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Chapter 1

Introduction

G
roups of sensors and autonomous mobile robots that exchangeinformation with one
another are envisioned to play an important role in several societally relevant ap-

plications. Examples range from monitoring and surveillance, tracking, exploration to
search, rescue, and disaster relief. More specific applications encompass forest fire moni-
toring with multiple unmanned aerial vehicles (Casbeer et al., 2005), coordinated control
of multiple underwater robots (Leonard et al., 2010), earthquake predictions and damage
assessment (Chaamwe et al., 2010, Oguni et al., 2011), deep space exploration (Izzo and
Pettazzi, 2007), and robot-assisted search and rescue in response to natural disasters or
other calamities (Casper and Murphy, 2003).

In all these applications, the communication among the different sensors and robots is cru-
cial in order to accomplish the mission tasks. This gives rise to a communication network
that describes the way the sensors and robots communicate with each other. In this context,
if two sensors or robots can communicate with one another there is a link between them
in the network. Extending this terminology, the group of sensors communicating with one
another via a communication network are typically referredto as sensor network, while
the group of robots are sometimes called mobile robotic networks. In some situations,
such as the case of mobile robots carrying sensors onboard, the distinction among sensor
and mobile robotic networks can be less immediate. As a result we often use in this thesis
the termrobotic networksto identify either sensor networks, mobile robotic networks, or
a combination of both.

From a theoretical and implementation perspective, the studies of robotic networks in-
volve distributed estimation, control, and optimization,which all include the design of
distributed algorithms. The word “distributed” indicateshere the adaptation of the stan-
dard concepts of estimation, control, and optimization to settings where the sensors or the
robots are endowed with local information processing/computation capabilities, have a lo-
cal knowledge of the environment and of the entire group, andthey need to communicate
with one another to achieve the common estimation, control,or optimization objective.

The challenges that robotic networks and the design of distributed algorithms pose are di-
verse. Some of the most important ones are linked to the changing nature and limitations
of the networks. Both sensors and robots have to be able to cope with (unexpected) vari-
ations of the communication topology. The algorithms need to be suitable for the limited
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2 Chapter 1: Introduction

computation and communication capabilities of the sensorsand the robots, i.e., we can-
not expect to have access to unlimited computation and communication power onboard.
Moreover, there is the need of formal guarantees for the algorithms to achieve given per-
formances, for example guarantees that the robots do not collide with each another and
that the communication network maintains a certain connectivity.

Among the diverse challenges, in this thesis we will consider specific aspects related to
the following:

• Distributed estimation algorithms for sensor networks have been applied mainly on
sensors that observe linear time-invariant systems. Nonetheless, there are many re-
alistic situations in which such a framework cannot be applied, due to nonlinearities
in the dynamical system, the sensing equation, or due to the presence of constraints.
One typical application example where all of these complicating characteristics are
present is the localization of a moving object via range-only measurements.

• Sensor networks are comprised of many and possibly different sensors with their
own capabilities. However, with current algorithms it is not possible to tailor the
computational effort to the computational capabilities ofthe sensors, which prevents
utilizing the full potential of the sensor network.

• Considering distributed control algorithms, the connectivity of the communication
network among the mobile robots has been often considered tobe granted by as-
sumption, rather than being achieved as an objective of the distributed control ac-
tion. In addition, the connectivity has often been analyzedas a binary statement
(i.e., is it connected? yes/no), whereas more useful insights could be obtained by
describing the connectivity by a suitable continuous metric. This metric could ex-
press how well connected the network is and how we could increase the connectivity
(for example, by moving the robots closer to each other).

• Distributed optimization algorithms are typically based on slow converging iterative
schemes that can guarantee feasibility of the solution withrespect to the constraints
only at convergence (i.e., asymptotically). This might endanger the physical imple-
mentability of the algorithms on real hardware due to the limited communication
capabilities of the sensors and robots.

1.1 Objective and Outline

The main objective of this thesis is to analyze how we can makedistributed estimation,
control, and optimization techniques more suitable for robotic networks. In particular, we
will propose methods to tackle the specific aspects presented in the previous section, i.e.,
nonlinearities, heterogeneity, connectivity of the communication network, feasibility of
the solutions, and real-time implementation.

This thesis consists of six chapters. Chapter 1 is this introduction, Chapter 2, 3, 4, and 5
form the main material of the thesis, while Chapter 6 gives our conclusions and recom-
mendations. With regards to the main chapters,



1.2 Contributions 3

Chapter 2 deals with distributed nonlinear estimation. In this chapter we consider sensor
networks that are used to estimate the state of a given nonlinear dynamic process, such as
the state of a mobile robot.

Chapter 3 analyzes the distributed/parallel computation side of nonlinear estimation. In
particular, in this chapter we consider networks of computing units (the cores of aGPU-
architecture).

Chapter 4 studies distributed control solutions for networks whose links are weighted via
the pair-wise distances of the nodes. These nodes representmobile robots and therefore
the connectivity of the network depends on the robots’ position (i.e., we consider state-
dependent graphs). In this chapter we formulate and solve local control problems that aim
to move the robots in order to increase the algebraic connectivity of their interconnecting
communication network. This problem is then extended to jointly optimize the connec-
tivity of the communication graph and the connectivity of the robots with a number of
moving targets.

Chapter 5 investigates convex and non-convex networked optimization problems with re-
source allocation constraints, which can be applied to various robotic network applications.
In this chapter we consider networks of computing units, either mobile or non-moving.

1.2 Contributions

The following are the main contributions of the thesis.

Chapter 2: Distributed Nonlinear State Estimation

• We propose a unified framework for the distributed nonlinearestimation problem.
In our framework the nonlinearities are handled locally by the sensor nodes, while
a weighted merging mechanism provides a method to incorporate the information
coming from the neighboring sensor nodes. This mechanism allows the use of dif-
ferent estimators on different sensor nodes.

• We propose a distributed nonlinear Moving Horizon Estimator.

• We propose distributed versions of commonly used nonlinearestimators, i.e., Parti-
cle Filters, Unscented and Extended Kalman Filters. These estimators are observed
to lead to a better estimation quality than the ones available in the literature in nu-
merical simulations. This improvement is due to the underlying weighted merging
mechanism.

The results contained in this chapter have been submitted orpublished in

Simonetto and Keviczky(2012) A. Simonetto and T. Keviczky.Distributed Decision Making and
Control, volume 417 ofLecture Notes in Control and Information Sciences, chapter Distributed
Nonlinear Estimation for Diverse Sensor Devices, pages 147– 169. Springer, 2012.

Simonetto et al.(2011a) A. Simonetto, D. Balzaretti, and T. Keviczky. Evaluation of a Distributed
Moving Horizion Estimator for a Mobile Robot Localization Problem. InProceedings of the 18th
IFAC World Congress, pages 8902 – 8907, Milan, Italy, August – September 2011a.
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Simonetto et al.(2010a) A. Simonetto, T. Keviczky, and R. Babuška. Distributed Nonlinear Estima-
tion for Robot Localization using Weighted Consensus. InProceedings of the IEEE International
Conference on Robotics and Automation, pages 3026 – 3031, Anchorage, USA, May 2010a.

Simonetto et al.A. Simonetto, T. Keviczky, and R. Babuška. Distributed Nonlinear State Estimation
of Mobile Robots via Sensor Networks . In preparation: to be submitted as Springer Brief, 2012.

Chapter 3: Distributed Computation Particle Filters on GPU-Architectures

• We analyze how to distribute the computations of Particle Filters among different
computing units and we devise an algorithm that can achieve accurate estimation
results, while being implemented in real-time.

• We implement the resulting distributed computation Particle Filter on a robotic arm
experimental setup using parallelGPU-architectures, where we use the result of a
Particle Filter based on over a million particles as an inputfor a real-time feedback
controller with a sampling frequency of 100 Hz.

The results contained in this chapter have been submitted orpublished in

Chitchian et al.(2012a) M. Chitchian, A. Simonetto, A. S. van Amesfoort, and T. Keviczky. Dis-
tributed Computation Particle Filters onGPU-Architectures for Real-Time Control Applications.
Submitted to IEEE Transactions on Control Systems Technology, 2012a.

Simonetto and Keviczky(2012) A. Simonetto and T. Keviczky.Distributed Decision Making and
Control, volume 417 ofLecture Notes in Control and Information Sciences, chapter Distributed
Nonlinear Estimation for Diverse Sensor Devices, pages 147– 169. Springer, 2012.

Simonetto and Keviczky(2009) A. Simonetto and T. Keviczky. Recent Developments in Distributed
Particle Filters: Towards Fast and Accurate Algorithms. InProceedings of the 1st IFAC Workshop
on Estimation and Control of Networked Systems, pages 138 – 143, Venice, Italy, September 2009.

Chapter 4: Distributed Control of Robotic Networks with State-Dependent Lapla-
cians

• We extend and modify the standard centralized optimizationprocedure of (Kim and
Mesbahi, 2006, Derenick et al., 2009) for the maximization of the algebraic con-
nectivity (which is a measure of connectivity “quality”), in order to handle more
realistic robot dynamics. The resulting optimization problem is then proven to be
feasible at each discrete time step under rather general assumptions.

• We propose a distributed solution for the resulting centralized problem. Our dis-
tributed approach relies on local problems that are solved by each robot using infor-
mation from nearby neighbors only and, in contrast to (De Gennaro and Jadbabaie,
2006), it does not require any iterative schemes, making it more suitable for real-
time applications.

• We extend the mentioned distributed solution to tackle the problem of collectively
tracking a number of moving targets while maintaining a certain level of connectiv-
ity among the network of mobile robots.
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The results contained in this chapter have been submitted orpublished in

Simonetto et al.(2012a) A. Simonetto, T. Keviczky, and R. Babuška. Constrained Distributed
Algebraic Connectivity Maximization in Robotic Networks.Submitted to Automatica, 2012a.

Simonetto et al.(2013) A. Simonetto, T. Keviczky, and R. Babuška.Distributed Autonomous
Robotic Systems, volume 83 ofSTAR, chapter Distributed Algebraic Connectivity Maximization for
Robotic Networks: A Heuristic Approach, pages 267 – 279. Spriger, 2013.

Simonetto and Keviczky(2011) A. Simonetto and T. Keviczky. Distributed Multi-Target Tracking
via Mobile Robotic Networks: a Localized Non-iterative SDPApproach. InProceedings of the 50th
IEEE Conference on Decision and Control and European Control Conference, pages 4226 – 4231,
Orlando, USA, December 2011.

Simonetto et al.(2011b) A. Simonetto, T. Keviczky, and R. Babuška. On DistributedAlgebraic Con-
nectivity Maximization in Robotic Networks. InProceedings of the American Control Conference,
pages 2180 – 2185, San Francisco, USA, June – July 2011b.

Simonetto et al.(2010b) A. Simonetto, T. Keviczky, and R. Babuška. Distributed Algebraic Connec-
tivity Maximization for Robotic Networks: A Heuristic Approach. InProceedings of the 10th Inter-
national Symposium on Distributed Autonomous Robotics Systems, Lausanne, Switzerland, Novem-
ber 2010b.

Chapter 5: Distributed Optimization Methods in Robotic Network Applications 1

• We propose a regularized saddle-point algorithm for convexnetworked optimization
problems with resource allocation constraints. Our approach ensures that each iter-
ative update step satisfies the resource allocation constraints and makes the scheme
faster than traditional subgradient algorithms. Furthermore, we demonstrate the rel-
evance of the scheme in a representative robotic scenario.

• We solve a particular non-convex networked optimization problem, known as the
Maximum Variance Unfolding problem and its dual, the Fastest Mixing Markov
Process problem with the same distributed primal-dual subgradient iterations. The
convergence of our method is proven even in the case of approximation errors in
the calculation of the subgradients. Finally, we illustrate the importance of these
problems in robotic networks as formulation of localization problems and coverage
(or dispersion) control.

Part of the results contained in this chapter have been submitted to

Simonetto et al.(2012c) A. Simonetto, T. Keviczky, and M. Johansson. A RegularizedSaddle-
Point Algorithm for Networked Optimization with Resource Allocation Constraints. 2012c.To be
presented at the 51st IEEE Conference on Decision and Control, Maui, USA, December 2012.

Simonetto et al.(2012b) A. Simonetto, T. Keviczky, and D.V. Dimarogonas. Distributed Solution
for a Maximum Variance Unfolding Problem with Sensor and Robotic Network Applications. 2012b.
Presented at the 50th Allerton Conference, Allerton, USA, October 2012.

1Part of the results of this chapter have been obtained duringa three-month visit at KTH, The Royal Institute
of Technology in Stockholm, Sweden, under the supervision of Prof. M. Johansson and Dr. D. V. Dimarogonas.





Chapter 2

Distributed Nonlinear State Estimation

Abstract — In this chapter we consider the nonlinear state estimation problem via sensor
networks, which is relevant both from a theoretical and an application perspective.

We present a unified way of describing distributed implementations of four commonly
used nonlinear estimators: the Moving Horizon Estimator, the Particle Filter, the Extended
and Unscented Kalman Filter. Leveraging on the presented framework, we propose new
distributed versions of these methods, in which the nonlinearities are locally managed by
the various sensor nodes whereas the different estimates are merged based on a weighted
average consensus process. We show how the merging mechanism can handle different fil-
tering algorithms implemented on heterogeneous sensors, which is especially useful when
they are endowed with diverse local computational capabilities. Simulation results as-
sess the performance of the algorithms with respect to standard distributed and centralized
estimators.

2.1 Introduction

Nowadays, wireless sensor networks are developed to provide fast, cheap, reliable, and
scalable hardware solutions to a large number of industrialapplications, ranging from
surveillance (Biswas and Phoha, 2006, Räty, 2010) and tracking (Songhwai et al., 2007,
Liu et al., 2007) to exploration (Sun et al., 2005, Leonard et al., 2007), monitoring (Corke
et al., 2010, Sun et al., 2011), and other sensing tasks (Arampatzis et al., 2005). From
the software perspective, an increasing effort is spent on designing distributed algorithms
that can be embedded in these sensor networks, providing high reliability with limited
computation and communication requirements for the sensornodes.

In this chapter we focus on proposing distributed methods for nonlinear state estimation
using such sensor networks in a distributed sensing setting, where each sensor node has
access to local measurements and can share data via the underlying network.

As expressed in Chapter 1, our motivations are twofold. First of all, from a theoretical
point of view, distributed nonlinear estimators are in their early development stage and the
challenges they pose are far from being solved. Second, froman application perspective,

7



8 Chapter 2: Distributed Estimation

many real-life tasks ask for reliable, scalable, and distributable software to be embedded
in sensor networks for nonlinear estimation purposes.

In this context, in Section2.2 we formulate the distributed estimation problem and we
propose a common framework where to develop the distributedestimators. This common
framework is based on a merging mechanism that can also handle different classes of
estimators implemented on the different sensor nodes. Thisis especially useful when the
heterogeneous sensor devices have different computational capabilities and we want to
exploit their resources efficiently. In this respect, the proposed merging mechanism can be
used to tailor the composition of various filters to the diverse sensor devices in the network.

In Section2.3we leverage on the proposed framework and we design distributed versions
of the most common nonlinear estimators. In particular, first we propose a distributed
Moving Horizon Estimator that allows the most general assumptions on the system model
and constraints to be treated in a rigorous, optimization-based framework. Then, restrict-
ing the generality of the assumptions on the system model andconstraints, we propose
versions of distributed Particle Filters and Unscented andExtended Kalman Filters.

Finally, numerical simulations illustrate the benefit of the common merging mechanism
with respect to standard distributed algorithms and centralized estimators.

2.2 The Distributed Nonlinear Estimation Problem and Consensus
Algorithms

2.2.1 Problem Formulation

Let the discrete-time nonlinear time-invariant dynamicalmodel of the system with state
x(k) be

x(k + 1) = f(x(k),w(k)). (2.1)

The statex and the disturbancew satisfy the constraints

x(k) ∈ X ⊆ R
n andw(k) ∈W ⊆ R

w, for all k, (2.2)

whereX andW are generic non-convex sets. The functionf : X ×W → X is a smooth
nonlinear function and0 ∈W.

Let the process described in (2.1) be observed byN non-moving sensor nodes each with
some processing and communication capability. Each of the sensor nodes has a copy of
the nonlinear dynamical model (2.1). The sensor nodes are labeledi = 1, . . . , N and form
the setV . The sensor node communication topology is modeled as an undirected graph
G = (V , E), where an edge(i, j) is in E if and only if sensor nodei and sensor nodej can
exchange messages. We assume the sensor nodes to have an unlimited sensing range, the
graph to be connected, the sensor node clocks to be synchronized, and we assume perfect
communication (no delays or packet losses).

The sensor nodes with which sensor nodei communicates are called neighbors and are
contained in the setNi. We defineN+

i = Ni ∪ {i} andN+
i = |N+

i |. Each sensor node
i measures the quantityzi(k), which is related to the statex(k) through the nonlinear
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measurement equation
zi(k) = gi(x(k)) + µi(k), (2.3)

whereµi(k) is an additive noise term that satisfies

µi(k) ∈ Mi ⊆ R
qi , 0 ∈ Mi, for all k, (2.4)

and each of theMi is a generic non-convex set, while each of thegi : X ×Mi → X is a
smooth nonlinear function. The noise termsµi(k) are assumed to be independent of each
other, which is often a standard and reasonable assumption in practice. For simplicity, we
will indicate with z(k) the stacked vector of all the measurementszi(k), with µ(k) the
stacked vector of all the measurement noiseµi(k), while with g(x(k)) we will denote the
compacted stacked form of all thegi(x(k)), i.e.,

z(k) = g(x(k)) + µ(k). (2.5)

We assume that the process described in (2.1) equipped with the stacked measurement
equation (2.5) is strongly locally observable for allx ∈ X, meaning that the following
map

O(x) =




g(x), g(f(x, 0)), g(f(f(x, 0), 0)), . . . , g(f(· · · f(f

︸ ︷︷ ︸

n−1

(x, 0), 0)))




 (2.6)

has rankn for all x ∈ X, (Nijmeijer, 1982, Albertini and D’Alessandro, 1995). This
assumption implies that we can reconstruct the state of (2.1) at the discrete timek via the
measurementsz(k). We remark that the rank condition (2.6) is the nonlinear extension of
the standard rank condition for linear systems.

In this chapter, we are interested in situations in which theprocess described in (2.1) is not
strongly locally observable by the individual sensor nodesalone, meaning that the local
couple(zi(k), gi) together with the dynamical modelf is not sufficient to estimate the
statex(k). More formally, we are interested in situation in which it isnot assumedthat
the nodal observability map

Oi(x) =




gi(x), gi(f(x, 0)), gi(f(f(x, 0), 0)), . . . , gi(f(· · · f(f

︸ ︷︷ ︸

n−1

(x, 0), 0)))




 (2.7)

has rankn for all x ∈ X. Under this circumstance, each of the sensor nodes needs to com-
municate with the neighboring nodes to obtain their local couples(zj(k), gj) and, possibly,
the ones of further away sensor nodes via consecutive and multi-hop communication.

We assume that after alimited amount of multi-hop communication, the nodal observabil-
ity maps, extended with the information coming from the neighboring nodes, become full
rank for allx ∈ X and therefore each sensor node can estimate the state. Letx̄i(k) denote
the estimate of sensor nodei at timek. This local estimatēxi(k) is in general a stochastic
variable, thus we letE[x̄i(k)] be its expected value, whilēPi represents its covariance.

Since communication is an important resource in sensor networks, the sensor nodes will
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obtain only the data necessary to make the state observable (i.e., the nodal observability
maps full rank), and not the whole network measurements. In addition, we remark that it is
also beneficial to limit the number of measurements available to each sensor node. This, in
order to keep the estimation problem small in size, thus easier to handle within the sensor
nodes’ limited computation resources. As a result, the nodal estimates̄xi(k) are in general
different among each other. For this reason the sensor nodescan decide to communicate
further to reduce this difference (and increase the estimation quality) and eventually agree
on a common value for̄xi(k). Let τ be the total number of communication rounds each
sensor node performs among its neighborhood before the subsequent time stepk + 1. Let
x̂i(k, τ) be the agreed value for the state estimate afterτ round of communication (which
for finite τ could be still different among the sensor nodes)1. The distributed estimation
problem can be formulated, for each sensor nodesi, as follows.

Problem 2.1 Distributed Estimation ProblemCompute, on each sensor nodei, the lo-
cal estimatêxi(k, τ) of the state governed by the dynamical equation(2.1) making use
of local measurements(2.3) and communication within the neighborhoodNi. This local
estimatêxi(k, τ) must:

(i) satisfy the constraints on the state and noise terms, Equations(2.2) and (2.4) for a
givenτ ≪∞;

(ii) be an unbiased estimate forx(k), i.e.,E[x̂i(k, τ)] = x(k) for a givenτ ≪∞;

(iii) converge, forτ → ∞, to a collective estimate that is the same for all the sensor
nodes, i.e.,limτ→∞ x̂i(k, τ) = x̂(k), for eachi ∈ V .

We note that, if we allowτ → ∞, it would be straightforward to solve Distributed Esti-
mation Problem2.1. In fact, it would be sufficient to communicate the sensor nodes data
throughout the whole network. On the contrary, the main challenge in Problem2.1 is to
ensure requirements(i)-(ii) for a givenτ ≪∞, typically τ = 1 (meaning communication
only with the neighborhood). This formally translates the sensor nodes communication
limitation.

We remark that

• Requirement(iii) does not imply requirement(ii) nor vice-versa: in fact, in(iii) we
only require the sensor nodes to agree on a common estimate asymptotically (in fact,
this common value could be biased), while point(ii) requires the sensor nodes to
deliver possibly different unbiased estimates at each timestepk, i.e.,E[x̂i(k, τ)] =
E[x̂j(k, τ)] = x(k), but it can be that̂xi(k, τ) 6= x̂j(k, τ), for eachi andj (even
for τ →∞).

• If both requirements(ii) and(iii) are satisfied, then the sensor nodes agree asymp-
totically on an unbiased estimate forx(k).

In the next sections we propose different estimators that are specifically designed to tackle
the Distributed Estimation Problem2.1 and we will highlight the satisfaction of the re-
quirements(i)-(iii) .

1We remark that, by definition,̂xi(k, 0) = x̄i(k).
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Remark 2.1 (Graph topology). In this chapter we make the simplifying assumption that thecom-
munication graph of the sensor network is fixed. For completeness we refer the reader to the works
in (Xiao et al., 2005, 2006, Boyd et al., 2006, Fagnani and Zampieri, 2008), which deal with time-
varying topology. In our opinion, this time-invariant graph assumption is not overly restrictive and
we anticipate it could be removed by minor modifications of the methods to be presented.

2.2.2 Motivations and Challenges

Before describing the estimators, we will elaborate on the underlying motivations and
challenges of the Distributed Estimation Problem2.1. First, recall the following motiva-
tions:

• There are many scenarios, especially in robotics, where nonlinear dynamics, non-
linear measurement equations, and constraints are present. Distributed Estimation
Problem2.1 is a natural extension of common problems described in the linear set-
ting for sensor networks.

• There is an increasing number of applications where a large number of sensor nodes
are employed to deliver reliable estimates for a common underlying process. In
these applications the need for distributed operations comes directly from the nature
and number of the sensors. In fact, given their number (some application are aiming
at deploying 1000 or more sensors) we cannot expect to collect their measurements
in only one computing unit which will have to deal with a large-scale nonlinear
estimation problem. On the contrary, the individual sensornodes will be required to
perform local estimation and to communicate with the neighboring nodes in order to
increase the estimation quality (and, in some cases, to makethe process observable).

On challenges’ side, we recall the following two points. Thefirst main challenge is that
the process and the measurement equation are nonlinear. Nonlinearity makes the estima-
tion problem harder to solve computation-wise. Moreover, multiple solutions are often
introduced in the nonlinear estimation process and issues linked to stability and bias can
depend critically on the initial conditions.

The distributed nature of the problem is the second main challenge. Distribution intro-
duces couplings among the different sensor nodes: the estimates are shared and combined
together. This could damage the stability and unbiasednessproperties of the local nonlin-
ear estimators. Furthermore, trade-offs have to be made between communication, com-
putational efforts and estimation quality. Sometimes, especially in the nonlinear setting,
just one more round of communication (e.g.,τ = 2 instead ofτ = 1), could increase
substantially both the computational time and the quality of the estimate.

With these motivations and challenges in mind, we start in the next section to consider
distributed estimators.

2.2.3 General Framework for the Distributed Estimators

We propose to leverage on the same underlying framework for the distributed estimators
we will design to solve Problem2.1. This framework is depicted in Figure2.1.



12 Chapter 2: Distributed Estimation

zj, gj
x̂j , P̂j

x̂i, P̂i

Sensor nodei

zi

Local

Estimator

z1

Sensor node1

z2

Sensor node2

zN

Sensor nodeN

z3

Sensor node3

Sensing and
Communication

Computation

Figure 2.1: Proposed distributed (sensing) framework for the estimation problem.
We note that each of the local estimators has the same input-output structure to
allow the possibility to “plug and play” different local filters.

We recall that in standard centralized approaches, all the measurement set{z1, . . . , zN}
would be sent to a centralized estimator, which would deliver an estimate for the state.
Instead, in a distributed setting approach there are a number of sensor nodes that locally
observe the process and communicate one another to compute acommon estimate for
the state. In Figure2.1 the proposed distributes (sensing) approach is illustrated. We di-
vide each of the sensor nodes into two parts, the sensing and communication part and the
computation part. The sensing and communication part is responsible for measuring the
quantityzi(k) and communicating with the neighbors sensor nodes. The messages consist
of zi, gi, x̂i(x, τ) and its covariancêPi(k, τ) (Where we denotêxi(k, 0) = x̄i(k)). The
sensing and communication part is connected to the computation part that is responsible
of estimating the state via a local estimator. This local estimator receives as an input the
available variableszj , gj, x̂j(k, τ − 1), P̂j(k, τ − 1) (that come from its own and neigh-
boring sensor nodes) and deliver as an output its own value ofx̂i(k, τ), P̂i(k, τ). This
input-output structure is the same across the network and the same for different local esti-
mators.

In this context, we note that the main difference of the proposed structure with the available
literature is that each local estimator in Figure2.1 will be constructed in order to have
the same input-output structure, which enables us to “plug and play” different filters and
have an heterogeneous group of estimators as a result. Although similar concepts have
been applied in centralized settings (Rajamani and Rawlings, 2007, Qu and Hahn, 2009,
Ungarala, 2009), this is an important novelty in the distributed domain. Inparticular, this
feature enables to tailor the local filters to the different sensors devices (and therefore
hardware) that are available in practice, which is of critical importance in sensor network
applications.

The proposed structure is based on a weighted consensus mechanism that merges the local
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estimates and the covariance matrices coming from the different sensor nodes, as illus-
trated next.

2.2.4 Weighted Consensus Algorithm

As expressed in the problem formulation we letx̄i(k) andP̄i(k) be the local state estimate
of sensor nodei and its covariance matrix before agreements with the neighboring nodes.
Let x̂i(k, τ) andP̂i(k, τ) be the values of the nodal estimate and the covariance matrix
afterτ rounds of communication with the neighboring nodes. Often,in order to simplify
the formalism, with abuse of notation, we will denote

x̂i(k) = x̂i(k, τ) and P̂i(k) = P̂i(k, τ).

We will use averaging consensus algorithms to implement theagreement protocol among
the sensor nodes, which will be important, not only to allow the sensor nodes to agree on a
common state estimate (Requirement(iii) of the Distributed Estimation Problem (2.1)), but
also to improve the distributed method’s accuracy. Standard references to these types of
algorithms areOlfati-Saber and Murray(2004), Olfati-Saber et al.(2007), Cortés(2008),
Keviczky and Johansson(2008), Ren and Beard(2008). In particular, we consider recur-
sive merging iterations of the form

x̂i(k, 0) = x̄i(k) for all i ∈ V ,
x̂i(k, κ) =

∑

j∈N+

i

wij x̄j(k, κ− 1), κ = 1, . . . , τ, (2.8)

wherewij ∈ R. LetW ∈ RN×N be the matrix with entrieswij . We can represent the
iterations (2.8) in a matrix-vector form as








x̂1(k, κ)
x̂2(k, κ)

...
x̂N (k, κ)








=







w11In w12In . . . w1N In
w21In w22In . . . w2N In

wN1In wN2In . . . wNNIn







︸ ︷︷ ︸

W⊗In








x̂1(k, κ− 1)
x̂2(k, κ− 1)

...
x̂N (k, κ− 1)







,

wherewij = 0 if i andj are not neighboring sensor nodes.

As in standard averaging consensus algorithms, we require that the matrixW satisfies
(Ren and Beard, 2008)

lim
τ→∞

W τ =
1

N
1N1⊤

N , (2.9)

where1N is a vector of dimensionN of all ones. With the property (2.9) the consensus
iterations (2.8) converge to a final state, where all the local variables are equal to the
mean of the initial values. This fact is used to satisfy requirement(iii) of the Distributed
Estimation Problem2.1.

In this chapter, we propose to use a special consensus mechanism, based on a weighted
version of the standard iterations (2.8), similar to the algorithm presented in (Xiao et al.,
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2005). In particular, in the standard iterations (2.8) with the property (2.9) the sensor nodes
agree on the average value of the local estimatesx̄i(k), i.e.,

lim
τ→∞

x̂(k, τ) =
1

N

∑

i∈V
x̄i(k).

On the contrary, in our proposed algorithm, they reach an agreement on the average of the
local estimates̄xi(k) weighted on the covariance matricesP̄i(k), i.e.,

lim
τ→∞

x̂(k, τ) =

(
∑

i∈V
P̄−1
i (k)

)−1(
∑

i∈V
P̄−1
i (k)x̄i(k)

)

.

This weighted average gives more emphasis to local estimates with “smaller” covariance
matrices, as one would do intuitively, thus one can expect that this average is a better
estimate forx(k). In order to formalize these ideas we cite the following lemma.

Lemma 2.1 (Xiao et al., 2005) Given a set of independent and unbiased estimates,x̄i,
with associated covariance matrices,P̄i, wherei ∈ V , the following weighted averaging:

x̂ =




∑

j∈V
P̄−1
j





−1
∑

j∈V
P̄−1
j x̄j

P̂−1 =
∑

j∈V
P̄−1
j

gives the minimum-variance unbiased estimate ofx.

In order to see how we can leverage on the result of Lemma2.1 in our proposed consen-
sus mechanism, we introduce some auxiliary variables. Letx̃i = P̄−1

i x̄i, be the local
weighted estimate, letYi = P̄−1

i be the inverse of the covariance matrix, usually referred
to as the information matrix, let̃x = (1/N)

∑

j∈V x̃j be the average of the weighted es-
timates, and letY = (1/N)

∑

j∈V Yj be the average of the information matrices. The
weighted averaging given in Lemma2.1can be seen as

x̂ = Y −1x̃ (2.10a)

P̂−1 = NY. (2.10b)

In this form, noticing that bothY and x̃ can be computed asymptotically via standard
averaging iterations (2.8), the translation of Lemma2.1 in a consensus protocol appears
clearer. In practice, one would run the iterations (2.8) on the local weighted estimatesx̃i
and information matricesY for τ →∞ and successively evaluatex̂ andP̂ via (2.10).

In our case, however, we restrictτ to be finite, in some situations even to beτ = 1. In
this context, the agreed estimatesx̂i(k, τ), will not be equal toY −1x̃(k) and therefore
they will not deliver a minimum-variance estimate of the statex(k). Furthermore, the lo-
cal x̄i(k) are in general correlated since the sensor nodes are observing the same model.
Nonetheless, first, one can expect a better estimation quality with this weighted consensus
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with respect to standard averaging consensus, and, second,we can guarantee the unbiased-
ness of the local̂xi(k) (even forτ = 1) as follows.

Lemma 2.2 Given a set of possibly dependent but unbiased estimates,x̄j , with associated
covariance matrices,̄Pj , wherej ∈ N+

i , the weighted average

x̂i =




∑

j∈N+

i

P̄−1
j





−1
∑

j∈N+

i

P̄−1
j x̂j

P̂−1
i =

∑

j∈N+

i

P̄−1
j

will be an unbiased estimate ofx.

Proof. The expected value of̂xi can be written as

E[x̂i] = E









∑

j∈N+

i

P̄−1
j





−1
∑

j∈N+

i

P̄−1
j x̂j






=




∑

j∈N+
i

P̄−1
j





−1
∑

j∈N+
i

P̄−1
j E[x̂j ] = x

from which the claim follows. �

Algorithm 2.1 MERGE
(
{x̄1(k), . . . , x̄N (k)}, {P̄1(k), . . . , P̄N (k)},W, τ

)
algorithm

1: Input:{x̄1(k), . . . , x̄N (k)}, {P̄1(k), . . . , P̄N (k)},W, τ
2: Compute the auxiliary variables for eachi: x̃i(0) = P̄−1

i (k)x̄i(k), Yi(0) = P̄−1
i (k)

3: Consensus step for eachi:
4: for κ = 1 to τ do
5: Communicate withinN+

i the couple (̃xi(κ− 1), Yi(κ− 1))
6: Compute:

{

x̃i(κ) =
∑

j∈N+
i

wij x̃j(κ− 1)

Yi(κ) =
∑

j∈N+
i

wijYj(κ− 1)

7: end for
8: Compute for eachi: x̂i(k, τ) = Y −1

i (τ)x̃i(τ), P̂
−1
i (k, τ) = Yi(τ)

9: Output:{x̂1(k), . . . , x̂N (k)}, {P̂1(k), . . . , P̂N (k)}

We report in Algorithm2.1 our proposed algorithm. We denote the resulting weighted
consensus algorithm, as the MERGEalgorithm.

Algorithm 2.1will be used in the following sections to merge the differentlocal estimates
and their covariances coming from the sensor nodes. We note once more that, although
it is not guaranteed to deliver a minimum-variance estimate, numerical simulation studies
(in addition to the ones illustrated in (Simonetto et al., 2010a, Simonetto and Keviczky,
2012)) will show improved accuracy in delivering state estimates with respect to standard
consensus algorithms (2.8).
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2.3 Distributed Nonlinear Estimators

In this section we proposed distributed versions of commonly used nonlinear estimation
methods, namely the Moving Horizon Estimators, Particle Filters, and Unscented and Ex-
tended Kalman Filters. We will start from the Moving HorizonEstimators, which allows
the most general assumptions on the system model and constraints. Then, with some more
restricting assumptions on the model and the constraints wewill discuss Particle Filters,
and Unscented and Extended Kalman Filters .

2.3.1 Moving Horizon Estimators

In its full generality, the Distributed Estimation Problem2.1is still an open research prob-
lem, due to the current incapability for consensus iterations to handle generic non-convex
constraints. In this section we study Moving Horizon Estimators that will require the sim-
plifying assumption that the state constraints (2.2) are convex sets.

Centralized formulation

Moving Horizon Estimation (MHE) is an optimization based state estimation technique
which has been developed to include constraints and nonlinearities in the problem formu-
lation extending the popular Kalman Filter approach (Rao, 2000, Rao et al., 2003, Hasel-
tine and Rawlings, 2005, Rawlings and Bakshi, 2006, Kang, 2006, Alessandri et al., 2011).
This makes MHE particularly suitable for the (Distributed)Estimation Problem2.1.

Let xin(0) be the estimated initial condition for the estimation problem and letP in(0) be
its covariance. Let the set of all process disturbances fromκ = t to κ = k be denoted
by {w(κ)}kt . In the standard Kalman Filter approach, one would weight the process noise
w(k) and the measurement noiseµi(k) via a quadratic cost function, as

JKF =
1

2

(
N∑

i=1

||µi(k)||2R−1

i

+ ||w(k)||2Q−1

)

(2.11)

whereRi ≻ 0 andQ ≻ 0 are positive definite matrices of appropriate dimensions and the
notation||v||2A, with A a matrix of appropriate dimensions, denotesv⊤Av. In a similar
fashion, the first step of the MHE approach is to consider thecentralized, full-information,
cost function

Jk

(

x̂(0), {w(κ)}k−1
κ=0

)

=
1

2

(
k∑

κ=1

N∑

i=1

||µi(κ)||2R−1
i

+

k−1∑

κ=0

||w(κ)||2Q−1

)

+

1

2

∥
∥x̂(0)− xin(0)

∥
∥
2

P in(0)−1 , (2.12)

In this way, the functionJk can be interpreted as a generalization of the Kalman filter cost
functionJKF (Eq. (2.11)). The term

1

2

∥
∥x̂(0)− xin(0)

∥
∥
2

P in(0)−1
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represents our confidence in the estimate of the initial condition. Exploiting the measure-
ment equation (2.3), we can rewrite the cost function (2.12) highlighting the dependence
on the state, process noise, and measurements as

Jk

(

x̂(0), {w(κ)}k−1
κ=0

)

=
1

2

(
k∑

κ=1

N∑

i=1

||zi(κ)− gi(x̂(κ))||2R−1

i

+

k−1∑

κ=0

||w(κ)||2Q−1

)

+

1

2

∥
∥x̂(0)− xin(0)

∥
∥
2

P in(0)−1 . (2.13)

We remark thatJk depends only on̂x(0) and{w(κ)}k−1
κ=0 since one can reconstruct the

whole state trajectory from̂x(0) till x̂(k) via the dynamical model (2.1).

Consider the minimization problem

minimize
x̂(0),{w(κ)}k−1

k=0

Jk

(

x̂(0), {w(κ)}k−1
κ=0

)

(2.14)

subject to






f(x̂(κ− 1),w(κ− 1))) = x̂(κ) ∈ X for κ = 1, . . . , k
w(κ) ∈W for κ = 0, . . . , k − 1
zi(κ)− gi(x̂(κ)) = µi(κ) ∈Mi for all i and forκ = 1, . . . , k

which delivers the solution pair(x̂(0), {w(κ)}k−1
k=0) and let the optimal cost function be

Jopt
k . The constraints of the minimization problem (2.14) are the representation of the

initial constraints (2.2) and (2.4). Via the optimizer of (2.14) we can reconstruct the whole
state evolution using the dynamical equation (2.3) and therefore estimate the statex̂(k) at
time stepk.

In order to solve the optimization problem (2.14) we need to keep in memory all the
measurements fromκ = 1 till κ = k, and the size of the problem grows in time. These
aspects make the solution of (2.14) computationally difficult in practice. The basic strategy
of MHE is to define an optimization problem using a moving, butfixed-size estimation
window andapproximatethe information outside the window. Consider a fixed moving
windowTw = k − T and separate the cost function (2.13) as

Jk

(

x̂(0), {w(κ)}k−1
κ=0

)

=

1

2

(
k∑

κ=k−T+1

N∑

i=1

||zi(κ)− gi(x̂(κ))||2R−1

i

+
k−1∑

κ=k−T
||w(κ)||2Q−1

)

+

1

2

(
k−T∑

κ=1

N∑

i=1

||zi(κ)− gi(x̂(κ))||2R−1

i

+

k−T−1∑

κ=0

||w(κ)||2Q−1

)

+

1

2

∥
∥x̂(0)− xin(0)

∥
∥
2

P in(0)−1 . (2.15)

The terms that refer to a time step beforek − T (the ones that need to be approximated)
form the part of the cost function usually denoted asarrival costorZk−T :
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Zk−T =
1

2

(
k−T∑

κ=1

N∑

i=1

||zi(κ)− gi(x̂(κ))||2R−1

i

+

k−T−1∑

κ=0

||w(κ)||2Q−1

)

+

1

2

∥
∥x̂(0)− xin(0)

∥
∥
2

P in(0)−1 . (2.16)

The strategy of the MHE is to solve the fixed size approximatedproblem

minimize
x̂(k−T ),{w(κ)}k−1

κ=k−T

Ĵk

(

x̂(k − T ), {w(κ)}k−1
κ=k−T

)

(2.17)

subject to






f(x̂(κ− 1),w(κ− 1))) = x̂(κ) ∈ X for κ = k − T + 1, . . . , k
w(κ) ∈W for κ = k − T, . . . , k − 1
zi(κ)− gi(x̂(κ)) = µi(κ) ∈ Mi for all i and forκ = k − T + 1, . . . , k

which delivers the solution pairs(x̂mh(k − T ), {w(κ)}k−1
κ=k−T ) and whose optimal cost is

Ĵopt
k . In (2.17) the approximated cost function has the form

Ĵk

(

x̂(k − T ), {w(κ)}k−1
κ=k−T

)

=

1

2

(
k∑

κ=k−T+1

N∑

i=1

||zi(κ)− gi(x̂(κ))||2R−1

i

+
k−1∑

κ=k−T
||w(κ)||2Q−1

)

+ Ẑk−T , (2.18)

whereas the approximated arrival cost can be computed as

Ẑk−T = Ĵopt
k−T +

1

2

∥
∥x̂(k − T )− xmh(k − T )

∥
∥
2

Pmh(k−T )−1 . (2.19)

for a suitable choice of the covariance matrixPmh(k − T ). This choice is important for
the stability and convergence of the MHE estimator. Usually, Pmh(k − T ) is propagated
from P in(k − T ) via the Extended Kalman Filter (Rao, 2000), which guarantees stability
and convergence. Another possibility is to choose

Ẑk−T = Ĵopt
k−T ,

which also guarantees stability and convergence (Rao, 2000). In general, one canenforce
these properties by choosing a scaled approximation of the arrival cost as

Ẑβk−T = Ĵopt
k−T +

β(k − T )
2

∥
∥x̂(k − T )− xmh(k − T )

∥
∥
2

Pmh(k−T )−1 , (2.20)

for any finitePmh(k − T ) ≻ 0 andβ(k − T ) ∈ [0, 1]. The parameterβ(k − T ) can
be determined on-line to enforce the stability and convergence properties, as explained in
detail in (Rao, 2000, Rao et al., 2003). To our purposes we remark that this determination
involves solving the auxiliary optimization problem
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minimize
x̂(k−T ),{w(κ)}k−1

κ=k−T

Φ̂k

(

x̂(k − T ), {w(κ)}k−1
κ=k−T

)

(2.21)

subject to






f(x̂(κ− 1),w(κ− 1))) = x̂(κ) ∈ X for all κ = k − T + 1, . . . , k
w(κ) ∈W for all κ = k − T, . . . , k − 1
zi(κ)− gi(x̂(κ)) = µi(κ) ∈ Mi for all i and for allκ = k − T + 1, . . . , k

where the cost function is

Φ̂k

(

x̂(k − T ), {w(κ)}k−1
κ=k−T

)

=

1

2

(
k∑

κ=k−T+1

N∑

i=1

||zi(κ)− gi(x̂(κ))||2R−1

i

+
k−1∑

κ=k−T
||w(κ)||2Q−1

)

,

which does not have any arrival cost. Then, given an arbitrary arrival costẐk−T (·), the
procedure determines the scaling factor as

β(k − T ) = max
β∈[0,1]

{

β : β
(

Ẑk−T (x̂(k − T ))− Ĵopt
k−T

)

+ Ĵopt
k−T ≤ U(Φ̂opt

k−T )
}

whereΦ̂opt
k−T is the optimal value for the cost function̂Φk−T of the auxiliary problem and

U(·) a specified function2 of Φ̂opt
k−T .

The MHE idea can thus be summarized as solving the optimization problem (2.17) with a
suitable choice of the approximated arrival cost. The optimizer of (2.17) is composed of
the state estimatêxmh(k − T ) at the beginning of the moving window and the noise se-
quence{w(k − T ),w(k − T + 1), . . . ,w(k − 1)}. These quantities determine the cur-
rent state estimatêx(k), via the dynamic state equation (2.1), which can be proven to be
unbiased (Rao et al., 2003).

The presented traditional centralized problem formulation assumes that all measurements
are available in a common location for solving the optimization problem. In the next
section, we propose a method to implement the Moving HorizonEstimator in a distributed
way using local computational capabilities of the different sensor nodes. The proposed
distributed approach is a first step towards the generalization of the work of (Farina et al.,
2010) for the case of nonlinear dynamics.

Distributed solution approach

Considering the centralized cost function (2.18), there are two terms for which global
information is necessary. One is the measurement term, the other is the arrival cost. Al-
though it is easy to imagine how one would distribute the measurement term by limiting
the sharing of measurements to a certain neighborhood, treating the arrival cost in a similar
fashion is more difficult to accomplish. In particular, the proofs of stability and conver-
gence of the centralized estimator need to be adapted to the distributed case, which is in

2We will give more details on the procedure when explaining the distributed implementation.
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general not straightforward. Besides this, an additional requirement would be for each
sensor node to eventually converge to the same state estimate value, as expressed in the
Distributed Estimation Problem2.1.

Our approach to handle these issues can be summarized in the following four steps:

1) The exchange of measurements is limited to within the neighborhood of each sensor,
i.e.,N+

i .3

2) The arrival cost is approximated by implementing the weighted consensus algo-
rithm 2.1 on the different local couples(x̄mh

i (k − T ), P̄i(k − T )). Each of the
P̄i(k − T ) is computed through a local Extended Kalman Filter, as in thecen-
tralized case. The consensus results for each sensor nodes will be denoted by
(x̂mh
i (k − T ), P̂i(k − T )) and in order to ensure stability, we introduce the local

scaling factorβi(k − T ) ∈ [0, 1] (as done in (Rao et al., 2003) in a centralized
setting).

3) Local cost functions are constructed for each sensor node, which constitute the core
of the “local estimator” part of the algorithm (see Figure2.1), as

Ĵi,k

(

x̄i(k − T ), {w̄i(κ)}k−1
κ=k−T

)

=

1

2





k∑

κ=k−T+1

∑

j∈N+

i

||zj(κ)− gj(x̄i(κ))||2R−1

j

+

k−1∑

κ=k−T
||w̄i(κ)||2Q−1





+ Ĵopt
i,k−T +

βi(k − T )
2

||x̄i(k − T )− x̂mh
i (k − T )||2

P̂i(k−T )−1 , (2.22)

with Rj ≻ 0, Q ≻ 0. We note that the local cost function (2.22) is a locally
computable version of the centralized cost function in the MHE formulation (2.18).
The local MHE-optimization problem (corresponding to the “local estimator” step
in Figure2.1) can thus be summarized as

3This exchange is (implicitly) assumed to guarantee observability for the local estimators. We remark that
in the context of Moving Horizon Estimators the observability rank condition (Eq. (2.6)) can be relaxed over
the considered time window; this concept is known as uniformobservability. Formally, a system is uniformly
observable if there exists a positive integerno and a K-functionφ(·) such that for any two statesx1(k) and
x2(k)

φ(||x1(k)− x2(k)||) ≤
k+no−1
∑

κ=k

||g(x1(κ)) − g(x2(κ))||, for all k ≥ 0.

Using this relaxed definition, the local exchange of measurements is assumed to satisfy the following relation

φ(||x1(k)− x2(k)||) ≤
k+no−1
∑

κ=k

∑

j∈N+
i

||gj(x1(κ)) − gj(x2(κ))||, for all i, and for allk ≥ 0.
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minimize
x̄i(k−T ),{w̄i(k)}T−1

κ=k−T

Ĵi,k

(

x̄i(k − T ), {w̄i(κ)}k−1
κ=k−T

)

(2.23)

subject to






f(x̄i(κ− 1), w̄i(κ− 1))) = x̄i(κ) ∈ X for κ = k − T + 1, . . . , k
w̄i(κ) ∈W for κ = k − T, . . . , k − 1
zj(κ)− gj(x̄i(κ)) = µj(κ) ∈Mj for all j ∈ N+

i

and forκ = k − T + 1, . . . , k

which delivers the optimal̂Jopt
i,k and the solution pair

x̄i(k − T ), {w̄i(κ)}k−1
κ=k−T

from which the local state estimate at the current timek, i.e., x̄i(k) can be deter-
mined via the dynamics (2.1).

4) A standard consensus step (Equation (2.8)) is performed using the local state esti-
mates,x̄i(k), in order to agree on̂x(k). We refer to this step as a posteriori con-
sensus step, which is used to facilitate the convergence to the same estimate by each
sensor nodes. Since the state estimate has to be feasible with respect to the state
constraint setX even after the agreement process, we introduce the following sim-
plifying assumption.

Assumption 2.1 The state constraint setX in (2.2) is convex.

The local formulation of the filter differs from the centralized setting in different aspects.
First of all the scaling factorβi(k − T ) is computed locally. This is done using the same
procedure as in (Rao et al., 2003) but localized on each sensor node. Second, the arrival
cost is based on agreed values of the couple(x̂mh

i (k − T ), P̂i(k − T )). Although this
seems rather natural, in general the agreedx̂mh

i (k − T ) may not be in the reachable set
of the dynamical system (2.1), which could lead to worse performance for the estimation
than the centralized implementation. We note that this effect is due to the nonlinear nature
of the problem and it is not present in the linear case with convex constraints (Farina et al.,
2010).

Solution properties

Under very general regularity assumptions4 on the dynamics, measurement equation, and
cost function and under particular conditions on the arrival cost, the centralized Moving
Horizon Estimator is stable and delivers an unbiased estimate for the statex(k) (Rao
et al., 2003). This is also true for the local estimators if their arrivalcost verifies the same
conditions of the centralized case, meaning

4These conditions requiref andg to be Lipschitz, the cost function to be quadratic, and the optimization
problem to be well-posed.
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C1) There exists a K-function5 γ̄(·) such that

0 ≤ Ẑi,k−T (z)− Ĵopt
i,k−T ≤ γ̄(||z − x̂mh

i (k − T )||) (2.24)

C2) The sequence of the arrival costs{Ẑi,k−T } is monotonically non-increasing.

ConditionC1 is satisfied with our choice

Ẑi,k−T (z) = Ẑβi,k−T (z) = Ĵopt
i,k−T +

βi(k − T )
2

||z − x̂mh
i (k − T )||2

P̂i(k−T )−1 ,

while conditionC2 can be enforced as explained in (Rao et al., 2003) using the scaling
factor βi(k − T ) ∈ [0, 1] that forces the sequence of arrival costs to be monotonically
non-increasing. This involves solving the local auxiliaryoptimization problem

minimize
x̄i(k−T ),{w̄i(κ)}k−1

κ=k−T

Φ̂i,k

(

x̄i(k − T ), {w̄i(κ)}k−1
κ=k−T

)

(2.25)

subject to






f(x̄i(κ− 1), w̄i(κ− 1))) = x̄i(κ) ∈ X for κ = k − T + 1, . . . , k
w̄i(κ) ∈W for κ = k − T, . . . , k − 1
zj(κ)− gj(x̄i(κ)) = µj(κ) ∈Mj for all j ∈ N+

i

and forκ = k − T + 1, . . . , k

where the cost function is

Φ̂i,k

(

x̄i(k − T ), {w̄i(κ)}k−1
κ=k−T

)

=

1

2





k∑

κ=k−T+1

∑

j∈N+

i

||zj(κ)− gj(x̄i(κ))||2R−1

j

+

k−1∑

κ=k−T
||w̄i(κ)||2Q−1



 .

We note that the optimization problem (2.25) is the local version of the centralized (2.21).
The optimal cost function of (2.25) is Φ̂opt

i,k . Define

J̃opt
i,k =

{

Ĵopt
i,k , if k ≤ T,

Φ̂opt
i,k + J̃opt

i,k−T , if k > T
.

The monotonically non-decreasing condition for the arrival cost can be written as (Rao
et al., 2003)

Ẑi,k(x̄i(k)) ≤ min
x̄i(k−T ),{w̄i(k)}T−1

κ=k−T

1

2





k∑

κ=k−T+1

∑

j∈N+

i

||zj(κ)− gj(x̄i(κ))||2R−1

j

+

k−1∑

κ=k−T
||w̄i(κ)||2Q−1

)

+ J̃opt
i,k−T = J̃opt

i,k .

5A function α : R+ → R+ is a K-function if it is continuous, strictly monotone increasing,α(x) > 0 for
x 6= 0, α(0) = 0, andlimx→∞ α(x) = ∞.
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This leads to the procedure to determineβi(k − T ) (locally) andẐβi,k−T (·):

• pick anyẐi,k−T (·) satisfyingC1;

• computeβi(k − T ) as

βi(k − T ) = max
β∈[0,1]

{

β : β
(

Ẑi,k−T (x̄i(k − T ))− Ĵopt
i,k−T

)

+ Ĵopt
i,k−T ≤ J̃

opt
i,k−T

}

;

• set
Ẑβi,k−T (·) = βi(k − T )

(

Ẑi,k−T (x̄i(k − T ))− Ĵopt
i,k−T

)

+ Ĵopt
i,k−T .

Although under conditionC1 andC2, we can prove stability and unbiasedness of the local
estimates, we underline that our choice of merging mechanism (necessary to improve the
estimation quality of the distributed implementation withrespect to non-communicating
local filters) could worsen the performance of the distributed estimator with respect to
a centralized implementation. In order to understand better the nature of this problem,
consider the local couple(x̄mh

i (k − T ), w̄i(k − T )) and the agreed̂xmh
i (k − T ). By the

use of the nonlinear dynamical equation (2.1) we impose that

x̄mh
i (k − T + 1) = f(x̄mh

i (k − T ), w̄i(k − T )), for all i.

However, after the agreement process (necessary to incorporate the neighbors information
into the estimator), it may happen that no vectorw ∈W can satisfy

x̂mh
i (k − T + 1) = f(x̂mh

i (k − T + 1), w), for all i,

meaning that̂xmh
i (k − T ) is not reachable. This translates in the fact that in the following

step of the local MHE problem (k ← k + 1), the term

||x̄i(k − T )− x̂mh
i (k − T )||2

P̂i(k−T )−1

drives the local estimatēxi(k − T ) to the non-reachable set. The detailed study of this
phenomenon is left as future research direction.

Algorithm 2.2 summarizes our proposed distributed estimation strategy taking into con-
sideration all the aspects discussed above.

We conclude this section considering once more the requirements of the Distributed Es-
timation Problem2.1 and some remaining challenges. We note that by constructionthe
estimatex̂i(k) satisfies the constraints (req.(i)), while its unbiasedness (req.(ii) ) holds.
Finally, requirement(iii) is enforced via the presence of a posteriori consensus which
brings the different state estimates to converge to the samevalue (whenτ →∞).

We will analyze the performance of Algorithm2.2in numerical simulation in Section2.4,
while in the following we will remove the constraints from the formulation of the Dis-
tributed Estimation Problem2.1and explore other possible estimators.

Remark 2.2 (Centralized and distributed algorithms’ performance)In general, due to the nonlin-
ear nature of the optimization problem and measurement datasharing, the distributed estimator will
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Algorithm 2.2 Distributed MHE

1: Input:{x̂mh
1 (k − T ), . . . , x̂mh

N
(k − T )}, {P̂1(k − T ), . . . , P̂N (k − T )}, {z1(k), . . . , zN (k)}

⊲ Available Data: f, gi,X,W,Mi, Ri, Q, τ1, τ2
2: Sharing: each sensor node shares(zi(k), gi,Mi) with its neighbors to achieve local observability
3: Local Estimation for each i:

3.1: Construct local auxiliary cost function as

Φ̂i,k

(

x̄i(k − T ), {w̄i(κ)}
k−1
κ=k−T

)

=

1

2







k
∑

κ=k−T+1

∑

j∈N+
i

||zj(κ)− gj(x̄i(κ))||
2

R
−1
j

+

k−1
∑

κ=k−T

||w̄i(κ)||
2
Q−1







3.2: Solve the minimization

minimize
x̄i(k−T ),{w̄i(κ)}

k−1

κ=k−T

Φ̂i,k

(

x̄i(k − T ), {w̄i(κ)}
k−1
κ=k−T

)

subject to














f(x̄i(κ− 1), w̄i(κ− 1))) = x̄i(κ) ∈ X for κ = k − T + 1, . . . , k
w̄i(κ) ∈ W for κ = k − T, . . . , k − 1

zj(κ)− gj(x̄i(κ)) = µj(κ) ∈ Mj for all j ∈ N+
i

and forκ = k − T + 1, . . . , k

3.3: Determineβi(k − T ) as in (Rao et al., 2003)
3.4: Construct a local cost function as

Ĵi,k

(

x̄i(k − T ), {w̄i(κ)}
k−1
κ=k−T

)

=

1

2







k
∑

κ=k−T+1

∑

j∈N+
i

||zj(κ)− gj(x̄i(κ))||
2

R
−1
j

+

k−1
∑

κ=k−T

||w̄i(κ)||
2
Q−1







+ Ĵopt
i,k−T

+
βi(k − T )

2
||x̄i(k − T )− x̂mh

i (k − T )||2
P̂i(k−T )−1

3.5: Solve the minimization

minimize
x̄i(k−T ),{w̄i(k)}

T−1
κ=k−T

Ji,k

(

x̄i(k − T ), {w̄i(κ)}
k−1
κ=k−T

)

subject to














f(x̄i(κ− 1), w̄i(κ− 1))) = x̄i(κ) ∈ X for κ = k − T + 1, . . . , k
w̄i(κ) ∈ W for κ = k − T, . . . , k − 1

zj(κ)− gj(x̄i(κ)) = µj(κ) ∈ Mj for all j ∈ N+
i

and forκ = k − T + 1, . . . , k

3.6: DetermineP̄i(k − T + 1) via an Extended Kalman Filter update as in (Rao et al., 2003)
3.7: Determine the state estimatex̄i(T ), via the dynamic state equation (2.1)

4: Sharing/Consensus:
4.1: Consensus on the arrival cost forτ1 iterations

(

{x̂1(k − T + 1), . . . , x̂N (k − T + 1)}, {P̂1(k − T + 1), . . . , P̂N (k − T + 1)}
)

=

MERGE
(

{x̄1(k − T + 1), . . . , x̄N (k − T + 1)}, {P̄1(k − T + 1), . . . , P̄N (k − T + 1)},W, τ1
)

x̂mh
i (k − T + 1) = x̂i(k − T + 1) for eachi

4.2 A posteriori consensus on the local state estimates atk using (2.8) for τ2 iterations
x̂mh
i (k) = x̂i(k) for eachi

5: Output:{x̂mh
1 (k), . . . , x̂mh

N
(k)},

{x̂mh
1 (k − T + 1), . . . , x̂mh

N (k − T + 1)}, {P̂1(k − T + 1), . . . , P̂N (k − T + 1)}
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not have the same performance of the centralized one, not even in the asymptotic sense. In particular
the difference between the distributed and centralized estimate, i.e.,||x̂i(k)− x̂(k)||, will be always
strictly positive,||x̂i(k)− x̂(k)|| > 0, even whenτ1, τ2 → ∞. Nonetheless, we remark once more
that in many scenarios, the number of sensor nodes could be simply too high to run the centralized
estimator and distributed solutions are required.

2.3.2 Particle Filters

The first estimators that we study for the case of no constraints are Particle Filters.

Centralized formulation

Although Particle Filters have a long research record sincetheir first appearance (Gordon
et al., 1993), they still represent an active area of investigation. Dueto their generality
and simplicity, they have become a topic of constantly growing interest, development, and
numerous applications.

We start with the following simplifying assumption.

Assumption 2.2 The constraint sets in(2.2) and (2.4) areX = Rn, W = Rw, and
Mi = Rqi .

Furthermore let the process noise be modeled by the probability density function, orPDF,
πw(w), and letπµi

(µi) be thePDF that models the measurement noise.

Particle Filters estimate the statex(k) via the a posteriori conditionalPDF p(x(k)|z(k)).
Since, in most cases, this a posterioriPDF cannot be evaluated because of the complexity
of the underlying dynamical system (2.1), the basic idea is to drawm random samples,
or particles,{x(k)j}j=1,...,m from a given proposal distributionq(x(k)|z(k)) with the
same support asp(x(k)|z(k)). Often this proposal distribution is chosen to be the a priori
distributionp(x(k)|x(k − 1)), as done in Sample Importance Resample (or SIR) filters.
Adopting this choice, the random samples can be computed recursively as

x(0)j = x(0) for j = 1, . . . ,m

x(k)j = f(x(k − 1)j ,w(k − 1)j), for k = 1, 2, . . . (2.26)

wherex(k − 1)j is thej-th sample at the discrete timek − 1 andw(k − 1)j is randomly
drawn from the process noisePDF, i.e.,w(k−1)j ∼ πw(w). To these samples are then as-
sociated weightsw(k)j that quantify the likelihood of the sample given the measurements
z(k). The weights are also computed recursively via (Arulampalam et al., 2002)

w(0)j = 1/m for j = 1, . . . ,m

w(k)j =
p(x(k)j |z(k))
q(x(k)j |z(k)) =

p(x(k)j |z(k))
p(x(k)j |x(k − 1)j)

=

= w(k − 1)jp(z(k))|x(k)j), for k = 1, 2, . . . (2.27)
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wherep(z(k))|x(k)j) is the likelihood that the measurerementz(k) is observed given the
samplex(k)j . If the measurement noisePDF πµi

(µi) are Gaussian with zero mean and
Σi as covariance matrix, then (2.27) can be simplified (up to a normalization) into

w(k)j = w(k − 1)j exp

(

−
N∑

i=1

∥
∥zi(k)− gi(x(k)j)

∥
∥
2

Σ−1

i

)

for j = 1, . . . ,m. (2.28)

Given the weighted couples(x(k)j , w(k)j), we can approximate the a posterioriPDF

p(x(k)|z(k)) by the use of Dirac’s deltas,δ, as

p(x(k)|z(k)) ≈ p̂(x(k)|z(k)) = 1

Ω(k)

m∑

j=1

w(k)jδ(x(k)− x(k)j) (2.29)

with Ω(k) =
∑

j w(k)
j . Finally, this approximation of the a posterioriPDF gives means

to estimatex(k) asx̂(k), which was our objective. For example, we can choosex̂(k) to
be the particle with highest weight.

Often, in addition to sampling and weighting the particles,the particle population is re-
sampled. In this resampling step the particles are redrawn from the approximated discrete
a posterioriPDF (2.29). Furthermore, since these new particles are i.i.d. samples coming
from (2.29), their weights are set to be identical.

The resampling step is a crucial component of particle filteralgorithms. Resampling is
necessary since it can provide the chance for “good” particles to be considered with higher
probability and produce better and more accurate results. Moreover, it overcomes the
degeneracy phenomenon, where after a few iterations, all but one particle will have neg-
ligible weights. However, it introduces also other practical issues that need careful atten-
tion. First, it limits the opportunity to parallelize sinceall the particles must be combined.
Second, the particles that have high weights are statistically selected many times. This
may lead to a loss of diversity among the particles as the resultant samples contain many
repeated points. Therefore the choice of the number of particles and of the resampling
procedure fundamentally determine the properties of the Particle Filter.

We can summarize a prototypical SIR particle filter algorithm as follows (Arulampalam
et al., 2002).

1: Drawm samplesx(k)j from a the a priori distributionp(x(k)|x(k−1)), using (2.26).

2: Compute the importance weightw(k)j for eachj, using (2.27).

3: Compute the state estimate according to the approximateda posterioriPDF (2.29).

4: Resample the set of particles according to the approximated a posterioriPDF (2.29).

5: Setw(k)j = 1/m for all particlesj.

Distributed Particle Filters and Related Work

With the growth of computational power and the exploitationof parallel architectures, Par-
ticles Filters are increasingly being considered as suitable candidates for implementations
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in parallel or distributed computing architectures. For this reason, the use of the termi-
nology “distributed Particle Filters” could be misinterpreted. In this chapter we refer to
distributed Particle Filters to indicate estimators capable of solving the Distributed Esti-
mation Problem2.1. In Chapter 3 we will introduce the distributed computationParticle
Filters as the ones that have access to all the measurement data but the computations are
performed in a distributed way over a cluster of computing units.

Although references to distributed Particle Filters date back to the work of (Rosencrantz
et al., 2003) and (Coates, 2004), detailed analysis and evaluation studies on their properties
have been initiated only recently. The main reason is that inorder to combine the solutions
of the different local estimators there is a need for coherent particle-weight combinations
which are not trivial to obtain without demanding communication. There are three main
solutions to this problem: either (1) we select locally somerepresentative particle-weight
combination to send to the other sensor nodes, (2) we impose that all the sensor nodes have
the same particle population, thus we can send only the weights, or (3) we parametrize
the a posteriori distribution with some low dimensional representation and we send the
parameters.

The first strategy is presented in (Rosencrantz et al., 2003, Lee and West, 2009). The
work of (Rosencrantz et al., 2003) is particularly suited for situations in which the sensor
nodes have enough data to run accurate Particle Filters on their own and they need extra
information only in some special cases. A typical application is localization in a building:
when a sensor node has a clear view of the object to be localized, it can run its own Particle
Filter with no extra information. On the contrary, when the object is hidden behind a wall,
it needs some data from other sensor nodes that can see the object. The main idea is that
each sensor node keeps in memory the entire time-evolution of its particles and all the
measurements, and it sends some of the particles to the neighbors. The neighbors decide
whether some measurements, at some time instant, are valuable for the senders and they
reply with the data.

The approach of (Lee and West, 2009) follows the same philosophy, but uses a different
sending strategy. It allows sensor nodes to communicate theparticle and weight combi-
nations via a random walk approach, sending them randomly across the network. The au-
thors show that, although less efficient for low dimensionalproblems (with respect to other
methods), this algorithm scales linearly with the number ofdimensions and it could be a
viable alternative for large dimensional scenarios. Furthermore, using the tools of (Doucet
et al., 2001), the authors show that the distributed algorithm converges weakly to a central-
ized approach when the sensor nodes are allowed to exchange information arbitrary times
within each sampling time.

The second strategy for the combination problem is to consider all the sensors to have
the exact same particle population. This can be enforced by synchronizing the seed of
the random number generators. The works in (Coates, 2004, Farahmand et al., 2011) are
based on this assumption. Since all the particles across thenetwork are the same, the basic
idea is that the local weights can be combined using

ŵ(k)j =

(
N∏

i=1

w̄j(k)
j

)1/N

, (2.30)
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which can be expressed as a sum, and therefore a consensus iteration, using the log oper-
ator. Furthermore, to increase performance, as proposed in(Farahmand et al., 2011) the
particles can be drawn from an a prioriPDF scaled via a distributed adaptation mecha-
nism that pre-filters it and makes it closer to the a posteriori PDF. The final algorithm in
(Farahmand et al., 2011) can be sketched as:

1: Sharing/(Consensus): determine local adapted a prioriPDF with a consensus step.

2: Local estimator: local particle filter based on the local adapted a prioriPDF.

3: Sharing/Consensus: share the weights and agree on them via a consensus step based on Equa-
tion (2.30).

The third strategy to combine the estimates in distributed particle filters is to guarantee that
all the sensor nodes have the same representation of the proposal distributionq(x(k)|z(k)).
This idea is exploited in the papers (Sheng et al., 2005, Sheng and Hu, 2005, Gu, 2007,
Gu et al., 2008, Gu and Hu, 2009, Liu et al., 2009, Oreshkin and Coates, 2010) where the
authors use different parametric models. In particular, the most commonly used represen-
tation is the Gaussian Mixture Model, or GMM, which can be written as:

q(x(k)|z(k)) =
C∑

c=1

λc(k)ℵ(σc(k),Σc(k)),

whereC, λc, σc, andΣc are parameters of the model and they represent the chosen num-
ber of Gaussians, their relative importance, their mean, and their covariance respectively.
We recall thatℵ(a,B) is used to denote a Gaussian with meana and covarianceB. This
representation has the drawbacks that, first, the sensor nodes have to agree upon several
variables ifC ≫ 1, and second, the local representation is built via an iterative opti-
mization scheme, which requires time and may lead to local minima (see (Sheng et al.,
2005) for further details). On the other hand, it is rather easy togenerate the parameter
set(C, λc, σc,Σc) based on the sample description of the a posteriori distribution, and it
is also rather straightforward to propagate the model one step ahead via Kalman Filters.

Proposed Distributed Approach

In this chapter, in order to give the same input-output structure to the local estimators, we
propose the use the third strategy outlined above and we select the estimated mean and
covariance to represent the proposal distributionq(x(k)|z(k)) as (Gu et al., 2008, Gu and
Hu, 2009). Let

x̄i(k) =
1

Ω(k)

m∑

j=1

wi(k)
jxi(k)

j (2.31)

P̄i(k) =
1

Ω(k)

m∑

j=1

wi(k)
j(xi(k)

j − x̄i(k))(xi(k)
j − x̄i(k))

⊤ (2.32)

be the estimated mean and covariance of the particle population after the resampling stage
for filter i. As usual, the couple(x̂i(k), P̂i(k)) denotes the agreed couple after a merging
mechanism. This agreed couple(x̂i(k), P̂i(k)) can be propagated one step ahead via
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the use of the standard prediction step of the Unscented Kalman Filter as in (Julier and
Uhlmann, 2004). This generates the new couple(x̂i,k+1|k(k), P̂i,k+1|k(k)). Let

qi(x(k + 1)|z(k + 1)) = ℵ(x̂i,k+1|k(k), P̂i,k+1|k(k))

be the agreed proposal distribution for each sensor nodei. Our proposed method can be
summarized as done in Algorithm2.3.

We remark that our Distributed Particle Filter algorithm meets the requirements(i) - (ii)
of Problem2.1 on constraint satisfaction and unbiasedness of the estimate (in fact, there
are no constraints), while requirement(iii) is enforced via the consensus step (see step 4
of Algorithm 2.3).

From Algorithm2.3it is clear that the required computations increase with thenumber of
particles used, as well as the accuracy of the filter. In otherwords, to obtain more accurate
results more particles are needed and thus more computation. In particular, even for a low
number of states the number of particles could be prohibitive for the capabilities of simple
sensor nodes. In the next section we discuss extensions of the Kalman Filter which can
provide “faster” solutions under certain specific assumptions.

Algorithm 2.3 Distributed (parametric) Particle Filter

1: Input:{x̂1(k − 1), . . . , x̂N (k − 1)}, {P̂1(k − 1), . . . , P̂N (k − 1)}, {z1(k), . . . , zN (k)}

⊲ Available Data: f, gi, τ
2: Sharing: each sensor node shares(zi(k), gi) with its neighbors to achieve local observability
3: Local Estimator for each i:

3.1: Propagate the parameters(x̂i(k − 1), P̂i(k − 1)) to (x̂i(k|k − 1), P̂i(k|k − 1)) via an Unscented
Kalman Filter as in (Julier and Uhlmann, 2004).
3.2: Draw samples from̂qi(x(k)|z(k)) = ℵ(x̂i(k|k − 1), P̂i(k|k − 1))
3.3: Calculate the local weights of the samples

w(k)j = p(zℓ(k))|x(k)
j),with ℓ ∈ N+

i

3.4: Calculate the local state estimatex̄i(k) and the parameters̄Pi(k) based on the a posterioriPDF

x̄i(k) =
1

Ω(k)

m
∑

j=1

wi(k)
jxi(k)

j

P̄i(k) =
1

Ω(k)

m
∑

j=1

wi(k)
j(xi(k)

j − x̄i(k))(xi(k)
j − x̄i(k))

⊤

3.4: Resample using the local weights.
4: Sharing/Consensus:

4.1: Consensus on the local state estimate and covariance:
(

{x̂1(k), . . . , x̂N (k)}, {P̂1(k), . . . , P̂N (k)}
)

=

MERGE
(

{x̄1(k), . . . , x̄N (k)}, {P̄1(k), . . . , P̄N (k)},W, τ
)

5: Output:{x̂1(k), . . . , x̂N (k)}, {P̂1(k), . . . , P̂N (k)}
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2.3.3 Extended and Unscented Kalman Filters

In this section we investigate Extended and Unscented Kalman Filters, which involve dif-
ferent linearizations of the nonlinear dynamical equation(2.1) and of the nonlinear mea-
surement equations (2.3). We start defining an almost linear system as follows.

Definition 2.1 A systemΣ comprised of a dynamical equation functionf and a measure-
ment equation functiong is almost linear (Bar-Shalom et al., 2001) if

1. f andg map Gaussian distributed random inputs to mono-modal Gaussian-like out-
put distribution, with approximately zero mean and zero third order moment;

2. whenf andg are linearized in the pointx, the linearized observability matrix has
the same rank as the nonlinear observability map atx.

We consider the following assumptions.

Assumption 2.3 The noise termsw andµi are Gaussian random inputs with zero mean.

Assumption 2.4 The nonlinear dynamical equationf and the nonlinear measurement
equationsgi constitute an almost linear system.

Under Assumptions2.2, 2.3, and2.4, Extended and Unscented Kalman filters can be used
to solve the Distributed Estimation Problem2.1. The reader is referred to (Bar-Shalom
et al., 2001, Julier and Uhlmann, 2004) for the centralized setting.

Remark 2.3 Note that very often Assumption2.4is difficult to verify. Nonetheless, this has not lim-
ited the application of Extended and Unscented Kalman filters, which are employed successfully in
many scenarios. In practice, one verifies the applicabilityof these linearized approach a posteriori,
i.e., after careful simulation studies.

For the distributed scenario, we propose in Algorithm2.4an extension of the ideas in (Olfati-
Saber, 2007a, Simonetto et al., 2010a, Cattivelli and Sayed, 2010) that is suitable to be
used in our common framework presented in Figure2.1. (Note that only the case of the
Unscented Kalman Filter is considered in Algorithm2.4, but the Extended case is similar
with local Extended Kalman Filters instead of Unscented ones).

We note that Extended and Unscented Kalman Filters are computationally cheaper than
Moving Horizon Estimators and Particle Filters but the stability of the estimator can be an
issue when the nonlinearities become important. Generally, the (distributed) Unscented
Kalman Filter performs better than the Extended one, typically, at the price of being
slightly more computationally expensive. The requirements (ii) -(iii) of Problem2.1 on
unbiasedness and convergence of the estimate to a common value can be guaranteed. We
note that requirement(i) here does not apply due to the absence of constraints.
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Algorithm 2.4 Distributed Unscented Kalman Filter

1: Input:{x̂1(k − 1), . . . , x̂N (k − 1)}, {P̂1(k − 1), . . . , P̂N (k − 1)}, {z1(k), . . . , zN (k)}

⊲ Available Data: f, gi, τ
2: Sharing: each sensor node shares(zi(k), gi) with its neighbors to achieve local observability
3: Local Filter :

Local Unscented Kalman filter with input̂xi(k − 1), P̂i(k − 1), zi(k) and output̄xi(k), P̄i(k)
4: Sharing/Consensus:

Consensus on the estimates
(

{x̂1(k), . . . , x̂N (k)}, {P̂1(k), . . . , P̂N (k)}
)

=

MERGE
(

{x̄1(k), . . . , x̄N (k)}, {P̄1(k), . . . , P̄N (k)},W, τ
)

5: Output:{x̂1(k), . . . , x̂N (k)}, {P̂1(k), . . . , P̂N (k)}

2.3.4 Remarks on the Common Framework

In Section2.3.1, 2.3.2, and2.3.3we have studied different distributed estimators. We
have highlighted their underlying assumptions and proposed distributed implementations,
namely Algorithm2.2, 2.3, and2.4. We remark here the similar input-output structure of
the algorithms in terms of mean and covariance of the locallycomputed estimates. This
will allow us to decide which local estimator to implement onwhich sensor node, adapting
the computational load to hardware limitations.

We note that, when considering Algorithm2.2 for the distributed MHE, the sensor nodes
need to maintain in memory past values of measurements, estimates, and covariances.
This has to be taken in consideration also when we implement an heterogeneous group of
local estimators comprised of a number of local MHE. Furthermore, in this case, a value of
P̂i(k) has to be chosen for the local MHE, which is not provided by Algorithm2.2. A rea-
sonable choice is to let̂Pi(k) be smaller by a defined ratio than the one of the neighboring
nodes (that use other types of estimators).

After having analyzed the proposed algorithms in a more abstract fashion, in the follow-
ing, we show some simulation results to capture their performance in different realistic
scenarios.

2.4 Numerical Evaluations and Comparisons

In this section we present two realistic test cases to analyze the proposed algorithms. The
first scenario is a localization problem using noisy range measurements for mobile robot
tracking, which is representative of the Distributed Robotics Lab under development at the
Delft Center for Systems and Control. The second scenario islocalization via range-only
measurements of an autonomous underwater vehicle, which can represent a scaled model
of many existing underwater robotic platforms, see for example (Corke et al., 2007).

In both cases, we define the errorei(k) of sensori at timek, as the distance between the
true positionx(k) at that time and the one estimated by the sensor nodei, i.e.,

ei(k) = ||x̂i(k)− xi(k)||. (2.33)
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Furthermore, we let the mean errorem be defined as:

em =
1

NTf

N∑

i=1

Tf∑

k=0

ei(k), (2.34)

whereTf is the final time of simulation. Finally we let the average error, ea, be the mean
error averaged over a number of different simulationsTsim, i.e.,

ea =
1

Tsim

Tsim∑

i=1

(em)i . (2.35)

We remark that this average errorea will be always positive by construction.

In the following, for compactness reasons, we will often usethe abbreviations: MHE, PF,
UKF, and EKF to indicate Moving Horizon Estimators, Particle Filters, Unscented Kalman
Filters, and Extended Kalman Filters, respectively.

2.4.1 The Mobile Robot Simulation Example

The first scenario we use as an illustrative example for evaluation purposes is a distributed
mobile robot localization problem using range-only measurements (see Figure2.2). This
is a suitable benchmark since the underlying dynamics is nonlinear, different constraints
can be imposed, and the state is unobservable by individual sensors, which justifies the
need for communication among them.

We denote the position of a mobile robot on a 2-D space withx = (x(1), x(2))
⊤, and letθ

be its orientation. The velocity and angular velocity are denoted byv andω, respectively.
Let the state be defined asx = (x(1), x(2), θ)

⊤ and the control input beu = (v, ω)⊤

with additive noise processes denoted byw = (wv,wω)
⊤, w ∼ ℵ(0, Q). The nonlinear

time-invariant dynamical model of the robot is representedby the following discrete-time
unicycle model (Thrun et al., 2005) with sampling time∆t:

x(k + 1) = x(k) +
ṽ(k)

ω̃(k)
(sin(θ(k) + ω̃(k)∆t) − sin θ(k))

y(k + 1) = y(k)− ṽ(k)

ω̃(k)
(cos(θ(k) + ω̃(k)∆t)− cos θ(k))

θ(k + 1) = θ(k) + ω̃(k)∆t (2.36)

with
ṽ(k) = v(k) +wv(k), ω̃(k) = ω(k) +wω(k).

We consider the state to be constrained asx ∈ X which represents the physical space lim-
itations of the robot’s movement, with the assumption that the constraint setX is convex.

We considerN sensors to be placed at a specified heighth measuring the ranges to two
beacons on the robot. The resulting two (range-only) measurement equations for each
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Figure 2.2: Mobile robot setup description.

sensorz±,i(k) = (z+,i(k), z−,i(k))⊤ are given by

z±,i(k) =







x(1)(k)± L cos θ(k)− ℓi(1)
x(2)(k)± L sin θ(k)− ℓi(2)

h







2

+ µi(k), (2.37)

where(ℓi(1), ℓi(2), h) is the position of the sensor,2L is the distance between the beacons
and the norm is the standard Euclidean distance. The noise processµi ∼ ℵ(0, Ri) is
assumed to be Gaussian, which is a common choice when using radio-frequency or ultra-
sonic ranging devices (Smith et al., 2004). Unless otherwise stated, we will consider the
mean of the initial state and its covariance(x̂(0), P̂ (0)) as given, or previously estimated.

2.4.2 Simulations with Distributed MHE

Given the presence of constraints, in this test case we use the proposed distributed Moving
Horizon Estimator, described by Algorithm2.2. Moreover, we note that, since there are
no constraints on the process noise, no reachability problem will be present.

For the simulation experiments, the sensors are placed and connected as shown in Fig-
ure2.3. The lines represent possible communication links among the sensors, which are
marked by squares. The sensors are placed at a heighth of 1.5 m. We consider track-
ing a robot as it traverses through a randomly generated trajectory, shown in Figure2.4.
The simulation parameters are∆t = 1 s, final timeTf = 50 s,wv ∼ ℵ(0, (0.01 m/s)2),
wω ∼ ℵ(0, (0.1 rad/s)2), µi ∼ ℵ(0, (0.05 m)2), andP (0) = 0.01I with dimensions [m],
[m], and [rad], respectively.

The constraints on the position state are represented in Figure2.4via shaded areas.

We use Algorithm2.2 with the parameterτ1 = 1 in the first consensus process (arrival
cost) and we varyτ2 in the set{0, 1, 3, 5}. The caseτ2 = 0 represents the choice of no a
posteriori consensus (which may be applied when the communication overhead needs to
be reduced).

We performed50 simulation runs of the same trajectory and different randomnoise pro-
cesses to investigate the behavior of the distributed estimator with respect to the centralized
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Figure 2.3: Simulation setup indicating the locations of sensors (squares) and com-
munication links between them (thick lines). The red rectangle represents the con-
strained experimental area.

one.

Figure2.4 depicts the results for a selected representative simulation run usingτ2 = 0.
As it can be seen, the distributed MHE solutions of the 6 sensor nodes satisfy the state
constraints. Although the communication within the neighborhood is rather limited (τ1 =
1 andτ2 = 0), all the local solutions are qualitatively the same.

In Table2.1 we present the results for the50 simulations while varying the number of
a posteriori consensus iterationsτ2. We can observe that by allowing more a posteriori
consensus steps, the estimator delivers better solutions in terms of the average error. We
note however that even whenτ2 → ∞ the distributed solution will not converge to the
same solution of the centralized MHE. This is due to the fact that the sensor nodes do not
have access to the whole information, since they share measurements and the arrival cost
value only with they direct neighbors (τ1 = 1). Nonetheless, in this limited communica-
tion setting, we remark that the error of the distributed estimation is reasonably close to
the centralized one given the noise values and communication topology, and therefore the
result can be considered completely satisfactory.

Table 2.1: Average errorea in the 50 simulation runs while varyingτ2. CMHE
represents the centralized solution.

τ2 = 0 τ2 = 1 τ2 = 3 τ2 = 5 CMHE
Average errorea, Eq. (2.35) [cm] 4.5 3.6 3.2 3.1 2.5

2.4.3 The Autonomous Underwater Vehicle Simulation Example

The second scenario we consider to compare the methods we have devised for the Dis-
tributed Estimation Problem2.1 is the localization via range-only measurements of an
autonomous underwater vehicle.
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Figure 2.4: Results of a representative simulation run. The initial position of the
robot is marked with a circle, while the shaded areas represent position constraints.

The state of the AUV is chosen asx = (x⊤, v⊤)⊤, wherex ∈ R3 is the position and
v ∈ R3 is the velocity. Letu(k) ∈ R3 be the control input. The discrete-time dynamical
equations are:

x(k + 1) = x(k) + v(k)∆t

v(k + 1) = v(k) +
∆t

M
(û(k)− cD ‖v(k)‖ v(k))

û(k) = u(k) +wu(k)

whereM is the mass of the vehicle,cD is a drag coefficient, andwu is a noise term.
We assume to haveN = 25 range-only sensors sparsely distributed at varying heights
from a plane surface. The different heights simulate an uneven seafloor. A schematic
representation of the simulation test case is shown in Figure2.5.
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Figure 2.5: Schematic representation of the AUV test case.

2.4.4 Simulation Results

In this setup, we analyze and compare distributed Extended/Unscented Kalman Filters
(Algorithm 2.4) and distributed Particle Filters (Algorithm2.3), given the absence of con-
straints. The goal of these simulation results is to illustrate the better estimation quality
of the proposed algorithms, based on the weighted consensusalgorithm2.1, with respect
available methods that are based on standard consensus iterations, namely (Cattivelli and
Sayed, 2010) for the UKF and (Gu et al., 2008) for the PF. Furthermore we want to show
the possibilities of the underlying framework of the algorithms to handle different local
estimators on different sensor nodes.

We use∆t = 1 s, T = 130 s, m = 1 kg, CD = 1 kg/s. We define an open-loop
control sequence of magnitude||u(k)|| = 0.5 N and varying direction, while we select
std(wu(k)) = (0.05, 0.05, 0.025)T N. We assume that the measurement error in equa-
tion (2.3) is std(vi) = 0.1 m, for all the sensors. We consider500 particles for the dis-
tributed Particle Filter.

In the first scenario we consider, each sensor is assumed to run the same type of local filter.
We collect the results for2500 different simulation runs, varying randomly the position and
the communication range of the sensor nodes.

In order to analyze the results we utilize a metric defined on the topology of the communi-
cation graph the sensor nodes are using. In particular, thiscommunication graph depends
on the position of the nodes (and their communication range). Loosely speaking, if two
sensor nodes are closer than a certain range, they can communicate, otherwise they cannot.
This formally defines a graphG (supposed to be connected by the problem definition) and
an associated Laplacian matrixL, whose second smallest eigenvalue dictates the connec-
tivity properties ofG. If we indicate withλ2 the second smallest eigenvalue of the graph of
one simulation run, and withλ2,max the maximum ofλ2 over all the simulation runs, then
we can useλ2/λ2,max as metric to analyze our results. In fact, values ofλ2/λ2,max near1
correspond to highly connected graphs, thus estimation problems close to the centralized
case, while values ofλ2/λ2,max near0 correspond to sparsely connected graphs.

Figure 2.6 depicts the average error of the the proposed algorithms versusλ2/λ2,max.
A dot at the coordinate(φ, ψ), corresponds to an average error ofψ for graphs with
λ2/λ2,max ∈ (φ − 0.05, φ + 0.05). The shaded areas show the standard deviation of
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these errors. Note that the DEKF estimations are not depicted here because they do not
converge. The DUKF are shown without the standard deviationto make the graph more
readable, their values are in the order of0.3 m.
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Figure 2.6: Comparison between the proposed algorithms and the one in the lit-
erature with respect to the normalized algebraic connectivity of the information
exchange graph. The average error is computed as the mean error of the sensor av-
eraging2500 different simulations. The shaded areas are the standard deviations.
The DUKF’s standard deviation are not depicted. The straight lines correspond to
the centralized UKF, and the centralized PF.

The results show that the proposed distributed Unscented Kalman Filter and Particle Filter
outperform the ones found in the literature (Cattivelli and Sayed, 2010, Gu et al., 2008)
that use a standard consensus iteration. Notice that we havechosen to compare our method
only with other distributed parametric Particle Filters, since they are the only ones suitable
to be employed directly in our common framework. In this context the available litera-
ture (Sheng et al., 2005, Sheng and Hu, 2005, Gu, 2007, Gu et al., 2008, Gu and Hu, 2009,
Liu et al., 2009) can be divided into two parts, the first one that considers a standard con-
sensus algorithm (2.8), whose methods can be represented with (Gu et al., 2008), and the
second one, namely the work (Oreshkin and Coates, 2010) that uses a different consensus
mechanism, qualitatively similar to our proposed algorithm, but optimized for an asyn-
chronous communication case. Therefore the comparison in Figure2.6 is representative
of the current state-of-the-art of distributed (synchronous) parametric Particle Filters that
have the state estimate and its covariance as input-output variables.

The reason for the difference between the methods in (Cattivelli and Sayed, 2010, Gu
et al., 2008) and our proposed algorithms is due to the MERGE algorithm. In fact, this
algorithm delivers estimates closer to the minimum-variance one. This also means that,
for the Particle Filter, a given set of particles will characterize the a posteriori distribution
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better, since the trace of our covariance is smaller than in (Gu et al., 2008). A limitation of
our procedure is that this ‘small covariance’ could cause animpoverishment of the particle
diversity in the case of Particle Filters, which may lead to aloss in accuracy. This has not
been detected in this simulation case but it may become a problem as we will see in the
second test scenario below.

Our results show also that in this simulation study, the distributed Unscented Kalman
Filter has a similar average error as the distributed Particle Filter reported in the literature.
This is important because the distributed Unscented KalmanFilter is less computationally
expensive than distributed Particle Filters, which is interesting in the context of designing
fast yet accurate algorithms.

As a second test scenario, we fix the graph topology with a normalized algebraic connec-
tivity of 0.6, and we vary the types of filters embedded on each sensor. We collect data
from 1500 simulation runs, with a varying number of Particle Filters,UKFs and EKFs
present in the sensor network and their physical location. Figure2.7 summarizes our re-
sults. The curves represent different numbers of Particle Filters. Since the overall number
of sensors is fixed (N = 25), one can compute the number of EKFs present in the network
from the knowledge of the number of Particle Filters and UKFs.

We can observe that even with a relatively small number of more accurate filters (for
example1 PF and5 UKF), the distributed estimation converges. This was not the case
in the first test scenario, where the local estimates were diverging using the EKFs alone.
This is a very interesting observation that seems to supporthaving many cheap devices
and only a very few expensive ones.

We may also notice that by increasing the number of UKFs, the accuracy improves initially
quite noticeably but eventually deteriorates. For a low number of UKFs, this trend can be
explained by the merging mechanism as well, as illustrated in Remark2.4.

Remark 2.4 LetnUKF be the number of UKFs andnPF the number of the Particle Filters, and let
the covariance of the filters bēPPF, P̄UKF, andP̄EKF respectively. Assume for simplicity, a scalar state
vector. The average error is then related to the merged covariance, whose expression is

P̂ =
P̄PFP̄UKFP̄EKF

25P̄PFP̄UKF + P̄UKF(P̄EKF − P̄PF)nPF + P̄PF(P̄EKF − P̄UKF)nUKF

,

which for a givennPF is proportional to

P̂ ∝
1

α+ nUKF

with the constantα > 0. This explains the initial decrease of the average error foran increasing
number of UKFs.

The deteriorating performance for a higher number of UKFs isinstead an open question.
One potential reason is the suboptimality of the merging mechanism and the ‘small covari-
ance’ problem. In fact, the proposed algorithm may lead to a smaller covariance estimate
than the actual one, which leads to optimistic filters (Bar-Shalom et al., 2001), and this
could cause a poor selection of the sigma points for the UKFs.Adding more EKFs in-
creases the average error and brings the estimated covariance closer to the real one, which
improves performance.
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Figure 2.7: Results for different filters running on different sensors.The Average
Error is computed as the mean error of the sensor averaging1500 different simu-
lations. The shaded areas are the standard deviations of thebold lines. Since the
number of sensor is fixed (N = 25), one can compute the number of EKFs present
in the network from the knowledge of the number of Particle Filters and UKFs.

2.5 Conclusions

In this chapter we have studied the distributed nonlinear state estimation problem and
we have proposed distributed nonlinear estimators that leverage on common underlying
framework. This framework is based on a weighted consensus mechanism and could al-
low the usage of different estimators on different sensor nodes, which is an important
aspect when considering heterogeneous sensor networks. Simulation results have illus-
trated the benefit of this framework with respect to standarddistributed algorithms and
how its performance relates to centralized estimators.

2.6 Open Problems and Future Work

Distributed Estimation is an area that is still evolving andmany challenges are still open.
We can highlight two interesting problems that require further attention as follows.

Constrained Consensus

The first problem is the design of consensus algorithms that can handle generic non-convex
constraints.

As remarked, consensus algorithms make use of convex combinations of the initial values
to reach an agreement among the different nodes of the sensornetwork. For this reason,
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when there are non-convex constraints on the variable to agree upon, typical consensus
algorithms may deliver an unfeasible final value. This is a fundamental limitation of cur-
rent consensus schemes that affects all the distributed estimation algorithms. This is also
the reason why there are still no distributed methods to tackle the distributed estimation
problem of Section2.2.1in its full generality. We refer the reader to the interesting work
in (Nedić et al., 2010) where constrained consensus algorithms are introduced ina con-
vex setting. We believe that, if the methods presented in (Nedić et al., 2010) could be
developed further to address non-convex constraints, theymight be extremely helpful in
devising new and more general distributed methods for the distributed estimation problem.

Reachability Problem in the distributed MHE

The second problem we remark is the reachability problem in the distributed MHE formu-
lation.

As illustrated in the chapter, due to the nonlinear nature ofthe system dynamics, the agree-
ment on the arrival cost could deliver an unreachable state and therefore it could drive the
local estimator towards inadmissible regions of the state space. One solution to this prob-
lem could be to eliminate the nonlinear dynamic model using differential flatness tech-
niques as in (Mahadevan and Doyle III, 2004) for differential flat systems. For general
nonlinear systems the problem is instead more difficult to handle.



Chapter 3

Distributed Computation Particle
Filters on GPU-Architectures

Abstract — In this chapter we consider methods to reduce the possibly high computational
requirements of nonlinear estimators by distributing the computations among different
computing devices communicating one another.

In particular, we study how to implement Particle Filters using GPU-architectures, for real-
time control or monitoring applications. Experimental results on a robotic arm will il-
lustrate that the concept of fast yet accurate nonlinear filtering is possible by a suitable
adaptation of the Particle Filter algorithm.

3.1 Introduction

In Chapter 2 we have seen approaches to distributed estimation of a given nonlinear pro-
cess in sensor networks, where sensor nodes have access onlyto local measurements but
they can communicate with the neighboring devices. It is also well-known that accurate
nonlinear estimation can be very demanding in terms of high computational requirements.
We use as an example the Particle Filters, which in the nonlinear/non-Gaussian setting
usually outperform Kalman Filter type methods, but suffer from very high computational
requirements when using a high number of particles. This aspect is particularly important
in sensor networks, where the individual sensor nodes have typically a limited amount of
computational resources, but it is also very important for centralized settings.

The topic of this chapter is to propose a distributed computation approach for Particle
Filters, in order to achieve real-time and accurate estimation. In particular, we will make
use ofGPU1-architectures to distribute the computations of ParticleFilters among different
computational units. This idea is motivated by the recent the rise of reasonably priced
graphical processing units featuring thousands ofGPUcores that compete with and take the

1GPU stands for Graphical Processing Unit usually composed of many computing cores that work in parallel
on data-parallel tasks such as graphics rendering. We remark that for the main message of the chapter, it is not
important to know how aGPU works in practice. As a matter of fact, our scheme could be implemented on any
systems with multiple cores that communicate with each other.

41
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place of the best traditional desktop single-coreCPU processing architectures in specific
types of computations. In this context, one could imagine thousands of particles running
on each one of the thousand cores.

The main question we will pose and answer is the following:can Particle Filters be run
efficiently enough and deliver accurate estimates to be implemented in high sample rate
real-time feedback control applications?

In particular, after surveying the available techniques todistribute the computations among
the computation units, in Section3.2we will propose an approach that considers a Particle
Filter as a network of smaller filters, where each of them exchanges data locally based on
the network topology. Finally, we will test our implementation in numerical simulations
and on a robotic arm experimental setup, where we demonstrate100 Hz real-time feedback
control based on a Particle Filter using more than a million particles.

We remark that the main contribution of this chapter will be the proposed distribution
of the computations among the different computing units. This proposed idea will be
shown to outperform standard implementations based on parallel computing (instead of
distributed ones). In particular, we will be able to increase the number of particles, the
sampling frequency, and the state dimension often by ordersof magnitude with respect to
state-of-the-artGPUsolutions. Furthermore, we will show that our scheme has comparable
accuracy with centralized sequential particle filters (with the same number of total parti-
cles), which require 10-100 times more computational time (when using a high number of
particles) than our proposed distributed implementation.

3.2 Distributed Computation Framework

In this chapter we will use the same notation as Chapter 2, Section 2.3.2(where we have
discussed centralized Particle Filters), but we will consider their distributedComputation
implementation. We refer the reader who is not familiar withParticle Filters to their de-
tailed introduction in Section2.3.2.

Formally, we define Distributed Computation Particle Filters as the ones that have access
to all sensor measurements but use only a subset of particlesin each computing unit. The
different units where the distributed Particle Filters arerunning are depicted in Figure3.1.b
(we have reported in Figure3.1.a the distributed (sensing) setting for reference). Sincethe
different local particle filters (PF) have the same measurement vector, they can exchange
directly particle-weight couples,(xj , wj) (since the weights have been weighted on the
same measurement vector). The distributed estimation is done in this case at the level of
the filters whereas the sensors are only a means through whichthe measurements become
available. This is the class of estimators that we will studyin this chapter.

In the following, we will review the body of algorithms that can be considered a Distributed
Computation Particle Filter. It is somewhat surprising that the exploitation (and design)
of the communication network among the units, as sketched inFigure3.1.b, is a concept
that is rather absent in the reviewed literature (where instead a traditional parallel strategy
is often used). This concept, extensively used in the sensornetwork community, is one of
the main ingredients that will enable us to devise more efficient Particle Filters.
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Figure 3.1: Distributed Computation Particle Filters and their relationship with
Distributed (sensing) Particle Filters of Chapter 2, Section2.3.2. In the Distributed
(sensing) setting, the exchange of information is done sharing the local means and
covariances of the state estimates(x̂i, P̂i). In the Distributed Computation setting,
the distribution and communication is done via particle-weight couples. The final
outcome is a number of different a posteriori distributionsrepresented via(xji , w

j
i ).

The fact that these distributions are different means that the different local particle
filters do not necessarily have to agree on a common one.

3.2.1 Related Work

In the past decade, with the rise of the massive parallelization made possible byGPUs,
many researchers have analyzed, studied, and designed versions of distributed Computa-
tion Particle Filters. These algorithms differ in the number of particles they can handle, the
specific parallelization, and the degree of communication between the computing units. In
the next paragraphs we will examine a number of strategies toimplement distributed and
parallel Particle Filters.

To the author’s best knowledge, the first work dealing with parallelism in Particle Fil-
ters is (Brun et al., 2002). In this paper, the particle population is partitioned into several
subsets, each assigned to a separate processor. Sampling, weight calculations, and resam-
pling are performed independently and locally for each subset. The authors consider the
weighted sum of all the particles as the estimate. This estimation is achieved by calculat-
ing for each subset a local estimate and a local sum of weightswhich are, subsequently,
gathered centrally and combined into a global estimate. Theauthors show that local re-
sampling is comparable with global resampling, in terms of estimation error.

In the work (Bashi et al., 2003), three methods are proposed to implement distributed
computation Particle Filters:(i) Global Distributed Particle Filter (GDPF),(ii) Local Dis-
tributed Particle Filter (LDPF), and(iii) Compressed Distributed Particle Filter (CDPF).
With GDPF, only the sampling and weight calculation steps run in parallel on different
processors, while resampling is performed centrally. All particle data is transferred to a
central unit for the resampling step and the new particles are sent back to each processor.
The central unit calculates the global estimate from the particle data. With LDPF, resam-
pling is also performed locally on each processor without any communication with other
processors. Aggregated particle data is sent to a central unit in order to calculate the global
estimate similar to the algorithm of (Brun et al., 2002). In CDPF, similar to GDPF, resam-
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pling and the calculation of the global estimate are performed centrally, but only a small
representative subset of the particles of each processor are sent to the central unit. The
paper concludes from a number of simulations that LDPF provides both better estimation
and performance.

Two distributed computation Particle Filter algorithms are proposed in (Bolić et al., 2005):
(i) Resampling with Proportional Allocation (RPA), and(ii) Resampling with Non propor-
tional Allocation (RNA). Both algorithms perform the sampling and weight calculation
stages in parallel. In the RPA method the resampling stage involves centralized communi-
cation, whereas in the RNA method it is performed completelylocally. Different particle
exchange mechanisms are discussed to improve the performance of this local resampling
step, but it is rather unclear how these particles are selected. Furthermore, the amount
of particles that are exchanged among the cores is a significant ratio of the total popula-
tion (at least 25% of all particles of each processing element). In both cases (RPA and
RNA) the estimate is calculated as the weighted average of all particles from all process-
ing elements. It is argued that RPA provides a better estimation, while RNA has a simpler
design. In a later work (Bolić et al., 2010), the authors compare a standard Particle Filter
with a Gaussian Particle Filter on an FPGA. The presented results indicate that the Gaus-
sian Particle Filter, while being faster than a standard Particle Filter, is equally accurate
for (near-)Gaussian problems.

A number of the previously presented algorithms (GDPF, RNA,RPA, Gaussian particle
filter) are compared using a parallel implementation on a multi-core CPU for a bearings
only tracking experiment in (Rosén et al., 2010). The comparison goes only until 10K
particles. As expected, the Gaussian particle filter outperforms (in terms of accuracy over
computational time) all other algorithms, since the estimation problem is Gaussian. The
other Particle Filter algorithms (GDPF, RNA, RPA) exhibit similar estimation accuracy.
In terms of runtime performance, both RNA and the Gaussian Particle Filter achieve near
linear speedup with respect to the number of cores for a largenumber of particles, while
GDPF and RPA exhibit only sub-linear speedup.

An interesting Particle Filter implementation is presented in (Hendeby et al., 2010), where
the authors exploitGPU specific hardware features. In this paper, first, a parallel approach
for sampling and weight calculations is proposed and then, the resampling step is per-
formed using a specific hardware feature ofGPU’s called the rasterizer. In practice this step
is close to the RNA algorithm of (Bolić et al., 2005) but, since pseudo-random numbers are
generated on the hostCPU and successively transferred to theGPU, the performance of the
filter is severely damaged. In fact, about 85% of the total runtime is spent on generating
pseudo-random numbers and transferring them to theGPU, making this implementation
not suitable for real-time estimation in complex problems.

The GPU implementation described in (Chao et al., 2010) consists of parallel sampling,
parallel weight calculations, and resampling performed locally on the different computing
units. For the sampling step, the authors propose to use the finite-redraw importance-
maximizing (FRIM) method, which checks the weight of the drawn particle and redraws
until a particle with a reasonable weight is constructed. Wenote that the FRIM method is
known to reduce the required total number of particles, but afixed number for maximum
number of redraws has to be imposed to limit the iterations. The generation of random
numbers is performed on the hostCPU, as in (Hendeby et al., 2010), and subsequently
copied into theGPU. This makes their presented implementation rather limited. In fact,
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Table 3.1: Available methods to implement distributed computation Particle Filters.

Ref.s Sampling Resampling Estimation Particles State Runtime
+ weight dimension [ms]

Brun et al.(2002) local local central 32K 3 1 – 100

Bashi et al.(2003)
GDPF local central central 5K 5 100
LDPF local local central 5K 5 10
CDPF local central§ central§ 5K 5 10

Bolić et al.(2005)
RPA local central§ central 50K 3 1
RNA local local central 50K 3 0.1 – 1∗

Hendeby et al.(2010) local central§ central 1M 2 1000
Chao et al.(2010) local local unknown 4K 3 200

Par and Tosun(2011) local central central 130K 4 10

§ only part of the particles are sent to (multiple) computing hubs.
∗ these are theoretical limits based on the considered hardware rather than a measured performance.

with the use of a low performance laptop-GPU, they are able to run experiments only up
to 4K particles with execution times around 200 ms in the bestcase. It is unclear how the
estimate is calculated from the weighted particle set and whether it is executed on theGPU.

The recent study (Par and Tosun, 2011) investigates a Particle Filter for localization and
map matching for vehicle applications on aCPU using OpenMP and on aGPU using
CUDA. The state dimension is only four and the estimation does not benefit from more
than 32K particles, but the application is nevertheless an interesting and well-explained
case for Particle Filters. Experiments show that, with 128Kparticles, aCPU is 4.7 times
faster on six cores than a singleCPU architecture, while aGPU is another 16 times faster.
The proposed algorithm runs parallel sampling and weight calculations but the resampling
step is done on the hostCPU in a centralized fashion. However, the resampling is per-
formed only when the particle variance is above a threshold.This scheme seems to be
faster on average than the other mentioned algorithms but itsuffers from high peaks of
computation time when the resampling is performed, which isundesirable for real-time
applications.

Table3.1 summarizes the surveyed methods and highlights the degree of centralization
still presented in many of them. In particular, the resampling stage is performed either
in a centralized fashion (where all or a part of the particlesof each core are sent to some
computing hub), or locally, without exchange of particles.This way of operating is typical
from a parallel perspective.

We note however that these ways to resample the particle population can degrade the per-
formance of the filter (in terms of computational time and accuracy) rather significantly.
In order to address this problem we will introduce in the nextsection the concept of dis-
tributed resampling, which will enable us to overcome thesedifficulties and achieve an
improvement over the aforementioned methods. Furthermore, we will explain how the
different (user-tunable) parameters can affect performance.

3.2.2 Proposed Approach

In this section we present our proposed approach to implement distributed computation
Particle Filters. First we give a brief introduction toGPU architectures and we introduce
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the concept of topology. Then, we describe the distributed resampling techniques that
is the core of our method, and, finally, after presenting our algorithm, we analyze the
selection of its (user-tunable) parameters.

GPU Architecture and Topology

GPU’s are programmed to exploit their inherent parallelism to execute at the same time a
significant number of tasks. We utilize CUDA (NVIDIA , 2010) as a programming inter-
face. A CUDA application is divided into ahostanddeviceside. The host refers to the
CPU which is connected to one or more devices (i.e., theGPUs). The host manages device
memory, initiates data transfers and launches kernels on the device. Kernels are special
functions executed on the device in parallel. Each kernel typically consists of numerous
threads grouped into thread blocks. Limited fast access shared memory is available to all
threads from a single block for local communication while slower access global device
memory is available to all threads. The thread groups and thehost can access the global
device memory and this is typically the way the data is shared(although it is also the main
cause of bottlenecks in standard implementations).

Figure 3.2 depicts the terminology and the architecture. For our implementation, each
thread is particle, while each thread block is a local Particle Filter.

host

device

thread block

Global device memory

kernel

Topology mapping

Figure 3.2: Basic concept ofGPU architectures as available in CUDA. The global
device memory is mapped into a specific topology representing data-exchange be-
tween thread blocks.
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In particular, with reference to Figure3.2,

The host launches kernels. Each
kernel is a specific function, such
as “sampling”, “sorting”, or “resam-
pling”. The host has access to the
global device memory.

host

device

Global device memory

kernel

Kernels consist of numerous threads
grouped into thread blocks. For us the
thread blocks represent the local par-
ticle filters, while the threads the par-
ticles. Different threads have access
to fast limited shared memory inside
the thread block and they can write
and read data from the slower access
global device memory.

host

device
thread block

Global device memory

In Figure3.2, we also illustrate the concept of topology, which will be important for our
implementation. Since the access to the global device memory is usually a bottleneck,
it is important to limit this operation andgroup the data that each thread block needs to
read. Our idea is to map the global device memory into a specified topology, that formally
defines this grouping procedure. Using Graph Theory terminology, each thread block is a
node, while if two nodes can access each other’s data we say that there is an edge between
them. The set of nodesV and the set of edgesE define a graphG = (V , E) with specified
topology. Since given the graphG the topology is fixed, we often use the symbolG to refer
to both interchangeably. In this context, each thread blockhas a set of neighbors, i.e., the
thread blocks it can share the data with.

We consider each kernel to consist ofN thread blocks (later local filters) labeled with the
index i = 1, . . . , N , whereas each thread block hasm threads (later particles), labeled
with the indexj = 1, . . . ,m. The number of neighbors of each thread block is indicated
with Ni.

Moreover, as a further abstraction of the hardware/software level, we refer to the thread
blocks as computing units that are able to send and receive data from the neighboring
computing units, via the graphG. Since the access to global device memory is often a bot-
tleneck and since the local shared memory is limited by the hardware, the communication
among the computing units cannot grow arbitrarily.

Distributed Resampling

In typical implementations of distributed computation Particle Filters, the sampling and
weight computation steps are done locally (in parallel) in arather straightforward fashion.
We also follow this standard strategy. The resampling step is instead more delicate.
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Resampling is a critical step in Particle Filters. On one side, it is necessary since it can pro-
vide the chance for good particles to spread themselves and it overcomes the degeneracy
phenomenon, where after a few iterations, all but one particle will have negligible weights.
However, on the other side it introduces practical (and often application-specific) issues,
notably the impossibility to run the code in parallel, sinceall the particles must be com-
bined, and the loss of diversity among the particles as the resultant samples contain many
repeated points. In this context, it is rather crucial to devise carefully the resampling stage
and give to the user tunable parameters to overcome the mentioned application-specific
issues.

As surveyed in Section3.2.1 the resampling step is often performed with a degree of
centralization. Typically all the particles or (a significant) part of them are sent to a limited
number (often one) computing hubs (i.e., thread groups).

In contrast with these methods, we propose a distributed approach to the resampling stage.
Our idea is rather simple yet extremely effective and it is based on the considerations that
there is no need to have specified computing hubs, each of the computing units can serve
as a computing hub itself, and there is no need to send all the particles, in fact just very
few are necessary to the resampling step. In our approach each computing unit sends to
its neighborsonly t representative particles (the ones with locally highest weights) and
performs the resampling stage on its resultingm + tNi particles (we recall thatNi is the
number of neighbors a computing unit has). We note that this simple idea is extremely
powerful. In fact:

1. The number of shared particles is a small part of the population, since typically
tNi ≪ m. However, as we will see in the experimental and simulation tests of
Section4.2.7, the fact that the method is not completely local (meaningt > 0, in
contrast with local methods wheret = 0, for example (Brun et al., 2002, Bolić et al.,
2005, Chao et al., 2010)) increases significantly the accuracy of the filter.

2. There is no need of centralized data collection, making the resampling step fast and
efficient.

3. Both the topology and the number of shared particlest are user parameters that
can be adjusted to the application at hand. In some cases (forexample, in high
process noise setting), we will see that having an all-to-all topology (similar to the
centralized hub in the CDPF algorithm of (Bashi et al., 2003)) could lead to worse
performance than a ring topology. As we will explain below and in Section4.2.7
this is due to the loss of diversity introduced by the resampling stage.

This idea of distributed resampling has been presented by in(Simonetto and Keviczky,
2009). A similar approach has been also presented in the later work (Balasingam et al.,
2011), whose authors propose a modification of the distributed resampling idea of (Simon-
etto and Keviczky, 2009) on a ring topology, where the local computing units substitute
their highest weight particles with the ones of the neighboring units. Both these works
show in simple numerical simulations the similar performance of the distributed strategy
with a standard single-coreCPU implementation that uses the same number of particles
Nm, in terms of estimation quality.
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In this chapter, we implement the distributed resampling scheme on aGPU architecture
and we test it on a real hardware platform. Furthermore, we analyze the effect of the
parameters of algorithm, namely the number of shared particles t and the topologyG on
the quality of the estimate.

Proposed Algorithm

Our proposed algorithm consists of the following high-level steps:

a. Sampling and weight calculation: this step is done locally on each computing unit;

b. Distributed resampling step: this step is done in a distributed computation fashion
as previously explained;

c. Local estimation: this step is done locally on each computing unit, picking the local
particle with maximum weight.

Algorithm3.1describes more in detail how these three high-level phases are translated into
high-level commands. For the specific hardware implementation, the reader is referred
to (Chitchian et al., 2012b).

Remark 3.1 In addition to Local estimation, we also provide to the user aGlobal estimate kernel
which selects the best particle among the local bests. This selection is also done in parallel via a
parallel reduction on the winners from each block. In our experiments we have noted that the extra
runtime spent in the Global estimation kernel is extremely limited compared to the other kernels.

Algorithm 3.1 Distributed Computation Particle Filter: bla bla bla bla bla bla bla bla
high-level description on each computing uniti

Input: {xi(k − 1)j}j=1,...,m, z(k)

⊲ Available Data: p(x(k)|x(k − 1)), p(z(k)|x(k)), t,m, topologyG

1. Local Filter:

for j = 1: m

1.1: sampling : xi(k)j ∼ p(xi(k)|xi(k − 1)j)

1.2: weight calculation : wi(k)j = p(z(k)|xi(k)j)

end

2. Sorting: sort {xi(k)j}j=1,...,m according to{wi(k)j}j=1,...,m

3. Estimation: local estimation : pick xi(k)j with maximalwi(k)j

4. Particle Exchange:

foreach neighbordo

send andreceive t particle-weight couples to/from neighbors

end
5. Resampling:resample them+Nit particles intom particles

6. Reset:set wi(k)
j = 1/m for all j

Output: {xi(k)j}j=1,...,m
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Analysis of the Algorithm

In this section we provide some insights in the selection of the parameterst andG of Algo-
rithm 3.1, while, in general, the selection ofN andm are dictated by hardware limitations.

Let p̂i(x(k)|z(k)) be the local approximation of the a posterioriPDF, different for each
local filter, which can be written as

p̂i(x(k)|z(k)) =
1

Ωi(k)

m∑

j=1

wi(k)
jδ(x(k) − xi(k)

j), (3.1)

where the subscripti indicates that weights and particles are referred to the local filter i,
andΩi(k) =

∑m
j=1 wi(k)

j . Let w̃i(k)j be the weight of particlej of filter i after the
communication step but before resampling. Letm̃i = m + Nit be the total number of
particles of filteri before resampling, and let̃Ωi(k) =

∑

j w̃i(k)
j .

First of all, we support the intuitive claim that the most representative particles of the
p̂i(x(k)|z(k)) in (3.1) are the ones with highest weights, which justifies the communica-
tion strategy in Algorithm3.1. In order to show this, we utilize the Kullback-Leibler (KL)
divergence (Cover and Thomas, 1991) that measures the distance between twoPDFs. In
particular, the smaller the KL divergence is, the closer thetwo PDFs are. Consider the
approximated a posteriorîp(t)i (x(k)|z(k)) computed using onlyt < m particles, as

p̂
(t)
i (x(k)|z(k)) = 1

Ω
(t)
i (k)

t∑

j=1

wi(k)
jδ(x(k) − xi(k)

j) (3.2)

with Ω
(t)
i (k) =

∑t
j=1 wi(k)

j , then the claim that thet particles with highest weights are
the most representative for (3.1) is formally expressed as follows.

Proposition 3.1 (Balasingam et al., 2011) The KL divergence between(3.1) and its ap-
proximation(3.2), which employes onlyt < m particles, i.e.,D(p̂i, p̂

(t)
i ), can be written

as

D(p̂i, p̂
(t)
i ) = − log





t∑

j=1

wi(k)
j

Ωi(k)



 = − log

(

Ω
(t)
i (k)

Ωi(k)

)

(3.3)

and it is minimal when we use for(3.2) thet particles with highest weights.

We can distinguish two main aspects that affect performanceof Algorithm 3.1. First, we
have to analyze how good each of the local a posteriorip̂i(x(k)|z(k)) represents the global
p̂(x(k)|z(k)). This aspect dictates the estimation quality of the distributed computation
particle filter with respect to a standard single-coreCPU implementation. Second, it is
important to study how distorted each of the localp̂i(x(k)|z(k)) becomes after the re-
sampling step. This distortion is a measure of the distance between the resampled and
the initial population. In particular, high values of distortion generally mean that the filter
will be affected by the degeneracy/loss of diversity phenomenon, where only few particles
have non-zero weight.
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In order to analyze the quality of each local a posteriorip̂i(x(k)|z(k)) with respect to the
globalp̂(x(k)|z(k)) we make use of Proposition3.1applied to these distributions and we
define the cumulative sum of the local KL divergences as

N∑

i=1

D(p̂, p̂i) = −
N∑

i=1

log





m̃i∑

j=1

wi(k)
j

Ω(k)



 (3.4)

= −
N∑

i=1

log




Ωi(k)

Ω(k)
+

m+Nit∑

j=m+1

wi(k)
j

Ω(k)



 ,

where we recall thatΩ(k) =
∑Nm

j=1 w(k)
j .

Let W =
∑m+Nit

j=m+1 wi(k)
j . By the fact that we are sharing thet particles with highest

weight, we could approximately considerwi(k)j to be the same for eachj, i.e.,wi(k)j ≈
wi(k)

(t), and approximateW as

W ≈ wi(k)(t)Nit.

Consider the derivative of the cumulative sum (3.4) respect toW (orNit) as

∂

∂W

N∑

i=1

D(p̂, p̂i) = −
Ω(k)

Ωi(k) +W
, (3.5)

which is minimal forW = 0.

From the relations (3.4) and (3.5) we can infer the following.

• The higherNit is, the closer the local and global a posteriori are. This follows
from (3.4) with W →∞ (or in the approximated sense, withNit→∞).

Therefore, increasing the communication leads to an increase of estimation quality
for a given time stepk (note that the effect on the time stepk + 1 depends also
on the resampling, which is analyzed next). In particular, if we choose all-to-all
communication andt = m, then each local population is comprised at least of
them particles with highest weight, which are the most representative to describe
p̂(x(k)|z(k)).

• The gain in increasingNit, or for a givenNi, in increasing the number of share
particlest, is maximum whenW = 0 ≈ Nit. In other words, we can expect a
more significant increase in the estimation quality passingfrom t = 0 to t = 1 than
passing fromt = 1 to t = 2.

Besides choosingt andNi (and therefore the topologyG) to minimize the KL divergence
between the local̂pi(x(k)|z(k)) and the global̂p(x(k)|z(k)) while maintainingNit as
small as possible to limit the communication effort, the effect of the resampling stage
is also an important aspect to consider. Assume thatNit ≪ m and thus consider the
local particle population to be uncorrelated among the local filters i. Define the distor-
tion (Mı́guez, 2007) of p̂i(x(k)|z(k)) after the resampling step as its KL divergence with
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the global a posteriorîp(x(k)|z(k)). We note that this measure is different from the one
in Equation (3.4), since we use for̂pi(x(k)|z(k)) the resampled weights (before resetting
them). The dependence of the distortion on the local weightsbefore resampling̃wi(k)j

can be approximated as (Mı́guez, 2007)

Dw̃ ≈
N∑

i=1

Ωi(k)

m̃i∑

j=1

⌈
w̃i(k)

j

Ωi(k)

⌉

log

(⌈
w̃i(k)

j

Ωi(k)

⌉)

. (3.6)

In order to avoid distortion and therefore in order to maximize the estimation quality,Dw̃
has to be minimized, which is achieved when the differentw̃i(k)

j within the same local
filter i have similar values. On the contrary when few particles havethe highest weights,
the distortion is close to its maximum and therefore degeneracy can be expected to occur.
In particular we can distinguish two extreme cases:

• Relatively low process noise but high measurement noise. Inthis case the particles
have similar weights and therefore the resampling step doesnot cause a high level
of distortion, even forNit 6= 0.

• Relatively high process noise but low measurement noise. Inthis case few parti-
cles have the highest weight and therefore the resampling step causes high level of
distortion. In particular, givent, the higher theNi is, the higher the distortion is.

In the next section we will illustrate in practice the insights on the selection of the param-
eterst andNi, which we have presented in this section.

3.3 Numerical and Experimental Results

3.3.1 The Robotic Arm Model

In order to test, verify, and benchmark our distributed computation particle filter imple-
mentation we use the realistic industrial application of a robotic arm. The main reason
for such a choice is that the measurement equations of this application are highly nonlin-
ear and extremely challenging for standard estimation techniques both for accuracy and
computational time.

The robotic arm, in this experiment, has a number of jointsJ = 3 which can be controlled
independently. It has one degree of freedom per joint plus the rotation of the base. Each
joint has a sensor to measure its angle. There is a camera mounted at the end of the arm.
This camera is used for tracking an object which is moving on amonitor on a fixedy − z
plane. The real robotic arm as well as a schematic representation are shown in Figure3.3.

Let θi(k) be the angle of the jointi at the discrete timek (i = 0 represents the rotational
degree of freedom of the base). Letpw(k) = (x(k), y(k), z(k))⊤ ∈ R3 be the position
of the object to be tracked at the discrete time stepk in the fixed reference system of
the robotic arm, as indicated in Figure3.3, while let (vx(k), vy(k), vz(k))⊤ ∈ R3 be its
velocity. We considerx(k) to be known a priori andvx(k) to be zero for allk. Denote
with

x(k) = (θ0(k), . . . , θJ(k), y(k), z(k), vy(k), vz(k))
⊤
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Figure 3.3: Robotic arm used for the experimental test. On the right the real test-
bed and on the left a schematic representation showing the camera at the end ef-
fector, marked with a grey circle, and the monitor on which a moving object is
displayed.

the state of the arm and object dynamics. We model the angle dynamics as discrete-time
single integrators, while the object dynamics as a discrete-time double integrator:

θi(k) = θi(k − 1) +wθi(k − 1), i = 0, . . . , J (3.7a)

y(k) = y(k − 1) + vy(k − 1)∆t+wy(k − 1) (3.7b)

z(k) = z(k − 1) + vz(k − 1)∆t+wz(k − 1) (3.7c)

vy(k) = vy(k − 1) +wvy (k − 1) (3.7d)

vz(k) = vz(k − 1) +wvz(k − 1) (3.7e)

where the termsw model the process noise and∆t is the sampling time. The system
of dynamical equations (3.7) will represent our a priori distributionp(x(k)|x(k − 1)), as
explained in Section2.3.2, Equation (2.26).

The camera mounted at the end effector of the robotic arm detects the object displayed on
the monitor in its own frame of reference. Letps(k) = (xc(k), yc(k))

⊤ be the position of
the object in the camera moving frame at the discrete timek. This position is measured in
pixel. To relateps(k) to the actual coordinates of the object in the robot fixed frame we
have first to use a camera model that translates the pixels into meters and then performs a
chain of translations and rotations to change the referenceframe. The camera is modeled
by the traditional pinhole projection with added radial lens distortion, see (Bouguet, 2010,
Hutchinson et al., 1996, van der Lijn et al., 2010) for details. The model for the measured
observations of the moving object is the composition of three classes of maps: rigid body
transformations, projections, and “distortion” maps. We emphasize the first two, since the
lens distortion is known, i.e. the camera is calibrated a priori. Letp′ = (x′, y′, z′)⊤ be a
three-dimensional point described in generic coordinates. Letϕ : SE(3) × R3 → R2 be
the standard rigid body transformation

ϕ(R,p′,q) = Rp′ + q,

whereR andq are the traditional rotation matrix and translation vector, respectively. The
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camera pinhole projection model is realized by the projection mapπ : R3 → R2:

π(p′) =
1

z′

(
x′

y′

)

.

The composition of the maps is described graphically by the informal diagram:

ϕ π ψ

pw ←→ pc −→ pp ←→ ps

world camera plane sensor

whereψ describes lens distortions. The full sensor model is described by

ps = ψ ◦ π ◦ ϕ(R,pw,q) + µs, (3.8)

with µs an additive noise term. We note that the couple(R,q) depends nonlinearly on
the configuration of the robotic arm, thus on the anglesθi and on the geometry, i.e., the
length of the joints. Hence the model (3.8) can be translated into the compact measurement
equation

ps(k) = gs(x(k)) + µs(k), (3.9)

wheregs is the nonlinear function that represents the composition of the three maps in the
sensor model (3.8). We add the independent measurements of the angles,

θ̃i(k) = θi(k) + µθi(k), i = 0, . . . , J (3.10)

(with µθi sensor noise). Denote the measurement vector withz = (p⊤
s , θ̃0, . . . , θ̃J)

⊤ and
the measurement noise vector withµ = (µ⊤

s , µθ0 , . . . , µθJ )
⊤. We can write the complete

measurement equation for the robotic arm setup, as:

z(k) = g(x(k)) + µ(k). (3.11)

We note that (3.11) the stacked representation of (2.3), from which we derive the a poste-
riori distributionp(z(k)|x(k)).

In the next subsections we will analyze several experimental and simulation results. The
first aim of the experiments is to show the performance of our proposed Algorithm3.1
in estimating the statex given the noisy observationz. In particular we will focus only
on a part of the state: the position of the object in the world coordinates, i.e.,(y, z). We
will describe the dependences of the estimation error on thedifferent parameters of the
algorithm, as well as its runtime performances. Furthermore, we will show its scalability
with respect to the dimension of the state vector (arbitrarily varied in the simulation runs
by changing the number of jointsJ).

The second aim of the experiments is to demonstrate that fastreal-time feedback control
based on the proposed algorithm is possible and can achieve satisfactory results, in con-
trast with traditional single-coreCPU implementations. The control objective is to track a
moving object with the robotic arm while it traverses the screen, as described next.

For experimental and simulation purposes we use the commercially available GTX 580
GPU and,unless differently stated, we choose
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• a ring topology for the underlying communication graph,

• and we selectt = 1 for the number of exchanged particles among the computing
units.

3.3.2 Experimental Results

We use the robotic arm platform of Figure3.3for the experiments throughout this section
in order to examine the filter behavior under different conditions. The parameters of the
platform and the Particle Filter are listed in Table3.2 (Experiments column), where all
noise terms are modeled as Gaussian (since this turns out to be a rather realistic model for
the noise of the setup).

In the experiments the robotic arm is ask to follow a moving object (a white dot) while
it traverses the monitor. The robotic arm pose is controlledso that the camera keeps the
object in view while staying at a couple of centimeters from the monitor itself (thus the
camera does not have a view of the whole monitor), see Table3.2. The implemented con-
troller is a discrete-time PID controller based on the estimated position and the estimated
joint angles with sampling rate of100 Hz. This update rate is close to the hardware limit.

Table 3.2: Experiment and Simulation Parameters

Experiments High-noise Simulations

Process Noise∗

wθi
0.015 rad 0.075 rad

wy ,wz 0.001 m 0.005 m
wvy ,wvz 0.05 m/s 0.25 m/s

Measurement Noise∗

µs 10 px 10 px
µθi

0.01 rad 0.01 rad

Other Parameters
∆t 0.01s 0.01s
Velocity of the target ≃ 0.03 m/s ≃ 0.03 m/s
Camera view area

Total area
12% −

∗ both process noise and measurement noise are chosen to be Gaussian with zero mean and indicated standard
deviation.

The performance index we are interested in this subsection is the estimation error of the
position of the target. In particular we define the average error,e, as

e =
1

Tf

Tf∑

k=1

||p̂w(k)− pw(k)||, (3.12)

wherep̂w(k) is the estimated position by the filter andpw(k) is the true position, whileTf

is the final discrete time step of the experiment and|| · || represents the 2-norm. We remark
that by definitione is always positive, i.e.,e > 0.
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Figure3.5 illustrates the estimation of the position(y, z) superimposed on the actual tra-
jectory of the object in low particle and high particle settings. In Figure3.5.a we have
selectedN = 32 andm = 64 and we note that the robotic arm loses track of the ob-
ject and it cannot complete the trajectory. On the contrary,in Figure3.5.b, in the setting
N = 2048 andm = 512, we can achieve better estimation which translates in the ac-
complishment of the object following task. In Figure3.5.a we have also indicated the
dimensions of the camera view area (empty rectangle).

Figure3.4shows the average estimation errore for different settings. We note the general
(expected) trend that a higher number of filters increases the accuracy. Moreover, we
achieve an average error of3 mm for the best setting (with1M particles at100 Hz) which
is considered a remarkable result given the experimental setup.
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Figure 3.4: Averaged estimation errore in a number of experiments with different
(N,m) settings. The standard deviation, not depicted, is around1 mm.

3.3.3 High-noise and Large-scale Simulation Results

In order to further assess our implementation in different scenarios, we simulate the filter-
ing problem in high process noise and large-scale settings.Both the cases serve to illus-
trate the performance of the algorithm in situations that might be encountered in real-life
applications.

First of all we increase the noise parameters as expressed inTable3.2 and we perform
100 simulation runs for each(N,m) setting. Figures3.6-3.7show the results for different
topology choicesG and for a different number of exchanged particlest. Although we
have performed simulations with several differentG andt we report here only the most
indicative ones. As we may note from Figure3.6(where we uset = 1), in this high-noise
setting, the ring topology performs in general better than the all-to-all topology. This is
in contrast with the design choice of available algorithms,e.g., (Bashi et al., 2003), where
only all-to-all communication is considered. We remark that this effect is due to the lack
of diversity in the resampling stage.
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Figure 3.5: Estimated position(y, z) in grey dots, superimposed on the actual tra-
jectory of the object. The settingN = 32 andm = 64 does not allow the robotic
arm to follow the object, whereas the settingN = 2048 andm = 512 allows the
robotic arm to follow the object very well. Both the experiments have been run at
100 Hz. The empty rectangle on the figure (a) represents the camera view area.
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Figure 3.6: Average error for different(N,m) settings varying the communication
topologyG.
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Figure 3.7: Average error for different(N,m) settings varying the number of
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Figure 3.8: Runtime of the some of the kernels of the distributed computation Parti-
cle Filter implementation varying the state dimension in the settingN = 2048 and
m = 512.

Furthermore, from Figure3.7 (where only the ring topology is used) and Figure3.6 top
we see that even a small number of exchanged particles can make a significant difference
compared to the no communication choice (t = 0). Moreover, as expected, we note that
this difference is not so marked when passing fromt = 1 to t = 4, meaning that the real
improvement is in communicating itself and not in the numberof exchanged particles. This
is in contrast with the design choice of some of the availablemethods, e.g. (Brun et al.,
2002, Bolić et al., 2005, Chao et al., 2010), where either no communication is chosen or
25% of the total particles are shared.

As a second variation on the experimental results, we increase the number of state dimen-
sions augmenting the number of jointsJ with the settingN = 2048,m = 512. This case
illustrates the scalability of the algorithm, in terms of runtime, with respect to the state
dimension. As we see from Figure3.8the Particle Exchange step, as well as Resampling,
require a relatively limited runtime and they scale better than the sampling step. This was
to be expected, since when the state dimension increases, the sampling is the most affected
task.2

Finally, an important observation from Figure3.8is the total absence of bottlenecks in the
access to global memory in the Particle Exchange step.

3.3.4 Comparison with a Centralized Sequential Implementation

As a final set of simulation runs, we use the high-noise settings (ref. Table3.2) and we
compare the proposed distributed Particle Filter implementation with a sequential central-

2The other kernels are pseudo-random number generation, sorting, local and global estimation.
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ized implementation (i.e, a standard Particle Filter that runs sequentially on a single-core
architecture).

First of all, we consider in Figure3.9 the runtime in [ms] for the distributed implemen-
tation and the centralized one (the centralized has been implemented on a Intel Core i7-
2820QM processor running at 2.3 GHz). We setm = 512 and we varyN . As we note
from Figure3.9, the centralized algorithm scales exponentially in the number of particles
(as we should have expected). The proposed distributed method instead scales better (in-
creasingN ) and for an high particle setting (Nm > 16K), it is from 10 to more than 100
times faster than the sequential centralized implementation. The contrary, meaning the
distributed particle filter is slower than the centralized implementation, is instead reason-
able with a low number of particles (Nm < 1K), since the single core is more powerful
computationally-wise than the local cores of theGPU architecture and there is no commu-
nication involved.

Figure3.9can be also used for a comparison with the methods presented in the literature.
With reference to Table3.1, we can report in Table3.3 the performance of the proposed
method.
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Figure 3.9: Runtime comparison of the proposed distributed implementation and a
sequential centralized implementation. In the distributed one we fixm = 512 and
we varyN .

Table 3.3: Performance of the proposed approach

Ref.s Sampling Resampling Estimation Particles State Runtime
+ weight dimension [ms]

Algorithm 3.1 local distributed local
64K 8 0.3
1M 8 2.3
4M 8 4.6
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Figure 3.10: Comparison of the estimation error between distributed implementa-
tion and centralized one.

As we see from Table3.3the presented method outperforms for number of particles, state
dimension, and/or runtime state-of-the-art methods employing GPUarchitectures. Further-
more, Algorithm3.1increases the achievable performances often by orders of magnitude.

In Figure3.10we report the estimation error in both the distributed implementation and
the centralized one. As we notice, the estimation error for cases in whichm ≥ 128
is comparable with the centralized setting. Furthermore, in the case ofm = 512 and
N ≥ 1024, the distributed algorithm delivers better estimates thanthe centralized one.
This has to do with the loss of diversity in the centralized implementation.

Figure3.10gives also extra insights on the selection ofm andN given a total number
of particlesNm. In fact, for high value ofNm it appears better, in terms of estimation
error, to choose a high value form. This configuration leads to a small number of accurate
filters. For lowNm settings, the opposite seems to be more recommended. This lead to
an high number of less accurate filters (but yet with more particle diversity).

3.4 Conclusions

In this chapter we have shown that fast yet accurate nonlinear estimation is realizable and
it can be used in relatively high sample rate real-time feedback controller. In particular
we have designed, analyzed, and implemented a distributed computation Particle Filter
that can handle over a million particles at100 Hz with remarkable estimation accuracy.
This result outperforms other implementations that can be found in literature. In partic-
ular, our implementation increases the number of particles, the state dimension, and/or
the sampling frequency often by orders of magnitude with respect to state-of-the-artGPU

solutions (typically based on parallel algorithms insteadof our distributed ones).



3.5 Open Problems and Future Work 63

Furthermore, we have shown that the proposed scheme has comparable accuracy with cen-
tralized sequential particle filters (with the same number of total particles), which require
10-100 times more computational time (when using a high number of particles) than our
proposed distributed implementation.

3.5 Open Problems and Future Work

As future work directions we can recommend the following twoopen problems.

Optimal selection of the couple(N,m)

The first open problem is the optimal selection of the number of local filtersN and the
number of local particlesm to guarantee a certain level of accuracy and sampling rate. This
selection would help the users to choose the right couple(N,m) for their own application.

Although this is not expected to be an easy problem, we believe that even the intermediate
step of having some good rule of thumb would already be beneficial in order to guide the
user in the right direction.

Distributed Sensing and Computation Algorithms

The second open research question is the design of algorithms that merge distributed sens-
ing estimators of Chapter 2 with distributed computation ones of this chapter, to obtain
a fast and accurate nonlinear estimator that can work well also in a distributed sensing
scenario.





Chapter 4

Distributed Control of Robotic
Networks with State-Dependent
Laplacians

Abstract — This chapter considers two distributed control problems for robotic networks.

First, we analyze the problem of maximizing the algebraic connectivity of the communi-
cation graph in a network of mobile robots by moving them intoappropriate positions. We
define the Laplacian of the graph as dependent on the pairwisedistance between the robots
and we approximate the problem as a sequence of Semi-DefinitePrograms (SDP). We
propose a distributed solution consisting of local SDP’s which use information only from
nearby neighboring robots. We show that the resulting distributed optimization framework
leads to feasible subproblems and through its repeated execution, the algebraic connectiv-
ity increases monotonically. Moreover, we describe how to adjust the communication load
of the robots based on locally computable measures.

Second, we utilize and extend the presented distributed method to tackle the problem of
collectively tracking a number of moving targets while maintaining a certain level of con-
nectivity among the network of mobile robots. We formulate the combined global objec-
tive also as a Semi-Definite Program (SDP) and propose a non-iterative distributed solution
consisting of localized SDP’s which use information only from nearby neighboring robots.

Numerical simulations show the performance of the distributed algorithms with respect to
the centralized solutions.

4.1 Introduction

In Chapter 2 we have analyzed situations in which the computing and communicating
devices were non-moving. In this chapter we shift our focus on mobile devices, such as
mobile robots, that have to be controlled to achieve a commontask.

These teams of autonomous mobile robots are considered as a key enabling technology
in several applications ranging from underwater and space exploration (Leonard et al.,
2010, Izzo and Pettazzi, 2007), to search, rescue, disaster relief (Lau and Ko, 2008, Casper
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and Murphy, 2003), and monitoring and surveillance (Casbeer et al., 2005, Mathews and
Durrant-Whyte, 2007). Among the engineering and research questions these applications
pose, maintaining a good level of connectivity between the individual robots and increas-
ing the communication quality given the environmental constraints, have fundamental im-
portance. Nonetheless, as expressed in Chapter 1, this aspect has been often overlooked in
the available literature.

In this chapter, we will use the algebraic connectivity, orλ2(G), of the communication
graph as a natural measure of connectivity “quality”, and werecall that a strictly positive
λ2(G) > 0 is a necessary and sufficient condition for the graphG to be connected.

In the context, in Section4.2, we study distributed solutions for maximizingλ2(G) in mo-
bile robotic networks. We will focus on distance-based connectivity maximization with
minimum separation constraints, as opposed to ensuring line-of-sight connectivity in an
obstacle-rich environment (Anisi et al., 2008). To the best of our knowledge, only the work
of (De Gennaro and Jadbabaie, 2006) investigates a distributed solution for the maximiza-
tion of λ2 based on a simplified scenario where the dynamics of the robots are represented
by a single integrator and no constraints are present. The authors use a two-step distributed
algorithm, which relies on super-gradients and potential functions. The required commu-
nication load scales with the square of the graph diameter which may impede fast real-time
implementations for large groups of robots.

In Section4.2we consider as starting point the centralized optimizationprocedure of (Kim
and Mesbahi, 2006, Boyd, 2006, Derenick et al., 2009). In these works the maximization
of the algebraic connectivity is approximated as a sequenceof Semi-Definite Programs
based on the notion of state-dependent graph Laplacian, while the agents are modeled as
discrete-time single integrators.

First, we modify the aforementioned centralized optimization procedure in order to handle
more realistic robot dynamics. The resulting optimizationproblem is then proven to be
feasible at each time step under quite general assumptions.Second, we propose a dis-
tributed solution for the modified centralized problem. Ourproposed distributed approach
relies on local problems that are solved by each robot using information only from nearby
neighbors and, in contrast with (De Gennaro and Jadbabaie, 2006), it does not require any
iterative schemes, making it more suitable for real-time applications. In our approach(i)
we formulate local problems of small size that are clearly related to the centralized one,
(ii) the linearizedalgebraic connectivity of the approximate problem is guaranteed to be
monotonically increasing,(iii) the overall optimization scheme is proven to be feasible at
each time step under quite general assumptions, and in particular (iv) the local solutions
are feasible with respect to the constraints of the originalcentralized problem. Finally, we
characterize the local relative sub-optimality of the optimized algebraic connectivity with
respect to a larger neighborhood size and we use this characterization to enable each robot
to increase or decrease its communication load on-line, while respecting the properties(i) -
(iv). This means that our solution can be adapted based on available resources, augmenting
or reducing the required communication and computational effort.

Besides its benefits in improving communication quality, the proposed distributed solution
can be adapted to certain situations in which the connectivity level is a constraint while the
robots are performing other tasks. An example of these scenarios is multi-target tracking,
which is the topic of Section4.3.
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In Section4.3, we start formulating the multi-target tracking problem asa generalization of
the approach of (Derenick et al., 2009, 2010). This generalization accounts for uncertainty
in the targets’ positions, which is relevant in tracking scenarios. Then, we formulate an op-
timization problem as a joint maximization of connectivityamong the robots and visibility
of the moving targets and we extend the distributed solutionproposed in Section4.2to this
problem formulation. The distributed solution, in addition to feasibility with respect to the
constraints and to the non-iterative nature, can guaranteeboth connectivity and tracking,
and the local cost functions exhibit the same improvement property as the global cost in a
linearized approximation.

The distributed solutions of this chapter can be seen as a complementary approach to stan-
dard subgradient algorithms. Distributed versions of incremental subgradient algorithms
are typically communication intensive iterative algorithms, in which at each iteration, each
agent has to evaluate only a subgradient of a certain function. Our proposed solutions lie
on the other side of the “communication-computation” trade-off spectrum. In fact, each
robot solves a reasonably complex convex optimization problem, while the communica-
tion among them remains limited.

4.2 Constrained Algebraic Connectivity Maximization

4.2.1 Problem Formulation

Consider a network ofN agents with communication and computation capabilities and
express asai(k) the value of the variablea for agenti at the discrete time instantk.
These agents can be thought of as a representation of the aforementioned mobile robots.
The position of agenti is denoted byxi(k) ∈ R3 and its velocity byvi(k) ∈ R3. To
begin with, assume the agents to move according to the following discrete-time dynamical
system

xi(k + 1) = xi(k) + vi(k)∆t, (4.1)

where∆t is the sampling time. This single-integrator model (4.1) will be used to introduce
the works of (Kim and Mesbahi, 2006, Boyd, 2006, Derenick et al., 2009) which enable
us to elaborate our contributions in subsequent sections, where we consider more complex
agent dynamics.

Graph-theoretic notions are used to model the network. Letx(k) be the stacked vector
containing the positions of the agents, i.e.x(k) = (x⊤1 (k), . . . , x

⊤
N (k))⊤. The setV

contains the indices of the mobile agents (nodes), with cardinality N = |V|. The setE
indicates the set of communication links. The graphG is then expressed asG = (V , E)
and it is assumed undirected. Let the agent clocks be synchronized, and assume perfect
communication (no delays or packet losses). The agents withwhich agenti communicates
are called neighbors and are contained in the setNi. Note that agenti is not included in
the setNi. We defineN+

i = Ni ∪ {i} andNi = |N+
i |. Define the Laplacian matrixL

associated withG via its entries[L]ij as

[L]ij(k) =







0 (i, j) /∈ E
−wij(k) (i, j) ∈ E , i 6= j
∑

l 6=iwil(k) i = j
(4.2)
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d2ij(k) = ||xi(k)− xj(k)||2

fw

Figure 4.1: Weighting functionfw(·) for modeling connectivity between two agents
i, j. If d2ij(k) < ρ1 thenwij = 1, while if d2ij(k) > ρ2 thenwij = 0.

The weights0 ≤ wij(k) ≤ 1 are assumed to depend on the squared Euclidean distance of
xi(k) andxj(k) defined as

d2ij(k) = fd(xi(k), xj(k)) = ||xi(k)− xj(k)||2 (4.3)

and
wij(k) = fw(||xi(k)− xj(k)||2) (4.4)

wherefw : R+ → [0, 1] is a smooth nonlinear function with compact support.1 The
weights model the connection strength between two agents. The closer two agents are,
the closer to one is the weight, representing an increase in the communication “quality”.
For simulation purposes we use the function qualitatively represented in Figure4.1, which
is one when the squared distance is less thanρ1 and it is zero when the squared distance
is greater thanρ2. For a detailed discussion on the choice offw the reader is referred to
(Kim and Mesbahi, 2006). As a direct consequence of the above definitions, the entries
of the Laplacian matrixL depend on the state of the agents, making it state-dependent,
which we will denote byL(x(k)). By construction, the Laplacian is a positive semidefinite
matrix, with real eigenvalues ordered in a crescent way as0 = λ1 ≤ λ2 ≤ · · · ≤ λN .
The smallest eigenvalue is always0 and its associated eigenvector is1N . The second
smallest eigenvalue of the Laplacian is often referred to asthe algebraic connectivity of the
graph and indicated asλ2(G), orλ2(L) (In the following, we will writeλ2(x(k)) denoting
that also the algebraic connectivity depends on the state).The algebraic connectivity is a
“measure” of connectivity since

• a zero value for the algebraic connectivity, i.e.,λ2(L) = 0, implies that the graph is
not connected;

• if λ2(L) > λ2(L
′) thenL has more links thanL′, or the links have more weight

(loosely speaking,L is better connected thanL′).

For the reason of increasing the connectivity of the communication graph among the mov-
ing agents, we are interested in maximizing the algebraic connectivity. We will achieve

1Functions with compact support inR+ are those with support that is a compact subset ofR+.
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this by by controlling the state of the agents, i.e., moving them to appropriate positions.
This goal is formulated as the following time-invariant optimization problem:

Problem 4.1 Algebraic Connectivity Maximization

P (λ2(x), ρ1) : maximize
x

λ2(x) (4.5a)

subject to fd(xi, xj) > ρ1, ∀(i, j) ∈ E (4.5b)

The optimal decision variables are the final robot locationsx. Here the constraint on
fd(xi, xj) prevents the agents from getting too close to each other and ensures that the
trivial solution in which all the agents converge to one point is not part of the feasible
solution set of (4.8a).

4.2.2 Centralized Approach

First of all, we rewrite the problem (4.5a) in terms of matrix inequalities. We use the
following lemma.

Lemma 4.1 For any two scalarsλ > λ̄2 > 0, the constraint

λ2(L) > λ̄2, (4.6)

can be formulated with the equivalent Matrix Inequality

L+ (λ/N)1N1⊤
N ≻ λ̄2IN . (4.7)

Proof. By construction, the Laplacian matrixL has as eigenvectore1 = 1N . All the other
eigenvectors,ei, are orthogonal to1N , meaning1⊤

Nei = 0, for i = 2, . . . , N . This implies
that

(
L+ (λ/N)1N1⊤

N

)
ei = Lei = λiei, for i = 2, . . . , N

and thereforeL + (λ/N)1N1⊤
N has the same eigenvalues/eigenvectors ofL for i =

2, . . . , N . The remaining eigenvalue is associated with thee1 eigenvector:
(
L+ (λ/N)1N1⊤

N

)
e1 = L1N + (λ)1N = λ1N

and its value isλ. As a result, the eigenvalues ofL+ (λ/N)1N1⊤
N are

λ, λ2(L), λ3(L), . . . , λN (L).

Since we have already thatλ > λ̄2 (by assumption), andλ2(L) ≤ λ3(L) ≤ . . . λN (L),
the constraint (4.7) imposes thatλ2(L) > λ̄2 and thus it is equivalent to (4.6). �

Since for the specified weighted LaplacianL(x) the maximum value forλ2 isN − 1 (de
Abreu, 2007), we can choseλ = N in (4.7) and rewrite problem (4.5a) in the equivalent
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formulation:

P (L(x), ρ1) : maximize
x,γ

γ (4.8a)

subject to γ ≥ 0 (4.8b)

L(x) + 1N1TN ≻ γIN (4.8c)

fd(xi, xj) > ρ1, ∀(i, j) ∈ E (4.8d)

Problem (4.8a) is non-convex but it is rather standard to obtain a time-varying convex
approximation by using first-order Taylor expansions, (Kim and Mesbahi, 2006, Derenick
et al., 2009). Define

cwij =
∂fw
∂d2ij

∂d2ij
∂xi

∣
∣
∣
∣
∣
xi(k),xj(k)

= − ∂fw
∂d2ij

∂d2ij
∂xj

∣
∣
∣
∣
∣
xi(k),xj(k)

, (4.9)

cdij =
∂fd
∂xi

∣
∣
∣
∣
xi(k),xj(k)

= − ∂fd
∂xj

∣
∣
∣
∣
xi(k),xj(k)

(4.10)

then we can write the approximations

wij(k + 1) = wij(k) + cwij
⊤(δxi(k + 1)− δxj(k + 1)) (4.11)

d2ij(k + 1) = d2ij(k) + cdij
⊤
(δxi(k + 1)− δxj(k + 1)) (4.12)

whereδ represents the difference operator, i.e.δxi(k+1) = xi(k+1)−xi(k). The symbol
△ will be employed to define the linearized entities; hence theentry[△L]ij(x(k + 1)) of
the Laplacian△L(x(k + 1)) will be

[△L]ij(x(k + 1)) = [△L]ij(x(k + 1)) (4.13)







0 (i, j) /∈ E
−wij(k)− cwij⊤(δxi(k + 1)− δxj(k + 1)) (i, j) ∈ E , i 6= j

∑

l 6=i wil(k + 1) i = j

while

△fd(xi(k + 1), xj(k + 1)) = d2ij(k) + cdij
⊤
(δxi(k + 1)− δxj(k + 1)) (4.14)

This allows us to consider the maximization of the algebraicconnectivity ofL as the fol-
lowing time-varying convex optimization problem (Kim and Mesbahi, 2006, Boyd, 2006,
Derenick et al., 2009):
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△P (L(x(k)), x(k),S△Q2
) : maximize

x(k+1),γ(k+1)
γ(k + 1) (4.15a)

subject to

△Q1 :

{
γ(k + 1) ≥ 0

△L(x(k + 1)) + 1N1TN ≻ γ(k + 1)IN
(4.15b)

△Q2 :







Q2.1 : △fd(xi(k + 1), xj(k + 1)) > ρ1,
∀(i, j) ∈ E

Q2.2 : ||xi(k + 1)− xi(k)|| ≤ vmax∆t
i = 1, . . . , N

(4.15c)

whereS△Q2
= {ρ1, vmax} represents the parameter set that characterizes the set of con-

straints△Q2, and it is used to highlight the dependence of the problem on the “physical”
limitation of the application scenario (i.e., in this case,the mutual distanceρ1 and the max-
imum allowed velocityvmax). It will be shown later how this parameter set will change in
the different formulations of the problem.

In contrast to the original non-convex problem (4.8a), the optimization problem (4.15a)
is solvedrepeatedlyat each discrete time stepk on-line. In this sense (4.15a) is thek-th
problem of a sequence of convex SDP problems, and therefore this approach could be
regarded as sequential convex programming. Note that the achieved maximal algebraic
connectivityγ depends onk and thus we useγ(k). In this sense the iterative scheme for
updatingγ is the repeated solution of the optimization problem itself. We remark that as a
consequence of using this sequence of convex programs (and as a consequence of the non-
convex nature of the original problem), although we aim at increasing the cost function at
each stepk, we might converge to a local minimum of the original problem(4.8a) and a
strong dependence on the initial configuration of the agentsis to be expected. Despite these
drawbacks, convergence has been proven in (Kim and Mesbahi, 2006), where the authors
have also shown that this formulation does indeed lead to satisfactory local optimal final
configurations with a clear increase in the algebraic connectivity.

Remark 4.1 The reader is referred to Section4.5 for further considerations on the adopted lin-
earization procedure and its possible improvements.

If we assume that the initial positionsx(0) form a connected graph and the mutual distance
between the agents is greater than

√
ρ1, i.e., we assume initial feasibility for the problem,

we can easily prove that the optimization problems (4.15a) will remain feasible for all the
subsequent time stepsk > 0 (in fact one can always selectx(k) = x(k + 1) to obtain a
feasible solution) and their solution sequence monotonically increases the algebraic con-
nectivity, (Kim and Mesbahi, 2006). The property of remaining feasible for allk is related
to persistentfeasibility (also known asrecursivefeasibility), which is a well-known and
fundamental concept in the optimization-based control literature (Borrelli et al., 2011). In
particular, persistent feasibility ensures that, for anyk, if the k-th convex problem (4.15a)
is feasible then the(k + 1)-st problem will be feasible. This, in addition to initial feasibil-
ity (i.e., feasibility atk = 0), guarantees that the overall sequential optimization scheme
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is feasible for allk > 0. It has to be noted that persistent feasibility ensures onlythat
the solution set of each problem (4.15a) is non-empty, while any improvement in the cost
function should be proven separately. However, persistentfeasibility is needed in the first
place to justify the overall optimization scheme in practice.

4.2.3 Extension of the Centralized Approach

As our first contribution of the chapter, we extend the problem (4.15a) in order to al-
low a more realistic dynamical model for the agents. In the following, the state of the
agents is augmented to include not only their position but also their velocity. Letxi(τ) =
(xi(τ)

⊤, vi(τ)⊤)⊤ be the state of agenti at the discrete timeτ . We note that the sampling
periods belonging toτ andk may differ, meaning that the optimization (4.15a) could be
run at a slower rate than the system dynamics. Let the agents have the following second
order discrete-time LTI dynamics:

(
xi(τ + 1)
vi(τ + 1)

)

=

(
I3 A1i

03 A2i

)(
xi(τ)
vi(τ)

)

+

(
03
b1iI3

)

ui(τ) (4.16)

whereA1i ∈ R3×3, A2i ∈ R3×3, b1i ∈ R0, andui(τ) ∈ R3 is the control input. Assume:

Assumption 4.1 The matrixA1i is full rank∀i.

Assumption 4.2 The control input for each agent at each discrete time step isconstrained
in the closed polytopic set̄Ui:

ui(τ) ∈ Ūi, Ūi = {ui(τ) ∈ R
3|Hiui(τ) ≤ hi},03 ∈ Ūi (4.17)

described via the matrixHi and the vectorhi.

Assumption4.1 is meant to ensure the one-step controllability of the dynamical system
described in Eq. (4.18). Analogously tovmax in problem (4.15a), Assumption4.2 limits
the control input to account for the physical limitations ofthe agents, and it is a standard
formulation of actuator limitations in the optimization-based control community.

The state space system in (4.16) can model agents for which the acceleration does not
depend on the position and for which zero velocity and acceleration input (vi(τ) = 0 and
ui(τ) = 0) impliesxi(τ + 1) = xi(τ). Typically, this class of systems can represent
different types of physical agents ranging from fully actuated mobile robots to underwater
vehicles (see Remark4.2). The choiceA1i = I3∆t, A2i = I3, b1i = ∆t yields a double
integrator with sampling period∆t. The reason for the choice of (4.16) is to consider
the simplest model that is capable of showing how to handle the main difficulties when
extending the optimization problem (4.15a) to general LTI models. In particular, the key
issues are persistent feasibility and collision avoidance. In order to guarantee persistent
feasibility we show how to ensure thatxi(k + 1) = (x⊤i (k),0

⊤
3 )

⊤ is a feasible state
for all the agents recalling that the feasibility of the similar solutionxi(k + 1) = xi(k)
is a sufficient condition for (4.15a) to be persistently feasible. The collision avoidance
issue is due to the fact that the constraint onfd(xi(k), xj(k)) is enforced only at each
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time stepk, when the optimization problem is solved, but not for everyτ , which might
be a higher rate implementation of the dynamical model. In this respect we show how to
ensure thatfd(xi(τ), xj(τ)) > 0 for everyτ . We will show that when persistent feasibility
and collision avoidance are handled correctly, the problem(4.15a) can be extended to
dynamical models of the form (4.16). In Section4.5we discus how to possibly cope with
these two aspects for an even broader class of dynamical systems.

Remark 4.2 Examples of physical agents that can be represented by(4.16) are fully actuated
(omni-directional) mobile robots or underwater vehicles.

Consider the first case. Letx ∈ R
2 be the position andv ∈ R

2 the velocity. Letu ∈ R
2 be the

velocity control applied at the stepτ as

v(τ + 1) = v(τ ) + u(τ ).

This represents a step in the velocity. The dynamical systemof the robot can be modeled as(4.16)
withA1i = I2∆t, A2i = I2, b1i = 1.

A similar model could hold also for an underwater vehicle if we consider discrete step in the velocity
along three different axes.

Persistent Feasibility

The first step to guarantee persistent feasibility is to ensure that at each time stepτ we
can affect the position of the agents via the control input. This is not trivial because the
positionxi(τ + 1) cannot be controlled in one step byui(τ). However, we can overcome
this issue by solving the optimization problem at a slower rate than the implementation of
the control input, e.g., every oddτ , when we determine bothui(τ) andui(τ + 1). In this
case the dynamical system (4.16) can be lifted as used in the optimization problem:

(
xi(τ + 2)
vi(τ + 2)

)

=

(
I3 A1i(I3 +A2i)
03 A2

2i

)(
xi(τ)
vi(τ)

)

+

(
b1iA1i 03
b1iA2i b1iI3

)(
ui(τ)

ui(τ + 1)

)

, (4.18)

where, we letk = τ/2, and for integerk’s, we define the lifted variablesxLi (k) = xi(τ),
vLi (k) = vi(τ), the lifted statexLi (k) = (xLi (k)

⊤, vLi (k)
⊤)⊤, and the lifted control input

uLi (k) = (ui(τ)
⊤, ui(τ+1)⊤)⊤. For the sake of simplicity, from now on, we will omit the

superscriptLwith the idea that if we use the indexk we are referring to the lifted variables.
With this in mind, we can rewrite the system (4.18) using the short-hand notation

xi(k + 1) = Di(xi(k),ui(k)) (4.19)

We note that the lifted system (4.19) is controllable to an arbitrary state in one step fromk
to k + 1. However, the input is constrained to lie inui(k) ∈ Ui (Assumption4.2), where
Ui = Ūi × Ūi, i.e.:

Ui =
{

ui(k) ∈ R
6

∣
∣
∣
∣

(
Hi

Hi

)

ui(k) ≤
(
hi
hi

)}

,06 ∈ Ui (4.20)
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Therefore, the next step is to find a feasible control input value ui(k) ∈ Ui for which
Di(xi(k),ui(k)) = (xi(k)

⊤,0⊤
3 )

⊤. For this reason define the setFi as

Fi = {xi(k) ∈ R
6
∣
∣ ∃ui(k) ∈ Ui such that :

Di(xi(k),ui(k)) = (xi(k)
⊤,0⊤

3 )
⊤, ∀k ∈ N

+} (4.21)

For the system (4.18) the setFi can be computed as the Cartesian product ofFx,i and
Fv,i, i.e.,Fi = Fx,i ×Fv,i, where:

Fx,i =
{
xi(k) ∈ R

3
}
, and

Fv,i =
{

vi(k) ∈ R
3

∣
∣
∣
∣
−
(

Hib
−1
1i (I3 +A2i)

Hib
−1
1i A2i(I3 + 2A2i)

)

vi(k) ≤
(
hi
hi

)}

(4.22)

We note that(xi(k)⊤,0⊤
3 )

⊤ ∈ Fi.

Remark 4.3 The dynamical system(4.18), which is the agent representation seen by the optimiza-
tion problem, is controllable in one step by an unconstrained ui(k). In fact, given an arbitrary state
vectorxi(k + 1) and any initial conditionxi(k), due to the full rank condition onA1i (Assump-
tion 4.1), one can promptly invert the system(4.18) and obtain the (finite) control vectorui(k).

Collision Avoidance

In order to avoid collisions, a lower bound onρ1 needs to be determined, which guarantees
that, given the distance boundρ1:

For eachk and forτ = 2k+1, if fd(xLi (k), x
L
j (k)) > ρ1 andfd(xLi (k+1), xLj (k+1)) >

ρ1 thenfd(xi(τ + 1), xj(τ + 1)) > 0.

The collision-free condition for any couplei andj can be written as

||xi(τ + 1)− xj(τ + 1)|| > 0 (4.23)

and using the dynamical equation (4.16) we obtain

||xi(τ)− xj(τ) +A1ivi(τ)−A1jvj(τ)|| > 0. (4.24)

We can employ then the triangle inequality to write

||xi(τ) − xj(τ) +A1ivi(τ) −A1jvj(τ)|| >
||xi(τ)− xj(τ)|| − ||A1ivi(τ)−A1jvj(τ)|| > 0. (4.25)

Since||xi(τ) − xj(τ)|| > √ρ1 the worst case scenario can be computed by maximizing
the term||A1ivi(τ) −A1jvj(τ)|| overvi(τ) ∈ Fv,i andvj(τ) ∈ Fv,j.
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This can be rewritten as a non-convex QP problem2 and solved for any pairi andj. If
√
ρ̄1

denotes the worst case||A1ivi(τ) − A1jvj(τ)|| over all the pairs, then the collision-free
condition (4.25) can be expressed asρ1 > ρ̄1. This is a condition that has to be imposed
when designing theρ1 value in the minimal distance constraintQ2.1. In this respect, we
note that the calculations performed to computeρ̄1 can be made off-line before running the
optimization algorithm (and therefore even the non-convexnature of the problem given the
small-size and the off-line calculations can be handled in asatisfactory way in practice).

Centralized Problem Formulation

The optimization problem (4.15a) for the maximization of the algebraic connectivity can
now be extended for the more general dynamics (4.16) as

△P(△L(x),x(k),S△Q2
) : maximize

x(k+1),u(k),γ(k+1)
γ(k + 1) (4.26a)

subject to (4.26b)

△Q1 :

{
γ(k + 1) ≥ 0

△L(x(k + 1)) + 1N1TN ≻ γ(k + 1)IN
(4.26c)

△Q2 :







Q2.1 : △fd(xi(k + 1), xj(k + 1)) > ρ1,
∀(i, j) ∈ E

Q2.2 : xi(k + 1) ∈ Fi, i = 1, . . . , N
Q2.3 : ui(k) ∈ Ui, i = 1, . . . , N
Q2.4 : xi(k + 1) = Di(xi(k),ui(k)), i = 1, . . . , N

(4.26d)

where,S△Q2
= {ρ1, (A1i, A2i, b1i, Hi, hi)i=1,...,N}. As a solution of (4.26) we find the

optimal control inputsui(k) = (ui(τ)
⊤, ui(τ + 1)⊤)⊤ that drive the system (4.16) from

xi(k) to xi(k + 1).

We define the concept of feasible state as follows.

Definition 4.1 A statex(k) at timek is feasible if

(i) xi(k) ∈ Fi, for all agentsi,

(ii) △L(x(k)) + 1N1
⊤
N ≻ 0,

(iii) d2ij(k) > ρ1, for all (i, j) ∈ E .

For the optimization problem (4.26), as in (Kim and Mesbahi, 2006), we assume initial
feasibility for the first time instance:

2In order to see this, consider the maximizing of||A1ivi(τ) − A1jvj(τ)||. This is equivalent to maximize
the squared norm||A1ivi(τ)−A1jvj(τ)||2, which is equivalent to the following non-convex quadraticprogram

maximize

(

vi(τ)
vj(τ)

)⊤ (

A⊤
1iA1i −A⊤

1iA1j

−A⊤
1jA1i A⊤

1jA1j

)(

vi(τ)
vj(τ)

)

subject to vi(τ) ∈ Fv,i, vj(τ) ∈ Fv,j
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Assumption 4.3 The initial statex(0) is a feasible state.

The following theorem states formally the persistent feasibility property:

Theorem 4.1 (Persistent Feasibility)If for any discrete timek, x(k) is a feasible state
according to Definition4.1, then the problem(4.26) will be feasible for the discrete time
k + 1.

Proof. Considerxi(k + 1) = (xi(k)
⊤,0⊤

3 )
⊤ as the solution of the optimization (4.26)

at timek + 1. This solution satisfies△Q1, Q2.1, andQ2.2. Moreover, sincexi(k) ∈
Fi by assumption, there exist control inputsui(k) ∈ Ui for all the agents for which
(xi(k)

⊤,0⊤
3 )

⊤ = Di(xi(k),ui(k)). Therefore the solutionxi(k + 1) satisfiesQ2.3 and
Q2.4 and thus the claim. �

Combining Theorem4.1 with Assumption4.3, it follows that the sequence of problems
(4.26) is feasible for allk > 0. We note that persistent feasibility (Theorem4.1) is a funda-
mental property to guarantee that the overall optimizationscheme remains feasible, while
we show later (in the distributed case) that the sequence of solutions lead to a monotonic
increase of the cost function.

We recall once again the reasons for the initial choices ofk = τ/2 andFi, which should
appear clearer after Theorem4.1. The fact thatxi(k) ∈ Fi guarantees that the solution
xi(k + 1) = (xi(k)

⊤,0⊤
3 )

⊤ is feasible in terms of admissible control action, which is a
sufficient condition to guarantee that the optimization problem (4.26) is persistently feasi-
ble. The choicek = τ/2 ensures thatFi is always non-empty.

The optimization procedure (4.26) described in this section finds a local optimum of the
connectivity maximization problem in a centralized mannerusing linearization. In the next
section, we describe an approach that allows the problem to be solved using local compu-
tation and limited communication resources, which increases the flexibility and practical
applicability of the robotic network.

4.2.4 Distributed Solution for the Extended Problem

In the following we present a non-iterative distributed solution to solve (4.26). By non-
iterative we mean here that we will use only one round of communication/computation
among the different agents per optimization stepk. We note that this is not a trivial
task, since commonly used decomposition methods for optimization problems (if ap-
plicable, e.g. in (De Gennaro and Jadbabaie, 2006)) typically require iterative solutions
(many rounds of communication/computation per optimization stepk) which may not be
amenable to fast real-time implementations.

Our solution depends on subproblems that each agent solves locally and whose size can
be decided according to the available resources. This size is influenced by the notion of
an enlarged neighborhood set, collecting all the agents whose data are available locally at
each time stepk. The proposed distributed solution is computed in two phases. The first
step is to solve a local optimization problem in which the farthest agents (in terms of graph
distance, i.e. minimum number of connecting edges) are constrained to be stationary, i.e.
xi(k + 1) = (xi(k)

⊤,0⊤
3 )

⊤. This step is similar to a Jacobi-type optimization (Bertsekas
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and Tsitsiklis, 1997), where only certain variables are updated at a time. The second step
is to share the proposed solutions within the enlarged neighborhood and combine them
using an agent-dependentpositive linear combination. We note that this sharing/combining
procedure is performed just once for each optimization step, making the overall scheme
non-iterative in contrast with commonly used consensus algorithms. The key point in
the proposed distributed solution is tojointly construct the feasible local problems with
modified local constraintsand the positive linear combination of the solutions to preserve
feasibility of the global solution and a monotonically increasing cost function.

Let Ji denote the enlarged neighborhood ofi consisting of all the agents whose state is
known by agenti at each sampling timek (either through direct or indirect communica-
tion3). We define this set in a recursive way: letN 1

i be the standard, first-order neigh-
borhood ofi, i.e. N 1

i = N+
i , then, theni-size enlarged neighborhood ofi for ni > 1 is

defined as
Ji = Nni

i =
⋃

j∈Nni−1

i

Nni−1
j , (4.27)

in other words, the collection of the(ni − 1)-size enlarged neighborhoods of allj ∈
Nni−1
i . The scalarni ≥ 1 implies bounds on the diameter of the communication graph

composed by the agents inJi. We will explain how the choice ofni is made by the agents
locally to trade-off computations/communications with respect to sub-optimality of the
distributed solution.

The cardinality ofJi isJi. We call the set of agents belonging to∂Ji, the bordering agents
of Ji defined as

∂Ji = {j|j ∈ Ji, j /∈ Nni−1
i } (4.28)

Denote the graph Laplacian associated with the communication graph corresponding to the
agents inJi asLi,ni

and the communication link set ofJi asEi,ni
. Figure4.2 provides

a graphical illustration of this notation forni = 2. DefinexJi
anduJi

as the stacked

N+
i

i

Ji

∂Ji

Figure 4.2: Notation for the distributed solution in case the size of theenlarged
neighborhood for agenti is ni = 2. The thick lines represent links between con-
nected agents.

3Which also means that agents share all known states within their neighborhoods.
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vectors collecting the states and the lifted control inputsfor all the agentsj belonging to
the enlarged neighborhood ofi, i.e. j ∈ Ji.
As a first step of the distributed solution, for each agenti, we consider local modified
problems△Pi of the form:

△Pi(△Li,ni
(xJi

),xJi
(k),S△Q̃2i

) : maximize
xJi

(k+1),uJi
(k),γi(k+1)

γi(k + 1) (4.29a)

subject to (4.29b)

△Q1 :

{
γi(k + 1) ≥ 0

△Li,ni
(xJi

(k + 1)) + 1Ji
1TJi
≻ γi(k + 1)IJi

(4.29c)

△Q̃2i :







Q̃2.1 : △fd(xi(k + 1), xj(k + 1)) > ρ̃1ij ,
∀(i, j) ∈ Ei,ni

Q̃2.2 : xj(k + 1) ∈ F̃j = Fj, j ∈ Ji
Q̃2.3 : uj(k) ∈ Ũj , j ∈ Ji
Q̃2.4 : xj(k + 1) = D̃j(xj(k),uj(k)), j ∈ Ji

(4.29d)

Q3 : xj(k + 1) = (xj(k)
⊤,0⊤

3 )
⊤, for j ∈ ∂Ji (4.29e)

where

• the dynamicsD̃j denotes a dynamical system of the same form as (4.18) but with
the modified triplet(Ã1j , Ã2j , b̃1j);

• the constraint̃Uj denotes a constraint of the same form asUj but with the modified
couple(H̃j , h̃j);

• the set of the modified parameter isS△Q̃2i
= {(ρ̃1ij , Ã1j , Ã2j , b̃1j , H̃j , h̃j)j∈Ji

}.

For now, the parameters inS△Q̃2i
could be thought of as arbitrary. However, we will show

later (Theorem4.2) how to construct the modified state matrices and parameter setS△Q̃2i

of constraint△Q̃2i to satisfy the constraints of the original linearized problem (4.26).

The optimal local decision variables (solution of△Pi) will be denoted as̃γi(k + 1),
x̃Ji

(k + 1), andũJi
(k) respectively. We call̃xij(k + 1) the state of agentj as com-

puted by agenti and we use the same notation forũij(k). We note that the optimal local
decision variables̃xJi

(k + 1) and ũJi
(k) are composed of̃xij(k + 1) and ũij(k) for

eachj ∈ Ji. We emphasize that the extra constraintQ3 is an important requirement to
guarantee feasibility, as will be explained in Theorem4.5. We will also requireF̃i = Fi
for all the agents as a sufficient condition of persistent feasibility.

Consider the set of all agentsp which include agenti in their local problems△Pp, i.e.
i ∈ Jp, and denote byJ ∗

i = {p|i ∈ Jp}. Since the enlarged neighborhood sizeni could
differ from agent to agent (we remark that we will explain later how this will be selected
locally by the agents),J ∗

i 6= Ji.
As a second step of the distributed solution, we construct the position update based on the
previous solutionx(k) and a positive linear combination of the local position solutions
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x̃Ji
(k) as:

xi(k + 1) = xi(k) +
∑

j∈J ∗
i

sjδx̃ji(k + 1), i = 1, . . . , N (4.30)

for any user selectedarbitrarysj > 0 and, whereδx̃ji(k + 1) = x̃ji(k + 1) − xi(k).
Define

s̄i =
∑

j∈J ∗
i

sj

and observe that̄si is in general not equal to one. Although it is more common to use
a weighted average of local solutions in consensus-type problems, the linear combina-
tion (4.30) of our approach is crucial for feasibility as shown in Theorem4.5. We note
also that, although the scalars̄i could assume any strictly positive value, i.e.,s̄ > 0, it is
advisable to upper limit it as̄si ≤ 1 due to the linearization procedure. In fact, bigger
s̄i would question the validity of the Taylor expansions in the local problems. We will
assume0 < s̄i ≤ 1 in the rest of the section.

We prove the following lemma regarding the sum of local position solutions, which is
instrumental for the subsequent theorems.

Lemma 4.2 For arbitrary vectorsqij ∈ R3 where(i, j) are neighbors (i.e.,(i, j) ∈ E),
and for anyδx̃pi(k + 1), δx̃pj(k + 1) part of the optimal solutions of the local problems
∆Pp in (4.29), with p ∈ J ∗

i andp ∈ J ∗
j respectively, the following equality holds:

q⊤ij




∑

p∈J ∗
i

spδx̃pi(k + 1)−
∑

p∈J ∗
j

spδx̃pj(k + 1)



 =

q⊤ij
∑

p∈J ∗
i ∩J ∗

j

(δx̃pi(k + 1)− δx̃pj(k + 1)) (4.31)

Proof. The first term of the equality (4.31) can be divided into three parts:p ∈ J ∗
i ∩ J ∗

j ,
p ∈ J ∗

i ∧ p /∈ J ∗
j , andp ∈ J ∗

j ∧ p /∈ J ∗
i . Since we are interested in the case wheni and

j are neighbors, we can make the key observations that:

p ∈ J ∗
i ∧ p /∈ J ∗

j ⇒ i ∈ ∂Jp (4.32)

p ∈ J ∗
j ∧ p /∈ J ∗

i ⇒ j ∈ ∂Jp (4.33)

Consider the first implication (4.32). If p ∈ J ∗
i , theni andp are separated by at mostnp

links. Furthermore, ifp /∈ J ∗
j , thenj andp are separated by at leastnp + 1 links. Sincei

andj are neighbors, it follows that the separation betweeni andp is exactlynp links and
thereforei ∈ ∂Jp. The second implication (4.33) can be proven by similar arguments.
The two implications (4.32)-(4.33) allow us to rewrite the first part of the equality (4.31)
as:
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q⊤ij
∑

p∈J ∗
i ∩J ∗

j

sp(δx̃pi(k + 1)− δx̃pj(k + 1))+

q⊤ij
∑

p∈J ∗
i ∧p/∈J ∗

j

spδx̃pi(k + 1)

︸ ︷︷ ︸

=0

−q⊤ij
∑

p∈J ∗
j ∧p/∈J ∗

i

spδx̃pj(k + 1)

︸ ︷︷ ︸

=0

where the last two terms are0 due to (4.32)-(4.33) and the constraintQ3 of△Pp in (4.29),
which requiresδx̃pi(k + 1) = 0 and δx̃pj(k + 1) = 0 for i ∈ ∂Jp and j ∈ ∂Jp,
respectively. �

We are ready to construct the parameter setS△Q̃2i
which defines the local set of constraints

△Q̃2i.

Theorem 4.2 (Local constraints for global feasibility)Taking for eachi, the following
choices:

• the local parameter set△Q̃2i in (4.29) as

S△Q̃2i
= {(ρ̃1ij , s̄−1

j A1j , A2j , s̄jb1j , Hj , s̄
−1
j hj)j∈Ji

}

meaning,

Ã1j = s̄−1
j A1j , Ã2j = A2j , b̃1j = s̄jb1j , H̃j = Hj , h̃j = s̄−1

j hj

and
ρ̃1ij = s̄−1

ij

(
ρ1 + d2ij(k) (s̄ij − 1)

)
(4.34)

with s̄ij =
∑

p∈J ∗
i ∩J ∗

j
sp;

• the positive linear combination of the local optimal control inputs ũji(k) in (4.29)
as

ui(k) =
∑

j∈J ∗
i

sjũji(k) (4.35)

• the positive linear combination of the local optimal velocities ṽji(k + 1) in (4.29)
as

vi(k + 1) =

∑

j∈J ∗
i
sj ṽji(k + 1)

s̄i
(4.36)

ensure that the updated position vectorx(k + 1), the control vectoru(k), and velocity
vectorv(k+1) based on(4.30), (4.35), and(4.36) respectively, satisfy the set of constraints
△Q2 of the global problem(4.26).

Proof. The local constraints for the subproblem△Pp in (4.29) are the following:
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for all p ∈ J ∗
i ∩ J ∗

j :

Q̃2.1 : △fd(xi(k + 1), xj(k + 1)) =

d2ij(k) + cdij
⊤
(δx̃pi(k + 1)− δx̃pj(k + 1)) > ρ̃1ij ,

(4.37a)

for all p ∈ J ∗
i :

Q̃2.2 : x̃pi(k + 1) ∈ F̃i = Fi (4.37b)

Q̃2.3 : ũpi(k) ∈ Ũi (4.37c)

Q̃2.4 : x̃pi(k + 1) = D̃i(xi(k), ũpi(k)) (4.37d)

The theorem claims that using the specified choice forS△Q̃2i
, if we combine the local

optimal solutions(x̃pi(k + 1), ũpi(k)) which satisfy the local constraints (4.37), using
the positive linear combinations (4.30), (4.35), and (4.36) we will obtain a couple(x(k +
1),u(k)) that satisfies the constraint△Q2 of the global problem (4.26). This is what we
need to prove.

ConsiderQ̃2.1 in (4.37a) and the positive linear combination forx(k + 1) in (4.30). By
Lemma4.2

d2ij(k) + cdij
⊤
(δxi(k + 1)− δxj(k + 1)) =

= d2ij(k) +
∑

p∈J ∗
i ∩J ∗

j

cdij
⊤
sp(δx̃pi(k + 1)− δx̃pj(k + 1)) >

(1− s̄ij)d2ij(k) + s̄ij ρ̃1ij (4.38)

The global position vectorx(k + 1) is required to satisfy the global constraint:

d2ij(k) + cdij
⊤
(δxi(k + 1)− δxj(k + 1)) > ρ1 (4.39)

which can be accomplished by selectingρ̃1ij such that:

(1 − s̄ij)d2ij(k) + s̄ij ρ̃1ij = ρ1 (4.40)

This gives the formula for̃ρ1ij in (4.34).

Consider the constraints̃Q2.4 in (4.37d) on the agents’ dynamics. For the positive linear
combination (4.30) the combined system dynamics becomes





xi(k + 1)
∑

p∈J ∗
i

spṽpi(k + 1)



=

(
I3 s̄iÃ1i(I3 + Ã2i)

03 s̄iÃ
2
2i

)(
xi(k)
vi(k)

)

+

(
b̃1iÃ1i 03
b̃1iÃ2i b̃1iI3

)
∑

p∈J ∗
p

spũpi(k) (4.41)
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Since the agents have to move according to the dynamical system (4.18) encoded in the
global constraintQ2.4 of (4.26), the update (4.41) and the state equation (4.18) have to
be the same. It is not difficult to see that this is ensured by the choiceÃ1i = s̄−1

i A1i,
Ã2i = A2i, b̃1i = s̄ib1i, and the linear combinations (4.35) and (4.36) for the local control
inputsũpi(k) and local velocities̃vpi(k + 1).

From the linear combination on the control (4.35) and the global constraintQ2.3 in (4.26)
follows the specification for the local constraintQ̃2.3 in (4.29):

Ũi = {ũpi(k) ∈ R
3|Hiũpi ≤ s̄−1

i hi} (4.42)

from which (H̃i, h̃i) = (Hi, s̄
−1
i hi). We recall that the positive linear combination on

the control input (4.35) has been constructed in a way to steer the system (4.18) from
the positionx(k) to the updated positionx(k + 1) in (4.30) while respecting the global
constraintsQ2.3 in (4.26).

Consider nowQ̃2.2 in (4.29). We need to prove that if the local optimal statesx̃pi(k + 1)

belong to the set̃Fi in (4.29), then the updated statexi(k + 1) constructed via the linear
combinations on position (4.30) and velocity (4.36) belongs to the setFi as expressed in
the global constraintQ2.2 in (4.26). First of all, it is straightforward to see that the local
inequalities

−
(

H̃ib̃
−1
1i (I3 + Ã2i)

H̃ib̃
−1
1i Ã2i(I3 + 2Ã2i)

)

ṽpi(k + 1) ≤
(
h̃i
h̃i

)

(4.43)

are equivalent to the inequalities (4.22), meaning that by constructioñFi = Fi. Recall that
the setFi does not constrain the position. Since the updated velocityvi(k + 1) in (4.36)
is obtained by a positive linear combination of localṽpi(k + 1) then alsovi(k + 1) will
satisfy the inequalities (4.43), and therefore the updated statexi(k + 1) belongs toFi.
Having ensured that with the choices of Theorem4.2 the positive linear combinations of
the local solutions satisfy the constraintsQ2.1 − Q2.4 of (4.26), Theorem4.2 is proven.
aaaaaaaaaaa �

Theorem4.2not only gives a procedure to construct the local constraints so that the linear
combination (4.30) satisfies the global constraints, it also establishes a link between the
local quantities and the global ones. Furthermore, it ensures that in order to move to the
updated statexi(k + 1) each agent can implement the linear combination of the lifted
control input (4.35) as summarized in Algorithm4.1.

4.2.5 Properties of the Distributed Solution

In the previous section we have seen how to construct the local problem parameter set
S△Q̃2i

and positive linear combinations of the local solutions to ensure that the combined
solution(x(k + 1),u(k)) satisfies the constraint△Q2 of the global problem (4.15a). In
this section we will look at the connectivity constraint△Q1 and at the persistent feasibility
of Algorithm 4.1. In particular we claim that

(C1) The algebraic connectivity of the global linearized Laplacian△L(x(k+1)) of (4.15a)
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Algorithm 4.1 Distributedλ2 Maximization

1: Input for each agenti: xj(k), j ∈ Ji

⊲ Available data: fw, fd,Ji, (Uj |for j ∈ Ji), (Dj |for j ∈ Ji), ρ1, (si|for i ∈ N)

2: Solve△Pi in (4.29) computing(x̃ji(k + 1), ũji(k + 1)), j ∈ Ji

△Pi(△Li,ni
(xJi

),xJi
(k),S△Q̃2i

) : maximize
xJi

(k+1),uJi
(k),γi(k+1)

γi(k + 1)

subject to

△Q1 :

{

γi(k + 1) ≥ 0
△Li,ni

(xJi
(k + 1)) + 1Ji

1T
Ji

≻ γi(k + 1)IJi

△Q̃2i :























Q̃2.1 : △fd(xi(k + 1), xj(k + 1)) > ρ̃1ij ,
∀(i, j) ∈ Ei,ni

Q̃2.2 : xj(k + 1) ∈ F̃j = Fj , j ∈ Ji

Q̃2.3 : uj(k) ∈ Ũj , j ∈ Ji

Q̃2.4 : xj(k + 1) = D̃j(xj(k),uj(k)), j ∈ Ji

Q3 : xj(k + 1) = (xj(k)
⊤,0⊤

3 )⊤, for j ∈ ∂Ji

3: Communicatẽuji(k + 1) among members ofJi

4: Compute the positive linear combination:

ui(k) =
∑

j∈J∗
i

sjũji(k)

5: Implement the control actionui(k)

with x(k + 1) computed via (4.30) is monotonically increasing4 in each iteration,
which implies thatx(k+1) will also satisfy△Q1 of the global problem (4.15a) for
a certain value ofγ(k + 1) ≥ γ(k).

(C2) The distributed optimization problem in Algorithm4.1is persistently feasible using
the constructed△Q̃2i’s in Theorem4.2.

We will prove these claims in two steps: Theorem4.3 and4.4 establish (C1), by linking
the linear combination (4.30) and the algebraic connectivity through the linear dependence
of the linearized Laplacian on the positionx. The constraintQ3 plays a crucial role here to
ensure the feasibility of the local solutions. Theorem4.5shows that property (C2) holds,
by the use of the relation between local and global feasibility of Theorem4.2.

First of all consider the linearized Laplacian△L(x(k + 1)), we recall that its entry(i, j)
has the expression

[△L(x(k + 1))]ij = −wij(k + 1) = −wij(k)− cwij⊤(δxi(k + 1)− δxj(k + 1)).

For this reason we can rewrite△L(x(k + 1)) as a sum

△L(x(k + 1)) = △L(δx(k + 1)) + L(x(k)).

4By the term monotonically increasing we mean thatλ2(x(k + 1)) ≥ λ2(x(k)), while we indicate with
strictly monotonically increasing the relationλ2(x(k+1)) > λ2(x(k)). Note that in some references alternative
definitions can be found, for example the relationλ2(x(k + 1)) ≥ λ2(x(k)) can be called monotonically non-
decreasing, whileλ2(x(k + 1)) > λ2(x(k)) as monotonically increasing.
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Under the validity of the employed Taylor approximation, weassume that for all practical
situations the value ofL(x(k)) is equivalent to its linearized approximation△L(x(k)),
and therefore we can write

△L(x(k + 1)) = △L(δx(k + 1)) +△L(x(k)) = L(x(k + 1)) (4.44)

We will further comment on this approximation in Section4.5.

Consider the local problem△Pi in (4.29), and its solution comprised of̃xij(k+1) for all
j ∈ Ji. Construct the global vector̃x(i)(k+1) whose entries are determined based on the
local solution as

x̃(i)(k + 1) =







x̃
(i)
1 (k + 1)

...

x̃
(i)
N (k + 1)






,

with x̃(i)j (k + 1) =

{
x̃ij(k + 1) if j ∈ Ji
xj(k) otherwise

(4.45)

where we keep those agent positions that have not been optimized fixed, and we up-
date the rest from the solution of the local problem, as in a Jacobi-type optimization ap-
proach (Bertsekas and Tsitsiklis, 1997). We can prove the following theorem.

Theorem 4.3 (C1.a)The positions̃x(i)(k + 1) in (4.45) constructed from the solution of
the local problem△Pi in (4.29), monotonically increase the algebraic connectivity of the
Laplacian matrix:

△L(x̃(i)(k + 1)) � △L(x(k)). (4.46)

Proof. Since△L depends linearly on the positionx by (4.44) we can write

△L(x̃(i)(k + 1)) = △L(δx̃(i)(k + 1)) +△L(x(k)),

thus the relation (4.46) can be interpreted as

△L(δx̃(i)(k + 1)) � 0. (4.47)

We recall that,

First: for (4.45) δx̃(i)j (k + 1) = 0 if j /∈ Ji.

Second: for the constraintQ3 in the local problem△Pi (4.29), δx̃(i)j (k + 1) = 0 if
j ∈ ∂Ji.
For these two observations,[△L(δx̃(i)(k + 1))]ij 6= 0 only if (i, j) ∈ Ei,ni

and therefore
up to a reodering the Laplacian△L(δx̃(i)(k + 1)) has the form

[
△Li,ni

(δx̃Ji
(k + 1)) 0

0 0

]

� 0. (4.48)
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We recall thatx̃Ji
(k + 1) is the optimal decision variable for the position in the local

optimization problems (and the order of the single elementsis not important).

We can now restate (4.47) via (4.48) as

△Li,ni
(δx̃Ji

(k + 1)) � 0

or
△Li,ni

(x̃Ji
(k + 1)) � △Li,ni

(x̃Ji
(k))

which is true due to the local optimality of the local solution of△Pi. �

Furthermore, we can relate the positionsx̃(i)(k + 1) in (4.45) with xi(k + 1) in (4.30),
which is crucial for the proof of the monotonically increasing property (C1).

Lemma 4.3 When considering the positionsx̃(i)(k+ 1) in (4.45) andxi(k+ 1) in (4.30)
the following equality holds:

△L(δx(k + 1)) =

N∑

i=1

si△L(δx̃(i)(k + 1)) (4.49)

Proof. Let us consider the entry(i, j) of the Laplacian△L on both sides of the expres-
sion (4.49) (indicated asℓij). For the right side,ℓrightij can be expressed as

ℓrightij = cwij
⊤ ∑

p∈J ∗
i ∩J ∗

j

sp(δx̃pi(k + 1)− δx̃pj(k + 1))

since the entry(i, j) will exist only for the subproblems△Pp with p ∈ J ∗
i ∩ J ∗

j . For the
left side,

ℓleftij = cwij
⊤ (δxi(k + 1)− δxj(k + 1)) =

cwij
⊤




∑

p∈J ∗
i

spδx̃pi(k + 1)−
∑

p∈J ∗
j

spδx̃pj(k + 1)





The coefficientcwij
⊤ is non-zero only if(i, j) are neighbors and using Lemma4.2leads to

ℓleftij = cwij
⊤ ∑

p∈J ∗
i ∩J ∗

j

sp(δx̃pi(k + 1)− δx̃pj(k + 1))

�

Using Theorem4.3and Lemma4.3we can now prove the monotonically increasing prop-
erty of the algebraic connectivity of the global linearizedLaplacian△L(x(k + 1)), for-
mally stated in Theorem4.4.

Theorem 4.4 (C1.b)The algebraic connectivity of the global linearized Laplacian
△L(x(k + 1)) is monotonically increasing in each iteration, meaning△L(x(k + 1)) �
△L(x(k)), wherex(k + 1) is computed by the combination(4.30).
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Proof. Theorem4.3implies△L(δx̃(i)(k+1)) � 0 for all i. Thus summing over all agents
leads to

N∑

i=1

si△L(δx̃(i)(k + 1)) � 0

Considering the linear combinationxi(k + 1) in (4.30), and the associated global vector
x(k + 1), by Lemma4.3it follows that△L(δx(k + 1)) � 0. From the linear dependence
of△L onx (Equation (4.44)),

△L(x(k + 1)) = △L(δx(k + 1)) +△L(x(k))

and therefore it follows that△L(x(k + 1)) − △L(x(k)) � 0 and the desired property:
△L(x(k + 1)) � △L(x(k)). �

Finally, we can show the persistent feasibility of the distributed optimization algorithm
presented in Algorithm4.1.

Theorem 4.5 (C2) The distributed optimization algorithm presented in Algorithm 4.1 is
persistently feasible.

Proof. We have to prove that if, for any discrete timek, x(k) is a feasible initial state
for the global optimization problem△P (4.26) at the discrete timek (Definition4.1), then
there will be a feasible solution to the distributed optimization problem in Algorithm4.1.
Such a feasible solution can be thought of as an initial statex(k + 1) for the global opti-
mization problem△P (4.26) at the discrete timek + 1. We prove the existence of such
feasible solution in two steps.

Step 1.Using the assumption thatx(k) is a feasible initial state for the global optimization
problem△P (4.26) at time stepk, we can show thatx(k) is also a feasible initial state
for the local problems△Pi (4.29), which therefore are feasible and deliver local solutions
(x̃Ji

(k + 1), ũJi
(k + 1)) satisfying the constraints△Q1, △Q̃2i, andQ3. This claim

follows from Theorem4.2, in particular from the fact that̃ρ1ij ≤ ρ1. In fact, from the
assumption̄s ≤ 1 andd2ij(k) > ρ1 (feasibility atk), the relation (4.34) yields ρ̃1ij ≤ ρ1,
and thusx(k) is also a feasible initial state for the local problems△Pi (4.29).

Step 2.We can show that after merging/combining the resulting local solutions(x̃Ji
(k +

1), ũJi
(k + 1)), the final distributed state solutionx(k + 1) will be a feasible initial state

for the global optimization problem△P in (4.26) at the discrete timek + 1. This second
step follows directly from Theorem4.2and Theorem4.4. �

Similarly to Theorems4.2 and4.4, we note that Theorem4.5 holds even if the agents
change the size of their enlarged neighborhoodni from time stepk to k + 1, since the
feasibility of the state in the local problems does not depend on the enlarged neighborhood
size ofJi. This fact will be used in the next section to allow adjustingthe communication
load of each agent and make Algorithm4.1adaptive.

4.2.6 Adapting the Communication Load

In this section we investigate further the properties of thedistributed solution presented in
Section4.2.4. First we show in Theorem4.6 that if all-to-all communication is allowed
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then the distributed solution of Algorithm4.1 is equivalent5 to the centralized approach
in (4.26). Then we prove in Theorem4.7 that starting from the same state vectorx(k), if
we run Algorithm4.1with different enlarged neighborhood sizes, the solution that delivers
a higher algebraic connectivity at time stepk + 1 is the one with a larger neighborhood
sizen. This last fact enables us to characterize a local relative sub-optimality measure
with respect to an enlarged neighborhood size.

Theorem 4.6 (Equivalence)The distributed solution of Algorithm4.1is equivalent to the
centralized one of(4.26), if all-to-all communication is allowed (meaningni = N , ∀i,
and thus there are no bordering agents) and ifsi = 1/N , ∀i, is chosen as weight in the
positive linear combinations of the local states and inputs(4.30), (4.36), and(4.35).

Proof. Considerni = N , ∂Ji = ∅ for all the agents, and the choicesi = 1/N , ∀i.
We haves̄i = 1 and

∑

p∈J ∗
i ∩J ∗

i
sp = 1. Therefore, as a consequence of the choices of

Theorem4.2,△Q̃2i ≡ △Q2. Furthermore, all the constructed local solutionsx̃(i)(k + 1)
in (4.45) are the same and they are equivalent to the solution of the centralized problem
x(k + 1) in (4.26). Given the specified selection ofsi, also the linear combination (4.30)
is equivalent tõx(i)(k) and therefore the distributed position solution deliveredby Algo-
rithm 4.1is equivalent to the centralized one of (4.26). Since the same arguments hold for
the control inputs and velocities the claim is proven. �

We define the global position vector obtained using an enlarged neighborhood sizeni in
the local problem△Pi (4.29) as follows.

Definition 4.2 The vectorx(i)(k + 1)
∣
∣
ni

is the global position vector constructed from
the local solutions as in(4.45) using an enlarged neighborhood sizeni in the local problem
△Pi (4.29).

Furthermore, consider each of the local solutionsx̃Ji
(k + 1), which are computed using

different enlarged neighborhood sizesn1, . . . , nN in the local problems△Pi (4.29), with
i = 1, . . . , N . Letn = (n1, . . . , nN ). The global solution using the localx̃Ji

(k + 1) can
be redefined as follows, highlighting the dependence on the choice ofn.

Definition 4.3 The vectorx(k + 1)|n, with n ∈ NN , is the global solution of Algo-
rithm 4.1at stepk + 1, for the choicen = (n1, . . . , nN ).

Using the above definitions, we can prove the following theorem about the effect of an
increased neighborhood size on the resulting algebraic connectivity.

Theorem 4.7 If n1 ≥ n2 element-wise, then the algebraic connectivity of△L
(
x(k + 1)|n2

)

is greater than or equal to the one of△L
(
x(k + 1)|n1

)
, implying△L

(
x(k + 1)|n2

)
�

△L
(
x(k + 1)|n1

)
.

5Meaning that the two solutions (centralized and distributed) are the same.
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Proof. By optimality and due to the linearity ofL onx (Eq. (4.44)), for eachi we can state

△L
(

δx(i)(k + 1)
∣
∣
∣
n2,i

)

� △L
(

δx(i)(k + 1)
∣
∣
∣
n1,i

)

Multiplying by si and summing overi leads to

N∑

i=1

si△L
(

δx(i)(k + 1)
∣
∣
∣
n2,i

)

�
N∑

i=1

si△L
(

δx(i)(k + 1)
∣
∣
∣
n1,i

)

By Lemma4.3the claim follows. �

We note that Theorem4.7holds fromk to k+1. Due to the non-linear/non-convex nature
of the original problem (4.8a), this result does not hold in general fromk to k + 2 or
beyond, as we will show in the simulation experiments of Section 4.2.7.

Theorem4.7 is instrumental to construct a measure that can be used to decide locally
on-line whether to increase or decrease the sizeni of the enlarged neighborhood. This
measure can be used to adaptni to influence the trade-off between the increase of the
algebraic connectivity or the reduction of the communication cost. For this purpose, we
define two local relative sub-optimality measures with respect to an enlarged neighborhood
of larger size as

e+i = 1−
λ2(△Li,ni+1(x

(i)(k + 1)
∣
∣
ni
))

λ2(△Li,ni+1(x(i)(k + 1)
∣
∣
ni+1

))

e−i = 1−
λ2(△Li,ni

(x(i)(k + 1)
∣
∣
ni−1

))

λ2(△Li,ni
(x(i)(k + 1)

∣
∣
ni
))

which determine the sub-optimality of the local solutions (4.45) with ni + 1 andni − 1
with respect to the one obtained withni. In particular,e+i measures the gain, in terms of
local algebraic connectivity, one would have by increasingthe enlarged neighborhood size
from ni to ni + 1, while e−i measures the loss of local algebraic connectivity going from
ni to ni − 1. (We note that bothe+i ande−i are non-negative due to Theorem4.7).

Given specific lower/upper thresholds fore+i ande−i the agents can decide locally to in-
crease or decreaseni at the successive time stepk, trading off increased communication
efforts (for largerni) to smaller local algebraic connectivity increases (for smaller ni),
making Algorithm4.1adaptive. We note that although these sub-optimality measures are
local, changingni locally by each agent has an effect on the global solution as illustrated
by the relation (4.63) in Lemma4.3. We note also that in order to computee+i ande−i it is
necessary to solve three optimization problems of the kind (4.29) for eachi. Since this can
be computationally expensive, the agents can decide to determinee+i ande−i only once in
a given number of discrete time steps.

Remark 4.4 We remark that Theorem4.7 as well as the other lemmas and theorems are valid
under the original assumption that the agents are perfectlysynchronized. Future research directions
encompass the possible asynchronism in the agents’ clocks.
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Figure 4.3: Polytopic constraint forui. The shaded region represents the setŪi ⊂
R2.

4.2.7 Simulation Results

In this section, we present numerical simulation results toillustrate how the proposed dis-
tributed algorithm performs with respect to the centralized scheme. We use a benchmark
problem motivated by (Kim and Mesbahi, 2006). Our scenario considersN = 10 agents
moving on a 2D plane initially placed close to the horizontalaxis and forming a connected
graph. The initial position vector isxi(0) = [−6.75 + 1.5(i− 1), yi]

⊤, whereyi is drawn
from a Gaussian distribution, with mean0 and standard deviationσ = 0.1. Randomness is
added to test the algorithm’s sensitivity to different initial conditions (due to the sequential
convex programming approach). We consider the triples(A1i, A2i, b1i) to be all equal to
(I2∆t/2, 0.75I2, I2∆t/2) with ∆t = 1, while all theui’s are constrained in the polytopic
region of Figure4.3.

The other simulation parameters include the weighting function of Figure4.1, ρ1 = 0.75,
ρ2 = 3 and final timeTf = 300.

In Figures4.4-4.5, an example of the trajectories using the centralized and the distributed
solutions are depicted (all starting from the same initial configuration). In the adaptive
case, we start withni = 2 for all agents and at every5-th discrete time stepk we compute
the sub-optimality measures. If the gain in increasing the enlarged neighborhood size
is high enough, i.e.,e+i > 0.05, we increaseni, while if this gain is not high enough,
i.e., e+i < 0.05, and the losses in decreasing the neighborhood size are not too big, i.e.,
e−i < 0.01, we decreaseni to reduce the communication and computation costs.

−5 0 5

−2

0

2

√
ρ1

√
ρ2

Figure 4.4: Centralized solution: the initial positions are marked with black dots.
The final positions are marked with circles. The bold lines represent the final com-
munication graph and the thin lines the agent trajectories.
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Figure 4.5: Simulation results of the distributed approach for variouslocal neigh-
borhood sizesni (same for all the agents except in the adaptive case). The initial
positions are marked with black dots. The final positions aremarked with circles.
The bold lines represent the final communication graph and the thin lines the agent
trajectories. In the adaptive case, we start withni = 2 for all agents and at every
5-th discrete time stepk we compute the sub-optimality measures. Ife+i > 0.05 we
increaseni, if e+i < 0.05 ande−i < 0.01 we decreaseni.

Figure4.6shows, for the same simulation, the algebraic connectivityas a function of the
sampling timek, and clearly illustrates the nonlinear/non-convex natureof the problem.
In particular,

• Distributed and centralized solutions are based on different agents’ trajectories and
therefore their final achieved algebraic connectivities are not strictly related. It may
happen, as in Figure4.6, that the distributed approximation leads to a better finalλ2,
or the contrary may happen (as forni = 1).

• The distributed solution converges slower than the centralized one to the final config-
uration. This was to be expected since the centralized solution has global knowledge
about the robotic network. We recall that this final configuration is in general only a
local maximum for the algebraic connectivity.

We perform50 simulation runs varying the initial configuration of the agents. For each
run, we compute the centralized and the distributed solutions and we compare their final
connectivity,λcentr2 andλdistr2 , respectively. We report the results in Table4.1. For better
comparison, we report that in the adaptive caseni = 2.2 on average, with a maximum of
ni = 5. We can observe that

• Different choices of the local neighborhood sizesni affect the final achievedλ2. In
particular, for the choiceni = 1, the agents perform significantly worse than for
otherni.
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Figure 4.6: Algebraic connectivity as a function of timek for both the centralized
and the distributed solutions of Figure4.4and4.5.

• Using the adaptive case, the finalλ2 is comparable with the centralized solution in
most of the simulations (or even better, due to the nonlinearnature of the problem).
This is an important point, since the adaptive case use an enlarged neighborhood
size ofni = 2.2 (on average) and still obtains performances close or betterthan the
fixed choiceni = 3.

To further assess the proposed distributed algorithm, we include in Table4.1 simulation
results forN ∈ {20, 40} robots starting from a feasible random configuration (not nec-
essarily on a line) and using the adaptive algorithm withni(0) = 2. Each of these cases
has been run50 times. We can observe that both in theN = 20 case (where the aver-
ageni is 2.7) and in theN = 40 case (averageni = 2.6), the results are in line with
the conclusions we have drawn for the case ofN = 10. In addition, an example of the
trajectories and algebraic connectivity using the centralized and the distributed solutions
is also depicted in Figure4.7 and4.8 to show the very similar final configuration. From
these results one could conjecture both the scalability of Algorithm 4.1 (for the adaptive
case) and its increased performances dealing with large systems.

In particular, while the number of agents passes fromN = 10 to N = 40, the averaged
size of the enlarged neighborhood stays rather the same (andalso the performance in term
of final λ2). This means that the computational and communication efforts for the single
agent stay the same (per stepk). Thus, the gain of the distributed solution with respect to
the centralized solution, in terms of computations and communications, increases.

Another important consideration could be that for an increased number of agents, the time
to converge to the final configuration is higher than for a lower number of agents. This im-
plies that thetotalcommunication/computation increases with the number of agents. How-
ever, from Figure4.6and4.7we expect that the ratiototalcommunication/computation for
the distributed case and the centralized one stays approximately the same when increasing
the number of agents.
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(0.1− 0.3] 50 26 0 0 0 0
(0.3− 0.8] 0 0 5 4 3 3
(0.8− 1.0] 0 12 22 21 21 24
(1.0− 1.1] 0 12 23 25 26 23

Table 4.1: Ratio between the final connectivity of the distributed solution and the
centralized one for the50 simulation runs. The adaptive case is indicated with
ni(0). The casesN ∈ {20, 40} correspond to a random feasible initial configura-
tion (not necessarily a line).
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Figure 4.7: Algebraic connectivity as a function of timek for both the centralized
and the distributed solutions of Figure4.8.
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Figure 4.8: Simulation results of the centralized and distributed approach (adaptive
case). The initial positions are marked with black dots. Thefinal positions are
marked with circles. The bold lines represent the final communication graph and
the thin lines the agent trajectories.
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4.3 Multi-Target Tracking

In this section we extend the proposed distributed solutionfor the maximization of the
algebraic connectivity of the communication graph of a group of moving robots (Algo-
rithm 4.1), to be able to tackle a multi-target tracking problem. In particular we will
formulate the problem as the joint optimization of the connectivity among the agents and
the number of targets in view.

We remark that in this section we will refer to target tracking as the problem of positioning
the robots in order to ensure that the targets are in the detection range of the robots’ sensors.
Sometimes we will denote this detection range as sensing range, or visual range. We
remark that the robots are not estimating the positions of the targets, but these are supposed
to be known once the targets are in the detection range.

The works of (Grocholsky et al., 2003, Spletzer and Taylor, 2003, Chung et al., 2004,
Martı́nez and Bullo, 2006, Olfati-Saber, 2007b, Simonetto et al., 2008, Zhou and Roume-
liotis, 2008) provide a comprehensive overview of the multi-target tracking problem. Typ-
ical approaches consider a cost function based on the FisherInformation Matrix in order to
determine robot movements that lead to an increase in the targets’ visibility. However, even
for a single target, the resulting optimization problem is nonlinear and NP-hard (Zhou and
Roumeliotis, 2008). As a result, several alternative formulations relying onpotential fields,
gradient-descent, Monte Carlo methods, and linear approximations have been proposed,
by sacrificing robot connectivity / target visibility guarantees, generality of the framework,
or real-time applicability. Recently, an approximate formulation of the problem has been
suggested using Semi-Definite Programming (Derenick et al., 2009, 2010), which is based
on the tools of (Kim and Mesbahi, 2006, Boyd, 2006). Contrary to the aforementioned
literature, this framework allows both the connectivity ofthe robotic network and the vis-
ibility of the targets to be consideredsimultaneously, in the same optimization problem.
This is also the framework we will use in proposing our distributed solution.

4.3.1 Problem Formulation

We consider a group ofM moving targets, in addition to theN mobile agents. We denote
with q the index of the target. We consider both the agents and the targets to live on a
two-dimensional plane, while for simplicity of exposition, in this section as in (Kim and
Mesbahi, 2006, Derenick et al., 2009), we assume discrete-time agent dynamics of the
form

xi(k + 1) = xi(k) + vi(k)∆t, i = 1, . . . , N (4.50)

wherevi(k) is the velocity control input and∆t the sampling time. We assume

||vi(k)|| ≤ vmax,i.

Let x(k) ∈ R
2N be the collection of the agents’ positions, i.e.,x(k) = (x⊤1 (k), . . . ,

x⊤N (k))⊤ and letzq(k) ∈ R2 be the position of theq-th target at timek, while z(k) =
(z⊤1 (k), . . . , z

⊤
M (k))⊤ defines the collection of the targets’ positions. We assume that the

agents know their own position and the position of the targets they can detect, and that
they have computation and communication capability onboard. We assume the targets can
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be represented as discrete-time dynamical systems

zq(k + 1) = zq(k) +wq(k)∆t, q = 1, . . . ,M (4.51)

wherewq(k) ∈ R2 is a bounded input term, i.e.||wq(k)|| ≤ wmax,q. The set of reachable
positionsZq(k) at timek, is the disc centered at the previous known positionzq(k − 1)
with radiuswmax,q∆t. We make the following assumption:

Assumption 4.4 (Slow targets)The maximum target velocity is less than the agents’ max-
imum velocity, i.e.,wmax,q < vmax,i for all pairs (q, i).

This assumption has the scope to limit the targets’ velocity, thus it has the scope to elimi-
nate situations in which the agents would not possibly trackthem.

We model the communication graph among the agentsG in the same way as done in
Section4.2, as well as the neighborhood setsNi andN+

i . We define the collection of
agents that are within their detection range of targetq asRq6. These are considered as
the neighboring agents of targetq. The cardinality ofRq, denoted as|Rq| expresses how
many agents can detect a particular target. We introduce thefollowing assumptions:

Assumption 4.5 (Initial feasibility) At the initial time, i.e., atk = 0, the communication
graphG is connected and each targetq is detected by at least an agent, i.e.,|Rq| > 0 for
all q.

Assumption 4.6 (Well-posedness)At any timek > 0, there exist agent positionsx(k+1),
independent ofx(k), which guarantee that the communication graphG remains connected
and|Rq| > 0 for each targetq.

This last assumption ensures that the problem is well-posed, but it does not guarantee
feasibility at each time step. In fact,x(k + 1) depends onx(k) via the dynamical equa-
tion (4.50), therefore thex(k+1) provided by the assumption could be unreachable, given
the current positionx(k). In practice, Assumption4.6requires that the targets do not move
arbitrarily far away from each other compromising the connectedness of the communica-
tion graph.

We use the weights0 ≤ vqi ≤ 1 to model the link between targetq and agenti, if they fall
within the detection range (in a similar way as did for the Laplacian of the communication
graph). The weightsvqi are also assumed to depend on the physical distance between the
agent and target according to

vqi(k) = fV (||zq(k)− xi(k)||2), (4.52)

wherefV : R+ → [0, 1] is a smooth nonlinear function with compact support. As for the
case of communication weights, we assume that

fV (||zq(k)− xi(k)||2) = 1, for ||zq(k)− xi(k)||2 ≤ ρ1,v
fV (||zq(k)− xi(k)||2) = 0, for ||zq(k)− xi(k)||2 ≥ ρ2,v,

6Formally we should writeRq(k), but we drop the dependency onk in order to simplify the notation.
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Figure 4.9: The weighting functions.

whereρ1,v andρ2,v are positive scalars.

In Figure4.9we report a qualitative representation of the functionfV as well as the weight-
ing function for the communication weightsfw as expressed in (4.4).

We assume:

Assumption 4.7 Each agent that can detect a target is assumed to be able to communicate
with all other agents that detect the same target, i.e.,2ρ2,v < ρ2.

This assumption will be instrumental for the proposed distributed solution in Section4.3.3.

To characterize how a target is connected to agents we introduce the sum of the detection
weightsvqi(k) of a targetq as

vq(k) =
∑

i∈Rq

vqi(k) =
∑

i∈Rq

fV (||zq(k)− xi(k)||2), (4.53)

and we note that ifvq(k) > n then|Rq| > n, and therefore the targetq is seen by at least
n agents at the discrete time stepk.

We are interested in maximizing visibility of the targetsandmaximizing communication
connectivity among the agents. This can be posed as the jointmaximization of the alge-
braic connectivity of the communication graphs and the sumsof the detection weights by
moving the agents into appropriate positions. This goal canbe formulated in each discrete
time stepk as the following optimization problem, (Derenick et al., 2009, Boyd et al.,
2006).
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Problem 4.2 Multi-Target Tracking Problem

P : maximize
x(k+1),γ(k+1),{ν1(k+1),...,νN (k+1)}

αγ(k + 1) +

M∑

q=1

βqνq(k + 1) (4.54a)

subject to

γ(k + 1) ≥ 0, νq(k + 1) ≥ 0 q = 1, . . . ,M (4.54b)

L(x(k + 1)) + 1N1
T
N ≻ γ(k + 1)IN (4.54c)

fd(xi(k + 1), xj(k + 1)) > ρ1, ∀(i, j) ∈ E (4.54d)
∑

i∈Rq

fV (||zq(k + 1)− xi(k + 1)||2) > νq(k + 1), (4.54e)

for all zq(k + 1) ∈ Zq(k + 1), q = 1, . . . ,M

||xi(k + 1)− xi(k)|| ≤ vmax,i∆t i = 1, . . . , N (4.54f)

The constraints of problem (4.54) represent

• The connectivity of the communication graph (constraint (4.54c)),

• A minimal distance constraint, as in (4.8d), (constraint (4.54d)),

• The target detection constraint for all future reachable positions of the targets (con-
straint (4.54e)),

• The physical limitations of the agents’ dynamics (constraint (4.54f)).

The decision variables of problem (4.54) are the agents’ locations and the values ofγ(k+
1), νq(k + 1)’s. Here the constantsα ≥ 0 andβq ≥ 0, q = 1, . . . ,M model the scaled
relative weights on the maximization goals. When one selects α = 0, as in (Derenick
et al., 2009), the problem becomes the maximization of detection connectivity with the
targets while guaranteeing that the communication graph remains connected.

Remark 4.5 We remark that if one substitutes the strict constraints:

L(x(k + 1)) + 1N1
T
N ≻ γ(k + 1)IN

with the non-strictly positive ones:

L(x(k + 1)) + 1N1
T
N � γ(k + 1)IN

the problem(4.54) could represent situations in which agents are allowed to form disconnected
groups to follow different targets. In fact, if we allow the algebraic connectivity to become zero, i.e.,
λ2(L) = 0, by the non-strict inequality, we implicitly allow the graph to become disconnected in
order to better track the targets.

However, it is important to notice that extra care has to be put in the case of non-strict inequalities
in the numerical method used. See for example (Boyd et al., 1994) for some details.
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4.3.2 Centralized Approach

Convex Approximation

Problem (4.54) is non-convex given that we are optimizing over the positionsx and the
entries of the Laplacians are nonlinear functions ofx. We employ the same standard
convex approximation to this problem formulation, as done in Section4.2, and we define

△vq(zq(k + 1), x(k + 1)) :=
∑

i∈Rq

(

vqi(k) + cvqi
⊤(δxi(k + 1)− δzq(k + 1))

)

.

where

cvqi =
∂fV
∂d2ij

∂d2ij
∂xi

∣
∣
∣
∣
∣
xi(k),zq(k)

= − ∂fV
∂d2ij

∂d2ij
∂zq

∣
∣
∣
∣
∣
xi(k),zq(k)

. (4.55)

This allows us to formulate the following convex approximation of the problem (4.54):

△P(x(k + 1), z(k + 1), ρ1, vmax,i) :

maximize
x(k+1),γ(k+1),{ν1(k+1),...,νN (k+1)}

αγ(k + 1) +

M∑

q=1

βqνq(k + 1) (4.56a)

subject to

γ(k + 1) ≥ 0, νq(k + 1) ≥ 0 q = 1, . . . ,M (4.56b)

△L(x(k + 1)) + 1N1TN ≻ γ(k + 1)IN (4.56c)

△fd(xi(k + 1), xj(k + 1)) > ρ1 ∀(i, j) ∈ E (4.56d)

△vq(z
∗
q (k + 1), x(k + 1)) > νq(k + 1) q = 1, . . . ,M (4.56e)

||xi(k + 1)− xi(k)|| ≤ vmax,i∆t i = 1, . . . , N (4.56f)

wherez∗q (k + 1) is the worst casezq(k + 1), which due to the linearity of the scalar
inequality (4.56e) can be computed analytically (see Remark4.6).

Remark 4.6 The linearized version of constraint(4.54e) can be written as

∑

i∈Rq

(

vqi(k) + cvqi
⊤(δxi(k + 1)− δzq(k + 1))

)

> νq(k + 1), ∀zq(k + 1) ∈ Zq(k + 1)

We can compute the worst casez∗q (k + 1) as the one that minimizes

−
∑

j∈Rq

cvqj
⊤δzq(k + 1)

by solving the optimization problem

z∗q (k + 1) = arg min
zq(k+1)∈Zq(k+1)

−
∑

j∈Rq

cvqj
⊤δzq(k + 1)
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This problem can be solved analytically, resulting in

z∗q (k + 1) = zq(k)− [ ¯cv(2) −
¯cv(1)]

⊤
wmax,q∆t

where ¯cv(1) and ¯cv(2) are the components of the normalized vector
∑

j∈Rq
cvqj .

Properties of the Centralized Solution

To analyze the properties of the centralized solution we define:

Definition 4.4 The decrease of the detection quality due to the targets’ motion ν−q (k+1)
is defined as

ν−q (k + 1) := νq(k)−
∑

j∈Nq

cvqj
⊤δz∗q (k + 1)

We note thatν−q (k + 1) ≥ 0 by the definition of the weighting functions, therefore

νq(k) ≥
∑

j∈Nq

cvqj
⊤δz∗q (k + 1).

The cost function of problem (4.56) at each time stepk satisfies:

αγ(k + 1) +

M∑

q=1

βqνq(k + 1) ≥ αγ(k) +
M∑

q=1

βqν
−
q (k + 1) (4.57)

which indicates that the agents move in a way that improves the cost function if we con-
sider only the current target locations. This inequality also implies that when the targets
are stationary, the cost function is monotonically increasing.

The optimization problem that has been described in this section provides a framework
to approach the joint connectivity and detection maximization problem in a centralized
manner using linearization. In the following, we extend thedistributed approach presented
in Section4.2 in order to allows the multi-target tracking problem (4.56) to be solved in a
distributed fashion.

Remark 4.7 The task to ensure persistent feasibility of the sequence ofsemi-definite programs
(4.56) is not trivial for mobile targets. If the targets are stationary, persistent feasibility follows from
the fact that the solutionx(k + 1) = x(k) is feasible at the discrete timek, just as in Section4.2.
If the targets move arbitrarily, this property is instead difficult to impose. We believe that using
the slow-target assumption (Assumption4.4) one could derive conditions for persistent feasibility to
hold. We leave this analysis for future research.

4.3.3 Distributed Solution

In this section we present a non-iterative distributed solution to solve (4.56). By non-
iterative we mean here that we will use only one round of communication/computation
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Figure 4.10: Notation for the distributed solution. The targets are represented via
squares, while the agents are circles. Communication linksare shown via solid lines
and detection links via dashed lines.

among the different agents per optimization stepk. Before presenting the main contribu-
tion of this section, we first introduce some notation and definitions. We then proceed to
describe our non-iterative distributed solution method and its properties.

We will use the notation and definitions of Section4.2.4. In addition, we consider the
enlarged neighborhood setJi to be of size 2, i.e.,ni = 2, for each agent. This implies
thatJ ∗

i = Ji, which will simplify the analysis of the distributed solution. We recall that
the notationxJi

denotes the vector containing all the positions of the agentsJi (where
the order is not important). Sinceni is the same for all the agents, we will simplify the
notationLi,ni

with Li andEi,ni
with Ei.

We will assume that agenti is aware of the targets it can detect directly and also the ones
his first-order neighbors can detect. We will denote withTi the set of all the targets that
agenti is aware of. Correspondingly, we denote the vector containing all the positions
of the targets in the setTi with zTi

(where the order is not important). Similarly to the
enlarged neighborhood set for the agents we introduce the enlarged neighborhood set for
the targets, indicating which agents are aware of a specific targetq:

Oq =
⋃

i∈Rq

N+
i , q = 1, . . . ,M (4.58)

whose cardinality isOq. We note that these neighborhood sets contain only agents, and
thus the maximum allowed cardinality isN . Figure4.10provides a graphical illustration
of this notation. We also introduce a scaled maximum velocity ṽmax,i defined as

ṽmax,i =
N

Ji
vmax,i, i = 1, . . . , N (4.59)

whose value varies from agent to agent. This quantity will beused to change the local con-
straints in such a way that the global solution constructed from the local ones satisfies the
original constraint (4.56f), exactly as in Section4.2.4with the modified control constraints
Ũi.



4.3 Multi-Target Tracking 101

Our algorithm consists of two phases. First, each agent solves problem△Pi defined as

△Pi(xJi
(k), zTi

(k), ρ̃1ij , ṽmax,i) :

maximize
xJi

(k+1),γi(k+1),{νq(k+1)}q∈Ti

αγi(k + 1) +
∑

q∈Ti

βqνq(k + 1) (4.60a)

subject to

γi(k + 1) ≥ 0, νq(k + 1) ≥ 0 q ∈ Ti (4.60b)

△Li(xJi
(k + 1)) + 1Ji

1TJi
≻ γi(k + 1)IJi

(4.60c)

△fd(xi(k + 1), xj(k + 1)) > ρ̃1ij ∀(i, j) ∈ Ei (4.60d)

△vq(z
∗
q (k + 1), xj(k + 1)) > νq(k + 1) q ∈ Ti, j ∈ Ji (4.60e)

||xj(k + 1)− xj(k)|| ≤ vmax,j∆t j ∈ Ji (4.60f)

xj(k + 1) = xj(k), for j ∈ ∂Ji (4.60g)

computing the solutioñxJi
(k + 1), which is composed of̃xij(k + 1) for eachj ∈ Ji.

Thus, we will callx̃ij(k + 1) the position of agentj as computed by agenti.

As a second phase, the solutionsx̃Ji
(k + 1) are shared within the enlarged neighborhood

Ji and averaged according to

xi(k + 1) = xi(k) +
∑

j∈Ji

1

N
δx̃ji(k + 1), i = 1, . . . , N (4.61)

We note that the average (4.61) is a particular instance of the linear combination (4.30)
with si = 1/N andni = 2 for all the agentsi. We remark that this particular choice will
be important for the following analysis. Finally, we note that ρ̃1ij in (4.60d) is computed
using (4.34) with si = 1/N for all i.

Algorithm 4.2summarizes the method. We note that steps 3-5 are implemented only once
between subsequent robot movements, which makes the algorithm non-iterative.

We claim thatif we consider the global position vectorx(k+1) = (x⊤1 (k+1), . . . , x⊤N (k+
1))⊤ resulting from(4.61), then

(C1) The algebraic connectivity of the corresponding global linearized Laplacian
△L(x(k + 1)) and△vq(z

∗
q (k + 1), x(k + 1)) are strictly positive;

(C2) All the constraints of the global problem are met.

Furthermore we claim that, as in the centralized approach:

(C3) The improvement property (4.57) remains valid for the cost function of△P (4.56),
whenx(k+1) comes from the distributed solution. Moreover,△P is monotonically
increasing when the targets are stationary.

We will prove these claims in three steps: Theorems4.8, 4.9, and4.10establish (C1), by
linking the average value (4.61) and the algebraic connectivity through the linear depen-
dence of the linearized Laplacians onx. The constraint (4.60g) plays a crucial role here
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Algorithm 4.2 Distributed Multi-Target Tracking

1: Input:xJi
(k), zTi

(k)

⊲ Available data: fw, fd, fV ,Ji,Ti, (vmax,j |for j ∈ Ji), (wmax,q|for q ∈ Ti), ρ1
2: Determinecvqj as (4.55) andz∗Ti

(k + 1) as

z∗q (k + 1) = zq(k)− [ ¯cv
(2)

− ¯cv
(1)

]⊤wmax,q△t, q ∈ Ti

where ¯cv
(1)

and ¯cv
(2)

are the normalized components of
∑

j∈Nq
cvqj

3: Solve∆Pi in (4.60) computingx̃Ji
(k + 1) as

△Pi(xJi
(k), zTi

(k), ρ̃1ij , ṽmax,i) :

maximize
xJi

(k+1),γi(k+1),{νq(k+1)}q∈Ti

αγi(k + 1) +
∑

q∈Ti

βqνq(k + 1)

subject to

γi(k + 1) ≥ 0, νq(k + 1) ≥ 0 q ∈ Ti

△Li(xJi
(k + 1)) + 1Ji

1T
Ji

≻ γi(k + 1)IJi

△fd(xi(k + 1), xj(k + 1)) > ρ̃1ij ∀(i, j) ∈ Ei

△vq(z
∗
q (k + 1), xj(k + 1)) > νq(k + 1) q ∈ Ti, j ∈ Ji

||xj(k + 1) − xj(k)|| ≤ vmax,j∆t j ∈ Ji

xj(k + 1) = xj(k), for j ∈ ∂Ji

4: CommunicatẽxJi
(k) among members ofJi

5: Averagexi(k + 1) = xi(k) +
∑

j∈Ji

1

N
δx̃ji(k + 1)

6: Output:xi(k + 1)

to ensure the feasibility of the local solutions. Theorem4.11guarantees (C2), by show-
ing how the scaled velocity (4.59) of the local problems ensure that the global solution,
obtained via the average (4.61), satisfies the global constraints. Theorem4.12establishes
(C3) by linking the variations of the local cost functions with the one of the global problem.

As in Section4.2.4, consider the local problem△Pi and its solution comprised of̃xij(k+
1) for all j ∈ Ji. Recall the construction of the global vectorx̃(i)(k + 1) whose entries
are determined based on the local solution as

x̃(i)(k + 1) =







x̃
(i)
1 (k + 1)

...

x̃
(i)
N (k + 1)






, j = 1, . . . , N

with x̃(i)j (k + 1) =

{
x̃ij(k + 1) if j ∈ Ji
xj(k) otherwise

(4.62)

where we keep those agent positions that have not been optimized fixed, and we update
the rest from the solution of the local problem.

The following theorem is the adaptation of Theorem4.3for the Multi-Target tracking case.

Theorem 4.8 (C1.0)The positions̃x(i)(k + 1) in (4.62) constructed from the solution of
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the local problem△Pi in (4.60), keep the global linearized Laplacian matrix connected:
△L(x̃(i)(k + 1)) + 1N1

⊤
N ≻ 0.

Proof. At time stepk, the graphG(x(k)) is connected. We can divide this graph in
two overlapping parts,G(xJi

(k)), which is connected by definition, andG(x¬Ji
(k)) ∪

G(x∂Ji
(k)), where with¬Ji we indicate the collection of agents not present inJi. At

time stepk we know that:

1. G(x(k + 1)) = G(xJi
(k + 1)) ∪ (G(x¬Ji

(k)) ∪ G(x∂Ji
(k)));

2. G(xJi
(k + 1)) ∩ (G(x¬Ji

(k)) ∪ G(x∂Ji
(k))) = G(x∂Ji

(k)) 6= {∅};

where we use the definition ofx(i)(k + 1) in (4.62) and the constraint (4.60g) on the
bordering agents. Noticing thatG(xJi

(k + 1)) is also connected as imposed by the local
optimization problem, the claim follows. �

The following lemma is a particular instance of Lemma4.3.

Lemma 4.4 The following equality holds:

△L(δx(k + 1)) =

N∑

i=1

1

N
△L(δx̃(i)(k + 1)) (4.63)

Proof. The proof follows from Lemma4.3with si = 1/N . �

Using Theorem4.8 and Lemma4.4 we can now prove the strict positiveness of the al-
gebraic connectivity of the global linearized Laplacian△L(x(k + 1)), formally stated in
Theorem4.9.

Theorem 4.9 (C1.1)The algebraic connectivity of the global linearized Laplacian
△L(x(k+1)) is strictly positive,△L(x(k+1))+1N1

⊤
N ≻ 0 wherex(k+1) is computed

by the average(4.61).

Proof. Theorem4.8implies(△L(x̃(i)(k+ 1))+ 1N1
⊤
N )/N ≻ 0 for all i. Thus summing

over all agents leads to

N∑

i=1

1

N
(△L(x̃(i)(k + 1)) + 1N1⊤

N ) ≻ 0

or by linearity of△L(x̃(i)(k + 1)) with respect tox, Equation (4.44),

(△L(x(k)) + 1N1⊤
N ) +

N∑

i=1

1

N
△L(δx̃(i)(k + 1)) ≻ 0 (4.64)

Considering the weighted sumxi(k+1) in (4.61), and the associated global vectorx(k+
1), by Lemma4.4follows the desired property△L(x(k + 1)) + 1N1

⊤
N ≻ 0. �
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Remark 4.8 We note that the validity of Theorem4.9is limited to the case in which
∑N

i=1 si = 1,
e.g.,si = 1/N for all the agents. In fact, the expression(4.64) can be generalized for the linear
combination(4.30) in:

(

N
∑

i=1

si

)

(△L(x(k)) + 1N1
⊤
N ) +

N
∑

i=1

si△L(δx̃(i)(k + 1)) ≻ 0

that leads to△L(x(k + 1)) + 1N1⊤
N ≻ 0 only if

∑N

i=1 si = 1.

Theorem 4.10 (C1.2)The local constraint̃νq(k + 1) ≥ 0 is a sufficient condition for all
the targets to be connected at least to one agent, i.e.,νq(k + 1) ≥ 0 , ∀q = 1, . . . ,M .

Proof. We need to prove the implication

ν̃q(k + 1) ≥ 0⇒ νq(k + 1) ≥ 0, for q = 1, . . . ,M (4.65)

We start re-interpreting the conditioñνq(k +1) ≥ 0. To this aim, consider targetq, which
appears in the local constraints of subproblem△Pp, p ∈ Oq as

∑

j∈Rq

△vqj(z
∗
q (k + 1), x̃pj(k + 1)) > ν̃qp(k + 1) ≥ ν̃q(k + 1) ≥ 0

for a suitablẽνq(k + 1). This constraint can be written in the equivalent form

∑

j∈Rq

(

cvqj
⊤δx̃pj + cνj

)

> ν̃q(k + 1) ≥ 0 (4.66)

where we have defined

0 ≤
∑

j∈Rq

cνj =
∑

j∈Rq

vqj(zq(k), xpj(k))−
∑

j∈Rq

cvqj
⊤δz∗q (k + 1) = ν−q (k + 1)

and we note that due to Assumption4.7, ∀p ∈ Oq we haveRq ⊆ Op, therefore con-
straint (4.66) can indeed be computed locally. Starting from Equation (4.66), summing
over thep’s and dividing byN :

∑

p∈Oq

∑

j∈Rq

(

cvqj
⊤ δx̃pj(k + 1)

N
+
cνj
N

)

>
∑

p∈Oq

ν̃q(k + 1)

N

or
∑

p∈Oq

∑

j∈Rq

cvqj
⊤ δx̃pj(k + 1)

N
>
Oq
N
ν̃q(k + 1)− Oq

N

∑

j∈Rq

cνj (4.67)

We need to prove that globally

∑

j∈Rq

(

cvqj
⊤δxj(k + 1) + cνj

)

> νq(k + 1) ≥ 0 (4.68)
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which can be rewritten substituting the average (4.61) in (4.68) as

∑

j∈Rq

∑

p∈Jj

(

cvqj
⊤ δx̃pj(k + 1)

N
+ cνj

)

> νq(k + 1). (4.69)

However, since
⋃

j∈Rq

Jj = Oq ∪




⋃

j∈Rq

∂Jj





and due to constraint (4.60g), then the expression (4.69) becomes

∑

j∈Rq

∑

p∈Oq

(

cvqj
⊤ δx̃pj(k + 1)

N
+ cνj

)

> νq(k + 1),

or switching the sum operators

∑

p∈Oq

∑

j∈Rq

cvqj
⊤ δx̃pj(k + 1)

N
> νq(k + 1)−Oq

∑

j∈Rq

cνj . (4.70)

By direct comparison of expression (4.67) and (4.70), by the arbitrariness of the choice of
νq(k + 1), we can always pick

Oq
N
ν̃q(k + 1) +Oq

∑

j∈Rq

cνj −
Oq
N

∑

j∈Rq

cνj = νq(k + 1)

for someνq(k + 1). This leads to

ν̃q(k + 1) + (N − 1)ν−q (k + 1) =
N

Oq
νq(k + 1). (4.71)

We can now prove the implication (4.65) by the relation (4.71). In fact, by assumption
ν̃q(k + 1) ≥ 0, while we know thatν−q (k + 1) ≥ 0 by definition. This implies by (4.71),
thatνq(k + 1) ≥ 0. �

Theorem 4.11 (C2) The global constraints(4.56b)-(4.56f) are satisfied by the average
solution(4.61).

Proof. The constraints (4.56b)-(4.56e) are ensured via Theorems4.2, 4.9, and4.10. Con-
sider now the constraint (4.56f), for each subproblem we have

||δx̃ii(k + 1)|| < ṽmax,i =
N

Ji
vmax,i

and for the global problem:

||δxi(k + 1)|| <
∑

j∈Ji

1

N
||δx̃ji(k + 1)|| < vmax,i
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Thusx(k + 1) satisfies also (4.56f) and (C2) is established. �

Similarly to the centralized case, the global cost functionof△P satisfies the improvement
property (4.57), as formally stated in the following theorem.

Theorem 4.12 (C3) The global cost function of△P satisfies the following improvement
property:

αγ(k + 1) +

M∑

q=1

βqνq(k + 1) ≥ αγ(k) +
M∑

q=1

βqν
−
q (k + 1) (4.72)

where the solution at timek + 1 is computed from the local problems with the aver-
age(4.61).

Proof. We start rewriting (4.72) in the equivalent semi-definite form:

α
(
△L(x(k + 1)) + 1N1⊤

N

)
+ IN

M∑

q=1

βqνq(k + 1) �

α
(
△L(x(k)) + 1N1⊤

N

)
+ IN

M∑

q=1

βqν
−
q (k + 1)

For optimality of the local problems, in each△Pi:

α
(
△Li(x̃Ji

(k + 1)) + 1Ji
1⊤
Ji

)
+ IJi

∑

q∈Ti

βqν̃q(k + 1) �

α
(
△Li(x̃Ji

(k)) + 1Ji
1⊤
Ji

)
+ IJi

∑

q∈Ti

βqν
−
q (k + 1)

or
α△Li(δx̃Ji

(k + 1)) + IJi

∑

q∈Ti

βq(ν̃q(k + 1)− ν−q (k + 1)) � 0

For constraint (4.60g) and Assumption4.7, this can be written as

α△Li(δx̃(i)(k + 1)) + IN
∑

q∈Ti

βq(ν̃q(k + 1)− ν−q (k + 1)) � 0

Summing over the agents and dividing byN

α

N∑

i=1

1

N
△Li(δx̃(i)(k + 1)) + IN

N∑

i=1

1

N

∑

q∈Ti

βq(ν̃q(k + 1)− ν−q (k + 1)) � 0

the second term can be written as:

N∑

i=1

1

N

∑

q∈Ti

βq(ν̃q(k + 1)− ν−q (k + 1)) =

M∑

q=1

Jq
N
βq(ν̃q(k + 1)− ν−q (k + 1))
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by Theorem4.9and Eq. (4.71):

α△LC(δx̃(k + 1)) + IN

M∑

q=1

βq(νq(k + 1)− ν−q (k + 1)) � 0

�

Corollary 4.1 (Stationary targets)When the targets are stationary the global cost function
of△P using the average(4.30) is monotonically increasing.

The proof is straightforward by noticing that in this caseν−q (k) = νq(k).

4.3.4 Simulation Results

In this section we present simulation results comparing thecentralized approximation with
our distributed approach. We considerN = 10 agents andM = 3 targets. The agents lie
initially close to thex-axis, while the targets start at(0, 0). We considervmax,i = 0.25,
wmax,q = vmax,i/15, and∆t = 1. For the weighting function of Figure4.9, we take
ρ1 = 0.75, ρ2 = 3 for wij andρ1 = 0.75, ρ2 = 1.25 for vqi.

We selectα = 1 andβq = 104 for all three targets. We drive the targets in opposite direc-
tion with a non zero-mean bounded noise process. Figures4.11-4.12show the trajectories
of the agents/targets for both the centralized and the distributed solutions (Both the initial
positions and the target trajectories are the same in the twosimulations). Although the
agents’ trajectories are different in the two approximations, in both cases the agents main-
tain a certain level of connectivity (see Figure4.13), while keeping track of the moving
targets. The differences are due to the linearizations, which are trajectory dependent.

As in the maximization of the algebraic connectivity, the simulations illustrate that the
centralized approximation is faster to respond than the distributed one, although both of
them meet the constraints of the optimization problem.
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Figure 4.11: Centralized approximations at four different discrete time instants.
The thin black lines represent the agents’ trajectories, which start from the points
marked with small black dots. The targets’ trajectories arein red and start from
(0, 0). Black circles represent the agents, squares the targets, solid lines are the
communication links and dashed lines the detection links.
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Figure 4.12: Distributed approximations at four different discrete time instants.
The thin black lines represent the agents’ trajectories, which start from the points
marked with small black dots. The targets’ trajectories arein red and start from
(0, 0). Black circles represent the agents, squares the targets, solid lines are the
communication links and dashed lines the detection links.
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Figure 4.13: Algebraic connectivity as a function of timek for both the centralized
and the distributed solutions of Figure4.12.

4.4 Conclusions

In this chapter we have studied two distributed control problems for robotic networks.
First, we have presented a distributed solution to the maximization of the algebraic connec-
tivity of the communication graph in a robotic network. Our characterization can handle
more realistic agent dynamics than the methods available inthe literature and the resulting
optimization problem is proven to be feasible at each time step under reasonable assump-
tions. Furthermore the solution can be adjusted based on available resources using local
relative sub-optimality measures to aid in adapting the neighborhood size to the agents’
needs. Simulation results confirm the efficacy of our distributed approach and show its
practical applicability.

Second, based on and extending the techniques of the first part of the chapter, we have
proposed a distributed and non-iterative solution for the problem of collectively tracking
multiple mobile targets using a robotic network, while maintaining a certain level of con-
nectivity.

4.5 Open Problems and Future Work

The presented problems and our proposed solutions are closely related, and therefore the
following open research challenges apply to both.

Generalization of the Proposed Solutions

The first open problem we discuss is the generalization of theproposed algorithms in order
to guarantee additional properties for the distributed solutions. In particular,
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• Robustness of the proposed algorithms (Algorithm4.1 and4.2) against estimation
errors. In particular, how to ensure connectivity when the positions of the nearby
agents are known only with a level of uncertainty;

• Applicability of the proposed distributed schemes to a broader class of problem
formulations involving LMI constraints of the form

A(x) ≻ 0

for a generic positive semi-definite matrixA with the same sparsity as the graph
Laplacian. This would enable the possibility to solve in a distributed way a broader
class of convex optimization problems.

• The possibility to further decrease the computation and communication effort (while
still satisfying the constraints of the global problem (either (4.26) or (4.56)) by the
use of gossip, randomized, or token-based methods (Boyd et al., 2006, Fagnani and
Zampieri, 2008, Xu et al., 2008, Johansson et al., 2009). In this case each agent
decides randomly to which neighbor to communicate. This idea has been briefly
studied in (Simonetto et al., 2010b), but deserves more in-depth analysis.

Generalization of the Problem Formulation: agents as general LTI systems

Another interesting open problem is the generalization of the formulation to handle general
LTI systems in the centralized problem (4.26). We start from a generalization of (4.16)
considering the(M + 2)-th order system:










xi(τ + 1)
vi(τ + 1)
y1i(τ + 1)

...
yMi(τ + 1)










=








I3 ⋆ ⋆ · · ·
03 ⋆ ⋆ · · ·
03 ⋆ ⋆ · · ·
...

...
...

. . .

















xi(τ)
vi(τ)
y1i(τ)

...
yMi(τ)










+






03
...

b1iI3




ui(τ)

where theyji are additional states, the stars represent non-zero elements, andb1i ∈ R0.
It is not difficult to see that Algorithm4.1 is also applicable to these types of systems,
under quite general assumptions and minor modifications. The key idea is to compute the
control actions everyM + 2 steps while the crucial drawback is that the largerM + 2 is,
the moreρ1 has to be shrunk to accommodate the collision avoidance requirement (see
condition (4.25) which has to be generalized in this case in a straightforward manner).

Consider now the generic LTI system

xi(τ + 1) = Aixi(τ) +Biui(τ)

where the couple(Ai, Bi) is controllable and where the state can be partitioned as(xi(τ)
⊤,

ξi(τ)
⊤)⊤. In order to apply Algorithm4.1, we need to characterize a modification of the

setFi which is defined as:

FTi

i = {xi(τ) ∈ R
3(M+2)|∃ui(τ) ∈ Ūi, . . . , ui(τ + T − 1) ∈ Ūi such that
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ATi

i xi(τ) +

Ti−1∑

h=0

ATi−1−h
i Biu(τ + h) = (xi(τ)

⊤, 0)⊤, ∀τ ∈ N
+

By computingFTi

i , we can extend Algorithm4.1also to general LTI systems, calculating
the control everymaxi{Ti} time steps. However, several issues have to be addressed:(i)
the parameterTi is agent-dependent;(ii) the setFTi

i depends also on the positionxi(τ)
restricting the area in which the agents can move;(iii) sincemaxi{Ti} can be in general
quite large, the condition onρ1 could be rather limiting and it could conflict with the
requirements onFTi

i .

Generalization of the Problem Formulation: full-state dependent Laplacians

The third challenge we discuss is the generalization of the proposed methods to full-state
dependent Laplacians, where the connectivity depends not only on the position of the
agents, but also on other part of their state, e.g., their velocities. This could extend the
validity of the approach to more complex scenario where, forexample, the connectivity
depends on the relative angles (limited field of view communication), or relative (angular)
velocities.

An Improvement of the Linearization Procedure

Another open problem is the analysis of the implications of the linearized procedure of
Section4.2.1. This study is important in the case the positions of the agents vary signifi-
cantly between two discrete time stepsk. In particular, we are interested in cases in which
||xi(k) − xi(k − 1)|| ≫ 0, which can occur if the constraints on the dynamics of the
agents are not strict enough, or if no extra constraint is imposed which upper-bounds this
difference.

Consider the centralized problem (4.26). Although, this can be shown to converge to
a local maximum (Kim and Mesbahi, 2006), this property may be lost when the lin-
earized variables (with△’s) are significantly different from the actual ones (therefore when
||xi(k)− xi(k − 1)|| grows arbitrarily). This can be seen by a simple argument.

First of all, due to the convex dependency ofd2ij(x(k)) onx(k),

d2ij(k) ≥ △fd(xi(k), xj(k)) for each(i, j) ∈ E ,

which is formalized in the following lemma.

Lemma 4.5 The pairwise distance function satisfiesd2ij(k) ≥ △fd(xi(k), xj(k)) for
each(i, j) ∈ E .

Proof. Direct calculation leads to

d2ij(k) = ||xi(k)− xj(k)||2 = ||xi(k − 1) + δxi(k)− xj(k − 1)− δxj(k)||2 =

= d2ij(k − 1) + 2(xi(k − 1)− xj(k − 1))⊤(δxi(k)− δxj(k)) +
+||δxi(k)− δxj(k)||2 (4.73)
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while:

△fd(xi(k), xj(k)) = d2ij(k − 1) + 2(xi(k − 1)− xj(k − 1))⊤(δxi(k)− δxj(k)).
(4.74)

We need to show thatd2ij(k) ≥ △fd(xi(k), xj(k)); assuming that this is the case, substi-
tuting the expression (4.74), the following inequality should also hold

d2ij(k) ≥ d2ij(k − 1) + 2(xi(k − 1)− xj(k − 1))⊤(δxi(k)− δxj(k)),

or, substituting (4.73) for d2ij(k),

||δxi(k)− δxj(k)||2 ≥ 0

which is a tautology. �

The fact thatd2ij(k) ≥ △fd(xi(k), xj(k)) for each(i, j) ∈ E leads to the possibility that
wij(k) ≤ △fw(||xi(k) − xj(k)||2). Since the eigenvalues ofL depend on the weights,
it is possible thatλ2 of L(x(k)), based ond2ij(k), is smaller than the optimalγ(k). This
implies that we cannot guarantee the sequence of optimalγ(k)’s to be increasing and thus
an important assumption of the proof in (Kim and Mesbahi, 2006) is not satisfied.

From an implementation perspective, one could think of using the following iterative pro-
cedure to re-ensure convergence. Consider the casewij(k) < △fw(||xi(k) − xj(k)||2)
for some couple(i, j), then

1. Evaluate the partial derivativescwij andcdij in the expansion ofwij(k) andd2ij(k)
(Equations (4.3)-(4.4)) at the averaged position̄x = (x(k) + x(k − 1))/2;

2. Recompute the solution of the problem (4.26);

3. Iterate until for all couples(i, j): wij ≥ △fw(||xi(k)− xj(k)||2).

The evaluation of this scheme is another open research problem.

Multi-Target Tracking problem

Finally, for the multi-target tracking problem of Section4.3, we can sketch two other
interesting questions:

• How to ensure target-to-agent minimal-distance separation. This constraint could
be posed as done in the agent-to-agent minimal-distance separation, but in the target
case, the targets’ future locations are unknown and therefore a more in depth study
has to be performed;

• How to guarantee persistent feasibility for the sequence ofSemi-Definite Programs
(4.56) (Remark4.7). If the targets are stationary, persistent feasibility follows from
the fact that the solutionx(k + 1) = x(k) is feasible at the discrete timek, just
as in Section4.2. If the targets move arbitrarily, this property is instead difficult
to impose. We believe that using the slow-target assumption(Assumption4.4) one
could derive conditions for persistent feasibility to hold.





Chapter 5

Distributed Optimization Methods in
Robotic Network Applications

Abstract — In this chapter we focus on convex and non-convex networked optimiza-
tion problems with resource allocation constraints, whichcan be used in realistic robotic
network applications where the mobile or non-moving devices share the same resources
across the whole network.

First, we propose a regularized saddle-point algorithm forconvex networked optimiza-
tion problems with resource allocation constraints. Standard subgradient methods suffer
from slow convergence and require excessive communicationwhen applied to problems
of this type. Our approach offers an alternative way to address these problems, and en-
sures that each iterative update step satisfies the resourceallocation constraints. We derive
step-size conditions under which the distributed algorithm converges geometrically to the
regularized optimal value, and show how these conditions are affected by the underlying
network topology. We illustrate our method on a robotic network application example
where a group of mobile agents strive to maintain a moving target in the barycenter of
their positions.

Second, we focus on a particular non-convex networked resource allocation problem,
known as the Maximum Variance Unfolding problem and its dual, the Fastest Mixing
Markov Process problem. These problems are of relevance forsensor networks and mo-
bile robot applications. We solve both these problems with the same distributed primal-
dual subgradient iterations whose convergence is proven even in the case of approximation
errors in the calculation of the subgradients. Furthermore, we illustrate the importance of
the algorithm for sensor network applications, among whichlocalization problems, and
we discuss some extensions to mobile robotic networks and todispersion problems.

5.1 Introduction

In the previous chapters we have encountered and made use of distributed optimization
problem formulations for different scenarios linked to fixed or mobile robotic networks. In
most of the analyzed cases, the optimization framework was used to formulate application-
specific problems. In this chapter, we shift our focus from these application-specific op-
timization problems to more abstract ones. In particular westudy certain convex and

115
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non-convex optimization problems with resource allocation constraints, i.e., problems in
which the decision variables are coupled by the allocation of a given resource (e.g., their
sum has to be equal to a given constant). These problems can bethought of as a generaliza-
tion of open research problems in many fields, among which sensor and robotic networks,
as we will clearly illustrate in this chapter. This link is also one of the main reasons of our
interest.

In Section5.2 we focus on distributed convex problems. In particular we study primal-
dual (saddle-point) iterative methods for solving convex optimization problems with re-
source allocation constraints in addition to convex constraints on local variables and sparse
(convex) coupling constraints. Standard (sub)-gradient methods (Kiwiel , 2004, Nedić and
Ozdaglar, 2009) have gained increased attention in the past years, yet their convergence
rate is known to be rather low especially when the cost function is non-strictly convex.
A recently proposed method (Devolder et al., 2011, Koshal et al., 2011) regularizes the
initial convex problem and thereby increases the convergence rate of common algorithms
delivering a solution arbitrarily close to the one of the original problem. Motivated by this
strategy, we also make use of regularization and solve the resulting strictly convex problem
via a saddle-point method. Furthermore, we incorporate theresource allocation equality
constraints directly into the saddle-point iterations by extending the results of (Xiao and
Boyd, 2006) (originally proposed for unconstrained problems). We derive step-size con-
ditions that guarantee convergence of our iterative scheme, and show how these results
are linked to the problem characteristics and the graph topology, respectively. In stan-
dard dual decomposition approaches (Johansson, 2008) one would typically dualize the
equality constraints and use consensus mechanisms to distribute the resulting Lagrangian
function over the network. This technique results in a slow convergence rate, especially if
the network is sparsely connected. Our proposed approach incorporates the resource al-
location constraints directly in the saddle-point iteration, and uses regularization to obtain
faster convergence. This leads to an inherently distributed method, which converges to the
solution of the original regularized problem.

Finally, we illustrate our algorithm on a realistic roboticnetwork example where a number
of mobile robots strive to keep a moving target in the barycenter of their positions. This
scenario is motivated by our interest in robotic networks and the recent works in target
tracking and target circumnavigation, e.g.Derenick et al.(2009), Shames et al.(2012),
where distributed algorithms are required to be applicablein real-time.

In Section5.3 we focus on a particular non-convex resource allocation problem, known
as Maximum Variance Unfolding problem (Sun et al., 2006), with the intention to solve it
via distributed globally optimal algorithms. In particular, we consider primal-dual subgra-
dient iterations based on the dual of the original problem. We prove the convergence of
these iterations to a global optimizer of the original non-convex problem under standard
assumptions, even when approximations are involved in the distributed determination of
the subgradients.

Furthermore, we illustrate a known relationship of the dualof the non-convex Maximum
Variance Unfolding problem with the Fastest Mixing Markov Process problem (Sun et al.,
2006), which is important in sensor network applications. This link allows us to use the
proposed primal-dual scheme to solve both problems at the same time.

Finally, we discuss via a numerical simulation the performance of the proposed algorithm
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in a sensor network example and we show its relevance to more complex localization
problems. Although this example involves fixed nodes, we argue in Section5.5 how it
could be extended to mobile nodes (robots). In addition, we illustrate that this mobile
scenario is a generalization of the dispersion problem in robotic networks (Dimarogonas
and Kyriakopoulos, 2009), where a group of robots strive to maximize the distance among
themselves maintaining a certain specified connectivity oftheir underlying communication
graph. This observation could offer ways to solve the dispersion problem in a distributed
fashion.

5.2 Convex Networked Optimization under Resource Allocation Con-
straints

5.2.1 Problem Formulation

In this section, we study constrained convex optimization problems on a network of com-
puting nodes. The network is modeled as a connected graphG = (V , E), with vertices
(nodes) in the setV = {1, . . . , N} and pairs of nodes as edges in the setE ⊆ V ×V . Con-
sistent with the other chapters, we denote the cardinality of E asE, the set of neighbors of
nodei asNi = {j|(i, j) ∈ E}, whileL is the Laplacian of the graphG.

We consider the following convex constrained optimizationproblem

minimize
x1,...,xN

∑N
i=1 fi(xi) (5.1a)

subject to gij(xi, xj) ≤ 0 for all (i, j) ∈ E (5.1b)

hi(xi) ≤ 0, for i = 1, . . . , N (5.1c)
∑N
i=1 xi = xtot (5.1d)

where each variablexi ∈ R
n is associated with the nodei, all the functionsfi : Rn →

R, gij : Rn × Rn → R, andhi : Rn → R are continuously differentiable convex
functions. The constant vectorxtot ∈ Rn dictates the total amount of each resource that is
available in the system and therefore defines the resource allocation constraint1. We refer
to problem (5.1) as the primal problem.

Let x ∈ R
nN be the stacked vectorx = (x⊤1 , . . . , x

⊤
N )⊤, while f(x) is a separable cost

functionf(x) =
∑N

i=1 fi(xi), andg(x) denotes in a compact stacked form all the sep-
arable constraint functions described in (5.1b)-(5.1c), with codomain (or target set)Rm,
m = E +N . With this notation we can rewrite problem (5.1) in the compact form

minimize
x

f(x) (5.2a)

subject to g(x) ≤ 0 (5.2b)
(
1⊤
N ⊗ In

)
x = xtot (5.2c)

1For simplicity we consider here the case ofxtot ∈ Rn, although our analysis could be extended to han-
dle cases in whichxtot ∈ Rn̄, with n̄ < n. In this case the constraint (5.1d) need to be substituted with
∑N

i=1 V xi = xtot, whereV is a matrix that selects the usedn̄ component.
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We assume that the constraintsg(x) ≤ 0 define a closed and bounded convex setX̄.
We assume also that the intersection ofX̄ and the set defined by the equality constraint
(
1⊤
N ⊗ In

)
x = xtot is a closed, bounded, and non-empty convex set, denoted byX.

Under these assumptions there exists a (possibly non-unique) optimizer of (5.1), which we
indicate asxopt, while we denote the primal optimal value byfopt.

Problems of type (5.1) can be found in various domains including economics (Arrow and
Hurwicz, 1960) and sensor networks (Palomar and Chiang, 2006). Typically, in these fields
the nodes have a coupling resource allocation constraint, for example the total monetary
budget or the total available bandwidth, respectively.

We are interested in solving the primal problem (5.1) via the use of iterative distributed
algorithms. However, due to the facts that(i) the Lagrangian function associated with
problem (5.1) is in general neither strictly convex in the primal variable x, nor strictly
concave in the dual variables, and(ii) the resource allocation constraint couples all the
nodes, standard primal-dual iterative methods have typically slow convergence rate and
require high communication demand among the nodes. In orderto address these issues,
we study a regularized version of the saddle-point algorithm (primal-dual iterations) in the
next section, which incorporates the resource allocation constraint directly in the update
equations.

5.2.2 Regularized Saddle-Point Algorithm

In this section, we present a distributed gradient-based optimization method that employs
a fixed regularization in the primal and dual spaces. This regularization serves to approxi-
mate the primal problem (5.1) in a way that can be solved by gradient-based methods with
improved convergence properties. Furthermore, we modify the primal iteration to ensure
that each iterate satisfies the resource allocation constraint. This allows us to avoid the du-
alization of the equality constraint, which would need to bedistributed among the nodes
and lead to increased communication requirements.

Let µ ∈ Rm+ be the dual variable associated with the inequality constraint g(x) ≤ 0, and
ν > 0, ǫ > 0 be strictly positive scalars. Motivated by (Koshal et al., 2011), we define a
regularized Lagrangian-type function associated to the primal problem (5.1) as

L(x, µ) := f(x) +
1

2
ν||x||2 + µ⊤g(x)− 1

2
ǫ||µ||2 (5.3)

This Lagrangian-type function is by definition a strictly convex function of the primal
variablex and a strictly concave function of the dual variableµ.

In order to leverage on strong duality relations, we use the following standard assumption.

Assumption 5.1 There exists a Slater vectorx̄ ∈ X such thatg(x̄) < 0.

Our aim is to find an (approximate) solution of the primal problem (5.1), by solving the
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regularized saddle-point problem:

max
µ

min
x

L(x, µ) (5.4)

subject to
(
1⊤
N ⊗ In

)
x = xtot

whose optimal value is denoted byf∗, and unique optimizer byx∗. Under Assumption5.1,
the unique optimizer of the regularized problem (5.4) satisfies the KKT conditions:

∇xL(x∗, µ∗) +
(
1⊤
N ⊗ In

)⊤
p∗ = 0 (5.5a)

∇µL(x∗, µ∗) ≤ 0 (5.5b)
(
1⊤
N ⊗ In

)
x− xtot = 0 (5.5c)

µ∗
q∇µq

L(x∗, µ∗) = 0 for q = 1, . . . ,M (5.5d)

µ∗
q ≥ 0 for q = 1, . . . ,M (5.5e)

whereµ∗ andp∗ are the optimal Lagrangian multipliers2, while∇xL and∇µL indicate
the gradients of the regularized Lagrangian-type functionL(x, µ) with respect tox andµ.

It is expected that in general the solutions of the primal problem (5.1) and the regularized
saddle-point problem (5.4) are different, meaning||x∗−xopt|| 6= 0 and||f∗− fopt|| 6= 0.
Furthermore, the solution of the regularized problem (5.4) does not necessarily satisfy
the inequality constraints of the primal problem (5.1). However, it is possible to bound
the suboptimality and the distance from the primal optimizer, along with the constraint
violation by some function of the regularization parameters ν andǫ. Thus while we are
solving an approximation of the primal problem (5.1) we have bounds on the distance from
the primal optimal solution. Furthermore, in this context the regularization procedure can
be seen as a way to speed up the convergence of standard gradient-like methods, which
may in fact lead to a closer iterate to the optimumfopt of the primal problem within
a finite number of iterations even though an approximate regularized problem is being
solved. For further details we refer the reader to the original works on regularization and
double smoothing techniques (Devolder et al., 2011, Koshal et al., 2011).

The regularized saddle-point problem (5.4) can be readily solved by centralized iterative
methods. However, when a distributed solution is sought, the equality constraint is usually
dualized and decomposed among the nodes, see for example thediscussions in (Jadbabaie
et al., 2009, Zhu and Martı́nez, 2012). Typically, this procedure causes high communica-
tion load and the convergence rate would be affected by the number of nodes. In order to
overcome these potential drawbacks we follow a different route and propose a method that
ensures the feasibility of each iterate with respect to the resource allocation constraint. The
main idea can be thought of as “projecting” the iterates ontothe feasible set of the equality
constraint. This extension allows us to design an inherently distributed iterative scheme
that still solves the original regularized problem (5.4).

LetPR+
indicate the projection over the positive orthant, and letα > 0 andβ > 0 be fixed

2The Lagrangian multiplierp ∈ Rn corresponds to the resource allocation equality constraint, which is
used to describe the KKT conditions of the regularized problem, but not used in our proposed iterative solution
approach.
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strictly positive scalars (step sizes). We consider the following saddle-point iterations:

x(τ+1) = x(τ) − αβ(W ⊗ In)∇xL(x(τ), µ(τ)) (5.6)

µ(τ+1) = PR+

[

µ(τ) + α∇µL(x(τ), µ(τ))
]

(5.7)

with any matrixW ∈ RN×N such that

(a) the vectors1N and1⊤
N are left and right eigenvectors ofW associated to the zero

eigenvalue, respectively:

1⊤
NW = 0, W1N = 0

(b) the zero eigenvalue is unique, i.e.,

W +W⊤ + (1/N)1N1⊤
N ≻ 0

(c) the matrixW has the same sparsity pattern as the Laplacian matrixL of the graph
G.

It is easy to see that if the properties(a)-(c) hold, then the iterations (5.6)-(5.7) can be
computed locally with only the information of the neighboring nodes. In this sense, the
iterations (5.6)-(5.7) are inherently distributed.3

3In order to explicitly see this, letqij be the Lagrangian multiplier associated withgij(xi, xj) ≤ 0 and letvi
be the one associated withhi(xi) ≤ 0 in problem (5.1) (we recall thatµ = (q⊤, v⊤)⊤). The Lagrangian-type
function in (5.3) can be rewritten as

L(x, q, v) =
N
∑

i=1

fi(xi) +
1

2
ν

N
∑

i=1

||xi||
2 +

∑

(i,j)∈E

qijgij(xi, xj) +
N
∑

i=1

vihi(xi)

−
1

2
ǫ





∑

(i,j)∈E

||qij||
2 +

N
∑

i=1

||vi||
2





and therefore the update rule (5.6) can be written as

x
(τ+1)
i = x

(τ)
i − αβ(W ⊗ In) ·

















∇x1f1(x
(τ)
1 ) + 2νx

(τ)
1 +

∑

j∈N1

q
(τ)
1j ∇x1g1j(x

(τ)
1 , x

(τ)
j ) + v

(τ)
1 ∇x1h1(x

(τ)
1 )

...

∇xN fN (x
(τ)
N

) + 2νx
(τ)
N

+
∑

j∈NN

q
(τ)
Nj

∇xN gNj(x
(τ)
N

, x
(τ)
j ) + v

(τ)
N

∇xN hN (x
(τ)
N

)

















= x
(τ)
i

− αβ
∑

j∈N+
i

Wij



∇xj fj(x
(τ)
j

) + 2νx
(τ)
j

+
∑

ℓ∈Nj

q
(τ)
jℓ

∇xj gjℓ(x
(τ)
j

, x
(τ)
ℓ

)+

v
(τ)
j ∇xjhj(x

(τ)
j )

)

while the update (5.7) as q
(τ+1)
ij = PR+

[

q
(τ)
ij + α

(

∇qij gij(x
(τ)
i , x

(τ)
j )− ǫq

(τ)
ij

)]

and v
(τ+1)
i =

PR+

[

v
(τ)
i

+ α
(

∇vihi(x
(τ)
i

)− ǫv
(τ)
i

)]

.
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We claim that there exist conditions on the step sizesα andβ such that the iterations (5.6)-
(5.7) converge to the unique optimal solution of the regularizedproblem (5.4). In partic-
ular, we expect that the step sizeα is linked to the characteristics of the functionsf and
g (as in standard gradient-like methods), whileβ is linked toW , i.e., the network topol-
ogy. These relationships will be shown using the following lemma, which establishes three
important properties of the iterations (5.6)-(5.7).

Lemma 5.1 If the matrixW satisfies the property(a) and for the first iteratex(0) the
resource allocation constraint holds, i.e.,(1N ⊗ In)⊤x(0) = xtot, then

(i) for any τ , the iteratex(τ) satisfies the resource allocation constraint, i.e.,(1N ⊗
In)

⊤x(τ) = xtot;

(ii) the optimal couple(x∗, µ∗) of (5.4) is a fixed point of the iterations(5.6)-(5.7);

(iii) for anyτ , the equalityx(τ+1) = x(τ) holds if and only if either∇xL(x(τ), µ(τ)) +
(1N ⊗ In)p = 0, for somep ∈ Rn, or∇xL(x(τ), µ(τ)) = 0.

Proof. The first claim follows by induction based on (Xiao and Boyd, 2006). Suppose that
x(τ) satisfies the resource allocation constraint. Then forx(τ+1)

(
1⊤
N ⊗ In

)
x(τ+1) =

(
1⊤
N ⊗ In

) (

x(τ) − αβ(W ⊗ In)∇xL(x(τ), µ(τ))
)

and using the fact that
(
1⊤
N ⊗ In

)
(W ⊗ In) = 1⊤

NW ⊗ In = 0 (property(a) of W ) the
claim follows.

The second claim follows by direct calculations. Consider the optimal pair(x∗, µ∗)
of (5.4), then using the KKT conditions we obtain

x(τ+1) = x∗ − αβ(W ⊗ In)∇xL(x∗, µ∗) = x∗ + αβ (W ⊗ In)
(
1⊤
N ⊗ In

)⊤
p∗

= x∗ + αβ (W ⊗ In) (1N ⊗ In) p∗.

Since(W ⊗ In) (1N ⊗ In) =W1N ⊗ In = 0, it follows thatx(τ+1) = x∗ and therefore
x∗ is a fixed point.

The third claim follows from property(b) ofW , i.e., the uniqueness of the zero eigenvalue.
The equalityx(τ+1) = x(τ) holds if and only ifαβ(W ⊗ In)∇xL(x(τ), µ(τ)) = 0. This
last equality is true either if∇xL(x(τ), µ(τ)) = 0 or if the vector∇xL(x(τ), µ(τ)) is an
eigenvector ofW with associated zero eigenvalue. Therefore, using property (b) of W
leads to∇xL(x(τ), µ(τ)) = (1N ⊗ In)p′, with p′ ∈ Rn. Choosingp′ = −p proves the
claim. �

Lemma5.1shows that the information exchange matrixW keeps the iterates feasible with
respect to the resource allocation constraint and does not introduce undesired fixed points.

The next section investigates the conditions onα andβ under which the primal-dual iter-
atesx(τ) andµ(τ) converge to the optimizer(x∗, µ∗) of (5.4), and the bounds on how far
this solution is from the primal solutionxopt in terms of suboptimality||f∗ − fopt|| and
constraint violation.
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Furthermore, we will show that the choice of the informationexchange matrixW (espe-
cially its largest eigenvalue) is important for convergence and we will mention how one
could improve the performances of the iterates tuning the weights inW .

5.2.3 Convergence Properties

Let z be the stacked vectorz = (x⊤, µ⊤)⊤, and define the mapping

Φ(z) = (∇xL(z)⊤,−∇µL(z)⊤)⊤.

We use the short-hand notationW⊗ = W ⊗ In. Moreover, letP be a generic projection
operator, whose codomain will be clear by the context. The iterations (5.6)-(5.7) can be
compactly written as:

z(τ+1) = P
[

z(τ) − α
[
βW⊗

IM

]

Φ(z(τ))

]

=: T (z(τ)) (5.8)

The scope of this section is to identify the assumptions onL(x, µ) and the conditions
onα andβ that let the mappingT : RNn+m → RNn+m be a contraction mapping. This
guarantees geometric convergence of the iterations (5.6)-(5.7) to the optimal point of (5.4).

First of all we characterize the properties of the mappingΦ(z) under the following as-
sumptions.

Assumption 5.2 The iteratesx(τ) andµ(τ) are contained in some closed, convex, and
bounded sets for each iterationτ . In other words,x(τ) ∈ X̂ andµ(τ) ∈ M̂, with X̂ andM̂
closed, convex, and bounded sets.

We note that the assumption ofµ(τ) ∈ M̂ is satisfied under Assumption5.1 (seeKoshal
et al.(2011) for details).

On the other hand, the assumption onx(τ) is a stronger requirement. We remark that we
cannot remove this assumption by enforcing it in the iterations onx(τ), i.e., projecting
x(τ+1) onto some closed, convex, and bounded set, since this would destroy the properties
of the information exchange matrixW . However, one could think of enforcing it via a
modification of the Lagrangian-type function (5.3) through a barrier function. A formal
characterization of this modification is currently under investigation.4

We also make the following mild and technical assumptions:

Assumption 5.3 The gradients off(x) and eachgq(x) are Lipschitz continuous with con-
stantsF andGq, respectively:

||∇xf(a)−∇xf(b)|| ≤ F ||a− b||, for all a, b ∈ X̂

||∇xgq(a)−∇xgq(b)|| ≤ Gq||a− b||, for all a, b ∈ X̂, q = 1, . . . ,m

4We note that we could also pick̂X asRNn, if f andg satisfied Assumptions5.3-5.4with this choice.
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Assumption 5.4 The constraint gradient and Lagrangian dual variable are bounded as

||∇xg(x)|| < Md, and||µ|| ≤Mµ.

We note that Assumptions5.3-5.4are commonly required in the analysis of gradient de-
scent methods. Furthermore, Assumption5.4 is generally satisfied under Assumption5.2.

Assumptions5.1, 5.3, and5.4are important to guarantee that the mappingΦ(z) has certain
regularity properties. In fact, under these assumptions, by Lemma 3.4 of (Koshal et al.,
2011), the mappingΦ(z) is strongly monotone with constantϕ = min(ν, ǫ) and Lipschitz
with constantFΦ. In other words,

〈Φ(a)− Φ(b), a− b〉 ≥ ϕ||a− b||2, for a, b ∈ X̂× M̂ (5.9)

||Φ(a)− Φ(b)|| ≤ FΦ||a− b||, for a, b ∈ X̂× M̂ (5.10)

Properties (5.9) and (5.10) will be important for convergence.

Symmetric Case

In this subsection we will assume that the matrixW is symmetric, i.e.,W⊤ = W . This
will allow us to derive closed-form conditions for the step-sizesα andβ. Define

C := max(βλmax(W ), 1) (5.11)

κ := ϕ− FΦ (βλmax(W )− 1) (5.12)

whereλmax(W ) is the maximum eigenvalue ofW (which can be upper-bounded in a
distributed way, e.g. (Li and Pan, 2001)). Define the ratio

r =
||z(τ+1) − z∗||2
||z(τ) − z∗||2 .

If r < 1 we say that the sequence{z(τ)} has geometrical convergence toz⋆ and its con-
vergence rate isr.

Theorem 5.1 Under the Assumptions5.1, 5.2, 5.3, and 5.4 and for symmetricW , the
conditions

βλmax(W ) < 1 +
ϕ

FΦ
, and α <

2κ

C2F 2
Φ

(5.13)

ensure geometrical convergence of the iterations(5.6)-(5.7) to the unique optimizer(x∗, µ∗)
of the regularized problem(5.4). Furthermore, the convergence rater is

r = 1− 2ακ+ α2C2F 2
Φ (5.14)

Proof. The distance of the primal iteratex(τ+1) to a primal optimizerx∗ can be written as

||x(τ+1) − x∗||2 = ||x(τ) − x∗||2−
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2α
〈

βW⊗
(

∇xL(x(τ), µ(τ))−∇xL(x∗, µ∗)
)

, x(τ) − x∗
〉

+

α2
∥
∥
∥βW⊗

(

∇xL(x(τ), µ(τ))−∇xL(x∗, µ∗)
)∥
∥
∥

2

(5.15)

where we made use of the fact thatx∗ is a fixed point of the iteration (5.6). Using the
relation

∥
∥
∥βW⊗

(

∇xL(x(τ), µ(τ))−∇xL(x∗, µ∗)
)∥
∥
∥

2

≤

β2λ2max(W )
∥
∥
∥∇xL(x(τ), µ(τ))−∇xL(x∗, µ∗)

∥
∥
∥

2

equation (5.15) becomes

||x(τ+1) − x∗||2 ≤ ||x(τ) − x∗||2−
2α
〈

βW⊗
(

∇xL(x(τ), µ(τ))−∇xL(x∗, µ∗)
)

, x(τ) − x∗
〉

+

α2β2λ2max(W )
∥
∥
∥∇xL(x(τ), µ(τ))−∇xL(x∗, µ∗)

∥
∥
∥

2

(5.16)

In a similar fashion, and using the non-expansive property of the projection, we can write
the distance of the Lagrangian multiplierµ(τ+1) to its optimal valueµ∗ as:

||µ(τ+1) − µ∗||2 ≤ ||µ(τ) − µ∗||2+
2α
〈

∇µL(x(τ), µ(τ))−∇µL(x∗, µ∗), µ(τ) − µ∗
〉

+

α2
∥
∥
∥∇µL(x(τ), µ(τ))−∇µL(x∗, µ∗)

∥
∥
∥

2

(5.17)

Summing up the relations (5.16)-(5.17) we obtain

||z(τ+1) − z∗||2 ≤ ||z(τ) − z∗||2−

2α

〈[
βW⊗

IM

] (

Φ(z(τ))− Φ(z∗)
)

, z(τ) − z∗
〉

+

α2C2
∥
∥
∥Φ(z(τ))− Φ(z∗))

∥
∥
∥

2

(5.18)

whereC is defined as in (5.11). The term

−
〈[

βW⊗
IM

] (

Φ(z(τ))− Φ(z∗)
)

, z(τ) − z∗
〉

can be expanded as

−
〈[

βW⊗
IM

] (

Φ(z(τ))− Φ(z∗)
)

, z(τ) − z∗
〉

=
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−
〈[

INn
IM

] (

Φ(z(τ))− Φ(z∗)
)

, z(τ) − z∗
〉

︸ ︷︷ ︸

(a)

+

−
〈[

βW⊗ − INn
0

] (

Φ(z(τ))− Φ(z∗)
)

, z(τ) − z∗
〉

︸ ︷︷ ︸

(b)

We can bound the term (a) based on the strong monotonicity ofΦ(z) in (5.9), while the
term (b) can be bounded as

−
〈[

βW⊗ − INn
0

](

Φ(z(τ))− Φ(z∗)
)

, z(τ) − z∗
〉

≤
∥
∥
∥
∥

〈[
βW⊗ − INn

0

](

Φ(z(τ))− Φ(z∗)
)

, z(τ) − z∗
〉∥
∥
∥
∥

≤
∥
∥
∥
∥

[
βW⊗ − INn

0

]∥
∥
∥
∥

∥
∥
∥Φ(z(τ))− Φ(z∗)

∥
∥
∥

∥
∥
∥z(τ) − z∗

∥
∥
∥

≤ (βλmax(W )− 1)FΦ||z(τ) − z∗||2

where we used the Lipschitz continuity ofΦ(z) in (5.10). The relation (5.18) then becomes

||z(τ+1) − z∗||2 ≤
(
1− 2ακ+ α2C2F 2

Φ

)
||z(τ) − z∗||2 (5.19)

with κ defined as in (5.12). Therefore the first convergence condition is

1− 2ακ+ α2C2F 2
Φ < 1,

while, since it is required thatα > 0, the second condition must beκ > 0. From these
two conditions the relations (5.13) follow. Furthermore the convergence rate expression
in (5.14) can be established based on (5.19). �

Corollary 5.1 The convergence conditions(5.13) on the step sizes are satisfied if the fol-
lowing, more conservative, conditions are met

β <
1

λmax(W )
, and α < 2

ϕ

F 2
Φ

(5.20)

Proof. The proof follows directly fromϕ/FΦ > 0. �

The type of conditions in Corollary5.1are typical in (sub)gradient methods and are often
referred to as “small enough” step size conditions (Bertsekas, 1999). We may notice that
α is bounded by quantities related to the characteristics of the problem functions, whileβ
is related to the structure of the information exchange graph. We also note thatα has to be
determined a priori based on the knowledge of the problem function properties, whileβ
can be computed in a distributed way by the nodes, since thereare distributed algorithms
to upper-boundλmax(W ), e.g. (Li and Pan, 2001).

The following technical lemma characterizes the “quality”of the regularized optimal so-
lution x∗ with respect to the original primal problem (5.1) in function of the regularization
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parametersν andǫ: it provides bounds on the amount of constraint violation ofg(x∗) and
the suboptimality||f∗−fopt||. In order to compactly characterize these bounds, we define
the constraint set of the regularized problem (5.4) asXν,ǫ, which implies thatx∗ ∈ Xν,ǫ.
The setXν,ǫ is closed, bounded, and convex, and in general different from the original
primal constraint setX, being howeverX ⊆ Xν,ǫ.

Lemma 5.2 Under the Assumptions5.1, 5.2, 5.3, and5.4, and usingν, ǫ as regularization
parameters in(5.3) the maximum constraint violation is bounded by

max{0, gi(x∗)} ≤MdiMµ

√
ǫ

2ν
(5.21)

whereMdi = maxx∈X̂
||∇xgi(x)|| for eachi andMµ = maxµ∈M̂

||µ||, while the differ-
ence between the optimal value of the regularized problem(5.4) and the optimal value of
the original one(5.1) can be bounded by

||f∗ − fopt|| ≤MfMµ

√
ǫ

2ν
+
ν

2
D2 (5.22)

whereMf = maxx∈Xν,ǫ
||∇xf(x)||,D = maxx∈Xν,ǫ

||x||

Proof. The proof is a modified version of Lemma 3.3 in (Koshal et al., 2011). In particular,
the bound (5.21) follows directly from Lemma 3.3 in (Koshal et al., 2011), while the
bound (5.22) requires the modification that we consider forMf andD the maximum ofx
overXν,ǫ instead ofX̂ (which could lead to a too conservative result in our case).

The proof of the bound (5.22) starts from bounding||f∗ − fopt|| by

||f∗ − fopt|| ≤ ||f∗ − f∗
ǫ=0||+ f∗

ǫ=0 − fopt (5.23)

wheref∗
ǫ=0 is the optimal cost for the regularization problem with regularization parameter

ǫ = 0, andf∗
ǫ=0 − fopt ≥ 0. By convexity off , we have

f∗ − f∗
ǫ=0 ≤ ∇xf(x∗)⊤(x∗ − x∗ǫ=0) (5.24)

with x∗ǫ=0 the unique optimizer of the regularization problem with regularization param-
eterǫ = 0. Sincex∗, x∗ǫ=0 ∈ Xν,ǫ andXν,ǫ is compact, by the continuity of the gradient
||∇xf(x)||, the gradient norm is bounded and we can write (5.24) as

||f∗ − f∗
ǫ=0|| ≤ max

x∈Xν,ǫ

||∇xf(x)||
︸ ︷︷ ︸

Mf

||x∗ − x∗ǫ=0|| (5.25)

However, By Proposition 3.1 of (Koshal et al., 2011), we can bound||x∗ − x∗ǫ=0|| by
Mµ

√

ǫ/2ν and therefore (5.25) can be written as

||f∗ − f∗
ǫ=0|| ≤MfMµ

√
ǫ

2ν
(5.26)
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Using the estimatef∗
ǫ=0 − fopt ≤ ν/2maxx∈Xν,ǫ

||x||2, which follows directly from the
definition of the cost function (see Lemma 7.1 of (Koshal et al., 2011)), then (5.23) can be
written as

||f∗ − fopt|| ≤MfMµ

√
ǫ

2ν
+
ν

2
D2

�

Non-symmetric Case

In this subsection, we consider the case of non-symmetric matricesW . It is not difficult
to see that all the previous derivations hold true with the small modification that instead of
λmax(·) we will haveσmax(·), meaning the largest singular value. Unfortunately, due to
the termσmax(βW − IN ), the condition onβ is not solvable in closed-form. In particular,
if we define

C′ := max(βσmax(W ), 1), κ′ := ϕ− FΦσmax(βW − IN )

then the conditions in (5.13) for the non-symmetric case become

σmax(βW − IN ) <
ϕ

FΦ
, and α <

2κ′

C′2F 2
Φ

.

Weight Design

Instead of a unique step sizeβ, one may consider designing the whole information ex-
change weight matrixW . For simplicity we redefine the weight matrix asW := βW
whose pattern is fixed by the network structure (and supposedto be symmetric) but the
single entries are variables to be determined. If we useW in the iterations (5.6)-(5.7), the
convergence conditions onW (in addition to the one onα) can be written as

λ2(W ) > 0 ⇐⇒ W + (1/N)1N1⊤N ≻ 0

λmax(W ) < 1 ⇐⇒ W − IN ≺ 0

These conditions are similar to those in (Xiao and Boyd, 2006). In particular, the first
condition is a connectivity condition, while the second could be interpreted as diagonal
dominance. Using the fact that(W + (1/N)1N1⊤N )−1W = (IN − (1/N)1N1⊤N ) and
therefore

W (W + (1/N)1N1⊤N )−1W =W

by Schur complement these relations can be translated into the LMI (Xiao and Boyd, 2006)

[
W + (1/N)1N1⊤

N W

W IN

]

≻ 0 (5.27)

which makes the weight design a centralized convex problem.Finally, one could even
optimize the weights to improve performance; this could be done by the centralized convex
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problem

maximize
γ≥0,W

γ (5.28a)

subject to W � 0, W1N = 0 (5.28b)
[
W + (1/N)1N1

⊤
N W

W IN

]

≻ γI2N . (5.28c)

5.2.4 Summary of the Proposed Solution

We summarize the proposed regularized saddle-point iterations in Algorithm 5.1. We
recall once more that:

• The choice of the regularization parametersν and ǫ determines the convergence
properties of Algorithm5.1. The higher the parameters are, the faster the conver-
gence rate could be. However, the higher these parameters are, the further away is
the approximate solution of Algorithm5.1 to the real optimum of the optimization
problem (5.1).

• The choice of the step sizesα andβ is determined via the convergence results The-
orem5.1 and Corollary5.1. In particular, the step sizeβ has to be determined by
the knowledge of the maximum eigenvalue of the network Laplacian (which can be
computed in a distributed way by the nodes, since there are distributed algorithms to
upper-boundλmax(W ), e.g. (Li and Pan, 2001)). The step sizeα is instead linked
to the properties of the optimization problem (not of the graph but of the optimiza-
tion functions), and Theorem5.1 ensures that there exists a “small enough”α that
guarantees convergence.

Algorithm 5.1 Regularized Saddle-Point Algorithm

1: Input:x(τ), µ(τ)

⊲ Available data: f, g, α, β, ν, ǫ,W

2: Compute:∇xL(x(τ), µ(τ)) and∇µL(x(τ), µ(τ)) with

L(x, µ) = f(x) +
1

2
ν||x||2 + µ⊤g(x) −

1

2
||µ||2

3: Compute:

x(τ+1) = x(τ) − αβ(W ⊗ In)∇xL(x
(τ), µ(τ))

µ(τ+1) = PR+

[

µ(τ) + α∇µL(x
(τ), µ(τ))

]

4: Output:x(τ+1), µ(τ+1)

5.2.5 A Robotic Network Application: Target Tracking and Barycenter Keeping

In this section we use an application scenario inspired by a realistic problem to illustrate
the proposed method. We consider a group ofN mobile robots that can communicate
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among each other via a communication network. Let the graph that describes the network
beG = (V , E) and we will assume that it is time-invariant. As usual, letxi(k) ∈ R2 be the
position of roboti at the discrete time stepk. Let y(k) ∈ R2 be the position of a moving
target at the discrete time stepk. We model the robot dynamics as single integrator systems
and associate the convex cost functionfi(xi(k) − xi(k − 1)) with each of them that can
represent the energy consumption. We assume the robots knowthe target location.

Motivated by recent research works on multi-target tracking and target circumnavigation
(Derenick et al., 2009, Shames et al., 2012), we are interested in moving the robots to
ensure that the target is always in the barycenter of their positions. Furthermore, we require
that robots connected by an edge in the fixed graph have a boundR on their maximal
distance (for communication purposes). We limit the allowable change of position in one
step||xi(k) − xi(k − 1)|| by vmax,i∆t to model physical limitations. Finally, our global
objective is to meet the aforementioned requirements whileminimizing the total energy
consumption. At each discrete timek, the above problem can be written as

minimize
x1(k),...,xN(k)

∑N
i=1 fi(xi(k)− xi(k − 1)) (5.29)

subject to ||xi(k)− xj(k)||2 −R2 ≤ 0

for all (i, j) ∈ E
||xi(k)− xi(k − 1)|| − vmax,i∆t ≤ 0

for i = 1, . . . , N

1/N
∑N

i=1 xi(k) = y(k)

which is a specific instance of (5.1) for each time stepk. In particular, since the target is
moving,y(k) corresponds to a time-varying total available resourcextot in the formulation
of problem (5.1)5.

Our simulation example consists ofN = 7 robots connected via a communication graph
shown in Figure5.1with Laplacian matrixL. The parameters of the scenario areR = 1.2,
and

fi(δxi(k)) = 〈Qiδxi(k), δxi(k)〉,
whereδxi(k) = xi(k) − xi(k − 1) andQi = 1 for all i except fori = 6, for which
Q6 = 0. In practice, this translates in a non-strictly convex costfunction. We consider
vmax,6 = 0.5 (which means that the robot6 is limited only by physical constraints, and not
by the cost), while the othervmax are set to+∞ (meaning that the other robots do not have
physical constraints). Given the fact that the cost function is not strictly convex and the
position of the robots are coupled via a resource allocationconstraint, even this small-size
problem could be difficult to solve (in terms of communication/computation requirements)
for common gradient algorithms. This makes this example interesting to analyze with the
proposed approach.

We solve problem (5.29) via the proposed regularized saddle-point Algorithm5.1 with
ν = 10, ǫ = .01, andW = L. The step sizes areβ = 0.2 (determined via Corollary5.1)
andα = 0.01 (determined via trial-and-error). In practice, sincextot (y(k)) is varying we

5We note that, when the proposed saddle-point algorithm is used to solve the problem (5.29) at each discrete
time stepk, each initialxi(k)(0) can be chosen asxi(k)(0) = xi(k−1)+(y(k)−y(k−1)), with xi(0)(0) =
y(0). This ensures that the initial iterates satisfy the resource allocation constraint.
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Figure 5.1: Representation of the trajectories of two robots while the target moves
(blue thick line). The initial graph and positions of the robots are marked in black,
while the final configuration is marked in red. The notationxi,(j) indicates thej-th
component ofxi.

solve problem (5.29) at convergence for eachk using Algorithm5.1.

Figure 5.1 shows the computed trajectories of the robots while the target moves (blue
thick line). The initial graph and positions of the robots are marked in black, while the
final configuration is marked in red. In order to assess the “quality” of the regularized
problem solution with respect to the original primal one, the maximal error of the optimal
robot positionsmaxk ||x∗(k) − xopt(k)|| was computed and resulted in0.02, which is
acceptable in this application scenario. Finally, we report that the total number of commu-
nication/computation iterations per discrete time stepk per robot wasτ = 2000, and the
computations required around0.03 s per node per discrete time stepk, on an Intel Corei5
(2.3 GHz and 4GB DDR3) laptop. These results are encouragingsince the regularization
parameters were not specifically optimized to minimize the number of iterations. This as-
pect, along with extensive comparisons with common gradient methods are left as future
development.6

6As a preliminary result, we remark that dualizing the resource allocation constraint would cause an increase
of the number of iterations of at least 40%, even withβ = 1. We expect non-regularized gradient methods to
need even more iterations to achieve the same accuracy as comprehensively illustrated in (Koshal et al., 2011).
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5.3 The Maximum Variance Unfolding Problem

While the previous section we have looked into convex resource allocation problems, in
this section we shift our focus on a particular non-convex one, known as Maximum Vari-
ance Unfolding problem, with the intention to solve it via global optimal distributed algo-
rithms. This problem arises in different research areas, such as localization (Weinberger
et al., 2007), mechanics (Sun et al., 2006), linear algebra (Göring et al., 2008), and un-
supervised (machine) learning (Weinberger and Saul, 2006). Furthermore, together with
its dual, it is linked to important research questions in robotic networks, such as the max-
imization and minimization of the algebraic connectivity of the underlying graph under
given constraints.

5.3.1 Problem Formulation

With the notation of Section5.2, let the optimization variable associated to nodei bexi
and, for simplicity, consider thisnodalvariable to be scalar, i.e.xi ∈ R (This assumption
will be removed in Section5.3.5). Letrij ∈ R be a bound associated with the edge(i, j) of
the graphG connecting the nodes. We are interested in solving the following non-convex
problem

maximize
x1,...,xN

N∑

i=1

||xi||2 (5.30a)

subject to ||xi − xj ||2 ≤ r2ij for all (i, j) ∈ E (5.30b)
N∑

i=1

xi = 0 (5.30c)

Problem (5.30) is known as the Maximum Variance Unfolding problem, or MVU (Sun
et al., 2006, Weinberger and Saul, 2006). Under the assumption that the communication
graphG is connected, the MVU problem (5.30) has a (possibly not unique) optimal solu-
tion xopt, which makes all the inequality constraints active (Sun et al., 2006). Notice the
constraint (5.30c): its scope is to make the solution of (5.30) finite (in fact, without it we
could take all thexi to be the same and to be arbitrarily large).

Although the MVU problem (5.30) is non-convex, it is well-known that it can be trans-
formed into a convex problem by the change of variablesX = xx⊤. Pursuing this trans-
formation we arrive at the convex SDP (Sun et al., 2006, Göring et al., 2008)

maximize
X

trace (X) (5.31a)

subject to Xii +Xjj −Xij −Xji ≤ r2ij , for all (i, j) ∈ E (5.31b)

1⊤
NX1N = 0, X � 0 (5.31c)

The non-convex problem (5.30) and convex (5.31) are equivalent in the sense that they
yield the same optimal value, i.e.,xopt⊤xopt = trace (Xopt). For this reason, in many ap-
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plications it is often convenient to transform the non-convex (5.30) into the convex (5.31),
which can be solved efficiently (Weinberger and Saul, 2006, Weinberger et al., 2007).

Both the non-convex problem (5.30) and the convex one (5.31) can be solved with cen-
tralized algorithms (although, for the non-convex case thealgorithms may lead to local
optima). Furthermore, methods have been proposed to approximate the convex prob-
lem (5.31) in order to reduce its computational complexity when the size of the problem
becomes large (e.g.,N > 1000), see (Weinberger et al., 2007).

Distributed Solutions

Solving the two problems (5.30) and (5.31) in a distributed way is more challenging. In
principle, the non-convex (5.30) could be solved using a Sequential Quadratic Program-
ming approach (Bertsekas, 1982, 1999), and the resulting quadratic programs distributed
among the nodes with the saddle-point iterations of Section5.2. In practice, the valid-
ity of such a scheme is still in doubt, since the regularization parameters could endanger
convergence, and even in the best case, the algorithm might lead to a local optimum. On
the other hand, the convex formulation (5.31) is constrained via matrix (in)equalities that
are difficult to decouple among the nodes. In particular, theprojection over the constraint
X � 0 would require the knowledge of the spectral decomposition of the full matrix
X , see (Boyd and Vandenberghe, 2004). The available distributed algorithm (Kempe and
McSherry, 2008) to obtain such decomposition is limited to matrices that own the same
sparsity of the underlying graph and therefore it is not directly applicable in this case.
Furthermore, the knowledge ofXopt would not automatically imply thatxopt can be com-
puted in a distributed way.

Nonetheless, we will see in the next sections how the dualization of the convex prob-
lem (5.31) overcomes most of the issues and allows us to devise globally optimal dis-
tributed algorithms.

5.3.2 The Dual of the MVU Problem and the Fastest Mixing Markov Problem

We describe in this section a rather well-known relationship between the MVU prob-
lem (5.30) and the Fastest Mixing Markov Process problem (Sun et al., 2006). In par-
ticular, we show that these two problems are the dual of one another. This link will be
used in our proposed algorithm.

Consider the weighted and undirected connected graphG = (V , E), where we assign to
each edge a weightwij ∈ R+. LetE the cardinality ofE and letw ∈ RE+ be the stacked
vector of the weights, and letL be the laplacian ofG. The second smallest eigenvalue of
the graph depends on the weights, which we indicate with the notationλ2(w). Finding
the Fastest Mixing Markov Process on a graph, or FMMP, is the problem of determining
the weightsw that maximize the algebraic connectivity of the graph, under a certain linear
bound onw. The FMMP problem can be written as

maximize
w

λ2(w) (5.32a)

subject to
∑

(i,j)∈E
r2ijwij ≤ 1 (5.32b)
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w ≥ 0 (5.32c)

or, since both the objectiveλ2(w) and the constraint function
∑

(i,j)∈E r
2
ijwij are positive

homogeneous, in the equivalent (re-scaled) form (Sun et al., 2006)

minimize
w

∑

(i,j)∈E
r2ijwij (5.33a)

subject to λ2(w) ≥ 1 (5.33b)

w ≥ 0 (5.33c)

where the inequalityw ≥ 0 has to be interpreted element-wise. The problems (5.32) and
(5.33) are convex, sinceλ(w) is a concave function of the weightsw (De Gennaro and Jad-
babaie, 2006). Moreover, we remark that at optimalityλ2(wopt) = 1 for problem (5.33)
(Sun et al., 2006).

Based on Lemma4.1of Chapter 3, problem (5.33) can be written as the SDP

minimize
w

∑

(i,j)∈E
r2ijwij (5.34a)

subject to L(w) + (1/N)1N1⊤
N � IN (5.34b)

w ≥ 0 (5.34c)

where, as usual, the LaplacianL depends linearly on the weightsw.

Remark 5.1 Notice that we can substitute the constraintλ2(w) ≥ 1 with λ2(w) ≥ λ̄2 for any
positiveλ̄2 > 0 without difficulty. In fact, due to the linearity of the LaplacianL onw, the scaling
w̃ = w/λ̄2 would normalize the problem tōλ2 = 1.

The dual of problem (5.34) is the convex problem

maximize
X̃

trace
(

(IN − (1/N)1N1⊤
N)X̃

)

(5.35a)

subject to X̃ii + X̃jj − X̃ij − X̃ji ≤ r2ij , for all (i, j) ∈ E (5.35b)

X̃ � 0 (5.35c)

which, with the substitution of variable

X = (IN − (1/N)1N1
⊤
N )X̃(IN − (1/N)1N1

⊤
N )

can be written as (Sun et al., 2006)

maximize
X

trace (X) (5.36a)

subject to Xii +Xjj −Xij −Xji ≤ r2ij , for all (i, j) ∈ E , j > i (5.36b)

1⊤
NX1N = 0, X � 0 (5.36c)

Problem (5.36) is equivalent to the convex MVU problem (5.31), thus the primal-dual
relationship between FMMP problem and MVU problem. In particular, assuming that
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Assumption 5.5 There exists a Slater vector for problem(5.31) and problem(5.33).

we can prove that the duality gap is zero, (Sun et al., 2006), meaning

∑

(i,j)∈E
r2ijw

opt
ij = trace

(
Xopt

)

Furthermore when solving the convex MVU problem (5.31) at optimality, its dual vari-
ables will be optimal for the FMMP problem (5.34) and vice versa. We remark that this is
also true for the non-convex MVU problem (5.30) if its global maximum is found. We for-
malize these primal-dual relationships by the use of KKT optimal conditions. In particular,
the optimal couple(wopt, Xopt) satisfies:

Primal-Dual feasibility:

wopt ≥ 0, L(wopt) � IN − (1/N)1N1
⊤
N

1⊤
NX

opt1N = 0, Xopt � 0, Xopt
ii +Xopt

jj −Xopt
ij −Xopt

ji ≤ r2ij , for all (i, j) ∈ E
Complementary slackness on edges:

(Xopt
ii +Xopt

jj −Xopt
ij −Xopt

ji − r2ij)wopt
ij = 0, for all (i, j) ∈ E

Matrix complementary slackness:

L(wopt)Xopt = Xopt

The last condition means that the range ofXopt lies in the eigenspace ofL(wopt) associ-
ated withλ2(wopt) (which we recall to be one). This leads to the following result. Indicate
with v

opt
2 the normalized eigenvector associated withλ2(w

opt) and callcopt the optimal
cost for the FMMP problem, i.e.,copt =

∑

(i,j)∈E r
2
ijwij , then an optimal solution forX

is
Xopt = coptvopt

2 v
opt
2

⊤
(5.37)

Furthermore ifλ2(wopt) is isolated, this solution is also unique (Sun et al., 2006). The
relation (5.37) also yields to

xopt =
√
coptvopt

2 (5.38)

for a global optimal optimizer of the non-convex problem (5.30).

Equation (5.38) will be an important ingredient in the design of a distributed global optimal
algorithm for the non-convex problem (5.30) as we illustrate next.

5.3.3 Proposed Distributed Algorithm

We are interested in solving the MVU problem (5.30) in a distributed fashion. In order to
do so, we propose to utilize its dual convex FMMP (5.33) problem and a primal-dual sub-
gradient technique. (We remark thatλ2(w) is a non-smooth function ofw). The intention
is to design a global optimal distributed algorithm for (5.30) by solving in a distributed
way the convex FMMP (5.33).
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Preliminaries

First of all we recall some useful definitions and some neededpreliminary results. Letf
be a convex functionf : Rn → R, while let g be a concave functiong : Rn → R. The
vectors ∈ Rn is a subgradient of the convex functionf at a pointx ∈ Rn if

f(y) ≥ f(x) + 〈s, y − x〉, for all y ∈ R
n

while s is a subgradient7 of the concave functiong at a pointx ∈ Rn if

g(y) ≤ g(x) + 〈s, y − x〉, for all y ∈ R
n

Given a strictly positive scalarε > 0, the vectors is an ε-subgradient off at a point
x ∈ Rn if

f(y) ≥ f(x) + 〈s, y − x〉 − ε, for all y ∈ R
n

while s is anε-subgradient ofg at a pointx ∈ Rn if

g(y) ≤ g(x) + 〈s, y − x〉+ ε, for all y ∈ R
n

The concept ofε-subgradient is useful when the computation of the subgradient of a given
function is affected by approximation errors. This is the reason why the schemes that
employε-subgradients instead of subgradients are often referred to as approximate sub-
gradient methods (Kiwiel , 2004).

Consider the convex FMMP problem (5.33). Let the vectorqij ∈ RN be

(qij)q =







1 if q = i
−1 if q = j
0 otherwise

(5.39)

We remark that the subscriptsi andj are bold since the objectqij is a vector that refers to
the nodesi andj and not the element(i, j) of q.

The LaplacianL(w) of the underlying graphG on which problem (5.33) is based upon can
be written as

L(w) =
∑

(i,j)∈E
qijqij

⊤wij

The algebraic connectivity ofL(w) is a concave function ofw since for everỹw ∈ RE+ (De
Gennaro and Jadbabaie, 2006)

λ2(w̃) ≤ λ2(w) + trace
(
〈v2v

⊤
2 , L(w̃)− L(w)〉

)

wherev2 is the eigenvector associated to the second smallest eigenvalue ofL(w). Substi-
tuting the expression ofL(w) we obtain

λ2(w̃) ≤ λ2(w) + trace



〈v2v
⊤
2 ,

∑

(i,j)∈E
qijqij

⊤(w̃ij − wij)〉



 =

7We note that some authors refer tos as supergradient if it is the subgradient of a concave function.
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λ2(w) + trace




∑

(i,j)∈E
v2v

⊤
2 qijqij

⊤(w̃ij − wij)



 =

λ2(w) +
∑

(i,j)∈E
trace

(
v2v

⊤
2 qijqij

⊤) (w̃ij − wij) =

λ2(w) +
∑

(i,j)∈E
(v2i − v2j)

2(w̃ij − wij)

wherev2i andv2j are thei-th andj-th component ofv2. Therefore the vector∇wλ2(w) ∈
RE with components

(∇wλ2(w))ij = (v2i − v2j)
2 (5.40)

is a subgradient for (the concave)λ2(w) atw.

LetL(w, µ) be the Lagrangian function associated with the FMMP problem(5.33), i.e.,

L(w, µ) =
∑

(i,j)∈E
r2ijwij + µ(1− λ2(w)) (5.41)

whereµ ∈ R+ is the dual variable ofw. Let∇wL(w, µ) and∇µL(w, µ) be the subgradi-
ents ofL(w, µ) with respect tow andµ, respectively. These subgradients can be expressed
component-wise as

(∇wL(w, µ))ij = r2ij − µ (∇wλ2(w))ij = r2ij − µ(v2i − v2j)
2

∇µL(w, µ) = 1− λ2(w).

We note that, for Assumption5.5and the existence of a solution for problem (5.33), there
exist two closed, convex, and bounded setW ⊂ R+ andM ⊂ R+ so thatw ∈ W and
µ ∈M. These sets are computable a priori8 (Nedić and Ozdaglar, 2009).

From the existence of these two sets, the following standardassumption holds true for our
problem formulation.

Assumption 5.6 The subgradients∇wL(w, µ) and∇µL(w, µ) are uniformly bounded,
i.e., there is a constantΛ > 0 such that

‖∇wL(w, µ)‖ ≤ Λ, ‖∇µL(w, µ)‖ ≤ Λ for all w ∈W, µ ∈ M

Primal-dual iterations

In order to solve in a distributed way the FMMP problem (5.33), we consider the primal-
dual iterations

w(τ+1) = PW

[

w(τ) − α∇wL(w(τ), µ(τ))
]

(5.42)

µ(τ+1) = PM

[

µ(τ) + α∇µL(w(τ), µ(τ))
]

(5.43)

8As a matter of fact, in practical situations, we could assumew ∈ R+ andµ ∈ R+.
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with a constant step sizeα > 0.

We define the running averagesw̄(τ) andµ̄(τ) generated by:

w̄(τ) =
1

τ

τ−1∑

j=0

w(j), µ̄(τ) =
1

τ

τ−1∑

j=0

µ(j)

We can cite the following theorem from (Nedić and Ozdaglar, 2009) that guarantees con-
vergence of the couple(w̄(τ), µ̄(τ)) to a saddle-point of the Lagrangian (5.41).

Theorem 5.2 [Proposition 1 ofNedić and Ozdaglar(2009)] Under Assumption5.6 the
following relations for the iterates(5.42)-(5.43) hold true:

(a) For all τ ≥ 1,

− ||µ
(0) − µopt||2

2ατ
− αΛ2

2
≤ 1

τ

τ−1∑

j=0

L(w(j), µ(j))− L(wopt, µopt) ≤

||w(0) − wopt||2
2ατ

+
αΛ2

2

(b) The averages̄w(τ) andµ̄(τ) satisfy the following relation for allτ ≥ 1:

− ||µ
(0) − µopt||2 + ||w(0) − w̄(τ)||2

2ατ
−αΛ2 ≤ L(w̄(τ), µ̄(τ))−L(wopt, µopt) ≤

||w(0) − wopt||2 + ||µ(0) − µ̄(τ)||2
2ατ

+ αΛ2

The result in part(a) provides bounds on the averaged function values

1

τ

τ−1∑

j=0

L(w(j), µ(j))

in terms of the distances of the initial iteratesw(0) andµ(0) from the vectorswopt and
µopt that constitute a saddle point ofL(w, µ). In particular, the averaged function values
converge to the saddle point valueL(wopt, µopt) within error levelαΛ2/2. This conver-
gence goes as1/τ with the number of iteration9. The result in part(b) gives bounds on
the function valueL(w̄(τ), µ̄(τ)) of the averaged iterates̄w(τ) and µ̄(τ) in terms of the
distances of the averaged iterates from the initial iterates and saddle point vectors. Under
the assumption that the iterates generated by the subgradient algorithm (5.42)-(5.43) are
bounded, this result shows that the function values of the averaged iteratesL(w̄(τ), µ̄(τ))
converge to the saddle-point value(wopt, µopt) within error levelαΛ2 as1/τ . The error
level is due to the use of a constant step size and can be controlled by choosing a smaller

9In practice we could say that the rate of convergence is1/τ (Koshal et al., 2011).
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step size value at the price of increasing the number of iterations τ . Therefore, Theo-
rem 5.2 provides explicit tradeoffs between accuracy (in terms ofα) and computational
complexity (in terms ofτ ) in choosing the step size value.

In the following theorem we characterize the value of the optimal dual variableµopt, which
will enable us to derive a global optimal optimizer for the non-convex MVU (5.30).

Theorem 5.3 The optimal value of the dual variableµopt is unique and equal to the cost
of the FMMP problem(5.33), i.e.,µopt = copt.

Proof. An optimal point for the FMMP problem (5.33) is a fixed point of the iterations
(5.42)-(5.43), due to Theorem5.2. In particular, an optimizer of (5.33), must satisfy

wopt
ij = PW

[
wopt
ij − α(r2ij − µopt(vopt

2i − v
opt
2j )2)

]
, for all (i, j) ∈ E .

Sinceα > 0, and sincewopt
ij < maxwij

||W||, this means that: eitherwopt
ij = 0 and

r2ij − µopt(vopt
2i − v

opt
2j )2 > 0 orwopt

ij > 0 and

r2ij − µopt(vopt
2i − v

opt
2j )2 = 0.

Due to the fact thatwopt is not null, we can write
∑

(i,j)∈E
wopt
ij

(
r2ij − µopt(vopt

2i − v
opt
2j )2

)
= 0,

thus ∑

(i,j)∈E
wopt
ij r2ij = µopt

∑

(i,j)∈E
wopt
ij (vopt

2i − v
opt
2j )2,

and therefore

copt = µopt
∑

(i,j)∈E
wopt
ij (vopt

2i − v
opt
2j )2

= µopt
∑

(i,j)∈E
wopt
ij trace

(

v
opt
2 v

opt
2

⊤
qijqij

⊤
)

= µopttrace



v
opt
2 v

opt
2

⊤ ∑

(i,j)∈E
wopt
ij qijqij

⊤





= µopttrace
(

v
opt
2 v

opt
2

⊤
L(wopt)

)

= µopttrace
(

v
opt
2 v

opt
2

⊤)
= µopt

where we use the fact thatvopt
2

⊤
L(wopt) = v

opt
2

⊤
, sinceλ2(wopt) = 1. �

Theorems5.2 and5.3 with the iterations (5.42)-(5.43) provide a way to compute an op-
timal solution for the FMMP problem (5.33), as well as for the non-convex MVU prob-
lem (5.30). In fact, recalling that by equation (5.38), xopt =

√
coptvopt

2 , once the cou-
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ple (µopt,vopt
2 ) is available through the iterations (5.42)-(5.43), due to the equivalence

µopt = copt, one can readily computexopt.

However, the iterations (5.42)-(5.43) are not distributed, since they require the knowledge
of the algebraic connectivity and its associated eigenvector.

Approximate Distributed Solution

In this section we propose a way to distribute the computation of the subgradients of
L(w, µ). Furthermore, we will analyze the case in which these subgradients are affected by
some approximation error. This case is of practical importance when the communication
effort among the nodes has to be limited, and therefore the iterative distributed algorithm
to compute the subgradients ofL(w, µ) has to be stopped before reaching convergence.

SinceL(w) is a sparse matrix, we can now utilize the already mentioned distributed al-
gorithm (Kempe and McSherry, 2008) to compute its eigenvalues and eigenvector. This
technique, named by the authors asDOI algorithm (for decentralized orthogonal iteration),
computes the spectral decomposition of a matrixM that owns the same sparsity of the
underlying graphG. The method is based on aQR decomposition and a consensus itera-
tion and converges within an accuracy ofε to the eigenspace of the matrixM ∈ RN×N in
O(log2(N/ε)1/λ2(G)) rounds of communication/computations. Using this method,each
node of the network has a copy ofv2 with which they can compute locally the algebraic
connectivity (by the multiplication ofv2 with their row of the Laplacian).

The iterations (5.42)-(5.43) with theDOI algorithm could be used to solve the FMMP/MVU
problems in a distributed way. It remains to prove that the convergence result of Theo-
rem5.2 still holds if the subgradients of the Lagrangian function (i.e., the algebraic con-
nectivity and its associated eigenvector) are computed up to a prescribed accuracyε.

Let∇w,εL(w, µ) and∇µ,εL(w, µ) beε-subgradients ofL(w, µ) with respect tow andµ,
respectively. Consider the modification of the iterates (5.42)-(5.43) as

w(τ+1) = PW

[

w(τ) − α∇w,εL(w(τ), µ(τ))
]

(5.44)

µ(τ+1) = PM

[

µ(τ) + α∇µ,εL(w(τ), µ(τ))
]

(5.45)

Moreover, consider the modification of the Assumption5.6as

Assumption 5.7 Theε-subgradients∇w,εL(w, µ) and∇µ,εL(w, µ) are uniformly bounded,
i.e., there is a constantΛε > 0 such that

‖∇w,εL(w, µ)‖ ≤ Λε, ‖∇µ,εL(w, µ)‖ ≤ Λε for all w ∈W, µ ∈M

We formalize the convergence of the running averagesw̄(τ) andµ̄(τ) based on the approx-
imated iterates (5.44)-(5.45) to a saddle-point ofL(w, µ) in the following theorem.

Theorem 5.4 Under Assumption5.7 the following relations for the iterates(5.44)-(5.45)
hold true:
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(a) For all τ ≥ 1,

− ||µ
(0) − µopt||2

2ατ
− αΛ̄2

ε

2
≤ 1

τ

τ−1∑

j=0

L(w(j), µ(j))− L(wopt, µopt) ≤

||w(0) − wopt||2
2ατ

+
αΛ̄2

ε

2

(b) The averages̄w(τ) andµ̄(τ) satisfy the following relation for allτ ≥ 1:

− ||µ
(0) − µopt||2 + ||w(0) − w̄(τ)||2

2ατ
−αΛ̄2

ε ≤ L(w̄(τ), µ̄(τ))−L(wopt, µopt) ≤

||w(0) − wopt||2 + ||µ(0) − µ̄(τ)||2
2ατ

+ αΛ̄2
ε

with Λ̄2
ε = Λ2

ε + 2ε/α.

Proof. The proof follows from Proposition 1 of (Nedić and Ozdaglar, 2009). First we
prove that:

||w(τ+1) − w||2 ≤ ||w(τ) − w||2 − 2α(L(w(τ), µ(τ))− L(w, µ(τ))) + α2Λ̄2
ε (5.46)

||µ(τ+1) − µ||2 ≤ ||µ(τ) − µ||2 + 2α(L(w(τ), µ(τ))− L(w(τ), µ)) + α2Λ̄2
ε (5.47)

In order to show (5.46), we can expand||w(τ+1) − w||2 into

||w(τ+1) − w||2 =
∥
∥
∥PW

[

w(τ) − α∇w,εL(w(τ), µ(τ))
]

− w
∥
∥
∥

2

≤ ||w(τ) − w||2 − 2α〈∇w,εL(w(τ), µ(τ)), w(τ) − w〉+ Λ2
ε

where we use the non-expansivity property of the projection. By the definition ofε-
subgradient and since the functionL(w, µ) is convex inw we have

〈∇w,εL(w(τ), µ(τ)), w − w(τ)〉 − ε ≤ L(w, µ(τ))− L(w(τ), µ(τ))

−〈∇w,εL(w(τ), µ(τ)), w(τ) − w〉 ≤ −(L(w(τ), µ(τ))− L(w, µ(τ))) + ε

and therefore

||w(τ+1) − w||2 ≤ ||w(τ) − w||2 − 2α(L(w(τ), µ(τ))− L(w, µ(τ))) + α2Λ2
ε + 2αε

which is (5.46).

In order to show (5.47), we can expand||µ(τ+1) − µ||2 into

||µ(τ+1) − µ||2 =
∥
∥
∥PM

[

µ(τ) + α∇µ,εL(w(τ), µ(τ))
]

− µ
∥
∥
∥

2

≤ ||µ(τ) − µ||2 + 2α〈∇µ,εL(w(τ), µ(τ)), µ(τ) − µ〉+ Λ2
ε

where we use the non-expansivity property of the projection. By the definition ofε-
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subgradient and since the functionL(w, µ) is concave inµ we have

〈∇µ,εL(w(τ), µ(τ)), µ− µ(τ)〉+ ε ≥ L(w(τ), µ)− L(w(τ), µ(τ))

〈∇w,εL(w(τ), µ(τ)), µ(τ) − µ〉 ≤ (L(w(τ), µ(τ))− L(w(τ), µ)) + ε

and therefore

||µ(τ+1) − µ||2 ≤ ||µ(τ) − µ||2 + 2α(L(w(τ), µ(τ))− L(w(τ), µ)) + α2Λ2
ε + 2αε

which is (5.47).

The proof of Proposition 1 of (Nedić and Ozdaglar, 2009), i.e., Theorem5.2, is based
on (5.46) and (5.47) with ε = 0. SubstitutingΛ2 with Λ̄2

ε = Λ2
ε + 2ε/α it is not difficult

to see that the analysis in (Nedić and Ozdaglar, 2009) still holds and therefore the claims
(a) and(b) also hold. �

Theorems5.4 and5.3 with the iterations (5.44)-(5.45) provide a way to compute an ap-
proximately optimal solution for the FMMP problem (5.33), as well as for the non-convex
MVU problem (5.30) in a distributed way as summarized in Algorithm5.2.

Algorithm 5.2 Primal-Dual Algorithm for the MVU and FMMP problems

1: Inputw(τ), µ(τ)

⊲ Available data: α, ε, L(w), (rij |for each(i, j) ∈ E),W,M

2: Determineλ2(w) andv2 of L(w(τ)) via the distributedDOI algorithm ofKempe and McSherry(2008) up
to an accuracy ofε

3: Compute:∇w,εL(w(τ), µ(τ)) and∇µ,εL(w(τ), µ(τ)) as

(∇w,εL(w,µ))ij = r2ij − µ (∇wλ2(w))ij = r2ij − µ(v2i − v2j)
2

∇µ,εL(w,µ) = 1− λ2(w)

4: Compute:

w(τ+1) = PW

[

w(τ) − α∇w,εL(w
(τ), µ(τ))

]

µ(τ+1) = PM

[

µ(τ) + α∇µ,εL(w
(τ), µ(τ))

]

5: Compute the iteration of the MVU problem:x(τ) =
√

µ(τ)v2

6: Output:w(τ+1), µ(τ+1), x(τ)

In the next section we show a small numerical example to assess the performance of the
proposed algorithm.

5.3.4 Numerical Example

We use a small numerical example from (Sun et al., 2006) to show the performance of
the primal-dual iterations (5.44)-(5.45) with theDOI algorithm applied to the FMMP and
MVU problems, i.e., (5.33) and (5.30). Let therij ber12 = 1, r13 = 2, r23 = 1, r34 = 1,
r45 = 1, andr46 = 2. Figure5.2gives a pictorial representation of the problem.
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Figure 5.2: Representation of the graph of the numerical example.

The unique primal optimal solution (up to a multiplication by an orthogonal matrix) for
the MVU problem (5.30) is

xopt1 = −2.5, xopt2 = −1.5, xopt3 = −0.5, xopt4 = 0.5, xopt5 = 1.5, xopt6 = 2.5

while the optimal set of Lagrangian multiplierswij (thus the set of solutions of the dual
FMMP problem (5.33)) is:

wopt
12 = u, wopt

23 = 1.5 + u, wopt
13 = 1.25− 0.5u,

wopt
34 = 4.5, wopt

45 = 1.5, wopt
46 = 1.25

with the parameteru ∈ [0, 2.5]. The achieved optimal cost iscopt = 17.5.

We use the iterations (5.44)-(5.45) with α = 0.15 andε = 0.01, starting from a random
initial condition forw(0) andµ(0). Figure5.3illustrates the convergence ofL(w̄(τ), µ̄(τ))
to a saddle point ofL(w, µ). We report that the total number of communication and
computation iterations of theDOI algorithm, per iterationτ , was on average12, and the
computations required around0.4 ms per node per iterationτ , on an Intel Corei5 (2.3 GHz
and 4GB DDR3) laptop. This leads to a total required time of2 s if the scheme is run up
to τ = 5000. These communication/computation requirements are considered acceptable
in many applications, especially in sensor network scenarios.

Finally we report the achieved tolerances

|L(w̄(5000), µ̄(5000))− L(wopt, µopt)| = 0.01, |λ2(w̄(5000))− 1| = 0.03

which can be considered acceptable given the value ofε andα.

5.3.5 Extension to Multi-dimensional Problems and Localization Applications

In this section we extend the previous results to the case in which the variablexi is a
vector, meaningxi ∈ Rn, with n > 1. This scenario is particularly useful in localization
problems (Weinberger et al., 2007). In order to see this, considerN different sensor nodes
sparsely placed in ann dimensional space. Letxi ∈ Rn be the position of sensor nodei.
Assume that each node can determine its distance to the closest neighboring nodes and let
rij be this distance for each connected couple of nodes(i, j). The problem of determining
all the positions of the nodes via the measurementsrij is called (anchor-free) localization
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Figure 5.3: Convergence ofL(w̄(τ), µ̄(τ)) to a saddle point ofL(w, µ) with respect
to the iteration numberτ .

problem and it can be written as (Weinberger et al., 2007)

maximize
x1,...,xN

N∑

i=1

||xi||2 (5.48a)

subject to ||xi − xj ||2 = r2ij for all (i, j) ∈ E (5.48b)
N∑

i=1

xi = 0 (5.48c)

Problem (5.48) is similar to the MVU problem (5.30) with equality constraints instead of
inequalities, and via minor modifications (Sun et al., 2006) one can pass from one problem
to the other.

To solve the MVU problem (5.30) for a multi-dimensional case (in a globally optimal
way), we proceed in the same way as did in the scalar scenario.First, we define the matrix
X ∈ RN×N as the Gramian matrixX = xx⊤, wherex = (x1, . . . , xN )⊤. Then, we
formulate the convex problem (5.31) and its dual the FMMP problem (5.33). We note
that these problems are not affected byxi not being a scalar. Therefore all the analysis of
convergence of Algorithm5.2is still valid forxi ∈ Rn. The only notable difference is that
for the multi-dimensional case the geometric multiplicityof λ2(w) is greater than one, in
particular it isn (Sun et al., 2006). This implies thatλ2 = λ3 = · · · = λn+1 = 1 and
therefore, the optimalX will be written as

Xopt =
copt

n

n+1∑

i=2

v
opt
i v

opt
i

⊤
(5.49)
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while

x =

√

copt

n
(vopt

2 , . . . ,vopt
n+1)

⊤ (5.50)

With these relations we can compute the optimal value forxi and solve the multi-dimensional
MVU problem (5.30) in a distributed way via Algorithm5.2.

We remark that the found solution will be globally optimal (since we are solving the dual
convex problem). This is also true for the localization problem (5.48) (in case the under-
lying graph is rigid), if it is solved with Algorithm5.2. This means that we are able to
find the physical locations of the nodes up to rotations and reflections (more details on this
problem for the centralized setting can be found in (Weinberger et al., 2007)).

5.4 Conclusions

In this chapter we have focused on certain classes of convex and non-convex networked op-
timization problems. We have shown how resource allocationconstraints could be handled
in a distributed iterative way keeping the number of computation/communication rounds
for each node of the network reasonable for real applicationscenarios. Finally, we have
illustrated how the proposed schemes could be used in realistic robotic network problems.

5.5 Open Problems and Future Work

There are a number of interesting open problems and future research directions for the
work presented in this chapter, which are summarized in the following.

Convex resource allocation problems

The regularized primal-dual scheme of Section5.2can be optimized further with a more
in-depth study on the optimal design of the step sizes and theregularization parame-
ters. Furthermore, other approaches to speed up convergence, such as multi-step meth-
ods (Ghadimi et al., 2011), could be analyzed.

Finally, more extensive simulation studies on a variety of application scenarios should be
performed to further assess the performance of the scheme inrealistic situations.

Sequential Quadratic Programming approach

An alternative method to solve the non-convex MVU problem (5.30) in a distributed way
is by standard Sequential Quadratic Programming. As pointed out in Section5.3.1this
method could encounter convergence problems when the sequence of quadratic programs
is regularized using the saddle-point algorithm of Section5.2. In order to illustrate this,
we recall the concept of the Sequential Quadratic Programming approach.

The Sequential Quadratic Programming approach, in short SQP approach, is based on a
sequence of linearizations of the original non-convex problem. Letx[κ] be the value of the
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optimization variablex at the iteration stepκ. Given an initial iteratex[0], the SQP method
consists of the sequence:

• solve, at eachκ ≥ 0, the quadratic problem

minimize
δx

−2x[κ]⊤δx+
1

2
ν ‖δx‖2 (5.51a)

subject to 2(x
[κ]
i − x

[κ]
j )⊤(δxi − δxj) + aaaaaaaaaaaaaaaa

aaaa ||x[κ]i − x
[κ]
j ||2 − r2ij ≤ 0 for all (i, j) ∈ E (5.51b)

1⊤δx = −1⊤x[κ] (5.51c)

with optimization variableδx and whereν is a strictly positive scalar, i.e.,ν > 0.
The optimizer of (5.51) is indicated withδxopt;

• updatex[κ+1] = x[κ] + γ[κ]δxopt, with a strictly positive scalar step-sizeγ[κ].

Conditions on the step sizeγ[κ] for the sequence ofx[κ] to converge to a local maxi-
mum of the original non-convex MVU problem (5.30) can be found in the standard ref-
erences (Bertsekas, 1982, 1999). We remark thatν in the quadratic problem (5.51) is
important for the convergence properties of the SQP algorithm and, in general, can be un-
related to the second order derivative of the non-convex cost function, (Bertsekas, 1982).

We can see immediately that the quadratic problem (5.51) is a particular instance of the
convex resource allocation problem (5.1) and could be regularized and solved using the
iterations (5.6)-(5.7) in a distributed way.

However, employing this regularization could undermine the convergence proofs ofBert-
sekas(1982) and therefore question the whole procedure. More analysesare needed to
generalize some of the theorems in (Bertsekas, 1982) to this regularized case. Furthermore,
an estimate on how the scheme depends on the number of nodesN would be beneficial.
In fact, it would be justifiable to apply this regularized SQPapproach (which is deliver-
ing only local optimizers) only in particular circumstances and if it scales better with the
network sizeN than the proposed global optimal one, i.e., iterations (5.44)-(5.45).

A Dispersion Problem for Robotic Networks

In Section5.3.4we have considered a numerical example where the nodes were fixed.
This type of problem is typical in sensor network applications where the network structure
is predetermined. Interesting open challenges arise when we let the nodes be mobile as in
Chapter 3, and the weights depend on the position of the nodes. The FMMP problem (5.33)
can then be rewritten as the following non-convex optimization problem

minimize
x(k)

∑

(i,j)∈E(k)
r2ijfw(||xi(k)− xj(k)||2) (5.52a)

subject to λ2(x(k)) > λ̄2 (5.52b)
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where the decision variables are the robot locationsx(k), while λ̄2 is the prescribed level
of connectivity andfw(·) is a function that describes how the weights depend on the pair-
wise distance between the robots, see Chapter 3 for details.

Problem (5.52) can be seen as the maximization of the dispersion (i.e., thedistance among
the robots) with the guarantee of the maintenance of a prescribed level of connectivity.
This problem has been studied in the robotic literature (Howard et al., 2002, Cortés et al.,
2004, Susan and Dubowsky, 2005, Arsie and Frazzoli, 2007, Hussein and Stipanovic,
2007, Dimarogonas and Kyriakopoulos, 2009); however no clear guarantees to obtain a
prescribed level of connectivity are given.

Further studies to solve this problem in a distributed way are needed. We expect that
one could apply the methods presented in Chapter 3, with somemodifications. Moreover,
it would be interesting to see whether two-step sequential approaches (De Gennaro and
Jadbabaie, 2006) could be used here with the iterations (5.44)-(5.45) to deliver distributed
optimizers with given bounds on their distance to the centralized solution.

For the interested reader, a detailed discussion of this problem and its possible solutions is
presented in (Simonetto et al., 2012b).
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Conclusions and Recommendations

6.1 Summary and Conclusions

In this thesis we have proposed and analyzed solutions for distributed estimation, con-
trol, and optimization problems in robotic networks. The presented algorithms are more
suitable to be implemented in real-time applications and show improved performance with
respect to the available literature (in terms of estimationaccuracy and real-time execution).

In Chapter 2, we have investigated distributed nonlinear state estimation problems and we
have proposed a common framework in which to design distributed estimators. This novel
framework allows the usage of different estimators on different sensor nodes which might
be very convenient in practice to implement local filtering algorithms whose computational
requirements match the devices’ hardware. The proposed framework is based on a merging
mechanism that combines the local estimates and their covariance matrices coming from
the different sensor nodes. From an implementation perspective the proposed framework
does not require extensive communication among the sensor nodes and it is implementable
in real-time.

Within the proposed framework, we have designed novel versions of distributed Mov-
ing Horizon Estimators (Algorithm2.2), Particle Filters (Algorithm2.3), Unscented and
Extended Kalman Filters (Algorithm2.4). The proposed distributed Moving Horizon Esti-
mator can incorporate convex constraints into the estimation problem and it is guaranteed
to be stable and converging to an unbiased estimate for the state. This estimator extends
the ideas ofFarina et al.(2010) to nonlinear dynamical systems.

Algorithm 2.3 proposes a distributed version of Particle Filters applicable in sensor net-
works where measurements are taken locally and communicated via an information ex-
change network. This formulation of distributed Particle Filters is parametric, meaning
that the a posterioriPDF is parametrized by the mean and covariance of the particle pop-
ulation. This is often convenient in practice for robotic scenarios and gives significant
improvements compared to the results available in the literature (Chapter 2, Section2.4).
In particular, we observe an increase in accuracy of an orderof magnitude with respect to
similar available distributed algorithms. We show that this is due to the proposed merging
mechanism and common framework.

147
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In Chapter 3, we have analyzed how to distribute the high computational demand of Par-
ticle Filters on the multiple parallel cores ofGPU-architectures. We have illustrated via
simulation and experimental results that nonlinear filtering can be run efficiently yet still
deliver accurate estimates. In particular, using over a million particles we have imple-
mented the proposed distributed computation scheme on a robotic arm experimental setup
that involves a visual servo feedback control loop with a sampling frequency of100 Hz
(Chapter 3, Section4.2.7). This result is remarkable given the experimental setup (an ed-
ucational platform equipped with an off-the-shelf webcam), the achieved estimation error
(3 mm RMS for the the position estimation), and compared to similar efforts in the avail-
able literature. In particular, our implementation outperforms (often by orders of magni-
tude) the state-of-the-art implementations for number of particles, state dimension, and/or
runtime. Moreover, our method competes for estimation quality with standard sequential
Particle Filters that are however even hundreds time slowerin high-number-of-particleset-
tings. In addition, we have illustrated how some of the different user-tunable parameters
affect the estimation performance and discussed scalability and portability of the proposed
scheme.

In Chapter 4, we have investigated two distributed control problems for robotic networks.
First, we have presented a distributed real-time implementable solution to the maximiza-
tion of the algebraic connectivity of the communication graph of a robotic network. Our
method can handle more realistic agent dynamics than the methods available in the liter-
ature, including second-order dynamical systems. The proposed distributed algorithm is
proven to deliver feasible solutions in only one round of communication with the neigh-
boring robots (Chapter 4, Theorem4.2). In addition, the solution monotonically increases
the cost function (Chapter 4, Theorem4.4) and persistent feasibility is proven to be a
property of the resulting optimization problem under standard assumptions (Chapter 4,
Theorem4.5). Finally, the proposed solution can be adjusted locally byeach agent based
on available resources, and this adjustment can be done using local relative sub-optimality
measures. All these characteristics make the proposed distributed solution implementable
and adjustable in real-time, which is an important requirement for realistic robotic net-
works.

In the second part of Chapter 4, we have extended the proposedsolution for the maximiza-
tion of the algebraic connectivity and proposed a distributed and non-iterative solution
for the problem of collectively tracking multiple mobile targets using a robotic network,
while maintaining a certain level of connectivity. As for the problem of the maximization
of the algebraic connectivity, our distributed algorithm has been proven to deliver feasible
solutions in only one round of communication (Chapter 4, Theorems4.9, 4.10, and4.11).

Simulation results have confirmed the efficacy of our distributed approaches and shown
their practical applicability. For both problems the distributed solutions have similar be-
havior with respect to the centralized approximations and scale well with the number of
agents.

The distributed solutions of Chapter 4 can be seen as complementary solutions of stan-
dard subgradient algorithms, see for example (De Gennaro and Jadbabaie, 2006). In sub-
gradient algorithms we implicitly assume that the communication among the agents is
somehow cheaper than the computation onboard. This translates in having communica-
tion extensive iterative algorithms, in which at each iteration, each agent has to evaluate
only a subgradient of a certain function. Our proposed solution lies on the other side
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of the “communication-computation” trade-off spectrum. In fact, we assume that each
robot can solve a rather complex convex optimization problem, while the communication
among them is limited. Given the current availability of cheap onboard micro-processors
that have reasonable computational power, we believe that mobile robotic networks could
benefit more from solutions closer to our proposed one.

In Chapter 5, we have analyzed issues related to certain classes of convex and non-convex
networked optimization problems involving resource allocation constraints. We have dis-
cussed how these problems are relevant for robotic network applications and we have
proposed additional interesting scenarios (related to target-tracking, localization, and dis-
persion control). We have shown how resource allocation constraints could be handled in
a distributed iterative way, keeping the number of computation/communication rounds for
each node of the network reasonable for realistic applications.

In Section5.2 we have discussed convex optimization problems with resource allocation
constraints. We have analyzed regularized iterative saddle-point methods and shown how
to embedthe resource allocation constraint in the iterations. We have proposed a solu-
tion in Algorithm5.1and Theorem5.1that is faster than standard subgradient algorithms
(in particular, it has a geometrical convergence rate). As aresult, our algorithm is more
suitable for real-time implementation in realistic robotic networks. The direction we have
followed in this section offers another approach for real-time solutions to distributed op-
timization problem. While, in Chapter 4 we have focused on non-iterative methods that
guarantee feasibility, in this section we have proposed fast iterative methods that regularize
the original problem and provide a sub-optimal solution with given sub-optimality bounds.

In Section5.3 we have dealt with a non-convex resource allocation optimization prob-
lem, known as the Maximum Variance Unfolding problem and itsconvex dual the Fastest
Mixing Markov Process problem. Both optimization problemshave been solved via the
same primal-dual distributed subgradient algorithm (Algorithm 5.2) with guaranteed con-
vergence, even in the case where errors are present in the computations of the subgradients
(Theorem5.4). These errors are common if we consider a limited (and fixed)number of
communication rounds among the computing units. As a result, our proposed solution
is more suitable to be implemented in real-time. The scheme has been demonstrated on
relevant sensor network applications and we have discussedpossible extensions to mobile
robotic networks such as dispersion problems.

6.2 Recommendations for Future Work

A number of open research challenges and possible directions to tackle them are pre-
sented in this section. First of all, we will discuss some specific items, summarizing or
complementing the ones analyzed in the main chapters of the thesis. Then, we will give
recommendations on broader research possibilities.

Specific research questions arise from the problems and solutions we have presented in
this Thesis. These questions lead to tangible research directions that could broaden the
applicability of the proposed algorithms. The main challenges encompass the following.

• The solution of the dispersion problem using the methods presented in Chapter 5 (as
discussed in Chapter 5, Section5.5). In this scenario, we want to move the robots as
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far as possible from each other while maintaining a prescribed level of connectivity.
Given a stacked vector of edge-weights at the discrete timek, i.e.w(k), the problem
can be formulated as a Fast Mixing Markov Process for each discrete timek, whose
solutions are the optimal weights at the discrete timek + 1, i.e.,w(k + 1).

One challenge to be addressed is how to control the robots to achieve the prescribed
value of communication weightsw(k + 1). We note that, although potential func-
tion methods could be in principle used as in (De Gennaro and Jadbabaie, 2006) to
drive the robots to an approximated vector of weightsŵ(k + 1), guarantees that the
difference||w(k + 1)− ŵ(k + 1)|| stays below a given threshold are more difficult
to obtain.

• Robust Multi-Target tracking (as discussed in Chapter 4, Section 4.5). This chal-
lenge is related to the fact that in the problem formulationsof Chapter 4 (Prob-
lem 4.1and Problem4.2) each agent knows the position of the neighboring agents
and targets. Considering that in practice this informationis typically affected by
measurement and estimation errors, we could extend the problem formulation to
more realistic applications. As a result, the proposed distributed algorithms (Al-
gorithm 4.1, and Algorithm4.2) have to be redesigned to be robust to estimation
errors.

• Constrained Consensus (as discussed in Chapter 2, Section2.6). One of the main
limitations of current consensus algorithms is their inability to handle generic (non-)
convex constraints. Extending the consensus protocols to this case would increase
their potential in many applications, such as distributed nonlinear estimation.

• Optimization of the merging mechanism (Chapter 2, Algorithm 2.1). We have il-
lustrated that the merging scheme does not take into consideration the correlation
among the local estimates. This may deliver, in some circumstances, “optimistic”
covariance matrices in the sense ofBar-Shalom et al.(2001). An optimization of
the merging mechanism (taking into account the correlation) could lead to better
nonlinear estimation.

Besides these specific directions of investigation, there are a number of other (more high-
level) research questions that need our consideration. As amatter of fact, distributed esti-
mation, control, and optimization are a very dynamic and active research fields that have
still many unsolved fundamental questions. Among them, driven by the results and the
focus of this Thesis, we highlight the following research problems.

Distributed algorithms for convex optimization problems implementable in real-time

As we have discussed in this thesis, one of the limitations ofcurrent state-of-the-art dis-
tributed optimization algorithms is that they require iterative schemes that guarantee feasi-
bility of the solution with respect to the constraints oftenonly asymptotically (i.e., assum-
ing an infinite number of iterations). This is impractical for the real-time implementations
of optimization-based controllers and estimators in robotic networks.

We have shown that real-time feasible (but sub-optimal) solutions can be achieved in some
cases by using specific methods. In Chapter 4 we have used local modifications of the
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global optimization problem and merging mechanisms to construct feasible solutions. In
Chapter 5 we have enforced the feasibility of a subset of the constraints into the iterations
of a fast iterative method. Among the other possible methodswe could cite stochastic
incremental subgradient methods (Johansson et al., 2009) and constraint tightening tech-
niques (Doan et al., 2011).

With the exception of our method presented in Chapter 4 (thatis non-iterative but its appli-
cability is limited to the specified optimization problems4.1-4.2), all these more general
algorithms are still iterative (although the iterates are feasible) and an acceptable sub-
optimal solution might be achieved only after several iterations. As a result these ap-
proaches might not be implementable in realistic applications, when fast and real-time
solutions are required.

We believe that the development of a general approach to fastand real-time feasible dis-
tributed solutions with an acceptable level of sub-optimality for constrained convex op-
timization problems is of fundamental importance for the implementation of control and
estimation schemes in realistic robotic networks.

Fusion of the parallel and distributed computation paradigms

In Chapter 3, we have seen the differences between the parallel and distributed computa-
tion paradigms. The first divides the computations among different cores with the intention
to arrive at the same result of a standard sequential centralized algorithm. As a result, typ-
ically, parallel schemes still involve some kind of centralization via the presence of one or
more computing hubs that collect all the information comingfrom the different cores. The
second paradigm, the distributed one, which we have employed in our proposed solution
(Algorithm 3.1), allows for some degree of “sub-optimality” in computing the solution and
restricts the communication exchange to occur only among neighboring cores. In this way,
no central data collection is needed, although the solutionis typically less accurate than a
standard sequential centralized algorithm. Nonetheless,in the case of Particle Filters, the
final accuracy of the estimation scheme depends on the total number of particlesand on
the achieved sampling frequency, and this favors distributed schemes compared to parallel
ones. We believe that the investigation of similarities anddifferences between parallel and
distributed paradigms, and eventually their fusion in a single methodology, is essential to
implement more efficient, accurate, and real-time algorithms.

Asynchronous algorithms

In all the chapters of this thesis, we have worked under the assumption that the robots (or
sensors) were synchronized among each other. In this way, all the computations could
happen at the same time in the whole network. Although in principle, one could synchro-
nize the clocks of the robots, and one could do so even in a distributed way, (Simeone
et al., 2008, Schenato and Fiorentin, 2011), in many realistic applications, especially for
large-scale systems, this synchronization would be rathertime demanding. Furthermore,
if the clocks drift from each other considerably, the synchronization routine has to be kept
running in the background.
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Methods that could address the asynchronism of the network clocks have been studied
in different areas. For the context of this thesis we cite (Boyd et al., 2006, Fagnani and
Zampieri, 2008, Song et al., 2009, Oreshkin and Coates, 2010, Hu et al., 2010, Mathews
and Durrant-Whyte, 2007, Xu et al., 2008, Tsitsiklis et al., 1986, Zhong and Cassandras,
2008, Johansson et al., 2009, Ram et al., 2010) that study asynchronism in estimation,
control, and optimization algorithms.

We believe that a deeper analysis of the algorithms presented in this thesis, with the inten-
tion to extend them to asynchronous settings would increasetheir applicability in realistic
scenarios. However, we also think that this extension is notan easy task when feasibility
of the optimization solution is required at each time step.

Beyond discrete-time models

Another main assumption in the thesis is that discrete-timemodels for the mobile agents,
or for the process to estimate, are available. This is often the case for mobile robots
that are controlled with digital control (as in the case of anunicycle robot with discrete
velocity control described in Chapter 2, or the robotic arm controlled in Chapter 3) and not
subjected to any external forces. In these robotic scenarios, the methods presented in this
thesis are more than reasonable and can be applied reliably on the mentioned discrete-time
models.

However, in many real cases, the robots are immersed in external continuous force fields
(as it is the case for autonomous underwater vehicles or satellites), or the process we would
like to observe is in continuous-time. In these cases, the explicit derivation of a (nonlinear)
discrete-time model could be rather demanding. Current research directions, in the field of
event-triggered and quantized control and estimation, could overcome this difficulty and
offer a way to design the distributed algorithm without the need of a discrete-time model.
Examples of such approaches can be found in the works of (Wang and Lemmon, 2009,
2011, Mazo Jr. and Tabuada, 2011, Dimarogonas et al., 2012, De Persis and Frasca, 2012,
De Persis and Bjayawardhana, 2013).

These rather new fields will be very important for designing more reliable algorithms
specifically tailored to the real behavior of the underlyingcommunication network.



Bibliography

F. Albertini and D. D’Alessandro. Remarks on the Observability of Nonlinear Discrete Time Systems. In
Proceedings of the 17th IFIP TC7 Conference on System Modelling and Optimization, pages 155 – 162,
Prague, Czech Repubblic, September 1995.

A. Alessandri, M. Baglietto, G. Battistelli, and M. Gaggero. Moving-Horizon State Estimation for Nonlinear
Systems Using Neural Networks.IEEE Transactions on Neural Networks, 22(5):768 – 780, 2011.
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A. Simonetto, T. Keviczky, and R. Babuška. Distributed Nonlinear Estimation for Robot Localization using
Weighted Consensus. InProceedings of the IEEE International Conference on Robotics and Automation,
pages 3026 – 3031, Anchorage, USA, May 2010a.
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A. Simonetto, T. Keviczky, and R. Babuška.Distributed Autonomous Robotic Systems, volume 83 ofSTAR, chap-
ter Distributed Algebraic Connectivity Maximization for Robotic Networks: A Heuristic Approach, pages 267
– 279. Spriger, 2013.

A. Smith, H. Balakrishnan, M. Goraczko, and N. Priyantha. Tracking Moving Devices with the Cricket Location
System. InProceedings of MobiSYS, pages 190 – 202, Boston, USA, June 2004.

C. Song, H. Zhao, and W. Jing. Asynchronous Distributed PF Algorithm for WSN Target Tracking. InProceed-
ings of the International Conference on Wireless Communication and Mobile Computing, pages 1168 – 1172,
Leipzig, Germany, June 2009.

Oh Songhwai, L. Schenato, P. Chen, and S. Sastry. Tracking and Coordination of Multiple Agents Using Sensor
Networks: System Design, Algorithms and Experiments.Proceedings of the IEEE, 95(1):234 – 254, 2007.



160 Bibliography

J. R. Spletzer and C. J. Taylor. Dynamic Sensor Planning and Control for Optimally Tracking Targets.Interna-
tional Journal of Robotic Research, 22(1):7 – 20, 2003.

G. Sun, G. Qiao, and B. Xu. Corrosion Monitoring Sensor Networks with Energy Harvesting.IEEE Sensors
Journal, 11(6):1476 – 1477, 2011.

J. Sun, S. Boyd, L. Xiao, and P. Diaconis. The Fastest Mixing Markov Process on a Graph and a Connection to
a Maximum Variance Unfolding Problem.SIAM Review, 48(4):681 – 699, 2006.

T. Sun, Ling-Jyh Chen, Chih-Chieh Han, and M. Gerla. Reliable Sensor Networks for Planet Exploration. In
Proceedings of the IEEE Networking, Sensing and Control conference, pages 816 – 821, Tucson, USA, March
2005.

V. A. Susan and S. Dubowsky. Visually Guided Cooperative Robot Actions Based on Information Quality.
Autonomous Robots, 19:89 – 110, 2005.

S. Thrun, W. Burgard, and D. Fox.Probabilistic Robotics. The MIT Press, 2005.

J.N. Tsitsiklis, D.P. Bertsekas, and M. Athans. Distributed Asynchronous Deterministic and Stochastic Gradient
Optimization Algorithms.IEEE Transaction on Automatic Control, 31(9):803 – 812, 1986.

S. Ungarala. Computing Arrival Cost Parameters in Moving Horizon Estimation Using Sampling Based Filters.
Journal of Process Control, 19(9):1576 – 1588, 2009.

D. van der Lijn, G.A.D. Lopes, and R. Babuska. Motion Estimation Based on Predator/Prey Vision. InProceed-
ings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3435 – 3440,
Taipei, Taiwan, October 2010.

X. Wang and M. Lemmon. Self Triggered Feedback Control Systems with Finite Gain L2 Stability. IEEE
Transactions on Automatic Control, 54(3):452 – 467, 2009.

X. Wang and M. Lemmon. Event-Triggered in Distributed Networked Control Systems.IEEE Transactions on
Automatic Control, 56(3):586 – 601, 2011.

K. Q. Weinberger and L. K. Saul. Unsupervised Learning of Image Manifolds by Semidefinite Programming.
International Journal of Computer Vision, 70(1):77 – 90, 2006.

K. Q. Weinberger, F. Sha, Q. Zhu, and L. K. Saul.Advances in Neural Information Processing Systems 19, chapter
Graph Laplacian Regularization for Large-Scale Semidefinite Programming, pages 1489 – 1496. MIT Press,
Cambridge, MA, 2007.

L. Xiao and S. Boyd. Optimal Scaling of a Gradient Method for Distributed Resource Allocation.Journal of
Optimization Theory and Applications, 129(3):469 – 488, 2006.

L. Xiao, S. Boyd, and S. Lall. A Scheme for Robust DistributedSensor Fusion Based on Average Consensus. In
Proceedings of the International Conference on Information Processing in Sensor Networks, pages 63 – 70,
Los Angeles, USA, April 2005.

L. Xiao, S. Boyd, and S. Lall. A Space-Time Diffusion Scheme for Peer-to-Peer Least-Squares Estimation. In
Proceedings of the International Conference on Information Processing in Sensor Networks, pages 168 – 176,
Nashville, USA, April 2006.

Y. Xu, P. Scerri, M. Lewis, and K. Sycara.Cooperative Networks: Control and Optimization, chapter 1. Token-
Based Approach for Scalable Team Coordination. Edward Elgar, 2008.

M. Zhong and C. G. Cassandras. Asynchronous Distributed Optimization with Minimal Communication. In
Proceedings of the 47th IEEE Conference on Decision and Control, pages 363 – 368, Cancun, Mexico,
December 2008.

K. Zhou and S.I. Roumeliotis. Optimal Motion Strategies forRange-Only Constrained Multisensor Target Track-
ing. IEEE Transactions on Robotics, 24(5):1168 – 1185, 2008.

M. Zhu and S. Martı́nez. On Distributed Convex OptimizationUnder Inequality and Equality Constraints.IEEE
Transactions on Automatic Control, 57(1):151 – 164, 2012.



Symbols and Abbreviations

General Notation

Fields

R Set of real numbers
R0 Set of non-zero real numbers
R+ Set of non-negative real numbers

Constants and Indices

i, j, p, q Indices indicating different devices and targets
k, τ Discrete time indices
N Number of mobile or non-moving devices
In Identity matrix of dimensionn× n
0n Null matrix of dimensionn× n
1n Column vector of dimensionn with all entries1
0n Column vector of dimensionn with all entries0

Operations on Vectors, Matrices, and functions

||a|| Euclidean norm
||a||2A = a⊤Aa, wherea is a vector andA a positive definite matrix

of appropriate dimensions
〈a, b〉 = a⊤b, wherea andb are vectors of appropriate dimension
∇af(a) (Sub)gradient off with respect toa
ai(k) Value of the variablea for the devicei at the discrete timek
δa(k) = a(k)− a(k − 1)
⊗ Kroenecker product
E[a] Expected value ofa
ℵ(a,A) Gaussian distribution with meana and covarianceA

Graphs

V Node set
E Edge set
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162 Symbols and Abbreviations

G Graph, i.e.,G = (V , E)
L Laplacian of the graph
ℓij Elementij of the Laplacian of the graph
λ2 Algebraic connectivity
λmax Maximum eigenvalue of the Laplacian matrix
Ni Neighbors set of agenti
N+
i Ni ∪ {i}

Dynamical Systems

x State vector
x Position vector
v Velocity vector
∆t Sampling time

Chapter 2

Symbols in order of appearance

x(k + 1) = f(x(k),w(k)) Nonlinear dynamical model
w Process noise
X,W,Mi Constraint sets
zi Local measurements
zi(k) = gi(x(k)) + µi(k) Nonlinear measurement equation
x̄i, P̄i Local estimate and covariance before agreement
x̂i, P̂i Local estimate and covariance after agreement
τ Iteration number for the agreement process
W Consensus matrix
Ri, Q Weight matrices
xin(0), P in(0) Initial estimate and covariance
Jk, Ĵk, Φ̂k (Approximated) cost functions
Zk−T , Ẑk−T Real and approximated arrival cost
β(k − T ) Scaling factor
x̂mh(k − T ), P̂mh(k − T ) Solution at the beginning of the moving window
πw(w), πµi

(µi) PDF that model process and measurement noise
(x(k − 1)j ,w(k − 1)j) Particle-weight couple
p(x(k)|z(k)) A posteriori distribution
q(x(k)|z(k)) Proposal distribution

Abbreviations

MHE Moving Horizon Estimator
PF Particle Filter
UKF Unscented Kalman Filter
EKF Extended Kalman Filter
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Chapter 3

Symbols in order of appearance

N Number of local filters
m Number of particles on each computing unit
t Exchanged particles
p̂i(x(k)|z(k)) Local approximation of the a posterioriPDF

p̂
(t)
i (x(k)|z(k)) Local approximation of the a posterioriPDFusingt particles
D(p1, p2) KullbackLeibler (KL) divergence between the distributions

p1 andp2

Chapter 4

Symbols in order of appearance

w Weights for the edges of the Laplacian
d2ij Square distance between agenti andj
fd, fw Distance and weighting functions
ρ1, ρ2 Weighting function’s parameters
γ Optimization variable
cd, cw Partial derivatives offd andfw
△ Linearizing operator, i.e.,△f(k) = f(k − 1) +∇fδf(k)
△Q1,△Q2 Sets of constraints
S△Q2

Parameter set
ui Control input of agenti
A1i, A2i, b1i (Block) elements of the matrices of the dynamical system of

agenti
Ūi Closed polytopic set in whichui is constrained
Hi, hi Matrix and vector that describe the setŪi
ui(k) Lifted control input for agenti
xi(k + 1) = Di(xi(k),ui(k))

Short-hand notation for the discrete-time LTI dynamical sys-
tem of agenti as used in the optimization problem

Ui Ūi × Ūi
Fi,Fx,i,Fv,i Invariant sets for the optimization problem
Ji Enlarged neighborhood set of cardinalityJi
ni Size of the enlarged neighborhood set
Li,ni

, Ei,ni
,xJi

,uJi
Variables referring to the enlarged neighborhood set

ã Local version of the variable, set, or dynamical systema
γi Local optimization variable
Q3 Set of constraints
x̃ij , ũij State or control of the agentj as computed by the agenti
J ∗
i Set:{p|i ∈ Jp}

si Constant of a positive linear combination
s̄

∑N
i=1 si, assumed to be≤ 1
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s̄ij
∑

p∈J ∗
i ∩J ∗

j
sp

x̃(i) Local solutions defined in (4.45)
x̃(i)|ni

, x̃|n Local solutions defined in Definition4.2and4.3
e+i , e

−
i Local sub-optimality measures

M Number of targets
z Position vector of the targets
z∗ Worst case position vector of the targets
wq Input associated to targetq
vmax,i Maximal velocity for agenti
wmax,q Maximal velocity associated to targetq
Zq(k) Set of reachable positions at timek for targetq
Rq Set that collects the agents that see targetq
fV Visual weight function
v Visual weight
supp(f) Support of the functionf
α ≥ 0, βq ≥ 0 Constant relative weights in the optimization problems
νq Optimization variable
cv Partial derivative of the visual weighting function
ν−q Decrease of detection quality due to targets’ motion, Defini-

tion 4.4
Ti Set of all the targets that agenti is aware of
Oq Enlarged neighborhood set for targetq
x(k + 1) = Ax(k) +Bu(k)

Standard form for a discrete-time LTI dynamical system

Chapter 5

Symbols in order of appearance

xi Nodal optimization variable
fi, gij , hi Non-strictly convex functions
xtot Total resource vector
X̄,X, X̂, M̂ Convex constraint sets
L Lagrangian function
ν, ǫ Regularization parameters
µ Dual variable ofx
aopt Optimal value of the variablea
a∗ Optimal value of the variablea in the regularized problem
τ Iteration counter
a(τ) Value of the variablea at the iterationτ
PA [·] Projection on the setA, e.g.PR+

[·]
W Weight matrix
α, β Step-sizes
p Lagrangian multiplier
z Stacked vector(x⊤, µ⊤)⊤
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p Lagrangian multiplier
Φ(z) Mapping(∇xL(z)⊤,−∇µL(z)⊤)⊤
W⊗ :=W ⊗ In
F,Gq Lipschitz constants of the gradients off andgq
Md,Mµ Bounds on the gradient ofg and on the dual variableµ
ϕ Strong monotonicity constant of the functionΦ
FΦ Lipschitz constant of the functionΦ
C := max(βλmax(W ), 1)
κ := ϕ− FΦ (βλmax(W )− 1)
y Position of the target
rij Bound associated with the edge(i, j)
X Matrix optimization variable
wij Weight for the edgei, j
c Cost of the MVU problem
v2 Eigenvector associated toλ2
qij Vector defined in (5.39)
Λ,Λε, Λ̄

2
ε Bounds on the maximal value of the subgradient

ā(τ) Running average ofa(τ)

∇a,εf(a) ε-subgradient off with respect toa
ε Level of error in the subgradient calculations
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Summary

Distributed Estimation and Control for Robotic Networks

Andrea Simonetto

Mobile robots that communicate and cooperate to achieve a common task have been
the subject of an increasing research interest in recent years. These possibly het-

erogeneous groups of robots communicate locally via a communication network and there-
fore are usually referred to asrobotic networks. Their potential applications are diverse and
encompass monitoring, exploration, search and rescue, anddisaster relief. From a research
standpoint, in this thesis we consider specific aspects related to the foundations of robotic
network algorithmic development: distributed estimation, control, and optimization.

The word “distributed” refers to situations in which the cooperating robots have a limited,
local knowledge of the environment and of the group, as opposed to a “centralized” sce-
nario, where all the robots have access to the complete information. The typical challenge
in distributed systems is to achieve similar results (in terms of performance of the estima-
tion, control, or optimization task) with respect to a centralized system without extensive
communication among the cooperating robots.

In this thesis we develop effective distributed estimation, control, and optimization algo-
rithms tailored to the distributed nature of robotic networks. These algorithms strive for
limiting the local communication among the mobile robots, in order to be applicable in
practical situations. In particular, we focus on issues related to nonlinearities of the dy-
namical model of the robots and their sensors, to the connectivity of the communication
graph through which the robots interact, and to fast feasible solutions for the common
(estimation or control) objective.

First, we investigate a nonlinear state estimation problemvia a stationary robotic net-
work (often referred to as “sensor network”). Typically, inthe distributed setting, only
linear time-invariant processes have been considered. Motivated by the number of appli-
cation scenarios where such a linear model would not be adequate, we instead present a
unified way of describing distributed implementations of four commonly used nonlinear
estimators: the Moving Horizon Estimator, the Particle Filter, the Extended and Unscented
Kalman Filter. Making use of the unifying framework, we propose new distributed ver-
sions of these methods, in which the nonlinearities are locally managed by the various sen-
sor nodes and the different estimates are merged, based on a weighted average consensus
process. We show how the merging mechanism can handle different filtering algorithms
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implemented on heterogeneous sensors, which is especiallyuseful when they are endowed
with diverse local computational capabilities.

As a second step, we focus on methods that reduce the high computational requirements
of the mentioned nonlinear estimators by distributing the computations among different
computing devices communicating with one another. We aim todeliver real-time imple-
mentable solutions for the nonlinear estimation task, which can be used in realistic robotic
networks. In particular, we propose parallel, networked formulations of Particle Filters
and investigate how they can be implemented onGPU-architectures, for real-time control
or monitoring applications. We validate our approach via experimental and numerical
results which support the idea that real-time nonlinear estimation is achievable by a suit-
able adaptation of the Particle Filter algorithm and widelyavailable parallel computing
platforms.

Then, we turn our attention to investigating distributed control problems related to the
connectivity of the communication network among the robots. Typically in the available
literature, this has been considered to be guaranteed and available by assumption rather
than being seen as an objective to be reached via distributedcontrol actions. In addition,
the concept of “how well-connected” the robotic network is,has often been overlooked,
whereas this property can significantly improve the performance (e.g., the convergence
rate) of the distributed algorithms that run on the network.In this respect, we formulate
a control problem leading to the maximization of the connectivity of the robotic network
measured by the so-called algebraic connectivity of the network graph. We propose a non-
iterative and feasible (thus implementable in practical situations) distributed solution to
this problem which moves the mobile robots in more favorablepositions in terms of con-
nectivity. This distributed solution is based on a sequenceof local Semi-Definite Programs
(SDP) formulated using state-dependent graph Laplacians.We then proceed to extend and
utilize the presented distributed method to tackle the problem of collectively tracking a
number of moving targets while maintaining a certain level of connectivity among the net-
work of mobile robots. Numerical simulations show the performance of the distributed
algorithms with respect to the centralized solutions.

Finally, we focus on convex and non-convex networked optimization problems with re-
source allocation constraints, which can be used in realistic robotic network applications
where the mobile or non-moving robots share the same resources among each other. We
propose a regularized saddle-point algorithm for convex networked optimization problems
with resource allocation constraints. Standard subgradient methods suffer from slow con-
vergence and require excessive communication when appliedto problems of this type.
Our approach offers an alternative way to address these problems, and ensures that each
iterative update step satisfies the resource allocation constraints. Then, we investigate a
particular non-convex networked resource allocation problem, known as the Maximum
Variance Unfolding problem and its dual, the Fastest MixingMarkov Process problem.
These problems are of relevance for sensor networks and mobile robot applications. We
solve both these problems with the same distributed primal-dual subgradient iterations
whose convergence is proven even in the case of approximation errors in the calculation of
the subgradients (which is of practical importance for generating real-time solutions). Fi-
nally, we illustrate the importance of the presented algorithms for target tracking in robotic
networks, localization, and dispersion problems.



Samenvatting

Gedistribueerde Schatting en Regeling voor Robotnetwerken

Andrea Simonetto

M
obiele robots die communiceren en samenwerken om een gemeenschappelijke taak
te vervullen zijn de afgelopen jaren in een toenemende wetenschappelijke belang-

stelling komen te staan. Deze mogelijkerwijs heterogene groepen robots communiceren
lokaal via een communicatienetwerk en worden daarom vaakrobotnetwerkengenoemd.
Hun potentiële toepassingen zijn divers en omvatten controle, verkenning, opsporing en
redding en hulp bij calamiteiten. Vanuit een onderzoeksstandpunt beschouwen we in dit
proefschrift specifieke fundamentele aspecten gerelateerd aan de ontwikkeling van algo-
ritmes voor robotnetwerken: gedistribueerd schatten, regelen en optimaliseren.

Het woord “gedistribueerd” verwijst naar situaties waarinde samenwerkende robots be-
schikken over beperkte lokale kennis over hun omgeving en over de groep, dit in tegen-
stelling tot een “gecentraliseerd” scenario waarin alle robots volledige informatie tot hun
beschikking hebben. Een kenmerkende uitdaging in gedistribueerde systemen is om ver-
gelijkbare resultaten (in termen van de prestatie van de schattings-, regel- of optimalisa-
tietaak) te behalen als in een gecentraliseerd system, zonder grootschalige communicatie
tussen de samenwerkende robots.

In dit proefschrift ontwikkelen we effectieve gedistribueerde schattings-, regel- en optima-
lisatiealgoritmes toegesneden op het gedistribueerde karakter van robotnetwerken. Deze
algoritmes streven naar een beperkte communicatie tussen de mobiele robots om zo toepas-
baar te zijn in praktische situaties. In het bijzonder richten we ons op kwesties gerelateerd
aan de niet-lineariteiten in de dynamische modellen waarmee de robots en hun sensoren
beschreven worden, aan de connectiviteit van de communicatiegraaf die ten grondslag ligt
aan de communicatie tussen de robots en aan snelle, haalbareoplossingen voor het ge-
meenschappelijke (schattings- of regel-)doel.

Allereerst onderzoeken we een niet-lineair toestandschattingsprobleem in een stationair
robotnetwerk (vaak een “sensornetwerk” genoemd). In een gedistribueerd kader zijn tot
op heden vaak slechts lineaire, tijdinvariante processen beschouwd. Gemotiveerd door
het aantal scenario’s waarin een dergelijk lineair model niet toereikend zou zijn, presente-
ren we een algemene manier om gedistribueerde implementaties van vier gangbare niet-
lineaire schatters te verkrijgen: deMoving Horizonschatter, hetParticle Filter, hetExten-
ded Kalman Filteren hetUnscented Kalman Filter. Gebruik makend van dit algemene
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raamwerk, doen we voorstellen voor nieuwe gesdistribueerde varianten van deze metho-
des waarin de niet-lineariteiten lokaal door de verschillende sensorknooppunten geregeld
worden en waarbij de verschillende schattingen samengevoegd worden, gebaseerd op een
consensusproces via het gewogen gemiddelde. We laten zien hoe het samenvoegingsme-
chanisme om kan gaan met verschillende filteralgoritmes diegeı̈mplementeerd zijn op he-
terogene sensoren, wat in het bijzonder bruikbaar is in het geval de lokale rekenvermogens
van deze sensoren van elkaar verschillen.

Als tweede stap richten we ons op methodes die de zware rekenkrachteisen van de ge-
noemde niet-lineaire schatters reduceren door de berekeningen te verdelen over verschil-
lende rekenapparaten die met elkaar communiceren. Ons doelis real-time implemen-
teerbare oplossingen te leveren voor de niet-lineaire schattingstaak, die gebruikt kunnen
worden in realistische robotnetwerken. We stellen voornamelijk parallelle, genetwerkte
formuleringen voor van Particle Filters en onderzoeken hoedeze geı̈mplementeerd kun-
nen worden opGPU-architecturen voor real-time regel- of monitoringtoepassingen. We
valideren onze benadering op basis van experimentele en numerieke resultaten die het idee
ondersteunen dat real-time niet-lineaire schatting bereikbaar wordt door passende modifi-
caties van het Particle Filter algoritme en goed verkrijgbare parallelle rekenplatforms.

Vervolgens richten we onze aandacht op het onderzoeken van gedistribueerde regelpro-
blemen in relatie tot de connectiviteit van het communicatienetwerk tussen de robots on-
derling. In de literatuur wordt veelal verondersteld dat deze connectiviteit gegarandeerd
aanwezig en bekend is, in plaats van beschouwd te worden als een doel, te bereiken via
gedistribueerde regelacties. Bovendien wordt “hoe goed onderling verbonden” het robot-
netwerk is vaak over het hoofd gezien, terwijl deze eigenschap de prestaties (bv. de con-
vergentiesnelheid) van gedistribueerde algoritmes die ophet netwerk draaien significant
kan verbeteren. In dit kader formuleren we een regelprobleem dat leidt tot maximalisa-
tie van de connectiviteit van het robotnetwerk, uitgedruktin de zogenaamde algebraı̈sche
connectiviteit van de netwerkgraaf. We stellen een niet-iteratieve en haalbare (dus im-
plementeerbaar in praktische situaties) gedistribueerdeoplossing voor dit probleem voor,
die de mobiele robots doet verplaatsen naar gunstigere posities in termen van connec-
tiviteit. Deze gedistribueerde oplossing is gebaseerd op een reeks lokale semidefiniete
programma’s uitgedrukt met behulp van toestandsafhankelijke Laplacianen van de graaf.
Vervolgens breiden we deze gedistribueerde methode uit en gebruiken deze om het pro-
bleem op te lossen waarbij een aantal bewegende doelen collectief gevolgd dient te worden
terwijl een zekere connectiviteit tussen de mobiele robotsgewaarborgd blijft. Numerieke
simulaties tonen de prestaties van de gedistribueerde algoritmes aan in vergelijking met de
gecentraliseerde oplossingen.

Ten slotte concentreren we ons op convexe en niet-convexe optimalisatieproblemen met
beperkingen op de toewijzing van rekenkracht, die gebruiktkunnen worden in realistische
robotnetwerktoepassingen waar de mobiele of vaste robots een hoeveelheid rekenkracht
onderling delen. We stellen een geregulariseerd zadelpuntalgoritme voor waarmee con-
vexe optimalisatieproblemen in netwerkverband kunnen worden opgelost met beperkingen
op de toewijzing van rekenkracht. Standaard subgradiëntmethodes lijden onder trage con-
vergentie en vereisen een grote hoeveelheid communicatie wanneer deze toegepast worden
op problemen van dit type. Onze benadering biedt een alternatieve manier om deze proble-
men aan te pakken en garandeert dat elke iteratieve correctiestap aan de beperkingen op de
toewijzing van rekenkracht voldoet. Daarna onderzoeken weeen specifiek niet-convexre-
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source allocationprobleem in netwerkverband, bekend als hetMaximum Variance Unfol-
dingprobleem en het duale probleem hiervan, hetFast Mixing Markov Processprobleem.
Deze problemen zijn relevant voor sensornetwerken en toepassingen met mobiele robots.
We lossen beide problemen op met dezelfde primaire-duale subgradiëntiteraties waarvan
de convergentie bewezen is, zelfs in het geval van benaderingsfouten in de berekening van
de subgradiënten (hetgeen van praktisch belang is voor hetgenereren van real-time oplos-
singen). Tot besluit illustreren we het belang van de besproken algoritmes for het volgen
van bewegende doelen in robotnetwerken, lokalisatie en dispersieproblemen.
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Sommario

Stima e Controllo Distribuiti per Reti di Robot

Andrea Simonetto

Robot che comunicano e cooperano tra loro per realizzare una missione comune so-
no un soggetto di ricerca di crescente interesse. Questi gruppi di robot, talvolta di

tipologie differenti, comunicano tra loro localmente su una rete di comunicazione e sono
chiamati “reti di robot” per questo motivo. Le loro possibili applicazioni sono molteplici
e comprendono il monitoraggio, l’esplorazione, la ricerca, il salvataggio e il soccorso in
caso di disastri. Da un punto di vista scientifico, in questa tesi si sono prese in considera-
zione le fondazioni teoriche del progetto di algoritmi per reti di robot: stima, controllo ed
ottimizzazione distribuiti.

Il termine “distribuito” denota la situazione in cui i robothanno una conoscenza parziale e
locale dell’ambiente circostante e del gruppo di robot con cui cooperano, al contrario dello
scenario “centralizzato” in cui tutti i robot hanno a disposizione un’informazione comple-
ta. Nell’ambito dei sistemi distribuiti, la sfida ritenuta più comune è di ottenere risultati pa-
ragonabili a quelli un sistema centralizzato in termini di stima, controllo ed ottimizzazione
senza un utilizzo eccessivo di comunicazioni tra i robot perla cooperazione.

In questa tesi si sono sviluppati algoritmi efficienti per lastima, il controllo e l’ottimiz-
zazione. Gli algoritmi sono specificamente progettati per la natura distribuita delle reti
di robot e, per essere applicabili a situazioni realistiche, limitano le comunicazioni intra-
robot. In particolare, ci si è soffermati sulle problematiche riguardanti le nonlinearità del
modello dinamico dei robot e dei loro sensori, la connettività del grafo di comunicazione
attraverso cui i robot comunicano, e la generazione veloce di soluzioni ammissibili per i
problemi analizzati.

In primo luogo, si è studiato il problema della stima di uno processo nonlineare attraverso
una rete di robot stazionari (nota anche come “rete di sensori”), in quanto in ambito distri-
buito, solo processi lineari tempo-invarianti erano statipresi in considerazione. Motivati
dal gran numero di scenari applicativi in cui tali modelli lineari non sono adeguati, si è pre-
sentato un metodo unificato per descrivere implementazionidistribuite di quattro stimatori
nonlineari di comune utilizzo: lo Stimatore ad Orizzonte Mobile (Moving Horizon Esti-
mator), il Filtro Particellare (Particle Filter) ed il Filtro di Kalman Esteso edUnscented.
Utilizzando tale approccio unificato, si sono introdotte nuove versioni distribuite di questi
metodi, in cui le nonlinearità sono gestite localmente daivari nodi sensore e le diverse
stime sono fuse in base ad un processo di consenso a media pesata. Si è inoltre mostrato
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come i meccanismi di fusione delle stime sono in grado di gestire diversi algoritmi di fil-
traggio implementati su sensori eterogenei. Questo è particolarmente utile quando la rete
di sensori è formata da sensori con diverse capacità computazionali.

In secondo luogo, ci si è concentrati su metodi che riduconol’elevato costo computa-
zionale degli stimatori nonlineari sopra elencati distribuendo le operazioni su processori
differenti comunicanti tra loro. Lo scopo era la generazione in tempo reale di soluzioni
per il problema di stima nonlineare, soluzioni che possano essere utilizzate in reti di robot
realistiche. In particolare, si sono proposte versioni parallele e distribuite del Filtro Par-
ticellare, e si sono investigate le loro possibili implementazioni su architetture basate su
GPU, per applicazioni di controllo e di monitoraggio in tempo reale. L’approccio è stato
poi verificato attraverso studi numerici e sperimentali chehanno confermano la possibilità
della stima nonlineare in tempo reale tramite un’opportunamodifica del Filtro Particellare
e l’utilizzo di comuni piattaforme per il calcolo parallelo.

In seguito, ci si è interessati allo studio di problemi di controllo distribuito riguardanti
la connettività della rete di comunicazione tra i robot. Nei metodi disponibili al giorno
d’oggi, la connettività è spesso data per garantita o assunta come ipotesi, piuttosto che
vista come un obiettivo da raggiungere attraverso azioni dicontrollo distribuito. Inoltre, il
concetto di “quanto” una rete è connessa è spesso ignorato, mentre questa proprietà può
migliorare in modo significativo le prestazioni (per esempio l’ordine di convergenza) di
un algoritmo distribuito che viene eseguito da una rete. A questo riguardo, si è formulato
un problema di controllo che porta alla massimizzazione della connettività di una rete di
robot misurata dalla cosiddetta connettività algebrica del grafo di rete. Si è poi proposta
una soluzione distribuita non iterativa e ammissibile (perquesto motivo implementabile in
situazioni reali) che guida i robot in una configurazione pi`u favorevole in termini di con-
nettività. Questa soluzione distribuita si basa su una sequenza di Problemi Semi-Definiti
locali formulati usando Laplaciani di grafo dipendenti dalle posizioni dei robot. In seguito
si è proceduto all’estensione e l’utilizzo del metodo distribuito precedentemente sviluppa-
to al problema dell’inseguimento collettivo di un numero diobiettivi mobili mantenendo
un certo livello di connettività tra i robot nella rete. Simulazioni numeriche hanno mostrato
le prestazioni degli algoritmi distribuiti rispetto a soluzioni centralizzate.

Per finire, si sono considerati problemi di ottimizzazione convessi e non convessi su re-
ti con limiti imposti alle risorse disponibili. Per prima cosa, si è proposto un algoritmo
a punto di sella regolarizzato per problemi convessi con questo tipo di vincoli. Metodi
standard basati sul sub-gradiente soffrono di convergenzalenta e necessitano di comuni-
cazioni eccessive in questi casi. L’approccio presentato offre invece un metodo alternativo
di risolvere questo problema vincolato e garantisce che ogni aggiornamento iterativo ri-
spetti il limite sulle risorse disponibili. In seguito, si `e investigato un particolare problema
non-convesso di distribuzione di risorse su rete, noto comelo Spiegamento a Massima Va-
rianza (Maximum Variance Unfolding) e il suo duale, il Processo di Markov a Mischiaggio
più Veloce (Fastest Mixing Markov Process). Questi problemi sono rilevanti per applica-
zioni con reti di sensori e robot mobili. Si sono risolti entrambi i problemi con lo stesso
metodo primale-duale distribuito basato su sub-grandienti la cui convergenza è stata dimo-
strata anche nel caso di errori di approssimazione nel calcolo dei sub-gradienti (il che è di
importanza pratica per la generazione di soluzioni in temporeale). Infine, si è dimostra-
ta l’importanza degli algoritmi presentati per problemi dimonitoraggio, localizzazione e
dispersione in reti di robot.
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“When one door closes another door opens;
but we often look so long and so regretfully upon the closed door,

that we do not see the ones which open for us.”

Alexander Graham Bell
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