129], the travel time of New Horizons, as well as the research by L. van der Heyden
[43], a maximum desired time of 25 years is set to reach the Kuiper belt. How these 25 years are
spread over the different trajectory legs depends on the specific flyby sequence and is determined by
means of trial-and-error during the optimization process. In the optimization process a maximum time
of 25 years per leg is used to keep the input space large enough for all possible trajectories, but the
end goal is to have only 25 years for all legs until the Kuiper belt is reached.

The same goes for the time period between different CFBs in the Kuiper belt and between the last
planet and the first KBO visit. Previous research found that a flyby between Quoar and Haumea was
possible with a travel time of roughly six years between the two KBOs [47]. Based on this a slightly
looser constraint of 10 years is used as the maximum average time period between KBO CFBs in one
trajectory as well as the maximum time between entry in the Kuiper belt and the first CFB. Similar to the
planetary legs an input space of 25 years is used to prevent a lack of solutions during the optimization
phase. This also allows for trajectories where one leg is longer than 10 years, but the average time
between CFBs is below 10 years.

3.4.3. Departure velocity
Earlier in this section the departure date and thus the related departure position were discussed. How-
ever, the departure velocity is also required to describe the first leg of the trajectory. To do this the
magnitude and direction of the hyperbolic excess velocity after launch needs to be known. The direc-
tion of this velocity is determined based on an in-plane and out-of-plane angle and the launch energy
is set as a value between 0 and 100 km2/s2 as discussed in Section 3.3.4. The hyperbolic excess
velocity is the square root of the launch energy. The use of an in-plane and out-of-plane angle, right
ascension and declination, in combination with the hyperbolic excess velocity magnitude is the most
common description of the velocity vector in other research [27] [128] as well as the TU Delft Astro-
nomical Toolbox (Tudat). The vector of the excess velocity is to be added to the heliocentric velocity of
Earth at departure. If it is later decided to set the launch velocity to zero the two departure angles are
also no longer relevant as they relate to the direction of this excess velocity.

3.4.4. Flyby variables
The variables so far mostly refer to the launch and the separate trajectory legs. However, in order to
perform the full trajectory design the flybys with the planets and connections between different trajec-
tory legs also need to be defined. As already mentioned, the initial launch leg is defined by means
of an initial position state, an excess velocity vector with two directional angles, and the time-of-flight.
Multiple revolutions in a single trajectory leg are neglected as these can result in unworkable flight
times, especially for deep-space legs. The selection for the target planet/body is also one of the input
variables. The gravity assist with the planet is then partially defined with similar variables: the incoming
excess velocity magnitude of the spacecraft together with two angles which position this vector. The
epoch of the gravity assist is already defined by the departure date and time-of-flight values.

For the gravity assist itself two different options exist. One option would be to use the gravity assist
variables as the inputs: the periapsis distance, (optional) ∆V during a powered assist, and the asymp-
totic bending angle of the gravity assist. The second option would be to define the outgoing excess
velocity and two angles, in order words the velocity vector at the start of the subsequent leg. Together
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with the incoming velocity vector for the gravity assist at the end of the previous leg, these two velocity
vectors completely define the flyby and lock the values for the three previously mentioned gravity assist
variables.

For this thesis the gravity assists will be modelled with the incoming velocity vector and the three gravity
assist variables (periapsis,∆V , asymptotic bending angle). Due to the 3D simulation all these variables
are required to fully define the flyby. The main reason for this is that the decision-variable space would
become much larger if the alternative description with two velocity vectors is chosen. The vast ma-
jority of combinations of two random velocity vectors leads to theoretically infeasible trajectories and
the design space would then thus become much bigger than the useful design space. A mathematical
background regarding gravity assists is given in Chapter 4.

The flybys of KBOs are modelled in a similar manner with a fewminor exceptions. Based on an analysis
during the literature study it is determined to neglect the mass of KBOs during the gravity assists since
this mass is often not well-known and is so small that its impact can be disregarded for a first-order
design. Thus to model KBO flybys the trajectory will ”overlap” with the ephemeris of the KBO at a certain
point in time [45]. This means that the KBOs are considered to be nodes in the trajectory and do not
impact the trajectory of the spacecraft. In other words, the incoming and outgoing velocity vectors of a
KBO flyby are the same and no gravity assist variables are required.

3.5. Constraints
Besides the inputs to the system there are also other variables which limit the solution space of the
problem. These variables are called constraints and are discussed in this section. The main constraints
that have not been mentioned yet regard the flybys. Any remaining constraints are discussed in a
subsection afterwards.

3.5.1. Flyby constraints
In the previous section the flyby variables were already discussed. The following paragraphs discuss
the way the flybys are constrained by means of the flyby distance and sequences.

A minimum flyby distance for each of the planets should be put in place to constrain the gravity assist
parameters. Since this study does not tackle the concept of planetary gravity assists in a different way
compared to L. van der Heyden’s thesis, the sameminimum distances will be used [43]. The values are
based on the flyby distances of similar missions and proposals. The full list of minimum flyby distances
is given in Table 3.2. Due to the extra free variables with low-thrust trajectories, a maximum flyby
distance must also be chosen. Of the spacecraft that have used gravity assists to reach the Kuiper belt
(Pioneer 10 and 11, Voyager 1 and 2, New Horizons), the most distant gravity assist with respect to
the planet’s radius was performed by New Horizons which approached Jupiter up to 2.3 million km for
its gravity assist [126], roughly 32 times the planet’s radius. As a rough margin a factor 2 is applied to
this ratio, which means that for every planet the maximum flyby distance is 64 times the minimum flyby
distance.

Table 3.2: An overview of the minimum flyby distances for the planets in the Solar System, cited from the literature study [45]
and originally taken from [43]. The conversion to flyby distances is made using the mean radius [54]. The distance is taken

from the center of the planet, not the planet’s surface.

Planet Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune
rmin [km] 2806 6960 7327 3899 118,849 98,994 43,115 41,861

Another constraint for flybys is the flyby sequence. This concerns both flybys with planets in the Solar
System as well as the KBO flybys. First the planetary flybys are discussed. To reduce the optimization
complexity a single planetary flyby sequence is chosen beforehand. L. van der Heyden concluded that
the following five flyby sequences would be optimal for a long-term Kuiper belt trajectory based on the
∆V and time-of-flight analysis: EJN, EEJN, EVEEJN, VEEJS, JN [43]. Note that the E for Earth in
these abbreviations stand for a flyby with the Earth on top of the original launch from Earth.
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Many heritage missions only make use of a Jupiter gravity assist or many inner Solar System flybys
followed by a final Jupiter gravity assist. These trajectories, however, are not optimal for the problem
tackled in this thesis as a gravity assist with at least two of the large planets (Jupiter, Saturn, Uranus,
Neptune) can strongly increase the bending angle and is thus crucial for a long-term Kuiper belt trajec-
tory. Other examples such as the JSUN sequence for the Voyager mission are not used due to the lack
of proper planetary alignment. Trajectories without a Jupiter gravity assist are also not used as it was
found by L. van der Heyden that the Jupiter gravity assist is most efficient for increasing time spent in
the Kuiper belt [43]. To reduce complexity the flybys of inner Solar System planets are not tackled in
this thesis, though they are recommended for future research. Due to the proximity of Neptune to the
Kuiper belt as well as the added benefit of visiting Triton, the JN flyby sequence is used for study in this
thesis.

The final constraint regarding flybys regards the KBO section of the trajectory. For each node in the
Kuiper belt the next KBO to visit is either pre-selected or randomly selected from a group of objects
depending on the optimization stage. In Chapter 2 it was already mentioned that a total of more than
3000 KBOs have been registered. However, due to the uncertainty in the future positions, also known
as ephemerides, a subset of KBOs with small uncertainties is used as the nominal data set during this
thesis. Research during the literature study determined that KBOs with an ’uncertainty parameter’ U
of 2 or smaller should have an ephemeris accurate enough that a minor ∆V correction can account for
the position errors [45]. The uncertainty parameter is grouped in numbered categories where a higher
number indicates a higher runoff of the uncertainty of a celestial body in arcseconds per decade. This
filter of an uncertainty factor of 2 or smaller leaves 902 bodies for study. A scatter plot of these bodies
is shown in Figure 3.2.

Figure 3.2: A scatter plot of the semi-major axis and eccentricity of all catalogued KBOs with an uncertainty parameter of 2 or
less. The color represents the inclination of the orbit of the KBO in degrees. Taken from the literature study [45].
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To reduce complexity further a smaller subset can be made of the most high-priority objects. As men-
tioned in Chapter 2 the most interesting objects are the brightest KBOs, brightest classical-belt KBOs,
and named KBOs. All bodies with an absolute magnitude H below 4.0 are chosen [129], resulting in 15
of the brightest objects. Furthermore, 10 of the brightest cold-classical belt objects are chosen and the
remaining 11 named objects are selected. Thus, the subset of bodies consists of 36 KBOs. The size
of this subset is determined by weighing the advantage of having more options with the disadvantage
of increasing the already quite large input space. A scatter plot of these bodies is shown in Figure 3.3.
Depending on the stage of the optimization either these 36 or 902 bodies are used. If this is not deemed
enough to find satisfactory trajectories the remaining bodies with a higher uncertainty factor can also
be used. These data sets can also be further reduced based on the inclination of the KBOs if desired.

Figure 3.3: A scatter plot of the semi-major axis and eccentricity of the 36 KBOs which are given highest priority. The color
represents the inclination of the orbit of the KBO in degrees. The size of the dots correlates with the size of the bodies. Taken

from the literature study [45].

3.5.2. Other constraints
The remaining constraints are grouped together in this last subsection. The first of these constraints
relates to the thrust of the spacecraft. It was already mentioned that the nominal BOL power of the
spacecraft in this thesis is set at 900 W based on the use of three RTGs. Using Equation 2.2 with an
efficiency factor of 0.8 and an Isp of 3000 s it can be determined that a BOL thrust of 49 mN is possi-
ble. With the 1.6% degradation level this results in 22 mN after 50 years and 10 mN after 100 years.
After the optimization process it is checked whether these variable thrust constraints are complied with.

The last constraints concern the thermal subsystem. Based on a maximum 40 degrees Celsius limit for
the protection of computers and the propulsion system of the spacecraft [96] a constraint of 0.8 AU was
set as the minimum distance to the Sun during the literature study based on the black-body radiation
temperature [45]. Heritage research shows that this number could be slightly lower since trajectories
to Venus would bring the spacecraft even closer to the Sun. However, since Venus is not considered
as a flyby body in this thesis the constraint is not adjusted.
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3.6. Objectives
The goal of an optimization process is to increase the fitness of objective functions as much as possible.
This section describes the different objectives for the trajectory design in this thesis and how they are
implemented into the optimization process. The two main objectives regard ∆V and time-of-flight.
Finally, other considerations such as KBO visits and penalties are mentioned.

3.6.1. ∆V objective
The leading objective for most space missions is the amount of ∆V used. ∆V directly relates to the
amount of propellant required and thus the mass of the spacecraft. Since all missions want to increase
the payload mass as much as possible, a lower ∆V is preferred. Note that this thesis combines a
high-thrust launch with low-thrust arcs. As such the two will need to be combined. Since the Isp of
hydrazine (high-thrust propellant) is 220 s [3] while the Isp of low-thrust Xenon propellant is 3000 s [17],
the two ∆V ’s can not simply be added up. Instead their efficiencies will have to be taken into account
to come up with the total mass fraction of the mission. If the launch energy is set to 0 km2/s2 then this
combining step is no longer relevant and the ∆V from low-thrust can directly be used as the objective.
The same goes for any high-thrust impulsive ∆V used during gravity assists.

3.6.2. Time-of-flight
Another objective concerns the total time-of-flight (TOF). As with all space missions or projects in gen-
eral it is beneficial to perform the task as quickly as possible while still meeting all the desired mission
criteria. In order to make this a fair comparison only missions with a similar scientific return can be com-
pared. In other words, only missions with the same number of trajectory legs can be directly compared
in terms of their time-of-flight. While it is indeed true that this thesis studies long-term KBO missions,
the time-of-flight is still a critical objective. Getting results sooner increases their relevance for the sci-
entific community and reduces the chance of crucial spacecraft parts failing too soon or technology
becoming obsolete.

3.6.3. Other considerations: KBOs and penalties
The use of two objectives, ∆V and time-of-flight, allows for the creation of 2D Pareto fronts which in-
dicate a range of optimal members in a population. Since the ∆V is considered the leading objective
in this thesis the member with the lowest ∆V will be chosen as the best one during later stages of the
research.

However, besides these two objectives there are also other variables that were considered. One of
these is to include a KBO-related objective. This objective could count the number of CFBs and DFBs,
and could take into account the type of KBO which would be visited during the flyby. A CFB counter
as objective is not necessary. This is since at first the trajectory will consist of multiple planetary flybys
followed by one KBO flyby. Later in the thesis the number of KBO flybys is extended one by one as
far as possible. The optimization is thus always only performed with a population which has the same
number of CFBs. DFBs will not be taken into account during the optimization process and are only
analyzed afterwards. Analyzing DFBs as well as the type of KBO encountered as an objective is rec-
ommended for future research, but is out of scope for this thesis.

One other consideration is to add penalty functions to the objectives. This could be either through a
separate penalty objective or by adding a penalty to the other objectives [22]. An advantage of these
penalty systems is that they can guide the optimizer away from unrealistic solutions. However, they
also increase complexity by adding objectives or can make the meaning of the existing objective values
less clear if the penalties are directly added to those objectives. The original intent for this thesis was
to implement a few penalty objectives, specifically the following ones.

• Thrust setting above the maximum based on the power output (49 mN limit at BOL).
• ∆V in powered gravity assists above the set limit (50 m/s).
• Total low-thrust ∆V used should be below the limit based on a wet-to-dry mass ratio of 2.0 and
an Isp of 3000 s (20.4 km/s).

• The final mass of the spacecraft must be larger than the dry mass of 500 kg.
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• The minimum distance to the Sun is not exceeded.
• The maximum launch ∆V is not exceeded.
• Time to the Kuiper belt is below 25 years.

However, it is determined that no penalties are required. Penalties such as the one regarding the
launch ∆V and time-of-flight are eventually constrained by means of the input range and are thus not
needed. Furthermore, as will be explained in later chapters, powered gravity assists are not considered
thus eliminating that potential penalty. The results also indicate that there are no trajectories in the
JN sequence which approach the Sun closer than the previously mentioned 0.8 AU constraint, thus
negating the use of that penalty. In every optimization the total ∆V eventually dipped below the 20.4
km/s, which was partially taken care of by a convergence system explained in Chapter 7. The thrust
setting is also not as much of a constraining factor as anticipated and as such no penalty systems will
be used in the optimization process.

3.7. Requirements
The mission description in this chapter automatically also leads to a list of associated requirements.
These requirements are grouped together in this section. Note that this list of requirements is only
top-level since for example a detailed spacecraft subsystem design is out of the scope of this the-
sis. Furthermore, only elements of the mission relevant for the trajectory optimization process are
discussed and the requirement generation is thus not necessarily complete. The KBM abbreviation in
the requirement classification stands for ’Kuiper belt mission’, GEN stands for ’general’, ’PROP’ stands
for ’propulsion’, ’POW’ stands for ’power’, ’INSTR’ stands for ’instrumentation’, ’LV’ stands for ’launch
vehicle’, ’TRAJ’ stands for ’trajectory’. ’TIME’ is not abbreviated.

• KBM-GEN-01 The spacecraft shall perform a close flyby with a periapsis less than 10,000 km
from the surface of the body with at least two KBOs.

• KBM-GEN-02 The mission objective of KBM-GEN-01 shall be reached before the end of the
mission. The end of the mission is defined as the moment the spacecraft leaves the 50 AU
border of the Kuiper belt or otherwise 100 years after launch.

• KBM-GEN-03 The total wet mass of the spacecraft shall be no more than 1000 kg.
• KBM-GEN-03.1 The dry mass of the spacecraft shall be no less than 500 kg.
• KBM-INSTR-01 The power budget of the instrumentation subsection of the spacecraft shall be
below 50 W for general usage.

• KBM-INSTR-01.1 The power budget of the instrumentation subsection of the spacecraft shall be
below 100 W for peak usage.

• KBM-PROP-01 The spacecraft shall make use of low-thrust Xenon ion propulsion as its main
thrust method.

• KBM-PROP-01.1 The maximum theoretical thrust of the spacecraft, based on the ion propulsion
system requirements and available power, shall not be exceeded.

• KBM-POW-01 The spacecraft shall be powered by means of three GPHS-RTGs, capable of de-
livering 900 W of power at BOL.

• KBM-LV-01 The spacecraft shall be placed on its initial interplanetary trajectory leg with a maxi-
mum launch energy of 100 km2/s2.

• KBM-TIME-01 The spacecraft shall be launched between January 1, 2040 and January 1, 2050.
• KBM-TIME-02 The spacecraft shall reach the 30 AU Kuiper belt border within 25 years after
launch.

• KBM-TIME-03 During the active phase of the mission the average time between CFBs shall be
no more than 10 years.

• KBM-TRAJ-01 The mission trajectory shall consist of a low-thrust arc to Jupiter, followed by a
low-thrust arc to Neptune, followed by CFBs of KBOs.

• KBM-TRAJ-01.1 None of the individual trajectory legs shall complete one full revolution around
the Sun or more.

• KBM-TRAJ-01.2 The gravity assists with the planets shall be limited by minimum and maximum
periapsis distances based on heritage missions.
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• KBM-TRAJ-01.3 None of the sections of a trajectory leg shall approach the Sun by less than 0.8
AU.

• KBO-TRAJ-02 The Kuiper belt mission shall be performed with close flybys of KBOs with an
uncertainty factor of 2 or lower.

3.8. Problem structure
The final goal of this research is to find a working methodology for low-thrust KBO optimization and to
then find optimal trajectories for such a mission. It is decided to split this main goal into multiple sub-
goals or phases, which will be tackled one by one during the thesis. The first phase regards the tuning
of the chosen optimizer on low-thrust trajectories. Afterwards, the second phase studies the planetary
flybys and can be used to test the capabilities of the low-thrust optimizer. The third phase then includes
a single KBO flyby. If needed, the optimization method can be adjusted here. Afterwards, the KBO
sequence is extended and the found trajectories are analyzed until they are deemed acceptable. The
final phase of the research is a retrospective analysis regarding the sensitivity of the found solutions
as well as the number of DFBs found in the trajectories. A schematic overview of the different thesis
phases can be found in Figure 3.4. Before the phases it is first decided whether a fully propagated
approach or a patched-conics approach is used for the trajectory propagation.

Figure 3.4: A flow chart of the different phases of the thesis project.
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3.9. Summary
This chapter provides an overview of the mission description. The goal of the trajectory design is to
find trajectories to KBOs with at least two CFBs in a single mission. DFBs are not analyzed during
the optimization, but are only looked at afterwards. Based on the science instruments a spacecraft dry
mass estimate of 500 kg is made with a maximum wet-to-dry mass ratio of 2. Using the larger launch
systems allows a launch energy up to 100 km2/s2. Ion engines with an Isp of 3000 s are assumed and
are powered by three RTGs with a BOL power of 900 W and a degradation level of 1.6% per year.

The trajectories are defined by a departure date, time-of-flight values, a launch velocity, and flyby values
which regard the incoming velocity for the flyby and three variables of the gravity assist itself. A list of
constraints has been made for the flybys including the planetary flyby sequence, which will be Jupiter
- Neptune (JN). A decision regarding KBOs has been made and multiple selections of bodies are used
during the thesis project: the full set of known KBOs, 902 bodies with a sufficiently small uncertainty
parameter and 36 high-priority bodies. The trajectory fitness is defined by the ∆V and time-of-flight,
which allows the usage of Pareto fronts. The ∆V is the leading objective out of the two. Finally, an
overview is provided of the requirements based on the mission description as well as the problem
structure as it will be tackled during the rest of the project.



4
Astrodynamics

There are multiple ways to mathematically tackle the design of interplanetary trajectories. This chapter
tackles the astrodynamics theory related to the thesis topic. The chapter starts with a discussion on
Tudat, the coding framework used for this thesis, as well as the used data sources since they are
relevant for some of the astrodynamics decisions. Afterwards, model decisions such as the coordinate
system, time system, and reference frame are discussed. This is followed by a discussion of the
trajectory parameterization. Finally, the remaining mathematical theory is discussed which contains
orbital mechanics, Kepler orbits, and gravity assists.

4.1. Tudat
Tudat (TU Delft Astrodynamics Toolbox) is a toolbox written in C++ and developed by TU Delft [21]. The
coding implementation of all trajectory design in this thesis is done using Tudat. Since the advantages
and limitations of Tudat are also relevant for the astrodynamics description, the toolbox is discussed in
this chapter. This section discusses what Tudat is, why it is chosen for this thesis and what its general
capabilities are.

Tudat is a toolbox developed and used by TU Delft. To make the toolbox easier to use and to combine
it with many other frameworks and modules in Python, Tudatpy has been made as well. Tudatpy (TU
Delft Astrodynamics Toolbox in Python) is a library which exposes the functions of Tudat such that they
can be directly used in Python [21]. Any fundamental changes to the workings of the toolbox can only
be made in C++. However, if the tools are available the use of the Python version allows for easier
customization and combination with other programs and coding modules. Unless explicitly mentioned,
the coding in this thesis is done in Python with Tudatpy.

The main purpose of Tudat is to allow users to perform astrodynamics simulations in an intuitive man-
ner and to provide many of the common functions required for such research. This includes numerical
simulation-related capabilities such as the availability of many different integrators and propagators.
Mathematical settings and tools such as coordinate frames, interpolators, and state descriptions (such
as Kepler elements) are implemented. Tudat allows the user to set up a numerical simulation with a
set of bodies, vehicles, and different types of trajectories. Trajectories such as the ones for multiple
gravity assist (MGA) missions are already implemented in Tudat and can thus easily be accessed. The
body models of planets can be adjusted with specific environment properties and acceleration models.
Custom bodies can also be added. Tudatpy can also be used together with optimization modules which
allows trajectory optimization to be performed in Python. Python’s matplotlib package will be used for
the visualization of the results in this thesis.

Tudat was not the only tool considered for trajectory design and optimization for this thesis. Figure 4.1
shows an overview other trajectory design software such as NASA’s Evolutionary Mission Trajectory
Generator (EMTG) package, which has also been used inmany previousMSc theses [26]. The decision
for Tudat is based on multiple reasons. Firstly, Tudat is specifically made while keeping the needs of
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(thesis) students in mind and thus has a very high level of customization. Secondly, contributions by
previous MSc students such as L. van der Heyden are available in Tudat and this allows the thesis to be
a natural continuation of their work. Thirdly, because Tudat is developed and maintained by students
and staff from TUDelft, it is easy to make contact with developers in order to ask for the status of specific
modules, request prioritization for certain parts of the code, and to ask for support when problems are
encountered. Specifically, contact with D. Dirkx has been made extensively to discuss the current state
of Tudat. Contact with fellow master student M. Avillez was also frequent as he implemented the low-
thrust MGA legs into Tudat. Separate spherical shaping legs were already implemented in Tudat by T.
Roegiers and later re-implemented into its current version by M. Chambe [36].

Figure 4.1: Trajectory design software used by various other institutions. The software displayed on the right is the most
advanced and used for later design stages [26].

4.2. Data sources
To understand how the astrodynamics components of the thesis work it is also relevant to know which
type of input data is used.

The position of the planets of the Solar System, stored in ephemerides, are taken from SPICE, which
stands for Spacecraft Planet Instrument C-matrix Events. During this thesis the DE440 version of
SPICE is used, which was released in 2020. There is also a DE441 version of SPICE, but it is less
accurate than DE440 [94]. DE441 covers a time period of roughly 30,000 years while DE440 only cov-
ers a period of roughly 4,000 years [94]. However, for this thesis the DE440 time range is more than
enough and is more accurate for the relevant time period.

The SPICE ephemeris provides the properties and positions of the planets for the relevant time period
of the thesis simulation. However, the KBOs themselves are not included in this database and must
thus be added in a different manner. For this data from the Minor Planet Center (MPC) is used. MPC
keeps a database of all known and catalogued objects in the Solar System [15]. The Kepler elements
at a specified point in time can be retrieved from its database and are used to construct unperturbed
Kepler orbits of the KBOs in Tudatpy.

There is a possibility to generate perturbed ephemerides from the MPC website, but the main issue
here is that the tool only runs 60 years into the future and could thus limit KBO mission analysis due to
the long expected time-of-flight values [39]. Another option would be to use the JPL Horizon interface,
which runs up to 2500 AD and can generate a look-up table for a perturbed KBO trajectory [86]. The
position at a certain time can then be found through interpolation of the table. Since this study regards a
preliminary analysis the Kepler orbits are deemed sufficient as the use of the JPL Horizon ephemerides
would slow down the optimization process. For future detailed analysis, the use of the JPL Horizon
ephemerides is recommended. An extensive analysis of the impact of neglecting the perturbations for
the KBOs is also recommended. The uncertainty due to the omission of perturbations is at least equal
to the angular runoff of the uncertainty parameter, which is based on the perturbed trajectory from MPC
[15]. For an uncertainty value of 2 the position accuracy for a body at a distance of 40 AU over a period
of 50 years is roughly 0.02 AU [45].
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4.3. Model decisions
In order to design the trajectories in this thesis a number of model decisions have to be made. These
regard the trajectory description, reference frame, time system, integrator, propagator, and models for
the spacecraft, environment, and acceleration. These decisions are discussed in this section.

The most fundamental decision regarding the model is whether a fully propagated approach is chosen
or whether patched conics are assumed, the latter being shown in Figure 3.4. The main advantage of
a fully propagated approach is its increased accuracy by being able to implement detailed acceleration
models. However, its main drawback is its increased runtime which would be orders of magnitude lower
than the alternative, patched conics [23]. Instead of propagating the trajectory with many acceleration
models, patched conics simplifies the trajectory to a two-body problem [21]. During the large interplane-
tary sections the only force acting on the spacecraft, besides the thrust, is the point-mass gravity of the
Sun. Once the spacecraft enters the planet’s sphere of influence (SOI) the main body switches from
the Sun to the respective planet [21]. During preliminary design this patched-conics approach is often
used as it can greatly increase the sample size of the analysis with only a limited loss in accuracy. This
is especially the case for this analysis as the time spent near the planets is very short relative to the
time span of the interplanetary legs. Therefore, the patched-conics approach is chosen for this thesis.

Other simplifications of Tudat’s patched-conics approach in combination with MGAs is that each trajec-
tory leg performs a maximum of one full revolution or less and that the trajectory is counter-clockwise, in
the same direction as the orbital motion of the planets [21]. An example of a patched-conics approach
to Mars with a switch from an Earth-centric, to a Sun-centric, to a Mars-centric trajectory is shown in
Figure 4.2 [97]. By using the patched-conics method the gravity assists are seen as instantaneous
maneuvers, which are used to patch the two trajectory legs together.

Figure 4.2: An illustration of a patched-conics trajectory from Earth to Mars with the different SOIs [97].

The Solar System barycenter (SSB) will be used as the global frame origin during this thesis with an
inertial ecliptic coordinate frame orientation based on the Solar System as of January 1, 2000 at noon
(ECLIPJ2000). This frame has an xy-plane in the ecliptic plane, which goes through the ascending
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node of the Sun’s equator at J2000 [85]. The z-axis is known as the Ecliptic North Pole [85]. This
reference frame is one of the default frames for interplanetary missions in Tudat and is also used in the
ephemeris data from MPC and the JPL Horizon interface through the international celestial reference
frame at J2000 (ICRFJ2000), which is considered equivalent for preliminary analyses [65]. A visual
overview of the ECLIPJ2000 reference frame is given in Figure 4.3.

Figure 4.3: An overview of the ECLIPJ2000 reference frame [65].

The time system used during this thesis is based on the Julian day system, which has a zero point at
noon on January 1, 4713 BC [115]. There is also a shifted version of this system with the zero point at
noon on January 1, 2000 AD. This system is called J2000. Another time system called MJD2000 starts
at 00:00 on January 1, 2000 AD. Finally, the Modified Julian Date (MJD) has a zero point at 00:00 on
November 17, 1858 AD [32]. Unless specified otherwise, the Tudat software makes use of MJD2000.

Another decision regarding the trajectory is the use of an integrator and propagator. The initial idea
during the literature study was to make use of a high-order Bulirsch–Stoer (BS) or Dormand-Prince (DO-
PRI8(7)) integrator together with the Unified State Model (USM) as the propagator [45]. However, this
decision still assumes a fully propagated trajectory. This selection changed due to the decision to use
a patched-conics approach. Since the gravity assist is considered to be an instantaneous maneuver,
the spacecraft is in practice always in the Sun-centered frame. The shape of low-thrust shape-based
trajectories with a thrust profile and a constant central body can be completely described by mathemati-
cal functions. Therefore, no numerical integration is required and a semi-analytical low-thrust trajectory
can be used. If detailed design with a fully propagated trajectory is done in future research, the previ-
ously mentioned integrator and propagator are recommended.

The decision to use semi-analytical legs vastly increases the speed of the analysis andmakes it realistic
to study a larger number of trajectory options. During the experiment phase of the thesis it is also found
that this increase in computation speed is required in order to study the desired number of trajectory
options. The description of these semi-analytical legs is dependent on the trajectory parameterization
and is discussed in Section 4.4.

The decision to use semi-analytical patched conics also simplifies the environment, acceleration, and
spacecraft models. The environment models regard the properties of bodies or objects in the Solar
System. The bodies used during the simulation are the Sun, the planets in the Solar System relevant
for the trajectory, and the KBOs with which the flybys are performed. The ephemerides of these bodies
have already been discussed earlier in this chapter.
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The acceleration models concern the consequences of certain decisions on the acceleration of the
spacecraft. The only main decisions made here regard the fact that for the planets a point-mass
gravitational acceleration will be used and that for the flybys in the Kuiper belt the mass of the KBOs
themselves is neglected completely since their acceleration is multiple orders of magnitude lower than
those of the planets. A more detailed quantitative comparison regarding KBO gravitational attraction
was performed in the literature study [45]. This decision simplifies the KBO section of the trajectory as
the outgoing position and velocity from the KBO flyby is the same as the incoming position and velocity.
The only other modelled acceleration is the thrust of the spacecraft.

Besides environment and acceleration models there is also the spacecraft itself which will need to be
modelled in some capacity. Some of these settings have already been mentioned in previous chapters
such as the maximum wet mass of 1000 kg and the minimum dry mass of 500 kg. The propellant
efficiency is modelled with an Isp of 3000 s for the ion engine and 220 s for any high-thrust maneu-
vers. Further specifications for the spacecraft including rough dimensions and the radiation pressure
coefficient are recommended for further research when a fully propagated trajectory is used, but are
out of scope of this thesis. The most important model decision that has not been discussed yet is the
trajectory parameterization. The next section discusses this topic in detail.

4.4. Trajectory parameterization
Besides the gravitational acceleration due to the Sun and the planets during the gravity assists, the
thrust is the major force experienced by the spacecraft during its trajectory. There are many different
methods to parameterize the thrust arc. The different options were extensively studied during the
literature study [45]. First these different options are summarized and a parameterization is chosen.
Afterwards, this option is explained in more detail.

4.4.1. Parameterization options
Low-thrust trajectory parameterizations can generally be split into direct, indirect, hybrid, and shape-
based methods. Direct and indirect methods discretize the problem thereby changing the continuous
low-thrust problem in a defined set of nodes. One of the most common direct methods, the Sims-
Flanagan method, splits the trajectory into a number of nodes and applies an instantaneous ∆V at the
center of each segment. An illustration of this method is given in Figure 4.4 [112]. As the number of
nodes increases this method approaches the result of a continuous low-thrust arc. Due to the large
number of nodes for the long-term mission studied here, which would result in many free variables, in
combination with the fact that Sims-Flanagan is more suited for already defined trajectories instead of
preliminary design [1] this method is not used nor is any other direct method. Once the trajectory is
more well-defined, Sims-Flanagan would be an interesting option for further research.

Indirect methods do not solve the nodes directly, but instead solve for the costates of the problem. Like
direct methods, this method already requires a good initial guess in order to converge and its formu-
lation is susceptible to any change in the simulation. Therefore, these methods are also not chosen
for this thesis. Hybrid options which combine direct and indirect methods are an interesting alternative,
but are also not chosen due to limitations in adding detailed environment models. Furthermore, the
low-thrust hybrid methods that were found are all optimized for Earth-centered orbits. The design of a
hybrid method for deep-space missions is an intriguing topic, but is out of scope for this thesis.

The remaining class of options thus consist of shape-based methods. Shape-based methods formulate
trajectories based on a set of mathematical functions and, as the name implies, use specific mathemat-
ical shapes in order to design the trajectory. These methods are highly recommended for preliminary
trajectory design due to their fast computational speed while retaining accuracy [55]. Within the shape-
based method class there are also multiple options which all use different mathematical base functions.
The exponential sinusoids and inverse polynomial methods have been used in previous MSc theses at
TU Delft, but both struggle with boundary conditions and free variables [35] [99] [123].
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Figure 4.4: A trajectory illustrating the principle of the Sims-Flanagan method [112].

The two most intriguing shape-based methods for this thesis are spherical shaping and hodographic
shaping. The basic radial description of spherical-shaping legs is given by Equation 4.1 [123]. The
method is thus a combination of an inverse second-order polynomial together with a sine/cosine wave
function to calculate the radial distance R. The ’a’ components represent the free coefficients of the
function. Hodographic shaping uses the velocity hodograph to shape the trajectory as illustrated in
Figure 4.5 [35]. Unlike the previously mentioned shaping methods, hodographic shaping has free
coefficients to tune the trajectory and also has a vast array of different base functions. The main
advantage of this is that hodographic shaping works for nearly all trajectory inclinations, while the
nominal description of spherical shaping is only accurate up to an inclination of roughly 15 degrees
[121].

R =
1

a0 + a1θ + a2θ2 + (a3 + a4θ)cos(θ) + (a5 + a6θ)sin(θ)
(4.1)
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Figure 4.5: A trajectory shaped using hodographic shaping (left) and the corresponding velocity hodograph (right) [35].

The final decision on the shaping method is between spherical and hodographic shaping. A major dis-
advantage of hodographic shaping for the time plan of this specific thesis is that much time will have
to be spent on exploring the optimal base functions and the tuning of the free coefficients. This would
shift the main focus of the thesis away from low-thrust KBO trajectory methods and towards the study
of hodographic shaping. While still an interesting topic, this is not within the scope of the thesis. There-
fore, spherical shaping is chosen as the thrust parameterization for the thesis.

Due to the use of spherical shaping only KBOs with an inclination magnitude smaller than or equal
to 15 degrees are considered during the nominal phase of the thesis as the method can have trouble
calculating trajectories with high inclinations [121]. This implies that of the 902 bodies which passed the
uncertainty parameter filter in the previous chapter, 590 also pass the 15 degree inclination filter. The
selection can be expanded if the desired results can not be reached with these 590 bodies. Spherical
shaping is tackled in more detail in the next subsection.

4.4.2. Spherical shaping
This subsection provides the theoretical basics for spherical shaping. This explanation is sufficient to
understand the inner workings of spherical shaping, but is not detailed enough to replicate the method
from scratch. For this full mathematical derivation the previous work by D. Novak and T. Roegiers is
recommended [91] [106].

D. Novak was the first to describe the version of spherical shaping which is used in Tudat. A slightly
adjusted version of this method was eventually implemented in Tudat by T. Roegiers and M. Chambe.
As the name implies spherical shaping is based on spherical coordinates. Spherical coordinates make
use of one radial and two angular coordinates and can be described using Equations 4.2, 4.3, and 4.4
as is also shown in Figure 4.6 [92] . Here r is the radius, θ is the azimuthal angle, and ϕ is the elevation
angle while x, y, z are the standard Cartesian coordinates.

r =
√
x2 + y2 + z2 (4.2)
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θ = atan2(y, x) (4.3)

ϕ = arcsin(
z

r
) (4.4)

Figure 4.6: A schematic overview of a spherical coordinate system [92].

These spherical coordinates are used during the rest of the description of spherical shaping. However,
throughout the rest of the thesis the nominal Cartesian coordinates (x, y, z) are used as well as Kepler
elements to describe properties of the trajectories. Kepler elements and orbits are discussed in more
detail in Section 4.5.

Spherical shaping assumes a negligible spacecraft mass compared to that of the planetary bodies.
Parameterization of the trajectory is done by means of the azimuthal angle θ. The state vector is thus
a function of θ instead of time t. This state vector is shown in Equation 4.5 [106]. Here r = R(θ), t = T(θ),
ϕ = Φ(θ) are functions of θ. Similarly the velocity and acceleration can also be rewritten as a function
of θ. Based on the solution of these functions the required thrust can be calculated.

x = [r, t, ϕ,
dR

dθ
,
dT

dθ
,
dΦ

dθ
] (4.5)

The first step of the spherical-shaping process is to input the decision variables as discussed in Chap-
ter 3. This is used to determine the initial and final state vector as a function of the azimuthal angle as
is shown in Equation 4.5. Furthermore, a list of boundary conditions can be set up. A full derivation
and description of these boundary conditions can be found in T. Roegier’s work [106]. The two shaping
functions are the previously shown Equation 4.1 and Equation 4.6 for the elevation [106].

Φ = (b0 + b1θ)cos(θ) + (b2 + b3θ)sin(θ) (4.6)

The boundary conditions together with the shaping functions as well as their derivatives can be used to
solve for the coefficients ax and bx by setting upmatrices. The only coefficient without a closed analytical
solution is a2. A different value for a2 affects the time-of-flight of the trajectory. Thus, an iterative process
by means of a bisection root finder is used to get the value for a2 that corresponds with the desired time-
of-flight. The time-of-flight can be calculated with Equations 4.7 and 4.8 where D is given by Equations
4.9 and 4.10 [106]. Here µ is the gravitational parameter of the central body, θi and θf are the initial and
final azimuth values of the trajectory, nr is the number of revolutions of the trajectory, un is the normal
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thrust acceleration, and γ is the flight-path angle. The D function is the parabolic anomaly function
that regards the geometry of the trajectory. As can be seen from Equation 4.7 the time and thus the
trajectory is only feasible if D has a positive value. The real-life context of this is that a positive value
of D relates to a trajectory which curves towards the central body as shown in Figure 4.7 [106].

T ′(θ) =
dT

dθ
=

√
D(θ)R(θ)2

µ
(4.7)

TOF =

∫ θf+2πnr

θi

T ′dθ (4.8)

Dθ̇2 =
µ

r2
+

un

cos(γ)
(4.9)

D = −R′′ + 2
R′2

R
+R′Φ′Φ

′′ − sin(Φ)cos(Φ)

Φ′2 + cos2(Φ)
+R(Φ′2 + cos2(Φ)) (4.10)

Figure 4.7: The implication of the curvature of the trajectory depending on the value of D. A positive D value means that the
trajectory curves towards the body while it curves away with a negative value of D [106].

The final steps are now to calculate the acceleration vector of the spacecraft over time ã and, related to
that, the control vector or in other words the low-thrust vector u. This is done with Equations 4.11 and
4.12, respectively. The acceleration is given in the spherical coordinate system. The tilde indicates that
the acceleration is expressed in the spherical coordinates along the trajectory. Here e is a unit vector
in radial (r), tangential (t), normal (n) or out-of-plane (h) direction. ṽ is the velocity vector along the
trajectory. The full derivation of these descriptions can be found in T. Roegiers’ thesis [106]. The total
∆V is then the |u|dTdθ integrated over the azimuthal angle of the trajectory, which is done by means of
an RK4 integrator with a time step of 2π

100 [106].

ã =

ãrãθ
ãϕ

 =

 r′′ − r(ϕ′2 + cos2(ϕ))
2r′cos(ϕ)− 2rϕ′sin(ϕ)

2r′ϕ′ + r(ϕ′′ + sin(ϕ)cos(ϕ))

 (4.11)

u =

ut

un

uh

 =

 µ
r2 er ∗ et + θ̈ṽ ∗ et
µ
r2 er ∗ en + θ̇2ã ∗ en

θ̇2ã ∗ eh

 (4.12)

4.5. Trajectory theory
With the spherical-shaping methodology described, the only astrodynamics topic which still has to be
discussed regards basic theory about trajectory design and physics. First a short overview of the laws
of physics is given that determine orbital mechanics. Afterwards, Kepler orbits as well as gravity assists
are discussed in more detail. Unless otherwise specified, the information in this section is derived from
K.F.Wakker’s ’Fundamentals of Astrodynamics’ [122]. As such the entire section references this source
and it is not mentioned in every sentence, unless citations are used.
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4.5.1. Orbital mechanics
The basics of orbital mechanics follow from Isaac Newton’s laws of motion, which are as follows:

• First law: ”Every particle continues in its state of rest or uniform motion in a straight line relative
to an inertial reference frame, unless it is compelled to change that state by forces acting upon
it.” [122] (Wakker, 2015, p1)

• Second law: ”The time rate of change of linear momentum of a particle relative to an inertial
reference frame is proportional to the resultant of all forces acting upon that particle and is collinear
with and in the direction of the resultant force.” [122] (Wakker, 2015, p1)

• Third law: ”If two particles exert forces on each other, these forces are equal in magnitude and
opposite in direction.” [122] (Wakker, 2015, p1)

The third law in particular describes how an action results in an equal and opposite reaction. This
concept is used in spaceflight to propel the spacecraft: by expelling propellant at a high speed a thrust
force is generated in the opposite direction. This relates to a much more recent equation, namely Tsi-
olkovsky’s rocket equation, repeated in Equation 4.13. The high specific impulse of low-thrust propul-
sion allows for a much larger ∆V budget than is capable with high-thrust propulsion.

∆V = Ispg0ln(
m0

mf
) (4.13)

Another of Newton’s laws regards gravitation and is shown in Equation 4.14. It shows the force exerted
on body 2 by body 1 where G is the gravitational parameter and r2 is the vector from body 2 to body 1.
Note that, as follows from Newton’s third law, an opposite force is also exerted on body 1. However, if
body 1 is assumed to be the planet and body 2 the spacecraft, the force on body 1 is often negligible
in terms of affecting the planet’s inertia. The problem tackled in this thesis is at all times a two-body
problem due to the use of the patched-conics assumption. In this simplified state the acceleration of
the spacecraft can be formulated with Equation 4.15. This function can also have an additional thrust
term (normalized with the spacecraft mass) if there is thrust active.

F2 = G
m1m2

r2
r2 (4.14)

r̈ = −µ
r
r3

(4.15)

The movement of the spacecraft around celestial bodies, if simplified to a two-body problem, is a conic
section. In other words: an ellipse, a parabola or a hyperbola. A visual explanation of these orbits
is shown in Figure 4.8 [100]. Since many heritage missions gained enough velocity during its Jupiter
gravity assist to escape the Solar System, it is expected that the trajectories in this thesis will have
hyperbolic orbits with respect to the Sun once they reach the Kuiper belt. This means that the velocity
of the spacecraft is larger than the Solar System’s escape velocity VE . A more rigorous way to talk
about the properties of orbits is by using Kepler elements, which is discussed in the next subsection.

Figure 4.8: An illustration of an elliptical, parabolic, and hyperbolic orbit around a body with a common point P [100]. The
parameter v represents the velocity in point P.
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4.5.2. Kepler orbits
The radial distance of a particle in an orbit around a central body is given by Equation 4.16. Here p is
the semi-latus rectum of the orbit, while e and θ are the eccentricity and the true anomaly, respectively.
The last two terms are two of the Kepler orbital elements. A full list of these elements is: the semi-major
axis a, eccentricity e, inclination i, the argument of pericenter ω, the right ascension or longitude of the
ascending node Ω, and the true anomaly θ. An overview of all of these elements is given in Figure 4.9
[111]. In this figure the true anomaly is denoted by ν.

r =
p

1 + e ∗ cos(θ)
=

a(1− e2)

1 + e ∗ cos(θ)
(4.16)

Figure 4.9: A schematic overview of an orbit with all the Kepler orbital elements, in this example for an Earth-centered elliptical
orbit [111].

The time-of-flight in a Kepler orbit is given by Equation 4.17. In the case that the time-of-flight for just
a section of an orbit is required Equation 4.18 can be used. Here E is the eccentric anomaly at point 1
and 2. This version is also known as Lambert’s problem, which is solved in Tudat by using an algorithm
developed by D. Izzo [46].

tf = 2π

√
a3

µ
(4.17)

tf = (E2 − E1 + e(sin(E1)− sin(E2)))

√
a3

µ
(4.18)

Many sources such as MPC do not provide the true anomaly, but instead use the mean anomaly. In
these cases Equation 4.19 is used to go from the mean anomaly M to the eccentric anomaly E in an
iterative process. For the first iteration E is assumed to be M

1−e . Afterwards, Equation 4.20 can be used
to go from the eccentric anomaly to the true anomaly where β is given by Equation 4.21. Tudat also
has another set of equations to solve this problem in case of hyperbolic orbits [21]. Finally, it is often
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required to switch between the Keplerian elements and the Cartesian ones during analysis, which can
be done with built-in functions from Tudat.

Ei+1 = Ei +
M − Ei + esin(Ei)

1− ecos(Ei)
(4.19)

θ = E + 2 ∗ atan2(βsin(E), 1− βcos(E)) (4.20)

β =
e

1 +
√
1− e2

(4.21)

4.5.3. Gravity assists and flybys
The final theory discussed in this chapter regards gravity assists (GAs). In the trajectories analyzed
gravity assists are used to patch the different interplanetary legs together. But not only that, the gravity
assists themselves are used to change the heliocentric heading and velocity of the spacecraft. This
means that less ∆V is required to complete the mission. For this reason gravity assists are common-
place in interplanetary trajectories. This subsection is largely based on the findings from the literature
study [45].

Gravity assists make use the gravitational attraction of a flyby body in order to change the spacecraft’s
velocity in the planetocentric frame. This change results in both a change in the magnitude of the veloc-
ity as well as its direction in the heliocentric frame. A schematic overview of a gravity assist is provided
in Figure 4.10 [122].

In this figure the spacecraft approaches the planet up to a distance r3, which will be referred to as
rp (pericenter distance) from now on. The value of this pericenter distance is given by Equation 4.22
[122]. At this distance the velocity of the spacecraft in the planetocentric frame is V3 or Vp, described
by Equation 4.23 [122]. In this equation B is called the impact parameter and represents the distance
between the flyby planet and the asymptote of the flyby trajectory. After the flyby the heliocentric ex-
cess velocity in the tangential direction V∞t

has changed to V ∗
∞t

and the direction of the trajectory has
changed by an angle α, the asymptotic deflection angle. Due to the conservation of angular momentum
Equation 4.24 can be used [122]. The ∆V change during such a gravity-assist maneuver is described
by Equation 4.25 [122].

In the 3D case a 3D rotation angle, brot, is required [43]. Due to using the incoming velocity as well
as the gravity assist variables the 3D rotation angle is then fixed. The rotation angle is used within
the Tudat calculations, but is not required as an explicit input. A more extensive explanation of the 3D
gravity assist case can be found in the thesis by L. van der Heyden [43].

rp =
µ

V 2
∞t

(

√
1 +

B2V 4
∞t

µ2
− 1) (4.22)

Vp =

√
2µ

r3
+ V 2

∞t
=

µ

BV∞t

[

√
1 +

B2V 4
∞t

µ2
+ 1] (4.23)

BV∞t
= rpVp (4.24)

∆V = 2V∞tsin(
1

2
α) =

2V∞t√
1 +

B2V 4
∞t

µ2

(4.25)
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Figure 4.10: A schematic overview of a gravity assist [122].

One additional method to increase the effect of a gravity assist is to perform a∆V boost during the flyby,
which is called a powered gravity assist. Powered gravity assists make it easier to connect different legs
of the trajectory and previous thesis work by P. Musegaas found an improvement of 7.8% in terms of
the spacecraft wet mass in case powered gravity assists were used for high-thrust trajectories [63]. The
nominal description of this thesis does not include powered gravity assists in order to keep the analysis
completely focused on the capabilities of low-thrust propulsion. A powered gravity boost would need
to be performed with high-thrust propulsion. Also, the use of aerogravity assists, where drag due to
the atmosphere of the planet is used to influence the gravity assist, is considered out of scope of this
thesis. An extensive analysis of the effect of powered gravity assists and aerogravity assists on low-
thrust KBO trajectories is recommended for future research. During KBO flybys the mass of the flyby
body is neglected and no gravity assist takes place. The KBO can be seen as a node in the trajectory
and does not impact the velocity of the spacecraft.

4.6. Summary
This chapter describes the astrodynamics relevant for this thesis. The decision for Tudat as the soft-
ware toolbox has been explained. Tudat is used in Python through Tudatpy with data for the planets
retrieved from MPC and SPICE. To limit runtime and since this is a preliminary analysis, it is decided
to use the patched-conics assumption. This patched-conics method is semi-analytical and only takes
into account the main body’s gravitational attraction and the thrust force by the spacecraft.

For the thrust a spherical shaping parameterization is used due to its relative simplicity and speed and
thus more realistic chance at finding optimal low-thrust solutions since two of the bottlenecks of the low-
thrust analysis will be its complexity and runtime. The chapter also provides an overview of relevant
orbital mechanics and theory regarding Kepler orbits and gravity assists. In the nominal description
only unpowered gravity assists are considered.





Part II

Implementation
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5
Software development

This chapter describes the way in which the astrodynamics and mission description of the previous
chapters have been implemented by means of Python code. The first section of the chapter provides
an overview of the coding design while the second section regards verification of this code.

5.1. Coding design
The analysis of the thesis was fully done by means of Tudatpy in Python and a few tweaks to the C++
code in Tudat. First the full model architecture in Python is described. This is followed by a step-by-step
example of a calculation loop for one trajectory. Afterwards, the C++ adjustments made to Tudat are
discussed. Finally, the launch, trajectory leg, and gravity assist implementation are all briefly covered.

5.1.1. Main model architecture
This section discusses the architecture of the model used for the trajectory design of low-thrust KBO
flyby trajectories. The optimization code is not discussed, but is tackled in Chapter 6. The model de-
signed for this thesis makes use of the MGA tool available in Tudat. This tool allows the user to design
a trajectory with several gravity assists and can be combined with low-thrust spherical shaping legs
in between the gravity assists. The main part of the code in Python is spread across three files: a
trajectory file, a problem file, and a utilities file.

The trajectory file is the main file which is run in order to perform the trajectory design and later also
the trajectory optimization. Like with every Python file in this framework the file starts with imports of
packages from Tudatpy as well as other Python packages and files within the framework. In this file
the Solar System bodies are generated including the KBOs. The environment is made and the relevant
settings such as the vehicle mass and specific impulse are set. Afterwards the settings for the specific
trajectory are defined such as the departure time, time-of-flight, and flyby bodies. Based on these set-
tings a so-called MGATrajectory object is made. This object-oriented programming (OOP) approach
makes it easy to keep all results from a trajectory together to easily request and store them. Afterwards
functions can be called to evaluate the trajectory. The functioning of the MGATrajectory object itself is
done in the problem file.

The problem file defines and describes the MGATrajectory object class. The Python code for this thesis
works with OOP where each instance of a trajectory is encapsulated by an MGATrajectory object. This
object contains all the relevant variables for the trajectory and can be used to perform specific functions
on the trajectory. A line from the trajectory file calls the problem file in order to make a new MGATrajec-
tory object. The problem file defines functions for the MGATrajectory object such as the ability to get
the trajectory parameters or the state history, to return the shaped trajectory or to calculate the values
of the objectives for the trajectory. For the most part the problem file is simply a container for these
functions. The actual implementation of the functions can be found in a third file, the utilities file.

47
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The utilities file contains the implementation of the functions from the MGATrajectory class and also
contains any other relevant functions for pre- or post-processing of the data. Functions to for example
evaluate the trajectory, visualize the results, calculate the thrust profile, set up the body system in
Tudat and many more can be found here. This thus results in a system with three files where the
main trajectory file calls the problem file to produce MGATrajectory objects and the problem file then
calls the utilities file for the implementation of functions for the MGATrajectory objects. To provide an
overview of the capabilities and the relations of the main files all the functions present can be seen in
Figure 5.1. For simplicity the inputs for the functions of the utilities file are omitted since many require a
large portion or all of the variables of the MGATrajectory object. The numbers and letters behind each
function indicate which other functions they call. After the greater-than-sign the returned variables are
listed. If these variables are returned optionally based on settings of the function they are listed in
italics. The working of each function and a more practical overview of how they link with each other
when performing a calculation are discussed in Section 5.1.3.

Figure 5.1: A schematic overview of the functions present in the different python files.

These three main files, however, are not the only ones that have been used for this thesis. Other
relevant Python files are discussed in the next subsection.
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5.1.2. Auxiliary files
Two other auxiliary files have been made for pre-processing purposes. The first of these is the KBO
database file. It is used to gather the orbital elements of all the KBOs from MPC and to filter them
based on the input settings. These input settings are the required uncertainty parameter, the maxi-
mum inclination or a manual list of KBOs to search for. A second file is made to interact with the JPL
Horizon interface through Python to be able to request the tabulated ephemerides for all KBOs. Tab-
ulated ephemerides were eventually not used during the thesis, but if this topic is picked up in further
research this file could be used to get more detailed ephemerides.

In Figure 5.1 the main file is called the trajectory file. In reality there is not a single main file but instead
there are many. This is done in order to group experiments by specific phases of the thesis. There is
for example a tuning file used for trajectories during the optimizer tuning phase of the thesis. Similarly
there are also separate files for the single KBO flyby analysis and the search for multiple KBO flybys.

Finally, two more files have been made with unit tests and system tests, respectively. Running these
files causes all of the tests to be performed. Automatic assertions have been added such that it can
quickly be seen whether any of the tests were to fail. A discussion of these tests follows in Section 5.2.

5.1.3. Calculation loop example
To illustrate the function of the different files and to provide an easy-to-follow overview of the trajectory
design, this subsection will show how a trajectory can be calculated step-by-step. The model that has
been made can work with both high-thrust (MGA or MGA-DSM) as well as low-thrust (MGA) trajectories.
The trajectory in this example is a low-thrust spherical-shaping trajectory from Earth to Neptune with a
gravity assist at Jupiter. The trajectory is designed in the main trajectory file. The list of steps follows
below.

1. Import the relevant Python and Tudatpy modules as well as the functionalities from the problem
and utility files and the SPICE kernels.

2. Set the vehicle and propellant settings: mass and specific impulse.
3. Set up the bodies by calling the set_up_bodies function from the utilities file.
4. Define the input values for the trajectory. These are the departure and arrival conditions (semi-

major axis and eccentricity), which are both set to departure and arrival at the edge of the sphere
of influence. This is hard-coded in the program by giving an infinite semi-major axis and an
eccentricity of zero. Other input variables are the trajectory order (Earth, Jupiter, Neptune), a
departure time, and two time-of-flight values, one for each leg.

5. Define the free parameters for the legs and nodes. These are the number of full revolutions per
leg (set to zero for both legs), the departure velocity magnitude from Earth with two associated
angles, the arrival velocity with two angles at Jupiter and Neptune, and the gravity-assist variables
at Jupiter. If one wants to generate a random pool of input variables instead, a decision variable
range array can be made which contains the lower and upper range of each of the decision
variables. This is done during the initial population of the optimization phase of the project.

6. Generate the MGATrajectory object with all the information from the previous steps. The leg type
should also be specified, which is a low-thrust spherical leg for this example.

7. Run the evaluate_trajectory function from the problem file. This function also gives the possibility
to return, print, and plot the results. With this function the ∆V of the trajectory is calculated, split
by each node and leg.

8. If desired other aspects of the trajectory can now be called through the problem file. This can
be the state history, thrust history, trajectory parameters, trajectory object or final mass. For the
optimization stage the fitness function is used to evaluate the trajectory. The optimization type,
bounds, and number of objects (nobj) functions also relate to this optimization stage. If one wants
the objective values of a single trajectory the fitness function in the problem file can be called.

9. The utilities file can also be called directly for a few functions. This can be done to calculate
departure angles from certain planets (needed during optimization), convert between mean, true,
and eccentric anomalies, to get the numbered list of KBOs and their states for post-processing
and visualization, or to initiate an optimization algorithm.
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Figure 5.2 shows a trajectory to Neptune with input values according to Table 5.1. Here the ’dep’ and
’arr’ subscripts stand for the departure and arrival conditions at the different planets. The specific input
values are simply one of the intermediate results in the later optimization process. The total∆V to reach
the SOI of Neptune in this example is 11,418 m/s with a time-of-flight of 6530.6 days. The trajectories
studied in this thesis start with a launch from Earth, followed by gravity assists with planets in the
Solar System. Afterwards, one or more CFBs are performed in the Kuiper belt, where the gravitational
impact of the KBOs on the spacecraft is neglected. A number of CFBs is performed as well as DFBs in
between, the latter only being evaluated in post-processing. This results in a generic trajectory shape
as indicated in Figure 5.3.

Table 5.1: An overview of the input variables for the example trajectory from Earth to Neptune by means of a gravity assist with
Jupiter.

tdep = 14,948.44 days Vdep,E = 2.06 m/s Varr,J = 6114.8 m/s
TOF1 = 1208.72 days θdep,E = 0.988 rad θarr,J = 2.826 rad
TOF2 = 5321.85 days ϕdep,E = 0.906 rad ϕarr,J = 0.0385 rad

rp = 151,431 km Varr,N = 7825.9 m/s
α = -1.357 rad θarr,N = 4.425 rad
∆Vga = 0 m/s ϕarr,N = 0.107 rad

Figure 5.2: A 2D representation of the test trajectory from Earth to Neptune via Jupiter. Note that the axes in this figure are not
equally scaled.
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Figure 5.3: A schematic overview of a Kuiper belt trajectory which will be studied during this thesis. The yellow circle indicates
the Sun, the blue circles planets in the Solar System, and the green circles KBOs.

5.1.4. C++ adjustments
While the majority of the analyses in this thesis project is done using the Python interface, some small
changes also had to be made to the C++ code in order to get the functions to work as intended. These
adjustments are discussed in this subsection.

The main adjustment made to C++ is the possibility to retrieve and test the value of the a2 variable in
the spherical-shaping algorithm. As explained in Chapter 4, this variable is used to make sure the time-
of-flight of the trajectory matches the input. During the analysis it was found that sometimes the a2 root
finder does not find a solution at all or that it might converge to different roots depending on its starting
value and search range. These different roots result in vastly different objective values. Therefore, the
C++ code in Tudat is adjusted to allow the user to calculate the time-of-flight based on the a2 value.
In this way plots of the time-of-flight as a function of a2 can be made. The implementation during this
thesis only allows one to calculate the a2 function if at least one value can be found by the user for
which the trajectory is feasible so with a positive value for the D function. If this is not the case the a2
function can not be returned. To increase understanding of this function it is recommended to add the
functionality to always be able to view the a2 value in future research.

The other addition, related to the previous paragraph, is the possibility to look at data from separate
legs in an MGA low-thrust trajectory. This is a prerequisite to get to the a2 value since it is a unique
value for each trajectory leg.
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5.1.5. Launch implementation
The previous subsections explained the general working of the code system. Now each phase of the
trajectory is shortly discussed in terms of its implementation in Tudat.

The first phase of the trajectory is the launch. This launch will not be modelled in detail. Instead the
trajectory design is initiated at the edge of the sphere of influence of the initial departure body (Earth)
with a specified outgoing excess velocity vector at departure V∞,dep. The magnitude of this launch
velocity is directly related to the maximum mass that can brought on-board of the mission as was
already shown in Chapter 3. Together with this magnitude the in- and out-of-plane outgoing angles at
departure θdep and ϕdep, respectively, are required. The range for θ runs from 0 to 2π while the range of
ϕ runs from −0.5π to 0.5π. The angles are defined by the spacecraft velocity relative to the departure
planet in the ECLIPJ2000 system.

5.1.6. Trajectory leg implementation
Each trajectory leg of the mission consists of a low-thrust spherical-shaping arc. Only the launch arc
requires the velocity vector to be given at the start of the leg. For all the other legs the required inputs
are listed below and are given as of arrival at a celestial body.

• V∞,arr = the incoming excess velocity magnitude upon entering the upcoming flyby, at the end of
the leg.

• θarr = the in-plane angle of the velocity vector upon entering the upcoming flyby, at the end of the
leg.

• ϕarr = the out-of-plane angle of the velocity vector upon entering the upcoming flyby, at the end
of the leg.

• tf /TOF = the time-of-flight of the leg to the body.

The two angles are relative to the planet the spacecraft is approaching. The end of the leg corresponds
to the gravity assist with the upcoming (planetary) body.

5.1.7. Gravity assist and flyby implementation
Every leg which ends at a planet will then be directly followed by a gravity assist. While in reality the
gravity assist is a dynamic process, the maneuver will be considered instantaneous for the purposes of
this thesis. During a gravity assist the spacecraft approaches the planet up to a pericenter distance rp,
which results in an asymptotic bending angle α of the spacecraft trajectory. During the gravity assist
there is a possibility to perform a high-thrust corrective maneuver∆Vga, which makes the gravity assist
a ’powered assist’. This last variable is not considered during this thesis and is set to zero. These
parameters then fully define the velocity vector of the outgoing leg of the gravity assist.

5.1.8. Kuiper belt flyby implementation
The main difference between Kuiper belt flybys and planetary flybys in this thesis is that the mass of
KBOs is neglected. Furthermore, the velocity vector at the start of the subsequent leg is set as identical
to the vector at the end of the previous leg. This ensures that the Kuiper belt flyby functions merely
as a node for the trajectory instead of being affected by the KBO itself. The thrust profile does change
after the KBO flyby as a new trajectory leg begins. For the purposes of this thesis the KBO is given a
negligible mass with a µ value of 1 m3/s2 and the spacecraft approaches the KBO up to one million
km with an α value of 0 rad. This ensures that the KBO does not affect the trajectory and the one
million km offset is a negligible error margin at this preliminary design stage and is assumed to equal
an overlap of the CFB trajectory. For future research it is recommended to add a new type of leg in the
C++ framework of Tudat: a leg to a certain location at a certain time (based on the ephemerides of the
KBO), but with no specific action such as a gravity assist at the end of this leg.

5.2. Verification
One final step which needs to be performed before the actual research problem can be tackled is veri-
fication and validation. Verification makes sure that the code and mathematical framework behaves as
expected and is implemented without errors. Validation ensures that the same code and framework is



5.2. Verification 53

not only behaving as expected, but also accurately replicates the reality that it attempts to model. The
section starts with a discussion of thrust profile checks. Afterwards, system tests using ESA’s Global
Trajectory Optimization Problems (GTOP) database and low-thrust trajectories are discussed. At the
end of the chapter possibilities for validation are also mentioned.

In order to verify the code, unit tests have been implemented for every written function. Many of these
verification checks are trivial and not useful going over in the main body of the thesis. In the end all
unit verification tests are passed. An overview of the unit tests performed is given in Appendix A.

5.2.1. Thrust profile checks
This subsection looks at logic checks of the thrust-profile generation for low-thrust trajectories. This
way it can be confirmed whether the thrust behavior of spherical shaping is as expected. Similar tests
have already been performed in detail by T. Roegiers in a previous thesis [106]. However, due to the
updates made to Tudat since then and for completeness in this thesis, a somewhat similar but reduced
set of checks is shown in this report. The checks are split into 2D trajectories (without an inclination
change) and 3D trajectories.

2D trajectories
Two different types of 2D trajectories were tested. The first one is a shaping trajectory with the same
start and end orbit, including phasing. In practice this means a ’transfer’ from a 1 AU orbit to the same
1 AU orbit some time in the future. Since the trajectory does not change it is thus expected that no
∆V is required to fly this trajectory as the transfer corresponds to natural phasing of the orbit. This
test is performed for orbits with an inclination of 0 degrees and orbits which both have an inclination
of 10 degrees. Both of these trajectories are performed with a fixed time-of-flight of 100 days and 0
full revolutions. The trajectory starts and ends at the edge of a sphere of influence of a fictional body
with a perfect circular Kepler orbit with a semi-major axis of 1 AU. Since patched conics are used the
gravitational parameter of this body is not important for the simulation and has been set to 1 m3/s2.
The thrust profiles for these two trajectories can be seen in Figures 5.4 and 5.5. This thrust is split up
into tangential (ut), normal (un), and out-of-plane (uh) components.

Figure 5.4: The tangential, normal, and out-of-plane thrust acceleration for a circular trajectory with a start and end position 1
AU from the Sun and a constant inclination of 0 degrees.
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Figure 5.5: The tangential, normal, and out-of-plane thrust acceleration for a circular trajectory with a start and end position 1
AU from the Sun and a constant inclination of 10 degrees.

In order to shape the time evolution un is always set to zero for spherical shaping calculations in Tudat.
For the theoretical background of this decision see the work of T. Roegiers [106]. The only value for
un which can remain is a machine error in the order of 10−18 m/s2 and this is indeed what is found for
un in both plots. It is expected that the out-of-plane thrust acceleration uh is zero for both cases since
there is no change in inclination. uh is indeed zero for the case with a constant 0 degrees inclination,
but it is non-zero in the case with a constant inclination of 10 degrees. Such behavior has already
been documented in previous verification of the Tudat spherical-shaping software and is related to the
inherent inability of the implemented version of spherical shaping to provide a perfect representation of
inclined trajectories [106]. For the purposes of this thesis the errors due to the inclination are ignored
and target bodies with an inclination deemed too large are not included in the nominal description.

Furthermore, one would expect the trajectories to have a ∆V of 0 m/s since they stay on their original
trajectory. The inclined orbit has a ∆V of 56.4 m/s, caused by the aforementioned inclination inaccu-
racy of spherical shaping. However, the 0 degrees inclination trajectory also has a non-zero, albeit
smaller, ∆V of 0.04 m/s. It is caused by a non-zero tangential thrust value ut. This can be caused by
a variety of reasons such as small rounding deviations in the calculation process or minor differences
between body settings such as the gravitational parameter. The precise cause for this error has not
been found, but due to its small size it is deemed sufficiently verified for the purposes of this thesis.

A final 2D test is a trajectory with a constant 0 degrees inclination, but this time with a transfer from a
circular 1 AU orbit to a circular 3 AU orbit. The thrust profile for this trajectory as well as the trajectory
shape can be found in Figures 5.6 and 5.7, respectively. A time-of-flight of 575 days is used for this
trajectory, even though the precise value is not relevant, as long as it results in a feasible trajectory,
since it is an unoptimized problem. Once again un and uh are zero, excluding machine errors. Since
it is a planar problem the thrust is fully defined by the tangential parameter ut, which peaks at roughly
100 days and then switches sign. When looking at the trajectory shape as shown in Figure 5.7 this
makes sense. At this point of roughly 100 days the trajectory reaches its closest point to the Sun.
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Figure 5.6: The tangential, normal, and out-of-plane thrust acceleration for a transfer trajectory which starts at a circular
trajectory at 1 AU and ends at a circular trajectory of 3 AU. The time-of-flight for this trajectory is 575 days.

Figure 5.7: The trajectory shape for an orbit transfer from 1 AU to 3 AU.



5.2. Verification 56

3D trajectories
All test trajectories so far only concern planar trajectories. The transfers in this paragraph require an
inclination change. This is done for the 1 AU to 1 AU trajectory as well as for the trajectory from 1 to
3 AU. In both cases the trajectory starts at an inclination of 0 degrees and ends with an inclination of
10 degrees. The 1 AU to 1 AU has a time-of-flight of 100 days, while the 1 AU to 3 AU trajectory has
a time-of-flight of 575 days. The thrust profiles for both trajectories are shown in Figures 5.8 and 5.9,
respectively.

Figure 5.8: The tangential, normal, and out-of-plane thrust acceleration for a circular low-thrust trajectory with a start and end
position 1 AU from the Sun and an inclination change from 0 to 10 degrees.

Figure 5.9: The tangential, normal, and out-of-plane thrust acceleration for a circular low-thrust trajectory with a start position
at 1 AU, an end position at 3 AU, and an inclination change from 0 to 10 degrees.
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In both cases un is once again zero, as expected. This time there is also a significant uh component
due to the inclination change. The peak value of uh is in the same order of magnitude for both trajec-
tories, which is expected since both have an inclination change of 10 degrees. Since the 1 to 3 AU
trajectory also requires a large semi-major axis change it is expected that here the ut component is
dominant. Note that the uh peak in Figure 5.9 is reached around the same time as the periapsis of the
trajectory. This makes it an inefficient inclination change, since these type of out-of-plane maneuvers
are most effective as far from the central body as possible. However, as already mentioned this is not
an optimized trajectory. With all the inputs provided there is only one solution for the spherical-shaping
algorithm, which in this case results in a feasible albeit inefficient thrust profile. With these tests, the
thrust of the spherical shaping algorithm has been checked.

5.2.2. GTOP verification
Another method to verify the working of the code when designing trajectories is to make use of ESA’s
GTOP database [28]. All of these problems only regard high-thrust MGA or MGA-DSM problems.
GTOP does not contain any low-thrust problems. While this test will thus not be sufficient to test the
low-thrust trajectory design function, all the other functions that do not regard the thrust calculation
during the trajectory legs should still work the same with high- and low-thrust missions. So by checking
the working of these GTOP problems the code can still partlially be verified. In these paragraphs it is
checked whether filling in the correct decision variables gives the same output for the objectives.

In total three high-thrust GTOP problems are tested: Cassini 1, Messenger (reduced) and Cassini 2.
Cassini 1 represents a high-thrust MGA problem to Saturn with multiple gravity assists and no DSMs.
Messenger and Cassini 2 on the other hand do use DSMs. This means that for Cassini 1 the only
variables are the departure time and the time-of-flight values between the different planets. For the
other two trajectories the DSM fraction is required as well as the periapsis distance and bending angle
for each gravity assist. All these trajectories only consider unpowered gravity assists. In all tests the
only objective is to lower the∆V as much as possible. The optimal values for the optimization problem,
as far as they are known, are posted on the GTOP website and have been taken as the input values
for this verification test [28]. Table 5.2 shows the resulting ∆V if this trajectory is implemented in Tudat
as well as the relative fractional error ϵ with the official value posted by GTOP. An example of one of
the trajectories, specifically Cassini 2, is shown in Figure 5.10.

Table 5.2: An overview of the ∆V results for the tested GTOP trajectories when calculated with a Tudat patched-conics
method. The resulting ∆V is compared to the value posted by GTOP and the relative fractional difference between the two
values is shown. The test is performed with the standard Tudat ephemerides and the updated DE440 ephemerides. The data

for the GTOP results are taken from [28]. * = No higher significance value is available.

Test GTOP ∆V
[m/s]

Tudat ∆V
[m/s]

Rel. ϵ
[-]

Tudat ∆V (DE440)
[m/s]

Rel. ϵ
[-]

Cassini 1 4930.7* 4930.633 ≈ 1 ∗ 10−5 103,639.6 20
Messenger 8630.832 8630.854 2.5 ∗ 10−6 24,323.85 1.8
Cassini 2 8383.184 8700.970 3.8 ∗ 10−2 17,695.16 1.1

The relative error of the ∆V in Tudat compared to GTOP ranges from the order 10−6 to 10−2. These
errors are in the same order of magnitude as the verification tests by L. van der Heyden whose relative
errors were 1.6 ∗ 10−3 for Messenger and 3.2 ∗ 10−2 for Cassini 2 [43]. Still it should be noted that
the relative error of roughly 3.8% for Cassini 2 could be considered quite high for a verification test.
Here it is important to note the difference between the Tudat tests and the GTOP tests. There is a
slight deviation between the ephemerides used by Tudat and by GTOP. This was spotted by L. van der
Heyden and P. Musegaas during their verification tests [43] [63]. Specifically, the z-coordinate of the
planets has a large impact on the Lambert targeter and thus the optimal solution. Verification tests by P.
Musegaas have shown that using the GTOP ephemerides gets rid of the majority of these errors [63].
Since the Tudat ephemerides are more accurate than the GTOP ephemerides this is not considered
an issue.
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Figure 5.10: An overview of the optimal trajectory for the Cassini 2 GTOP problem as modelled by Tudat code.

The final two columns of Table 5.2 use a more accurate ephemeris based on the DE440 data. This
results in relative fractional errors larger than 1 and increases the ∆V to unrealistic levels, in the most
extreme case for Cassini 1 a value above 100 km/s. Like before, this is caused by the high sensitivity of
the Lambert targeter to relatively small changes in the coordinates of the planets. It is not the case that
the actual optima for these trajectories are found at wildly different input values. If a 5% margin is put
on an untuned single-objective differential evolution (DE) optimizer around the decision variables for
these problems then the optima are found at nearly exactly the same decision variables as with GTOP.
In the case of Cassini 1 an even lower optimal ∆V of 4734 m/s is found. This improved ∆V is only
possible due to the slightly different arrangement of the planets in the DE440 ephemerides. A similar
result is obtained for the Messenger and Cassini 2 examples where the optimal found ∆V are 9140
m/s and 8730 m/s, respectively. Thus, while the precise input values from GTOP give very different
results, this sanity check is sufficient to verify the updated ephemerides as well.

5.2.3. Low-thrust verification
Besides the high-thrust system tests, multiple low-thrust trajectories are tested as well. GTOP does
not contain any low-thrust examples and thus these tests have to be taken from another source. T.
Roegiers mentions four rendezvous low-thrust test cases which will also be used in this thesis to verify
the code: Earth-Mars, Earth-Neptune, Earth-1989ML, and Earth-Tempel-1 [106]. These tests were
initially formulated in work by D. Novak [91].

Like with the high-thrust examples the optimal values found by the grid search by T. Roegiers are directly
used as inputs [106] and these verification tests thus serve to verify the trajectory design module. The
only objective in these cases is ∆V . The results for the missions to Mars and Neptune are given in
Table 5.3. The relative errors range from 10−2 to 10−4 are and are thus similar in terms of their order
of magnitude as the high-thrust examples. The slightly larger errors for the DE440 ephemerides are
most likely caused by the difference in ephemerides while the error in the regular Tudat ephemerides
is dominated by errors due to the different integration settings for the semi-analytical leg calculation
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as well as updates to Tudat since T. Roegier’s tests. Since the order of magnitude is similar to the
high-thrust cases these verification tests are also passed.

Table 5.3: An overview of the ∆V results for the tested low-thrust trajectories when calculated with a Tudat patched-conics
method. The resulting ∆V is compared to the optimal value found by T. Roegiers [106] and the relative fractional difference

between the two values is shown. The different notation styles for the ∆V are due to the fact that not more significant digits are
available for T. Roegiers’ data.

Target T. Roegiers ∆V
[m/s]

Tudat ∆V
[m/s]

Rel. ϵ
[-]

Tudat ∆V (DE440)
[m/s]

Rel. ϵ
[-]

Mars 5.70 ∗ 103 5698.368 ≈ 3 ∗ 10−4 5702.189 ≈ 4 ∗ 10−4

Neptune 1.548 ∗ 104 15,281.83 ≈ 1 ∗ 10−2 15,141.26 ≈ 2 ∗ 10−2

For the examples to the asteroid 1989ML and the comet Tempel-1 slightly more explanation is required.
The ephemerides of 1989ML and Tempel-1 are not available in Tudat or in DE440. This means that
the two bodies should be added in a similar manner as the KBOs. This can be done by using the Ke-
pler elements of the bodies or by using tabulated ephemerides from the JPL Horizon interface. Since
both bodies are located within the inner Solar System they are highly perturbed by other planets and
thus the tabulated ephemerides are used for this verification test. The results for the test are shown
in Table 5.4. The Tempel-1 trajectory results in a very similar ∆V as was found by T. Roegiers. For
1989ML no trajectory is found with the input parameters from T. Roegiers. This could be related to
the high sensitivity of low-thrust trajectory design to differences in the input. Therefore, a local search
(LS) is performed with the decision variables within 10 % of the optima by T. Roegiers. This results in
a stable optimum with a ∆V very similar to the one found by T. Roegiers. Based on these tests the
trajectory design capabilities, both using high- and low-thrust trajectories, are considered verified.

No low-thrust trajectories to the Kuiper belt have ever flown, making it difficult to perform a validation
test. Furthermore, trajectories by low-thrust missions such as Dawn are so atypical that they will not fit
in the spherical-shaping format anyways. However, since the tests above are based on proposed and
realistic flybys and have previously been checked with already validated tools, the passing of these
tests is also considered to be validation for the code of this thesis. Other flybys which could be used
for tests in subsequent research include trajectories from other papers such as the high-thrust mission
to Huya and Quaoar [47].

Table 5.4: An overview of the ∆V results for the tested low-thrust trajectories with 1989ML and Tempel-1 when calculated with
a Tudat patched-conics method. The resulting ∆V is compared to the optimal value found by T. Roegiers [106] and the relative
fractional difference between the two values is shown. The different notation styles for the ∆V are due to the fact that not more

significant digits are available for T. Roegiers’ data.

Target T. Roegiers ∆V
[m/s]

Tudat ∆V
[m/s]

Rel. ϵ
[-]

LS ∆V
[m/s]

Rel. ϵ
[-]

1989ML 4.53 ∗ 103 - - 4705.587 ≈ 4 ∗ 10−2

Tempel-1 1.151 ∗ 104 11,487.10 ≈ 2 ∗ 10−3 - -

5.3. Summary
This chapter provides an overview of the software implementation of the trajectory design for this the-
sis. The main model for this thesis consists of three files: a trajectory, problem and utilities file which
interact with each other to create MGATrajectory objects. Another file takes care of the data from the
KBO database from MPC. An example of a trajectory calculation loop shows the inner workings and
the links between these different files. An overview of the implementation of the different trajectory
elements (launch, trajectory leg, gravity assist, KBO flyby) is also provided.

Afterwards, the code is verified by means of unit tests and system tests. The system tests regard
checks of the thrust profile in both 2D and 3D trajectories. Furthermore, tests with GTOP problems are
done to verify the core of the system while example flybys to Mars, Neptune, 1989ML, and Tempel-1
verify the low-thrust and custom body addition sections of the code.





6
Optimizer theory and tuning

As was shown at the end of Chapter 3 the first step of the research process is to tune the optimizer
for the low-thrust trajectories. To do this an optimizer first needs to be selected. This is done in the
first section of this chapter. Afterwards, a brief overview of the theory of the optimizer is given and
the parameters of the optimizer are discussed. This is followed by the tuning process, which is split
in tuning for high-thrust and low-thrust. The reason why high-thrust tuning is still required, despite this
thesis investigating low-thrust trajectories, is discussed in the respective section.

6.1. Optimizer selection
As mentioned in Chapter 3 two objectives, ∆V and time-of-flight, are optimized. Ignoring the option to
combine them in a single objective, this necessitates a multi-objective optimizer. The result of such a
two-objective optimization process is a Pareto front of which a generic example is given in Figure 6.1.
The members which are closest to the lower-left side of the curve together form the final Pareto front
of optimal members. For this thesis the entire Pareto front is shown, but the trajectory with the lowest
∆V on the front is chosen as the option to continue with in further analysis as ∆V is considered to
be the leading objective, essential creating a single-objective optimization. In further research other
Pareto optimal elements can be chosen as well based on a more detailed trade-off between ∆V and
time-of-flight.

Figure 6.1: A generic example of a Pareto front with two objectives. The individuals along the optimal front within the figure are
shown in red with larger markers.
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A global optimizer is required since the optimum of the thesis or even its rough placement within the
input space is unknown as of yet. The first decision to be made regards the type of global optimizer:
enumarative, calculus-based, or heuristic [109]. Due to the complexity of the low-thrust optimization
problem an enumarative method such as a grid search or Monte Carlo search is not used. Due to the
lack of a strong initial estimate and of a closed mathematical description of the problem a calculus-
based method is also not selected. This leaves a heuristic optimizer. A heuristic optimizer explores
the design space with the intent to converge to an optimum in that space over time [22]. Heuristic
algorithms are particularly favored for problems with an unknown input and solution space [55]. For
these reasons a heuristic optimizer is chosen for this thesis.

There are many multi-objective heuristic optimizers to choose from. The package from Python which
is used for this thesis is PyGMO (derived from PaGMO2) [12]. The five multi-objective heuristic op-
timizers in PyGMO are: non-dominated sorting genetic algorithm (NSGA2), multi-objective evolution-
ary algorithm with decomposition (MOEA/D), multi-objective hypervolume-based ant colony optimizer
(MHACO), non-dominated sorting particle swarm optimizer (NSPSO), and improved harmony search
(IHS) [12]. Analyses of multi-objective Pareto fronts show that the MOEA/D algorithm performs the
best for complex Pareto fronts [53] [130], beating the previous best performing model NSGA2. Due to
the many KBO targets and large number of variables it is expected that the Pareto fronts will be non-
trivially shaped. For this reason MOEA/D is chosen as the optimizer in this thesis. Only the so-called
island version of the optimizer is used. The alternative would be an archipelago version where multiple
islands of optimized results are present and members of a population can migrate between them [9].
While this could result in improved results, it was not possible to implement this within the time span of
the thesis and is instead recommended for future research.

6.2. MOEA/D theory
The optimizer used during this thesis is thus MOEA/D. MOEA/D is an evolutionary optimizer [130]. This
means that a population evolves through a number of generations with the goal that each subsequent
generation gets closer to the optimum objective value. The evolution of each generation is influenced
by typical evolutionary algorithm concepts such as selection, crossover, andmutation [10]. As the name
implies, MOEA/D makes use of decomposition to optimize a problem. This means that the problem is
split up into multiple scalar single-objective sub-problems which are solved at the same time and whose
results influence each other [130]. This influence of the different problems on each other depends on
the neighborhood variable of the algorithm. Weight vectors are used to decompose the problem and
optimization along each weight vector is tackled as a separate problem. The weight vectors for MOEA/D
are visualized in Figure 6.2 [48]. The dots in the figure indicate solutions of the weight vector which
form in clouds around the weight vectors, called membranes [48]. The black dots are solutions which
are found with multiple weight vectors.

Figure 6.2: The solution method by means of weight vectors for the MOEA/D algorithm [48].
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MOEA/D itself only describes the decomposition of the problem. To evolve the population towards the
optimum through multiple generations another optimizer is used. MOEA/D uses differential evolution
(DE) for this [13]. Differential evolution works by adding weighted differences between two population
vectors to create mutated vectors. Each vector contains the parameters that are to be optimized. The
mutated vector is then added to another third vector, the target vector, to create the trial vector. It
is then checked whether the trial vector improves the objective function or not. If so, this trial vector
replaces the old vector [116].

The optimization function is included as one of the functions in the Utilities file, previously mentioned in
Chapter 5. The code works by initializing a population with the given population size and evolving this
population for the number of generations given. The data is stored with a population list and a fitness
list. After the final population the fitness values are returned to the user. The implementation of the
optimizer is taken care of by the PyGMO module in Python. The MOEA/D optimizer is initialized with
certain values for the optimizer parameters, which are discussed in the next section.

6.3. Optimizer parameters
The MOEA/D algorithm has multiple parameters which can be tweaked to optimize its performance for
different types of problems. These settings are listed in Table 6.1 and are explained afterwards in more
detail. The information in the table is derived from [11].

Table 6.1: An overview of the different settings for the MOEA/D optimizer as listed by Pygmo. A short definition of the setting is
given as well as the nominal value used by Pygmo [11].

Setting Definition Default
Generations Number of optimization cycles 1
Population size Number of members in one generation -

Weight generation Method by which the weights
are generated Grid

Decomposition method Method by which a multi-objective problem is
decomposed to a scalar objective Tchebycheff

Neighbourhood size (T) Size of the weight’s neighborhood 20

Cross-over rate (CR) The rate at which cross-overs between population
members occur, used for the DE operator 1

Scale factor (F) Scaling factor for the DE operator 0.5
Distribution index (ηm) Distribution index used by the polynomial mutation 20

Diversity preservation (Realb) Chance that the neighbourhood is used
instead of the entire population 0.9

Seed Value to initialize quasi-random numbers -
Preserve diversity When ”true” it activates diversity preservation True
Limit Maximum copies reinserted in the population 2
Verbosity Frequency with which logs are printed 0

Some of the settings are fairly self-explanatory. As was already discussed before, MOEA/D is an evolu-
tionary algorithm and thus requires a number of generations which have a certain population size and a
specific seed to intialize it. There are different methods which can be used to generate the weights used
during the decomposition. These are a regular-grid method, a random method or a low-discrepancy
method [11]. For the decomposition method itself the following options are available: Tchebycheff,
weighted, and boundary intersection (BI). The theory of these different options is quite extensive and
not covered in this thesis, but can be read about in the original MOEA/D paper [130].

The neighborhood size relates to the number of close-by population members which can influence each
other. A neighborhood with size four is shown in Figure 6.3 [59]. The cross-over rate is the chance
with which mutant vectors are generated in the DE algorithm. The weight of the difference between
the two original vectors used for the generation of these mutant vectors is given by the scale factor
F. The distribution index affects the recombination during the mutation process where larger values
correspond to mutated members which are further removed from the original members [40].
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Figure 6.3: A schematic overview of the neighborhood concept for MOEA/D in case of T = 4 [59].

The diversity preservation setting determines the chance that the members can mutate with members
which are only inside their own neighborhood or with members from the whole population. Whether this
parameter is used at all is determined by the Boolean setting called preserve diversity. The limit setting
determines how many copies can be directly reinserted in the population without mutation. Finally,
verbosity regards whether logs about the state of the population are printed for the user. Since it is
purely a setting for the user it is not mentioned again during the tuning process.

6.4. Optimizer tuning for high-thrust trajectories
Before the optimization process can be performed the previously mentioned settings first need to be
tuned. The tuning process, just like the rest of the research, is performed with two objectives: ∆V
and TOF. Here ∆V is considered the leading objective, but TOF and the shape of the resulting Pareto
fronts are also taken into account during the decision-making process.

The first step is to tune the settings of the optimizer for high-thrust benchmark trajectories. Even though
high-thrust trajectories are not used in the problem description of this thesis, it is still a good point to
start. This is because it can provide a good initial guess for the optimizer settings for the later tuning
of the low-thrust trajectories. Furthermore, previous theses such as the one by L. van der Heyden
[43] have already tuned optimizers for high-thrust trajectories and that makes it thus easier to compare
and to make sure that comparable results are obtained. This will thus also function as verification of
the tuning process. With the tuning results for the high-thrust trajectories the search space for later
low-thrust trajectories and tuning can be reduced, but this is only done if certain values of the settings
perform badly to such a degree that there is sufficient certainty that the value will also be inferior for the
low-thrust case.

For the high-thrust tuning phase the Cassini 2 problem is tackled, since it is sufficiently complex by
having multiple gravity assists and can also directly be compared to earlier work by L. van der Heyden
who also performed tuning with this GTOP problem. Since it is a GTOP problem there is also sufficient
information about the optimal solution. Finally, the use of a DSM during each of the legs closer ap-
proximates a low-thrust trajectory than the Cassini 1 GTOP problem, which does not use DSMs. The
variations analyzed for each of the settings can be seen in Table 6.2. All problems are performed with
1000 generations and a population size of 100. While these values are most likely not optimal, they
are put to this relatively low value to ensure that the checking of the other parameters can done more
efficiently. Once the optimal settings have been found for the low-thrust problem, the generation and
population values are tackled.
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Table 6.2: An overview of the range of settings used for the MOEA/D optimizer tuning for the Cassini 2 problem.

Setting Variation Step size
Generations Not varied N/A
Population size Not varied N/A
Weight generation Grid/Random/Low discrepancy N/A
Decomposition method Weighted/Tchebycheff/BI N/A
Neighbourhood size (T) 20 - 80 20
Cross-over rate (CR) 0.5 - 1.0 0.1
Scale factor (F) 0.2 - 0.8 0.1
Distribution index 10 - 50 10
Chance for diversity preservation (Realb) 0.5 - 1.0 0.1
Seed N/A N/A
Preserve diversity False/True N/A
Limit 1 - 5 1
Verbosity Not varied N/A

6.4.1. Initial analysis
The high-thrust tuning tests are performed with the Cassini 2 problem, which uses one DSM per leg to
reach Saturn by performing a gravity assist with Venus, Venus, Earth and Jupiter, in that order. The
precise decision variables and ranges for the Cassini 2 problem can be found on the GTOP pages of
the ESA website [28]. The current optimum in terms of ∆V is 8701 m/s using the Tudat ephemerides
as was already mentioned in Chapter 5.

Performing tests with all permutations listed in Table 6.2 would result in an unworkable number of anal-
yses. Thus, the first decision is to vary one variable at a time, while keeping the rest at the default
values listed in Table 6.1. Only the generation (1000) and population (100) variables are both always
kept constant as they are tuned separately later on. Due to co-dependencies of the different variables
this method is insufficient to get the optimal value for all the optimizer settings. However, it will allow
to remove clearly infeasible results. For tuning in future research alternative methods that combine
uncertainties from multiple parameters such as the Taguchi method are recommended to be explored
[119]. Each of the test cases is performed for five seeds (1, 2, 3, 4, 5). The five seeds allow an analysis
of the best performing individual in each seed as well as the variance across seeds. The decision on
five seeds stems from a trade-off between robustness and runtime.

Based on the initial results of the Cassini 2 optimization problem a few of the settings could already be
discarded. In terms of ∆V and TOF all the weight-generation methods produce roughly equal results.
However, the Pareto front is more complete and better spread out for the grid method. Therefore, only
this option is kept. Similarly, Tchebycheff is the only decomposition method which results in a filled
Pareto front and is thus chosen. Turning off diversity preservation similarly results in a non-uniform
Pareto front. Thus, only options with diversity preservation are used from now on.

Regarding the neighbourhood size, cross-over rate, Realb, and limit no clear conclusions can be made
based on these initial tests. While the scale factor and distribution index need to be tuned further, partial
conclusions can already be made. Scale factors of 0.3 or lower result in sub-optimal ∆V results and
incomplete Pareto fronts and are thus discarded. Furthermore, distribution indices of 40 or 50 resulted
in a clumped Pareto front near higher values of the TOF and ∆V . These options are also discarded
for later tests.

6.4.2. Subsequent high-thrust tuning
For the remaining settings the previous initial analysis is insufficient to determine one optimal value for
each of the settings. The next step is to test all permutations of the remaining variables. Doing this with
all the remaining options would still result in a too large data set. Therefore, the six remaining variables
were split into two groups which were tuned separately. The first group consists of the cross-over rate,
the scale factor, and the distribution index while the second group consists of Realb, the neighbourhood
size, and the limit. The first group mainly regards the mutation generation with the DE operator while
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the second group regards the neighbourhood functionality.

First the results of group 1 are discussed. Each permutation is performed with five seeds. Afterwards,
the results are grouped for each value of every setting, for example a CR of 0.6. Then the lowest ∆V
value for each seed with a CR value of 0.6 is taken and the average of these ∆V values is calculated.
This is done for all values of each of these three variables and the results can be seen in Table 6.3.

Table 6.3: An overview of the average best ∆V in km/s across all seeds for each of the values of the CR, F, and ηm settings.

CR F ηm
0.5: 15.26 0.4: 17.17 10: 14.02
0.6: 15.07 0.5: 15.31 20: 14.07
0.7: 13.48 0.6: 13.61 30: 14.56
0.8: 14.06 0.7: 13.15
0.9: 12.83 0.8: 11.84
1.0: 14.61

Based on the statistical results two options are kept for each of the parameters. The kept values for
CR, F, and ηm are as follows:

• Cross-over rate = 0.7 and 0.9
• Scale factor = 0.7 and 0.8
• Distribution index = 10 and 20

This results in eight remaining permutations for these three settings. These options are tested with
1000 population members and 3000 generations with five different seeds. These extended runs en-
sure better convergence and can give a more definitive answer regarding the optimal settings. Based
on these tests it is found that the combination of a cross-over rate of 0.7, a scale factor of 0.7, and a
distribution index of 10 result in the lowest average ∆V value as well as the lowest standard distribu-
tion, thus indicating robustness. The found average optimal ∆V for these settings is 10.67 km/s with
a standard deviation of 1.89 km/s. L. van der Heyden’s tuning did not include the distribution index
[43]. In his work five combinations of variables were chosen for further study, all of which were in the
0.9 - 1.0 range for the cross-over rate and the 0.5 - 0.7 range for the scale factor [43]. The cross-over
rate of 0.7 falls outside of the 0.9 - 1.0 range by L. van der Heyden, but here it should be noted that a
cross-over rate of 0.9 is only barely worse than 0.7 in the tuning analysis of this thesis.

Three of the variables have not been varied yet. These are the neighbourhood size, Realb, and the
limit. Once again all permutations are tested with 100 population members and 1000 generations. The
results are shown in Table 6.4. These tests use the default values for the other parameters, which is
why the ∆V values in Table 6.4 are higher than some of the values in Table 6.3.

Table 6.4: An overview of the average best ∆V in km/s across all seeds for each of the values of the T, Realb, and limit
settings.

T Realb Limit
20: 16.70 0.5: 15.92 1: 13.19
40: 15.16 0.6: 15.30 2: 14.29
60: 15.09 0.7: 15.13 3: 15.88
80: 16.56 0.8: 16.90 4: 17.93

0.9: 15.03 5: 18.11
1.0: 16.99

This analysis does not lead to clear winners, but does result in the following statistical best options:

• Neighbourhood size = 40 and 60
• Realb = 0.6, 0.7, and 0.9
• Limit = 1 and 2
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Performing extended tests with 3000 generations on the permutations of these remaining options re-
sults in the lowest ∆V values for a neighbourhood size of 60, Realb of 0.6, and a limit of 1. The found
average optimal ∆V for these settings is 11.21 km/s with a variance of 2.33 km/s across all seeds.
Technically the Realb value of 0.9 results in a lower∆V , but on the other hand this value also results in
much less consistent Pareto fronts and thus unpredictable results depending on the seed used. This
problem is not present with Realb values of 0.6.

The found values for these three settings are similar to the ones found by L. van der Heyden [43]. The
limit value was not tested during L. van der Heyden’s tuning. The neighbourhood size of 60 - 100 was
found as ideal during L. van der Heyden’s tuning so the value of 60 is within that range. The found
Realb value is within L. van der Heyden’s result range of 0.6 - 0.7. All combined this means that the
following optimal settings are found for the high-thrust tuning process of the Cassini 2 problem:

• Cross-over rate = 0.7
• Scale factor = 0.7
• Distribution index = 10
• Neighbourhood size = 60
• Realb = 0.6
• Limit = 1

The results for the Cassini 2 problem with 1000 population and 3000 generations with these settings
is shown in Figure 6.4. To illustrate the robustness of the method this specific figure is split per seed.
Especially for lower ∆V values the scatter plot almost overlaps for all five of the seeds. The best ∆V
found in this analysis is 8701.08 m/s, very close to the true optimum of 8700.97 m/s as mentioned in
Table 5.2.

Figure 6.4: An overview of the optimal trajectory for the Cassini 2 GTOP problem as modelled by Tudat code with the tuned
high-thrust MOEA/D optimizer settings. Each color represents population members of a different seed.
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The final tuning step is to see whether changes in the population size or generation number are required.
For the population size the number of 1000 is kept as, from a visual standpoint, it is deemed sufficient
to result in a fully filled Pareto front. The optimal value of the Cassini 2 problem in the Tudat system is
8701.08 m/s. The code is considered sufficiently converged if the lowest ∆V value is within 5% of the
true optimal value in all five of the test seeds. This test is performed with a generation number of 500,
1000, 1500, 2000, 2500, and 3000. For a generation number of 2000 the∆V is within 0.55% and 1.93%
of the optimum depending on the used seed. This is considered sufficient for the initial convergence
step. As such the final settings for high-thrust analyses are a population of 1000 and a generation
number of 2000. During the optimization process itself these values can be changed depending on the
behavior of the results. The other optimizer settings, however, will be kept the same.

6.5. Optimizer tuning for low-thrust trajectories
The same optimization process is repeated for the low-thrust trajectory example from Earth to Mars.
However, instead of the full choice of optimizer settings only the reduced settings from the second
high-thrust tuning round are used. In the high-thrust tuning case this is done with a population of 1000
members and 3000 generations with five different seeds. However, performing the tuning with low-
thrust members with these settings for all 20 permutations would result in a runtime of multiple days.
Furthermore, the tuning process converges much sooner and with fewer population members in the
low-thrust case. One case is performed with 100 members and 250 generations, but with these set-
tings the problem already converges to a point that no difference can be identified independent of the
chosen values for the settings. Multiple reruns are performed, but even at only 100 members with 20
generations the found differences between settings are minor. This is because the trajectory setup
assumes arrival and departure at the sphere of influence of Earth and Mars, both with no excess veloc-
ity. Therefore, the only free variables are the departure time, time-of-flight, and number of revolutions,
which results in a relatively simple problem.

In order to have more conclusive low-thrust trajectory tuning the complexity of the problem must be
increased to something more similar to the actual problem tackled in this thesis. This will thus require a
trajectory with a gravity assist. No launch velocity or use of powered gravity assists is assumed for this
tuning problem. The trajectory chosen for this case is a low-thrust mission from Earth to Mars and back
to Earth. The final arrival at Earth is a rendezvous at the SOI of Earth and thus does not require excess
velocity or velocity angles. Like in the eventual mission only trajectories with no full revolutions around
the Sun per leg are considered. The other needed input variables are the departure time, the arrival
velocity with its two angles for Mars, the time-of-flight from Earth to Mars and from Mars to Earth, and
the gravity assist periapsis and bending angle. A full overview of the ranges for the decision variables
is given in Table 6.5.

Table 6.5: An overview of the decision variable ranges for the Earth-Mars-Earth low-thrust tuning problem. Departure velocity
from Earth, number of revolutions, and arrival velocity at Earth are all excluded from this table as they equal zero.

Trajectory stage Variable Lower bound Upper bound Units
Earth departure t0 7000 9000 MJD2000
Earth to Mars tf,1 200 2000 days
Mars to Earth tf,2 200 2000 days
Arrival Mars V∞ 10 10,000 m/s
Arrival Mars θ 0 2π rad
Arrival Mars ϕ -0.5π 0.5π rad
GA Mars - pericenter radius rp 6354 63,540 km
GA Mars - bending angle α −π π rad

This analysis is performed with the same 20 permutations as the previous low-thrust problem, but with
100 members and 100 generations. While these results are not sufficient to conclusively pick only one
option, clear patterns can be found to further reduce the possible options to analyze. The full data is
shown in Table 6.6.
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Table 6.6: An overview of the average best ∆V in km/s for the Earth-Mars-Earth problem across all seeds for each of the
values of the CR, F, ηm, T, Realb, and limit settings for the low-thrust tuning process.

CR F ηm T Realb Limit
0.7: 10.46 0.7: 10.53 10: 10.49 40: 10.78 0.6: 10.72 1: 11.07
0.9: 10.57 0.8: 10.50 20: 10.54 60: 10.90 0.7: 10.94 2: 10.61

0.9: 10.86

The conclusions based on these results are shown below. The standard deviation values between
brackets regard the variance based on the lowest ∆V for each seed of a certain setting.

• Cross-over rate = The average∆V found with a cross-over rate of 0.7 is more than one standard
deviation (67 m/s) better than with a cross-over rate of 0.9. Thus, only the cross-over rate of 0.7
is kept.

• Scale factor = Due to the large standard deviation of 117 m/s and 28 m/s for an F of 0.7 and 0.8,
respectively, no decisions are made for this variable.

• Distribution index = The distribution index of 10 is roughly one standard deviation (86 m/s) better
than the average optimum found with a distribution index of 20. Thus, only the distribution index
of 10 is kept.

• Neighbourhood size = Due to the large standard deviation of 341 m/s and 276 m/s for a T of 40
and 60, respectively, no decisions are made for this variable.

• Realb = Both Realb values of 0.6 and 0.9 perform better than 0.7. A value of 0.6 performs best
by almost one standard deviation (200 m/s), but for now both 0.6 and 0.9 are kept.

• Limit = The limit of 2 is more than one standard deviation (290 m/s) better than the limit of 1. Thus,
the limit value 2 is kept. Higher limit tests are also tested to see whether this trend of improvement
for higher limit values continues, but this is not the case.

The remaining options are thus:

• Cross-over rate = 0.7
• Scale factor = 0.7, 0.8
• Distribution index = 10
• Neighbourhood size = 40, 60
• Realb = 0.6, 0.9
• Limit = 2

Using all permutations this leads to a remaining set of eight possibilities. These possibilities are all
tested with 100 members and 600 generations to discover more nuanced differences between them.
Each of the options is executed with five seeds. The average optimal ∆V is within 100 m/s for all
of the permutations. However, when sorting per setting it can be seen that the Realb of 0.6 and the
scale factor of 0.7 both perform roughly one standard deviation better than the alternatives. Thus,
the only remaining decision regards the neighbourhood size. These two options are tested with 2500
generations and have∆V results within 1 m/s of each other. It thus seems that both options are roughly
equal. However, as can be seen in Figures 6.5 and 6.6, the option with a T of 40 converges to a single
front whereas the alternative converges to a less optimized front. Here Figure 6.6 is split per seed to
illustrate that all seeds find the right-most front, but not all seeds find the fronts to the left, which results
in a unexpected shape of the Pareto front in Figure 6.6. For a T of 40 every seed finds both major
fronts.
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Figure 6.5: The ∆V and TOF of all members in the low-thrust tuning test across five seeds for a T value of 40.

Figure 6.6: The ∆V and TOF of all members in the low-thrust tuning test across five seeds for a T value of 60. Each color
represents population members of a different seed.
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One final adjustment which is made is to lower the cross-over rate even further to 0.6 as subsequent
tuning indicates that this stabilizes the Pareto fronts further in a similar manner as the lower neighbour-
hood size does. The final chosen settings for the low-thrust problem are thus:

• Cross-over rate = 0.6
• Scale factor = 0.7
• Distribution index = 10
• Neighbourhood size = 40
• Realb = 0.6
• Limit = 2

Finally, the population size and generation numbers are discussed. The population number is kept at
100 since, based on the plots, it appears sufficient to create a full Pareto front. Furthermore, an increase
in population size has a large impact on the runtime and it is decided that this time resource can be
better spent on more generations or more time to determine the optimization method itself. The long
runtime of the low-thrust trajectories is expected to be the bottleneck for the number of analyses which
can be performed during this thesis. In terms of generations it is found that the results show virtually
no change beyond 1500 generations (tests included 500, 1000, 1500, 2000, 2500 generations). Thus,
1500 generations are used as the nominal number of generations. The scatter plot for the chosen
low-thrust settings and the low-thrust benchmarking problem is shown in Figure 6.7. The trajectory for
the lowest ∆V member in this plot is shown in Figure 6.8.

Figure 6.7: A scatter plot of the Earth-Mars-Earth low-thrust ∆V and TOF performance with the final tuned low-thrust settings.
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Figure 6.8: A 2D representation of the optimal (= lowest ∆V ) Earth-Mars-Earth low-thrust trajectory found with the settings
from the low-thrust tuning process.

6.6. Summary
This chapter describes the selection of the optimizer as well as the tuning process for both high-thrust
and low-thrust trajectories. Based on its performance in similar problems the MOEA/D multi-objective
optimizer is chosen.

A tuning process for the high-thrust trajectory is performed to verify the tuning process with L. van der
Heyden’s results, to provide a decreased search space for the low-thrust tuning, and in case high-thrust
trajectories are still needed later in this thesis. Based on multiple stages of testing the following high-
thrust settings are found: cross-over rate 0.7, scale factor 0.7, distribution index 10, neighborhood size
60, Realb 0.6, limit 1, population size 1000, generation number 2000.

This process is also repeated for a low-thrust trajectory from Earth back to Earth via a gravity assist
with Mars. This results in the following tuned low-thrust settings: cross-over rate 0.6, scale factor 0.7,
distribution index 10, neighborhood size 40, Realb 0.6, limit 2, population size 100, generation number
1500.
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7
Planetary and single KBO flyby analysis

With the optimizer tuned, the optimizer can be applied by analyzing flyby trajectories. The next two
phases according to Figure 3.4 are the planetary flyby analysis and the single KBO flyby analysis.
During these analyses it is found that it is easiest to combine them and thus they are also discussed
together in this report. It is already decided that the planetary flyby sequence consists of a departure
from Earth, a gravity assist with Jupiter, and a gravity assist with Neptune. This is then followed by
a flyby of a KBO for the single KBO flyby case. The optimization method for this problem starts in
a straightforward manner, but this does not yield the desired results. As such a number of different
methods are tested which are discussed chronologically in this chapter. At the end the final working
procedure with the single KBO flyby method is described.

7.1. Straightforward optimization problem
The first attempted method is the simplest one: optimizing the trajectory from Earth to a KBO in one go.
For this first an overview of the decision variables in the optimization process is provided in Table 7.1
including their used ranges.

Table 7.1: An overview of the decision variable ranges for the Earth-Jupiter-Neptune-KBO low-thrust optimization problem.
Departure velocity from Earth, number of revolutions, and powered gravity assists are all excluded from this table as they equal

zero.

Trajectory stage Variable Lower bound Upper bound Units
Earth departure t0 14609.5 18262.5 MJD2000
Earth to Jupiter tf,1 365 9125 days
Jupiter to Neptune tf,2 365 9125 days
Neptune to KBO tf,3 365 9125 days
Arrival Jupiter V∞,J 10 10,000 m/s
Arrival Jupiter θJ 0 2π rad
Arrival Jupiter ϕJ -0.5π 0.5π rad
GA Jupiter rp,J 118,849 7,606,336 km
GA Jupiter αJ −π π rad
Arrival Neptune V∞,N 10 10,000 m/s
Arrival Neptune θN 0 2π rad
Arrival Neptune ϕN -0.5π 0.5π rad
GA Neptune rp,N 41,861 2,679,104 km
GA Neptune αN −π π rad
Arrival KBO V∞,KBO 10 10,000 m/s
Arrival KBO θKBO 0 2π rad
Arrival KBO ϕKBO -0.5π 0.5π rad
Arrival KBO NKBO -0.49 21.49 -

The bounds for the variables stem from the mission description in Chapter 3 and the physical limitations
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of certain angles such as the arrival angles and the gravity assist asymptotic bending angle. For the
time-of-flight a wide range of 1 to 25 years is chosen for each leg. The last variable, NKBO, is rounded
to the nearest integer and each integer corresponds to one of 22 KBOs from the reduced list of high-
priority targets. It is only with these KBOs with which flybys are attempted with this initial method. Note
that the reduced list in Chapter 3 consists of 36 KBOs. The reduction to 22 is due to an inclination con-
straint of 15 degrees placed upon the KBOs. The minimum arrival velocity with each body is set to 10
m/s since lower arrival velocities periodically result returns matrix errors while calculating the trajectory.

Furthermore, the departure velocity (magnitude and angles) as well as the ∆V for potential powered
assists are not included in Table 7.1. As will be a theme in this chapter, the main drawback of the low-
thrust description is its sensitivity and complexity. Therefore, simplifications to the problem description
are required. The use of powered gravity assists is the first option to be discarded. The other one is to
assume no excess velocity for the spacecraft at the edge of the SOI of Earth. This will increase the total
∆V required during the trajectory legs and will result in longer flight times, but disregarding this excess
velocity should not have a substantial impact on the shape or behavior of the trajectories. Therefore,
this simplification is also applied. In follow-up research the addition of an excess launch velocity and
the use of powered gravity assists is recommended.

With these simplifications the entire optimization process is performed in one go from Earth to a KBO
with a population of 100 and 1500 generations. However, this does not yield a single feasible trajectory
in any of the generations or any of the five seeds. This indicates that either no solutions are present
within the bounds or that the sensitivity is so high that none are found in the total of 750,000 members.
To check this the next section discusses an analysis which splits up the trajectory into its separate legs.

7.2. Separate analyses per leg
In the next step the legs are analyzed separately: Earth-Jupiter, Jupiter-Neptune, Neptune-KBO. This
is done with the same departure times for each case and assuming no excess velocity at the start of
each leg. Because of this the legs can not be patched together, but this step is performed to rule out
that the failure to find trajectories in the previous section comes from an issue in the code. And, as
expected, trajectories for the separate legs are found as is shown in Figures 7.1, 7.2, and 7.3. The
KBO which is overwhelmingly chosen in the Neptune-KBO leg is 15760, also known as Albion. The
point at a time-of-flight of 0 years with a∆V of 106 km/s represents all infeasible trajectories, which are
thus still present in each figure.

One issue which is encountered at this stage is the runtime limitation. Running for 1500 generations
will, especially for the longer legs towards Neptune and the KBOs, result in runtimes of several days.
Therefore the number of generations in this thesis has to be reduced or other smarter methods need to
be found. The latter is discussed in subsequent sections, but for now the generation number is limited
to 500 for the leg to Jupiter and 100 for the other legs. These limits were chosen based on a trade-off
regarding convergence and runtime.

One element which is missing in these successful runs compared to the earlier failed attempts in this
chapter is the gravity assist. Tuning in Chapter 6 shows that the gravity-assist calculator works as
intended, but it is suspected that the sensitivity of GAs is the main reason for the lack of solutions in
the analysis so far. One way to try to solve this is to (partially) fix the trajectory legs. Before this is
discussed, two other issues regarding convergence and the root finder function are described.
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Figure 7.1: The ∆V and TOF of all members in the low-thrust analysis for the separate Earth-Jupiter leg for 500 generations
per seed.

Figure 7.2: The ∆V and TOF of all members in the low-thrust analysis for the separate Jupiter-Neptune leg for 100
generations per seed.
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Figure 7.3: The ∆V and TOF of all members in the low-thrust analysis for the separate Neptune-KBO leg for 100 generations
per seed.

7.3. Convergence and root finder
One of the main conclusions drawn from the initial analyses is that the number of generations required
for convergence varies wildly depending on the type of leg. Furthermore, the 1500 generation number
from the tuning phase is also not feasible due to the associated runtime of the low-thrust optimizer.
Therefore, a new method for convergence is required.

The solution is to use a variable convergence check which analyzes in real-time when a solution has
converged sufficiently for each seed. The convergence check works with four variables. The first one
is called the stable length (Lstable) and describes the number of generations that a solution should
be stable before a population is considered to have converged. The second one is the convergence
criterium (Ccrit) which specifies how much the solution can change before it is no longer considered
stable. For this only the ∆V value of the lowest member in the population is considered. The third one
is the ∆V limit (∆Vlim) which specifies how low the ∆V of the best member in the population should
be at the very least before stability is even considered.

For example take an Lstable value of 50, a Ccrit of 1 m/s and a ∆Vlim of 10,000 m/s. This means that
a population is considered converged if the best member in that population is below 10,000 m/s for 50
generations in a row and never changes its∆V value by more than 1 m/s during those generations. Fi-
nally, to prevent this method from running endlessly, a maximum number of generations genlim is also
specified after which the optimization stops independent of whether convergence has been reached.
Based on trial-and-error with the different methods discussed throughout this chapter the following
nominal settings are found: [50, 1, 20400, 2000]. This means that the problem is considered to be
converged when the lowest ∆V member in the generation does not change more than 1 m/s in terms
of ∆V for 50 generations in a row. This counter towards 50 stable generations only starts when the
minimum ∆V value within the population is below 20,400 m/s. This is roughly the maximum available
∆V for this mission based on the propellant fraction limit. If no convergence has been reached after
2000 generations the problem is interrupted. Depending on the complexity of the problem or the ex-
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pected ∆V , Lstable, ∆Vlim and genlim are varied throughout the analysis process. However Ccrit is
always kept at 1 m/s.

A second remark based on the initial analyses regards the root-finder method for the a2 variable of the
spherical-shaping trajectory. During the analyses of all the trajectory legs in one go many members
return an error regarding a wrong curvature of the trajectory which is not curved towards the central
body or another error in the bisection method related to the a2 value. Furthermore, with the separate
legs analysis it is found that by varying the range over which the a2 variable is searched the trajectory
could go from infeasible to feasible. This implies that in the first search range no root was found or that
multiple roots for a2 exist, but that not all of them lead to feasible trajectories.

Thus, the root-finder function for the a2 variable is looked at in more detail and its results are analyzed.
An example of plots for the a2 variable are shown in Figures 7.4 and 7.5. In Figure 7.5 there is only
one intersection point whose a2 value corresponds with a feasible trajectory. However, in Figure 7.4
there are two solutions, but only the negative root with an a2 value of -0.2 results in a feasible trajectory.
These root-finder plots can, in the current structure of Tudat, only be requested once a trajectory is
already deemed feasible. Inspecting the a2 graph of infeasible trajectories to see whether another a2
root is nearby is thus not possible and would require a rework of some of Tudat’s mechanics. The latter
is not implemented in this thesis, but is strongly recommended for future research to gain more insight
in the behavior of seemingly infeasible trajectories. Related to this, T. Roegiers also mentions a few
alternative methods to determine the a2 value which would be interesting to look at in further research
[106]. For now the search range of the a2 value is placed at -1 to 1 based on ranges in previous studies
[121] [106].

Figure 7.4: The time-of-flight as a function of the a2 variable for a trajectory from Neptune to Albion. The blue line shows the
time-of-flight as a function of a2 while the red line indicates the true time-of-flight, which is 14.7 years.
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Figure 7.5: The time-of-flight as a function of the a2 variable for a trajectory from Jupiter to Neptune. The blue line shows the
time-of-flight as a function of a2 while the red line indicates the true time-of-flight, which is 9.119 years.

7.4. Free, locked, and constrained trajectory solutions
After the initial analyses new methods have to be used to find feasible trajectories for a low-thrust KBO
mission. Instead of optimizing the trajectory in one go as was done before, three different methods are
investigated now: free, locked, and constrained trajectories. This is first done only for the JN trajectory,
so without a KBO flyby. Despite not performing an extra flyby with Earth, the separate legs are referred
EJ (Earth-Jupiter) and JN (Jupiter-Neptune) in the rest of this report for clarity.

The free trajectory is virtually the same as what was done before where the full range was given for
all inputs and the entire trajectory is optimized in one go. The only change now is the use of the con-
vergence check. With the locked trajectory method each leg is optimized separately. So for Earth to
Neptune via Jupiter first the EJ leg is optimized. Once an optimum is found the decision variables
of this leg are locked, in other words fixed at the values previously found. Afterwards the JN leg is
optimized, but settings such as the departure time and the arrival velocity at Jupiter are already set
in stone due to the locked first leg of the trajectory. The gravity assist with Jupiter is only optimized
in the JN leg. This process continues until the entire trajectory is optimized. Then the different legs
can simply be patched together since they have the same position, velocity, and time at each boundary.

Finally, there is the constrained trajectory method. This method largely works the same as the locked
method. However, instead of completely locking the trajectory after each leg, the old legs are only
partially constrained. Consider the EJ leg again. After an optimum is found for the EJ section, the EJ
and JN legs are optimized together. The decision variables in the JN leg are still free. However, unlike
the locked trajectory method the decision variables in the EJ part of the trajectory are not fully fixed,
but have a freedom margin around the solution for the decision variables of the optimum member of
the previous phase. This could for example be a 10% freedom for the variables in the EJ leg. This is a
compromise between free and locked, as it shrinks the input space without removing all wiggle room.
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All tests are performed with a population of 100 and the nominal convergence settings. Unfortunately,
the free trajectory method does not yield any feasible results even upon reaching the maximum number
of generations. This method is therefore definitively discarded.

Both the locked and the constrained method do yield results. The results for the five seeds combined
can be seen in Figures 7.6 and 7.7 for locked and constrained, respectively. For the constrained
method a freedom of +/-10% is allowed in the EJ leg while optimizing the JN leg. This percentage is
determined by means of trial-and-error. The lowest∆V found by the locked method is 9,755 m/s, while
the constrained method’s optimum lies at 10,442 m/s, roughly 7% higher. Both plots use the same
convergence checks and one would thus assume both to be roughly equally stable. However, the ∆V
variation across different seeds is larger for the constrained method than the locked method indicating
convergence to sub-optima.

Figure 7.6: The ∆V and TOF of all members in the low-thrust analysis from Earth to Neptune via Jupiter with the locked
method.

Figure 7.7: The ∆V and TOF of all members in the low-thrust analysis from Earth to Neptune via Jupiter with the constrained
method. A freedom margin of +/-10% is used after each leg.
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Based on this analysis one might conclude to continue with the locked method. However, instead the
constrained method is used for further tests. This is because in later stages of this chapter when KBOs
are added the tests with the locked method start to perform worse than the constrained method. Due to
its certainty to find a solution the locked method is better than the constrained method at first. However,
once the number of legs becomes too large the lack of flexibility of the locked method starts to become
dominant. Still, the current performance with the constrainedmethod and its lack of robust convergence
is not comforting. Another method is thus required to reduce the convergence issues of the constrained
method and also to decrease its ∆V in general since the optimal results with the constrained method
are still roughly 7% higher than with the locked method. How this is done is explained in the next
section.

7.5. High-thrust intermediate step
In the previous section solutions were found for the trajectory to Neptune by using a constrained tra-
jectory design strategy. However, there are still issues with the convergence of this method. This
issue becomes even greater when a KBO is added to the trajectory by adding the NKBO variable such
that each trajectory gets a randomly assigned KBO from the 22 high-priority KBOs. In this case no
feasible trajectories are found. Figure 7.8 shows the position of the KBOs (in orange) with respect to
the spacecraft when it reaches Neptune (in blue). This figure contains all KBOs which conform with
the uncertainty parameter and the 15 degree inclination limit and thus not only the high-priority cases.
As can be seen there should be ample of KBOs close enough for the spacecraft to perform a flyby
with. However, even with this expanded set no feasible trajectories are found. If only the closest KBOs
with respect to the spacecraft are chosen, the closest being 47171 Lempo, some sporadic results are
found. However, these solutions have high ∆V values of 20+ km/s and local refinement around the
found decision variables does not reduce the ∆V to realistic values.

Figure 7.8: The position of all KBOs (orange) complying with the uncertainty parameter and inclination limits, at the same time
that the spacecraft (blue) reaches Neptune in the optimal trajectory found so far with the constrained trajectory method.
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One method attempted to improve the solution is to use a single-objective DE optimizer instead of
MOEA/D and to only optimize for ∆V . However, this results in even more sporadic results with ∆V
values above 20 km/s as can be seen in Figure 7.9 for the JN trajectory. Infeasible trajectories are
represented here by setting their ∆V value to 106 m/s. Only rudimentary tuning of the single-objective
DE optimizer is performed since it is not the main optimizer for the thesis. It is possible that a more
carefully tuned DE optimizer would give better results, but this is out of scope for this thesis and is
instead recommended for future research.

Figure 7.9: The ∆V and TOF of all members in the low-thrust analysis from Earth to Neptune via Jupiter with the constrained
method by means of a single-objective optimizer. For the constrained method a freedom of +/-10% was used after each leg.

Another concept is to use high-thrust trajectories to explore the design space for the low-thrust trajec-
tories. While high-thrust trajectories with DSMs are not the same as low-thrust trajectories, it stands
to reason that their shapes will be fairly similar, especially if the DSM ∆V is small. Thus, high-thrust
trajectory optimization can be performed first and the results of these high-thrust cases can be used to
steer and constrain the low-thrust optimization process.

There are two main advantages to this method. The first one is that high-thrust trajectory optimization
does not have an issue with the a2 variable or a requirement for specific shaping. While their results
might not always be very realistic, almost any input can theoretically result in a high-thrust trajectory
which benefits the convergence process and wider search of the input space. Secondly, high-thrust tra-
jectory optimization is orders of magnitude faster than low-thrust trajectory optimization. Single seeds
for the EJN-KBO trajectory in a low-thrust scenario already take many hours to run and do not provide
very useful results so far. If a high-thrust step can be performed in a fraction of the time which benefits
the subsequent low-thrust step, then the total calculation time is significantly reduced.

The JN trajectory is so simple in the high-thrust case that it can be optimized in one go without the
step-wise constrained method. Similarly, the trajectories including one KBO can also be optimized in
one go. In this case the reduced set of 22 KBOs is used again. The results for the JN and JN-KBO
optimization processes with high-thrust are shown in Figures 7.10 and 7.11, respectively. Note that for
the high-thrust trajectory optimization the adjusted high-thrust optimizer settings are used. The results
show that this method to generate high-thrust JN-KBO trajectories works. Note that in reality these
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trajectories are not realistic. They require in the order of 10 km/s of high-thrust ∆V from DSMs, which
is far from the heritage values in Chapter 2. In reality if one would want to calculate high-thrust deep-
space trajectories one would need very high departure velocities from a LV. However, the goal here
is not to create good high-thrust trajectories, but instead to create theoretically possible high-thrust
trajectories which are similarly shaped to low-thrust trajectories. The translation from the high-thrust
solutions to low-thrust solutions is discussed in the next section.

Figure 7.10: The ∆V and TOF of all members of the high-thrust analysis for the JN trajectory (EJ and JN legs).

Figure 7.11: The ∆V and TOF of all members of the high-thrust analysis for the JN-KBO trajectory (EJ, JN, and J-KBO legs).
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7.6. High-thrust to low-thrust translation
The next step is to translate the high-thrust results to inputs for the low-thrust problem. First the optimal
member for the EJ leg of the high-thrust trajectory optimization is chosen and given as input for the
low-thrust EJ optimization with a +/- 20% freedom in the input values around the high-thrust optimum.
The 20% value was selected after more trial and error. The results of this are shown in Figure 7.12.
The lowest ∆V in this plot is 8,927 m/s, which is the lowest value found so far for the low-thrust EJ leg.
Doing the same process for the EJ and JN legs combined from high- to low-thrust results in an optimal
low-thrust∆V of 9,910 m/s. This is better than the constrained performance so far, but still not as good
as the fully locked method for EJ and JN combined as was shown in Figure 7.7. Furthermore, multiple
sub-optimal fronts have formed since not every seed finds the bottom-left front.

Figure 7.12: The∆V and TOF of all members in the low-thrust analysis for an EJ trajectory leg. The inputs for the optimization
process are taken from the optimal member of a high-thrust EJ trajectory leg with +/- 20% freedom.

One way to improve the results is to also split up the high- to low-thrust trajectory conversion in multi-
ple steps by taking the legs separately. This does require information about the arrival and departure
velocity magnitude and angles in both the high- and low-thrust cases in order to accurately translate
the inputs back-and-forth. This is done in several steps. For the arrival velocity the state of both the
spacecraft and the planet need to be known just before the flyby. Afterwards, these velocities are ro-
tated to the TNW (thrust, normal, out-of-plane) frame of the respective planet or KBO. Afterwards the
difference between the velocity can be taken. The arrival excess velocity magnitude is then the norm
of this velocity difference.

For the two angles Equations 7.1 and 7.2 are used. To ensure that θ is in the right quadrant the 2-
argument arctangent is required. Due to the definition of the velocity magnitudes within Tudat a minus
sign is required for Vy. The addition of π is needed since the used definition of θ runs from 0 to 2π
instead of the −π to π range of the atan2 function. In a similar manner the departure velocity can also
be retrieved. The previous results in this section do not use any information from the departure or
arrival velocity to translate the high-thrust to the low-thrust case so this addition should improve the
results further.
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θ = atan2(−Vy, Vx) + π (7.1)

ϕ = sin−1(
Vz

V∞
) (7.2)

This method of going back-and-forth between high- and low-thrust solutions results in a procedure
which gives satisfactory results. The final procedure is explained step-by-step in the next section.

7.7. Final procedure
This section provides the final procedure used to get a low-thrust trajectory with one KBO flyby. All
steps in this procedure are repeated for five seeds and use the nominal convergence criteria.

Step 1: EJ high-thrust (optional)
The first step is to perform the EJ leg in high-thrust such that it can be used as extra input data for the
low-thrust EJ leg optimization. Due to the simplicity of the EJ leg this step is not required and is left out
in later examples.

Step 2: EJ low-thrust (optional)
The second step is to translate the EJ result from high-thrust to low-thrust. Like step 1, this step is left
out in later examples since instead of EJ followed by EJN, the EJN trajectory can be optimized in one
go.

Step 3: EJN high-thrust
Usually the calculation thus starts at step 3. Here the EJN trajectory is optimized using a high-thrust
trajectory. The optimal trajectory found with this method has a ∆V of 8,580 m/s. Unlike low-thrust, the
high-thrust optimizer does allow a small hyperbolic excess velocity as launch. This is the case since no
excess velocity provides issues as high-thrust has an impulsive thrust profile instead of a continuous
one like low-thrust. This excess velocity is in the order of 2 m/s.

Step 4: EJN low-thrust
Using the input from the high-thrust step the low-thrust EJN trajectory is optimized. The inputs for the
decision variables have +/-20% freedom around the optimal values found during step 3. This results in
a trajectory with a time-of-flight of 17.9 years and a ∆V of 9,172 m/s.

Step 5: EJN high-thrust correction
The next two steps are corrections to ensure that the high- and low-thrust trajectories are equivalent to
each other upon arriving at Neptune. This is required for step 7. In step 5 the high-thrust EJN problem
is performed again, but now with exactly the same decision variables as the low-thrust example. Only
the time of the DSMs is kept free. This ensures that for example the arrival time at Neptune is the same
for both high thrust and low thrust. This step results in a high-thrust trajectory with a time-of-flight of
17.9 years and a ∆V of 8,886 m/s.

Step 6: EJN low-thrust correction
The previous step results in a high-thrust EJN trajectory with a similar but not identical arrival velocity
at Neptune as the low-thrust EJN trajectory. Here the EJN low-thrust trajectory is calculated again with
as its only update the fact that the arrival velocity at Neptune is now exactly the same as that of the
trajectory from step 5. This results in a low-thrust trajectory with a time-of-flight of 17.9 years and a∆V
of 10,132 m/s.

Step 7: EJN-KBO high-thrust
Everything up to arrival at Neptune is now fully locked. The only freedom remaining is the gravity assist
around Neptune and then the flight to a KBO. Multiple methods exist to find a KBO. This can be done
with a random KBO from the reduced list of 22 high-priority targets. Also, the larger data set of over
500 bodies can be used, or it is possible to pick a single KBO due to its proximity to the spacecraft (see



7.8. Summary 87

Figure 7.8). For this specific example Albion is directly chosen as the KBO target as the spacecraft
already flies past it very closely without any added∆V . This step results in a high-thrust trajectory with
a time-of-flight of 27.0 years and a ∆V of still 8,886 m/s, rounded.

Step 8: N-KBO low-thrust
Next the leg from Neptune to the KBO, in this case Albion, is optimized for the low-thrust trajectory.
The departure velocity from Neptune after the gravity assist is taken from the high-thrust case and
used as the start velocity for the N-KBO leg. By only optimizing N-KBO instead of EJN-KBO the low-
thrust optimization process runs orders of magnitudes faster. A constrained method is used based on
the results from step 7, but the freedom given is much smaller this time: in the order of 0.1% to 1%
depending on the variable. This is because, due to its low ∆V beyond Neptune, step 7 already has
almost perfect decision variable values for low-thrust as well. The precise freedommargins per variable
are determined using a trial-and-error approach.

Step 9: EJN-KBO low-thrust
The EJN and N-KBO sections of the low-thrust trajectory can be patched together since their position,
timing, and velocity is the same at the boundary point. Now the whole trajectory can be visualized.
This total trajectory has a time-of-flight of 27.0 years and a ∆V of 10,169 m/s, roughly half of the total
low-thrust ∆V budget. The time-of-flight is much longer than for example the 9.5 years which it took
New Horizons to reach the Kuiper belt [86], but this is caused by setting the launch energy to zero in this
thesis. In future research where the launch energy is included it is expected that similar time-of-flight
values can be attained as New Horizons.

Step 10: Further optimization cycles
Finally, further optimization cycles can be performed on the full EJN-KBO low-thrust trajectory to see
whether a more refined optimum can be found near the solution from step 9. Once again, the freedom
margin taken for all the variables is based on trial-and-error and an educated guess from the user. With
this method a better trajectory with a time-of-flight of 27.0 years and a ∆V of 9,956 m/s is found. The
∆V is split as follows: 9610 m/s for the EJ leg, 324 m/s for the JN leg, and 22 m/s for the N-KBO
leg. This corresponds to a spacecraft wet-to-dry ratio mass of roughly 1.40, which has already been
attained by previous low-thrust missions described in Chapter 2. This final trajectory is visualized in
Figure 7.13.

7.8. Summary
This chapter describes the different attempted methods to design a single KBO low-thrust flyby mission.
The original method is to optimize an entire low-thrust mission in one go, but due to the vast input space
this does not yield any feasible trajectories. After issues regarding convergence and the root finder are
tackled, a comparison is made between free, locked, and constrained trajectories. It is decided to
continue with the constrained trajectory method where each leg is solved subsequently, but only lim-
ited freedom is allowed in the input space for legs preceding the current one in the optimization process.

When expanding this constrained method to a KBO flyby it is still insufficient. Therefore, the decision
is made to perform back-and-forth optimization between high-thrust and low-thrust trajectories. The
high-thrust trajectories are easier and faster to calculate and are thus used as input for the low-thrust
optimization process. Using a ten-step procedure where different legs are optimized in high-thrust and
low-thrust scenarios, a robust method has been generated to calculate single-flyby low-thrust KBO
trajectories.
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Figure 7.13: A 3D representation of the final found trajectory from Earth to 15760/Albion using low-thrust propulsion. This
trajectory has a time-of-flight of 27.0 years and a total low-thrust ∆V of 9,956 m/s.



8
Multiple KBO flyby analysis

The previous chapter has provided a method to produce a low-thrust trajectory which ends with a flyby
at a KBO after performing gravity assists with Jupiter and Neptune. The next step is to test whether
it is possible to extend this flyby sequence with more CFBs. First the same methodology is applied
as before with alternating high-thrust and low-thrust legs. Afterwards, a list of alternative attempts is
discussed. Finally, a new method with so-called close-approach graphs is explained.

8.1. High-thrust to low-thrust leg
After the flyby with Albion in Chapter 7 the next step for a second KBO flyby is to continue with the
previous methodology of performing a high-thrust trajectory optimization followed by a low-thrust one.
One simplification now is that no gravity-assist calculations are required as all KBOs are assumed to
have no gravitational influence on the spacecraft. The departure velocity from Albion is thus exactly
the same as the spacecraft’s arrival velocity at the KBO.

The high-thrust analysis is performed with two different KBO sets. The first set is the most limiting
one: the filtered set of 36 bodies brought down further to 22 bodies due to the 15 degrees inclination
constraint. The second set also uses the inclination constraint, but allows all bodies with an uncertainty
parameter U of 2 or lower. This set contains 590 bodies.

For the high-thrust analysis the trajectory is locked up until and including Albion. For both data sets
results are found. The Pareto front for the data set with 590 bodies is shown in Figure 8.1. Here the
Pareto front for the second KBO flyby has converged to three KBO targets as can be seen by the three
distinct fronts in the figure. The trailing front with the lowest∆V corresponds to the transfer from Albion
to the KBO (15789) 1993 SC. Note the significant increase in the total∆V compared to the single-KBO
case in Figure 7.11. The extra ∆V fully stems from the DSM during the leg between Albion and the
second KBO.

However, when this trajectory case for 15789 is optimized in low-thrust no results are found indepen-
dent of the freedom margin taken for the decision variables. Consistently the error which is returned is
that the trajectory is not curved towards the central body thus indicating the issue with the D-parameter.
Further exploration of the a2 value is performed to try to find an a2 root for which the D-parameter is
non-zero, but this is unsuccessful. The most probable reason for the failure of the optimizer to find a
feasible low-thrust trajectory is the high ∆V of more than 5 km/s required after the Albion flyby based
on the high-thrust results.

Another issue could be Albion itself, whose flybymight not be well situated for a follow-up leg. Therefore,
other high-priority objects from the list of 22 KBOs are attempted to be reached for the first KBO flyby
using the same procedure as in Chapter 7. The time-of-flight from Neptune to each of these KBOs
as well as the total ∆V of the mission for the high-thrust cases is shown in Figure 8.2. The dot in the
bottom-left corner of the figure represents the trajectory to Albion. All the dots at the right-hand side
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indicate that for an optimal trajectory they would require a time-of-flight above the 25 years limit. Only
three other KBOs with a reasonable time-of-flight are available from this list, but all require at least 2
km/s more ∆V than the trajectory to Albion and are above the desired average time-of-flight between
KBOs of 10 years. Clearly other methods are required. The different attempts to try to find better KBO
pairs or second KBO visits are discussed in the next section.

Figure 8.1: The ∆V and TOF of all members in the high-thrust trajectory analysis from Albion to a second KBO by using all
known KBOs with an uncertainty parameter of 2 or lower and an inclination of no more than 15 degrees. The time-of-flight

represents the time between Albion and the second KBO flyby.

Figure 8.2: The total ∆V and TOF from Neptune to each of the KBOs from the high-priority list for a high-thrust trajectory
analysis. Each dot represents the optimal trajectory in terms of ∆V to a specific KBO.
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8.2. Alternative attempts
This section discusses the alternative attempts to get at least two KBO flybys with a low-thrust mission.
This can either be done by changing the method to find a second KBO flyby after Albion or by disregard-
ing Albion as a flyby target altogether. The first note from the previous section is the high ∆V required
for the second KBO flyby after the flyby with Albion (see Figure 8.1). In the high-thrust trajectory this
∆V is often placed at the very start of the leg to the second KBO, at the lower bound of 1% of the
total time-of-flight of the leg. Such an early DSM in the leg is not a good representation of a low-thrust
trajectory where thrust is roughly equally distributed over the leg. This could be part of the reason why
the high-thrust trajectories have difficulty translating to low-thrust ones in this case. Therefore, the first
alternative test is to limit the time for the DSM in the leg from Albion to the second KBO to 40 - 60% of
the leg in terms of its time-of-flight. However, this also does not lead to a low-thrust solution and even
increases the ∆V of the best high-thrust trajectory solution to almost 18 km/s.

The second set of alternative methods focuses around the idea of optimizing multiple KBOs at the same
time. So far the trajectory to Albion is locked and then a second KBO flyby is attempted. The issue
with this is that no gravity assist with Albion is possible and as such there is very little wiggle room for
future flybys since the departure velocity from Albion is already set. This can partially be resolved by
optimizing the trajectory to Albion and the second KBO in one go as a high-thrust trajectory problem.
This method is able to bring the total∆V to the second KBO down to slightly more than 13 km/s for the
high-thrust case, but still does not result in low-thrust solutions.

The next step is to optimize the flight to two random KBOs at the same time instead of Albion and a
second KBO. Albion might simply be ill-positioned at the flyby date with respect to other KBOs. This
is done with both the full DSM range as well as the 40 - 60% range. This results in KBO flybys with a
total of 11.9 km/s for the full DSM range and 14.4 km/s for the 40 - 60% DSM range. However, still no
low-thrust translation is found.

All the previous methods are also tested with an even more expanded data set of 2232 bodies which
includes all known KBOs in the MPC independent of inclination or uncertainty values as long as enough
information is present to construct a Kepler orbit. However, this also does not result in any feasible low-
thrust trajectories. Considering how well the high- to low-thrust method worked in Chapter 7 the lack
of results here is surprising. It could be that the ∆V ’s found so far are still too high to find reasonable
results. The lack of results can also be caused by the high sensitivity of spherical shaping. This works
in tandem with the required positive D-function and search for the correct a2 value. As explained before,
the a2 value can not be accessed unless the trajectory is already deemed feasible. Looking deeper in
the inner workings of spherical shaping in Tudat’s C++ code could shed more light on the difficulty to
find a second CFB. However, this is out of scope for this thesis and is thus recommended for further
research.

8.3. Close-approach graphs
Since the standard methodology to automatically go back-and-forth between high-thrust and low-thrust
trajectories does not work as intended, the potential flyby options can also be manually inspected.
This is done with so-called close-approach graphs. Such a graph propagates an unperturbed Kepler
orbit for the spacecraft into the future and looks at the distance between this orbit and other KBOs at
corresponding epochs. In this way it can be seen whether the spacecraft passes close to a potential
KBO without using thrust. These closest encounters would then be reasonable picks for flyby targets.
The close approach graph for the trajectory after Albion is shown in Figure 8.3 with the full set of 2232
KBOs. The blue line in the figure represents Albion. The two other bodies to which the spacecraft come
closest to are first 15789 (green) and then q3738 (yellow). Neither of these bodies are capable of being
reached with low-thrust spherical shaping trajectories. Also note how quickly the distance to all KBOs
increases. Roughly three years after the flyby with Albion the distance to all KBOs within a reasonable
window of 10 AU increase. This indicates that this trajectory quickly moves away from regions in space
with many KBOs due to its high radial velocity. In future research the proximity of other KBOs to the
primary KBO target could also be taken into account when optimizing trajectories.
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Figure 8.3: The close approach graph for the spacecraft after the nominal flyby with Albion. The figure shows the distance of
the spacecraft to 2232 KBOs for 10 years after the Albion flyby. Only KBOs with an approach of 10 AU or less are shown.

Close-approach figures can also be made for alternative first KBO flybys instead of Albion. This means
that the variables for the gravity assist at Neptune can also vary again. This results in three KBO can-
didates for the first flyby which can be reached with low-thrust propulsion using just a few m/s of ∆V .
Of these the one with the shortest time-of-flight is D5182, which can be reached from Neptune just
five years after the spacecraft enters the Kuiper belt. This body was not shown in Figure 8.2 since it
is not present in the set of 590 bodies. Initially no low-thrust transfer towards D5182 could be found.
Eventually after varying the search space for the a2 value a feasible trajectory is found. This once again
speaks in favor of the recommendation to look more at this root-finder function in further research and
to make an automatic algorithm that performs multiple checks across the input space for the a2 function
to find all possible roots of the function. The close-approach graph for the trajectory after a first flyby
with D5182 is shown in Figure 8.4.

This close-approach figure shows a light blue line which has a time-of-flight of six years and only re-
quires 1.5 km/s of high-thrust ∆V . However, no low-thrust version is found for this second transfer. In
a last attempt, the close-approach figures are used in combination with the optimization of both the first
and second KBO flyby in one go as well. This is done with the full KBO database of 2232 bodies.

This leads to vastly more efficient transfers including a transfer via K13WB4G and K15RS1R with a
total ∆V of only 352 m/s after Neptune. 3 m/s is required to go to K13WB4G and the remaining 349
m/s is needed for the leg to K15RS1R. Note that this ∆V value is highly variable depending on the a2
value found, which is illustrated in more detail in Chapter 9. Replicating the first leg to K13B4G requires
a very high value for a2 above 100. This is due to the large inclination change required as K13WB4G
lies more than 1 AU above the XY-plane of the ECLIPJ2000 coordinate system. After the low-thrust
flyby of K13WB4G the close-approach graph can be seen in Figure 8.5. The figure shows a flyby of
K15RS1R at roughly 10 million km at just over 73 years after J2000. This flyby towards K15RS1R is
able to be connected with a low-thrust trajectory. This once again requires trail-and-error exploration of
the a2 range as the function has many roots for this leg, some of which result in infeasible trajectories.
With a total ∆V of 352 m/s after Neptune, this trajectory represents a low-thrust flyby mission of two
KBOs. The trajectory is discussed in more detail in Chapter 9.
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Figure 8.4: The close-approach graph for the spacecraft after the nominal flyby with D5182. The figure shows the distance of
the spacecraft to 2232 KBOs for 10 years after the D5182 flyby. Only KBOs with an approach of 10 AU or less are shown.

Figure 8.5: The close-approach graph for the spacecraft after the nominal flyby with K13WB4G. The figure shows the distance
of the spacecraft to 2232 KBOs for 10 years after the K13WB4G flyby. Only KBOs with an approach of 10 AU or less are shown.
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Due to time limitations of the thesis it is decided to focus on only finding a two-KBO flyby mission and to
spend the remaining time on other analyses regarding optimization methods. As such, the analyses of
three or more KBO visits in one low-thrust mission are left for further research. Despite the very close
approach with many second KBOs it still takes many methods to find a single low-thrust trajectory with
two KBO flybys compared to the numerous options with high-thrust propulsion. Furthermore, many
other trajectories using this last method which eventually found a successful double-flyby KBO mission
using high thrust could not be translated to low thrust. Based on their very low ∆V requirement such
trajectories should easily be replicable in low thrust.

Based on these results it is concluded that it is most likely possible to perform many more multi-flyby
low-thrust KBO missions, but that the description of spherical shaping is limiting the options compared
to the real-life possibilities. The main issue here is the requirement for spherical shaping to have a
trajectory curving towards the central body. In the current spherical-shaping description the time-of-
flight would become a complex value (so with an imaginary component) and would thus not have a
real-life interpretation in terms of flight time. An alternative description of spherical shaping could avoid
this limitation and possibly lead to feasible multi-flyby trajectories. Such a description would also avoid
some of the errors due to the bisection root finder. A more robust exploration of the a2 range could
also help with this to mitigate some of these errors. Finally, in a few rare cases the description of the
spherical-shaping method leads to azimuth values which are outside of realistic bounds and can thus
not be visualized. The precise cause of this error was not traced back and is thus recommended to be
analyzed in further work on the Tudat framework. Furthermore, other (shape-based) parameterization
methods such as hodographic shaping can be tested. Hodographic shaping has the option to add
more free coefficients for its varying base functions. While the possibility of different base functions
and more coefficients increases the complexity of the problem, it could also be key to find feasible KBO
trajectories. The analysis of hodographic shaping for low-thrust KBO trajectories is thus recommended
for future research.

8.4. Summary
This chapter analyzes the possibility to extend the low-thrust trajectory with more than one KBO flyby.
This analysis is done with both the restricted data set of 22 KBOs, an extended set of 590 KBOs based
on their inclination and uncertainty parameter, and finally a set of all 2232 KBOs which have sufficient
information to generate a Kepler orbit. Extending the method from the previous chapter by switching
between high- and low-thrust trajectories for the leg from Albion to a second KBO does not result in
feasible low-thrust trajectories.

Many alternative methods are tested such as a limited range for the DSM times in the high-thrust case,
using first flybys different from Albion, optimizing both the first and the second KBO at the same time,
and using close-approach graphs to manually look at potentially attractive KBO targets. A combination
of thesemethods results in a feasible low-thrust multi-KBO flyby trajectory via K13WB4G and K15RS1R.
While a multi-KBOmission is found this took significantly more effort than expected. Furthermore, many
more high-thrust versions with just a few tens of m/s beyond Neptune are found, but these could not be
replicated in the low-thrust environment. Thus, it is concluded that many multi-flyby KBO missions with
low thrust are most likely possible, but that most can not be found with the current method due to the
inherent limitations of the shaping of low-thrust trajectories, in part due to the current implementation
of the a2 root-finding process and due to the requirement for the trajectory to be curved towards the
central body.
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Final results

This chapter summarizes the results based on the methodology of the last two chapters. The chap-
ter provides overviews both in terms of the decision variables and the objective values for different
trajectories. Note that this chapter only provides a handful of possible trajectories which have optimal
objective values or were found first with the methodology of the previous chapters. In reality many more
trajectories are possible, but the ones shown here are simply to illustrate the results of the developed
methodology. Trajectories to Neptune, a single-KBO flyby, and a second KBO flyby are shown. The
most discussed single flyby trajectory to Albion is also accompanied by a sensitivity study. Finally, the
thrust magnitude and the real-world implications of the trajectories are discussed.

9.1. Earth to Neptune
The optimal low-thrust trajectory to Neptune in terms of ∆V based on the methodology of Chapter 7 is
described by the decision variables in Table 9.1. This results in a trajectory with a ∆V of 9171.8 m/s
and a total time-of-flight of roughly 17.9 years. The departure date for this trajectory is December 5,
2040 with an arrival date at Neptune on October 23, 2058. The trajectory is visualized in Figure 9.1.
The ∆V of this trajectory is lower than the trajectory eventually used for the KBO flybys, but this is the
case because this trajectory does not need to worry about good positioning with respect to subsequent
KBO flybys. It is the result at the end of the low-thrust correction in the procedure of Chapter 7.

Table 9.1: An overview of the decision variable values for the optimized Earth-Jupiter-Neptune low-thrust trajectory. The
number of revolutions and powered gravity assists are excluded from this table as they equal zero.

Trajectory stage Variable Value Units
Earth departure t0 14949.8 MJD2000
Earth to Jupiter tf,1 1208.7 days
Jupiter to Neptune tf,2 5321.9 days
Departure Earth V∞,E 2.06 m/s
Departure Earth θE 0.988 rad
Departure Earth ϕE 0.906 rad
Arrival Jupiter V∞,J 5751.6 m/s
Arrival Jupiter θJ 2.85 rad
Arrival Jupiter ϕJ 0.00932 rad
GA Jupiter rp,J 151,431 km
GA Jupiter αJ -1.36 rad
Arrival Neptune V∞,N 7852.3 m/s
Arrival Neptune θN 4.42 rad
Arrival Neptune ϕN 0.0141 rad
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Figure 9.1: A 2D representation of the final optimal trajectory from Earth to Neptune using low-thrust propulsion. This trajectory
has a time-of-flight of 17.9 years and a total low-thrust ∆V of 9,172 m/s. Note that the axes in this figure are not equidistant.

9.2. Single flyby results
The main single flyby case which is studied during this thesis is the trajectory to Albion. The decision
variables for this trajectory can be found in Table 9.2. The original optimization process results in a∆V
of 9956.2 m/s. However, further refinement cycles where the decision variables can change +/-0.01%
bring down the ∆V to 9852.9 m/s. This clearly shows how sensitive spherical shaping is as changes
in the order of 0.01% in the decision variables lowered the ∆V by roughly 1%. This trajectory has
a time-of-flight of roughly 27.0 years. The departure date is December 5, 2040 with an arrival date
on November 16, 2067. This ∆V corresponds to a wet-to-dry mass ratio of roughly. In other words,
assuming a spacecraft dry mass of 500 kg a total of 200 kg of propellant would be required. A visual-
ization of this trajectory was already given in Figure 7.13.

Besides Albion many other single flyby cases can be designed. A few of these have similarly low ∆V
values as the original Albion run and are shown in Table 9.3. The extended local optimization cycles
are only performed on Albion so it is expected that the ∆V of these other trajectories can also still
be reduced by values in the order of a few percentage points. These trajectories are the same up to
Neptune, but differ in their gravity assist with Neptune and their subsequent trajectory. These bodies
stem from the full list of more than 2000 KBOs. Since all of these trajectories need only a few m/s or
even less of ∆V after Neptune, their total ∆V values are very similar. However, their flight times are
vastly lower with one of the trajectories even reaching its KBO target seven years before the trajectory
to Albion. As an example the trajectory to D5182 is visualized in Figure 9.2.
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Table 9.2: An overview of the decision variable values for the optimized Earth-Jupiter-Neptune-Albion low-thrust trajectory. The
number of revolutions and powered gravity assists are excluded from this table as they equal zero.

Trajectory stage Variable Value Units
Earth departure t0 14950.0 MJD2000
Earth to Jupiter tf,1 1208.8 days
Jupiter to Neptune tf,2 5321.2 days
Neptune to Albion tf,3 3311.8 days
Departure Earth V∞,E 2.06 m/s
Departure Earth θE 0.988 rad
Departure Earth ϕE 0.906 rad
Arrival Jupiter V∞,J 5907.1 m/s
Arrival Jupiter θJ 2.83 rad
Arrival Jupiter ϕJ -0.00215 rad
GA Jupiter rp,J 151,434 km
GA Jupiter αJ -1.36 rad
Arrival Neptune V∞,N 7846.4 m/s
Arrival Neptune θN 4.42 rad
Arrival Neptune ϕN 0.0118 rad
GA Neptune rp,N 115,935 km
GA Neptune αN -1.39 rad
Arrival Albion V∞,KBO1 8924.2 m/s
Arrival Albion θKBO1 5.09 rad
Arrival Albion ϕKBO1 0.111 rad

Table 9.3: An overview of the time-of-flight and ∆V of a few optimal low-thrust trajectories to specific KBO targets.

KBO Target Time-of-flight [days] ∆V [m/s]
Albion 9842 9853
U9239 9037 9936
q3736 8689 9936
D5182 8586 9935
k9442 8241 9936
K15S20V 7271 9935

9.2.1. Sensitivity study
All the results and intermediate conclusions so far indicate that one of the main issues in finding feasi-
ble trajectories is the sensitivity of low-thrust trajectories or at the very least spherical-shaping-based
low-thrust trajectories. Therefore, it is also helpful to know how sensitive the trajectory is to unexpected
changes. For this the trajectory to Albion is used and the departure time is varied. Variations in the
other decision variables are also relevant, but require a detailed literature study to find the relevant un-
certainties. This is out of scope for this thesis, but recommended for further research. An uncertainty
in the departure date is the most common and most impactful deviation as it often occurs due to for
example the weather situation at the launch location.

The launch window for New Horizons was for example 35 days of which only 18 days allowed for the
original trajectory with a Pluto flyby in 2015 [38]. For the trajectory to Albion the departure time is varied
in intervals of two days over a range of -20 to +20 days with respect to the intended departure date
of December 5, 2040. Small variations in the trajectory variables in the order of 0.01% are allowed to
improve the∆V of the cases with a perturbed departure date. Note that a strong increase in the launch
energy might also be capable of correcting for the launch date deviation, but this is not analyzed here
as launch energy in general is not studied in detail in this thesis project. The results of this sensitivity
analysis are visualized in Figure 9.3.
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Figure 9.2: A 3D representation of the final optimal trajectory from Earth to D5182 using low-thrust propulsion. This trajectory
has a time-of-flight of 23.5 years and a total low-thrust ∆V of 9,935 m/s. Note that the axes in this figure are not equidistant.

Figure 9.3: The total ∆V required for the low-thrust mission to reach Albion depending on the deviation from the desired
departure date of December 5, 2040. The red line represents a 20% value above the lowest found ∆V .
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One thing that is immediately visible is that the dip for the lowest ∆V is actually located at a deviation
of +2 days instead of at the nominal departure date. At this departure date a∆V of 9683.3 m/s is found.
This shows that, despite the multiple optimization cycles, the trajectory might still only be optimized for
a local optimum. This information is important to remember for any analyses on this topic in future study
as it underlines the importance of further optimization cycles or perhaps the use of a local optimizer
after the global optimization round.

As can be seen in the figure, none of the days in the 40-day window ever have a∆V which goes above
the maximum 20.4 km/s value based on the wet-to-dry mass ratio. However, if one for example wants
to stay within 20% of the lowest found ∆V value then a launch window of roughly 18 days is present,
which is realistic when compared to other missions such as New Horizons. This 20% window is chosen
based on the fact that above roughly 12 km/s other high-priority KBOs would become more attractive
than sticking with the Albion flyby (see Figure 8.2). Note that in the case of New Horizons the extra∆V
due to a shifting launch date is corrected by increasing or decreasing the launch energy by roughly 6
km2/s2 [38]. This might also be possible for this mission, but the study of the launch energy is out of
scope of this analysis. Also note how the ∆V increase is slower for a negative time deviation. This is
the case since a negative deviation relates to a longer time-of-flight, while a positive deviation means
that the spacecraft would need to speed up to reach the planetary encounter at the right time.

9.3. Multiple flyby results
Chapter 8 looked at possibilities to find multi-flyby KBO trajectories. First some of the unsuccessful
attempts at such trajectories are discussed followed by the final trajectory to K13WB4G and K15RS1R.

One of the first tested potential targets found with the close-approach graphs is D5182. This target
is found by looking at the close-approach graph for the Albion trajectory in Figure 9.4. But instead of
looking at the close approaches after Albion, as was done in Chapter 8, this shows close approaches
in the leg from Neptune to Albion. Three targets are found and are indicated with arrows. The earliest
relatively close approach, indicated by a red arrow, is D5182.

Figure 9.4: The close-approach graph for the spacecraft trajectory to Albion during the phase between Neptune and Albion.
The figure shows the relative distance of the spacecraft to KBOs. The blue line which reaches the x-axis near the end of the
figure represents Albion itself. Three potential other first KBO flybys are indicated with arrows. The red arrow indicates the

approach line for D5182. Only KBOs with an approach of 10 AU or less are shown.
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Following the trajectory to this KBO a new search starts for a second KBO flyby, first using high-thrust
propulsion. Here the KBO target q5257 is found which can be reached with an additional∆V of roughly
1.6 km/s. While no low-thrust equivalent for this trajectory is found the time-of-flight of slightly over 2,000
days implies that a continuous ∆V of on average 0.8 m/s per day is required, which is realistic with the
low-thrust power requirements. The lack of a suitable trajectory is thus related to the fundamentals of
spherical shaping instead of a real-life impossibility. The trajectory to q5257 via D5182 where the last
leg assumes the high-thrust maneuver is shown in Figure 9.5.

Figure 9.5: A 2D representation of the final optimal trajectory from Earth to D5182 and then to q5257. The last leg uses
high-thrust propulsion since no low-thrust spherical-shaping equivalent could be found. Note that the axes in this figure are not

equally scaled.

When the full data set of KBOs is used and both the first and second KBOs are optimized together
high-thrust trajectories are found which only require a few m/s of ∆V beyond Neptune. Most of these
trajectories can be replicated up until and including the first KBO flyby, but fail when including the
second KBO due to the same limitations of spherical shaping as discussed before. One example of
such a trajectory is shown in Figure 9.6 and concerns flybys of K15RR8F and K10JL0J. This trajectory
requires roughly 550 m/s of ∆V after Neptune in the high-thrust case.
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Figure 9.6: A 2D representation of the final optimal trajectory from Earth to K15RR8F and then to K10JL0J. The last leg uses
high-thrust propulsion since no low-thrust spherical-shaping equivalent could be found. Note that the axes in this figure are not

equally scaled.

Many more cases with two flybys are found using high-thrust trajectories, but most of them could not
replicate the second flyby when translated to a low-thrust spherical-shaping trajectory. Most of the
time this is caused by the second KBO leg curving away from the central body (= the Sun) during the
leg. For future development it is thus recommended to either rework spherical shaping to allow any
curvature or to analyze multi KBO low-thrust flybys with a different low-thrust thrust parameterization.
To ensure that trajectories with the current parameterization do not optimize trajectories which curve
away a simple function has been added to the Python code which checks whether a trajectory curves
away from the central body. If so, it is not taken into account during the high-thrust two-KBO exploration
run. Even with this method though some high-thrust trajectories with seemingly feasible∆V values are
found which still do not translate to low thrust. This most likely has to do with the multiple roots of the
a2 function, which is why further study of that parameter is the other main recommendation following
from the multi-KBO flyby analysis.

The curvature filter method together with the optimization of two KBOs at the same time from the
full set of over 2000 KBOs and the use of close-approach graphs eventually results in a two-KBO
trajectory which passes by K13WB4G and K15RS1R. It is visualized in Figure 9.7. The full list of
decision variables for this trajectory is shown in Table 9.4. Here the GA variables at the KBOs are
not included as no gravitational affect is modelled. Note that this method still uses the less optimized
JN trajectory which was found in Chapter 7. The multiple local refinement cycles are only used for
the trajectory to Albion in this thesis. Running extra optimization rounds for the other trajectories is
recommended for future research.
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Figure 9.7: A 2D representation of the final optimal trajectory from Earth to K13WB4G and then to K15RS1R. Note that the
axes in this figure are not equally scaled.

Table 9.4: An overview of the decision variable values for the optimized Earth-Jupiter-Neptune-K13WB4G-K15RS1R
low-thrust trajectory. The number of revolutions, powered gravity assists, and gravity assist variables at KBOs are excluded

from this table as they equal zero or are neglected.

Trajectory stage Variable Value Units
Earth departure t0 14948.4 MJD2000
Earth to Jupiter tf,1 1208.7 days
Jupiter to Neptune tf,2 5321.9 days
Neptune to K13WB4G tf,3 4603.1 days
K13WB4G to K15RS1R tf,4 998.3 days
Departure Earth V∞,E 2.06 m/s
Departure Earth θE 0.988 rad
Departure Earth ϕE 0.906 rad
Arrival Jupiter V∞,J 5906.2 m/s
Arrival Jupiter θJ 2.83 rad
Arrival Jupiter ϕJ -0.00215 rad
GA Jupiter rp,J 151,431 km
GA Jupiter αJ -1.36 rad
Arrival Neptune V∞,N 7846.8 m/s
Arrival Neptune θN 4.42 rad
Arrival Neptune ϕN 0.0118 rad
GA Neptune rp,N 584,504 km
GA Neptune αN 1.38 rad
Arrival K13WB4G V∞,KBO1 5867.9 m/s
Arrival K13WB4G θKBO1 4.08 rad
Arrival K13WB4G ϕKBO1 0.0674 rad
Arrival K15RS1R V∞,KBO2 5602.7 m/s
Arrival K15RS1R θKBO2 4.07 rad
Arrival K15RS1R ϕKBO2 0.0586 rad
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This trajectory is found with an older optimized JN trajectory with a total ∆V of 10,169 m/s up to Nep-
tune and with 352 m/s after Neptune for a total of 10,521 m/s. This results in a wet-to-dry mass ratio of
1.43, well below the requirement of 2.0. Assuming a spacecraft dry mass of 500 kg a total of roughly
215 kg of propellant would be required for a total wet mass of 715 kg. The spacecraft spends a total of
roughly 19.5 years in the Kuiper belt. Not as long as some of the trajectories found by L. van der Heyden,
but much longer than the roughly 7 years that the New Horizons spacecraft spent in the Kuiper belt [86].

The first few legs of this trajectory can be calculated with the standard -1 to 1 range for a2. The leg
to K13WB4G requires a larger range of a2 with an upper bound of 150. The leg to K15RS1R is even
more laborious to calculate as it has many roots. A visual of the a2 function for this final KBO leg of
the trajectory is provided in Figure 9.8. Even if a step size of 10−8 is used for the a2 value no smooth
graph forms. This results in difficulty for the root finder to find a correct a2 value and also results in
wildly different ∆V values depending on the root. Due to the highly fluctuating function the root finder
can not find the true intersection point perfectly and this results in slight deviations when it comes to
the ephemerides of the spacecraft (more on this in Section 9.4). Therefore, the root is chosen which
minimizes this ephemeris deviation. Other roots with a larger deviation do exist and have lower ∆V
values after Neptune down to 31 m/s instead of 352 m/s, but are not chosen due to their larger deviation
from the true ephemerides of the target KBO. Finally, note that the current implementation in Tudat
only allows a single a2 range per trajectory. Therefore, the legs of the trajectory have to be calculated
separately as as such no sensitivity study on the trajectory as a whole could be performed.

Figure 9.8: The time-of-flight as a function of the a2 variable for a trajectory leg from K13WB4G to K15RS1R. The blue line
shows the time-of-flight as a function of a2 while the red line indicates the true time-of-flight, which is 2.73 years.

9.4. Distant flyby analysis
The entire trajectory analysis has focused on CFBs. DFBs or VDFBs, which would still allow some
scientific study, have not been taken into account during the optimization process. Taking these into
account is recommended for future study, but for now they are analyzed in hindsight as by-products
of the trajectory. For this the close-approach graphs from Chapter 8 can be used, but now running
both forwards and backwards in time such that they capture the entire period the spacecraft is in the
Kuiper belt. An overview of all close approaches for the trajectory to Albion while in the Kuiper belt is
given by Figure 9.9. Besides the CFB with Albion this trajectory has only one VDFB with q3738 and
no DFBs. Similarly, the DFB analysis from Neptune to K13WB4G is shown in Figure 9.10 and gives
similar conclusions with two DFBs. An approximation of the close-approach graph for the leg between
K13WB4G and K15RS1R was already given by Figure 8.5 and shows no new VDFBs after K13WB4G
with the exception of K15RS1R of course. While more research into this topic is recommended, these
images suggest that to perform a substantial number of (V)DFBs with known KBOs it should be taken
into account in the objective description of the optimization process.
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Figure 9.9: An overview of all close approaches for the optimized trajectory from Neptune to Albion. The bottom black
horizontal line in the graph is at 0.06 AU which counts as a DFB, while the second horizontal line at 1.34 AU is the most

extreme definition of a VDFB.
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Figure 9.10: An overview of all close approaches for the optimized trajectory from Neptune to K13WB4G. The bottom black
horizontal line in the graph is at 0.06 AU which counts as a DFB, while the second horizontal line at 1.34 AU is the most

extreme definition of a VDFB.

9.5. Thrust magnitude analysis
Two of the constraints from Chapter 3 have not been discussed yet: the thrust limit and approach dis-
tance to the Sun. In none of the optimal trajectories does the distance to the Sun become closer than
is described in the constraints list so this is not an issue for the found trajectories. The other constraint
regards the thrust profile of the trajectory. Specifically, there is a variable thrust limit depending on
the time since launch due to the degradation of the RTG power source. All trajectories have thrust
limits with a similar order of magnitude, but as is done so far in this chapter the trajectory to Albion will
once again be taken to illustrate the results. The thrust profile of the trajectory to Albion is shown in
Figure 9.11. This concerns the improved thrust profile after the sensitivity study. Note that this improve-
ment due to the sensitivity study does not change the thrust profile to a degree which would affect the
conclusions of this section.

As can be seen the thrust remains orders of magnitude below the thrust limit during the the majority of
the flight. Only near the start of the flight the limit is exceeded. However, in real-life this should not be
much of an issue. One of the main reasons why the thrust at the start is so high is because a near-
zero excess velocity at departure from Earth is assumed. If later research does include higher launch
energy values it is expected that the thrust at the start of the launch will also fall below the thrust limit.
Furthermore, since the limit is exceeded at the start of the trajectory it is still possible to temporarily
increase the power of the spacecraft at this stage by adding (detachable) solar panels to the spacecraft
design.

Later stages of the trajectory do show a sufficient margin with the thrust limit. This becomes even
more apparent for the low-∆V legs towards a KBO such as the thrust profile for the leg from Neptune
to K13WB4G in Figure 9.12. This shows that in terms of the power requirement the low-thrust KBO
trajectories are realistic with modern technologies. Note that in real-life the thrust profile will probably
not look like this. Due to the throttle sensitivity of low-thrust propulsion as well as to prevent wear of the
thrust system it is not recommended to have active thrust for the entirety of the decades-long mission.
In reality common minimum thrust values for ion engines are in the order of 10−3 N [56]. The longest
in-flight operational use of a low-thrust propulsion system to date is 16,246 hours or a little under 2
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years [127]. A real KBO mission would have short periods of relatively higher thrust levels which would
replicate the effect of this continuous thrust profile. The room in the thrust limit budget, beyond the
initial phase of the trajectory, indicates that there is plenty of margin for such shorter but stronger thrust
sections. The rest of the trajectory would then consist of coasting phases with no thrust. In more
detailed design of the mission the study for more realistic thrust profiles with coasting phases is highly
recommended.

Figure 9.11: The thrust profile for the optimized trajectory from Earth to Albion. The red line indicates the maximum allowable
thrust based on the power constraint. Due to the log scale the degradation of the maximum allowable thrust is difficult to see.

Figure 9.12: The thrust profile for the optimized trajectory from Neptune to K13WB4G. The red line indicates the maximum
allowable thrust based on the power constraint. Due to the log scale the degradation of the maximum allowable thrust is

difficult to see.
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9.6. Requirements recap
In Chapter 3 an overview of mission requirements was given. With the final results of this thesis it is
now checked whether these requirements are fulfilled. The list below provides the identifier for each
requirement together with a short description. This is followed by a pass/fail and a short explanation
if necessary. For a quick overview green text indicates a pass while any (partial) failures of meeting
requirements are indicated with red text. All but two of the requirements are passed. Necessary follow-
up steps or solutions are presented for the failed requirements.

• KBM-GEN-01 = performing a close flyby with two KBOs. Pass, a trajectory with two KBO CFBs
has been found.

• KBM-GEN-02 = the mission ends once the Kuiper belt is left or after 100 years. Pass, the mission
objectives of two CFBs are reached before the mission ends.

• KBM-GEN-03 = a wet mass below 1000 kg. Pass, the found ∆V values allow for a spacecraft
mass below 1000 kg.

• KBM-GEN-03.1 = a dry mass of at least 500 kg. Pass, the found∆V values allow for a spacecraft
dry-mass of at least 500 kg.

• KBM-INSTR-01 = general usage instrumentation power budget is below 50 W. Pass, the general
instrumentation power budget equals 42.2 W.

• KBM-INSTR-01.1 = peak usage instrumentation power budget is below 100 W. Pass, the peak
instrumentation power budget equals 82.2 W.

• KBM-PROP-01 = the use of Xenon-ion propulsion. Pass.
• KBM-PROP-01.1 = adherence to the ion power-based thrust limit. Fail, the thrust limit is exceeded
for some trajectories during the early stage of the mission (before Jupiter). However, suitable
solution strategies are presented such as a higher launch energy.

• KBM-POW-01 = the spacecraft power is delivered with three GPHS-RTGs. Pass.
• KBM-LV-01 = a launch energy below 100 km2/s2. Pass.
• KBM-TIME-01 = a launch date between 2040 and 2050. Pass.
• KBM-TIME-02 = the Kuiper belt is reached within 25 years of launch. Pass, the multi-KBO flyby
mission reaches the Kuiper belt in 17.9 years.

• KBM-TIME-03 = the average time between KBO CFBs is lower than 10 years. Pass, the multi-
KBO flyby mission has an average flight time between KBOs of 7.7 years.

• KBM-TRAJ-01 = the mission has a Jupiter flyby, a Neptune flyby and KBO CFBs. Pass.
• KBM-TRAJ-01.1 = adherence to the revolution limit around the Sun per leg. Pass.
• KBM-TRAJ-01.2 = adherence to periapsis limits during the gravity assists. Pass.
• KBM-TRAJ-01.3 = adherence to Sun-approach limits during the trajectory. Pass.
• KBM-TRAJ-02 = adherence to the usage of KBOs with an uncertainty factor of 2 or lower for
CFBs. Fail, the multi-KBO flyby is performed with a body with an uncertainty factor of 6 and 3,
respectively. This results in ephemerides uncertainties of roughly 4 AU and 0.05 AU, respectively,
as of launch. Observation of the KBOs during the mission can be used to reduce the uncertainty
of the bodies and further research towards the required ∆V buffer is recommended.

9.7. Comparison with high thrust and industry
With the trajectories now fully described a few final remarks can be made regarding the results and
the used methodology. Specifically, how the found low-thrust trajectories compare to their high-thrust
counterparts and how the found methodology compares to industry low-thrust optimization.

9.7.1. Comparison with high-thrust trajectory performance
Firstly, the comparison with high-thrust trajectories is discussed. In this thesis high-thrust trajectories
were used as intermediate steps during the optimization process. However, these trajectories do not
function as fair comparison material for the low-thrust trajectories. Due to the lower efficiency of high-
thrust propulsion, it is crucial to perform as much of the ∆V with the LV such that the final spacecraft
does not become too heavy. Since the trajectories in this thesis neglect the launch energy of the LV
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this puts the high-thrust examples at an unfair disadvantage for a direct comparison. Therefore, further
research is recommended with the most promising found trajectories where the launch energy limits
are increased for both high-thrust and low-thrust cases in order to perform a direct comparison of the
payload mass.

Comparisons with heritage and other theses can be done to get some idea of the relative performance
of the found low-thrust trajectories. Assuming an Isp of 250 s for high-thrust propulsion the wet-to-dry
mass ratio of the spacecraft for the trajectories found in L. van der Heyden’s work range from 1.01 to
2.66 depending on the chosen planetary flyby sequence [43]. Research by M. Penas on high-thrust
KBO flybys found a two-KBO flyby sequence with a total ∆V of 2.68 km/s from DSMs [98]. This trajec-
tory uses a propellant with an Isp of 228 s, resulting in a wet-to-dry mass ratio of roughly 3.31 [98].

Other papers mentioned in Chapter 2 analyzed high-thrust KBO missions. The trajectory analysis to
Haumea found a candidate using a gravity assist with Jupiter with a total of 7.449 km/s of DSM ∆V or
a wet-to-dry mass ratio of roughly 12.6 assuming an Isp of 300 s [108] and results with the same order
of magnitude were found for trajectories to other well-known KBOs [57]. These trajectories often use
high launch energy values in excess of 100 km2/s2. One of the most promising high-thrust results is
that of a multi-KBO mission to Huya and Quaoar with a ∆V of 1.30 km/s for a trajectory with a launch
energy of roughly 118 km2/s2 and a ∆V of 2.57 km/s for a trajectory with a launch energy of roughly
29 km2/s2 [47]. Using the given specific impulse of 323 s in the paper [47] this results in wet-to-dry
mass ratios of 1.51 and 2.25, respectively for the two trajectories.

Comparing these results to the found wet-to-dry mass ratios of 1.39 to 1.43 in this thesis can not result
in definitive conclusions, as the experiments in the aforementioned papers are not directly comparable
to the ones in this thesis. However, the fact that even with a non-zero launch energy many of the high-
thrust KBO missions require a higher wet-to-dry mass ratio for the final stage of the spacecraft than
the found low-thrust trajectories indicates the potential of low-thrust KBO missions. Further research
is especially recommended to determine whether the addition of a significant non-zero launch energy
is capable to reduce the wet-to-dry mass ratio to values comparable as found by L. van der Heyden.
Note that with the current C3 value of roughly 0 km2/s2, the payload mass capabilities of the LV are
also much more favorable than the high-thrust counterparts with high launch energy values, as can be
seen in Figure 3.1.

9.7.2. Industry optimization methods
Optimizing feasible low-thrust trajectories required much effort during this research project to the point
of finding almost no two-KBO low-thrust flyby trajectories. As such, the question arises how other
projects such as industry missions by NASA or ESA as well as other papers have calculated and in
some cases successfully flown low-thrust missions. There are a few ways in which the methods by
these larger institutions differ from the research in this thesis. Firstly, they often have access to more
extensive computing systems and supercomputers to increase the number of simulations which can be
performed. Secondly, most missions use atypical low-thrust descriptions which are far more complex
than the shape-based methods in this thesis. This requires more computational time, but allows far
more freedom in the trajectory shape. This is for example illustrated by the frequent use of coasting
in Figure 9.13, a more detailed version of the Dawn trajectory (a simplified version was shown in Fig-
ure 2.10) [104]. This mission was designed using a tool called Mystic [104].

Thirdly, note that no low-thrust KBO mission has ever flown which means that it is not possible to
fully compare it to other mission design projects such as a trajectory to Vesta and Ceres in the case
of the Dawn mission. Finally, it is important to note that in hindsight it can be concluded that the
current implementation of spherical shaping is one of the major reasons for the difficulty to find KBO
flybys. Thus, it is possible that other methods such as Sims-Flanagan or hodographic shaping are
more flexible in finding feasible results. Nevertheless, the work in this thesis shows that even with
lower computational effort and simplified models it is still possible to design feasible and, compared to
other research as described in the previous subsection, competitive low-thrust KBO trajectories.
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Figure 9.13: An overview of the trajectory of the Dawn mission. The black segments represent coasting phases [104].

9.8. Summary
This chapter provides a comprehensive overview of the resulting final trajectories based on the method-
ologies described in the previous two chapters. Multiple different trajectories have been described and
visualized. First an optimal trajectory to Neptune with a total ∆V of 9,171.8 m/s is shown. Afterwards
different single-KBO flyby results are shown including Albion, which is studied in more detail. This latter
trajectory has a total ∆V of 9852.9 m/s. A sensitivity study on this Albion trajectory shows that the ∆V
can be lowered further to 9683.3 m/s (wet-to-dry mass ratio of 1.39) with a departure date variation of
+2 days. Furthermore, this test indicates that by varying some of the decision variables there exists an
18 day launch window if one requires the total ∆V of the mission to be within 20% of the optimal value.

Multiple attempts at multi-KBO flyby missions are also described. While many of these trajectories can
be found with high-thrust propulsion, most can not be replicated with low thrust. This is caused by the
high sensitivity of low-thrust propulsion and spherical shaping, the requirement for spherical shaping
that the trajectory must curve towards the central body, and the varying solutions to the a2 coefficient
solver. For these reasons more study into these aspects is recommended and comparisons with other
shape-based low-thrust parameterizations such as hodographic shaping are recommended. One low-
thrust mission with two KBO flybys is found. It requires 352 m/s of∆V after passing Neptune and visits
K13WB4G and K15RS1R for a total ∆V of 10,521 m/s (wet-to-dry mass ratio of 1.43).

More analysis of the data is performed including a distant flyby analysis with the trajectory towards
Albion. This only shows one VDFB with other known KBOs (besides Albion) and indicates that if one
wants many (V)DFBs it would have to be included in the objective description. An analysis of the thrust
magnitude for different KBO trajectories shows that the required thrust is orders of magnitude below
the maximum available thrust for most of the mission. Only at the start of the mission does the thrust
exceed the limitations. It is expected that for a real mission this is not an issue and can be solved with
higher values for the launch energy. In later parts of the trajectory the use of coasting arcs is appeal-
ing as there is enough space in the thrust magnitude budget. This final check also indicates that the
trajectories found in this chapter are realistic with current power-generation technologies.

While no direct comparison is performed with high-thrust comparisons, results from other research
indicate that the found low-thrust trajectories are comparable and in some cases more optimal in terms
of the wet-to-dry mass fraction than proposed high-thrust KBO missions. Further research with higher
launch energy values is recommended in order to perform a direct comparison.
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Conclusions

This chapter addresses the conclusions of the thesis. The main research question of the project is:

”What methodology is required to optimize realistic low-thrust trajectories with the goal of
Kuiper belt object flybys?”

First the subquestions of the thesis are answered one by one and at the end of this chapter these
answers are used to provide a general answer to the main research question.

• How is the science return of a KBO flyby mission defined?
The science return of a KBO flyby mission in this thesis is defined by the number of close flybys
with KBOs in combination with the objectives of a low ∆V and a low time-of-flight. At least two
KBO CFBs are required to get the desired science return of the mission. A list of instruments has
been provided to perform scientific measurements. This science return is accomplished with a
single launch of a low-thrust powered vehicle placed at the edge of Earth’s SOI with (almost) no
excess velocity. From here the spacecraft uses low-thrust propulsion to perform planetary gravity
assists followed by one or more flybys in the Kuiper belt.

• Which thrust parameterization and physics description is best used for the low-thrust tra-
jectory design and how does this need to be implemented in Tudat?
The trajectory design is tackled with a patched-conics approach and semi-analytical low-thrust
legs to reduce the runtime and as such increase the number of analyses during the thesis project
time span. For the thrust a spherical-shaping approach is used. For the Tudat implementation a
three-file object-oriented Python structure is applied with input data for KBOs from MPC.

• What is the best performing optimizer including tuning for a low-thrust flyby mission?
Based on heritage research the MOEA/D optimizer is used. To tune this optimizer first a high-
thrust tuning problem is tackled to reduce the search space of the optimizer settings. Afterwards,
the optimizer is tuned with a low-thrust problem with the following settings as a result: cross-over
rate 0.6, scale factor 0.7, distribution index 10, neighborhood size 40, realb 0.6, limit 2. The
population number is set at 100 with a generation number based on convergence critera.

• What is the optimal planetary gravity-assist sequence for Kuiper belt trajectories?
Based on previous studies it is chosen to use gravity assists with Jupiter and Neptune to reach the
Kuiper belt. With an added convergence method and using constrained trajectories an optimal
trajectory case to Neptune is found. This is aided by first using a high-thrust optimization problem
to reduce the search space for the low-thrust problem. A low-thrust trajectory to Neptune with a
∆V of 9.17 km/s and a time-of-flight of 17.9 years has been found.

• What is the required optimization strategy to expand the trajectory to the Kuiper belt with
optimal objective values?
The same process of switching between high-thrust and low-thrust optimization is sufficient to
find candidates for the first KBO flyby. Later more local refinement cycles can be used to improve
the objective values of these trajectories. A trajectory to the KBO Albion is found with a total ∆V
of roughly 9.68 km/s and a total time-of-flight of 27.0 years.
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• What kind of Kuiper belt flyby trajectories are possible with the found optimization strat-
egy?
Missions with a single KBO flyby are easily found with this optimization strategy. Expanding the
trajectory to two KBO flybys is more difficult. By optimizing multiple KBO flybys at the same time,
using an expanded set of KBOs, and using close-approach graphs at least one low-thrust KBO
mission with two KBO flybys is found with a total ∆V of roughly 10.52 km/s and a time-of-flight
of 33.2 years. The difficulty of finding multi-KBO flybys is attributed to the limitations of the cur-
rent spherical-shaping description, specifically its sensitivity to inputs, its description of the a2
algorithm, and its requirement to have trajectories curve towards the central body.

• How many distant flybys can one expect to encounter during a long-term Kuiper belt mis-
sion?
An analysis of the trajectory towards Albion and K13WB4G indicates that, among the known and
catalogued KBOs, one should not expect random DFBs during a KBO mission. A few VDFBs
might be feasible, but to get a large number of distant flybys this concept should be included in
the objective description.

• What impact does a sensitivity study of the inputs of the trajectory have on the found
optimal Kuiper belt trajectories?
A sensitivity study on the departure date shows that, without changing the launch energy, there is
a launch window of roughly 18 days for the Albion KBOmission before the∆V no longer becomes
attractive with respect to alternative trajectories. All ∆V values within the tested 40 day launch
window remain below the maximum ∆V budget assigned to the mission.

• How feasible are the found Kuiper belt flyby trajectories with current power and low-thrust
propulsion technologies?
For the majority of the trajectory the thrust of the found trajectories requires power levels well be-
low the maximum available power. Only at the start of the trajectory the power level is exceeded,
but this can be avoided by using a higher launch energy. In reality the thrust would not be contin-
uous, but would have active phases and coasting phases. Trajectories to KBOs are found with a
∆V of roughly 10 km/s. This value is roughly half of the available∆V budget and the result could
be even lowered by increasing the launch energy. Based on this it is concluded that the found
KBO flyby trajectories are realistic with the use of current power and low-thrust technologies.

• How does the the wet-to-dry mass fraction of the designed low-thrust missions compare
to potential high-thrust missions?
The found optimal KBO missions have a wet-to-dry mass ratio in the order of 1.39 to 1.43. No
direct fair comparison is performed with high-thrust trajectories in this thesis, which would require
an analysis of missions with higher launch energy values. However, based on results from other
research it is concluded that at the very least the results found in this thesis are comparable
and in some cases even more optimal than the mass fraction found in proposed high-thrust KBO
missions.

Based on the conclusions in the itemized list a general conclusion for the thesis can be drawn. In
this thesis a methodology based on switching between high-thrust and low-thrust trajectories and sep-
arately analyzing trajectory legs is described to constrain the inputs for the low-thrust multi-objective
optimization problem. With the use of an evolutionary algorithm this allows for the design of many sin-
gle flyby KBO missions. By means of combining the optimization steps of multiple KBOs, expanding
the KBO database, and the use of close-approach graphs trajectories to more than one KBO in a single
mission can also be designed with many high-thrust examples. However, in the end only a single ex-
ample of such a mission with low thrust has been found. While it is expected that further searches will
result in more low-thrust two-KBO trajectories, the difficulty to find these trajectories is mainly caused
by the limitations of the used spherical-shaping trajectory method. Nevertheless, this thesis shows that
the design and optimization of low-thrust KBO missions is possible and that the resulting trajectories
are realistic to perform with current technology in terms of ∆V and thrust levels. The results are even
comparable or more optimal compared to high-thrust KBO missions, even though more research is re-
quired to definitely quantify this. The thesis thus firmly puts another propulsion possibility on the table
when deep-space Kuiper belt missions are considered.
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Recommendations

Based on the conclusions of this thesis there are multiple possibilities and recommendations for further
research. Furthermore, some topics were not tackled during this thesis to narrow down the research,
but are still recommended to do at some point to widen the scope of the research topic. These recom-
mendations are discussed in this chapter. The recommendations are split into four categories: mission
design, trajectory design, thrust parameterization, and the optimization process.

Mission design
• The mission design in this thesis only analyzed missions to Kuiper belt objects. However, mis-
sions to other TNOs such as SDOs and detached objects can also be included. Due to their far
distance from the Sun they can be excellent options for the last flyby of the trajectory after the
spacecraft leaves the Kuiper belt.

• The spacecraft for the KBOmission is considered to be a point mass with only a basic description
of its components such as the thrust and power system. A more detailed design of the space-
craft of for example the instrumentation subsystem, the telemetry subsystem, and the general
spacecraft dimensions and shape would allow more extensive science return descriptions and
calculations regarding for example radiation pressure.

• The KBOs in this thesis are modelled using Kepler orbits. In more detailed design stages it
is recommended to instead use numerically propagated orbits from the JPL Horizon model to
reduce the error of the KBO ephemerides.

Trajectory design
• The inclusion of coasting phases is recommended for future research. The thrust profile in Chap-
ter 9 indicates that the thrust level can be orders of magnitude larger during some sections of the
trajectory before reaching the thrust limit. This would reduce the operational time of the thruster
and as such increase its lifetime. Furthermore, the use of coasting phases can reduce the total
∆V of a mission as was already studied by A.M. Gonzalez [36].

• The launch is considered to be an instantaneous maneuver in this thesis. A more detailed launch
description including launch location and an in-depth analysis of the different launch vehicles is
recommended for further research. Specifically, allowing for a larger launch energy can reduce
the total ∆V of the mission and reduce the time-of-flight.

• Flybys of the inner Solar System were out of scope for this thesis to reduce the complexity of the
problem description. However, with the current results the addition of inner Solar System gravity
assists can reduce the total launch energy required and as such the total ∆V . The same goes
for other or additional flyby sequences with the outer planets.

• Trajectory design in this thesis is done with semi-analytical thrust arcs. In detailed design it is
recommended to switch to a fully propagated trajectory method where perturbations other than
the Sun and the thrust system can be taken into account.
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• Both powered gravity assists and aerogravity assists have not been included in the trajectory
design of this thesis. Research by P. Musegaas [63] and J. Melman [58] indicates that such
maneuvers can further reduce the total ∆V of the mission.

• To improve the implementation of the KBO legs in Tudat it is recommended to add a new type of
leg which travels to a node, which represents a KBO, without having to perform a gravity assist
or other maneuver at the end of the leg.

• Due to time limitations only missions with a maximum of two KBOs were studied in this thesis.
The optimization of missions with more CFBs is recommended.

Thrust parameterization
• This thesis used spherical shaping as its low-thrust parameterization. However, in the conclusions
it is mentioned that spherical shaping has severe limitations due to its sensitivity, restrictions
regarding trajectory curvature, and current implementation of the a2 root finder. Therefore, it
is recommended to also perform a low-thrust KBO analysis with other low-thrust shape-based
methods. Hodographic shaping in particular is recommended due to its large customization by
means of base functions and free coefficients. Now that the design space has already been
narrowed down the use of Sims-Flanagan also becomes more attractive.

• Related to the previous point, improving the spherical-shaping method in Tudat to remove some
of the issues mentioned before is also recommended. This would regard a reformulation of the
way the time-of-flight is integrated such that it does allow for trajectories which curve away from
the central body as well as a rework of Tudat such that the a2 function can be accessed more
readily and all its different roots can be tested. This also includes the possibility to use different
a2 search ranges for different legs within the same trajectory.

• A direct comparison of this method with high-thrust propulsion would provide an answer on
whether low-thrust KBOmissions are more attractive than their high-thrust counterpart in terms of
the payload mass. Since the research objective of this thesis is different from L. van der Heyden’s
thesis, these results can not be directly compared at the moment. To allow for a fair comparison
an increase in the launch energy would be required in the problem description, which is already
discussed in a previous recommendation.

• The calculation of a thrust buffer to account for uncertainties in the position of the planets, KBOs,
and errors in the spacecraft instruments is not done in this thesis. Such a buffer could provide
a more detailed answer on the realism of performing flybys with KBOs with an uncertainty factor
above 2 as was done in later stages of the optimization process.

• The code in this thesis uses the traditional description of spherical shaping. Adjusted descriptions
such as the one by A. Vroom [121] can deal better with high inclination trajectories and might thus
result in easier trajectory design for some of the more inclined KBO trajectories.

Optimization process
• The optimization process for the KBO flybys does not take any specific information about the
KBOs into account. A singlemission which performs a flyby of multiple types of KBOs (for example
an object from the cold population and one from the hot population of the classical belt) can
provide scientific data on the variation of KBOs. The same goes for including information about
binary objects and ring systems in the objective description for the optimizer.

• The optimizer method in this thesis used a single island model. Using multiple islands, the so-
called archipelago method, allows members of a population to move between different solution
clusters and could be especially useful in problems with many local optima as is most likely the
case with the problem description from this thesis.

• An expansion of the sensitivity study to other parameters besides the departure date is recom-
mended. This can for example include the sensitivity of the gravity assist variables or, when a
fully propagated trajectory is implemented, uncertainties regarding gravity fields and spacecraft
characteristics.

• The use of reverse optimization, where the final trajectory leg is optimized first, can improve the
chance of finding solutions compared to the current chronological method. This is because due
to the low synodic period it is much easier to find solutions for the first few legs of the trajectory
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than for the later legs. To do this specific KBO targets have to be selected, which can be taken
from the optimal trajectories found during this thesis project.

• The addition of other objectives can increase the scope of the optimization problem. Such new
objectives could regard the distant flyby analysis, a penalty system, the launch∆V , or the duration
which the spacecraft spends in the Kuiper belt.

• The multiple steps of the optimization algorithm explained in Chapters 7 and 8 are currently per-
formed manually by running different functions in succession. The construction of an automatic
algorithm which runs the necessary functions in sequence would make future analyses of KBO
low-thrust missions faster and easier for users unfamiliar with the entire code structure. The ad-
vantage of such an algorithm should be weighed against its riskiness since manual intervention
was required many times during this thesis to tweak the optimization method.
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A
Overview of unit tests

Tables A.1 and A.2 provide an overview of the unit tests performed on the written code for this thesis.
All the unit tests were passed. The numbers in Table A.1 can be used to identify the name of the unit
test in Table A.2. The Earth-Mars-Earth example trajectory refers to the trajectory shown in Figure 6.8.

Table A.1: An overview of all the unit tests performed in the code together with their inputs listed.

Number Unit test Input
1 Mass fraction maneuver Value for ∆V (1359.5 m/s) and Isp (200 s)
2 Set up bodies An array with all planets
3 Set up bodies with KBOs An array with all planets and KBOs
4 Get trajectory parameters Earth-Mars-Earth example trajectory
5 Get trajectory object Earth-Mars-Earth example trajectory
6 Single objective optimization Cassini-2 GTOP optimization problem
7 Multi objective optimization Cassini-2 GTOP optimization problem
8 Problem object creation MGATrajectory inputs for Earth-Mars-Earth trajectory
9 Get decision variables Earth-Mars-Earth example trajectory
10 Get state history Earth-Mars-Earth example trajectory
11 Get thrust history Earth-Mars-Earth example trajectory
12 Set optimization type Optimizer indicator (1) for Earth-Mars-Earth trajectory
13 Get final mass Earth-Mars-Earth example trajectory
14 Get bounds Earth-Mars-Earth example trajectory
15 Get nobj Earth-Mars-Earth example trajectory
16 Position error Uncertainty parameter (2) and time period (3 years)
17 Mean to eccentric anomaly Kepler orbit example (M = 30 deg, e = 0.00001)
18 Mean to true anomaly Kepler orbit example (M = 30 deg, e = 0.1)
19 Epoch to J2000 Letter + number code for an epoch (J981I73)
20 Test root finder Earth-Mars-Earth example trajectory
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Table A.2: An overview of all the unit tests performed in the code together with their expected outputs and an indicator whether
the unit test was passed.

Number Expected output Passed
1 Mass fraction (0.5) based on rocket equation Yes
2 All planets present Yes
3 All planets and KBOs present Yes
4 All inputted values present Yes
5 Object with correct input values Yes
6 Correct length and properties of output lists Yes
7 Correct length and properties of output lists Yes
8 Correct initialization values of the object Yes
9 Correct decision variables returned Yes
10 Correct dimensions and realistic values of the state Yes
11 Correct dimensions and realistic values of the thrust Yes
12 Results in a single-objective optimization Yes
13 Expected final mass based on the trajectory Yes
14 Same bounds as given in the decision variable range Yes
15 Expected number of objectives (1 = ∆V ) Yes
16 Expected error (0.17 million km) based on uncertainty parameter Yes
17 Correct eccentric anomaly (0.524 rad) Yes
18 Correct true anomaly (0.634 rad) Yes
19 Correct conversion to J2000 day number (2450832.23) Yes
20 a2 value reaches the TOF value at its expected point Yes
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