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NOTATION 

A = A^/h^ Ratio of wave amplitude to o s c i l l a t i o n amplitude 

A^ Amplitude of outgoing wave 

a.. Two-dimensional added mass i n the i t h mode due 

to the motion i n the j t h mode 

(a„„,a„„) = ^ Nondimenslonal (sway, heave) added mass 
22' 33' pS. 

c o e f f i c i e n t 

^24 
= , T_o ^ Nondimenslonal sw a y - r o l l coupling added mass 

24 (pbS^) 

^44 
a, , = = Nondimenslonal r o l l added i n e r t i a 
^ (pb^S^) 

b One-half of the distance between the c e n t e r l i n e 
of each h u l l 

b. . Two-dimensional wavemaklng damping i n the i t h 
mode due to the motion i n the j t h mode 

b S t r u t thickness at the mean w a t e r l i n e 
o 

- - ^^22'^33^ 
^^22'^33^ = — Nondimenslonal (sway, heave) damping c o e f f i c i e n t 

b. 
'24 

Nondimenslonal s w a y - r o l l coupling damping 
24 (pwbS.) 

A c o e f f i c i e n t 

^ 4 
b, , = ^ Nondimenslonal r o l l damping c o e f f i c i e n t 

(pwb^S^) 

Correction f a c t o r (1 = 1,2,3) 

C Centerline of the tw i n bodies 

v 



D r a f t of cross se c t i o n 

Depth to the center of c i r c u l a r h u l l 

Depth of s t r u t 

G r a v i t a t i o n a l a c c e l e r a t i o n 

Amplitude of o s c i l l a t i o n of body 

Imaginary u n i t 

Wave number 

y- and z-component of u n i t normal vector 
p o i n t i n g i n t o body 

Radius of c i r c u l a r p o r t i o n of h u l l 

C y l i n d r i c a l coordinates as defined on page 5 

Submerged cross s e c t i o n a l area of one h u l l 

Sway v e l o c i t y 

Heave v e l o c i t y 

Right-handed Cartesian coordinate system; Oz i s 
di r e c t e d v e r t i c a l l y upward and Oy coincides w i t h 
calm w a t e r l i n e 

One-half of sway added mass of twin c i r c l e s 
submerged under a r i g i d surface 

Heave added mass of SWATH demihull cross s e c t i o n 
at zero frequency 

Water density 

V e l o c i t y p o t e n t i a l representing flow f i e l d 
d isturbed by (heave, sway, r o l l ) o s c i l l a t i o n 

v i 



ABSTRACT 

De r i v a t i o n of approximate formulas f o r determining 
the added mass and damping c o e f f i c i e n t s of two-
dimensional, small-waterplane-area, t w i n - h u l l (SWATH) 
sections i s described. The added mass and damping co­
e f f i c i e n t s of i n t e r e s t are those associated w i t h a 
forced o s c i l l a t i o n of SWATH sections i n heave, sway, or 
r o l l mode i n a f r e e surface. The o b j e c t i v e of d e r i v i n g 
the approximate formulas f o r the hydrodynamic c o e f f i ­
c i e n t s i s to s i m p l i f y the computation of motion of 
SWATH ships i n waves without s a c r i f i c i n g i t s accuracy 
s i g n i f i c a n t l y . 

The approximate formulas are derived based on the 
p o t e n t i a l - f l o w theory. The damping c o e f f i c i e n t s are 
obtained i n terms of the outgoing wave amplitudes, and 
the added mass c o e f f i c i e n t s are obtained by using the 
damping c o e f f i c i e n t s through the so-called Kramers-
Kronig r e l a t i o n s . W i t h i n the frequency range of p r a c t i ­
c a l I n t e r e s t , the approximate formulas provide s a t i s f a c ­
t o r y r e s u l t s . 

ADMINISTRATIVE INFORMATION 

This work was sponsored by the Naval M a t e r i a l Command as par t of the 

High Performance Vehicle Hydrodynamic Program of the Ship Performance 

Department, David W. Taylor Naval Ship R&D Center (DTNSRDC). Funding was 

provided under the Ships, Subs and Boats Program, Element 62543N, Task 

Area ZF-43421001, Proj e c t Number ZF-43421, Work Unit 1-1500-102. 

INTRODUCTION 

One of the advantages expected from a small-waterplane-area, t w i n -

h u l l (SWATH) c o n f i g u r a t i o n i s the improved seakeeping q u a l i t i e s compared 

to monohull ships i n moderate sea condi t i o n s . To a s s i s t i n the development 

of the SWATH concept, an a n a l y t i c a l p r e d i c t i o n of motion of SWATH ships i n 

waves has been developed at the David W. Taylor Naval Ship R&D Center 
1* 2 

(DTNSRDC). ' The a n a l y t i c a l method can p r e d i c t the motion of a SWATH 

ship i n f i v e degrees-of-freedom i n regular and i r r e g u l a r waves. The surge 

motion i s excluded due to i t s minor p r a c t i c a l s i g n i f i c a n c e . 

*A complete l i s t i n g of references i s given on page 31. 
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Although the e x i s t i n g a n a l y t i c a l method has i t s own merits and serves 

important purposes, i t has been f e l t t h a t i t i s too cumbersome to be used 

i n the conceptual design stage at which numerous candidate h u l l forms are 
3 

examined. D a l z e l l has addressed t h i s problem by developing a s i m p l i f i e d 

method of computing the hydrodynamic c o e f f i c i e n t s associated w i t h heave-

p i t c h coupled motion of SWATH ships at zero speed i n head waves. Since 
2 

the major p o r t i o n of the computer program f o r p r e d i c t i o n of motion i s com­

pr i s e d of computing the s e c t i o n a l added mass and damping, the accomplish­

ment of D a l z e l l i n reducing the size and computation time of the computer 

program i s regarded t o be very worthwhile. 

I n t h i s r e p o r t , an extension of the D a l z e l l e f f o r t to a l l hydrodynamic 

c o e f f i c i e n t s associated w i t h the f i v e degrees-of-freedom of motion of SWATH 

ships i s described. The approach employed here i s s i m i l a r to the D a l z e l l 

approach. That i s , the s e c t i o n a l wavemaklng damping c o e f f i c i e n t s of SWATH 

cross sections are obtained using the f a r - f i e l d p o t e n t i a l - f l o w theory. By 
4 

a p p l i c a t i o n of the Kramers-Kronig r e l a t i o n s to the damping c o e f f i c i e n t s , 

the added-mass c o e f f i c i e n t , which can be regarded as the conjugate p a i r of 

the damping, i s determined. 

The advantage of t h i s procedure over the conventional m u l t i p l e -

expansion method^ or s o u r c e - d i s t r i b u t i o n method^ i s t h a t the wavemaklng 

damping can be obtained by determining the outgoing wave amplitude at a 

f a r f i e l d r a t h e r than by determining the pressure d i s t r i b u t i o n on the body. 

The outgoing wave amplitude can be cl o s e l y approximated by representing the 

fl o w disturbances by a p u l s a t i n g s i n g l e source, a d i p o l e , or a combination 

of both. Furthermore, the Kramers-Kronig r e l a t i o n s can be expressed i n 

terms of a half-range double Fourier transform. Because an e f f i c i e n t 

numerical procedure such as f a s t Fourier transform (FFT)'' i s a commonly 

a v a i l a b l e computer r o u t i n e , the process of obt a i n i n g the added-mass c o e f f i ­

c i e n t s can be q u i c k l y performed. 

Once the sèctional added mass and damping c o e f f i c i e n t s i n heave, sway, 

r o l l , and roll-sway coupled modes are obtained, the r e s t of the motiön pre­

d i c t i o n process f o l l o w s i d e n t i c a l l y to t h a t described i n Reference 1. 
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Comparison of the r e s u l t s obtained by experiments, the method of 

source d i s t r i b u t i o n , and the present approximate method are presented i n 

graphs. Agreements are, i n general, f a i r . The approximate method y i e l d s 

savings i n the computation time by an order of magnitude compared to the 

conventional method of Reference 8. The r e a l m e r i t of the approximate 

method w i l l be evaluated i n the f u t u r e when an a n a l y t i c a l method of pre­

d i c t i o n of SWATH motions i n waves i s developed. 

ANALYTICAL METHODS 

BACKGROUND 

Wit h i n a l i n e a r a n a l y s i s , the added mass and damping c o e f f i c i e n t s of 

o s c i l l a t i n g t w i n - c y l i n d r i c a l bodies of a r b i t r a r y cross section have been 
Q 

determined by the method of p u l s a t i n g source d i s t r i b u t i o n . This method 

has shown s a t i s f a c t o r y agreement w i t h the experimental r e s u l t s of various 

cross s e c t i o n a l shapes such as twi n s e m i c i r c l e s , rectangles, t r i a n g l e s , ^ 
9 

and SWATH sections. 

To o b t a i n reasonably accurate added mass and damping c o e f f i c i e n t s of 

a SWATH cross s e c t i o n , at l e a s t 15 to 20 points of source d i s t r i b u t i o n on 

the submerged contour of one h u l l should be taken f o r each frequency of 

o s c i l l a t i o n . To obta i n a l l the hydrodynamic c o e f f i c i e n t s i n the l i n e a r 

equations of motion covering a l l degrees-of-freedom, the s e c t i o n a l added 

mass and damping c o e f f i c i e n t s should be computed f o r the sway, heave, and 

r o l l modes f o r about 20 cross sections along the len g t h of a ship. I f the 

motion of a SWATH ship i n i r r e g u l a r waves f o r d i f f e r e n t wave headings and 

ship speeds i s to be computed, the foregoing number of c a l c u l a t i o n s should 

be repeated f o r each wave heading, ship speed, and frequency of o s c i l l a t i o n . 

Thus, one can e a s i l y expect t h a t a s i g n i f i c a n t amount of computer time w i l l 

be required to evaluate the seakeeping q u a l i t i e s of a ship. 

I n s p i t e of t h i s l a r g e expense of computation time, what we are ob­

t a i n i n g , a t best, are motions based on the hydrodynamic c o e f f i c i e n t s which 

are obtained under the assumption of two-dimensional flow conditions at 

each cross s e c t i o n . Furthermore, u n l i k e monohull ships, the motion of 

SWATH ships cannot be predicted accurately by using only the c o e f f i c i e n t s 
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obtained from the p o t e n t i a l - f l o w theory. There are viscous e f f e c t s and 

f i n e f f e c t s to be included i n the hydrodynamic c o e f f i c i e n t s . I t seems 

reasonable, t h e r e f o r e , to seek a s i m p l i f i e d method of ob t a i n i n g the sec­

t i o n a l hydrodynamic c o e f f i c i e n t s , i f the economic savings i n the labor a 

time can j u s t i f y the loss of accuracy of the r e s u l t s w i t h i n a c e r t a i n 

margin. 

ANALYSIS 

From the p r i n c i p l e of conservation of energy, the wavemaklng damping 

of an o s c i l l a t i n g two-dimensional body can be determined by the amplitude 

of the r a d i a t i n g waves at a f a r distance from the body. This implies t h a t 

the damping c o e f f i c i e n t can be determined by examining the f a r - f i e l d be­

havior of the disturbances generated by the o s c i l l a t i n g body. Once the 

wavemaklng damping i s known, the so-called Kramers-Kronig r e l a t i o n s can be 

invoked to o b t a i n the added mass of the body. Thus, both c o e f f i c i e n t s can 

be obtained by examining the f a r - f i e l d behavior of the outgoing waves. 

The advantage of examining the f a r - f i e l d behavior of the f l u i d disturbances 

l i e s i n the f a c t t h a t the s o l u t i o n of the p o t e n t i a l f u n c t i o n can be ob­

tained by examining the asymptotic behavior of the f u n c t i o n as the h o r i ­

z o n t a l coordinate, f o r example y, goes to i n f i n i t y . 

The analysis w i l l be c a r r i e d out i n the f o l l o w i n g manner. F i r s t , the 

p o t e n t i a l f u n c t i o n representing the outgoing wave at the f a r f i e l d , which 

i s generated by o s c i l l a t i n g the demihull of a two-dimensional SWATH form, 

w i l l be determined. Then, the i n t e r f e r e n c e and blocking e f f e c t s of the 

other h u l l on the outgoing waves at the f a r f i e l d w i l l be determined. The 

next step i s to determine the damping c o e f f i c i e n t i n terms of the wave 

amplitude and then, the added-mass c o e f f i c i e n t by the Kramers-Kronig 

r e l a t i o n s . 

Heave Damping Approximation 

Assume t h a t the c i r c u l a r p o r t i o n of a cross s e c t i o n of the demihull 

of a SWATH ship can be represented by a v e r t i c a l d i p o l e , w i t h the p u l s a t i n g 

4 



v e l o c i t y V located a t a c e r t a i n p o i n t on the submerged area of the demihull 

cross s e c t i o n , which i s shown i n Figure 1. The notations denoting the 

dimensions of the cross s e c t i o n are also given i n Figure 1. 

The v e l o c i t y p o t e n t i a l representing the v e r t i c a l d i p ole i n an un­

bounded f l u i d i s given by 

(1) 

where p = water density 

= submerged cross s e c t i o n a l area of the demihull 

~ heave added mass of the demihull cross section i n an 
unbounded f l u i d 

( r , e ) = c y l i n d r i c a l coordinates such th a t y = r s i n 6 and 
z = r cos 6 - d , whe 

o 
the d i p o l e i s located 

z = r cos 6 - d , where d i s the depth of the poi n t where 
o' o ^ ^ 

The heave added mass y^^ w i l l be approximated by 

y^^ = pTTR̂  \ 1 - (2) 

Due to the presence of the su r f a c e - p i e r c i n g v e r t i c a l s t r u t , the d i s ­

placed area of the cross s e c t i o n changes according to the v e r t i c a l o s c i l l a ­

t i o n of the body. The change i n the displaced area i s equivalent to the 

f l u x through the width of the s t r u t which i s Vb^. Thus, an equivalent 

source s t r e n g t h to generate t h i s f l u x can be obtained by Vb^/(27T), and the 

corresponding source located a t the p o i n t (0,-d ) i s expressed by 
s 

Vb 

27T 
, /' £n |/y2+(,+d^)2 (3) 

5 
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Thus, the v e l o c i t y p o t e n t i a l representing a heaving demihull SWATH 

cross s e c t i o n i s obtained approximately by 

V 
2TT V -

33 o Vb 
cos 6 o „ 

H -7,— x,n 
r ZTT 

|/y^+(z+d^)^ ( 4 ) 

The f a r - f i e l d behavior of the s i n g u l a r i t i e s represented by Equation 

( 4 ) , where the z = 0 i s regarded as the calm-water l i n e , can be obtained 

by 

*H~ 
- i S . + ^ l K e ' ^ ^ - V ^ y ) 

A p 

, , K(z-d + i y ) 
+ b e s ^ 

o 
, . , - i w t . 
(-lOJh^e ) (5) 

where only the r e a l p a r t of the right-hand side i s to be r e a l i z e d , and 

. , - i w t 
V = -iwh e 

o 
2 

K = CO /g, the wave number 

CO = c i r c u l a r frequency of o s c i l l a t i o n 

g = g r a v i t a t i o n a l a c c e l e r a t i o n 
1 = /=ï 

Hereafter, when a r e a l f u n c t i o n i s expressed i n a complex form i n v o l v i n g 

e '̂ ^̂ , i t w i l l be t a c i t l y assumed tha t only the r e a l p a r t of the complex 

expression i s meant. 

Because the wave amplitude, which i s denoted by A^, i s obtained by 

z 
y 

= 0 
— 00 

then 
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A = -K ^A+ 
'33 

-Kd -Kd 
+b Ke 

o 
(6) 

From the conservation of energy, the r a t e of work imparted on the 

f l u i d by the body during one cycle of o s c i l l a t i o n should be equal to the 

r a t e of energy c a r r i e d by the r a d i a t i n g surface waves during the same 

period. This means tha t 

where 

T 

F, 

a 

F̂  V dt = - 2 p 

T 0 

dt (})^ d) dz (7) 

period of o s c i l l a t i o n 
o 

[-00 (M+a..) cos OJt-üJb.. s i n a3t+c cos ( O t ] h ^ 

-wh s i n (jOt 
o 

gA^ cos (Ky-oat+a)e 

to 

Kz 

phase angle w i t h respect to the v e r t i c a l motion of 
the body 

(a..,b..,c..) = (added mass, damping, r e s t o r i n g ) i n the j t h mode 
11 11 -11 due to the motion i n the j t h mode 

M mass of the body 

From Equation (7) 

ĵ =Pn^ (8) 

S u b s t i t u t i n g Equation (6) i n t o (8) 

/ - \ 2 

(9) 

where the su p e r s c r i p t 1 i s used to i n d i c a t e the q u a n t i t i e s corresponding 

to the demihull only. 
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I f b (1) 
i s nondimensionalized by poaS , then 33 

( 
-Kd -Kd 

2 

-K 
7. 

°+b Ke s 
o 

( 1 0 ) 

A 

To take i n t o account the i n t e r f e r e n c e or blockage e f f e c t s from the 

other h u l l , the r e f l e c t e d images at y = -2b of the di p o l e and source i n ­

troduced i n the foregoing analysis should be considered. Further, assume 

th a t the demihull i s replaced by a v e r t i c a l b a r r i e r having the depth D; 

hence, the waves generated by one h u l l cannot be tra n s m i t t e d completely 

beyond the other h u l l . 

I f we l e t e denote the r a t i o of the wave amplitude of the i n c i d e n t 

wave before the b a r r i e r to the amplitude of the tra n s m i t t e d wave behind 

the b a r r i e r , the waves generated by the s i n g u l a r i t i e s can be expressed i n 

where the i n c i d e n t wave amplitude i s assumed to be u n i t y , and a,̂, i s the 

change of the phase angle of the tr a n s m i t t e d wave. 

Equation (11) can be expressed as 

the form 

C = cos (Ky - ( j O t ) + e cos (Ky+2b-6Jt+a ) ( 1 1 ) 

C = 3 cos (Ky-oot+Ó) ( 1 2 ) 

where 
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O 111 
= [1+e +2e cos (2Kb+a„)] 

o J-

(13) 

-e s i n (2Kb+a^) 
6 = tan l+e cos (2Kb+a,j,) 

, 12 
The transmission c o e f f i c i e n t e and the phase angle are given by 

K, (KD) 
e = ^ 1 (14) 

j/Vl^(KD)+K^^(KD) 

a„ = tan 

_^ /Trl^(KD) 

T - "-̂ ^ K, (KD) 
(15) 

where I ^ and K^ are the modified Bessel f u n c t i o n s . For X < L i t can be 

shown t h a t 

3 5 7 
T rv^ - X + ^ + ^ + + .. . (16) 
\ W - 2 16 384 18432 

- 32~ ^ " 768 ^ 36864 ^ 

where 

m 

Y = £im ^ - 5,n m 

^ n=l 

= 0.57721566... 

i s known as the Euler constant. For KD > 1, i t can be approximated t h a t 

£ = 0 and a,j, = 0. 

10 



Because 3^ represents the i n t e r f e r e n c e and blockage e f f e c t s on the 

wave amplitude at the f a r f i e l d , the t w i n - h u l l damping c o e f f i c i e n t can be 

determined by 

S 3 = ^1 ^ 3 ' ^ ^ ' 

where i s introduced here as a c o r r e c t i o n f a c t o r i f the need a r i s e s . 

When the s t r u t thickness i s zero, the source p o t e n t i a l given by 

Equation (3) can be disregarded because b^ = 0. 

Also, due to the absence of the v e r t i c a l b a r r i e r , i t i s assumed t h a t 

e = 1 and a,j, = 0. Thus, the heave damping of completely submerged t w i n 

c i r c l e s can be obtained from Equations (9) and (18) as 

or 

(19) 

where 

1TR' 
2 

d the depth to the center of the c i r c l e 
c 

11 



The l a s t two terms i n the bracket of the expression of y^^ represent, r e ­

s p e c t i v e l y , the t w i n - h u l l e f f e c t and the free-surface e f f e c t which i s as-
13 

sumed to be a r i g i d w a l l . 

Sway Damping Approximation 

From a f a r - f i e l d view, the demihull of a SWATH sect i o n i n the sway 

motion can be regarded as a v e r t i c a l p l a t e of the same d r a f t as the body 

d r a f t . For small frequencies of o s c i l l a t i o n which are of p r a c t i c a l 

i n t e r e s t to SWATH motion, i t can be f u r t h e r assumed t h a t , near the body, 

the f l u i d disturbances would be close to those made by a v e r t i c a l p l a t e of 

twice the l e n g t h of the body d r a f t i n sway motion i n an unbounded f l u i d . 

I f the sway v e l o c i t y of the body motion i s denoted by U, the flow 

f i e l d can be represented by the v e l o c i t y p o t e n t i a l which can be expressed 

i n terms of the d i p o l e d i s t r i b u t i o n as 

t i o n of a f l a t p l a t e subject to normal uniform flow by taking the p o t e n t i a l 

jump across the p l a t e . 

The corresponding f a r - f i e l d expression which represents the r a d i a t i n g 

f ree-surface waves i s obtained from Equation (13.29) of Reference 11 as 

0 

(20) 

where the d i p o l e density can be obtained from the well-known s o l u -

0 

= i2KUe 
K(z+iy) 

B(K) (21) 

where 

12 



O 

B(K) = f e^^ |/D2-?2 dC 
-D 

= 2^ (Ij^(KD)-L^(KD)) (22) 

i n which i s the modified Struve f u n c t i o n . 

The amplitude of r a d i a t i n g wave at |y| = °° i s obtained by 

. . 2aj|u|KB(K) 

1 g 

and I f 

U = -ia)h e-i'^^ 
o 

then 

A, 
A E - j ^ = 2 r B ( K ) (23) 

O 

Thus, the sway damping f o r demihull of a SWATH cross s e c t i o n can be ob­

tained from Equations (8) and (23) as 

'22 - pa3Ŝ  [^2 ) 

= ^ ^ ^ (24) 
Â 

The i n t e r f e r e n c e e f f e c t from the other h u l l w i l l be t r e a t e d the s ame 

as i n the previous case. That i s , the f a r - f i e l d wave amplitude A^ w i l l be 

modified as 3^A^ where 3^ i s given by Equation (13). Consequently, the 

sway-damping c o e f f i c i e n t f o r the t w i n h u l l s i s obtained by 

13 



where i s a c o r r e c t i o n f a c t o r which should be determined as the need 

a r i s e s . 

For the cross s e c t i o n without the s t r u t s , the sway damping i s assumed 

to be s i m i l a r to the heave damping given by Equation (19), i . e . . 

, -2Kd 2 / R2 2 

= 2C K e S R 2- + 1 (1+ cos 2Kb) (26) 
2b 2d ^ 

c 
where 

S, = TTR^ 
A 

y 22 
one-half of the sway added mass of twin c i r c l e s under a 
r i g i d surface 

9 2 
2b'̂  2d ^ 

c 

R o l l Damping Approximation 

The r o l l moment exerted on a SWATH cross se c t i o n due to hydrodynamic 

pressures p can be expressed by 

MR = j p(yn^-zny)d£, (27) 

where n^ and n^ are, r e s p e c t i v e l y , the y-component and the z-component of 

the u n i t normal vector p o i n t i n g i n t o the body on the submerged contour of 

the cross s e c t i o n , and (I d£ i s the i n t e g r a l over the submerged cross-
J 

s e c t i o n contour. 

14 



I f (f)^ denotes the v e l o c i t y p o t e n t i a l associated w i t h a forced r o l l 

o s c i l l a t i o n of the cross s e c t i o n , then, from the l i n e a r i z e d B e r n o u l l i 

equation, 

P = ipoj(j)j^ 

hence 

= ipo) j) (j)^(yn^-zny)d£ (28) 

Assume t h a t 

\ = - "^s^ (29) 

Then, s u b s t i t u t i n g Equation (29) i n t o Equation (28), 

d l 

y 
= ipu) y^ j (})j^n^d£+z^ j ^^n^ 

- (I yz(())gn^+(})^ny)d£ (30) 

where the mean-value theorem i s used by d e f i n i n g 

-1 f y'Vz^^ 
y = /= 

(I (j) n d£ 
i l z 

-1 f ^^^^^/^ 
•7 = *- T it 

(f)^n d£ 
S y 

15 



The l a s t i n t e g r a l i n Equation (30) can be approximated by 

(I yz ((t)gn̂ -(|)yny)d£ = 2b j) z((})gn̂ -(l)̂ ny)d£ 

DH 

where ƒ means the i n t e g r a l along the submerged contour of the demihull. 

DH 
From the f a r - f i e l d p o i n t of view, I t can be approximated t h a t (f)g i s odd 

and é i s even w i t h respect to the v e r t i c a l c e n t e r l i n e of the demihull. 
H 

Then, due t o the f a c t t h a t z and n are even and n i s odd, the integrand 
z y 

of the foregoing i n t e g r a l becomes odd, hence the i n t e g r a l vanishes. 

Because the imaginary p a r t of Equation (30) corresponds to the r o l l 

damping, the r o l l damping can be obtained by 

^ 4 = y ^ 3 ' ^22 

or 

- = 44 
' 4 4 " 2 

pa)b^S^ 

iy' b33+z2 b^^) 

. ^33+^22 ^ (31) 
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2 2 2 
where I t i s assumed th a t y = b = An approximate z i s given by 

u 

-D 
B(K) 

(32) 

For the cross s e c t i o n without the s t r u t s , the r o l l damping i s approxi­

mated by 

^ 4 = ^ 3 1^+ , 2 
(33) 

where b^^ corresponds t o the one given by Equation (19) 

Sway-Roll Coupling Damping Approximation 

The same assumptions made i n the approximation of the r o l l damping 

w i l l y i e l d 

^̂ 22 ^22" 
^24 ^ ^42^ pojbS^ b 

(34) 

where 

C d g 
B(K) 

(35) 

For the cross s e c t i o n without the s t r u t s . 

b„„d 
22 c 

'24 " b 
(36) 

where given by Equation (26) 
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Added Mass Approximation 

Once the damping c o e f f i c i e n t s are determined, then the corresponding 

conjugate p a i r s , i . e . , the added-mass c o e f f i c i e n t s can be obtained by the 

Kramers-Kronig r e l a t i o n s . A convenient form f o r numerical manipulations 

i s given i n Reference 4 as 

2 
a., (cj) - a., (°°) = - -
j k ' j k TT 

r f b.k(^')-b..(°°) 
cos üJt ^, J*̂  s i n co't dco'dt (37) 

0 

f o r j , k = 2, 3, and 4 

where a., i s the added-mass c o e f f i c i e n t i n the i t h mode due to the motion 

i n the k t h mode, and b., (°°), i n general, i s zero because no surface wave 
j 1̂  

can be generated at 00 = °°. The nondimensional added-mass c o e f f i c i e n t s w i l l 

be denoted by the bar sign, and are defined by 

(-22'^33) ^ (^^^ 

^ 4 = ^ 4 2 = ^ (^5) 

^44 " 

The added-mass c o e f f i c i e n t s a t the i n f i n i t e frequency are approximated 

by 

a^^C-) = (41) 

which i s based on the f l a t p l a t e r e s u l t s . 

18 



(42) 

j/ b 

2 2 — 
where TT D /32 i s obtained by a^^ (°°)/a22 (°°) f o r a v e r t i c a l p l a t e having the 

d r a f t D / ' ^ 

^42^") = ^ 2 ^ ^ ) l b '̂'̂  

For the cross section without the s t r u t s , assume tha t 

2b^ 2d ^ ' 
c 

= (46) 
2b^ 2d ^ ' 

c 

.2 /D^2 
a ^ ^ ( . ) = a 3 3 ( « ^ ) H - 3 ^ m (47) 

where C3 i s a c o r r e c t i o n f a c t o r which should be determined when the need 

a r i s e s . The expressions given by Equations (45) and (46) correspond to 

the cases t h a t t w i n c i r c l e s , separated by 2b between the centers, move w i t h 

a constant v e l o c i t y i n the unbounded f l u i d i n the d i r e c t i o n opposite to 

each other, and i n the same d i r e c t i o n normal to the l i n e connecting the 

centers of the c i r c l e s , r e s p e c t i v e l y . 
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DISCUSSION OF RESULTS 

The numerical r e s u l t s obtained by the approximate methods described i n 

the preceding sections are presented i n Figures 2 through 9. The r e s u l t s 

of the approximate methods are compared w i t h the r e s u l t s obtained by the 

accurate theory,^ and w i t h the a v a i l a b l e experimental r e s u l t s . Hereafter, 

the method described i n Reference 8 s h a l l be r e f e r r e d to as "accurate 

theory." 

The damping c o e f f i c i e n t s of a heaving, two-dimensional SWATH cross 

s e c t i o n are presented i n Figure 2. The heave damping b^^ i s made non-

dimensional by the product of the displaced f l u i d mass (pS^) and the c i r ­

c u l a r frequency of o s c i l l a t i o n ((JO) . The r e l a t i v e dimensions of the sec t i o n 

are as shown i n the f i g u r e . The approximate heave damping c o e f f i c i e n t s are 

obtained by Equation (18) w i t h Ĉ  = 1 and = 0. I t means t h a t the phase 

change of the tra n s m i t t e d wave beyond the v e r t i c a l b a r r i e r i s neglected. 

I n c l u s i o n of the phase change i n Equation (18) r e s u l t e d i n poorer agree­

ment w i t h the accurate t h e o r e t i c a l r e s u l t s . As can be seen, the three 
2 

r e s u l t s agree reasonably w e l l f o r the frequency number (o) R/g) less than 

0.5. 

Because the shortest wavelength of p r a c t i c a l i n t e r e s t i n SWATH motion 

at zero forward speed i s about one-half of the ship l e n g t h , the highest 

frequency number corresponding to t h i s wavelength f o r a SWATH ship having 

the length-to-diameter r a t i o of 15 i s about 0.8. Beyond t h i s highest 

frequency l i m i t , SWATH ships would barely respond to waves, which means 

t h a t there i s no need of computing the t r a n s f e r f u n c t i o n of the motion 

response beyond t h i s frequency l i m i t . Thus, the approximate r e s u l t s shown 

i n Figure 2 would be q u i t e reasonable f o r use i n the computation of motion 

of SWATH ships i n waves. 

The heave added-mass c o e f f i c i e n t f o r the SWATH sect i o n shown i n 

Figure 2 i s presented i n Figure 3. The r e s u l t s from the approximate method 

are obtained from Equations (37) and (42). The i n t e g r a l s on the right-hand 

side of Equation (37), i n f a c t , represent double Fourier transforms. A 

f a s t Fourier transform subroutine of the system l i b r a r y of the computer 
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f a c i l i t y at the Center was used to evaluate the double Fourier transforms. 

The subroutine i s c a l l e d "FFT" which was o r i g i n a l l y developed at the Los 

Alamos S c i e n t i f i c Laboratory i n C a l i f o r n i a . 

As can be observed i n Figure 3, an apparent discrepancy between the 

exact and approximate methods i s at those frequencies at which the exact 

method shows abrupt d i s c o n t i n u i t i e s . So f a r as the problem i s confined to 

a two-dimensional flow c o n d i t i o n , the d i s c o n t i n u i t i e s e x h i b i t e d by the exact 

method can be r e a l p h y s i c a l phenomena*; although, the experimental r e s u l t s , 

u n f o r t u n a t e l y , were not taken at those frequencies. However, f o r three-

dimensional t w i n bodies such as SWATH, there cannot be a complete t r a p p i n g 

of waves between the two h u l l s ; hence, no abrupt d i s c o n t i n u i t i e s of the 

hydrodynamic c o e f f i c i e n t s a t c e r t a i n frequencies should e x i s t . I n t h i s 

respect, the approximate method, which does not create the d i s c o n t i n u i t i e s , 

may cause less e r r o r s at those frequencies at which the d i s c o n t i n u i t y i n 

the hydrodynamic c o e f f i c i e n t occurs. 

The SWATH cross sections a t f a r forward or a f t p o r t i o n of the body do 

not have v e r t i c a l s t r u t s . For these sections, the cross-section view i s 

completely submerged tw i n c i r c l e s . The heave added mass and and damping 

c o e f f i c i e n t s of such a cross s e c t i o n are shown i n Figure 4. For the 
— 2KR 

damping. Equation (19) was used w i t h = e , and f o r the added mass. 

Equations (37) and (46) w i t h Ĉ  = 1.1 were used. Agreement between the 

two methods appears good from a p r a c t i c a l viewpoint f o r the p r e d i c t i o n of 

SWATH motion. This i s because a s i g n i f i c a n t l y l a r g e r magnitude of heave 

damping c o n t r i b u t e d by v i s c o s i t y and s t a b i l i z i n g f i n s should be added to 

the wavemaklng damping i n the a n a l y t i c a l p r e d i c t i o n of SWATH motion; t h e r e ­

f o r e , a 50 percent e r r o r , as can be observed i n the heave damping i n Figure 

4, i s not going to a f f e c t , s i g n i f i c a n t l y , the f i n a l r e s u l t s of the motion. 

There appears to be a maximum of about 5 percent e r r o r i n the heave added 

mass ca l c u l a t e d by the approximate method. Because the SWATH motion i s f a r 

less s e n s i t i v e to the added mass than to the damping, a 5 percent e r r o r i n 

the added-mass c o e f f i c i e n t i s not going to a f f e c t , s i g n i f i c a n t l y , the pre­

d i c t e d r e s u l t s of SWATH motion. 

*Such evidence i s c l e a r l y demonstrated by the experiments f o r several 
two-dimensional t w i n bodies, as described i n Reference 8. 

22 



Figure 4 - Heave Added-Mass and Damping C o e f f i c i e n t s of 
Submerged Twin C i r c l e s 
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The sway damping of a SWATH cross se c t i o n i s presented i n Figure 5, 

together w i t h the r e l a t i v e dimension of the cross s e c t i o n . The damping co­

e f f i c i e n t s obtained by the approximate method are based on Equation (25) 
(d /(2R)-KD) 

w i t h the m o d i f i c a t i o n f a c t o r = e ° where d^, the depth of the 

c e n t r o i d of the submerged cross s e c t i o n a l area, can be obtained by 

At present, there i s no r a t i o n a l explanation f o r the d e r i v a t i o n of the 

m o d i f i c a t i o n f a c t o r as i t i s except t h a t such a f a c t o r seems to repre­

sent the behavior of the sway damping i n the low and high frequency ranges 

reasonably w e l l . Also, i n the v i c i n i t y of the frequency where an abrupt 

d i s c o n t i n u i t y occurs, the m o d i f i c a t i o n f a c t o r appears to make the approxi­

mate method behave smoothly across the d i s c o n t i n u i t y p r edicted by the 

accurate theory. The chained curve shown i n Figure 5 represents the 

r e s u l t s of the approximate method using = 1-

The sway added mass of the SWATH cross se c t i o n shown i n Figure 5 i s 

presented i n Figure 6. The approximate r e s u l t s were obtained by Equations 

(37) and (41). I n the frequency range of 0.2 < A / g < 0.5, the approxi­

mate r e s u l t s show a large discrepancy. I t i s not obvious at the present 

stage whether the sway added mass computed by the approximate method would 

necessarily r e s u l t i n poorer p r e d i c t i o n of SWATH motion than t h a t obtained 

by the accurate theory. 

The sway added mass and damping c o e f f i c i e n t s f o r submerged t w i n c i r c l e s 

are presented i n Figure 7. Equation (26) was used to o b t a i n the damping, 

and Equations (37) and (45) w i t h C3 = 1.1 were used to ob t a i n the added 

mass. The trend of the r e s u l t s i s very close to t h a t of the heave added 

mass shown i n Figure 4. 

The r o l l damping of a SWATH cross se c t i o n i s presented i n Figure 8. 

The dimensions of the cross s e c t i o n are also shown i n the f i g u r e . Note 

that the center of r o l l i s located above the calm water l e v e l by the 
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distance of 3.1 times the radius of the cross section. The damping c o e f f i ­

c i e n t s were obtained by Equation (31). Both the experimental and the 

accurate t h e o r e t i c a l r e s u l t s show d i s c o n t i n u i t y at about Ŵ R/g = 0.65. 

However, as i n the case of heave and sway, the approximate r e s u l t s do not 

e x h i b i t any d i s c o n t i n u i t y . The r e l a t i v e trends of the three d i f f e r e n t 

r e s u l t s are q u i t e s i m i l a r to the sway damping sho\m i n Figure 5. 

The r o l l added i n e r t i a c o e f f i c i e n t of the cross s e c t i o n shown i n 

Figure 8 i s presented i n Figure 9. The approximate r e s u l t s show a large 
2 

discrepancy i n 0.2 < co R/g < 0.5 as was already observed i n Figure 6 f o r 

the sway added mass. The same remarks as given e a r l i e r on the sway added 

mass apply to the r o l l added i n e r t i a obtained by the approximate method. 

The accurate theory, r e f e r r e d to f r e q u e n t l y i n t h i s r e p o r t , i s based 

on the Green f u n c t i o n method which leads to an i n t e g r a l equation i n v o l v i n g 

the unknown strengths of the source d i s t r i b u t i o n over the submerged contours 

of the cross s e c t i o n of the twin h u l l s . The numerical e v a l u a t i o n of the 

i n t e g r a l equation requires a segmentation of the i n t e g r a l along the cross-

se c t i o n contour i n t o a f i n i t e number of i n t e g r a l s . Increasing the number 

of segments of the contour increases the accuracy of the r e s u l t s . For 

SWATH sections, i t takes about f i f t e e n to twenty segments on the contour of 

the demihull cross s e c t i o n to o b t a i n accurate r e s u l t s . A t y p i c a l computa­

t i o n by the CDC 6000-series computer at the Center f o r the sway and heave 

hydrodynamic c o e f f i c i e n t s f o r submerged twin c i r c l e s f o r twenty frequencies 

took about 220 seconds of executing time. 

On the other hand, the present approximate method took only about 16 

seconds to ob t a i n the sway, heave, r o l l , and sway-roll coupling c o e f f i c i e n t s 

f o r 256 frequencies.* Even i f a discount i s made f o r the large number of 

frequencies which are d i c t a t e d by the usage of the f a s t Fourier transform 

technique but not by the p r a c t i c a l necessity, the approximate theory seems 

to y i e l d a time saving i n the computation by an order of magnitude compared 

to the accurate theory. 

*Most of the f a s t Fourier transform subroutine requires t h a t the func­

t i o n to be transformed should be given i n numbers of 2̂ ^ where n i s an 

i n t e g e r . For the present work, i t was found t h a t n = 8 y i e l d s s a t i s f a c t o r y 

r e s u l t s . 
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SUMMARY AND CONCLUSIONS 

To develop a s i m p l i f i e d a n a l y t i c a l p r e d i c t i o n of SWATH motions i n 

waves, approximate methods of computing the hydrodynamic c o e f f i c i e n t s of 

o s c i l l a t i n g cross sections of a SWATH c o n f i g u r a t i o n are developed. The 

hydrodynamic c o e f f i c i e n t s studied are the added mass and the wavemaking 

damping c o e f f i c i e n t s i n sway, heave, r o l l , and sway-roll coupling modes. 

The approximate methods are based on the concept t h a t the wavemaking 

damping c o e f f i c i e n t s can be obtained by the amplitudes of the outgoing 

waves at the f a r f i e l d . The outgoing waves at the f a r f i e l d can be repre­

sented by a p a i r of sources and of dipoles f o r the heave o s c i l l a t i o n and 

by a dipole d i s t r i b u t i o n on the v e r t i c a l c e n t e r l i n e of each h u l l f o r the 

sway and r o l l o s c i l l a t i o n s . The stre n g t h of the s i n g u l a r i t i e s are obtained 

under the assumption t h a t the cross s e c t i o n i s o s c i l l a t i n g i n an unbounded 

f l u i d . 

The hydrodynamic i n t e r a c t i o n s between the two h u l l s are t r e a t e d as i f 

one h u l l i s replaced by a v e r t i c a l b a r r i e r having the d r a f t as the 

o r i g i n a l form and, t h e r e f o r e , i t blocks the passage of the waves generated 

by the other h u l l . 

The added-mass c o e f f i c i e n t s are obtained by invoking the Kramers-

Kronig r e l a t i o n s w i t h the known damping c o e f f i c i e n t s and the added-mass 

c o e f f i c i e n t s a t the i n f i n i t e frequency, as in d i c a t e d by Equation (37). The 

evaluation of Equation (37) i s c a r r i e d out by a well-known numerical 

algorithm c a l l e d f a s t Fourier transform technique. When needed, the ap­

proximate methods are augmented by the m o d i f i c a t i o n f a c t o r s which are de­

termined by a numerical t r i a l - a n d - e r r o r approach. 

The r e s u l t s from the approximate methods, the accurate theory based 

on the source d i s t r i b u t i o n on the submerged contours, and the experiments, 

i f a v a i l a b l e , are compared i n Figures 2 to 9. The agreements of the 

r e s u l t s i n the frequency range of p r a c t i c a l i n t e r e s t f o r SWATH motion are, 

i n general, f a i r ; however, the abrupt d i s c o n t i n u i t i e s of the hydrodynamic 

c o e f f i c i e n t s a t c e r t a i n frequencies e x h i b i t e d by the accurate theory and 

the experiments are not reproduced by the approximate methods. The abrupt 
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d i s c o n t i n u i t i e s are merely caused by the two-dimensional f l o w c o n d i t i o n , 

and i n r e a l i t y , f o r three-dimensional bodies, they do not e x i s t ; hence, 

the c o n t i n u i t y of the hydrodynamic c o e f f i c i e n t s at a l l frequencies given by 

the approximate methods could be more r e a l i s t i c . 

The time saving i n the computation of the hydrodynamic c o e f f i c i e n t s 

achieved by use of the approximate method i s remarkable; the approximate 

method can provide the r e s u l t s i n less than one-hundredth of the time which 

would be required by the accurate theory. 

I t i s too e a r l y to judge whether the approximate methods developed 

here w i l l provide reasonable p r e d i c t i o n of SWATH motions i n waves. The 

usefulness of the approximate methods w i l l be r e a l i z e d only when they are 

sho\«/n to provide adequate p r e d i c t i o n s of the motions f o r use during the 

stage of conceptual h u l l design of SWATH co n f i g u r a t i o n s . However, i t i s 

believed t h a t a f i n a l u s e f u l method of p r e d i c t i n g SWATH motion can be de­

veloped on the basis of the approximate methods presented i n t h i s r e p o r t by 

an i n t e l l i g e n t usage of the m o d i f i c a t i o n f a c t o r s associated w i t h the ap­

proximate methods. 
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