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Chapter 1

Introduction

roups of sensors and autonomous mobile robots that excliafiogeation with one
G’ another are envisioned to play an important role in sevarakegally relevant ap-
plications. Examples range from monitoring and survedignracking, exploration to
search, rescue, and disaster relief. More specific apitaencompass forest fire moni-
toring with multiple unmanned aerial vehiclgggsbeer et 12005, coordinated control
of multiple underwater robotd €onard et al.2010, earthquake predictions and damage
assessmenthaamwe et al2010 Oguni et al, 2011, deep space exploratiolzgzo and
Pettazzi 2007), and robot-assisted search and rescue in response t@lndisasters or
other calamitiesGasper and Murphy003.

In all these applications, the communication among thersfit sensors and robots is cru-
cial in order to accomplish the mission tasks. This gives tisa communication network
that describes the way the sensors and robots communidhteacih other. In this context,
if two sensors or robots can communicate with one anotheetisea link between them
in the network. Extending this terminology, the group ofs@s communicating with one
another via a communication network are typically refeteeds sensor network, while
the group of robots are sometimes called mobile robotic adtsy In some situations,
such as the case of mobile robots carrying sensors onbbardjdtinction among sensor
and mobile robotic networks can be less immediate. As atresubften use in this thesis
the termrobotic networkgo identify either sensor networks, mobile robotic netveyrr

a combination of both.

From a theoretical and implementation perspective, thdiesuof robotic networks in-
volve distributed estimation, control, and optimizatievhich all include the design of
distributed algorithms. The word “distributed” indicatesre the adaptation of the stan-
dard concepts of estimation, control, and optimizatiorettirsgs where the sensors or the
robots are endowed with local information processing/cotation capabilities, have a lo-
cal knowledge of the environment and of the entire group,thay need to communicate
with one another to achieve the common estimation, cordralptimization objective.

The challenges that robotic networks and the design ofiloiged algorithms pose are di-
verse. Some of the most important ones are linked to the ahgngture and limitations
of the networks. Both sensors and robots have to be able ®witp (unexpected) vari-
ations of the communication topology. The algorithms neelet suitable for the limited

1



2 Chapter 1: Introduction

computation and communication capabilities of the senandsthe robots, i.e., we can-
not expect to have access to unlimited computation and corimation power onboard.
Moreover, there is the need of formal guarantees for theriggos to achieve given per-
formances, for example guarantees that the robots do niaeelith each another and
that the communication network maintains a certain corivigct

Among the diverse challenges, in this thesis we will consggescific aspects related to
the following:

e Distributed estimation algorithms for sensor networksehlagen applied mainly on
sensors that observe linear time-invariant systems. Meleds, there are many re-
alistic situations in which such a framework cannot be agghldue to nonlinearities
in the dynamical system, the sensing equation, or due torfsepce of constraints.
One typical application example where all of these comgtigecharacteristics are
present is the localization of a moving object via rangeromeasurements.

e Sensor networks are comprised of many and possibly diffexemsors with their
own capabilities. However, with current algorithms it ist possible to tailor the
computational effort to the computational capabilitiethaf sensors, which prevents
utilizing the full potential of the sensor network.

e Considering distributed control algorithms, the connéistiof the communication
network among the mobile robots has been often considerbd ggranted by as-
sumption, rather than being achieved as an objective of igtglalited control ac-
tion. In addition, the connectivity has often been analyaedh binary statement
(i.e., is it connected? yes/no), whereas more useful itsighuld be obtained by
describing the connectivity by a suitable continuous meffihis metric could ex-
press how well connected the network is and how we could &seréhe connectivity
(for example, by moving the robots closer to each other).

¢ Distributed optimization algorithms are typically basedstow converging iterative
schemes that can guarantee feasibility of the solution respect to the constraints
only at convergence (i.e., asymptotically). This mightamger the physical imple-
mentability of the algorithms on real hardware due to thetéchcommunication
capabilities of the sensors and robots.

1.1 Objective and Outline

The main objective of this thesis is to analyze how we can naidteibuted estimation,
control, and optimization techniques more suitable footanetworks. In particular, we
will propose methods to tackle the specific aspects predémtde previous section, i.e.,
nonlinearities, heterogeneity, connectivity of the comimation network, feasibility of
the solutions, and real-time implementation.

This thesis consists of six chapters. Chapter 1 is thisditcton, Chapter 2, 3, 4, and 5
form the main material of the thesis, while Chapter 6 givesamnclusions and recom-
mendations. With regards to the main chapters,



1.2 Contributions 3

Chapter 2 deals with distributed nonlinear estimation. In this cleapte consider sensor
networks that are used to estimate the state of a given re@mlatynamic process, such as
the state of a mobile robot.

Chapter 3 analyzes the distributed/parallel computation side oflinear estimation. In
particular, in this chapter we consider networks of comqutinits (the cores of aPu-
architecture).

Chapter 4 studies distributed control solutions for networks whaskd are weighted via
the pair-wise distances of the nodes. These nodes repmaséiie robots and therefore
the connectivity of the network depends on the robots’ pwsifi.e., we consider state-
dependent graphs). In this chapter we formulate and sobat tmntrol problems that aim
to move the robots in order to increase the algebraic coivitgaif their interconnecting

communication network. This problem is then extended totjpioptimize the connec-
tivity of the communication graph and the connectivity oé ttobots with a number of
moving targets.

Chapter 5 investigates convex and non-convex networked optimingifoblems with re-
source allocation constraints, which can be applied tmuanobotic network applications.
In this chapter we consider networks of computing unitfieimobile or non-moving.

1.2 Contributions

The following are the main contributions of the thesis.

Chapter 2: Distributed Nonlinear State Estimation

e We propose a unified framework for the distributed nonlirestimation problem.
In our framework the nonlinearities are handled locally Iy $ensor nodes, while
a weighted merging mechanism provides a method to incotpdina information
coming from the neighboring sensor nodes. This mechanikwsthe use of dif-
ferent estimators on different sensor nodes.

e We propose a distributed nonlinear Moving Horizon Estimato

e We propose distributed versions of commonly used nonliastimators, i.e., Parti-
cle Filters, Unscented and Extended Kalman Filters. Thetsmators are observed
to lead to a better estimation quality than the ones availabthe literature in nu-
merical simulations. This improvementis due to the undegyveighted merging
mechanism.

The results contained in this chapter have been submittpdlgished in

Simonetto and Keviczky2012 A. Simonetto and T. KeviczkyDistributed Decision Making and
Control, volume 417 ofLecture Notes in Control and Information Sciencebapter Distributed
Nonlinear Estimation for Diverse Sensor Devices, pages-14G9. Springer, 2012.

Simonetto et al(20113 A. Simonetto, D. Balzaretti, and T. Keviczky. EvaluatiohaoDistributed
Moving Horizion Estimator for a Mobile Robot Localizatiomdblem. InProceedings of the 18th
IFAC World Congresspages 8902 — 8907, Milan, Italy, August — September 2011a.
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Simonetto et al(20103 A. Simonetto, T. Keviczky, and R. BabuSka. Distributedhhioear Estima-
tion for Robot Localization using Weighted ConsensusPtaceedings of the IEEE International
Conference on Robotics and Automatipages 3026 — 3031, Anchorage, USA, May 2010a.

Simonetto et al A. Simonetto, T. Keviczky, and R. Babuska. Distributed Nuogar State Estimation
of Mobile Robots via Sensor Networks . In preparation: toldensitted as Springer Brief, 2012.

Chapter 3: Distributed Computation Particle Filters on Gpu-Architectures

e We analyze how to distribute the computations of Particleefs among different
computing units and we devise an algorithm that can achiewarate estimation
results, while being implemented in real-time.

e We implement the resulting distributed computation PhrtiGlter on a robotic arm
experimental setup using parallepu-architectures, where we use the result of a
Particle Filter based on over a million particles as an iripua real-time feedback
controller with a sampling frequency of 100 Hz.

The results contained in this chapter have been submittpdlgished in

Chitchian et al(20123 M. Chitchian, A. Simonetto, A. S. van Amesfoort, and T. Keky. Dis-
tributed Computation Particle Filters appu-Architectures for Real-Time Control Applications.
Submitted to IEEE Transactions on Control Systems Techpdt912a.

Simonetto and Keviczky2012 A. Simonetto and T. KeviczkyDistributed Decision Making and
Control, volume 417 ofLecture Notes in Control and Information Sciencekapter Distributed
Nonlinear Estimation for Diverse Sensor Devices, pages-1469. Springer, 2012.

Simonetto and Keviczk{2009 A. Simonetto and T. Keviczky. Recent Developments in [histied
Particle Filters: Towards Fast and Accurate AlgorithmsPtaceedings of the 1st IFAC Workshop
on Estimation and Control of Networked Systepages 138 — 143, Venice, Italy, September 2009.

Chapter 4: Distributed Control of Robotic Networks with State-Dependent Lapla-
cians

¢ We extend and modify the standard centralized optimizagifocedure of Kim and
Mesbahj 2006 Derenick et al.2009 for the maximization of the algebraic con-
nectivity (which is a measure of connectivity “quality”y brder to handle more
realistic robot dynamics. The resulting optimization gesb is then proven to be
feasible at each discrete time step under rather generahasions.

e We propose a distributed solution for the resulting ceizteal problem. Our dis-
tributed approach relies on local problems that are solyezhleh robot using infor-
mation from nearby neighbors only and, in contrastDe Gennaro and Jadbabaie
20006, it does not require any iterative schemes, making it maiekle for real-
time applications.

e We extend the mentioned distributed solution to tackle ttodblem of collectively
tracking a number of moving targets while maintaining aaertevel of connectiv-
ity among the network of mobile robots.
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The results contained in this chapter have been submittpdlgished in

Simonetto et al(20123 A. Simonetto, T. Keviczky, and R. BabuSka. Constrainedtiibuted
Algebraic Connectivity Maximization in Robotic NetworkSubmitted to Automati¢c2012a.

Simonetto et al(2013 A. Simonetto, T. Keviczky, and R. BabuSkaDistributed Autonomous
Robotic Systemsolume 83 ofSTAR chapter Distributed Algebraic Connectivity Maximizatitor
Robotic Networks: A Heuristic Approach, pages 267 — 279.id&pr2013.

Simonetto and Keviczk¢2011) A. Simonetto and T. Keviczky. Distributed Multi-Targetaiaking
via Mobile Robotic Networks: a Localized Non-iterative SBpproach. InProceedings of the 50th
IEEE Conference on Decision and Control and European Cotanferencepages 4226 — 4231,
Orlando, USA, December 2011.

Simonetto et al(2011h A. Simonetto, T. Keviczky, and R. Babuska. On Distribugdgebraic Con-
nectivity Maximization in Robotic Networks. IRroceedings of the American Control Conference
pages 2180 — 2185, San Francisco, USA, June — July 2011b.

Simonetto et al(20100 A. Simonetto, T. Keviczky, and R. Babu3ka. Distributeg@braic Connec-
tivity Maximization for Robotic Networks: A Heuristic Appach. InProceedings of the 10th Inter-
national Symposium on Distributed Autonomous Robotice®ygs ausanne, Switzerland, Novem-
ber 2010b.

Chapter 5: Distributed Optimization Methods in Robotic Network Applications *

e We propose a regularized saddle-point algorithm for cometworked optimization
problems with resource allocation constraints. Our apgh@msures that each iter-
ative update step satisfies the resource allocation camtstend makes the scheme
faster than traditional subgradient algorithms. Furth@menwe demonstrate the rel-
evance of the scheme in a representative robotic scenario.

e We solve a particular non-convex networked optimizatioobfgm, known as the
Maximum Variance Unfolding problem and its dual, the FasMixing Markov
Process problem with the same distributed primal-dual sadignt iterations. The
convergence of our method is proven even in the case of ajppativn errors in
the calculation of the subgradients. Finally, we illusrétie importance of these
problems in robotic networks as formulation of localizatfsroblems and coverage
(or dispersion) control.

Part of the results contained in this chapter have been stduhto

Simonetto et al(20129 A. Simonetto, T. Keviczky, and M. Johansson. A Regularidzdidle-
Point Algorithm for Networked Optimization with Resourcdideation Constraints. 2012cTo be
presented at the 51st IEEE Conference on Decision and AoMeawi, USA, December 2012.

Simonetto et al(20120 A. Simonetto, T. Keviczky, and D.V. Dimarogonas. Distitied Solution
for a Maximum Variance Unfolding Problem with Sensor and &a@bNetwork Applications. 2012b.
Presented at the 50th Allerton Conferepnédlerton, USA, October 2012.

pPart of the results of this chapter have been obtained darthgee-month visit at KTH, The Royal Institute
of Technology in Stockholm, Sweden, under the supervisfdrof. M. Johansson and Dr. D. V. Dimarogonas.






Chapter 2

Distributed Nonlinear State Estimation

Abstract — In this chapter we consider the nonlinear state estimatioblem via sensor
networks, which is relevant both from a theoretical and gsliegtion perspective.

We present a unified way of describing distributed impleragons of four commonly
used nonlinear estimators: the Moving Horizon Estimatwr Rarticle Filter, the Extended
and Unscented Kalman Filter. Leveraging on the presenteddwork, we propose new
distributed versions of these methods, in which the noaliies are locally managed by
the various sensor nodes whereas the different estimatesenged based on a weighted
average consensus process. We show how the merging meuntamsandle different fil-
tering algorithms implemented on heterogeneous senshishis especially useful when
they are endowed with diverse local computational cagasli Simulation results as-
sess the performance of the algorithms with respect to atdrdistributed and centralized
estimators.

2.1 Introduction

Nowadays, wireless sensor networks are developed to mdagl, cheap, reliable, and
scalable hardware solutions to a large number of industpalications, ranging from
surveillance Biswas and Phoh&006 Raty, 2010 and tracking $onghwai et a).2007,
Liu et al,, 2007 to exploration Sun et al.2005 Leonard et al.2007), monitoring Corke
et al, 201Q Sun et al. 2011, and other sensing task&rampatzis et a.20095. From
the software perspective, an increasing effort is spentesigding distributed algorithms
that can be embedded in these sensor networks, providitgralbility with limited
computation and communication requirements for the semsdes.

In this chapter we focus on proposing distributed methodsiémlinear state estimation
using such sensor networks in a distributed sensing settihgre each sensor node has
access to local measurements and can share data via théyimgleetwork.

As expressed in Chapter 1, our motivations are twofold. tifsll, from a theoretical
point of view, distributed nonlinear estimators are in thegrly development stage and the
challenges they pose are far from being solved. Second, droapplication perspective,

7



8 Chapter 2: Distributed Estimation

many real-life tasks ask for reliable, scalable, and disteble software to be embedded
in sensor networks for nonlinear estimation purposes.

In this context, in Sectio2.2 we formulate the distributed estimation problem and we
propose a common framework where to develop the distribegéichators. This common
framework is based on a merging mechanism that can also énaiftitrent classes of
estimators implemented on the different sensor nodes. i3 leispecially useful when the
heterogeneous sensor devices have different computhtiapabilities and we want to
exploit their resources efficiently. In this respect, thegmsed merging mechanism can be
used to tailor the composition of various filters to the dieesensor devices in the network.

In Section2.3we leverage on the proposed framework and we design digtduersions
of the most common nonlinear estimators. In particulart firs propose a distributed
Moving Horizon Estimator that allows the most general agsions on the system model
and constraints to be treated in a rigorous, optimizatiaseb framework. Then, restrict-
ing the generality of the assumptions on the system modekanstraints, we propose
versions of distributed Particle Filters and UnscentedExtended Kalman Filters.

Finally, numerical simulations illustrate the benefit oé ttommon merging mechanism
with respect to standard distributed algorithms and cém¢ihestimators.

2.2 The Distributed Nonlinear Estimation Problem and Consesus
Algorithms

2.2.1 Problem Formulation

Let the discrete-time nonlinear time-invariant dynamicaldel of the system with state
x(k) be
x(k +1) = f(x(k), w(k)). (2.1)

The statex and the disturbance satisfy the constraints
x(k) e XCR" andw(k) € W C RY, forall k, (2.2)

whereX andW are generic non-convex sets. The functjopnX x W — X is a smooth
nonlinear function an@ € W.

Let the process described iR.{) be observed by non-moving sensor nodes each with
some processing and communication capability. Each oféhea nodes has a copy of
the nonlinear dynamical modél.(l). The sensor nodes are labeted 1,..., N and form
the setY. The sensor node communication topology is modeled as aineatet! graph
G = (V, &), where an edgég, j) is in £ if and only if sensor nodéand sensor nodgcan
exchange messages. We assume the sensor nodes to haveratedsénsing range, the
graph to be connected, the sensor node clocks to be synzadhmind we assume perfect
communication (no delays or packet losses).

The sensor nodes with which sensor ned®mmmunicates are called neighbors and are
contained in the se¥;. We defineN;" = A; U {i} andN;" = |N;|. Each sensor node
¢ measures the quantity; (k), which is related to the state(k) through the nonlinear
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measurement equation
zi(k) = gi(x(k)) + p; (K), (2.3)
wherep,; (k) is an additive noise term that satisfies

wp;(k) e M; CR%  0e M, forall k, (2.4)

and each of th&/; is a generic non-convex set, while each of the X x M; — Xisa
smooth nonlinear function. The noise termgk) are assumed to be independent of each
other, which is often a standard and reasonable assumptjmadtice. For simplicity, we
will indicate with z(k) the stacked vector of all the measurementg), with u(k) the
stacked vector of all the measurement ngisé), while with g(x(k)) we will denote the
compacted stacked form of all thg(x(k)), i.e.,

z(k) = g(x(k)) + p(k). (2.5)

We assume that the process described?if) (equipped with the stacked measurement
equation R.5) is strongly locally observable for alt € X, meaning that the following
map

O(x) = [ 9(x), 9(f(x,0)), 9(f(f(x,0),0)), ..., g(f(--- F(/(x,0),0))) |  (2.6)

has rankn for all x € X, (Nijmeijer, 1982 Albertini and D’Alessandrp1995. This
assumption implies that we can reconstruct the stat2.af 4t the discrete timé via the
measurements(k). We remark that the rank conditio8.6) is the nonlinear extension of
the standard rank condition for linear systems.

In this chapter, we are interested in situations in whichptteeess described i2 (1) is not
strongly locally observable by the individual sensor nodlese, meaning that the local
couple(z;(k), g;) together with the dynamical modglis not sufficient to estimate the
statex (k). More formally, we are interested in situation in which itnist assumedhat
the nodal observability map

Ol(x) = gi(X), gi(f(xa 0))7 gi(f(f(xa 0)7 0))a RN gi(f(' e f(f(x7 O)a 0))) (2-7)

n—1

has rank: for all x € X. Under this circumstance, each of the sensor nodes needsito ¢
municate with the neighboring nodes to obtain their localges(z; (), g;) and, possibly,
the ones of further away sensor nodes via consecutive artémopl communication.

We assume that afterdimited amount of multi-hop communication, the nodal observabil-
ity maps, extended with the information coming from the héigring nodes, become full
rank for allx € X and therefore each sensor node can estimate the state;(kgtenote
the estimate of sensor nodat timek. This local estimat&; (k) is in general a stochastic
variable, thus we IeE[x; (k)] be its expected value, while represents its covariance.

Since communication is an important resource in sensorar&sythe sensor nodes will
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obtain only the data necessary to make the state observah|et{e nodal observability
maps full rank), and not the whole network measurementsditian, we remark that it is
also beneficial to limit the number of measurements avalaioéach sensor node. This, in
order to keep the estimation problem small in size, thuseasihandle within the sensor
nodes’ limited computation resources. As a result, the hestamates; (k) are in general
different among each other. For this reason the sensor riathedecide to communicate
further to reduce this difference (and increase the estmauality) and eventually agree
on a common value fax; (k). Letr be the total number of communication rounds each
sensor node performs among its neighborhood before theguest time step + 1. Let
x;(k, ) be the agreed value for the state estimate affeund of communication (which
for finite 7 could be still different among the sensor nodedjhe distributed estimation
problem can be formulated, for each sensor nadas follows.

Problem 2.1 Distributed Estimation Problem Compute, on each sensor noigéhe lo-
cal estimatex;(k, 7) of the state governed by the dynamical equa{@:i) making use
of local measuremen{&.3) and communication within the neighborhaaf. This local
estimatex; (k, 7) must:

(i) satisfy the constraints on the state and noise termsakqns(2.2) and (2.4) for a
givent < oo;

(i) be an unbiased estimate fai(k), i.e.,E[%;(k, 7)] = x(k) for a givenr < oo;

(iii) converge, forr — oo, to a collective estimate that is the same for all the sensor
nodes, i.elim,_, . x;(k, 7) = x(k), for eachi € V.

We note that, if we allow — oo, it would be straightforward to solve Distributed Esti-
mation Problen®.1. In fact, it would be sufficient to communicate the sensoresodata
throughout the whole network. On the contrary, the mainlehgk in Problen?2.1is to
ensure requiremen(g-(ii) for a givenr < oo, typically 7 = 1 (meaning communication
only with the neighborhood). This formally translates tle@sor nodes communication
limitation.

We remark that

e Requirementiii) does not imply requiremei(if) nor vice-versa: in fact, iffiii) we
only require the sensor nodes to agree on a common estinyan@ttically (in fact,
this common value could be biased), while pdiiit requires the sensor nodes to
deliver possibly different unbiased estimates at each sitegk, i.e.,E[x;(k,7)] =
E[x,(k,7)] = x(k), but it can be thak;(k, ) # %x,(k, ), for eachi and;j (even
forr — o0).

¢ If both requirementsii) and(iii) are satisfied, then the sensor nodes agree asymp-
totically on an unbiased estimate fofk).

In the next sections we propose different estimators theaspecifically designed to tackle
the Distributed Estimation Probleth1 and we will highlight the satisfaction of the re-
quirementgi)-(iii) .

1We remark that, by definitions; (k, 0) = x; (k).
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Remark 2.1 (Graph topology) In this chapter we make the simplifying assumption thattra-
munication graph of the sensor network is fixed. For compkse we refer the reader to the works
in (Xiao et al, 2005 2006 Boyd et al, 2006 Fagnani and Zampiei20089, which deal with time-
varying topology. In our opinion, this time-invariant gtamssumption is not overly restrictive and
we anticipate it could be removed by minor modifications efrttethods to be presented.

2.2.2 Motivations and Challenges

Before describing the estimators, we will elaborate on thdeulying motivations and
challenges of the Distributed Estimation Probl2m. First, recall the following motiva-
tions:

e There are many scenarios, especially in robotics, wheréneam dynamics, non-
linear measurement equations, and constraints are preBettibuted Estimation
Problem2.1is a natural extension of common problems described in tieatiset-
ting for sensor networks.

e There is an increasing number of applications where a langeder of sensor nodes
are employed to deliver reliable estimates for a common tlyidg process. In
these applications the need for distributed operationssatirectly from the nature
and number of the sensors. In fact, given their number (sqphcation are aiming
at deploying 1000 or more sensors) we cannot expect to ttfiet measurements
in only one computing unit which will have to deal with a largeale nonlinear
estimation problem. On the contrary, the individual semsmtes will be required to
perform local estimation and to communicate with the neayiig nodes in order to
increase the estimation quality (and, in some cases, to thakocess observable).

On challenges’ side, we recall the following two points. Tinst main challenge is that
the process and the measurement equation are nonlinedinéaoity makes the estima-
tion problem harder to solve computation-wise. Moreovaultiple solutions are often
introduced in the nonlinear estimation process and issnksd to stability and bias can
depend critically on the initial conditions.

The distributed nature of the problem is the second mainledgeé. Distribution intro-
duces couplings among the different sensor nodes: theatssmare shared and combined
together. This could damage the stability and unbiasedregerties of the local nonlin-
ear estimators. Furthermore, trade-offs have to be madeebatcommunication, com-
putational efforts and estimation quality. Sometimesgeeigly in the nonlinear setting,
just one more round of communication (e.g.~ 2 instead ofr = 1), could increase
substantially both the computational time and the qualityhe estimate.

With these motivations and challenges in mind, we start érthxt section to consider
distributed estimators.

2.2.3 General Framework for the Distributed Estimators

We propose to leverage on the same underlying frameworkéodistributed estimators
we will design to solve Probler2.1 This framework is depicted in Figugel



12 Chapter 2: Distributed Estimation

\

Sensor nodi

) / Sensor node
Sensing and Zy
Communicatiol \ !
-------- - %P g \—
vl }A(.IVP.I Z3 = |
Computatio Local \ /
Estimato N p
Sensor nodé Sensor nodeV

Sensor nodé

Figure 2.1: Proposed distributed (sensing) framework for the estiamafiroblem.
We note that each of the local estimators has the same ingpubstructure to
allow the possibility to “plug and play” different local fidtrs.

We recall that in standard centralized approaches, all ts@sorement s€tz;,...,zx}
would be sent to a centralized estimator, which would delare estimate for the state.
Instead, in a distributed setting approach there are a nuaflsensor nodes that locally
observe the process and communicate one another to compot@raon estimate for
the state. In Figur@.1the proposed distributes (sensing) approach is illustrafee di-
vide each of the sensor nodes into two parts, the sensingandhanication part and the
computation part. The sensing and communication part [goresble for measuring the
quantityz; (k) and communicating with the neighbors sensor nodes. Theagessonsist
of z;, g;, %X;(z,7) and its covariancé’i(k,r) (Where we denot&;(k,0) = x;(k)). The
sensing and communication part is connected to the coniputaart that is responsible
of estimating the state via a local estimator. This locah&stor receives as an input the
available variableg;, g;, x;(k, 7 — 1), Pj(k:,T — 1) (that come from its own and neigh-
boring sensor nodes) and deliver as an output its own valug @& ), P;(k, 7). This
input-output structure is the same across the network andame for different local esti-
mators.

In this context, we note that the main difference of the psmlstructure with the available
literature is that each local estimator in Fig@rd will be constructed in order to have
the same input-output structure, which enables us to “pheyday” different filters and
have an heterogeneous group of estimators as a result. uijlthsimilar concepts have
been applied in centralized setting®dajamani and Rawling2007, Qu and Hahp2009
Ungarala2009), this is an important novelty in the distributed domainphurticular, this
feature enables to tailor the local filters to the differesisors devices (and therefore
hardware) that are available in practice, which is of caitimportance in sensor network
applications.

The proposed structure is based on a weighted consensuamnigutthat merges the local
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estimates and the covariance matrices coming from therdiffesensor nodes, as illus-
trated next.

2.2.4 Weighted Consensus Algorithm

As expressed in the problem formulation westetk) and P; (k) be the local state estimate

of sensor nodé and its covariance matrix before agreements with the neighd nodes.

Let %;(k,7) and P;(k, ) be the values of the nodal estimate and the covariance matrix
afterr rounds of communication with the neighboring nodes. Oftemrder to simplify

the formalism, with abuse of notation, we will denote

)A(l(k) = )A(i(k/’,T) and Pl(k) = Pl(k,T)

We will use averaging consensus algorithms to implemenagiieement protocol among
the sensor nodes, which will be important, not only to allbes $ensor nodes to agree on a
common state estimate (Requiremgiit of the Distributed Estimation ProblerB.()), but
also to improve the distributed method'’s accuracy. Stahdeferences to these types of
algorithms areOlfati-Saber and Murray2004), Olfati-Saber et al(2007), Cortés(2008),
Keviczky and Johanssq2008), Ren and Bear@0089. In particular, we consider recur-
sive merging iterations of the form

X;(k,0) = x;(k) forallieV,
xi(k,k) = Z wiiXj(k,k—1), k=1,...,T, (2.8)
JEN

wherew;; € R. LetW € RNV XN pe the matrix with entriew;;. We can represent the
iterations 2.8) in a matrix-vector form as

Xk, k) witl, | wiely, | .o | winI, X(kr—1)
_Xa(k, k) | worly | waly | ... | wanIy Kok —1)
)A(N(k?,li) lefn wNQIn wNNIn )A(N(k/’,li—l)
Wl

wherew;; = 0if ¢ andj are not neighboring sensor nodes.

As in standard averaging consensus algorithms, we rechéitethhe matrixi/’ satisfies
(Ren and Beard2008

: T __ 1 T
Thﬂn;OW = N]'N]'N’ (2.9)

wherely is a vector of dimensioiV of all ones. With the property2(9) the consensus
iterations 2.8) converge to a final state, where all the local variables areakto the
mean of the initial values. This fact is used to satisfy regmient(iii) of the Distributed
Estimation Problen2.1

In this chapter, we propose to use a special consensus nigchdiased on a weighted
version of the standard iteration®.§), similar to the algorithm presented iKi@o et al,
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2005. In particular, in the standard iteratior’%s &) with the property 2.9) the sensor nodes
agree on the average value of the local estimajés), i.e.,

lim x(k,7) g xi(k
T—00
1€V

On the contrary, in our proposed algorithm, they reach aeeagent on the average of the
local estimatex; (k) weighted on the covariance matricBgk), i.e.,

lim x(k,7) (ZP )) <Z Pi_l(k)ii(k)> :

i€V i€V

This weighted average gives more emphasis to local estawdth “smaller” covariance
matrices, as one would do intuitively, thus one can expeat tiis average is a better
estimate fox (k). In order to formalize these ideas we cite the following lemam

Lemma 2.1 (Xiao et al, 2009 Given a set of independent and unbiased estimatgs,
with associated covariance matricd3, wherei € V, the following weighted averaging:

Pt Y P,

Jjev JjEV

o
I

gives the minimum-variance unbiased estimate. of

In order to see how we can leverage on the result of Lerrhan our proposed consen-
sus mechanism, we introduce some auxiliary variables.xl et R‘lii, be the local
weighted estimate, lét; = ]51._1 be the inverse of the covariance matrix, usually referred
to as the information matrix, let = (1/N) >_jey X; be the average of the weighted es-
timates, and let” = (1/N)>_,., Y; be the average of the information matrices. The
weighted averaging given in Lemrﬂalcan be seen as

¥ = Yk 2.10a
( )

Pt = NY. (2.10b)

In this form, noticing that botlY” andx can be computed asymptotically via standard
averaging iterations2(8), the translation of Lemma.1in a consensus protocol appears
clearer. In practice, one would run the iteratioBs3( on the local weighted estimat&s
and information matrice¥ for 7 — oo and successively evaluateand P via (2.10).

In our case, however, we restrictto be finite, in some situations even to be= 1. In
this context, the agreed estimategk, 7), will not be equal toY ~'x(k) and therefore
they will not deliver a minimum-variance estimate of thesta(k). Furthermore, the lo-
calx;(k) are in general correlated since the sensor nodes are alpéing same model.
Nonetheless, first, one can expect a better estimationtguath this weighted consensus



2.2 The Distributed Nonlinear Estimation Problem and Consesus Algorithms 15

with respect to standard averaging consensus, and, segemadn guarantee the unbiased-
ness of the locak; (k) (even forr = 1) as follows.

Lemma 2.2 Given a set of possibly dependent but unbiased estimatesijth associated
covariance matrices;, wherej € N;t, the weighted average

-1

. 5—1 5—15
o= | > P > P
JjeENT JENT
51 51
1 > P
JEN

will be an unbiased estimate &f

Proof. The expected value &f; can be written as

-1

Ex] = E|| Y Pt S Py,

JEN N,
from which the claim follows. O
Algorithm 2.1 MERGE({x1(k), ..., xn(k)},{Pi(k),..., Pn(k)}, W, 7) algorithm
L nput: {1 (), ..., % (K)}, {P1(K). ..., Py ()}, W, i
2: Compute the auxiliary variables for eax:hx (0) =P~ k)% (k), Y3 (0) = Pi’l(k)
3: Consensus step for eath
4: for k =1to7 do
5. Communicate Withit:l\fi+ the couple k;(k — 1), Yi(k — 1))
6: Compute:
Xi(K) = 2 jent wis%i(k—1)
Yilk) = 3 ept wigYi(w = 1)
7: end for N
8: Compute for each %;(k,7) = Y, * (1)%:(7), B 1 (k,7) = Yi(7)

©

OUtpUt:{f{l(k% ce 7)A(N(k“)}7 {ﬁl(k)7 e 7ﬁN(k;)}

We report in Algorithm2.1 our proposed algorithm. We denote the resulting weighted
consensus algorithm, as theeGEalgorithm.

Algorithm 2.1will be used in the following sections to merge the differiercl estimates
and their covariances coming from the sensor nodes. We mate more that, although
it is not guaranteed to deliver a minimum-variance estimatenerical simulation studies
(in addition to the ones illustrated itsimonetto et al.2010a Simonetto and Keviczky
2012) will show improved accuracy in delivering state estinsatgth respect to standard
consensus algorithm&.Q).
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2.3 Distributed Nonlinear Estimators

In this section we proposed distributed versions of commaskd nonlinear estimation
methods, namely the Moving Horizon Estimators, Particle, and Unscented and Ex-
tended Kalman Filters. We will start from the Moving HorizBstimators, which allows
the most general assumptions on the system model and datsstighen, with some more
restricting assumptions on the model and the constrainteieiscuss Particle Filters,
and Unscented and Extended Kalman Filters .

2.3.1 Moving Horizon Estimators

In its full generality, the Distributed Estimation Probl@m is still an open research prob-
lem, due to the current incapability for consensus iteretiim handle generic non-convex
constraints. In this section we study Moving Horizon Estiong that will require the sim-
plifying assumption that the state constrairt<( are convex sets.

Centralized formulation

Moving Horizon Estimation (MHE) is an optimization basedtstestimation technique
which has been developed to include constraints and naultres in the problem formu-
lation extending the popular Kalman Filter approaBlag 2000 Rao et al. 2003 Hasel-
tine and Rawlings2005 Rawlings and Baksh2006 Kang, 2006 Alessandri et aJ2017).
This makes MHE patrticularly suitable for the (Distributétitimation Problen2.1

Letx"(0) be the estimated initial condition for the estimation pesbland letP™(0) be
its covariance. Let the set of all process disturbances ftom ¢t to x = k be denoted
by {w(x)}¥. In the standard Kalman Filter approach, one would weighpitocess noise
w(k) and the measurement noigg(k) via a quadratic cost function, as

JE =35 (lem M+ ik )Ilél> (2.11)

whereR; > 0 and@ > 0 are positive definite matrices of appropriate dimensiomsstha
notation||v||%, with A a matrix of appropriate dimensions, denot€sAv. In a similar
fashion, the first step of the MHE approach is to considec#mralized full-information,
cost function

k N
Jk(k<o>,{w<m>}fz:é)=§(22|ul ||271+Z||w ||Q>

%(0) — x"(0)

N | —

2
||pin(0)—1 I (212)

In this way, the functiory;, can be interpreted as a generalization of the Kalman filtstr co
functionJkr (Eq. (2.11). The term

%(0) — xi“(O)Hfjm(O),l

| =
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represents our confidence in the estimate of the initial itimmd Exploiting the measure-
ment equationd.3), we can rewrite the cost functio.(2) highlighting the dependence
on the state, process noise, and measurements as

k N
Ji (%(0), (w()}i2h) = 3 <ZZ I2a(s) = ga X))+ + Z w13 )

= [|%(0) — x™(0) (2.13)

[

We remark that/;, depends only o (0) and {w(n)}ﬁ;é since one can reconstruct the
whole state trajectory from(0) till %(k) via the dynamical modeP(1).

Consider the minimization problem

minimize  Jj ()2(0), {w(n)}’;;é) (2.14)
%(0),{w(r)}1 25
subject to
fEx(k=1),wk—-1))=x(k)eX fork=1,...,k
w(k) e W fork =0,...,k—1
zi(k) — 9i(%(K)) = p,; (k) € M foralliandfork =1,...,k

which delivers the solution paitk(0), {w(x) ﬁ;é) and let the optimal cost function be
J,jpt. The constraints of the minimization proble.14) are the representation of the
initial constraints2.2) and @.4). Via the optimizer of 2.14) we can reconstruct the whole
state evolution using the dynamical equati@r8| and therefore estimate the statg:) at
time stepk.

In order to solve the optimization probler2.{4) we need to keep in memory all the
measurements from = 1 till k = &, and the size of the problem grows in time. These
aspects make the solution @.14) computationally difficult in practice. The basic strategy
of MHE is to define an optimization problem using a moving, fixed-size estimation
window andapproximatethe information outside the window. Consider a fixed moving
windowT,, = k — T and separate the cost functich13 as

k N
Z lezz = 9Kl + Z [Iw(r)ll5- )
k— i—1
k

.
>
= +11 rk=k—-T
1 -T N k—T-1
§<zz|zz M+ 3 It )
- fc(o)—x"‘(o)HPm(O),1 (2.15)

The terms that refer to a time step befére- T' (the ones that need to be approximated)
form the part of the cost function usually denotedasval costor Z,_r:
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1 k=T N k—T-1
zk_T=§<z I2:() = 9Ny + 3 1)l )
k=1 i1=1
1 . 2
5 } X(O) - )Hpin(o)—l . (216)
The strategy of the MHE is to solve the fixed size approximatetlem
minimize Ju (X(k -T), {W(n)}i;}c_T) (2.17)

x(k=T) {w(r)}i 2,1
subject to
f&Ek=-1),wk—-1))=x(k)eX fork=k-T+1,...,k
ew forek=k—-T,....k—1
—gi(%(k)) = p;(r) € M; foralliandfork =k —T+1,...,k

which delivers the solution pai&™(k — T'), {W(“)}ﬁ;LT) and whose optimal cost is

JPPY. In (2.17) the approximated cost function has the form
Ji (x(k =), {w(m)}’;;i,T) -
( Z anz = gi(X(R))[[F0 + Z [[w ()11~ >+Zm, (2.18)
rk=k—T+1 i=1 r=k—-T

whereas the approximated arrival cost can be computed as

- A 1
Zier =P + =

~ 2
%(k —T) —x"(k — )|y - (2.19)

for a suitable choice of the covariance mati®"(k — T'). This choice is important for
the stability and convergence of the MHE estimator. Usydfy'(k — T') is propagated
from P"(k — T) via the Extended Kalman FilteR@qg 2000, which guarantees stability
and convergence. Another possibility is to choose

5 __ jopt
Zka - Jk—T?

which also guarantees stability and convergefam(2000. In general, one caenforce
these properties by choosing a scaled approximation ofrth@kcost as

5 50 Bk —T)
7y =T+ 5

%(k —T) — x™(k — T) Hpmh(k S (2.20)

for any finite P™(k — T) = 0 andB(k — T) € [0,1]. The parameteB(k — T) can

be determined on-line to enforce the stability and convecgeroperties, as explained in
detail in (Raq 200Q Rao et al.2003. To our purposes we remark that this determination
involves solving the auxiliary optimization problem
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minimize b, (f{(kz -7, {w(n)}’;;;_T) (2.21)
%(k—=T) W ()} 24 r

subject to
(5((5;—1) w(k—1)))=%(k)eX foralk=k—-T+1,...,k
w(k) € foralk =k—-T,...,k—1
z;(K) — (x(n)) =p,; (k) € M; foralliandforallk =k —T +1,...,k

where the cost function is

by (x(k - T), {w(n)}i;i_T) =
k

%( ) ZHZZ )| Z [w(r)l15- )

k=k—T+1 i=1 k=k—=T

which does not have any arrival cost. Then, given an arkimanival costZ,_r(-), the
procedure determines the scaling factor as

Bk =) = max {528 (Zix(elh =) = i) + I <U@2)}

whered{",, is the optimal value for the cost functi@n,_ of the auxiliary problem and
U(-) a specified functiohof ®;>*,..

The MHE idea can thus be summarized as solving the optimizatioblem 2.17) with a
suitable choice of the approximated arrival cost. The ogtmof (2.17) is composed of
the state estimate™(k — T') at the beginning of the moving window and the noise se-
quence{w(k —T),w(k —T+1),...,w(k —1)}. These quantities determine the cur-
rent state estimate(k), via the dynamic state equatio®.{), which can be proven to be
unbiasedRao et al.2003.

The presented traditional centralized problem formutatiessumes that all measurements
are available in a common location for solving the optimatproblem. In the next
section, we propose a method to implement the Moving Horizgtimator in a distributed
way using local computational capabilities of the diffareansor nodes. The proposed
distributed approach is a first step towards the generaizaf the work of Farina et al.
2010 for the case of nonlinear dynamics.

Distributed solution approach

Considering the centralized cost functich 18), there are two terms for which global
information is necessary. One is the measurement term thiee i the arrival cost. Al-
though it is easy to imagine how one would distribute the mesment term by limiting
the sharing of measurements to a certain neighborhootinigehe arrival cost in a similar
fashion is more difficult to accomplish. In particular, thegfs of stability and conver-
gence of the centralized estimator need to be adapted tadtrddted case, which is in

2We will give more details on the procedure when explainirgdtstributed implementation.
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general not straightforward. Besides this, an additioeguirement would be for each
sensor node to eventually converge to the same state estualaie, as expressed in the
Distributed Estimation Proble 1

Our approach to handle these issues can be summarized wiltveifig four steps:

1) The exchange of measurements is limited to within thehi®ghood of each sensor,
e, N;T3

2) The arrival cost is approximated by implementing the \Wwedd consensus algo-
rithm 2.1 on the different local couple&™(k — T'), P;(k — T)). Each of the
P;(k — T) is computed through a local Extended Kalman Filter, as incte-
tralized case. The consensus results for each sensor ndlllds vdenoted by
(x™(k — T, P,(k — T)) and in order to ensure stability, we introduce the local
scaling factorg;(k — T') € [0,1] (as done in Rao et al. 2003 in a centralized
setting).

3) Local cost functions are constructed for each sensor,watieh constitute the core
of the “local estimator” part of the algorithm (see Figaré), as

Jun (%u(k =), {m(@}’z;LT) =

1
) Z Z |1z; (k) — g;(%i(k ||R’1+ Z ||wi(r ||Q 1

r=k— T+1JEN+ rk=k-T

Bz'(k? -T)
2

+ IR, |[%i(k —T) — %" (k —T) (2.22)

||P (k T) 19
with B; > 0, @ > 0. We note that the local cost functio.22) is a locally
computable version of the centralized cost function in théBMformulation ¢.18).
The local MHE-optimization problem (corresponding to thecal estimator” step
in Figure2.1) can thus be summarized as

3This exchange is (implicitly) assumed to guarantee obbdityafor the local estimators. We remark that
in the context of Moving Horizon Estimators the observapitiank condition (Eg. Z.6)) can be relaxed over
the considered time window; this concept is known as unifobservability. Formally, a system is uniformly
observable if there exists a positive integer and a K-functiong(-) such that for any two states; (k) and
x2 (k)

k+no—1
¢(llx1(k) =x2(R)I) < D [lgea(r)) — g(x2(x)l, forall k > 0.
r=k

Using this relaxed definition, the local exchange of measergs is assumed to satisfy the following relation

k+no—1
o(lxi(k) —x2(B)I) < > > lgs(xa(k)) — gs(x2(k))||, foralli,and for allk > 0.
r=k ]GN;r
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minimize  J ()’ci(k - 7), {Wi(n)}:;i_T) (2.23)
xi(k=T) {wi(F)} 20 _r
subject to
f&i(k—=1),wi(k—1))) =%xi(k) €X forek=k-T+1,...,k
wi(k) € W fore=k—-T,....,k—1
Zj(li) — gj(f(i(li)) = [.tj(li) € Mj for a”j € ./V;+
andfork =k—-T+1,...,k

which delivers the optimafzit and the solution pair

%i(k—T), {wi(m)} s

from which the local state estimate at the current timee., x;(k) can be deter-
mined via the dynamic2(2).

4) A standard consensus step (Equatid®)] is performed using the local state esti-
matesx;(k), in order to agree ot(k). We refer to this step as a posteriori con-
sensus step, which is used to facilitate the convergentetsame estimate by each
sensor nodes. Since the state estimate has to be feasibleesfiect to the state
constraint seK even after the agreement process, we introduce the foltpaim-
plifying assumption.

Assumption 2.1 The state constraint s&t in (2.2) is convex.

The local formulation of the filter differs from the centmdd setting in different aspects.
First of all the scaling factof;(k — T") is computed locally. This is done using the same
procedure as inRao et al. 2003 but localized on each sensor node. Second, the arrival
cost is based on agreed values of the co@gl¥'(k — T'), Pi(k — T)). Although this
seems rather natural, in general the agreBd(k — T) may not be in the reachable set
of the dynamical systen®2(1), which could lead to worse performance for the estimation
than the centralized implementation. We note that thiceféedue to the nonlinear nature
of the problem and it is not present in the linear case witlvericonstraintsiarina et al.
2010.

Solution properties

Under very general regularity assumptibos the dynamics, measurement equation, and
cost function and under particular conditions on the afgest, the centralized Moving
Horizon Estimator is stable and delivers an unbiased e#tirfta the statex(k) (Rao

et al, 2003. This is also true for the local estimators if their arrigakt verifies the same
conditions of the centralized case, meaning

4These conditions requir¢ andg to be Lipschitz, the cost function to be quadratic, and théndpation
problem to be well-posed.
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C1) There exists a K-functiony(-) such that

0 < Zig—1(2) = JRor < Alllz = %Pk = 1)) (2.24)

C2) The sequence of the arrival co:{lﬁi,k_T} is monotonically non-increasing.

ConditionCl1 is satisfied with our choice

5 Bi(k =T
Zi,k—T( )= ka T( ):ngiT.%Q

Ll — %Mk - 7|2

Py(k=T)~1’

while conditionC2 can be enforced as explained R&o et al, 2003 using the scaling
factor 8;(k — T') € [0,1] that forces the sequence of arrival costs to be monotonicall
non-increasing. This involves solving the local auxiliaptimization problem

minimize dip ()‘ci(kz -1, {V_Vl(li)}z;iiT) (2.25)
%i(k=T) AWi(R)}iZs 1
subject to
f()’(z(nfl),v’vz(nfl))) :ii(li) eX fOfH:kaﬁ’l,...,k
wi(k) €W forek=k-T,...,k—1
zj (k) — g;(Xi(K)) = p;(k) € M forall j € N;"
andfork =k—-T+1,...,k

where the cost function is

b (xu(k =), {wi(fi)}i;LT) =

U S S et -s&eii + 5 il

r=k— T-l-ljej\/+ r=k—-T

We note that the optimization probler.25 is the local version of the centralized.21).
The optimal cost function ofX( 25 is @Opt Define

goot _ | I ifk<T,
ik O+ TN, HE>T

The monotonically non-decreasing condition for the atra@st can be written asR@o
et al, 2003

k

. ) 1
Za) < min L[S S ) gy ot
Xi(k=T) {W:(k)} . Zp_r k=k—T+1 je N+ i
k—1 5
> ||wz-(n)||gl> + IR =T
k=k-=T

5A function o : Rt — R is a K-function if it is continuous, strictly monotone inasing,a(z) > 0 for
z # 0, 2(0) = 0, andlimz 0 a(x) = 0.
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This leads to the procedure to determihék — T') (locally) andek_T(J:

e pick anyZ; ,_r(-) satisfyingC1;

e computes;(k —T) as

Bulh =T) = max {826 (Zigr(xalh =) = R ) + 230 < TR

o set
23 ) = Bk =) (Ziper il = T)) = I ) + TR

Although under conditio€1 andC2, we can prove stability and unbiasedness of the local
estimates, we underline that our choice of merging mechaigcessary to improve the
estimation quality of the distributed implementation wilspect to non-communicating
local filters) could worsen the performance of the distgoliestimator with respect to

a centralized implementation. In order to understand bétie nature of this problem,
consider the local coupl™(k — T'), w;(k — T)) and the agree&™(k — T'). By the
use of the nonlinear dynamical equatié@nl) we impose that

Mk —T4+1) = fFE™Kk —T),w;(k —T)), foralli.

However, after the agreement process (necessary to inedegbe neighbors information
into the estimator), it may happen that no veatoe W can satisfy

Mk —T+1) = fE™k —T +1),w), foralli,

meaning thak™"(k — T') is not reachable. This translates in the fact that in thevdlig
step of the local MHE problenk(«+ & + 1), the term

%5 (k = T) = X™(k = D)3,y
drives the local estimatg;(k — 7T') to the non-reachable set. The detailed study of this
phenomenon is left as future research direction.

Algorithm 2.2 summarizes our proposed distributed estimation stratigyng into con-
sideration all the aspects discussed above.

We conclude this section considering once more the reqeinésrof the Distributed Es-
timation Problen®?.1 and some remaining challenges. We note that by construttt®n
estimatex; (k) satisfies the constraints (refj)), while its unbiasedness (regji)) holds.
Finally, requirementiii) is enforced via the presence of a posteriori consensus which
brings the different state estimates to converge to the satoe (whenr — o).

We will analyze the performance of Algorithen2in numerical simulation in Sectio?.4,
while in the following we will remove the constraints fromettiormulation of the Dis-
tributed Estimation Probler?.1and explore other possible estimators.

Remark 2.2 (Centralized and distributed algorithms’ performanicegeneral, due to the nonlin-
ear nature of the optimization problem and measurement sladiging, the distributed estimator will
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Algorithm 2.2 Distributed MHE
1 Input: {XPP(k —T), ..., X80k — TV}, {Pr(k —T),..., Px(k — T}, {z1(k),...,2n(k)}

> Available Data: f,9i, X, W, M;, R;, Q, 71, T2
2: Sharing: each sensor node shaf@s(k), g;, M;) with its neighbors to achieve local observability
3: Local Estimation for each:

3.1: Construct local auxiliary cost function as

by (%ilk =), (Wi)HZ)_g) =
k

k—1
% > IIZj(H)*gj(Xi(H))Hf%;mL > IWiw)IG

k=k—T+1 jGN;r k=k—-T

3.2: Solve the minimization
minimize (i)i,k ()’q (k—=1T), {Wz(ﬂ)}ﬁ;i,T>
% (k=T {%; ()}
subject to
f&i(k—1),wi(k—1))) =%i(k) €X fork=k—-T+1,...,k
w;(k) €W fore=k—-T,...,k—1
2 (k) — gj(%i(r)) = p; (k) € M forall j € N
andfork =k—-T+1,...,k

3.3: Determines; (k — T') as in Rao et al. 2003
3.4: Construct a local cost function as

Jige (%i (b = T), {wi ()} ek ) =

k k—1
1 _ _
oY Y mm-ammita s X sl
k=k—T+1 jcnrt J k=k—T
) Bilk —T) )
eI+ P sy s T,

3.5: Solve the minimization

minimize Jik (il(k —T),{wi(r) ﬁ;i—T>
% (b=T) (Wi (k)} L2} p
subject to
f&i(k —1),Wi(k—1))) =%i(rk) €X fork=k—-T+1,...,k
wi(k) €W fork=k—-T,...,k—1
2 (k) — g;(%i(r)) = p; (k) € M forall j € N

andfork =k —-T +1,...,k

3.6: DetermineP; (k — T + 1) via an Extended Kalman Filter update as®ap et al, 2003
3.7: Determine the state estim&g(7"), via the dynamic state equatio.{)

4: Sharing/Consensus
4.1: Consensus on the arrival cost fgriterations

(Fak=T+1),.. xn(k =T+ D} {Pik =T +1),..., Py (k= T+1)}) =
MERGE({R1(k =T +1),...,xy(k =T+ D}, {Pi(k—T+1),...,Pn(k—=T+ 1)}, W,71)

®P0(k — T + 1) = %;(k — T + 1) for eachi
4.2 A posteriori consensus on the local state estimatesusing @.8) for  iterations
&h(k) = %, (k) for eachi
5: Output: {&Ph(k), ..., %80 (k)},
(&b (k — T4+ 1), %32k - T+ D)} {Pitk—T+1),...,Py(k—T+1)}
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not have the same performance of the centralized one, notietiee asymptotic sense. In particular
the difference between the distributed and centralizeidhest, i.e.||x: (k) — %(k)||, will be always
strictly positive,||%; (k) — %(k)|| > 0, even wherr;, 2 — co. Nonetheless, we remark once more
that in many scenarios, the number of sensor nodes couldygystoo high to run the centralized
estimator and distributed solutions are required.

2.3.2 Particle Filters

The first estimators that we study for the case of no conssraire Particle Filters.

Centralized formulation

Although Particle Filters have a long research record siheg first appearancé&ordon
et al, 1993, they still represent an active area of investigation. Buéheir generality
and simplicity, they have become a topic of constantly gngiterest, development, and
numerous applications.

We start with the following simplifying assumption.

Assumption 2.2 The constraint sets i(2.2) and(2.4) are X = R", W = R%, and
M; = R,

Furthermore let the process noise be modeled by the pratdyatghsity function, oPDF,
Tw (W), and letr,, (p;) be thepDFthat models the measurement noise.

Particle Filters estimate the stat€k) via the a posteriori condition®DF p(x(k)|z(k)).
Since, in most cases, this a posteriobiF cannot be evaluated because of the complexity
of the underlying dynamical systeri.(), the basic idea is to draw. random samples,

or particles,{x(k)’},=1,... . from a given proposal distributioa(x(k)|z(k)) with the
same support agx(k)|z(k)). Often this proposal distribution is chosen to be the a prior
distributionp(x(k)|x(k — 1)), as done in Sample Importance Resample (or SIR) filters.
Adopting this choice, the random samples can be computedsigely as

x(0) = x(0) forj=1,...,m
x(k)) = f(x(k—1),w(k—1)7), fork=1,2,... (2.26)

wherex(k — 1)7 is thej-th sample at the discrete tinke— 1 andw(k — 1)7 is randomly
drawn from the process nois®F, i.e.,w(k—1)7 ~ 7y (w). To these samples are then as-
sociated weights)(k)’ that quantify the likelihood of the sample given the measigets
z(k). The weights are also computed recursively iafampalam et a).2002

w(0) = 1/m forj=1,....m

p(x(k)|z(k)) _  p(x(k)|z(k)

q(x(k)7|z(k))  p(x(k)7|x(k —1)7)

= wk —1)p(z(k))|x(k)?), fork=1,2,... (2.27)
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wherep(z(k))|x(k)7) is the likelihood that the measureremer®) is observed given the
samplex(k)7. If the measurement noiseF 7, (u,) are Gaussian with zero mean and
Y; as covariance matrix, the@.7) can be simplified (up to a normalization) into

N
w(k)? = w(k —1)7 exp < Z ||z (k) — gl(x(k)j)H2211> forj=1,...,m. (2.28)

Given the weighted couplesx(k)?, w(k)?), we can approximate the a posterienr
p(x(k)|z(k)) by the use of Dirac’s deltas, as

p(x(k) 2(k)) ~ p(x(k)2(k)) = % S w(k)yo(x(k) — x(k)?) (2.29)

j=1

with Q(k) = >, w(k)?. Finally, this approximation of the a posteri®mF gives means
to estimatex(k) asx(k), which was our objective. For example, we can chaoge to
be the particle with highest weight.

Often, in addition to sampling and weighting the particlibg particle population is re-
sampled. In this resampling step the particles are redreavn the approximated discrete
a posterioripDF (2.29. Furthermore, since these new particles are i.i.d. sasrgaeing
from (2.29), their weights are set to be identical.

The resampling step is a crucial component of particle fadgorithms. Resampling is
necessary since it can provide the chance for “good” pa#itd be considered with higher
probability and produce better and more accurate resultsrebter, it overcomes the
degeneracy phenomenon, where after a few iterations, atrmiparticle will have neg-
ligible weights. However, it introduces also other praattissues that need careful atten-
tion. First, it limits the opportunity to parallelize sina# the particles must be combined.
Second, the particles that have high weights are stafigtisalected many times. This
may lead to a loss of diversity among the particles as thdtesgisamples contain many
repeated points. Therefore the choice of the number ofgbestiand of the resampling
procedure fundamentally determine the properties of tigdRaFilter.

We can summarize a prototypical SIR particle filter alganths follows Arulampalam
et al, 2002.

Drawm samplesc(k)’ from a the a priori distributiop(x(k)|x(k—1)), using @.26).
Compute the importance weight k) for eachj, using @.27).
Compute the state estimate according to the approxinagpedteriorPDF (2.29).

Resample the set of particles according to the approeideaposterionDF (2.29).

Setw(k)? = 1/m for all particles;.

Distributed Particle Filters and Related Work

With the growth of computational power and the exploitatibparallel architectures, Par-
ticles Filters are increasingly being considered as slétaéndidates for implementations
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in parallel or distributed computing architectures. Fads tieason, the use of the termi-
nology “distributed Particle Filters” could be misintegped. In this chapter we refer to
distributed Particle Filters to indicate estimators cdpaib solving the Distributed Esti-
mation Problen2.1 In Chapter 3 we will introduce the distributed computatiRarticle
Filters as the ones that have access to all the measurentariiudahe computations are
performed in a distributed way over a cluster of computinigsun

Although references to distributed Particle Filters datekbto the work of Rosencrantz
et al, 2003 and Coates2004), detailed analysis and evaluation studies on their ptagser
have been initiated only recently. The main reason is thatder to combine the solutions
of the different local estimators there is a need for cohtgrarticle-weight combinations
which are not trivial to obtain without demanding commutima. There are three main
solutions to this problem: either (1) we select locally saegresentative particle-weight
combination to send to the other sensor nodes, (2) we impasalt the sensor nodes have
the same particle population, thus we can send only the ugigh (3) we parametrize
the a posteriori distribution with some low dimensionalregentation and we send the
parameters.

The first strategy is presented iRdsencrantz et al2003 Lee and West2009. The
work of (Rosencrantz et al2003 is particularly suited for situations in which the sensor
nodes have enough data to run accurate Particle Filtersedmatvn and they need extra
information only in some special cases. A typical applmais localization in a building:
when a sensor node has a clear view of the object to be lodaltzean run its own Particle
Filter with no extra information. On the contrary, when thgazt is hidden behind a wall,
it needs some data from other sensor nodes that can see #ut. olfje main idea is that
each sensor node keeps in memory the entire time-evolufiids particles and all the
measurements, and it sends some of the particles to thebmegyhrhe neighbors decide
whether some measurements, at some time instant, are iefoalthe senders and they
reply with the data.

The approach ofl(ee and West2009 follows the same philosophy, but uses a different
sending strategy. It allows sensor nodes to communicatpdhele and weight combi-
nations via a random walk approach, sending them randombgsathe network. The au-
thors show that, although less efficient for low dimensigmablems (with respect to other
methods), this algorithm scales linearly with the numbediofensions and it could be a
viable alternative for large dimensional scenarios. Femtiore, using the tools obpucet

et al, 2007), the authors show that the distributed algorithm convevgeakly to a central-
ized approach when the sensor nodes are allowed to exch#ngaation arbitrary times
within each sampling time.

The second strategy for the combination problem is to cemsidl the sensors to have
the exact same particle population. This can be enforced/bghsonizing the seed of
the random number generators. The worksGodtes2004 Farahmand et gl2011) are
based on this assumption. Since all the particles acrosetivork are the same, the basic
idea is that the local weights can be combined using

N 1/N
(k) = <H w; (k) ) , (2.30)
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which can be expressed as a sum, and therefore a consematisritausing the log oper-
ator. Furthermore, to increase performance, as proposgehimahmand et gl2017) the
particles can be drawn from an a priebF scaled via a distributed adaptation mecha-
nism that pre-filters it and makes it closer to the a posteADr. The final algorithm in
(Farahmand et gl2011) can be sketched as:

1: Sharing/(Consensus): determine local adapted a primFivith a consensus step.
2: Local estimator: local particle filter based on the loddgted a priorPDF.

3: Sharing/Consensus: share the weights and agree on taent@nsensus step based on Equa-
tion (2.30.

The third strategy to combine the estimates in distributatigie filters is to guarantee that
all the sensor nodes have the same representation of thesalafistributiory (x(k)|z(k)).
This idea is exploited in the paperSHeng et a).2005 Sheng and Hu2005 Gu, 2007,
Gu et al, 2008 Gu and HY 2009 Liu et al,, 2009 Oreshkin and Coate2010 where the
authors use different parametric models. In particula nttost commonly used represen-
tation is the Gaussian Mixture Model, or GMM, which can betigri as:

C

a(x(k)[2(k)) = Y Ae(k)R(0c(k), Ze(k)),

c=1

whereC, \., o., andX. are parameters of the model and they represent the chosen num
ber of Gaussians, their relative importance, their mead taeir covariance respectively.
We recall thatt(a, B) is used to denote a Gaussian with meaand covariancé. This
representation has the drawbacks that, first, the sensesritale to agree upon several
variables ifC > 1, and second, the local representation is built via an iteraipti-
mization scheme, which requires time and may lead to localmd (see $heng et aJ.
2005 for further details). On the other hand, it is rather easgeaerate the parameter
set(C, A, 0., X) based on the sample description of the a posteriori digtoibuand it

is also rather straightforward to propagate the model agreatiead via Kalman Filters.

Proposed Distributed Approach

In this chapter, in order to give the same input-output $tnecto the local estimators, we
propose the use the third strategy outlined above and wetgblke estimated mean and
covariance to represent the proposal distributien(k)|z(k)) as Gu et al, 2008 Gu and
Hu, 2009. Let

xi(k) = ﬁ;kavxm«)j (2:31)
P = g Sow s sy — (k)T (232)

be the estimated mean and covariance of the particle papukfter the resampling stage
for filter i. As usual, the coupléx;(k), P;(k)) denotes the agreed couple after a merging
mechanism. This agreed coup®;(k), P;(k)) can be propagated one step ahead via
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the use of the standard prediction step of the Unscented aalilter as in Julier and
Uhlmann 2004. This generates the new coupte 1x (k), P; k41jx(k)). Let

qi(x(k + 1)|z(k + 1)) = N(X; gy 15 (k), Pi,k+1|k(k))

be the agreed proposal distribution for each sensor no@air proposed method can be
summarized as done in Algorithin3.

We remark that our Distributed Particle Filter algorithmetsethe requirements) - (ii)

of Problem2.1 on constraint satisfaction and unbiasedness of the esti(irafact, there

are no constraints), while requireméiii) is enforced via the consensus step (see step 4
of Algorithm 2.3).

From Algorithm2.3it is clear that the required computations increase witmtimaber of
particles used, as well as the accuracy of the filter. In otfoeds, to obtain more accurate
results more particles are needed and thus more computhtiparticular, even for a low
number of states the number of particles could be prohéitiy the capabilities of simple
sensor nodes. In the next section we discuss extensiong ¢&falman Filter which can
provide “faster” solutions under certain specific assuosi

Algorithm 2.3 Distributed (parametric) Particle Filter

1: Input: {)A(l(k; - 1)a s a)A(N(k; - 1)}7 {Pl(k; - 1)7 s 7PN(k - 1)}' {Zl(k}), s 7ZN(k;)}
> Available Data: fr9i,T
2: Sharing: each sensor node shai@s (k), g;) with its neighbors to achieve local observability
3: Local Estimator for each i:
3.1: Propagate the parametéss; (k — 1), Pi(k — 1)) to (%;(k|k — 1), P;(k|k — 1)) via an Unscented
Kalman Filter as inJulier and Uhlmany2004).
3.2: Draw samples frong; (x(k)|z(k)) = R(%;(k|k — 1), B;i(k|k — 1))
3.3: Calculate the local weights of the samples

w(k)? = p(ze(k))|x(k)?), with £ € N

3.4: Calculate the local state estimatgk) and the parameter®; (k) based on the a postericrbr

B 1 & . .

xi(k) = @ JXZ; wi(k)]xi(k)]

_ 1 & . L P

Pi(k) = o) J; wi(k)? (xi(k)? — %i (k) (xi (k) — %i(k)) "

3.4: Resample using the local weights.
4: Sharing/Consensus
4.1: Consensus on the local state estimate and covariance:

(Ba (). v (B} AP (R). ... Py (R)}) =
MERGE ({&1(k),...,Xn(k)}, {Pi(k), ..., Pn(k)}, W,T)

5: Output: {1 (k), ..., &xn(k)}, {P1(k),..., Py(k)}
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2.3.3 Extended and Unscented Kalman Filters

In this section we investigate Extended and Unscented Kakiters, which involve dif-
ferent linearizations of the nonlinear dynamical equaf®d) and of the nonlinear mea-
surement equationg (). We start defining an almost linear system as follows.

Definition 2.1 A systent comprised of a dynamical equation functiémnd a measure-
ment equation functiog is almost linear Bar-Shalom et a].2001) if

1. f andg map Gaussian distributed random inputs to mono-modal Gandie out-
put distribution, with approximately zero mean and zerodtlorder moment;

2. whenf andg are linearized in the poink, the linearized observability matrix has
the same rank as the nonlinear observability mag.at

We consider the following assumptions.

Assumption 2.3 The noise termsr and pt; are Gaussian random inputs with zero mean.

Assumption 2.4 The nonlinear dynamical equatiofi and the nonlinear measurement
equationgy; constitute an almost linear system.

Under Assumption®.2, 2.3, and2.4, Extended and Unscented Kalman filters can be used
to solve the Distributed Estimation Problétrl. The reader is referred t@ér-Shalom
et al, 2001, Julier and Uhlmany2004) for the centralized setting.

Remark 2.3 Note that very often Assumpti@rdis difficult to verify. Nonetheless, this has not lim-
ited the application of Extended and Unscented Kalman diltethich are employed successfully in
many scenarios. In practice, one verifies the applicabdftthese linearized approach a posteriori,
i.e., after careful simulation studies.

For the distributed scenario, we propose in Algorithdhan extension of the ideas i@ (fati-
Saber 20073 Simonetto et a).2010a Cattivelli and Sayed?2010 that is suitable to be
used in our common framework presented in Figue (Note that only the case of the
Unscented Kalman Filter is considered in Algoriti2™, but the Extended case is similar
with local Extended Kalman Filters instead of Unscentedspne

We note that Extended and Unscented Kalman Filters are ciatiqmally cheaper than
Moving Horizon Estimators and Particle Filters but the Biigtof the estimator can be an
issue when the nonlinearities become important. Genethky(distributed) Unscented
Kalman Filter performs better than the Extended one, tyiyicat the price of being
slightly more computationally expensive. The requireraéiif-(iii) of Problem2.1 on
unbiasedness and convergence of the estimate to a communoczaal be guaranteed. We
note that requiremeit) here does not apply due to the absence of constraints.
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Algorithm 2.4 Distributed Unscented Kalman Filter

1 Input: {%X1(k—1),....,xn(k -1} {Pi(k—=1),...,Pn(k— 1)}, {z1(k),...,zn(k)}

> Available Data: f,9i,T
2: Sharing: each sensor node shai@s (k), g;) with its neighbors to achieve local observability
3: Local Filter:

Local Unscented Kalman filter with inpeit; (k — 1), Pi(k —1),2;(k) and output; (k), P; (k)
4: Sharing/Consensus

Consensus on the estimates

(Fa1 (k) RN L APLR), - Pr(R)}) =
MERGE ({&1(k),...,Xn(k)}, {Pi(k), ..., Pn(k)}, W, T)

5: Output: {1 (k), ..., xn(k)}, {P1(k),..., Py(k)}

2.3.4 Remarks on the Common Framework

In Section2.3.1, 2.3.2 and2.3.3we have studied different distributed estimators. We
have highlighted their underlying assumptions and progd$sributed implementations,
namely Algorithm2.2, 2.3, and2.4. We remark here the similar input-output structure of
the algorithms in terms of mean and covariance of the loaalyputed estimates. This
will allow us to decide which local estimator to implementwhich sensor node, adapting
the computational load to hardware limitations.

We note that, when considering Algorithir2 for the distributed MHE, the sensor nodes
need to maintain in memory past values of measurementsyass, and covariances.
This has to be taken in consideration also when we implenteheterogeneous group of
local estimators comprised of a number of local MHE. Furttane, in this case, a value of
f%-(k) has to be chosen for the local MHE, which is not provided byotillhm 2.2. A rea-
sonable choice is to Igt; (k) be smaller by a defined ratio than the one of the neighboring
nodes (that use other types of estimators).

After having analyzed the proposed algorithms in a morerabtstashion, in the follow-
ing, we show some simulation results to capture their peréorce in different realistic
scenarios.

2.4 Numerical Evaluations and Comparisons

In this section we present two realistic test cases to andhe proposed algorithms. The
first scenario is a localization problem using noisy rangasueements for mobile robot
tracking, which is representative of the Distributed Rad®tab under development at the
Delft Center for Systems and Control. The second scenalazization via range-only
measurements of an autonomous underwater vehicle, whichepaesent a scaled model
of many existing underwater robotic platforms, see for epi@Corke et al.2007).

In both cases, we define the ereg(k) of sensor at timek, as the distance between the
true positionz(k) at that time and the one estimated by the sensor hade,

ei(k) = |[&;(k) — z;(k)|l. (2.33)
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Furthermore, we let the mean erkgy, be defined as:

e = NLTf 3> ek, (2.34)

whereT; is the final time of simulation. Finally we let the averageoere,, be the mean
error averaged over a number of different simulatidps,, i.e.,

Tsim

> (em); - (2.35)

i=1

1
Tsim

€, =

We remark that this average erigr will be always positive by construction.

In the following, for compactness reasons, we will often theeabbreviations: MHE, PF,
UKF, and EKF to indicate Moving Horizon Estimators, Pa#iEilters, Unscented Kalman
Filters, and Extended Kalman Filters, respectively.

2.4.1 The Mobile Robot Simulation Example

The first scenario we use as an illustrative example for edign purposes is a distributed
mobile robot localization problem using range-only measents (see Figur22). This

is a suitable benchmark since the underlying dynamics isimemar, different constraints
can be imposed, and the state is unobservable by individumsloss, which justifies the
need for communication among them.

We denote the position of a mobile robot on a 2-D space with (z(1), 7(2)) ", and letd
be its orientation. The velocity and angular velocity areated byv andw, respectively.
Let the state be defined as= (x(1),2(2),0)" and the control input be = (v,w)"
with additive noise processes denotedvy= (w,, w,) ", w ~ X(0, Q). The nonlinear
time-invariant dynamical model of the robot is represeigthe following discrete-time
unicycle model Thrun et al, 2009 with sampling timeA¢:

zk+1) = z(k)+ Z((IZ)) (sin(0(k) + w(k)At) — sin0(k))
ylk+1) = yk) - o(k) (cos(O(k) + w(k)At) — cosO(k))

0k+1) = 0(k)+w(k)At (2.36)
with
o(k) = v(k) + wy(k), (k) =w(k)+ w,(k).

We consider the state to be constrainest & X which represents the physical space lim-
itations of the robot’s movement, with the assumption thatdonstraint seX is convex.

We considerN sensors to be placed at a specified heighteasuring the ranges to two
beacons on the robot. The resulting two (range-only) measent equations for each
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sensor ¢

Z()

Figure 2.2: Mobile robot setup description.

sensotz.. ;(k) = (z+;(k),z—i(k))" are given by
i LecosO(k) — £;)
z4 i( ) £ Lsin6(k) — L2 + p;(k), (2.37)
h

2

where(4;(1), £i(2), h) is the position of the sensa@/. is the distance between the beacons
and the norm is the standard Euclidean distance. The noE®ssu, ~ X(0, R;) is
assumed to be Gaussian, which is a common choice when usliegfraquency or ultra-
sonic ranging devicesSfnith et al, 2004). Unless otherwise stated, we will consider the
mean of the initial state and its covarian(ég0), P(0)) as given, or previously estimated.

2.4.2 Simulations with Distributed MHE

Given the presence of constraints, in this test case we aggdposed distributed Moving
Horizon Estimator, described by Algorithth2 Moreover, we note that, since there are
no constraints on the process noise, no reachability pnolld#l be present.

For the simulation experiments, the sensors are placed @mkcted as shown in Fig-
ure 2.3 The lines represent possible communication links amoagémnsors, which are
marked by squares. The sensors are placed at a heighl.5 m. We consider track-
ing a robot as it traverses through a randomly generateetctaajy, shown in Figur@.4.
The simulation parameters ate = 1 s, final time7; = 50 s, w, ~ R(0, (0.01 m/s)?),
wy, ~ V(0, (0.1 rad/9?), u; ~ R(0,(0.05 m)?), andP(0) = 0.011 with dimensions [m],
[m], and [rad], respectively.

The constraints on the position state are represented ird2g4 via shaded areas.

We use Algorithm2.2 with the parameter; = 1 in the first consensus process (arrival
cost) and we vary- in the set{0, 1, 3,5}. The case» = 0 represents the choice of no a
posteriori consensus (which may be applied when the contation overhead needs to
be reduced).

We performed0 simulation runs of the same trajectory and different randaise pro-
cesses to investigate the behavior of the distributed astimvith respect to the centralized
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Sensor Locations

Test view

B _133(1) [m(i

Figure 2.3: Simulation setup indicating the locations of sensors (segjeand com-
munication links between them (thick lines). The red regi@arepresents the con-
strained experimental area.

one.

Figure 2.4 depicts the results for a selected representative siroualatin usingr, = 0.
As it can be seen, the distributed MHE solutions of the 6 senedes satisfy the state
constraints. Although the communication within the neigtitwod is rather limitedr =

1 andm, = 0), all the local solutions are qualitatively the same.

In Table2.1 we present the results for t® simulations while varying the number of
a posteriori consensus iterations We can observe that by allowing more a posteriori
consensus steps, the estimator delivers better soluticiesms of the average error. We
note however that even whes — oo the distributed solution will not converge to the
same solution of the centralized MHE. This is due to the flaat the sensor nodes do not
have access to the whole information, since they share merasuts and the arrival cost
value only with they direct neighbors;(= 1). Nonetheless, in this limited communica-
tion setting, we remark that the error of the distributednestion is reasonably close to
the centralized one given the noise values and communictmlogy, and therefore the
result can be considered completely satisfactory.

Table 2.1: Average errore, in the 50 simulation runs while varying.. CMHE
represents the centralized solution.

T2:0 T2:1 7'2:3 T2:5 CMHE
Average erroe,, Eq. 2.35 [cm] 4.5 3.6 3.2 3.1 2.5

2.4.3 The Autonomous Underwater Vehicle Simulation Exam

The second scenario we consider to compare the methods wedbesised for the Dis-
tributed Estimation Problerd.1 is the localization via range-only measurements of an
autonomous underwater vehicle.
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Figure 2.4: Results of a representative simulation run. The initialipos of the
robot is marked with a circle, while the shaded areas repmgpesition constraints.

The state of the AUV is chosen as= (z",v")T, wherez € R? is the position and
v € R3 is the velocity. Letu(k) € R3 be the control input. The discrete-time dynamical
equations are:

z(k+1) = xzk)+v(k)At
ok 1) = o(k)+ 20 (a(k) —en o(b)] o(k)
ak) = u(k) +walk)

where M is the mass of the vehiclep is a drag coefficient, andr,, is a noise term.
We assume to hav® = 25 range-only sensors sparsely distributed at varying height
from a plane surface. The different heights simulate an emeeafloor. A schematic
representation of the simulation test case is shown in Eigus
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Figure 2.5: Schematic representation of the AUV test case.

2.4.4 Simulation Results

In this setup, we analyze and compare distributed Extettlestented Kalman Filters
(Algorithm 2.4) and distributed Particle Filters (Algorith&13), given the absence of con-
straints. The goal of these simulation results is to illatgtithe better estimation quality
of the proposed algorithms, based on the weighted consaigousthm?2.1, with respect
available methods that are based on standard consensu®itsr namelyCattivelli and
Sayed 2010 for the UKF and Gu et al, 2008 for the PF. Furthermore we want to show
the possibilities of the underlying framework of the aldgloms to handle different local
estimators on different sensor nodes.

We useAt = 1s,7 = 130s,m = 1 kg, Cp = 1 kg/s. We define an open-loop
control sequence of magnitudle(k)|| = 0.5 N and varying direction, while we select
std(wy (k) = (0.05,0.05,0.025)7 N. We assume that the measurement error in equa-
tion (2.3 is stdv;) = 0.1 m, for all the sensors. We consid&i0 particles for the dis-
tributed Particle Filter.

In the first scenario we consider, each sensor is assumed thagame type of local filter.
We collect the results fa¥500 different simulation runs, varying randomly the positionla
the communication range of the sensor nodes.

In order to analyze the results we utilize a metric definechertdépology of the communi-
cation graph the sensor nodes are using. In particularc@imisnunication graph depends
on the position of the nodes (and their communication rangepsely speaking, if two
sensor nodes are closer than a certain range, they can caoateyetherwise they cannot.
This formally defines a grapf (supposed to be connected by the problem definition) and
an associated Laplacian matiix whose second smallest eigenvalue dictates the connec-
tivity properties ofG. If we indicate with\, the second smallest eigenvalue of the graph of
one simulation run, and withy ,ax the maximum of\, over all the simulation runs, then
We can useé\a /A2 max @S metric to analyze our results. In fact, values9fis max nNearl
correspond to highly connected graphs, thus estimatioblgmnus close to the centralized
case, while values 03/ 2 max Ne€ar0 correspond to sparsely connected graphs.

Figure 2.6 depicts the average error of the the proposed algorithmsuses /s max.
A dot at the coordinatég, ¢)), corresponds to an average erroriffor graphs with
A2/ A2max € (¢ — 0.05,¢ + 0.05). The shaded areas show the standard deviation of
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these errors. Note that the DEKF estimations are not deplutee because they do not
converge. The DUKF are shown without the standard devidtianake the graph more
readable, their values are in the ordeddf m.

E
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E = === - = Distributed UKF Cattivelli and Sayed2010
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Figure 2.6: Comparison between the proposed algorithms and the oneeititth
erature with respect to the normalized algebraic conndgtiof the information
exchange graph. The average error is computed as the meandadthe sensor av-
eraging 2500 different simulations. The shaded areas are the standavihtiens.

The DUKF's standard deviation are not depicted. The stralgtes correspond to
the centralized UKF, and the centralized PF.

The results show that the proposed distributed Unscentbdd€aFilter and Particle Filter
outperform the ones found in the literatu@attivelli and Sayed?01Q Gu et al, 2008
that use a standard consensus iteration. Notice that wechagen to compare our method
only with other distributed parametric Particle Filterigce they are the only ones suitable
to be employed directly in our common framework. In this estithe available litera-
ture (Sheng et a).2005 Sheng and H2005 Gu, 2007, Gu et al, 2008 Gu and Hi2009
Liu et al, 2009 can be divided into two parts, the first one that considetardsard con-
sensus algorithn2(8), whose methods can be represented wgh ét al, 2008, and the
second one, namely the wor®(eshkin and Coate8010 that uses a different consensus
mechanism, qualitatively similar to our proposed alganithout optimized for an asyn-
chronous communication case. Therefore the comparisoigird=2.6 is representative
of the current state-of-the-art of distributed (synchnagjgparametric Particle Filters that
have the state estimate and its covariance as input-ouipaties.

The reason for the difference between the method<attivelli and Sayed201Q Gu
et al, 2008 and our proposed algorithms is due to the®&E algorithm. In fact, this
algorithm delivers estimates closer to the minimum-varéaane. This also means that,
for the Particle Filter, a given set of particles will chaex@ze the a posteriori distribution
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better, since the trace of our covariance is smaller thaGingt al, 2008. A limitation of
our procedure is that this ‘small covariance’ could causergroverishment of the particle
diversity in the case of Particle Filters, which may lead toss in accuracy. This has not
been detected in this simulation case but it may become dgmoés we will see in the
second test scenario below.

Our results show also that in this simulation study, therithisted Unscented Kalman
Filter has a similar average error as the distributed Rarfidter reported in the literature.
This is important because the distributed Unscented Kalilger is less computationally
expensive than distributed Particle Filters, which isiiesting in the context of designing
fast yet accurate algorithms.

As a second test scenario, we fix the graph topology with a atized algebraic connec-
tivity of 0.6, and we vary the types of filters embedded on each sensor. Weéetadata
from 1500 simulation runs, with a varying number of Particle FilteldiKFs and EKFs
present in the sensor network and their physical locatidgurE 2.7 summarizes our re-
sults. The curves represent different numbers of Partittier§. Since the overall number

of sensors is fixed{ = 25), one can compute the number of EKFs present in the network
from the knowledge of the number of Particle Filters and UKFs

We can observe that even with a relatively small number ofemaarcurate filters (for
examplel PF and5 UKF), the distributed estimation converges. This was netdase
in the first test scenario, where the local estimates werergiig using the EKFs alone.
This is a very interesting observation that seems to supgpying many cheap devices
and only a very few expensive ones.

We may also notice that by increasing the number of UKFs, ¢tharacy improves initially
quite noticeably but eventually deteriorates. For a low banof UKFs, this trend can be
explained by the merging mechanism as well, as illustratdtemark?.4.

Remark 2.4 Letny be the number of UKFs andi.- the number of the Particle Filters, and let
the covariance of the filters ¢, Py, and Pe«r respectively. Assume for simplicity, a scalar state
vector. The average error is then related to the merged dawae, whose expression is

pPFPUKFPEKF

R __ ,
25 Pee Pyke + Puke (PEKF - PPF)nPF + PPF(PEKF - PUKF)nUKF

which for a givene is proportional to

. 1
Pox ——
o+ Nuke

with the constantx > 0. This explains the initial decrease of the average errordorincreasing
number of UKFs.

The deteriorating performance for a higher number of UKHastead an open question.
One potential reason is the suboptimality of the mergingiraaism and the ‘small covari-
ance’ problem. In fact, the proposed algorithm may lead tmaller covariance estimate
than the actual one, which leads to optimistic filteBsa-Shalom et a].2001), and this
could cause a poor selection of the sigma points for the UK&ekding more EKFs in-
creases the average error and brings the estimated casadkser to the real one, which
improves performance.
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Figure 2.7: Results for different filters running on different sensofbe Average
Error is computed as the mean error of the sensor averagisty different simu-
lations. The shaded areas are the standard deviations othet lines. Since the
number of sensor is fixed( = 25), one can compute the number of EKFs present
in the network from the knowledge of the number of Partickefs and UKFs.

2.5 Conclusions

In this chapter we have studied the distributed nonlineatleseéstimation problem and
we have proposed distributed nonlinear estimators thatrdége on common underlying
framework. This framework is based on a weighted consensahiamism and could al-
low the usage of different estimators on different sensateso which is an important
aspect when considering heterogeneous sensor netwonkailafon results have illus-
trated the benefit of this framework with respect to standhsttibuted algorithms and
how its performance relates to centralized estimators.

2.6 Open Problems and Future Work

Distributed Estimation is an area that is still evolving amdny challenges are still open.
We can highlight two interesting problems that requiretartattention as follows.

Constrained Consensus
The first problem is the design of consensus algorithms trahandle generic non-convex
constraints.

As remarked, consensus algorithms make use of convex catidnis of the initial values
to reach an agreement among the different nodes of the seaesoork. For this reason,
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when there are non-convex constraints on the variable teeagpon, typical consensus
algorithms may deliver an unfeasible final value. This isrdamental limitation of cur-
rent consensus schemes that affects all the distributedagiin algorithms. This is also
the reason why there are still no distributed methods tol¢attle distributed estimation
problem of Sectior2.2.1in its full generality. We refer the reader to the interegtivork

in (Nedi¢ et al, 2010 where constrained consensus algorithms are introducac:on-
vex setting. We believe that, if the methods presentedNisd(€ et al, 2010 could be
developed further to address non-convex constraints, rtiighit be extremely helpful in
devising new and more general distributed methods for tteilblited estimation problem.

Reachability Problem in the distributed MHE

The second problem we remark is the reachability problemerdistributed MHE formu-
lation.

As illustrated in the chapter, due to the nonlinear natute®bystem dynamics, the agree-
ment on the arrival cost could deliver an unreachable stedateerefore it could drive the
local estimator towards inadmissible regions of the stasées. One solution to this prob-
lem could be to eliminate the nonlinear dynamic model usifigreéntial flatness tech-
nigues as inNlahadevan and Doyle ||R004 for differential flat systems. For general
nonlinear systems the problem is instead more difficult todhe



Chapter 3

Distributed Computation Particle
Filters on GPuU-Architectures

Abstract — In this chapter we consider methods to reduce the possiplydimputational
requirements of nonlinear estimators by distributing tbenputations among different
computing devices communicating one another.

In particular, we study how to implement Particle Filtersxgss pu-architectures, for real-
time control or monitoring applications. Experimentaluks on a robotic arm will il-
lustrate that the concept of fast yet accurate nonlinearifilg is possible by a suitable
adaptation of the Particle Filter algorithm.

3.1 Introduction

In Chapter 2 we have seen approaches to distributed estimattia given nonlinear pro-
cess in sensor networks, where sensor nodes have accede dgl measurements but
they can communicate with the neighboring devices. It is alsll-known that accurate
nonlinear estimation can be very demanding in terms of highputational requirements.
We use as an example the Particle Filters, which in the neatinon-Gaussian setting
usually outperform Kalman Filter type methods, but suffenf very high computational
requirements when using a high number of particles. This@sp particularly important
in sensor networks, where the individual sensor nodes lypieeally a limited amount of
computational resources, but it is also very important émtralized settings.

The topic of this chapter is to propose a distributed contprtaapproach for Particle
Filters, in order to achieve real-time and accurate estomain particular, we will make
use ofcput-architectures to distribute the computations of Parfidkers among different
computational units. This idea is motivated by the receatrtbe of reasonably priced
graphical processing units featuring thousandsrif cores that compete with and take the

1gpustands for Graphical Processing Unit usually composed ofyraamputing cores that work in parallel
on data-parallel tasks such as graphics rendering. We ketimair for the main message of the chapter, it is not
important to know how @&pPuworks in practice. As a matter of fact, our scheme could bdempnted on any
systems with multiple cores that communicate with eachrothe

41
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place of the best traditional desktop single-coras processing architectures in specific
types of computations. In this context, one could imagimutiands of particles running
on each one of the thousand cores.

The main question we will pose and answer is the followiogn Particle Filters be run
efficiently enough and deliver accurate estimates to beedmphted in high sample rate
real-time feedback control applications?

In particular, after surveying the available techniquedistribute the computations among
the computation units, in Secti@?2we will propose an approach that considers a Particle
Filter as a network of smaller filters, where each of them ardes data locally based on
the network topology. Finally, we will test our implementet in numerical simulations
and on a robotic arm experimental setup, where we demoas$t@iz real-time feedback
control based on a Particle Filter using more than a milliartiples.

We remark that the main contribution of this chapter will he proposed distribution
of the computations among the different computing units.is froposed idea will be
shown to outperform standard implementations based odlgazamputing (instead of
distributed ones). In particular, we will be able to incredise number of particles, the
sampling frequency, and the state dimension often by oafermgnitude with respect to
state-of-the-ar6Pusolutions. Furthermore, we will show that our scheme hagewable
accuracy with centralized sequential particle filters ljwiie same number of total parti-
cles), which require 10-100 times more computational timlegn using a high number of
particles) than our proposed distributed implementation.

3.2 Distributed Computation Framework

In this chapter we will use the same notation as Chapter 2jd®ez.3.2(where we have
discussed centralized Particle Filters), but we will cdasitheir distributedComputation
implementation. We refer the reader who is not familiar viRtirticle Filters to their de-
tailed introduction in SectioB.3.2

Formally, we define Distributed Computation Particle Fgtas the ones that have access
to all sensor measurements but use only a subset of paiticdeeh computing unit. The
different units where the distributed Particle Filtersanening are depicted in FiguBelb

(we have reported in Figu®1a the distributed (sensing) setting for reference). Sihee
different local particle filters (PF) have the same measerdgmector, they can exchange
directly particle-weight couplegx’, w’) (since the weights have been weighted on the
same measurement vector). The distributed estimationrie @fothis case at the level of
the filters whereas the sensors are only a means through t@cheasurements become
available. This is the class of estimators that we will sturdhis chapter.

In the following, we will review the body of algorithms thatitbe considered a Distributed
Computation Particle Filter. It is somewhat surprisingtttne exploitation (and design)
of the communication network among the units, as sketch&iginre3.1.b, is a concept
that is rather absent in the reviewed literature (Whereeasta traditional parallel strategy
is often used). This concept, extensively used in the seret@rork community, is one of
the main ingredients that will enable us to devise more efficParticle Filters.
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Figure 3.1: Distributed Computation Particle Filters and their relatiship with
Distributed (sensing) Particle Filters of Chapter 2, Seat?.3.2 In the Distributed
(sensing) setting, the exchange of information is doneisfdhe local means and
covariances of the state estimatgs, ]51-). In the Distributed Computation setting,
the distribution and communication is done via particleigie couples. The final
outcome is a number of different a posteriori distributioggresented vigx? , w! ).
The fact that these distributions are different means thatdifferent local particle
filters do not necessarily have to agree on a common one.

3.2.1 Related Work

In the past decade, with the rise of the massive parall@izahade possible bgpus,
many researchers have analyzed, studied, and designécingeo$ distributed Computa-
tion Particle Filters. These algorithms differ in the numbfparticles they can handle, the
specific parallelization, and the degree of communicatatwben the computing units. In
the next paragraphs we will examine a number of strategigsptement distributed and
parallel Particle Filters.

To the author’s best knowledge, the first work dealing withapalism in Particle Fil-
ters is Brun et al, 2002. In this paper, the particle population is partitionediseveral
subsets, each assigned to a separate processor. Sam@iglyt ealculations, and resam-
pling are performed independently and locally for each subhe authors consider the
weighted sum of all the particles as the estimate. This @sitim is achieved by calculat-
ing for each subset a local estimate and a local sum of weighitsh are, subsequently,
gathered centrally and combined into a global estimate. atlirors show that local re-
sampling is comparable with global resampling, in termsstiheation error.

In the work Bashi et al. 2003, three methods are proposed to implement distributed
computation Particle Filtergi) Global Distributed Particle Filter (GDPHj)j) Local Dis-
tributed Particle Filter (LDPF), anflii) Compressed Distributed Particle Filter (CDPF).
With GDPF, only the sampling and weight calculation stepsiruparallel on different
processors, while resampling is performed centrally. Alitigle data is transferred to a
central unit for the resampling step and the new particlesant back to each processor.
The central unit calculates the global estimate from thég@ardata. With LDPF, resam-
pling is also performed locally on each processor withoyt@mmunication with other
processors. Aggregated particle data is sent to a cenitahwnder to calculate the global
estimate similar to the algorithm oBfun et al, 2002. In CDPF, similar to GDPF, resam-
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pling and the calculation of the global estimate are perémmentrally, but only a small
representative subset of the particles of each processmeat to the central unit. The
paper concludes from a number of simulations that LDPF pes/both better estimation
and performance.

Two distributed computation Particle Filter algorithme groposed ingolic et al, 2009:

(i) Resampling with Proportional Allocation (RPA), afi Resampling with Non propor-
tional Allocation (RNA). Both algorithms perform the sarimg) and weight calculation
stages in parallel. In the RPA method the resampling stagénvies centralized communi-
cation, whereas in the RNA method it is performed compldtatglly. Different particle
exchange mechanisms are discussed to improve the perfoeréthis local resampling
step, but it is rather unclear how these particles are ssledfurthermore, the amount
of particles that are exchanged among the cores is a sigttifiatio of the total popula-
tion (at least 25% of all particles of each processing eldjndn both cases (RPA and
RNA) the estimate is calculated as the weighted averagée paticles from all process-
ing elements. It is argued that RPA provides a better esmathile RNA has a simpler
design. In a later workBolic et al, 2010, the authors compare a standard Particle Filter
with a Gaussian Particle Filter on an FPGA. The presentadtsasdicate that the Gaus-
sian Particle Filter, while being faster than a standardid¢tarFilter, is equally accurate
for (near-)Gaussian problems.

A number of the previously presented algorithms (GDPF, RRRA, Gaussian particle
filter) are compared using a parallel implementation on atincoke cpu for a bearings

only tracking experiment inRosén et a.2010. The comparison goes only until 10K
particles. As expected, the Gaussian particle filter ofihpeas (in terms of accuracy over
computational time) all other algorithms, since the estiomproblem is Gaussian. The
other Particle Filter algorithms (GDPF, RNA, RPA) exhilihgar estimation accuracy.
In terms of runtime performance, both RNA and the GaussiaticRaFilter achieve near
linear speedup with respect to the number of cores for a lawgeber of particles, while
GDPF and RPA exhibit only sub-linear speedup.

An interesting Particle Filter implementation is preserite(Hendeby et a).2010, where
the authors exploitPu specific hardware features. In this paper, first, a pargtipi@ach
for sampling and weight calculations is proposed and them,résampling step is per-
formed using a specific hardware featureseiU's called the rasterizer. In practice this step
is close to the RNA algorithm oBpli¢ et al, 2005 but, since pseudo-random numbers are
generated on the hosPu and successively transferred to theu, the performance of the
filter is severely damaged. In fact, about 85% of the totatino@ is spent on generating
pseudo-random numbers and transferring them tasthe making this implementation
not suitable for real-time estimation in complex problems.

The gpu implementation described irChao et al.2010 consists of parallel sampling,
parallel weight calculations, and resampling performedlly on the different computing
units. For the sampling step, the authors propose to usertie-fedraw importance-
maximizing (FRIM) method, which checks the weight of thewdngparticle and redraws
until a particle with a reasonable weight is constructed.née that the FRIM method is
known to reduce the required total number of particles, Hikerl number for maximum
number of redraws has to be imposed to limit the iterationse deneration of random
numbers is performed on the hastu, as in Hendeby et a).2010, and subsequently
copied into thecPu. This makes their presented implementation rather limitedfact,
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Table 3.1: Available methods to implement distributed computatioti€la Filters.

Ref.s Sampling Resampling Estimation Particles State  iRent
+ weight dimension  [ms]
Brun et al.(2002 local local central 32K 3 1-100
GDPF local central central 5K 5 100
Bashi et al(2003 LDPF local local central 5K 5 10
CDPF local centré| centrag 5K 5 10
-, RPA local centrd central 50K 3 1
Bolic etal.(2009 pnA  jocal local central 50K 3 011
Hendeby et al(2010 local centrad central 1M 2 1000
Chao et al(2010 local local unknown 4K 3 200
Par and Tosu(2011) local central central 130K 4 10

§ only part of the particles are sent to (multiple) computingp$
* these are theoretical limits based on the considered heaedwather than a measured performance.

with the use of a low performance laptg®u, they are able to run experiments only up
to 4K particles with execution times around 200 ms in the base. It is unclear how the
estimate is calculated from the weighted particle set anethdr it is executed on thepu.

The recent studyRar and Tosur2011) investigates a Particle Filter for localization and
map matching for vehicle applications onca&u using OpenMP and on a&PU using
CUDA. The state dimension is only four and the estimationsdoat benefit from more
than 32K particles, but the application is neverthelessnérésting and well-explained
case for Particle Filters. Experiments show that, with 12@kticles, acpuis 4.7 times
faster on six cores than a singteu architecture, while @Pu is another 16 times faster.
The proposed algorithm runs parallel sampling and weigletitations but the resampling
step is done on the hostru in a centralized fashion. However, the resampling is per-
formed only when the particle variance is above a threshdhis scheme seems to be
faster on average than the other mentioned algorithms tsuiffiers from high peaks of
computation time when the resampling is performed, whichndesirable for real-time
applications.

Table 3.1 summarizes the surveyed methods and highlights the defreentralization
still presented in many of them. In particular, the resampbtage is performed either
in a centralized fashion (where all or a part of the particesach core are sent to some
computing hub), or locally, without exchange of particl€bis way of operating is typical
from a parallel perspective.

We note however that these ways to resample the particldgtigrucan degrade the per-
formance of the filter (in terms of computational time anduaeacy) rather significantly.
In order to address this problem we will introduce in the reedtion the concept of dis-
tributed resampling, which will enable us to overcome thdifficulties and achieve an
improvement over the aforementioned methods. Furthermvegewill explain how the
different (user-tunable) parameters can affect perfooaan

3.2.2 Proposed Approach

In this section we present our proposed approach to impledistiibuted computation
Particle Filters. First we give a brief introduction &pu architectures and we introduce
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the concept of topology. Then, we describe the distribuesmpling techniques that
is the core of our method, and, finally, after presenting dgorithm, we analyze the
selection of its (user-tunable) parameters.

GPU Architecture and Topology

GPU's are programmed to exploit their inherent parallelismxecaite at the same time a
significant number of tasks. We utilize CUDAIYVIDIA , 2010 as a programming inter-
face. A CUDA application is divided into hostanddeviceside. The host refers to the
cpuwhich is connected to one or more devices (i.e.,dhes). The host manages device
memory, initiates data transfers and launches kernelseddhice. Kernels are special
functions executed on the device in parallel. Each kerrgtally consists of numerous
threads grouped into thread blocks. Limited fast accesedhmemory is available to all
threads from a single block for local communication whilevgr access global device
memory is available to all threads. The thread groups antidsecan access the global
device memory and this is typically the way the data is shéaklough it is also the main
cause of bottlenecks in standard implementations).

Figure 3.2 depicts the terminology and the architecture. For our imiglietation, each
thread is particle, while each thread block is a local Plartdter.

host

\\ o i

EOO00000
Ooooo@oon thread block
| | | ] Global device memory

/

Figure 3.2: Basic concept ofspu architectures as available in CUDA. The global
device memory is mapped into a specific topology represgdtita-exchange be-
tween thread blocks.

Topology mapping
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In particular, with reference to Figu2,

The host launches kernels. Each oSt

kernel is a specific function, such \\
. . kernel

as “sampling”, “sorting”, or “resam- \{j
pling”. The host has access to the

global device memory. I 1 Global device memory

evice

Kernels consist of numerous threads

grouped into thread blocks. For us the -
thread blocks represent the local par-
ticle filters, while the threads the par- i §§§§
ticles. Different threads have access devicer-moooooon T e
to fast limited shared memory inside :L—I | A
o 1 Global device memory

the thread block and they can write
and read data from the slower access
global device memory.

In Figure 3.2, we also illustrate the concept of topology, which will bepiontant for our
implementation. Since the access to the global device memarsually a bottleneck,

it is important to limit this operation angroup the data that each thread block needs to
read. Our idea is to map the global device memory into a spddifipology, that formally
defines this grouping procedure. Using Graph Theory tertogyp each thread block is a
node, while if two nodes can access each other’s data we aathtire is an edge between
them. The set of nodés and the set of edgesdefine a grapldy = (V, £) with specified
topology. Since given the graghthe topology is fixed, we often use the symgadb refer

to both interchangeably. In this context, each thread blaska set of neighbors, i.e., the
thread blocks it can share the data with.

We consider each kernel to consistifthread blocks (later local filters) labeled with the

indexi = 1,..., N, whereas each thread block hasthreads (later particles), labeled
with the indexj = 1,...,m. The number of neighbors of each thread block is indicated

Moreover, as a further abstraction of the hardware/so&arel, we refer to the thread
blocks as computing units that are able to send and receieefdan the neighboring
computing units, via the gragh Since the access to global device memory is often a bot-
tleneck and since the local shared memory is limited by thevsare, the communication
among the computing units cannot grow arbitrarily.

Distributed Resampling

In typical implementations of distributed computation tiRde Filters, the sampling and
weight computation steps are done locally (in parallel) rather straightforward fashion.
We also follow this standard strategy. The resampling stépsiead more delicate.
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Resampling is a critical step in Particle Filters. On one sitds necessary since it can pro-
vide the chance for good particles to spread themselvest avéricomes the degeneracy
phenomenon, where after a few iterations, all but one pamtidl have negligible weights.
However, on the other side it introduces practical (androéteplication-specific) issues,
notably the impossibility to run the code in parallel, siradethe particles must be com-
bined, and the loss of diversity among the particles as thdtant samples contain many
repeated points. In this context, it is rather crucial toisexcarefully the resampling stage
and give to the user tunable parameters to overcome the gnedtiapplication-specific
issues.

As surveyed in Sectio3.2.1the resampling step is often performed with a degree of
centralization. Typically all the particles or (a signifitapart of them are sent to a limited
number (often one) computing hubs (i.e., thread groups).

In contrast with these methods, we propose a distributebapp to the resampling stage.
Our idea is rather simple yet extremely effective and it isdabon the considerations that
there is no need to have specified computing hubs, each obthputing units can serve
as a computing hub itself, and there is no need to send allaheles, in fact just very
few are necessary to the resampling step. In our approathoaaeputing unit sends to
its neighborsonly ¢ representative particles (the ones with locally highesghits) and
performs the resampling stage on its resulting- ¢V, particles (we recall thaV; is the
number of neighbors a computing unit has). We note that thiple idea is extremely
powerful. In fact:

1. The number of shared particles is a small part of the pdipulasince typically
tN; < m. However, as we will see in the experimental and simulatéstst of
Section4.2.7, the fact that the method is not completely local (mearting 0, in
contrast with local methods whete= 0, for example Brun et al, 2002 Boli¢ et al,
2005 Chao et al.2010) increases significantly the accuracy of the filter.

2. There is no need of centralized data collection, makiegésampling step fast and
efficient.

3. Both the topology and the number of shared parti¢clase user parameters that
can be adjusted to the application at hand. In some casegx&nple, in high
process noise setting), we will see that having an all-téegblogy (similar to the
centralized hub in the CDPF algorithm @d4shi et al. 2003) could lead to worse
performance than a ring topology. As we will explain belovdam Section4.2.7
this is due to the loss of diversity introduced by the reséamgdtage.

This idea of distributed resampling has been presented §8imonetto and Keviczky
2009. A similar approach has been also presented in the latek (Balasingam et a|.
2011, whose authors propose a modification of the distributedmpling idea of$imon-

etto and Keviczky2009 on a ring topology, where the local computing units subtit
their highest weight particles with the ones of the neighizpunits. Both these works
show in simple numerical simulations the similar perforeenf the distributed strategy
with a standard single-corePu implementation that uses the same number of particles
Nm, in terms of estimation quality.
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In this chapter, we implement the distributed resamplifgeste on aspPu architecture
and we test it on a real hardware platform. Furthermore, vadyaa the effect of the
parameters of algorithm, namely the number of shared festiand the topology on
the quality of the estimate.

Proposed Algorithm

Our proposed algorithm consists of the following high-lesteps:

a. Sampling and weight calculation: this step is done lgaail each computing unit;

b. Distributed resampling step: this step is done in a dhisteid computation fashion
as previously explained;

c. Local estimation: this step is done locally on each corngutnit, picking the local
particle with maximum weight.

Algorithm 3.1describes more in detail how these three high-level phasdsmslated into
high-level commands. For the specific hardware implemiemtathe reader is referred
to (Chitchian et al.20128.

Remark 3.1 In addition to Local estimation, we also provide to the us&labal estimate kernel
which selects the best particle among the local bests. Hiéxson is also done in parallel via a
parallel reduction on the winners from each block. In ourexments we have noted that the extra
runtime spent in the Global estimation kernel is extremietjtéd compared to the other kernels.

Algorithm 3.1 Distributed Computation Particle Filter:
high-level description on each computing unit
Input: {x;(k —1)7}j=1,....m, z(k)
> Available Data: p(x(k)|x(k — 1)), p(z(k)|x(k)), t, m, topologyG
1. Local Filter:
forj =1 m
1.1:sampling : x; (k)7 ~ p(x;(k)|x;(k — 1)7)
1.2:weight _calculation  : w;(k)? = p(z(k)|x;(k)7)

end
2. Sorting: sort  {x;(k)7};=1,....m according to{w; (k)7 };=1,....m
3. Estimation: local _estimation : pick x; (k)7 with maximalw; (k)7
4. Particle Exchange:

foreach neighbordo

send andreceive t particle-weight couples to/from neighbors

end
5. Resampling:resample them + N;t particles intom particles
6. Reset:set w;(k)? = 1/m forall j
Output: {x;(k)7},=1

m

,,,,,
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Analysis of the Algorithm

In this section we provide some insights in the selectiomeftarametersandg of Algo-
rithm 3.1, while, in general, the selection &f andm are dictated by hardware limitations.

Let p;(x(k)|z(k)) be the local approximation of the a posteripoF, different for each
local filter, which can be written as

m

pi(x(k)|z(k)) = Qil(k) > wilk)d(x(k) —xi(k)7), 3.1)

P

where the subscriptindicates that weights and particles are referred to thal lidter 7,
and (k) = 7", wi(k)’. Letw;(k)’ be the weight of particlg of filter i after the
communication step but before resampling. et = m + N;t be the total number of
particles of filteri before resampling, and I€X; (k) = > w; (k)7

First of all, we support the intuitive claim that the most negentative particles of the
pi(x(k)|z(k)) in (3.1 are the ones with highest weights, which justifies the comioas
tion strategy in Algorithn8.1 In order to show this, we utilize the Kullback-Leibler (KL)
divergence Cover and Thomad997) that measures the distance between Bwes. In
particular, the smaller the KL divergence is, the closertthe PDFs are. Consider the

approximated a posteriqﬁgt)(x(kﬂz(k)) computed using only < m particles, as

O (1) z(k)) — tw, i5(x(k) — % (k)
Py (x(k)|z(k)) Qgt)(k)Z i(k)0(x(k) — xi(k)") (3.2)

Jj=1

with Qgt)(k;) = 22:1 w;(k)?, then the claim that theparticles with highest weights are
the most representative fa3.() is formally expressed as follows.

Proposition 3.1 (Balasingam et al.2011) The KL divergence betwed8.1) and its ap-
proximation(3.2), which employes only < m particles, i.e.,D(ﬁi,ﬁEt)), can be written

as
() ~wi(k)Y Q" (k)

and it is minimal when we use f@8.2) thet particles with highest weights.

We can distinguish two main aspects that affect performahédgorithm 3.1 First, we
have to analyze how good each of the local a postepjéxi(k)|z(k)) represents the global
p(x(k)|z(k)). This aspect dictates the estimation quality of the disteld computation
particle filter with respect to a standard single-caru implementation. Second, it is
important to study how distorted each of the logalx(k)|z(k)) becomes after the re-
sampling step. This distortion is a measure of the distamteden the resampled and
the initial population. In particular, high values of digion generally mean that the filter
will be affected by the degeneracy/loss of diversity pheaonam, where only few particles
have non-zero weight.
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In order to analyze the quality of each local a postenpfk(k)|z(k)) with respect to the
globalp(x(k)|z(k)) we make use of Propositidh1applied to these distributions and we
define the cumulative sum of the local KL divergences as

N N mi w-(k)j

;D@,p» = Xl g o (3.4)
e () TN wiky
- —Xllem T 2 om |

where we recall tha@ (k) = Zj\]:”f w(k)?.

LetW = ZT:“:HJ\;‘; w;(k)7. By the fact that we are sharing theparticles with hig‘hest
weight, we could approximately considey(k)’ to be the same for eaghi.e.,w;(k)’ ~
w;(k)®, and approximat&/’ as

Consider the derivative of the cumulative suBidj respect tdl” (or N;t) as

9 ZD(ﬁ,ﬁi) = —& (3.5)

which is minimal foriW = 0.

From the relations3.4) and @.5) we can infer the following.

e The higherN;t is, the closer the local and global a posteriori are. Thikved
from (3.4) with W — oo (or in the approximated sense, witht — o).

Therefore, increasing the communication leads to an iserefestimation quality
for a given time steg: (note that the effect on the time stép+ 1 depends also
on the resampling, which is analyzed next). In particufawe choose all-to-all
communication and = m, then each local population is comprised at least of
the m particles with highest weight, which are the most represterg to describe

P(x(k)|z(k)).

e The gain in increasingv;t, or for a givenN;, in increasing the number of share
particlest, is maximum wherl/ = 0 =~ N;t. In other words, we can expect a
more significant increase in the estimation quality pasbiom ¢ = 0 to ¢t = 1 than
passing front = 1tot = 2.

Besides choosingand V; (and therefore the topology) to minimize the KL divergence
between the locap; (x(k)|z(k)) and the globap(x(k)|z(k)) while maintainingV;t as
small as possible to limit the communication effort, theeeffof the resampling stage
is also an important aspect to consider. Assume Mat < m and thus consider the
local particle population to be uncorrelated among thellétars i. Define the distor-
tion (Miguez 2007) of p;(x(k)|z(k)) after the resampling step as its KL divergence with
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the global a posteriop(x(k)|z(k)). We note that this measure is different from the one
in Equation 8.4), since we use fof; (x(k)|z(k)) the resampled weights (before resetting
them). The dependence of the distortion on the local weigetsre resamplingp; (k)
can be approximated asl{guez 2007

J=1

In order to avoid distortion and therefore in order to maxierthe estimation qualit);
has to be minimized, which is achieved when the differgytt)? within the same local
filter + have similar values. On the contrary when few particles liagénighest weights,
the distortion is close to its maximum and therefore degaryecan be expected to occur.
In particular we can distinguish two extreme cases:

¢ Relatively low process noise but high measurement noisthidrcase the particles
have similar weights and therefore the resampling step doesause a high level
of distortion, even forV;t # 0.

o Relatively high process noise but low measurement noisehisncase few parti-
cles have the highest weight and therefore the resamplpgcstuses high level of
distortion. In particular, givet, the higher theV; is, the higher the distortion is.

In the next section we will illustrate in practice the indigln the selection of the param-
eterst and V;, which we have presented in this section.

3.3 Numerical and Experimental Results

3.3.1 The Robotic Arm Model

In order to test, verify, and benchmark our distributed catapon particle filter imple-
mentation we use the realistic industrial application obhatic arm. The main reason
for such a choice is that the measurement equations of tpigcapion are highly nonlin-
ear and extremely challenging for standard estimationnigcies both for accuracy and
computational time.

The robotic arm, in this experiment, has a number of jaihts 3 which can be controlled
independently. It has one degree of freedom per joint plagakation of the base. Each
joint has a sensor to measure its angle. There is a cameratadoairthe end of the arm.
This camera is used for tracking an object which is moving aroaitor on a fixed; — z
plane. The real robotic arm as well as a schematic repregantae shown in Figurs.3.

Let 0;(k) be the angle of the jointat the discrete timé (i = 0 represents the rotational
degree of freedom of the base). gi(k) = (z(k),y(k),z(k))" € R? be the position
of the object to be tracked at the discrete time step the fixed reference system of
the robotic arm, as indicated in Figuse3, while let (v, (k), v, (k),v;(k))" € R3 be its
velocity. We consider: (k) to be known a priori and,. (k) to be zero for allc. Denote
with

X(k) = (90(]{5), R 9](1@'), y(k), z(k), 'Uy(k)v Uz(k))—r
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Figure 3.3: Robotic arm used for the experimental test. On the right &z test-

bed and on the left a schematic representation showing theeca at the end ef-
fector, marked with a grey circle, and the monitor on which aving object is

displayed.

the state of the arm and object dynamics. We model the anglardigs as discrete-time
single integrators, while the object dynamics as a disdiate double integrator:

(k) = Ok —1)+wo(k—1), i=0,...,J (3.7a)
y(k) = ylk—1)4vy(k—1)At+wy(k—1) (3.7b)
z(k) = z(k—=1)+v.(k—1DAt+w,(k—1) (3.7¢)
vy(k) = vy(k—=1)+w,, (k-1) (3.7d)
v(k) = v, (k—1)+w, (k—1) (3.7¢)

where the termsv model the process noise arxt is the sampling time. The system
of dynamical equations3(7) will represent our a priori distributiop(x(k)|x(k — 1)), as
explained in Sectio2.3.2 Equation 2.26).

The camera mounted at the end effector of the robotic arnttdetiee object displayed on
the monitor in its own frame of reference. (k) = (z.(k), y.(k)) " be the position of
the object in the camera moving frame at the discrete timEhis position is measured in
pixel. To relateps(k) to the actual coordinates of the object in the robot fixed &rave
have first to use a camera model that translates the pixelsriaters and then performs a
chain of translations and rotations to change the referaoge. The camera is modeled
by the traditional pinhole projection with added radialdetistortion, seeRougue} 2010
Hutchinson et a).1996 van der Lijn et al. 2010 for details. The model for the measured
observations of the moving object is the composition ofdhulasses of maps: rigid body
transformations, projections, and “distortion” maps. Wgpbasize the first two, since the
lens distortion is known, i.e. the camera is calibrated arprLetp’ = (2/,y',2') " be a
three-dimensional point described in generic coordindtesy : SE(3) x R® — R? be
the standard rigid body transformation

¢o(R,p’,q) = Rp' +q,

whereR andq are the traditional rotation matrix and translation veatespectively. The
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camera pinhole projection model is realized by the pragecthapr : R — R2:

1 X!
ww) =% (1)
The composition of the maps is described graphically bynferimal diagram:

® ™ ¥
Pw A Pc ? Pp N Ps
world camera plane sensor

wheret describes lens distortions. The full sensor model is desdrby

Ps =Y omo (R, Pw,q) + is, (3.8)

with ps an additive noise term. We note that the couf@ q) depends nonlinearly on
the configuration of the robotic arm, thus on the angleand on the geometry, i.e., the
length of the joints. Hence the mod&l§) can be translated into the compact measurement
equation

ps(k) = gs(x(k)) + ,us(k)v (3.9)

wheregs is the nonlinear function that represents the compositidhesthree maps in the
sensor model3.8). We add the independent measurements of the angles,

(with 119, Sensor noise). Denote the measurement vectoravith(p. ., ...,0;)" and
the measurement noise vector with= (], p1g,, - - -, 11g,) T . We can write the complete
measurement equation for the robotic arm setup, as:

z(k) = g(x(k)) + p(k). (3.11)

We note that3.11) the stacked representation @f3), from which we derive the a poste-
riori distributionp(z(k)|x(k)).

In the next subsections we will analyze several experimamiz simulation results. The
first aim of the experiments is to show the performance of aappsed Algorithn3.1
in estimating the state given the noisy observatian In particular we will focus only
on a part of the state: the position of the object in the woddrdinates, i.e.(y, z). We
will describe the dependences of the estimation error ordiffierent parameters of the
algorithm, as well as its runtime performances. Furtheenae will show its scalability
with respect to the dimension of the state vector (arblfraaried in the simulation runs
by changing the number of joints).

The second aim of the experiments is to demonstrate thatdfaktime feedback control
based on the proposed algorithm is possible and can achaéséastory results, in con-
trast with traditional single-corepu implementations. The control objective is to track a
moving object with the robotic arm while it traverses theeser, as described next.

For experimental and simulation purposes we use the conatigravailable GTX 580
GPuUand,unless differently stateave choose
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e aring topology for the underlying communication graph,

e and we select = 1 for the number of exchanged particles among the computing
units.

3.3.2 Experimental Results

We use the robotic arm platform of Figuse3for the experiments throughout this section
in order to examine the filter behavior under different ctinds. The parameters of the
platform and the Particle Filter are listed in Tal3& (Experiments column), where all
noise terms are modeled as Gaussian (since this turns oetaodiher realistic model for
the noise of the setup).

In the experiments the robotic arm is ask to follow a movinggob(a white dot) while
it traverses the monitor. The robotic arm pose is contra@ledhat the camera keeps the
object in view while staying at a couple of centimeters frdra monitor itself (thus the
camera does not have a view of the whole monitor), see TaBld he implemented con-
troller is a discrete-time PID controller based on the eatéd position and the estimated
joint angles with sampling rate ab0 Hz. This update rate is close to the hardware limit.

Table 3.2: Experiment and Simulation Parameters

Experiments  High-noise Simulations

Process Noise

wo, 0.015 rad 0.075 rad
Wy, Wz 0.001 m 0.005 m
W, , W, 0.05 m/s 0.25 m/s

Measurement Noise

Iis 10 px 10 px
o, 0.01 rad 0.01 rad
Other Parameters
At 0.01s 0.01s
Velocity of the target ~ 0.03 m/s ~ 0.03 m/s
Camera view area
- 12% —
Total area
* both process noise and measurement noise are chosen to $&dBawith zero mean and indicated standard
deviation.

The performance index we are interested in this subseditimei estimation error of the
position of the target. In particular we define the averagerss, as

Tt
e = 23 [Ipu(k) = pulhl, (3.12)
k=1

wherepy, (k) is the estimated position by the filter apg (k) is the true position, whildt
is the final discrete time step of the experiment gnf represents the 2-norm. We remark
that by definitiore is always positive, i.eg > 0.
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Figure3.5illustrates the estimation of the positi¢n, z) superimposed on the actual tra-
jectory of the object in low particle and high particle sags. In Figure3.5.a we have
selectedV = 32 andm = 64 and we note that the robotic arm loses track of the ob-
ject and it cannot complete the trajectory. On the contiarfzigure3.5.b, in the setting

N = 2048 andm = 512, we can achieve better estimation which translates in the ac
complishment of the object following task. In FiguBeb.a we have also indicated the
dimensions of the camera view area (empty rectangle).

Figure3.4shows the average estimation eredor different settings. We note the general
(expected) trend that a higher number of filters increasesatituracy. Moreover, we
achieve an average error®mm for the best setting (withM particles atl00 Hz) which

is considered a remarkable result given the experimertighse

~
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m = 512
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Figure 3.4: Averaged estimation errag in a number of experiments with different
(N, m) settings. The standard deviation, not depicted, is arolinn.

3.3.3 High-noise and Large-scale Simulation Results

In order to further assess our implementation in differeeharios, we simulate the filter-
ing problem in high process noise and large-scale settiBgth the cases serve to illus-
trate the performance of the algorithm in situations thahthbe encountered in real-life
applications.

First of all we increase the noise parameters as expresstabie 3.2 and we perform
100 simulation runs for eacfiV, m) setting. Figure8.6-3.7 show the results for different
topology choices; and for a different number of exchanged partidesAlthough we
have performed simulations with several differénand¢ we report here only the most
indicative ones. As we may note from Figugs (where we use = 1), in this high-noise
setting, the ring topology performs in general better tHanall-to-all topology. This is
in contrast with the design choice of available algoritheng,, Bashi et al. 2003, where
only all-to-all communication is considered. We remark tiiés effect is due to the lack
of diversity in the resampling stage.
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Figure 3.5: Estimated positiofy, z) in grey dots, superimposed on the actual tra-
jectory of the object. The settin§ = 32 andm = 64 does not allow the robotic
arm to follow the object, whereas the setting= 2048 andm = 512 allows the
robotic arm to follow the object very well. Both the expenntsehave been run at
100 Hz. The empty rectangle on the figure (a) represents the Gamew area.
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Figure 3.8: Runtime of the some of the kernels of the distributed cortipatBarti-
cle Filter implementation varying the state dimension ie fettingV = 2048 and
m = 512.

Furthermore, from Figur8.7 (where only the ring topology is used) and Fig@:é top
we see that even a small number of exchanged particles cam ansignificant difference
compared to the no communication choi¢e<( 0). Moreover, as expected, we note that
this difference is not so marked when passing frtom 1 to t = 4, meaning that the real
improvementis in communicating itself and not in the numdfexchanged particles. This
is in contrast with the design choice of some of the availabéhods, e.g.Brun et al,
2002 Bolic et al, 2005 Chao et al.2010, where either no communication is chosen or
25% of the total particles are shared.

As a second variation on the experimental results, we isertiee number of state dimen-
sions augmenting the number of jointawith the settingV = 2048, m = 512. This case
illustrates the scalability of the algorithm, in terms ohtime, with respect to the state
dimension. As we see from FiguBe8the Particle Exchange step, as well as Resampling,
require a relatively limited runtime and they scale bettantthe sampling step. This was
to be expected, since when the state dimension increasesaipling is the most affected
task?

Finally, an important observation from Figusesis the total absence of bottlenecks in the
access to global memory in the Particle Exchange step.

3.3.4 Comparison with a Centralized Sequential Implement&on

As a final set of simulation runs, we use the high-noise ggtinef. Table3.2) and we
compare the proposed distributed Particle Filter impletat@m with a sequential central-

2The other kernels are pseudo-random number generatidgmgsdocal and global estimation.
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ized implementation (i.e, a standard Particle Filter thiatsrsequentially on a single-core
architecture).

First of all, we consider in Figur8.9the runtime in [ms] for the distributed implemen-
tation and the centralized one (the centralized has beeleingmted on a Intel Core i7-
2820QM processor running at 2.3 GHz). We set= 512 and we varyN. As we note
from Figure3.9, the centralized algorithm scales exponentially in the bernof particles
(as we should have expected). The proposed distributedothétistead scales better (in-
creasingV) and for an high particle setting\im > 16K), it is from 10 to more than 100
times faster than the sequential centralized implemamatirhe contrary, meaning the
distributed particle filter is slower than the centralizatblementation, is instead reason-
able with a low number of particlesMim < 1K), since the single core is more powerful
computationally-wise than the local cores of threu architecture and there is no commu-
nication involved.

Figure3.9can be also used for a comparison with the methods presentied literature.
With reference to Tabl8.1, we can report in Tabl8.3the performance of the proposed
method.

1024 —v— Distributed Implementation : : : : 1

—s— Sequential Centralized Implementatio
64+

Runtime [ms]
N

0.251

0.015¢ : : : 1

1 1 I

256 1K 4K 16K 64K 256K 1M 4M
Number of particlesVm

Figure 3.9: Runtime comparison of the proposed distributed implentiemand a
sequential centralized implementation. In the distribubme we fixn = 512 and
we varyN.

Table 3.3: Performance of the proposed approach

Ref.s Sampling Resampling Estimation Particles State  iRent
+ weight dimension  [ms]
64K 8 0.3
Algorithm 3.1 local distributed local M 8 2.3

aM 8 4.6
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Figure 3.10: Comparison of the estimation error between distributedliémenta-
tion and centralized one.

As we see from Tabl8.3the presented method outperforms for number of particlete s
dimension, and/or runtime state-of-the-art methods eyipdos Pu architectures. Further-
more, Algorithm3.1lincreases the achievable performances often by ordersgiitnde.

In Figure3.10we report the estimation error in both the distributed impatation and
the centralized one. As we notice, the estimation error &ses in whichm > 128
is comparable with the centralized setting. Furthermarehe case ofn = 512 and
N > 1024, the distributed algorithm delivers better estimates ttiencentralized one.
This has to do with the loss of diversity in the centralizegliementation.

Figure3.10gives also extra insights on the selectionmofand N given a total number

of particlesNm. In fact, for high value ofVm it appears better, in terms of estimation
error, to choose a high value for. This configuration leads to a small number of accurate
filters. For lowNm settings, the opposite seems to be more recommended. adisde
an high number of less accurate filters (but yet with moreigartliversity).

3.4 Conclusions

In this chapter we have shown that fast yet accurate nomlgstanation is realizable and
it can be used in relatively high sample rate real-time fee#ltcontroller. In particular
we have designed, analyzed, and implemented a distributegbatation Particle Filter
that can handle over a million particles 10 Hz with remarkable estimation accuracy.
This result outperforms other implementations that candoad in literature. In partic-
ular, our implementation increases the number of parti¢les state dimension, and/or
the sampling frequency often by orders of magnitude witpeetsto state-of-the-agpu
solutions (typically based on parallel algorithms instedur distributed ones).
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Furthermore, we have shown that the proposed scheme hasicainigaccuracy with cen-
tralized sequential patrticle filters (with the same numideowl particles), which require
10-100 times more computational time (when using a high rarmobparticles) than our
proposed distributed implementation.

3.5 Open Problems and Future Work

As future work directions we can recommend the following typen problems.

Optimal selection of the couple(V, m)

The first open problem is the optimal selection of the numlidoeal filters N and the
number of local particles: to guarantee a certain level of accuracy and sampling réis. T
selection would help the users to choose the right coUler) for their own application.

Although this is not expected to be an easy problem, we betleat even the intermediate
step of having some good rule of thumb would already be beakiiicorder to guide the
user in the right direction.

Distributed Sensing and Computation Algorithms

The second open research question is the design of algarttiahmerge distributed sens-
ing estimators of Chapter 2 with distributed computatioe®nof this chapter, to obtain
a fast and accurate nonlinear estimator that can work wedl &l a distributed sensing
scenario.






Chapter 4

Distributed Control of Robotic
Networks with State-Dependent
Laplacians

Abstract — This chapter considers two distributed control problensdbotic networks.

First, we analyze the problem of maximizing the algebraienaztivity of the communi-
cation graph in a network of mobile robots by moving them egppropriate positions. We
define the Laplacian of the graph as dependent on the paidigitsmce between the robots
and we approximate the problem as a sequence of Semi-Ddfirograms (SDP). We
propose a distributed solution consisting of local SDP’&huse information only from
nearby neighboring robots. We show that the resultingitisied optimization framework
leads to feasible subproblems and through its repeatedigxecthe algebraic connectiv-
ity increases monotonically. Moreover, we describe howdfost the communication load
of the robots based on locally computable measures.

Second, we utilize and extend the presented distributetadeb tackle the problem of
collectively tracking a number of moving targets while ntaining a certain level of con-
nectivity among the network of mobile robots. We formuldte tombined global objec-
tive also as a Semi-Definite Program (SDP) and propose atamative distributed solution
consisting of localized SDP’s which use information onlyrfrnearby neighboring robots.

Numerical simulations show the performance of the distetalgorithms with respect to
the centralized solutions.

4.1 Introduction

In Chapter 2 we have analyzed situations in which the compguand communicating
devices were non-moving. In this chapter we shift our focusmbile devices, such as
mobile robots, that have to be controlled to achieve a comizsi

These teams of autonomous mobile robots are considered @s enkbling technology
in several applications ranging from underwater and spap®rtion (eonard et a.
201Q Izzo and PettazzP007), to search, rescue, disaster relied§ and Kq 2008 Casper

65
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and Murphy 2003, and monitoring and surveillanc€#ésbeer et gl2005 Mathews and
Durrant-Whyte 2007). Among the engineering and research questions thesecatiptis
pose, maintaining a good level of connectivity between tiokvidual robots and increas-
ing the communication quality given the environmental ¢@ists, have fundamental im-
portance. Nonetheless, as expressed in Chapter 1, thist hsysebeen often overlooked in
the available literature.

In this chapter, we will use the algebraic connectivity,\afG), of the communication
graph as a natural measure of connectivity “quality”, and@gall that a strictly positive
A2(G) > 0is a necessary and sufficient condition for the gr@gh be connected.

In the context, in Sectiod.2, we study distributed solutions for maximizing(g) in mo-
bile robotic networks. We will focus on distance-based @minity maximization with
minimum separation constraints, as opposed to ensurieeplirsight connectivity in an
obstacle-rich environmenAqisi et al, 2008. To the best of our knowledge, only the work
of (De Gennaro and Jadbaba2€06 investigates a distributed solution for the maximiza-
tion of A, based on a simplified scenario where the dynamics of the sa@vetrepresented
by a single integrator and no constraints are present. Tiheeuse a two-step distributed
algorithm, which relies on super-gradients and potentiatfions. The required commu-
nication load scales with the square of the graph diametatwhay impede fast real-time
implementations for large groups of robots.

In Sectiord.2we consider as starting point the centralized optimizgtimtedure of Kim
and Mesbahi2006 Boyd, 2006 Derenick et al.2009. In these works the maximization
of the algebraic connectivity is approximated as a sequeh&emi-Definite Programs
based on the notion of state-dependent graph Laplaciate #i@ agents are modeled as
discrete-time single integrators.

First, we modify the aforementioned centralized optimaaprocedure in order to handle
more realistic robot dynamics. The resulting optimizatwoblem is then proven to be
feasible at each time step under quite general assumpt®esond, we propose a dis-
tributed solution for the modified centralized problem. @roposed distributed approach
relies on local problems that are solved by each robot usifogration only from nearby
neighbors and, in contrast witbé Gennaro and Jadbaba?2®06), it does not require any
iterative schemes, making it more suitable for real-timgliaptions. In our approacti)
we formulate local problems of small size that are clearlgtes] to the centralized one,
(i) thelinearizedalgebraic connectivity of the approximate problem is gotged to be
monotonically increasindjii) the overall optimization scheme is proven to be feasible at
each time step under quite general assumptions, and ircylart{(iv) the local solutions
are feasible with respect to the constraints of the origiratralized problem. Finally, we
characterize the local relative sub-optimality of the pyitied algebraic connectivity with
respect to a larger neighborhood size and we use this ckaration to enable each robot
to increase or decrease its communication load on-lindewspecting the properti€3 -
(iv). This means that our solution can be adapted based on deaitsburces, augmenting
or reducing the required communication and computatioff@ite

Besides its benefits in improving communication qualitg, pnoposed distributed solution
can be adapted to certain situations in which the connégtaxiel is a constraint while the
robots are performing other tasks. An example of these siosnia multi-target tracking,
which is the topic of Sectiod.3.
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In Sectiord.3, we start formulating the multi-target tracking problenaageneralization of
the approach offerenick et al.2009 2010. This generalization accounts for uncertainty
in the targets’ positions, which is relevant in trackingrem@os. Then, we formulate an op-
timization problem as a joint maximization of connectivdtyong the robots and visibility
of the moving targets and we extend the distributed solygioposed in Sectiof.2to this
problem formulation. The distributed solution, in additito feasibility with respect to the
constraints and to the non-iterative nature, can guardmdtteconnectivity and tracking,
and the local cost functions exhibit the same improvemeospgnty as the global cost in a
linearized approximation.

The distributed solutions of this chapter can be seen as pleomentary approach to stan-
dard subgradient algorithms. Distributed versions ofénoental subgradient algorithms
are typically communication intensive iterative algonith, in which at each iteration, each
agent has to evaluate only a subgradient of a certain func@ur proposed solutions lie
on the other side of the “communication-computation” traffespectrum. In fact, each

robot solves a reasonably complex convex optimization lprobwhile the communica-

tion among them remains limited.

4.2 Constrained Algebraic Connectivity Maximization

4.2.1 Problem Formulation

Consider a network ofV agents with communication and computation capabilitiet an
express asi; (k) the value of the variable for agenti at the discrete time instarit
These agents can be thought of as a representation of trerefotioned mobile robots.
The position of agent is denoted byr;(k) € R? and its velocity byv;(k) € R3. To
begin with, assume the agents to move according to the fiitpdiscrete-time dynamical
system

whereAt is the sampling time. This single-integrator modkelj will be used to introduce
the works of Kim and Mesbahi2006 Boyd, 2006 Derenick et al.2009 which enable
us to elaborate our contributions in subsequent sectiomstewve consider more complex
agent dynamics.

Graph-theoretic notions are used to model the network.zl{e} be the stacked vector
containing the positions of the agents, i.e(k) = (] (k),...,z4(k))". The sety
contains the indices of the mobile agents (nodes), withicality N = |V|. The setf
indicates the set of communication links. The gr&pls then expressed & = (V, &)
and it is assumed undirected. Let the agent clocks be synidedy and assume perfect
communication (no delays or packet losses). The agentswhiith agent communicates
are called neighbors and are contained in the\§etNote that agent is not included in
the set\;. We defineN;" = A; U {i} andN; = |N;"|. Define the Laplacian matrik
associated witl§ via its entrie§L];; as

0 (i,9) ¢ €
[L]ij (k) = —wij(k)  (4,]) €Ei# ] (4.2)
Ywalk) i=j
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p P
dgj(k)l = ||z (k) — scf(k)H2

Figure 4.1: Weighting functiory., (-) for modeling connectivity between two agents
1,]- If d?j (k) < p1 thenwij =1, while if d?] (k/’) > p2 thenwij =0.

The weight9) < w;;(k) < 1 are assumed to depend on the squared Euclidean distance of
x; (k) andz; (k) defined as

d2(k) = fa(zi(k),z;(k)) = ||zi(k) — z;(k)||? (4.3)

and
wij (k) = fu(llzi(k) — 2;(k)[]?) (4.4)

where f,, : R, — [0,1] is a smooth nonlinear function with compact supgorthe
weights model the connection strength between two agertis. closer two agents are,
the closer to one is the weight, representing an increadeeicammunication “quality”.
For simulation purposes we use the function qualitativepresented in Figur 1, which

is one when the squared distance is less {haand it is zero when the squared distance
is greater tham,. For a detailed discussion on the choicefgfthe reader is referred to
(Kim and Mesbahi2006. As a direct consequence of the above definitions, theemntri
of the Laplacian matrix, depend on the state of the agents, making it state-dependent
which we will denote byl (z(k)). By construction, the Laplacian is a positive semidefinite
matrix, with real eigenvalues ordered in a crescentwaf as A\; < Ay < -+ < Ap.
The smallest eigenvalue is alwagsand its associated eigenvectorliy. The second
smallest eigenvalue of the Laplacian is often referred tb@aalgebraic connectivity of the
graph and indicated as(G), or A2 (L) (In the following, we will write Az (x(k)) denoting
that also the algebraic connectivity depends on the staiteg.algebraic connectivity is a
“measure” of connectivity since

e a zero value for the algebraic connectivity, iJ (L) = 0, implies that the graph is
not connected,;

o if X\a2(L) > X2(L) thenL has more links thatl’, or the links have more weight
(loosely speakingl. is better connected thal).

For the reason of increasing the connectivity of the comuation graph among the mov-
ing agents, we are interested in maximizing the algebraimectivity. We will achieve

1Functions with compact support & are those with support that is a compact subs&t of
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this by by controlling the state of the agents, i.e., movimgn to appropriate positions.
This goal is formulated as the following time-invariantiogization problem:

Problem 4.1 Algebraic Connectivity Maximization

P (Ao(x), p1) : maximize A2(x) (4.5a)

x

subject to fa(zi,zj) > p1, V(i j)€E (4.5b)

The optimal decision variables are the final robot locatisnsHere the constraint on
fa(zi, z;) prevents the agents from getting too close to each other msures that the
trivial solution in which all the agents converge to one painnot part of the feasible
solution set 0f4.89.

4.2.2 Centralized Approach

First of all, we rewrite the problem4(59 in terms of matrix inequalities. We use the
following lemma.

Lemma 4.1 For any two scalars\ > X\, > 0, the constraint
A2 (L) > Aa, (4.6)
can be formulated with the equivalent Matrix Inequality
L+ (A\/N)1y1y = doln. (4.7)
Proof. By construction, the Laplacian matrixhas as eigenvecte; = 1. All the other
eigenvectorsg;, are orthogonal td 7, meaningl \e; = 0, fori = 2,..., N. Thisimplies

that
(L+ (A/N)1n1y)e; = Le; = \e;, fori=2,...,N

and thereforel. + (A\/N)1y1} has the same eigenvalues/eigenvectord, dbr i =
2,...,N. The remaining eigenvalue is associated withé¢heigenvector:

(L+ (A\/N)1yly)er =Lly + (M\)1ly = Ay
and its value is\. As a result, the eigenvalues bf+ (\/N)1x1} are
A A2(L), A3(L), ..., An(L).

Since we have already that> X (by assumption), and>(L) < A3(L) < ... An(L),
the constraint4.7) imposes thaho (L) > A2 and thus it is equivalent tat(6). O

Since for the specified weighted Laplaciafr) the maximum value fohs is N — 1 (de
Abreu, 2007), we can chose = N in (4.7) and rewrite problem4.53 in the equivalent
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formulation:
P (L(x),p1): maximize ~ (4.8a)
T,y
subject to ~v>0 (4.8b)
L(z) + 151% = 41y (4.8¢)
fd($i7‘rj) > P1, V(’L,j) €& (48d)

Problem 4.89 is non-convex but it is rather standard to obtain a timesvay convex
approximation by using first-order Taylor expansiokSir{ and Mesbahi2006 Derenick
et al, 2009. Define

od?, Ad2.
= 2wl = - b , @9)

7 odz; Ox; odz. Ox;

J z;(k),z; (k) 7 zi(k),z;(k)

o = % =— % (4.10)

Tilws (k)2 (k) Tl (k) (k)

then we can write the approximations
wij(k + 1) = wi; (k) + ¢ " (3w (k + 1) — dz;(k + 1)) (4.11)
T

d7;(k+1) = dZ; (k) + ¢, (0wi(k + 1) — dz;(k + 1)) (4.12)

whered represents the difference operator, d.e;(k+1) = z;(k+1)—z; (k). The symbol
A will be employed to define the linearized entities; henceethiey [AL];; (x(k + 1)) of
the Laplaciam\L(x(k + 1)) will be

0 (4,7) ¢ €
—wij(k) = ¢ T (Bai(k+ 1) = x;(k+ 1)) (i,j) €Ei#j
>oizi wa(k +1) =]
while

Afal@i(l +1), 250k + 1)) = d% (k) + ¢, Gk +1) — 65 (k +1))  (4.14)

This allows us to consider the maximization of the algebcaitnectivity of L as the fol-
lowing time-varying convex optimization probleri(n and Mesbahi2006 Boyd, 2006
Derenick et al.2009:
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AP (L(z(k)),z(k),Sarg,) : maximize y(k+ 1) (4.15a)
o (k+1),7(k+1)

subject to

: y(k+1)>0
s { AL(x(k+1)) + 1515 = y(k + 1) Iy (4.15b)
Qo1 Afalzi(k+1),2;(k+1)) > p1,
: V(i,j) €€
AQQ . QQ.Q : ||ZEZ(,I{} —+ 1) — :rz(k)” S UlnaxAt (4150)
i=1,...,N

whereSa o, = {p1, vmax} represents the parameter set that characterizes the smt-of c
straintsA Q», and it is used to highlight the dependence of the problenmerighysical”
limitation of the application scenario (i.e., in this catbe mutual distancg, and the max-
imum allowed velocityv,,.x). It will be shown later how this parameter set will change in
the different formulations of the problem.

In contrast to the original hon-convex problem&3, the optimization problem4(1539

is solvedrepeatedlyat each discrete time stépon-line. In this sense4(153 is the k-th
problem of a sequence of convex SDP problems, and therdigapproach could be
regarded as sequential convex programming. Note that thievesrd maximal algebraic
connectivityy depends ot and thus we use(k). In this sense the iterative scheme for
updatingy is the repeated solution of the optimization problem itS@lé remark that as a
consequence of using this sequence of convex programs gandansequence of the non-
convex nature of the original problem), although we aim atéasing the cost function at
each stegk, we might converge to a local minimum of the original probléh8g and a
strong dependence on the initial configuration of the agemtsbe expected. Despite these
drawbacks, convergence has been proveKim(@nd Mesbahi2006, where the authors
have also shown that this formulation does indeed lead tsfaetiory local optimal final
configurations with a clear increase in the algebraic cotivigc

Remark 4.1 The reader is referred to Sectigh5 for further considerations on the adopted lin-
earization procedure and its possible improvements.

If we assume that the initial position$0) form a connected graph and the mutual distance
between the agents is greater thgm, i.e., we assume initial feasibility for the problem,
we can easily prove that the optimization probleshd 53 will remain feasible for all the
subsequent time stefs> 0 (in fact one can always seleetk) = xz(k + 1) to obtain a
feasible solution) and their solution sequence monotdigisecreases the algebraic con-
nectivity, (Kim and Mesbahi2006. The property of remaining feasible for &lis related
to persistentfeasibility (also known asecursivefeasibility), which is a well-known and
fundamental concept in the optimization-based contrefditure Borrelli et al, 2011). In
particular, persistent feasibility ensures that, for &nif the k-th convex problem4.1539

is feasible then thék + 1)-st problem will be feasible. This, in addition to initialdeibil-
ity (i.e., feasibility atk = 0), guarantees that the overall sequential optimizatioeiszh
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is feasible for allt > 0. It has to be noted that persistent feasibility ensures trdy
the solution set of each proble.159 is non-empty, while any improvement in the cost
function should be proven separately. However, persiseasibility is needed in the first
place to justify the overall optimization scheme in pragtic

4.2.3 Extension of the Centralized Approach

As our first contribution of the chapter, we extend the probld.159 in order to al-
low a more realistic dynamical model for the agents. In tHefang, the state of the
agents is augmented to include not only their position t=d #ieir velocity. Lek;(7) =
(z;(7) T, v:(7)T) T be the state of agentat the discrete time. We note that the sampling
periods belonging te andk may differ, meaning that the optimizatios.( 539 could be
run at a slower rate than the system dynamics. Let the agawésthe following second
order discrete-time LTI dynamics:

ﬂCi(T + 1) _ 13 Ali ﬂCi(T) 03 .
( vi(T + 1) ) - ( 05 Ao ) ( vi (1) + by ls u; (7) (4.16)
whereAy; € R, Ay; € R¥*?, by; € Ro, andu,(r) € R? is the control input. Assume:

Assumption 4.1 The matrixAy; is full rank Vi.

Assumption 4.2 The control input for each agent at each discrete time stepmstrained
in the closed polytopic sét;:

ui(T) € Uy, Us = {ui(1) € R¥| Hyui (1) < hi},03 € U (4.17)

described via the matri¥f; and the vectoh;.

Assumption4.1is meant to ensure the one-step controllability of the dyinahsystem
described in Eq.4.18. Analogously tovm,ax in problem @.159, Assumptiord.2 limits
the control input to account for the physical limitationstioé agents, and it is a standard
formulation of actuator limitations in the optimizatiomded control community.

The state space system ih.16) can model agents for which the acceleration does not
depend on the position and for which zero velocity and acagé input ¢;(7) = 0 and

u; (1) = 0) impliesx; (T + 1) = x;(7). Typically, this class of systems can represent
different types of physical agents ranging from fully a¢agmobile robots to underwater
vehicles (see Remawk?2). The choiced;; = IsAt, As; = I3, by; = At yields a double
integrator with sampling periodt. The reason for the choice o4.(L6) is to consider
the simplest model that is capable of showing how to handiemnhin difficulties when
extending the optimization problem.(53 to general LTI models. In particular, the key
issues are persistent feasibility and collision avoidarioeorder to guarantee persistent
feasibility we show how to ensure that(k + 1) = (z (k),04)" is a feasible state
for all the agents recalling that the feasibility of the damisolutionz;(k + 1) = x;(k)

is a sufficient condition for4.159 to be persistently feasible. The collision avoidance
issue is due to the fact that the constraint faiiz;(k), z;(k)) is enforced only at each
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time stepk, when the optimization problem is solved, but not for everyhich might
be a higher rate implementation of the dynamical model. imrdspect we show how to
ensure thafy(z;(7), z; (7)) > 0 for everyr. We will show that when persistent feasibility
and collision avoidance are handled correctly, the prohlérh59 can be extended to
dynamical models of the fornd(16). In Sectior4.5we discus how to possibly cope with
these two aspects for an even broader class of dynamicahsyst

Remark 4.2 Examples of physical agents that can be represente#kyf are fully actuated
(omni-directional) mobile robots or underwater vehicles.

Consider the first case. Let € R? be the position and € R? the velocity. Let: € R? be the
velocity control applied at the stepas

v(t+ 1) =v(r) + u(r).

This represents a step in the velocity. The dynamical sysféhe robot can be modeled é4.16
with A1; = IoAt, As; = 1o, b1, = 1.

A similar model could hold also for an underwater vehicleéf @onsider discrete step in the velocity
along three different axes.

Persistent Feasibility

The first step to guarantee persistent feasibility is to enthat at each time stepwe
can affect the position of the agents via the control inputisTs not trivial because the
positionz; (T + 1) cannot be controlled in one step by(7). However, we can overcome
this issue by solving the optimization problem at a slow&s than the implementation of
the control input, e.g., every odd when we determine both;(7) andu; (7 + 1). In this
case the dynamical systedh.16) can be lifted as used in the optimization problem:

()= (o ™) (50
(e 2 ) (LD, @

where, we let: = 7/2, and for integek’s, we define the lifted variableg’ (k) = z;(7),
vE (k) = v;(7), the lifted statex” (k) = (xX(k) T, v (k) "), and the lifted control input

uf (k) = (ui(r) ", u;(r+1) ") 7. For the sake of simplicity, from now on, we will omit the

superscripf. with the idea that if we use the indéwe are referring to the lifted variables.
With this in mind, we can rewrite the syster {8 using the short-hand notation

We note that the lifted system.(L9 is controllable to an arbitrary state in one step from
to k + 1. However, the input is constrained to liewn(k) € U; (Assumptiord.2), where

U; =U; x U;, i.e.:
u={u e |, Jums () ) boeu @20
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Therefore, the next step is to find a feasible control inplteva; (k) € U; for which
D;(x;(k),u;(k)) = (x;(k)T,04 ). For this reason define the sEt as

Fi = {x(k) € R%| 3u;(k) € U; such that:
D;(xi(k),u;(k)) = (zi(k),04)", Vk e Nt} (4.21)

For the system4.18 the setF; can be computed as the Cartesian produc#of; and
Foir i€, Fy = Fy i X Fyi, Where:

Foi={n(k) e®*},  and
— Hibyi! (I3 + Asi) . h
( Hib Ay (s +2450) ) RV = gy (4.22)

We note thatz; (k) 7,03 )" € F..

N

Foi= {vi(k) cR?

Remark 4.3 The dynamical syste(d.18, which is the agent representation seen by the optimiza-
tion problem, is controllable in one step by an unconstrding(k). In fact, given an arbitrary state
vectorx;(k + 1) and any initial conditionx; (%), due to the full rank condition od; (Assump-
tion 4.1), one can promptly invert the systé€m18 and obtain the (finite) control vectar; (k).

Collision Avoidance

In order to avoid collisions, a lower bound pnneeds to be determined, which guarantees
that, given the distance boupg:

For eachk and forr = 2k +1, if fa(x] (), 2 (k)) > pr and fa(xf (k+1), zF (k+1)) >
p1 thenfy(z, (1t +1),z;(r+1)) > 0.

The collision-free condition for any coupleandj can be written as
llzi(t +1) —z;(r+1)|| >0 (4.23)
and using the dynamical equatioh 16) we obtain
l|z:(7) — 2;(7) + Anvi(T) — Ayj0i(7)]| > 0. (4.24)

We can employ then the triangle inequality to write

|[2:(1) — 25(7) + Arvi(7) — A1jv(7)]| >
|2 (1) — 2;(7)|| = || Arivi(T) — Az (7)]] > 0. (4.25)

Since||z; (1) — z;(7)|| > /p1 the worst case scenario can be computed by maximizing
the term|| Ay1;v;(7) — A1;v;(7)|| overv; (1) € F,; andv; () € F ;.
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This can be rewritten as a non-convex QP proBland solved for any pairand;. If \/p1
denotes the worst ca$eds;v;(7) — A1;v;(7)|| over all the pairs, then the collision-free
condition @.25 can be expressed as > p;. This is a condition that has to be imposed
when designing the; value in the minimal distance constrai@t ;. In this respect, we
note that the calculations performed to compgijtean be made off-line before running the
optimization algorithm (and therefore even the non-comadure of the problem given the
small-size and the off-line calculations can be handleddatisfactory way in practice).

Centralized Problem Formulation

The optimization problem4(153 for the maximization of the algebraic connectivity can
now be extended for the more general dynamic$) as

AP (AL k), S : imi k41 4.26
(AL(7),x(k),Sang,) x(kﬂ?‘,’é%km),%?ﬂﬂ( +1) (4.26a)

subject to (4.26b)
. v(k+1) >0
A { ALx(k + 1) + 151% = y(k + DIy (4.26¢)
Q2,1 . Afd(xz(k + 1),$j(l€ + 1)) > p1,
V(i j) €E
JANOSS: Qs : Xi(k—f—l) eF;, i=1,....,N (426d)

Qa3: wi(k)el;,, i=1,...,N
Q2,4 : Xz(k+1) :Dz(xl(k),uz(k)), ’L:L,N

where,Sao, = {p1, (414, A2i, b1is Hiy hi)i=1,.. N }. As a solution of 4.26) we find the
optimal control inputay; (k) = (u;(7) ", u;(7 +1)7)T that drive the system¥(16) from
x; (k) tox;(k+1).

We define the concept of feasible state as follows.

Definition 4.1 A statex(k) at timefk is feasible if
() x;(k) € F;, for all agentsi,
(i) AL(x(k)) +1n1) =0,

(iii) d2 (k) > py, forall (i, ) € €.

For the optimization problem4(26), as in Kim and Mesbahi2006, we assume initial
feasibility for the first time instance:

2In order to see this, consider the maximizing| of1;v; (1) — A1;v;(7)||. This is equivalent to maximize
the squared norfAy;v; (1) — A1jv; (7)]]2, which is equivalent to the following non-convex quadrgtiogram

T T T
P vi(T) Aq;Ar —Ay; Ay vi(T)
maximize ( vj(T) ) ( _AEAM AlTjAlj vj(T)
subject to vi(T) € Fo,in v (T) € Foj
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Assumption 4.3 The initial statex(0) is a feasible state.
The following theorem states formally the persistent faiéist property:

Theorem 4.1 (Persistent Feasibilitylf for any discrete timek, x(k) is a feasible state
according to Definitiord.1, then the problenf4.26) will be feasible for the discrete time
k+1.

Proof. Considerx;(k + 1) = (z;(k)",04)" as the solution of the optimizatiod Q6)
at timek + 1. This solution satisfiea\Q;, 921, and Q2 2. Moreover, sincex;(k) €
F; by assumption, there exist control inpuig(k) € U; for all the agents for which
(z;(k)7,04)" = D;(xi(k),u;(k)). Therefore the solutior;(k + 1) satisfiesQ, 3 and
Q5 4 and thus the claim. O

Combining Theorend.1 with Assumption4.3, it follows that the sequence of problems
(4.2¢) is feasible for alk > 0. We note that persistent feasibility (Theordr) is a funda-
mental property to guarantee that the overall optimizagidreme remains feasible, while
we show later (in the distributed case) that the sequencelatiens lead to a monotonic
increase of the cost function.

We recall once again the reasons for the initial choices ef /2 and F;, which should
appear clearer after TheorefriL The fact thatx;(k) € F; guarantees that the solution
x;(k+1) = (z;(k)7,04)7" is feasible in terms of admissible control action, which is a
sufficient condition to guarantee that the optimizatiorigeen @.26) is persistently feasi-
ble. The choicé& = 7/2 ensures thak; is always non-empty.

The optimization procedurel(26) described in this section finds a local optimum of the
connectivity maximization problem in a centralized manmgng linearization. In the next
section, we describe an approach that allows the problera smlved using local compu-
tation and limited communication resources, which inaeeahe flexibility and practical
applicability of the robotic network.

4.2.4 Distributed Solution for the Extended Problem

In the following we present a non-iterative distributedusioin to solve 4.26). By non-
iterative we mean here that we will use only one round of comication/computation
among the different agents per optimization step We note that this is not a trivial
task, since commonly used decomposition methods for opditioin problems (if ap-
plicable, e.g. in De Gennaro and Jadbabak®06) typically require iterative solutions
(many rounds of communication/computation per optim@astepk) which may not be
amenable to fast real-time implementations.

Our solution depends on subproblems that each agent solealtyland whose size can
be decided according to the available resources. This sigdlienced by the notion of
an enlarged neighborhood set, collecting all the agentse/data are available locally at
each time stey. The proposed distributed solution is computed in two pha3ée first

step is to solve a local optimization problem in which thétfast agents (in terms of graph
distance, i.e. minimum number of connecting edges) aret@ned to be stationary, i.e.
xi(k+1) = (z;(k)",04)". This step is similar to a Jacobi-type optimizati@e(tsekas
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and Tsitsiklis 1997), where only certain variables are updated at a time. Thenskstep

is to share the proposed solutions within the enlarged beigtood and combine them
using an agent-dependent positive linear combination. Méthat this sharing/combining
procedure is performed just once for each optimization, stegking the overall scheme
non-iterative in contrast with commonly used consensuserdlgns. The key point in
the proposed distributed solution isjmintly construct the feasible local problems with
modified local constraintandthe positive linear combination of the solutions to preserv
feasibility of the global solution and a monotonically irasing cost function.

Let 7; denote the enlarged neighborhood afonsisting of all the agents whose state is
known by ageni at each sampling timé (either through direct or indirect communica-
tion®). We define this set in a recursive way: J&f' be the standard, first-order neigh-
borhood ofi, i.e. N} = /\/j, then, then;-size enlarged neighborhood ofor n; > 1 is
defined as

Ji=N" = U Njﬂi—l, (4.27)

jeNiTt

in other words, the collection of thé:; — 1)-size enlarged neighborhoods of alle
Ni"i_l. The scalam; > 1 implies bounds on the diameter of the communication graph
composed by the agentsf. We will explain how the choice at; is made by the agents
locally to trade-off computations/communications witlspect to sub-optimality of the

distributed solution.

The cardinality of7; is J;. We call the set of agents belongingid;, the bordering agents
of J; defined as
0 ={jlj € Jij & N7} (4.28)

Denote the graph Laplacian associated with the commuaitgtaph corresponding to the
agents in7; asL; ,,, and the communication link set of; asé&; ,,,. Figure4.2 provides
a graphical illustration of this notation for; = 2. Definex, anduy, as the stacked

Figure 4.2: Notation for the distributed solution in case the size of ¢énéarged
neighborhood for agentis n; = 2. The thick lines represent links between con-
nected agents.

3Which also means that agents share all known states witainrigighborhoods.
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vectors collecting the states and the lifted control ingatsall the agentg belonging to
the enlarged neighborhoodqfi.e.j € J;.

As a first step of the distributed solution, for each aggmne consider local modified
problemsAP; of the form:

AP (ALin,(z7,),x7,(k),Srs..): maximize i(k+1)(4.29a
(ALn(02) %0 (K).Spg,) | maximize (k1) (4.299)

subject to (4.29b)
. vi(k+1)>0
AQu: { ALjp, (xg,(k+1)) + 15,15 = ik + 1)1, (4.29¢)
Qo1 Afalzi(k+ 1),k +1)) > pry,
~ B ~V(’L,j) € 51',717;
ANOL T 92_2 : Xj(k? + 1)~€ .7:]' = .7:]', 1€ J; (429d)
92_3 : U.j(k) S Z/{j, ~j S ._71
Qa4 x;(k+1) =Dj(x;(k),u;(k)), j € T
Qs :xj(k+1) = (;(k)7,0])7, forj € 07; (4.29¢)

where

e the dynamic@j denotes a dynamical system of the same form4ak3( but with
the modified triple(Alj, Agj, blj);

e the constraint/; denotes a constraint of the same forni&sut with the modified
couple(H;, hj);

e the set of the modified parameteids s, = {(prij, Avj, Aoy, brj, Hy, hj)jes}.

For now, the parameters &, 5, . could be thought of as arbitrary. However, we will show
later (Theorend.2) how to construct the modified state matrices and parameter.ss,

of constraint\ Q,; to satisfy the constraints of the original linearized peshl@.26).

The optimal local decision variables (solution 4fP;) will be denoted asy;(k + 1),
xg,(k + 1), anday, (k) respectively. We calk;;(k + 1) the state of agent as com-
puted by agent and we use the same notation fof (k). We note that the optimal local
decision variables 7, (k + 1) anda, (k) are composed ok;; (k + 1) andu;; (k) for
eachj € J;. We emphasize that the extra constrallitis an important requirement to
guarantee feasibility, as will be explained in Theorém We will also require?; = F;
for all the agents as a sufficient condition of persistensifehity.

Consider the set of all agentswhich include agent in their local problemsAP,, i.e.
i € Jp, and denote by7* = {p|i € J,}. Since the enlarged neighborhood sizecould
differ from agent to agent (we remark that we will explairefathow this will be selected
locally by the agents)7* # J;.

As a second step of the distributed solution, we constrigcptsition update based on the
previous solutionx(k) and a positive linear combination of the local position sohs
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Z g, (k) as:

zi(k+1) :Jll(k)-‘r Z sjéc?:ji(k:—i—l), i=1,....,N (4.30)
jeTr

for any user selectedrbitrarys; > 0 and, wherez;;(k + 1) = Z;;(k + 1) — x;(k).
Define

and observe that; is in general not equal to one. Although it is more common ® us
a weighted average of local solutions in consensus-typbl@ms, the linear combina-
tion (4.30 of our approach is crucial for feasibility as shown in Tresod.5. We note
also that, although the scalayr could assume any strictly positive value, i£> 0, it is
advisable to upper limit it ag; < 1 due to the linearization procedure. In fact, bigger

5; would question the validity of the Taylor expansions in thedl problems. We will
assumd) < 5; < 1 inthe rest of the section.

We prove the following lemma regarding the sum of local positsolutions, which is
instrumental for the subsequent theorems.

Lemma 4.2 For arbitrary vectorsg;; € R* where(i, j) are neighbors (i.e.(,j) € &),
and for anyéz,; (k + 1), 0Z,;(k + 1) part of the optimal solutions of the local problems
AP, in (4.29, withp € J;* andp € J;" respectively, the following equality holds:

g | D spdipilk+1) = > 5,08,k +1) | =

peEJ pEJj*

a; Y (Fpi(k+1) =63,k +1)) (4.31)
peJ; NI}

Proof. The first term of the equalityd(31) can be divided into three parts:c 7, N J/,
pEJ Ap ¢ J; andp € J Ap ¢ J;. Since we are interested in the case whand
j are neighbors, we can make the key observations that:

peJiAp¢ T =icdd, (4.32)

peETApE TS =jedd, (4.33)

Consider the first implicatior4(32. If p € J;*, theni andp are separated by at mos
links. Furthermore, ip ¢ J;, thenj andp are separated by at least + 1 links. Since:
and; are neighbors, it follows that the separation betwieandp is exactlyn,, links and
thereforei € 0.7,. The second implication4(33 can be proven by similar arguments.
The two implications4.32-(4.33 allow us to rewrite the first part of the equalit§.81)
as:
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gy Y sp(6Fpi(k 4 1) = 0y (k + 1)+
pPEJ NI}

a; Y. spEu(k+ 1) =g D spdip(k+1)
PETNpE T} PET S NPET

=0 =0

where the last two terms adedue to #.32-(4.33 and the constrain@s of AP, in (4.29),
which requiresdz,;(k + 1) = 0 anddz,;(k + 1) = 0 fori € 9J, andj € 07,
respectively. O

We are ready to construct the parametesgg, - which defines the local set of constraints
A Q2i-

Theorem 4.2 (Local constraints for global feasibilityJaking for eachi, the following
choices:

e the local parameter seh Q,; in (4.29 as
Sng,, = {(Prij, 57 Ay, A, 55015, Hy 85 hy)jegi )

meaning,

and
prij =555 (p1+d3; (k) (555 — 1)) (4.34)

with Sij = Zpeji*mj]‘* Sps

e the positive linear combination of the local optimal cotirgutsa; (k) in (4.29
as

wi(k) = Y syig(k) (4.35)

jeT;
e the positive linear combination of the local optimal vet®s ¢;;(k + 1) in (4.29

as ~
Zjeji* Sj’l)ji(k? +1)

Si

vi(k+1) = (4.36)

ensure that the updated position vectgik + 1), the control vectom(k), and velocity
vectorv(k+1) based or{4.30), (4.35, and(4.36) respectively, satisfy the set of constraints
A Qs of the global problent4.26).

Proof. The local constraints for the subproblesP,, in (4.29) are the following:
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forallpe 7 NJ; :
Qo1 Afalzi(k+1),z(k +1)) =
T T A ~
d2;(k) + (62 pi(k + 1) — 83 (k +1)) > puyj,

(4.37a)

forallp € 77 :
Qs Zpi(k+1)e Fi=F (4.37b)
Qa3 (k) € U (4.37¢)
Q2.4 : )N(pi(k + 1) = ﬁi(xi(k)v ﬁpl(k)) (437d)

The theorem claims that using the specified choiceSigp, , if we combine the local
optimal solutions(x,;(k + 1), ,;(k)) which satisfy the local constraintd.37), using
the positive linear combination4.80), (4.35, and @.36) we will obtain a coupléx(k +
1), u(k)) that satisfies the constraiftQ, of the global problem4.26). This is what we
need to prove.

ConsiderQ, ; in (4.373 and the positive linear combination fatk + 1) in (4.30. By
Lemma4.2

A2 (k) + ¢ " (0wi(k + 1) — 625 (k + 1) =

=&k + Y e sy Sk + 1) — 8k + 1)) >
peJ; NI}

(1= 8i;)d;; (k) + 5i5p15; (4.38)
The global position vectar(k + 1) is required to satisfy the global constraint:
2 (k) + ¢ 0wk + 1) = 6w (k + 1)) > py (4.39)
which can be accomplished by selectjiig; such that:
(1= 5i;)d;; (k) + 5i5p105 = p1 (4.40)
This gives the formula fopy;; in (4.34).

Consider the constraint@, 4 in (4.379 on the agents’ dynamics. For the positive linear
combination 4.30 the combined system dynamics becomes

[ Shomten )& R ) )

PET;
bi; A, 03 R
b As; b ; 4.41
( bliAQi bliIB Z Spupl(k) ( )



82 Chapter 4: Distributed Control

Since the agents have to move according to the dynamicamy@t18 encoded in the
global constrain©Q, 4 of (4.26), the update4.41) and the state equatiod.(8 have to
be the same. It is not difficult to see that this is ensured keyctiviced;; = gi‘lAh-,
Ag; = Aoy, by; = 5;b1;, and the linear combinationd.B5 and @.36) for the local control
inputsty,; (k) and local velocitie,,; (k + 1).

From the linear combination on the contrdl&5) and the global constrair@, 5 in (4.26)
follows the specification for the local constra@t s in (4.29:

U = {0, (k) € R3|Hyty; < 5, hyi} (4.42)

from which (E-, fzi) = (H;, E;Ihi). We recall that the positive linear combination on
the control input 4.35 has been constructed in a way to steer the systed8)(from
the positionz (k) to the updated position(k + 1) in (4.30 while respecting the global

constraintL, 3 in (4.26).

Consider nowQ - in (4.29. We need to prove that if the local optimal stakes(k + 1)
belong to the seF; in (4.29), then the updated stakg(k + 1) constructed via the linear
combinations on positiord(30 and velocity 4.36) belongs to the seF; as expressed in
the global constrain®. - in (4.26). First of all, it is straightforward to see that the local
inequalities
Hiby (I3 + Asy) ~ hi
- ( f{ii)filtzbi(h + 212121') ) Bk 1) < ( hi ) (4.43)

are equivalent to the inequalitie$.22), meaning that by constructiofy = F;. Recall that
the setF; does not constrain the position. Since the updated velogity+ 1) in (4.36)
is obtained by a positive linear combination of lo¢g)(k + 1) then alsov; (k + 1) will
satisfy the inequalitiesi(43, and therefore the updated staig¢k + 1) belongs taF;.

Having ensured that with the choices of Theoréiathe positive linear combinations of
the local solutions satisfy the constraii@s ; — Q- 4 of (4.26), Theorem4.2 is proven.
O

Theoremd.2not only gives a procedure to construct the local conssaiatthat the linear
combination 4.30 satisfies the global constraints, it also establisheskalatween the
local quantities and the global ones. Furthermore, it eesstirat in order to move to the
updated state;(k 4+ 1) each agent can implement the linear combination of thedlifte
control input 4.35 as summarized in Algorithm. 1

4.2.5 Properties of the Distributed Solution

In the previous section we have seen how to construct the ppoalem parameter set
S s,, and positive linear combinations of the local solutionsrtsiee that the combined
solution(x(k + 1), u(k)) satisfies the constraidt O, of the global problem4.153. In
this section we will look at the connectivity constraih®; and at the persistent feasibility
of Algorithm 4.1. In particular we claim that

(C1) The algebraic connectivity of the global linearizeglagianA L(z(k+1)) of (4.153
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Algorithm 4.1 Distributed\» Maximization
1: Input for each agernit x;(k), j € J;

> Available data: Juws fas Tiy, Uslfor 5 € T), (Djlfor j € T, p1, (s;|fori € N)
2: SolveAP; in (4.29 computing(x;; (k + 1), 0ji(k + 1)), j € J;

AP{(AL;n. (x7.),x7 (k),Sx5.): maximize i(k+1
(ALin; (z7,),x7,(k), Spg,,) g, (o ik +1)

subject to

AQl'{ vi(k+1)>0
: ALi,ni (in (k + 1)) + 1.]1:1:1]—; - ’yi(k =+ 1)[]1,
Q21 Afa(zi(k+1),zi(k +1)) > puij,
N _ Y(%]) S gi,ni
NQa; ¢ @22 : Xj(k+1)~€ .7'—3' :fj, jeTi
Q23: uj(k)€U;, FjEIT
Qo4 xj(k+1)=Dj(x;(k),u;(k)), j e T;

Qs :x;(k+1)=(z;(k)7,03)T, forjedd

3: Communicatdi;; (k + 1) among members of;
4: Compute the positive linear combination:

wi(k) = Y s;i(k)

jeTy

5: Implement the control action; (k)

with z(k + 1) computed via4.30 is monotonically increasirfign each iteration,
which implies thate(k + 1) will also satisfyA Q; of the global problem4.153 for
a certain value ofy/(k + 1) > ~(k).

(C2) The distributed optimization problem in Algorithdnl is persistently feasible using
the constructed\ Q,;'s in Theorem#.2

We will prove these claims in two steps: Theordr3 and4.4 establish (C1), by linking

the linear combinatior4( 30 and the algebraic connectivity through the linear depanéde
of the linearized Laplacian on the positionThe constrain®; plays a crucial role here to
ensure the feasibility of the local solutions. Theorémshows that property (C2) holds,
by the use of the relation between local and global feagjtuli Theoremd.2.

First of all consider the linearized Laplaci@nl (x(k + 1)), we recall that its entryi, j)
has the expression

[AL(z(k +1))]i; = —wij(k+ 1) = —w;;(k) — Ciu])-T((S:Ei(k +1) —oz;(k+1)).
For this reason we can rewrite L(z(k + 1)) as a sum

AL(x(k+1)) = AL(6x(k + 1)) + L(z(k)).

4By the term monotonically increasing we mean tha{z(k + 1)) > Az2(x(k)), while we indicate with
strictly monotonically increasing the relation (z(k+1)) > A2(z(k)). Note that in some references alternative
definitions can be found, for example the relatios(z(k + 1)) > A2(x(k)) can be called monotonically non-
decreasing, whilez (z(k + 1)) > A2(x(k)) as monotonically increasing.
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Under the validity of the employed Taylor approximation, agsume that for all practical
situations the value of (z(k)) is equivalent to its linearized approximatianZ (z(k)),
and therefore we can write

AL(x(k+1)) = AL(0z(k + 1)) + AL(xz(k)) = L(z(k + 1)) (4.44)

We will further comment on this approximation in Sectibi.

Consider the local probleAP; in (4.29), and its solution comprised &f; (k + 1) for all
j € Ji. Construct the global vectat?) (k + 1) whose entries are determined based on the
local solution as

#0(k+1)
j(i)(k—i—l): ,
#(k+1)
iijk+1)  ifjeg;

zj(k) otherwise (4.45)

with 7\ (k +1) = {

where we keep those agent positions that have not been aptinfixed, and we up-
date the rest from the solution of the local problem, as incadatype optimization ap-
proach Bertsekas and Tsitsiklid997). We can prove the following theorem.

Theorem 4.3 (C1.a)The positions:() (k + 1) in (4.45 constructed from the solution of
the local problemAP; in (4.29, monotonically increase the algebraic connectivity of the
Laplacian matrix:

AL@ED (k4 1)) = AL(z(k)). (4.46)

Proof. SinceA L depends linearly on the positianby (4.44) we can write
ALED (k4 1)) = AL(6ZD (k4 1)) + AL(z(k)),
thus the relation4.46) can be interpreted as
ALY (k+1)) = 0. (4.47)
We recall that,
First: for (4.49 6z (k + 1) = 0if j ¢ 7.

Second:for the constraintQs in the local problemAP; (4.29, 6:i§.i) (k+1) =0if
j € 0J;.

For these two observationg) L (62 (k + 1))];; # 0 only if (4, ) € &, and therefore
up to a reodering the LaplaciahL 6z (k + 1)) has the form

ALy, (637, (k+1)) |0
0 | 0

>~ 0. (4.48)
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We recall thatz 7, (k + 1) is the optimal decision variable for the position in the loca
optimization problems (and the order of the single elemsmst important).

We can now restatet(47) via (4.48 as
ALy, (027,(k+1)) =0
or
which is true due to the local optimality of the local solutiof AP;. O

Furthermore, we can relate the positiah8 (k + 1) in (4.45 with z;(k + 1) in (4.30,
which is crucial for the proof of the monotonically increagiproperty (C1).

Lemma 4.3 When considering the positioi§) (k + 1) in (4.45 andz;(k + 1) in (4.30
the following equality holds:

N
ALGz(k+1)) =Y s;iALGED (k + 1)) (4.49)

i=1

Proof. Let us consider the entri, j) of the Laplacian&L on both sides of the expres-
sion @.49 (indicated ad¢;;). For the right side@}ght can be expressed as

g;}ght _ C;.‘]’.T Z Sp(53~3pi(k +1) - 55710]-(]{: +1))
peJ; NI}

since the entryi, j) will exist only for the subproblema P, with p € 7;* N J;*. For the
left side,

0o = ¢ T (6xi(k + 1) — dxj(k + 1)) =

c;';,'r ( Z $p0Zp;(k + 1) — Z sp0p; (k + 1))

peJ;” peJ;
The coefficient;lj’.T is non-zero only if(i, j) are neighbors and using Lemm& leads to

ot =gt Z $p(0Fpi(k + 1) — 87,5 (k + 1))
pETNT}

O

Using Theoremt.3and Lemmat.3we can now prove the monotonically increasing prop-
erty of the algebraic connectivity of the global linearidzeaplacianAL(x(k + 1)), for-
mally stated in Theorer.4.

Theorem 4.4 (C1.b)The algebraic connectivity of the global linearized Laj¢ac
AL(xz(k + 1)) is monotonically increasing in each iteration, meaniad. (z(k + 1)) =
AL(x(k)), wherez(k + 1) is computed by the combinati¢.30.
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Proof. Theoren#.3impliesAL(63® (k+1)) > 0 for all i. Thus summing over all agents

leads to
N

> siALGED (k+1)) = 0

=1
Considering the linear combinatian(k + 1) in (4.30), and the associated global vector
x(k + 1), by Lemmad.3it follows that AL(éx(k + 1)) = 0. From the linear dependence
of AL onx (Equation 4.44)),

AL(x(k+1)) = AL(Oz(k + 1)) + AL(xz(k))

and therefore it follows that\L(z(k + 1)) — AL(x(k)) > 0 and the desired property:
AL(x(k 4+ 1)) = AL(x(k)). O
Finally, we can show the persistent feasibility of the dlstted optimization algorithm
presented in Algorithrd. 1

Theorem 4.5 (C2) The distributed optimization algorithm presented in Aigan 4.1is
persistently feasible.

Proof. We have to prove that if, for any discrete timex(k) is a feasible initial state
for the global optimization problemA P (4.26) at the discrete timé (Definition4.1), then
there will be a feasible solution to the distributed optiatian problem in Algorithmi.1.
Such a feasible solution can be thought of as an initial stéte+ 1) for the global opti-
mization problemAP (4.26) at the discrete timé + 1. We prove the existence of such
feasible solution in two steps.

Step 1.Using the assumption thatk) is a feasible initial state for the global optimization
problemAP (4.26) at time stepk, we can show thak(k) is also a feasible initial state
for the local problem&\P; (4.29), which therefore are feasible and deliver local solutions
(%7, (k + 1), (k + 1)) satisfying the constraint& Q;, AQ,;, andQs. This claim
follows from Theorem4.2, in particular from the fact thag;;; < p;. In fact, from the
assumptiors < 1 anddfj(k) > pp (feasibility atk), the relation 4.34) yields p1;; < p1,
and thusx(k) is also a feasible initial state for the local problefoP; (4.29).

Step 2.We can show that after merging/combining the resultinglleclutions(x 7, (k +
1),uz (k + 1)), the final distributed state solutiot{k + 1) will be a feasible initial state
for the global optimization problemyP in (4.26) at the discrete timé& + 1. This second
step follows directly from Theoremh.2and Theorend.4. O

Similarly to Theoremst.2 and 4.4, we note that Theorem.5 holds even if the agents
change the size of their enlarged neighborhapdrom time stepk to & + 1, since the
feasibility of the state in the local problems does not dejgenthe enlarged neighborhood
size of 7;. This fact will be used in the next section to allow adjusting communication
load of each agent and make Algorithirl adaptive.

4.2.6 Adapting the Communication Load

In this section we investigate further the properties ofdistributed solution presented in
Section4.2.4 First we show in Theorem.6 that if all-to-all communication is allowed
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then the distributed solution of Algorithd 1 is equivalent to the centralized approach
in (4.26). Then we prove in Theorer7 that starting from the same state vectdk), if
we run Algorithm4.1with different enlarged neighborhood sizes, the solutiat telivers

a higher algebraic connectivity at time step+ 1 is the one with a larger neighborhood
sizen. This last fact enables us to characterize a local relatibeaptimality measure
with respect to an enlarged neighborhood size.

Theorem 4.6 (Equivalence)he distributed solution of Algoritheh1is equivalent to the
centralized one 0f4.26), if all-to-all communication is allowed (meaning = N, Vi,
and thus there are no bordering agents) and;if= 1/N, Vi, is chosen as weight in the
positive linear combinations of the local states and ingdt80), (4.36), and(4.35).

Proof. Considern, = N, 8J; = 0 for all the agents, and the choieg = 1/N, Vi.
We haves; = 1and}_ . ;. ;- s, = 1. Therefore, as a consequence of the choices of

Theoremd.2, AQy; = AQ,. Furthermore, all the constructed local solutiaf@ (k + 1)

in (4.45 are the same and they are equivalent to the solution of thigatized problem
x(k + 1) in (4.26). Given the specified selection sf, also the linear combinatiod 30

is equivalent to:(¥) (k) and therefore the distributed position solution delivelbgdilgo-
rithm 4.1is equivalent to the centralized one df26). Since the same arguments hold for
the control inputs and velocities the claim is proven. O

We define the global position vector obtained using an eathregighborhood size; in
the local problemA\P; (4.29 as follows.

Definition 4.2 The vectorz(® (k + 1)|nv is the global position vector constructed from
the local solutions as if4.45) using an enlarged neighborhood sizgin the local problem
AP; (4.29.

Furthermore, consider each of the local soluti&gs(k + 1), which are computed using
different enlarged neighborhood sizes . . ., n in the local problem&\P; (4.29, with
i=1,...,N.Letn = (ng,...,ny). The global solution using the local;, (k + 1) can
be redefined as follows, highlighting the dependence ontibe&e ofn.

Definition 4.3 The vectorz(k + 1)|,, with n € NV, is the global solution of Algo-
rithm 4.1at stepk + 1, for the choicen = (n1,...,nn).

Using the above definitions, we can prove the following teeoabout the effect of an
increased neighborhood size on the resulting algebraicemivity.

Theorem 4.7 If n; > n, element-wise, then the algebraic connectivith\df (:z:(k + 1)|n2)
is greater than or equal to the one 6fL (z(k + 1)|,,, ), implying AL (z(k 4+ 1)) =
AL (z(k + 1)|n1).

5Meaning that the two solutions (centralized and distridytae the same.



88 Chapter 4: Distributed Control

Proof. By optimality and due to the linearity df onz (Eq. 4.44), for eachi we can state

Multiplying by s; and summing ovet leads to

N
) =Y siAL (5x(i)(k +1)

i=1

AL (&c(i)(kz +1) ) = AL (5x<i>(k +1)

N .
Y siAL (&c(”(k +1)
i=1

nl,i)

By Lemma4.3the claim follows. O

We note that Theorerh.7 holds fromk to k£ + 1. Due to the non-linear/non-convex nature
of the original problem4.89, this result does not hold in general froimto k£ + 2 or
beyond, as we will show in the simulation experiments of bact.2.7.

Theorem4.7 is instrumental to construct a measure that can be used tdediecally
on-line whether to increase or decrease the sizef the enlarged neighborhood. This
measure can be used to adaptto influence the trade-off between the increase of the
algebraic connectivity or the reduction of the communa@aitost. For this purpose, we
define two local relative sub-optimality measures with eg$po an enlarged neighborhood
of larger size as

A2 (ALig1 (29 (k+ 1))

F=1-
’ A2 (AL (20 (k 4 1)

717:+1))

. Ao (ALin, (2D (k+1)[, )
e, =1— - .
’ )‘Q(ALLNZ(‘T(”U{;—F 1)’711))

which determine the sub-optimality of the local solutioAstf) with n; + 1 andn; — 1
with respect to the one obtained with. In particular,e;” measures the gain, in terms of
local algebraic connectivity, one would have by increasireggenlarged neighborhood size
fromn; ton; + 1, while e; measures the loss of local algebraic connectivity goingfro
ni ton; — 1. (We note that botk;" ande; are non-negative due to Theordn?).

Given specific lower/upper thresholds faf ande; the agents can decide locally to in-
crease or decreasg at the successive time stéptrading off increased communication
efforts (for largern;) to smaller local algebraic connectivity increases (foaber n;),
making Algorithm4.1 adaptive. We note that although these sub-optimality nreasare
local, changing; locally by each agent has an effect on the global solutiofiegtriated
by the relation4.63 in Lemma4.3. We note also that in order to compufe ande; it is
necessary to solve three optimization problems of the k2 for eachi. Since this can
be computationally expensive, the agents can decide tondieiee;” ande; only once in

a given number of discrete time steps.

Remark 4.4 We remark that Theorem.7 as well as the other lemmas and theorems are valid
under the original assumption that the agents are perfesthychronized. Future research directions
encompass the possible asynchronism in the agents’ clocks.
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Figure 4.3: Polytopic constraint for.;. The shaded region represents thelgett
R2.

4.2.7 Simulation Results

In this section, we present numerical simulation resuliustrate how the proposed dis-
tributed algorithm performs with respect to the centraligeheme. We use a benchmark
problem motivated byKim and Mesbahi2006. Our scenario consider$ = 10 agents
moving on a 2D plane initially placed close to the horizoatdas and forming a connected
graph. The initial position vector is; (0) = [—6.75 + 1.5(i — 1), y;] |, wherey, is drawn
from a Gaussian distribution, with me@mand standard deviatian= 0.1. Randomness is
added to test the algorithm’s sensitivity to differentimitonditions (due to the sequential
convex programming approach). We consider the triples, As;, b1;) to be all equal to
(I2At/2,0.7515, I At/2) with At = 1, while all theu;’s are constrained in the polytopic
region of Figuret.3.

The other simulation parameters include the weighting tionof Figured.1, p; = 0.75,
p2 = 3 and final timely = 300.

In Figures4.4-4.5, an example of the trajectories using the centralized aadiigtributed
solutions are depicted (all starting from the same init@tfiguration). In the adaptive
case, we start with, = 2 for all agents and at evefyth discrete time step we compute
the sub-optimality measures. If the gain in increasing thiarged neighborhood size
is high enough, i.e.¢ > 0.05, we increaser;, while if this gain is not high enough,
i.e., el < 0.05, and the losses in decreasing the neighborhood size aremobtd, i.e.,

e; < 0.01, we decrease; to reduce the communication and computation costs.

(2

Figure 4.4: Centralized solution: the initial positions are marked lwiilack dots.
The final positions are marked with circles. The bold lingzesent the final com-
munication graph and the thin lines the agent trajectories.
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n; =1,k = 300 ni =2, k = 300

2 2

Ol 08P OSSOSO 9 Ofp—o—e To——
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ni = 3, k = 300 Adaptive,n; (0) = 2, k = 300
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0 fo—&—gc~® o9 Ofe g9

Figure 4.5: Simulation results of the distributed approach for varidosal neigh-
borhood sizes:; (same for all the agents except in the adaptive case). Thialini
positions are marked with black dots. The final positionsrasgked with circles.
The bold lines represent the final communication graph aedhin lines the agent
trajectories. In the adaptive case, we start with= 2 for all agents and at every
5-th discrete time step we compute the sub-optimality measures.1f> 0.05 we
increasen;, if ej < 0.05ande; < 0.01 we decrease,;.

Figure4.6 shows, for the same simulation, the algebraic connectastg function of the
sampling timek, and clearly illustrates the nonlinear/non-convex natfrthe problem.
In particular,

e Distributed and centralized solutions are based on difteagents’ trajectories and
therefore their final achieved algebraic connectivitiesraot strictly related. It may
happen, as in Figu.6, that the distributed approximation leads to a better fiaal
or the contrary may happen (as foy = 1).

e The distributed solution converges slower than the cané@bne to the final config-
uration. This was to be expected since the centralizedisalbas global knowledge
about the robotic network. We recall that this final configiarais in general only a
local maximum for the algebraic connectivity.

We perform50 simulation runs varying the initial configuration of the agee For each
run, we compute the centralized and the distributed salatand we compare their final
connectivity, \5e™" and \$it*, respectively. We report the results in Tadlé. For better
comparison, we report that in the adaptive case- 2.2 on average, with a maximum of
n; = 5. We can observe that

o Different choices of the local neighborhood sizgsaffect the final achieved,. In
particular, for the choice,; = 1, the agents perform significantly worse than for
othern;.
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Figure 4.6: Algebraic connectivity as a function of tinkefor both the centralized
and the distributed solutions of Figufe4 and4.5.

e Using the adaptive case, the fingl is comparable with the centralized solution in
most of the simulations (or even better, due to the nonlinature of the problem).
This is an important point, since the adaptive case use argad neighborhood
size ofn; = 2.2 (on average) and still obtains performances close or bisterthe
fixed choicen; = 3.

To further assess the proposed distributed algorithm, wieidie in Tabled.1 simulation
results forN € {20,40} robots starting from a feasible random configuration (nat ne
essarily on a line) and using the adaptive algorithm witt0) = 2. Each of these cases
has been rul0 times. We can observe that both in the = 20 case (where the aver-
agen; is 2.7) and in theN = 40 case (average; = 2.6), the results are in line with
the conclusions we have drawn for the caséVo= 10. In addition, an example of the
trajectories and algebraic connectivity using the ceizeedl and the distributed solutions
is also depicted in Figuré.7 and4.8to show the very similar final configuration. From
these results one could conjecture both the scalabilitylgbthm 4.1 (for the adaptive
case) and its increased performances dealing with larderags

In particular, while the number of agents passes ftém= 10 to N = 40, the averaged
size of the enlarged neighborhood stays rather the samalsmthe performance in term
of final \2). This means that the computational and communicationtsffor the single
agent stay the same (per step Thus, the gain of the distributed solution with respect to
the centralized solution, in terms of computations and comioations, increases.

Another important consideration could be that for an insegenumber of agents, the time
to converge to the final configuration is higher than for a lomenber of agents. This im-
plies that theotal communication/computation increases with the number efitay How-
ever, from Figurel.6and4.7we expect that the ratimtal communication/computation for
the distributed case and the centralized one stays appatedyrthe same when increasing
the number of agents.
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N =10 N=20 | N=40
distr

Rafiof2 | = = = 3 3 3
2 = = =
Il Il Il = = =

| I I
[\] [\ [\

(0.1 —0.3] 50 26 0 0 0 0
(0.3 0.8 0 0 5 4 3 3
(0.8 — 1.()] 0 12 22 21 21 24
(1.0 — 1.1] 0 12 23 25 26 23

Table 4.1: Ratio between the final connectivity of the distributed sotuand the
centralized one for thé0 simulation runs. The adaptive case is indicated with
n;(0). The casesV € {20,40} correspond to a random feasible initial configura-

tion (not necessarily a line).
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Figure 4.7: Algebraic connectivity as a function of tinkefor both the centralized

and the distributed solutions of Figu#e8.
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Centralized approximatior, = 360, A2 = 0.3815
0 T T T T T ® T
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Figure 4.8: Simulation results of the centralized and distributed aygmwh (adaptive
case). The initial positions are marked with black dots. Tihal positions are
marked with circles. The bold lines represent the final comination graph and
the thin lines the agent trajectories.
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4.3 Multi-Target Tracking

In this section we extend the proposed distributed soluiirthe maximization of the
algebraic connectivity of the communication graph of a grofimoving robots (Algo-
rithm 4.1), to be able to tackle a multi-target tracking problem. Imtigalar we will
formulate the problem as the joint optimization of the cartivty among the agents and
the number of targets in view.

We remark that in this section we will refer to target trackas the problem of positioning
the robots in order to ensure that the targets are in thetilmtgange of the robots’ sensors.
Sometimes we will denote this detection range as sensirngeraor visual range. We
remark that the robots are not estimating the positionsaofatgets, but these are supposed
to be known once the targets are in the detection range.

The works of Grocholsky et al.2003 Spletzer and Tayler2003 Chung et al. 2004
Martinez and Bullp200§ Olfati-Saber 2007h Simonetto et aJ.2008 Zhou and Roume-
liotis, 2008 provide a comprehensive overview of the multi-targetknag problem. Typ-
ical approaches consider a cost function based on the Hifloemation Matrix in order to
determine robot movements that lead to an increase in thet&wisibility. However, even
for a single target, the resulting optimization problemasiinear and NP-hardzhou and
Roumeliotis2008. As a result, several alternative formulations relyingotential fields,
gradient-descent, Monte Carlo methods, and linear appratibns have been proposed,
by sacrificing robot connectivity / target visibility guartees, generality of the framework,
or real-time applicability. Recently, an approximate foitation of the problem has been
suggested using Semi-Definite Programmingienick et al.2009 2010, which is based
on the tools of Kim and Mesbahi2006 Boyd, 2006. Contrary to the aforementioned
literature, this framework allows both the connectivitytioé robotic network and the vis-
ibility of the targets to be consideresimultaneouslyin the same optimization problem.
This is also the framework we will use in proposing our digited solution.

4.3.1 Problem Formulation

We consider a group d¥/ moving targets, in addition to th¥ mobile agents. We denote
with ¢ the index of the target. We consider both the agents and tgettato live on a
two-dimensional plane, while for simplicity of expositioin this section as inKim and
Mesbahj 2006 Derenick et al. 2009, we assume discrete-time agent dynamics of the
form

wherev; (k) is the velocity control input andkt the sampling time. We assume

||vl(k)|| < Umax,i-

Let x(k) € R2Y be the collection of the agents’ positions, i.e(k) = (z] (k),...,
x4 (k)" and letz,(k) € R? be the position of the-th target at timek, while z(k) =
(2 (k),...,zi;(k))" defines the collection of the targets’ positions. We assuratthe
agents know their own position and the position of the targie¢y can detect, and that
they have computation and communication capability ondhodke assume the targets can
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be represented as discrete-time dynamical systems
zg(k + 1) = z4(k) + wq(k)At, g=1,...,.M (4.51)

wherew, (k) € R? is a bounded input term, i.gw, (k)|| < Wmax . The set of reachable
positionsZ,(k) at timek, is the disc centered at the previous known positigft — 1)
with radiusw,.x o At. We make the following assumption:

Assumption 4.4 (Slow targets)he maximum target velocity is less than the agents’ max-
imum velocity, i.e.Wmax,q < Umax,: fOr all pairs (g, 7).

This assumption has the scope to limit the targets’ velpttitys it has the scope to elimi-
nate situations in which the agents would not possibly tthekn.

We model the communication graph among the agéniis the same way as done in
Section4.2, as well as the neighborhood séts andj\/f. We define the collection of
agents that are within their detection range of targas R,°. These are considered as
the neighboring agents of targetThe cardinality ofR,, denoted a$R,| expresses how
many agents can detect a particular target. We introdudeHtiog/ing assumptions:

Assumption 4.5 (Initial feasibility) At the initial time, i.e., ak = 0, the communication
graphg is connected and each targets detected by at least an agent, iJ&,,| > 0 for
all q.

Assumption 4.6 (Well-posednesgt any timek > 0, there exist agent positiongk+1),
independent of (k), which guarantee that the communication graptemains connected
and|R,| > 0 for each targey.

This last assumption ensures that the problem is well-pdsedit does not guarantee
feasibility at each time step. In fact(k + 1) depends on:(k) via the dynamical equa-
tion (4.50), therefore the:(k + 1) provided by the assumption could be unreachable, given
the current position: (k). In practice, Assumptiof.6requires that the targets do not move
arbitrarily far away from each other compromising the carteéness of the communica-
tion graph.

We use the weight$ < v,; < 1 to model the link between targeand agent, if they fall
within the detection range (in a similar way as did for the laafan of the communication
graph). The weights,; are also assumed to depend on the physical distance betheen t
agent and target according to

vai(k) = fvllzg(k) — z: (k) (4.52)

wherefy : Ry — [0, 1] is a smooth nonlinear function with compact support. As lfier t
case of communication weights, we assume that

Fo(llzq(k) —ai(B)II?) = 1, for[|zq(k) — zi(R)I|* < prv
Fo([|zq (k) — 2i(R)I1?) 0, for ||zq(k) — zi(K)|* > p2.v,

8Formally we should writéR 4 (k), but we drop the dependency &rin order to simplify the notation.
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weights
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Figure 4.9: The weighting functions.

wherep; ,, andp,  are positive scalars.

In Figure4.9we report a qualitative representation of the functfpras well as the weight-
ing function for the communication weighfs, as expressed i (4).

We assume:

Assumption 4.7 Each agent that can detect a target is assumed to be able tmoomate
with all other agents that detect the same target, 2gs,,, < po2.

This assumption will be instrumental for the proposed digted solution in Section.3.3

To characterize how a target is connected to agents we inteoithe sum of the detection
weightsv, (k) of a targety as

vo(k) = Y vailk) = D fvlllzq(k) — xa(k)|), (4.53)

i€R, iE€Ry

and we note that if , (k) > n then|R,| > n, and therefore the targets seen by at least
n agents at the discrete time step

We are interested in maximizing visibility of the targetsd maximizing communication
connectivity among the agents. This can be posed as then@irimization of the alge-
braic connectivity of the communication graphs and the sohtise detection weights by
moving the agents into appropriate positions. This goabmaformulated in each discrete
time stepk as the following optimization problempPeérenick et al. 2009 Boyd et al,
2009.
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Problem 4.2 Multi-Target Tracking Problem

M
) TR iy DD Bk + D) (a4
subject to
vk+1)>0,v4(k+1)>0 g=1,.... M (4.54b)
Lx(k+ 1)) + 1515 = y(k + 1)Ix (4.54c)
falzi(k+1),2;(k+1)) > p1, V(i,j) €& (4.54d)
> Svlllzg(k+1) = 2i(k + DIF) > vk +1), (4.54¢)
i€Rq
forall zo(k +1) € Z4(k+1), ¢=1,...,M

[|lzi(k 4+ 1) — 2i(k)|| < vmaxi At i=1,...,N (4.54f)

The constraints of problerd (54) represent

e The connectivity of the communication graph (constradn549),
¢ A minimal distance constraint, as id.8d), (constraint4.549),

e The target detection constraint for all future reachabktfoms of the targets (con-
straint @.549),

e The physical limitations of the agents’ dynamics (constrét.541).

The decision variables of problem.64) are the agents’ locations and the values @f +
1), v4(k + 1)’s. Here the constants > 0 andjs, > 0, ¢ = 1,..., M model the scaled
relative weights on the maximization goals. When one select 0, as in Derenick
et al, 2009, the problem becomes the maximization of detection cativigcwith the
targets while guaranteeing that the communication grapiaies connected.

Remark 4.5 We remark that if one substitutes the strict constraints:
L(z(k+1)) + 1n1x = y(k + 1) In
with the non-strictly positive ones:
Lz(k+ 1)) + 1n1% = y(k+ DIy

the problem(4.54 could represent situations in which agents are allowed tonfaisconnected
groups to follow different targets. In fact, if we allow thigebraic connectivity to become zero, i.e.,
A2(L) = 0, by the non-strict inequality, we implicitly allow the giapo become disconnected in
order to better track the targets.

However, it is important to notice that extra care has to beéipuhe case of non-strict inequalities
in the numerical method used. See for exampley/@ et al, 1994 for some details.
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4.3.2 Centralized Approach
Convex Approximation

Problem ¢.54) is non-convex given that we are optimizing over the posgio and the
entries of the Laplacians are nonlinear functionscof We employ the same standard
convex approximation to this problem formulation, as don8éctiord.2, and we define

Dz + 1), 0+ 1) i= >0 (vailk) + e (il +1) = 624 (k +1)))
i€R,
where

o Ofv Ody

% 2
a (’)d” (’)xl

dfy OdZ;

- 0d2, 0z

(4.55)

z;(k),2q (k) ;i (k),2q(k)

This allows us to formulate the following convex approxifoatof the problem4.54):

AP(IL‘(IC + 1)5 Z(k + 1)7/)1; vmax,i) :

M

z(k+1),w(kff)lifll(rl?gﬁ.,,w(k+1)} ay(k+1) + q; Bava(k +1) (4.562)
subject to
vk+1)>0,v,(k+1)>0 g=1,....M (4.56b)
AL(x(k+ 1)) + 1515 = v(k+ 1)Ix (4.56¢)
Afa(xi(k+1),2;(k+1)) > p1 V(i,j) €& (4.56d)
Avg(zg(k+1),2(k + 1)) > vy(k+1) g=1,...,M (4.56e)
l|zi(k + 1) — 24(k)|| < vmax,iAt  i=1,...,N (4.56f)

wherez;(k + 1) is theworst casez,(k + 1), which due to the linearity of the scalar
inequality @.569 can be computed analytically (see Reméut).

Remark 4.6 The linearized version of constrait.546 can be written as
> (Vs (k) + 3T @itk +1) = 624 (k + 1)) > va(k+1), Vzqlk+1) € Zy(k+1)
i€Rq
We can compute the worst cagf(k + 1) as the one that minimizes
=Y ey 0k +1)
JERq

by solving the optimization problem

zg(k+1) = arg — cy; 0zq(k +1)

min
k+1)E€Zq(k+1
zq(b+DEZq (k) S
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This problem can be solved analytically, resulting in

zq(k +1) = zg(k) — [c[y) — ca)]TWmaxqut

wherec?,

(1) andc(,, are the components of the normalized vegior

v
Ry Cai-

Properties of the Centralized Solution

To analyze the properties of the centralized solution wendefi

Definition 4.4 The decrease of the detection quality due to the targetsomet (k + 1)
is defined as

vy (k+1) = v,(k) - Z c;'jT(Sz;(k +1)
JEN,

We note that, (k + 1) > 0 by the definition of the weighting functions, therefore

vy (k) > Z chTéz;(k—i— 1).
JEN,

The cost function of problen?(56) at each time step satisfies:

M M
ay(k+1)+ > Berg(k+1) > ay(k) + > Byrg (k+1) (4.57)
g=1 q=1

which indicates that the agents move in a way that improvesdist function if we con-
sider only the current target locations. This inequaligoamplies that when the targets
are stationary, the cost function is monotonically inciegs

The optimization problem that has been described in thisseprovides a framework
to approach the joint connectivity and detection maximdaraproblem in a centralized
manner using linearization. In the following, we extenddistributed approach presented
in Section4.2in order to allows the multi-target tracking problem6) to be solved in a
distributed fashion.

Remark 4.7 The task to ensure persistent feasibility of the sequensemi-definite programs
(4.56 is not trivial for mobile targets. If the targets are statany, persistent feasibility follows from
the fact that the solution(k + 1) = =(k) is feasible at the discrete tinig just as in Sectiod.2

If the targets move arbitrarily, this property is insteadfiiult to impose. We believe that using
the slow-target assumption (Assumptibd) one could derive conditions for persistent feasibility to
hold. We leave this analysis for future research.

4.3.3 Distributed Solution

In this section we present a non-iterative distributed thmiuto solve 4.56). By non-
iterative we mean here that we will use only one round of comigation/computation
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Targetq

Figure 4.10: Notation for the distributed solution. The targets are esented via
squares, while the agents are circles. Communication Em&shown via solid lines
and detection links via dashed lines.

among the different agents per optimization stefBefore presenting the main contribu-
tion of this section, we first introduce some notation andnitédins. We then proceed to
describe our non-iterative distributed solution method iés properties.

We will use the notation and definitions of Sectiér?2.4 In addition, we consider the
enlarged neighborhood sgt to be of size 2, i.e.p; = 2, for each agent. This implies
that 7* = J;, which will simplify the analysis of the distributed soloti. We recall that
the notationz ;, denotes the vector containing all the positions of the agéh(where
the order is not important). Sineg is the same for all the agents, we will simplify the
notationL; ,,, with L; and¢&; ,,, with &;.

We will assume that ageits aware of the targets it can detect directly and also the one
his first-order neighbors can detect. We will denote Withthe set of all the targets that
agent; is aware of. Correspondingly, we denote the vector comtgiail the positions

of the targets in the séf; with z7; (where the order is not important). Similarly to the
enlarged neighborhood set for the agents we introduce tlaege neighborhood set for
the targets, indicating which agents are aware of a speaifiety:

o,= N g=1...M (4.58)
i€ER,

whose cardinality i$),. We note that these neighborhood sets contain only agerds, a
thus the maximum allowed cardinality /. Figure4.10provides a graphical illustration
of this notation. We also introduce a scaled maximum vejagit. ; defined as

N
'Dmax,i = jvmax,i; 1=1,..., N (459)

whose value varies from agent to agent. This quantity wilised to change the local con-
straints in such a way that the global solution construatenhfthe local ones satisfies the
original constraint4.56f), exactly as in Sectios.2.4with the modified control constraints
U;.
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Our algorithm consists of two phases. First, each agenésgoblemAP,; defined as

AP (27, (k), 27, (k) Prij; Umax,i) :

maximize i(k+1) + vo(k+1 4.60a
oy 1 I e, CTETL) D Bava(k+1) - (4.602)

q€Ti
subject to
Yilk+1)>0,0(k+1)>0 q€T; (4.60b)
ALi(zg,(k+1)) + 15,17 = 5i(k + 1)1, (4.60c)
Afa(wi(k+1),2i(k+1)) > pri; Vi, j) €& (4.60d)
Avg(zg(k+1),25(k+1)) > vg(k+1) q€Ti,jeJ; (4.60e)
llzj(k+1) = 2;(k)|| < vmax ;A jETi (4.601)
zj(k+1) = z;(k), forj € 0J; (4.6009)

computing the solutio® 7, (k + 1), which is composed af;; (k + 1) for eachj € J;.
Thus, we will callz;; (k + 1) the position of agent as computed by agent

As a second phase, the solutiang (k + 1) are shared within the enlarged neighborhood
J; and averaged according to

zi(k+1) =2k +Z 5xﬂk+1 i=1,...,N (4.61)
jeT;

We note that the averagé.6]) is a particular instance of the linear combinatidn30Q)
with s; = 1/N andn; = 2 for all the agents. We remark that this particular choice will
be important for the following analysis. Finally, we notatf,;; in (4.609 is computed
using @.34 with s; = 1/N for all .

Algorithm 4.2 summarizes the method. We note that steps 3-5 are implechenkgonce
between subsequent robot movements, which makes thetalgaron-iterative.

We claim thaif we consider the global position vecto(k+1) = (z{ (k+1),..., 25 (k+
1)) resulting from(4.61), then

(C1) The algebraic connectivity of the corresponding gldibearized Laplacian
AL(z(k + 1)) andAvy(z; (k + 1), 2(k + 1)) are strictly positive;

(C2) All the constraints of the global problem are met.
Furthermore we claim that, as in the centralized approach:

(C3) The improvement property#67) remains valid for the cost function dfP (4.56),
whenz(k+1) comes from the distributed solution. MoreovA® is monotonically
increasing when the targets are stationary.

We will prove these claims in three steps: Theorén84.9, and4.10establish (C1), by
linking the average valuet(61) and the algebraic connectivity through the linear depen-
dence of the linearized Laplacians on The constraint4.609 plays a crucial role here
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Algorithm 4.2 Distributed Multi-Target Tracking
1. Input:z 7, (k), 27, (k)

> Available data: fw, fa, fv s Tis Ty, (Vmax,j[for § € J5), (Wmax,q|for ¢ € T2), p1
2: Determinecy; as @.55 andz7- (k + 1) as

zg(k+1) = zq(k) — [c‘(72) — 0271)]Twmax’th7 qeT;

wherec‘(71) andc‘@) are the normalized componentsj, c x, y;
3: SolveAP; in (4.60 computingz 7, (k + 1) as

APZ(:BJ-L (k)7 2T; (k)v ﬁlijy 6max,i) :

gy (e ) ) ge, ST D g;i Bavalk+1)
subject to

Yi(k+1) 20,09k +1) 20 q€T;

ALi(zg,(k+1)) + 15,15 = ik + DI,

Afalei(k+1),z;(k+1) > p1; Y6, 4) €&

Avg(zg(k+1),zi(k+1) >ve(k+1) q€T,j€T;

llzj(k +1) —z;(F)|| < vmax ;AL  jE€T;

zj(k+1) = x;(k), forj € 0J;

4. Communicatet 7, (k) among members of;

1
5. Averager;(k + 1) = z;i(k) + » N&iﬁ(k +1)
J€T;
6: Output:z;(k + 1)

to ensure the feasibility of the local solutions. Theorérhl guarantees (C2), by show-
ing how the scaled velocityd(59 of the local problems ensure that the global solution,
obtained via the averagd.61), satisfies the global constraints. Theorérh2establishes
(C3) by linking the variations of the local cost functionglwihe one of the global problem.

As in Sectiord.2.4 consider the local probletyP; and its solution comprised af;; (k +
1) for all j € J;. Recall the construction of the global vectdf) (k + 1) whose entries
are determined based on the local solution as

#(k+1)
F(k+1) = : , J=1.
#D(k+1)

ith 700 _ wik+1) ifjed;
with 7 (k + 1) = { 2, (k) otherwise (4.62)

N

9

where we keep those agent positions that have not been aptirfiked, and we update
the rest from the solution of the local problem.

The following theorem is the adaptation of Theoré18for the Multi-Target tracking case.

Theorem 4.8 (C1.0) The positions:(!) (£ + 1) in (4.62 constructed from the solution of
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the local problemAP; in (4.60), keep the global linearized Laplacian matrix connected:
ALED (k+1)) +1x1% = 0.

Proof. At time stepk, the graphG(z(k)) is connected. We can divide this graph in
two overlapping partsg(x 7, (k)), which is connected by definition, att{z- 7, (k)) U
G(zag, (k)), where with—7; we indicate the collection of agents not presengin At
time stepk we know that:

L. G(z(k +1)) = Glag (k+ 1)) U(G(2-7 (k) UG(zaz, (K)));
2. G(zg,(k+1)) N (G(z-7 (k) UG(zag (K))) = G(zag (k) # {0};

where we use the definition of? (k + 1) in (4.62 and the constraint4(609 on the
bordering agents. Noticing thétz 7, (k + 1)) is also connected as imposed by the local
optimization problem, the claim follows. O

The following lemma is a particular instance of Lem#ha

Lemma 4.4 The following equality holds:

N
L(0z(k+1)) Z L0629 (k + 1)) (4.63)
Proof. The proof follows from Lemmd.3with s; = 1/N. O

Using Theorenmt.8 and Lemmad.4 we can now prove the strict positiveness of the al-
gebraic connectivity of the global linearized Laplaciat.(xz(k + 1)), formally stated in
Theorem4.9.

Theorem 4.9 (C1.1)The algebraic connectivity of the global linearized Laj¢ac
AL(z(k+1)) is strictly positive AL(x(k+1))+1x1) = 0 wherez(k+ 1) is computed
by the averagé4.61).

Proof. Theoremd.8implies (AL(7% (k + 1)) + 1x1%)/N = 0 for all i. Thus summing
over all agents leads to

1 (AL( Nk+1))+1x1%) =0

'MZ

=1

or by linearity of AL () (k + 1)) with respect taz, Equation §.44),

N
(AL(a(R) + 1n1]) + Y %AL(&E(“(I@ +1) -0 (4.64)

=1

Considering the weighted sum(k + 1) in (4.61), and the associated global vecigk +
1), by Lemma4.4follows the desired propertd L(z(k + 1)) + 1y1} = 0. O
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Remark 4.8 We note that the validity of TheoreftBis limited to the case in WhicEf\;1 si =1,
e.g.,s; = 1/N for all the agents. In fact, the expressi¢h64) can be generalized for the linear
combination(4.30 in:

<Zsl> ) +1n1%) +ZSAL (62 (k+1)) =0
i=1

that leads toA L(z(k + 1)) + 1n1% = Oonly if SN | s; = 1.

Theorem 4.10 (C1.2)The local constrainf, (k 4+ 1) > 0 is a sufficient condition for all
the targets to be connected at least to one agentj4,€k+ 1) > 0,Vg=1,..., M.

Proof. We need to prove the implication

Dgk+1)>0=y(k+1)>0, forg=1,...,M (4.65)

We start re-interpreting the conditieg(k + 1) > 0. To this aim, consider target which
appears in the local constraints of subproblem,,, p € O, as

Z Avgj(zg(k +1),@pi(k + 1)) > Ugp(k +1) > g(k +1) >0
JERq

for a suitabley, (k + 1). This constraint can be written in the equivalent form
> (e 070 + ) > plk+1) 2 0 (4.66)
JERq

where we have defined

0< Y &= voilzglk),mp; (k) = Y ey 0zp(k+1) = vy (k+1)

JER, JER, JER,

and we note that due to Assumptidr, Vp € O, we haveR, C O,, therefore con-
straint @.66) can indeed be computed locally. Starting from Equati8€), summing
over thep’s and dividing byN:

T8, (k+1) U(k+1)
E E v p] J E q
< — N " N) = T
p€EO, JER, peQy

or

Sy VTL)>%%(1§+1)—% > (4.67)

pEO, JER, JER,
We need to prove that globally

Z (c;jT(S:cj(k: +1)+ cj) >vg(k+1)>0 (4.68)
JER,
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which can be rewritten substituting the averag®() in (4.68 as
0Zp;(k+1
> ( v TM +c;.) > vy(k + 1). (4.69)
JERG PET;
However, since
U =00 U a7
JER, JER,
and due to constraint(609, then the expressiord (69 becomes
0Zp;(k+1
Z Z ( v szi)+c;(> > v, (k + 1),
JERG PEO,
or switching the sum operators
D c;f‘;zm(]s“) S vk +1) =0, 3 . (4.70)
pEO, jER, JER,

By direct comparison of expressiof.67) and @.70), by the arbitrariness of the choice of
vq(k + 1), we can always pick

O, 0 y
Wl/q(qulJrO Zc—Nchj:Vq(kle)
JER, JER,
for somev, (k + 1). This leads to
_ _ N
Ug(k+1)+ (N =1y, (k-l—l)zo—yq(k—i—l). (4.71)

q

We can now prove the implicatiod 65 by the relation 4.71). In fact, by assumption
7q(k +1) > 0, while we know thav” (k + 1) > 0 by definition. This implies by4.71),
thatv,(k + 1) > 0. O

Theorem 4.11 (C2) The global constraint$4.560-(4.561) are satisfied by the average
solution(4.61).

Proof. The constraints4.561)-(4.56¢ are ensured via Theorem<, 4.9, and4.10. Con-
sider now the constraint(561), for each subproblem we have

N

024 (k + 1)|| < Dmax,i = 7

Umax,i
and for the global problem:

1.
[162i(k + DI < D 1875 (k + D] < vmas
FISNVE
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Thusz(k + 1) satisfies also4.56f) and (C2) is established. O

Similarly to the centralized case, the global cost functbi\ P satisfies the improvement
property é.57), as formally stated in the following theorem.

Theorem 4.12 (C3) The global cost function of P satisfies the following improvement
property:
ay(k+1) +Zﬂquk+1 > avy(k +Zﬂq (k+1) (4.72)
qg=1

where the solution at timé + 1 is computed from the local problems with the aver-
age(4.61).

Proof. We start rewriting 4.72 in the equivalent semi-definite form:
M
o (AL((k+1)) +1n1%) + In > Berg(k +1) =

q=1

a (AL(z(k)) + 1n1%) + In Zﬁq (k+1)

q=1
For optimality of the local problems, in eac¢kP;:
a (ALi(Eg,(k+1) +1515) + 15, Y Byg(k +1) =
q€eT;
a (ALi(Eg, (k) +15,15,) + L Y Bavy (k+1)
q€Ti

or
alLi(6Zg,(k+1))+ 1, > By(Fg(k+1) — vy (k+1)) = 0
q€T;

For constraint4.609 and Assumptio.7, this can be written as

aALi(0D(k+ 1))+ In Y By(Fg(k+1) — vy (k+1)) = 0
q€T;

Summing over the agents and dividing iy

az AL (62 (k + 1)) +INZ > Ba(g(k+1) — vy (k+1)) = 0

q€7§

the second term can be written as:

M
Z > BalFg(k+1) — vy (k+1)) :Zﬁq Ug(k +1) — vy (k+1))

qETZ
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by Theoren¥.9and Eq. 4.71):

aALe(6Z(k+ 1))+ In Zﬁq(uq(k +1)—v, (k+1)) =0

q=1

O

Corollary 4.1 (Stationary targetd/hen the targets are stationary the global cost function
of AP using the averagét.30 is monotonically increasing.

The proof is straightforward by noticing that in this cage(k) = v, (k).

4.3.4 Simulation Results

In this section we present simulation results comparingémgralized approximation with
our distributed approach. We consid€ér= 10 agents and/ = 3 targets. The agents lie
initially close to thez-axis, while the targets start &1,0). We considety,ax,; = 0.25,
Wmax,q = Umax,i/15, andAt = 1. For the weighting function of Figurd.9, we take
p1 = 0.75, po = 3 forw;; andp; = 0.75, po = 1.25 for v;.

We selectv = 1 andj3, = 10* for all three targets. We drive the targets in opposite direc
tion with a non zero-mean bounded noise process. Figulgs4.12show the trajectories
of the agents/targets for both the centralized and theildisérd solutions (Both the initial
positions and the target trajectories are the same in thesimvalations). Although the
agents’ trajectories are different in the two approxinradion both cases the agents main-
tain a certain level of connectivity (see Figutel3, while keeping track of the moving
targets. The differences are due to the linearizations;lwaie trajectory dependent.

As in the maximization of the algebraic connectivity, thenglations illustrate that the
centralized approximation is faster to respond than thiibliged one, although both of
them meet the constraints of the optimization problem.
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B B R R S B R
Figure 4.11: Centralized approximations at four different discrete dimnstants.
The thin black lines represent the agents’ trajectoriesicivistart from the points
marked with small black dots. The targets’ trajectories areed and start from
(0,0). Black circles represent the agents, squares the targetil Bnes are the
communication links and dashed lines the detection links.
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Figure 4.12: Distributed approximations at four different discrete érmstants.
The thin black lines represent the agents’ trajectoriesicivistart from the points
marked with small black dots. The targets’ trajectories areed and start from
(0,0). Black circles represent the agents, squares the targetil Bnes are the
communication links and dashed lines the detection links.
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Figure 4.13: Algebraic connectivity as a function of tilkdfor both the centralized
and the distributed solutions of Figu&kel12

4.4 Conclusions

In this chapter we have studied two distributed control feots for robotic networks.
First, we have presented a distributed solution to the misition of the algebraic connec-
tivity of the communication graph in a robotic network. Otwacacterization can handle
more realistic agent dynamics than the methods availatitesifiterature and the resulting
optimization problem is proven to be feasible at each tirap sihder reasonable assump-
tions. Furthermore the solution can be adjusted based olalalearesources using local
relative sub-optimality measures to aid in adapting thgmebrhood size to the agents’
needs. Simulation results confirm the efficacy of our distéd approach and show its
practical applicability.

Second, based on and extending the techniques of the fitsofplre chapter, we have
proposed a distributed and non-iterative solution for trebfem of collectively tracking
multiple mobile targets using a robotic network, while nmaining a certain level of con-
nectivity.

4.5 Open Problems and Future Work

The presented problems and our proposed solutions ardycletsted, and therefore the
following open research challenges apply to both.

Generalization of the Proposed Solutions

The first open problem we discuss is the generalization gftbposed algorithms in order
to guarantee additional properties for the distributedtsas. In particular,
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e Robustness of the proposed algorithms (Algorithrhand4.2) against estimation
errors. In particular, how to ensure connectivity when tbsitions of the nearby
agents are known only with a level of uncertainty;

e Applicability of the proposed distributed schemes to a bevaclass of problem
formulations involving LMI constraints of the form

A(x) =0

for a generic positive semi-definite matrik with the same sparsity as the graph
Laplacian. This would enable the possibility to solve in stiilbuted way a broader
class of convex optimization problems.

e The possibility to further decrease the computation anduwanication effort (while
still satisfying the constraints of the global problemleit @.26) or (4.56)) by the
use of gossip, randomized, or token-based methBdgd et al, 2006 Fagnani and
Zampierj 2008 Xu et al, 2008 Johansson et al2009. In this case each agent
decides randomly to which neighbor to communicate. This idas been briefly
studied in Simonetto et a).20108, but deserves more in-depth analysis.

Generalization of the Problem Formulation: agents as geneil LTI systems

Another interesting open problem is the generalizatioheformulation to handle general
LTI systems in the centralized probled.26). We start from a generalization o4.(L6)
considering thé M + 2)-th order system:

xi(t+1)

T \T
vi(T+ 1) I ox o« v; ((7‘)) 03
03 * %
yu(r+1) |2 03 * % - yri(7) + w;(T)
; oo ; b1i13
yumi(T + 1) o ymi(T)

where they;; are additional states, the stars represent non-zero etsyab,; € Ro.

It is not difficult to see that Algorithm.1is also applicable to these types of systems,
under quite general assumptions and minor modifications.Kely idea is to compute the
control actions every/ + 2 steps while the crucial drawback is that the largér+ 2 is,

the morep; has to be shrunk to accommodate the collision avoidanceresgent (see
condition @.25 which has to be generalized in this case in a straightfatwaanner).

Consider now the generic LTI system
Xi(’r + 1) = AiXi(T) + Bzul(T)

where the coupléA;, B;) is controllable and where the state can be partitionéd ds) ',
&(7)T)T. Inorder to apply Algorithmt.1, we need to characterize a modification of the
setF; which is defined as:

]-‘zT = {x;(1) € R3(M+2)|Eui(7') €U,...,ui(t+T—1) €U such that
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T;—1
Alxi()+ > AT M Bu(r + h) = (x,(r)T,0)T, vr € NT
h=0

By computingFiTi, we can extend Algorithm.1also to general LTI systems, calculating
the control everynax;{T;} time steps. However, several issues have to be addregsed:
the parametef;; is agent-dependenj) the set?—‘iTi depends also on the positiaf(r)
restricting the area in which the agents can mdii@; sincemax;{7;} can be in general
quite large, the condition op; could be rather limiting and it could conflict with the
requirements otF;"".

Generalization of the Problem Formulation: full-state dependent Laplacians

The third challenge we discuss is the generalization of tbpgsed methods to full-state
dependent Laplacians, where the connectivity depends migtan the position of the

agents, but also on other part of their state, e.g., theacits. This could extend the
validity of the approach to more complex scenario wheregf@mple, the connectivity
depends on the relative angles (limited field of view comroatidn), or relative (angular)
velocities.

An Improvement of the Linearization Procedure

Another open problem is the analysis of the implicationshef linearized procedure of
Section4.2.1 This study is important in the case the positions of the egeary signifi-
cantly between two discrete time stépdn particular, we are interested in cases in which
||z:(k) — z;(k — 1)]| > 0, which can occur if the constraints on the dynamics of the
agents are not strict enough, or if no extra constraint iomep which upper-bounds this
difference.

Consider the centralized problem.26). Although, this can be shown to converge to
a local maximum Kim and Mesbahi2006), this property may be lost when the lin-
earized variables (witi\’s) are significantly different from the actual ones (therefwhen
||z: (k) — x;(k — 1)|| grows arbitrarily). This can be seen by a simple argument.

First of all, due to the convex dependencyigf(z(k)) onz(k),
d7;(k) > A fa(zi(k),z;(k)) foreach(i,j) € &,
which is formalized in the following lemma.

Lemma 4.5 The pairwise distance function satisfié§ (k) > A fa(xi(k),z;(k)) for
each(i,j) € £.

Proof. Direct calculation leads to

i (k) — 25 (k)||* = [|2s(k — 1) + 6z (k) — 2 (k — 1) — 6z;(k)||* =
= d?j(k — 1) +2(zi(k—1) —x;(k — 1))T(5:L'i(k) —ox;(k)) +
+|6z;: (k) — 625 (K)||? (4.73)

dy; (k)
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while:

Afalwi(k) i (k) = di(k—1) +2(xi(k — 1) —2;(k — 1)) T (62:(k) — 62 (k)).
(4.74)

We need to show that’; (k) > A fa(z;(k), z;(k)); assuming that this is the case, substi-
tuting the expressior(74), the following inequality should also hold

di; (k) > di;(k — 1) + 2(xi(k — 1) — x5 (k — )" (6x(k) — dx;(k)),
or, substituting4.73 for d; (k),
16(k) — dz;(K)[[* > 0

which is a tautology. O

The fact thatl?; (k) > A fa(xi(k), z;(k)) for each(s, j) € £ leads to the possibility that
wij (k) < Afu(||zi(k) — z;(k)||?). Since the eigenvalues @f depend on the weights,
it is possible that\, of L(x(k)), based onl; (k), is smaller than the optimal(k). This
implies that we cannot guarantee the sequence of optjals to be increasing and thus
an important assumption of the proof ikifn and Mesbahi2006) is not satisfied.

From an implementation perspective, one could think ofgitiie following iterative pro-
cedure to re-ensure convergence. Consider thewggé) < Af,(||z:(k) — z;(k)|*)
for some couplé€i, j), then

1. Evaluate the partial derivative§ andcy; in the expansion ofu;; (k) andd;; (k)

(Equations 4.3)-(4.4)) at the averaged positiagh= (z(k) + z(k — 1))/2;
2. Recompute the solution of the problefZ6);
3. lterate until for all couple§i, j): wi; > A fu(||zi (k) — zj(k)|[*).

The evaluation of this scheme is another open researchgmobl

Multi-Target Tracking problem

Finally, for the multi-target tracking problem of Sectidn3, we can sketch two other
interesting questions:

e How to ensure target-to-agent minimal-distance separafithis constraint could
be posed as done in the agent-to-agent minimal-distaneeat@m, but in the target
case, the targets’ future locations are unknown and thexefenore in depth study
has to be performed,;

e How to guarantee persistent feasibility for the sequenceofi-Definite Programs
(4.56 (Remark4.7). If the targets are stationary, persistent feasibilitjof@s from
the fact that the solutiom(k + 1) = z(k) is feasible at the discrete tinig just
as in Sectiom.2 If the targets move arbitrarily, this property is insteafficllt
to impose. We believe that using the slow-target assumfisaumption4.4) one
could derive conditions for persistent feasibility to hold






Chapter 5

Distributed Optimization Methods Iin
Robotic Network Applications

Abstract — In this chapter we focus on convex and non-convex network#tza-
tion problems with resource allocation constraints, widah be used in realistic robotic
network applications where the mobile or non-moving deviskeare the same resources
across the whole network.

First, we propose a regularized saddle-point algorithmcfmvex networked optimiza-
tion problems with resource allocation constraints. Saaticubgradient methods suffer
from slow convergence and require excessive communicatlten applied to problems
of this type. Our approach offers an alternative way to asklthese problems, and en-
sures that each iterative update step satisfies the resallocation constraints. We derive
step-size conditions under which the distributed algarittonverges geometrically to the
regularized optimal value, and show how these conditioasaiected by the underlying
network topology. We illustrate our method on a robotic r@twapplication example
where a group of mobile agents strive to maintain a movingetain the barycenter of
their positions.

Second, we focus on a particular non-convex networked resoallocation problem,
known as the Maximum Variance Unfolding problem and its dia¢ Fastest Mixing
Markov Process problem. These problems are of relevanceeftgor networks and mo-
bile robot applications. We solve both these problems withgame distributed primal-
dual subgradient iterations whose convergence is provemieuthe case of approximation
errors in the calculation of the subgradients. Furthermeeeillustrate the importance of
the algorithm for sensor network applications, among whidfalization problems, and
we discuss some extensions to mobile robotic networks adbpersion problems.

5.1 Introduction

In the previous chapters we have encountered and made usgtriduded optimization

problem formulations for different scenarios linked to @x@ mobile robotic networks. In
most of the analyzed cases, the optimization framework wead to formulate application-
specific problems. In this chapter, we shift our focus fromsthapplication-specific op-
timization problems to more abstract ones. In particularsiugly certain convex and
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non-convex optimization problems with resource allogationstraints, i.e., problems in
which the decision variables are coupled by the allocatfom given resource (e.g., their
sum has to be equal to a given constant). These problems ¢houzght of as a generaliza-
tion of open research problems in many fields, among whick@emd robotic networks,
as we will clearly illustrate in this chapter. This link issalone of the main reasons of our
interest.

In Section5.2 we focus on distributed convex problems. In particular welgtprimal-
dual (saddle-point) iterative methods for solving convetimization problems with re-
source allocation constraints in addition to convex caists on local variables and sparse
(convex) coupling constraints. Standard (sub)-gradierthods Kiwiel, 2004 Nedic¢ and
Ozdaglar 2009 have gained increased attention in the past years, yetdbevergence
rate is known to be rather low especially when the cost fancis non-strictly convex.
A recently proposed methodévolder et al.2011, Koshal et al. 2011) regularizes the
initial convex problem and thereby increases the convergeste of common algorithms
delivering a solution arbitrarily close to the one of thegimal problem. Motivated by this
strategy, we also make use of regularization and solve thdtieg strictly convex problem
via a saddle-point method. Furthermore, we incorporatedheurce allocation equality
constraints directly into the saddle-point iterations kEyeading the results of{jao and
Boyd, 2006 (originally proposed for unconstrained problems). Weiaestep-size con-
ditions that guarantee convergence of our iterative schame show how these results
are linked to the problem characteristics and the graphléggorespectively. In stan-
dard dual decomposition approachdshi{ansson2008 one would typically dualize the
equality constraints and use consensus mechanisms tibualistthe resulting Lagrangian
function over the network. This technique results in a slomergence rate, especially if
the network is sparsely connected. Our proposed approaohporates the resource al-
location constraints directly in the saddle-point itevatiand uses regularization to obtain
faster convergence. This leads to an inherently distribotethod, which converges to the
solution of the original regularized problem.

Finally, we illustrate our algorithm on a realistic robatietwork example where a number
of mobile robots strive to keep a moving target in the baryeeaf their positions. This
scenario is motivated by our interest in robotic networkd #re recent works in target
tracking and target circumnavigation, el@erenick et al(2009, Shames et al2012),
where distributed algorithms are required to be applicabteal-time.

In Section5.3 we focus on a particular non-convex resource allocatioblpro, known
as Maximum Variance Unfolding problerBgn et al. 2006, with the intention to solve it
via distributed globally optimal algorithms. In particuleve consider primal-dual subgra-
dient iterations based on the dual of the original problena phbve the convergence of
these iterations to a global optimizer of the original n@meex problem under standard
assumptions, even when approximations are involved in igteéliited determination of
the subgradients.

Furthermore, we illustrate a known relationship of the dafahe non-convex Maximum
Variance Unfolding problem with the Fastest Mixing MarkawBess problem3un et al,
2006, which is important in sensor network applications. Tl lallows us to use the
proposed primal-dual scheme to solve both problems at the sime.

Finally, we discuss via a numerical simulation the perfanoeof the proposed algorithm
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in a sensor network example and we show its relevance to mamplex localization
problems. Although this example involves fixed nodes, welarig Sectiorb.5 how it
could be extended to mobile nodes (robots). In addition, lustrate that this mobile
scenario is a generalization of the dispersion problemlimtio networks Dimarogonas
and Kyriakopoulos2009, where a group of robots strive to maximize the distanceragmo
themselves maintaining a certain specified connectivit@@if underlying communication
graph. This observation could offer ways to solve the disiparproblem in a distributed
fashion.

5.2 Convex Networked Optimization under Resource Allocatn Con-
straints

5.2.1 Problem Formulation

In this section, we study constrained convex optimizatimbfems on a network of com-
puting nodes. The network is modeled as a connected g¥agh(V, £), with vertices
(nodes) inthe se¥ = {1,..., N} and pairs of nodes as edges in the&ét V x V. Con-
sistent with the other chapters, we denote the cardindlig/as F, the set of neighbors of
node: asN; = {j|(i,j) € £}, while L is the Laplacian of the graph.

We consider the following convex constrained optimizafooblem

minimize YV fi(z:) (5.1a)
X140y TN

subject to  g;;(z;,z;) <0 forall(i,5) €& (5.1b)

hz(l’l) <0, fori=1,...,N (510)

Zili1 Ti = Ttot (5.1d)

where each variable; € R” is associated with the nodeall the functionsf; : R™ —

R, ¢gi; : R* x R" — R, andh; : R* — R are continuously differentiable convex
functions. The constant vectoy,; € R™ dictates the total amount of each resource that is
available in the system and therefore defines the resouomatibn constrairdt We refer

to problem b.1) as the primal problem.

Letz € R™ be the stacked vectar = (z{,...,2})", while f(x) is a separable cost
function f(z) = Zf.vzl fi(x;), andg(z) denotes in a compact stacked form all the sep-
arable constraint functions described #1)-(5.19, with codomain (or target seR™,

m = E + N. With this notation we can rewrite problers.() in the compact form

minimize flx) (5.2a)
subject to g(x) <0 (5.2b)
(1—1\5 (24 In) T = Ttot (52C)

1For simplicity we consider here the caseaqf; € R™, although our analysis could be extended to han-
dle cases in whichriot € R™, with i < m. In this case the constrainb.(Ld need to be substituted with
SN | Va; = zt0t, whereV is a matrix that selects the usadcomponent.



118 Chapter 5: Distributed Optimization

We assume that the constraint&) < 0 define a closed and bounded convex Xet
We assume also that the intersectionXofind the set defined by the equality constraint
(1}, ®In) T = Xyt IS @ closed, bounded, and non-empty convex set, denoteXi. by
Under these assumptions there exists a (possibly non-eniguiimizer of 6.1), which we
indicate asz°Pt, while we denote the primal optimal value .

Problems of typeq.1) can be found in various domains including economiasdw and
Hurwicz, 1960 and sensor networkBélomar and Chian@006. Typically, in these fields
the nodes have a coupling resource allocation constraingxample the total monetary
budget or the total available bandwidth, respectively.

We are interested in solving the primal problebnlj via the use of iterative distributed
algorithms. However, due to the facts tl{gtthe Lagrangian function associated with
problem 6.1) is in general neither strictly convex in the primal vari@abl nor strictly
concave in the dual variables, a(ij) the resource allocation constraint couples all the
nodes, standard primal-dual iterative methods have tilpisbbow convergence rate and
require high communication demand among the nodes. In ¢odzddress these issues,
we study a regularized version of the saddle-point algoritbrimal-dual iterations) in the
next section, which incorporates the resource allocatamsiraint directly in the update
equations.

5.2.2 Regularized Saddle-Point Algorithm

In this section, we present a distributed gradient-baséichigation method that employs

a fixed regularization in the primal and dual spaces. Thiglegzation serves to approxi-
mate the primal problen®(1) in a way that can be solved by gradient-based methods with
improved convergence properties. Furthermore, we mobdyprimal iteration to ensure
that each iterate satisfies the resource allocation camistidis allows us to avoid the du-
alization of the equality constraint, which would need todigributed among the nodes
and lead to increased communication requirements.

Let . € R be the dual variable associated with the inequality comtrdz) < 0, and
v > 0, ¢ > 0 be strictly positive scalars. Motivated bi¢gshal et al. 2011), we define a
regularized Lagrangian-type function associated to thmadproblem b.1) as

1 1
L(z,p) = f(z) + 5V||96||2 +ulg(a) — §€||M||2 (5.3)

This Lagrangian-type function is by definition a strictlynsex function of the primal
variablex and a strictly concave function of the dual variaple

In order to leverage on strong duality relations, we usedheving standard assumption.

Assumption 5.1 There exists a Slater vectare X such thaty(z) < 0.

Our aim is to find an (approximate) solution of the primal gesb (5.1), by solving the
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regularized saddle-point problem:

max min L(x, 1) (5.4)
" T

subject to (1} ® I,,) @ = @0y

whose optimal value is denoted I, and unique optimizer by*. Under Assumptios.1,
the unique optimizer of the regularized problesj satisfies the KKT conditions:

VoL i)+ (1 @ 1) p =0 (5.5a)
VuL(z", 1) <0 (5.5b)

(1N ®1,) & — Tor = 0 (5.5¢)

PV, L(@*, 1) =0 forg=1,...,M (5.5d)

pg >0 forg=1,....M (5.5€)

wherep* andp* are the optimal Lagrangian multipli€rswhile V£ andV . £ indicate
the gradients of the regularized Lagrangian-type funcfién ) with respect taz and.

It is expected that in general the solutions of the primabjem (.1) and the regularized
saddle-point problen(4) are different, meaninfz* — z°P*|| # 0 and|| f* — f°P|| # 0.
Furthermore, the solution of the regularized problén) does not necessarily satisfy
the inequality constraints of the primal problet1). However, it is possible to bound
the suboptimality and the distance from the primal optimizaéong with the constraint
violation by some function of the regularization parameteande. Thus while we are
solving an approximation of the primal problet ) we have bounds on the distance from
the primal optimal solution. Furthermore, in this contéx tegularization procedure can
be seen as a way to speed up the convergence of standardngilddienethods, which
may in fact lead to a closer iterate to the optimyffi*® of the primal problem within
a finite number of iterations even though an approximatelagigzed problem is being
solved. For further details we refer the reader to the oailgivorks on regularization and
double smoothing techniquedévolder et al.2011, Koshal et al.2011).

The regularized saddle-point probleB4) can be readily solved by centralized iterative
methods. However, when a distributed solution is sougktetfuality constraint is usually
dualized and decomposed among the nodes, see for examplisthssions inJadbabaie

et al, 2009 Zhu and Martinez22012. Typically, this procedure causes high communica-
tion load and the convergence rate would be affected by thebeuof nodes. In order to
overcome these potential drawbacks we follow a differeate@and propose a method that
ensures the feasibility of each iterate with respect todBeurce allocation constraint. The
main idea can be thought of as “projecting” the iterates timtdeasible set of the equality
constraint. This extension allows us to design an inheyatisitributed iterative scheme
that still solves the original regularized proble&n4).

Let Pgr, indicate the projection over the positive orthant, anddet 0 andj3 > 0 be fixed

2The Lagrangian multipliep € R™ corresponds to the resource allocation equality constraihich is
used to describe the KKT conditions of the regularized mwblbut not used in our proposed iterative solution
approach.
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strictly positive scalars (step sizes). We consider thieiohg saddle-point iterations:
Y = () (W @ 1,)V, L2, pu(D) (5.6)
T = P, [0+ aV, L), pl)] (5.7)

with any matrixiV € RV > such that

(@) the vectorsl y and1}; are left and right eigenvectors & associated to the zero
eigenvalue, respectively:

1,W =0, Wiy =0
(b) the zero eigenvalue is unique, i.e.,
W+WT +(1/N)Iy1y =0

(c) the matrixi¥ has the same sparsity pattern as the Laplacian matakthe graph
g.

It is easy to see that if the propertié®)-(c) hold, then the iterationss(6)-(5.7) can be
computed locally with only the information of the neighbaginodes. In this sense, the
iterations b.6)-(5.7) are inherently distributed.

3In order to explicitly see this, Iej:” be the Lagrangian multiplier assomated Wjth (x;, z;) < 0and lety;
be the one associated with (z;) < 0 in problem 6.1) (we recall thaiw = (¢ ,v")"). The Lagrangian-type
function in 6.3) can be rewritten as

(z,q,v ZfZ(xz + VZH%‘P Z i 9ij (Ti, T JerZh (x4)

(i,5)€E
1 N
— 3¢ ( Do el +> vﬂ)
(i,5)€€ =1
and therefore the update rule.§) can be written as
LTHY = g af(W® In) -

1 7
Vo i) + 227 + 3 af) Vo g1,@{7,2l7) + oV Vi, a2l
JEN1

VszN({L'gJ))+2V:BS\7,-)+ Z qg\;i])VzNgNJ( (T),‘T;T))JFU%)VzNhN(ZES\;—))
JENN

(T) —af Z Wi szf](:v(T))JrZ/m(T)Jr Z q(T)Vz]ng( (T) (T))Jr
]€N+ LEN;;

(T)VI] ( (7'))>

while the update §.7) as q(TH) = Pr, [ (r) +a<Vq 9ij(x (.T), 27)) E;))] and v(TH)
73]R+ |: (7') + (Vv.b ( (7')) (ﬂ)] .
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We claim that there exist conditions on the step sizasd/ such that the iteration$ (6)-
(5.7) converge to the unique optimal solution of the regularigezblem 6.4). In partic-
ular, we expect that the step siads linked to the characteristics of the functiofignd

g (as in standard gradient-like methods), whilés linked toW, i.e., the network topol-
ogy. These relationships will be shown using the followiaignma, which establishes three
important properties of the iterations.§)-(5.7).

Lemma 5.1 If the matrix IV satisfies the propertya) and for the first iteratez(?) the
resource allocation constraint holds, i.¢1y ® I,,) " 2(?) = z., then

(i) for anyr, the iteratex(") satisfies the resource allocation constraint, iy ®
In)TJU(T) = Ttot,

(i) the optimal coupléxz*, 1*) of (5.4) is a fixed point of the iteration&.6)-(5.7);

(iiiy for anyr, the equalityz("t1) = x(7) holds if and only if eithe’/, £(z(™), (7)) +
(1y ® I,)p = 0, for somep € R”, or V. L(z("), u(7)) = 0.

Proof. The first claim follows by induction based oXi&o and Boyd2006. Suppose that
z(7) satisfies the resource allocation constraint. Then:for?)

(1; ® In) 2Tt = (111\—/ ® I") (‘T(T) —apf(W® In>vx£($(7)v M(T)))

and using the fact thdtl | ® I,,) (W ® I,) = 1\W ® I,, = 0 (property(a) of W) the
claim follows.

The second claim follows by direct calculations. Consider optimal pair(z*, ©*)
of (5.4), then using the KKT conditions we obtain

2T = 2% — aB(W @ [,) Vo L(z*, p*) = 2" +af (W@ L,) (1§ ® In)Tp*
=z"+af(WRI,) 1y I,)p".

Since(W @ I,,) (1y ® I,,) = W1y ® I, = 0, it follows thatz("+?) = z* and therefore
x* is a fixed point.

The third claim follows from propertgb) of IV, i.e., the uniqueness of the zero eigenvalue.
The equalityz("*) = z(7) holds if and only ifa8(W ® I,,)V,L(z("), u(™)) = 0. This
last equality is true either ¥, £(z("), u(7)) = 0 or if the vectorV,£(z("), u(7)) is an
eigenvector ofi’ with associated zero eigenvalue. Therefore, using prpgbjtof W
leads toV,L(z("), u(7)) = (1y ® I,,)p/, with p’ € R™. Choosingy’ = —p proves the
claim. O

Lemmab.1shows that the information exchange matfixkeeps the iterates feasible with
respect to the resource allocation constraint and doestmotiuce undesired fixed points.

The next section investigates the conditionsxomnd 3 under which the primal-dual iter-
atesz(”) andu(™) converge to the optimizdr:*, 11*) of (5.4), and the bounds on how far
this solution is from the primal solutioe®?® in terms of suboptimality| f* — f°P*|| and
constraint violation.
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Furthermore, we will show that the choice of the informatixchange matri¥y’ (espe-
cially its largest eigenvalue) is important for convergeand we will mention how one
could improve the performances of the iterates tuning thighte in V.

5.2.3 Convergence Properties

Let z be the stacked vectar= (z", ") ", and define the mapping

P(z) = (VI‘C(Z)Ta _VHK(Z)T)T-
We use the short-hand notatidiy, = W ® I,,. Moreover, letP be a generic projection
operator, whose codomain will be clear by the context. Témitons §.6)-(5.7) can be
compactly written as:

L) _p |:z(7') N { We
M

} @(z(T))] = T(z(") (5.8)

The scope of this section is to identify the assumptionsCén, 1) and the conditions
ona andp that let the mapping’ : R¥»+m — RN7+m he a contraction mapping. This
guarantees geometric convergence of the iterat®g-(5.7) to the optimal point of%.4).

First of all we characterize the properties of the mappirig) under the following as-
sumptions.

Assumption 5.2 The iteratesz(”) and 1.(™) are contained in some closed, convex, and
bounded sets for each iteration In other wordsz(™) € X and (™) € M, with X andM
closed, convex, and bounded sets.

We note that the assumption pf™) € M is satisfied under Assumptidnl (seeKoshal
et al.(2011) for details).

On the other hand, the assumptionadf is a stronger requirement. We remark that we
cannot remove this assumption by enforcing it in the iterationz(7), i.e., projecting
«(7t1 onto some closed, convex, and bounded set, since this westtby the properties
of the information exchange matri*’. However, one could think of enforcing it via a
modification of the Lagrangian-type functiof.8) through a barrier function. A formal
characterization of this modification is currently undesstigatiort:

We also make the following mild and technical assumptions:

Assumption 5.3 The gradients of (z) and eacly, () are Lipschitz continuous with con-
stantsF' and Gy, respectively:

|[Vof(a) = Vaf®)|| < Flla—0b||, foralla,beX
[[Vegq(a) = Vg ()| < Gylla—0l|, foralla,beX g=1,...,m

4We note that we could also pickasRVN", if f andg satisfied Assumptions.3-5.4with this choice.
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Assumption 5.4 The constraint gradient and Lagrangian dual variable araihded as

IVeg(@)|| < Ma, and|[u]| < M,,.

We note that Assumptiors3-5.4are commonly required in the analysis of gradient de-
scent methods. Furthermore, Assumptiosis generally satisfied under Assumptior2.

Assumption$.1, 5.3 and5.4are important to guarantee that the mappirig) has certain
regularity properties. In fact, under these assumptiond,dmma 3.4 of Koshal et al.

2011), the mappingP(z) is strongly monotone with constapt= min(v, €) and Lipschitz
with constantFs. In other words,

(®(a) — ®(b),a—b) > p|la—b||?, fora,beX xM (5.9)

|®(a) — ®(b)|| < Folla—b||, fora,be X x M (5.10)

Properties%.9) and 6.10 will be important for convergence.

Symmetric Case

In this subsection we will assume that the matilixis symmetric, i.e.J¥ T = W. This
will allow us to derive closed-form conditions for the stegesa andg3. Define

C = max(BAmax (W), 1) (5.11)

Ki=@ = F<I> (BAmax(W) - 1) (512)

where A\pax (V) is the maximum eigenvalue é¥” (which can be upper-bounded in a
distributed way, e.gLj and Pan2001)). Define the ratio

20D — 2

S

If » < 1 we say that the sequen¢e(™)} has geometrical convergencesband its con-
vergence rate is.

Theorem 5.1 Under the Assumptions.1, 5.2, 5.3 and 5.4 and for symmetridV, the

conditions
2K

C?F2

ensure geometrical convergence of the iterati@he)-(5.7) to the unique optimizee*, u*)
of the regularized problertb.4). Furthermore, the convergence ratés

BAmax(W) <14 Fi’ and a< (5.13)
3
r=1-2akr+ a’C*F} (5.14)

Proof. The distance of the primal iterai¢™ 1) to a primal optimizer:* can be written as

et = 07| = [Jal? — 7| -
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2a <BW® (VIE(:E(T), M(T)) — V. L(z", u*)) (™) — z*> +
0?||pWe (VoL u®) Vot )| 5.15)

where we made use of the fact that is a fixed point of the iteration5(6). Using the
relation

H6W® (vzz(:c“),u(f)) - Vwﬁ(x*,u*)) H2 <

2
B2A2 (W) vaﬁ(x(ﬂ,u(ﬂ) VL L(*, 1)

max

equation 5.15 becomes
|2+ — 2|2 < (]2 - 2* [P~
200 <BW® (Vzﬁ(x(T),u(T)) — Vzﬁ(ac*,u*)) 2l — x*> +

(5.16)

max

2
?BEN2 (W) Hvzﬁ(x(ﬂ,u(ﬂ) -V L(z", u")

In a similar fashion, and using the non-expansive propdrtig@projection, we can write
the distance of the Lagrangian multiplief”*1) to its optimal valug:* as:

D — ]2 < (|t — |+
2a <Vuﬁ($(”, p) = VL, ), ) — u*> +

2
0 [Vl @, 1) — VL, 1)

(5.17)

Summing up the relation$(16)-(5.17) we obtain

12D — 212 < (] = 2P~

20 <[ We } (q)(z(r)) _ (I)(z*)) G z*> n

o?C? H‘I)(Z(T)) - @(z*))H2 (5.18)

Iy

whereC is defined as ing.11). The term

_ <{ AWe Ins } (q)(z("')) _ @(z*)) 0 Z*>

can be expanded as

([ 4, | (e —ae) 0 - -
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_ <[ Inn I ] (2(:7) ~ #(=")) 217 - z> +

@
_<[ BWe — Inn ; ] ((b(zm) _@(Z*)) e _Z*>

(b)

We can bound the term (a) based on the strong monotonici®( of in (5.9), while the
term (b) can be bounded as

_ <[ BWe — Ing ; } (q)(zm) —<I>(z*)) 0 _Z*>
< H<[ BWe — Inn , ] (q)(Z(T)) _@(Z*)) e _Z>H

e -

< (BAmax(W) — 1) Fa| |27 — 27|

27— o

where we used the Lipschitz continuity®fz) in (5.10. The relation$.18 then becomes
|27 — 2|12 < (1 —2ak+a*C*Fg) |27 — 2|2 (5.19)
with « defined as in§.12). Therefore the first convergence condition is
1 —2ak +o*C?F3 < 1,

while, since it is required that > 0, the second condition must se> 0. From these
two conditions the relation$(13 follow. Furthermore the convergence rate expression
in (5.14) can be established based &m1©. O

Corollary 5.1 The convergence conditiofs.13) on the step sizes are satisfied if the fol-
lowing, more conservative, conditions are met

1 ®
< ———, and a<2-— (5.20)
)\max(W) Fq%
Proof. The proof follows directly fromp/Fg > 0. O

The type of conditions in Corollary.1are typical in (sub)gradient methods and are often
referred to as “small enough” step size conditioBer{sekas1999. We may notice that

« is bounded by quantities related to the characteristickeptoblem functions, whilg

is related to the structure of the information exchangelyréige also note that has to be
determined a priori based on the knowledge of the problerotiom properties, whiles

can be computed in a distributed way by the nodes, since #rerdistributed algorithms
to upper-bound,.x (W), e.g. Li and Pan2001).

The following technical lemma characterizes the “qualitf'the regularized optimal so-
lution z* with respect to the original primal problerd.() in function of the regularization
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parameters ande: it provides bounds on the amount of constraint violatiog @f*) and

the suboptimality| f* — f°P*||. In order to compactly characterize these bounds, we define
the constraint set of the regularized problés asX, ., which implies thatt* € X, ..

The setX, . is closed, bounded, and convex, and in general differem fitee original
primal constraint seX, being howeveK C X, ..

Lemma 5.2 Under the Assumptiorisl, 5.2, 5.3, and5.4, and usingy, € as regularization
parameters in(5.3) the maximum constraint violation is bounded by

max{0, gi(a")} < My, My [ (5.21)
1%
where Mg, = max, g |[Vzgi(z)|| for eachi and M, = max ,y ||n|], while the differ-

ence between the optimal value of the regularized prol§fed) and the optimal value of
the original ong(5.1) can be bounded by

P < My M,/ — + 2 D2 5.22

whereM; = maxgex, .

me($)||, D= maXgex, .

||

Proof. The proofis a modified version of Lemma 3.3 iKoshal et al,2011). In particular,
the bound %.21) follows directly from Lemma 3.3 inKoshal et al. 2011), while the
bound 6.22) requires the modification that we consider fdy and D the maximum ofz
overX, . instead ofX (which could lead to a too conservative result in our case).

The proof of the boundy(22) starts from bounding f* — f°Pt|| by
£ = FPN <N = Fioll + fimo — P (5.23)

wheref’_ is the optimal cost for the regularization problem with riegization parameter
e =0,andf*_, — f°P' > 0. By convexity of f, we have

fr = frg SV f(@) T (@ — i) (5.24)

with z?¥_, the unique optimizer of the regularization problem withukegization param-
etere = 0. Sincez™*,z}_, € X, . andX, . is compact, by the continuity of the gradient
[|Vs f(x)]|, the gradient norm is bounded and we can wist24) as

1" = feoll < max [[Vaf ()]l [|l2™ — zell (5.25)

N———
M

However, By Proposition 3.1 ofpshal et al, 2011), we can bound|z* — x}_,|| by
M,,+/¢/2v and thereforeq.25 can be written as

* * €
17 = femoll < My My | o (5.26)
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Using the estimat¢;_, — f°P* < v/2max,ex, . ||z||*, which follows directly from the
definition of the cost function (see Lemma 7.1 Kbéhal et al.2011)), then £.23 can be

written as
* _ fopt <MM,/—6 +—VD2

Non-symmetric Case

In this subsection, we consider the case of non-symmetricdeealV’. It is not difficult

to see that all the previous derivations hold true with thalsmodification that instead of
Amax (-) we will haveop,.«(+), meaning the largest singular value. Unfortunately, due to
the termo,.x(BW — I), the condition org is not solvable in closed-form. In particular,

if we define

C" = max(Bomax(W),1), K :=¢p — Foomax(BW — In)

then the conditions iny.13) for the non-symmetric case become

© 2k’
Jmax(ﬂW — IN) < F—(I), and a< CTFg

Weight Design

Instead of a unique step siz& one may consider designing the whole information ex-
change weight matrixy’. For simplicity we redefine the weight matrix &8 := SW
whose pattern is fixed by the network structure (and supptséé symmetric) but the
single entries are variables to be determined. If wellisia the iterations$.6)-(5.7), the
convergence conditions di (in addition to the one on) can be written as

A(W) >0 < W+ (1/N)Ixly =0
Aax(W) <1 <= W Iy =<0

These conditions are similar to those Kigo and Boyd 2006. In particular, the first
condition is a connectivity condition, while the second Idobe interpreted as diagonal
dominance. Using the fact thalV + (1/N)1x15y)"'W = (Ix — (1/N)1x1y) and
therefore

W(W + (1/N)Iy1y) "W =W
by Schur complement these relations can be translatechiatd\ll (Xiao and Boyd2006

W+ (1/Njiyly W

.27
i In =0 (5.27)

which makes the weight design a centralized convex problEmally, one could even
optimize the weights to improve performance; this could tmeaby the centralized convex
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problem
mg)zc%frv%/ize ~y (5.28a)
subject to W =0, Wiy= (5.28b)
W (1%\”1“} ;V N~ (5.28¢)

5.2.4 Summary of the Proposed Solution

We summarize the proposed regularized saddle-point iv@sain Algorithm5.1. We
recall once more that:

e The choice of the regularization parameterand e determines the convergence
properties of Algorithnb.1. The higher the parameters are, the faster the conver-
gence rate could be. However, the higher these parametgrtharfurther away is
the approximate solution of Algorithi®.1to the real optimum of the optimization
problem 6.1).

e The choice of the step sizesand( is determined via the convergence results The-
orem5.1and Corollary5.1 In particular, the step sizé has to be determined by
the knowledge of the maximum eigenvalue of the network Lapha(which can be
computed in a distributed way by the nodes, since there atghited algorithms to
upper-bound\,,.x (W), e.g. Li and Pan2001). The step sizev is instead linked
to the properties of the optimization problem (not of thepiraut of the optimiza-
tion functions), and Theore 1 ensures that there exists a “small enougtthat
guarantees convergence.

Algorithm 5.1 Regularized Saddle-Point Algorithm
1: Input: z(™), u (™)

> Available data: f,9,a,8,v,e, W
2: Compute:V, £(z(™, (M) and Vv, L(x(7), u(7)) with

1 1
Lz, p) = f(z) + 5!/\\:6\\2 +ulg(e) — 5||M||2

3: Compute:
D = 2 aB(W @ 1)V L(z(D), u(7)
M [um +av,u L™, um)]

4: Output:z(T+D) ,(7+D)

5.2.5 A Robotic Network Application: Target Tracking and Barycenter Keeping

In this section we use an application scenario inspired kBafistic problem to illustrate
the proposed method. We consider a groupNomobile robots that can communicate
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among each other via a communication network. Let the griagtdescribes the network
beG = (V, £) and we will assume that it is time-invariant. As usualagt:) € R? be the
position of robot at the discrete time stép Lety(k) € R? be the position of a moving
target at the discrete time stepWe model the robot dynamics as single integrator systems
and associate the convex cost functjt; (k) — x;(k — 1)) with each of them that can
represent the energy consumption. We assume the robotstkedarget location.

Motivated by recent research works on multi-target tragkind target circumnavigation
(Derenick et al.2009 Shames et §l2012, we are interested in moving the robots to
ensure that the target is always in the barycenter of theitipas. Furthermore, we require
that robots connected by an edge in the fixed graph have a hBuwdtheir maximal
distance (for communication purposes). We limit the allolsachange of position in one
step||z;(k) — z;(k — 1)|| bY vmax,:At to model physical limitations. Finally, our global
objective is to meet the aforementioned requirements whilémizing the total energy
consumption. At each discrete timethe above problem can be written as

minimize SN fimi(k) — ai(k — 1)) (5.29)
:El(k‘):EN(k)
subject to l|xi(k) —x;(k)||> — R?> <0

forall (i,j) € £
[|z:i(k) — zi(k — 1)|] — vmax,iAt <0
fori=1,...,N
1N, (k) = y(k)

which is a specific instance 05 (1) for each time stefg. In particular, since the target is
moving,y (k) corresponds to a time-varying total available resoukggin the formulation
of problem 6.1)°.

Our simulation example consists 8f = 7 robots connected via a communication graph
shown in Figureés. 1with Laplacian matrix.. The parameters of the scenario &e- 1.2,
and

fi(dzi(k)) = (Qidzi(k), 6z:(k)),

wheredx; (k) = x;(k) — x;(k — 1) and@,; = 1 for all i except fori = 6, for which

Qs = 0. In practice, this translates in a non-strictly convex dastction. We consider
Umax,6 = 0.5 (which means that the rob6is limited only by physical constraints, and not
by the cost), while the othet,, .. are set tot-oo (meaning that the other robots do not have
physical constraints). Given the fact that the cost fumctonot strictly convex and the
position of the robots are coupled via a resource allocatiorstraint, even this small-size
problem could be difficult to solve (in terms of communicafimomputation requirements)
for common gradient algorithms. This makes this examplkrésgting to analyze with the
proposed approach.

We solve problemH.29 via the proposed regularized saddle-point AlgoritBri with
v =10,¢ = .01, andW = L. The step sizes ane = 0.2 (determined via Corollar$.1)
anda = 0.01 (determined via trial-and-error). In practice, singg; (y(k)) is varying we

5We note that, when the proposed saddle-point algorithmeid tssolve the problen®(29 at each discrete
time stepk, each initialz; (k)(°) can be chosen as (k)(©) = z;(k—1) + (y(k) —y(k — 1)), with 2;(0)(®) =
y(0). This ensures that the initial iterates satisfy the resmatiocation constraint.
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Figure 5.1: Representation of the trajectories of two robots while #rget moves
(blue thick line). The initial graph and positions of the aib are marked in black,
while the final configuration is marked in red. The notatign;, indicates thej-th
component of;.

solve problem§.29 at convergence for ea¢husing Algorithm5.1.

Figure 5.1 shows the computed trajectories of the robots while theetampves (blue
thick line). The initial graph and positions of the robote anarked in black, while the
final configuration is marked in red. In order to assess thalftyl of the regularized
problem solution with respect to the original primal one, thaximal error of the optimal
robot positionsmaxy, ||z* (k) — 2°P*(k)|| was computed and resulted 02, which is
acceptable in this application scenario. Finally, we réfiat the total number of commu-
nication/computation iterations per discrete time stgger robot wag- = 2000, and the
computations required around)3 s per node per discrete time stepon an Intel Coréb
(2.3 GHz and 4GB DDR3) laptop. These results are encouraiitg the regularization
parameters were not specifically optimized to minimize thehber of iterations. This as-
pect, along with extensive comparisons with common gradiethods are left as future
development®

6As a preliminary result, we remark that dualizing the reseallocation constraint would cause an increase
of the number of iterations of at least 40%, even with= 1. We expect non-regularized gradient methods to
need even more iterations to achieve the same accuracy asawensively illustrated irkoshal et al, 2011).
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5.3 The Maximum Variance Unfolding Problem

While the previous section we have looked into convex resatiocation problems, in
this section we shift our focus on a particular non-convex, dmown as Maximum Vari-
ance Unfolding problem, with the intention to solve it vialgal optimal distributed algo-
rithms. This problem arises in different research areash sis localization\{leinberger
et al, 2007, mechanicsgun et al. 2006, linear algebra@oring et al, 2008, and un-
supervised (machine) learning/€inberger and SauP006. Furthermore, together with
its dual, it is linked to important research questions inotabnetworks, such as the max-
imization and minimization of the algebraic connectivitijtbe underlying graph under
given constraints.

5.3.1 Problem Formulation

With the notation of Sectiob.2, let the optimization variable associated to node x;
and, for simplicity, consider thisodalvariable to be scalar, i.e:; € R (This assumption
will be removed in Sectioh.3.5. Letr;; € R be abound associated with the edge) of
the graphg connecting the nodes. We are interested in solving theviirigp non-convex
problem

N
- 2
i 5.30a
maximize ;:1 ||| (5.30a)
subject to |[|z; —x;[|> <r7; forall (i,5) € £ (5.30b)

N
> xi=0 (5.30c)
1=1

Problem 6.30 is known as the Maximum Variance Unfolding problem, or MV8uQ

et al, 2006 Weinberger and Sau2006. Under the assumption that the communication
graphg is connected, the MVU problen’ @0 has a (possibly not unique) optimal solu-
tion 2°P*, which makes all the inequality constraints acti@if et al, 2006. Notice the
constraint .309: its scope is to make the solution &.80 finite (in fact, without it we
could take all ther; to be the same and to be arbitrarily large).

Although the MVU problem %.30) is non-convex, it is well-known that it can be trans-
formed into a convex problem by the change of varialles- 2z ". Pursuing this trans-
formation we arrive at the convex SDBUYn et al, 2006 Goring et al, 2008

max}(mize trace (X) (5.31a)
subject to X” + ij — Xij — X]‘i S 7’1-2j, for all (Z,j) et (531b)
1,X1y=0, X >0 (5.31c)

The non-convex problenb(30 and convex §.31) are equivalent in the sense that they
yield the same optimal value, i.e:SPt T 2°Pt = trace (X °P). For this reason, in many ap-
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plications it is often convenient to transform the non-aan.30 into the convex%.31),
which can be solved efficienthy{einberger and Sa2006 Weinberger et a]2007).

Both the non-convex problen®30 and the convex ones(31) can be solved with cen-
tralized algorithms (although, for the non-convex casealgerithms may lead to local
optima). Furthermore, methods have been proposed to appatexthe convex prob-
lem (5.31) in order to reduce its computational complexity when thze sif the problem
becomes large (e.gN > 1000), see WWeinberger et al2007).

Distributed Solutions

Solving the two problems5(30) and 6.31) in a distributed way is more challenging. In
principle, the non-convexs(30 could be solved using a Sequential Quadratic Program-
ming approachBertsekas1982 1999, and the resulting quadratic programs distributed
among the nodes with the saddle-point iterations of Sedi@n In practice, the valid-
ity of such a scheme is still in doubt, since the regulartmaparameters could endanger
convergence, and even in the best case, the algorithm neigtittb a local optimum. On
the other hand, the convex formulatiah 1) is constrained via matrix (in)equalities that
are difficult to decouple among the nodes. In particularpifogection over the constraint
X = 0 would require the knowledge of the spectral decompositibthe full matrix

X, see Boyd and Vandenbergh2004). The available distributed algorithrikémpe and
McSherry 2008 to obtain such decomposition is limited to matrices thahdhe same
sparsity of the underlying graph and therefore it is notatlyeapplicable in this case.
Furthermore, the knowledge af°P* would not automatically imply that°P* can be com-
puted in a distributed way.

Nonetheless, we will see in the next sections how the dualizaf the convex prob-
lem (5.31) overcomes most of the issues and allows us to devise gjobptimal dis-
tributed algorithms.

5.3.2 The Dual of the MVU Problem and the Fastest Mixing Marko Problem

We describe in this section a rather well-known relatiopghetween the MVU prob-
lem (5.30 and the Fastest Mixing Markov Process problesuir{ et al. 2006. In par-

ticular, we show that these two problems are the dual of o¢han This link will be

used in our proposed algorithm.

Consider the weighted and undirected connected géaph (V, £), where we assign to
each edge a weight;; € R,.. Let E the cardinality of€ and letw € R be the stacked
vector of the weights, and lgt be the laplacian of. The second smallest eigenvalue of
the graph depends on the weights, which we indicate with ttation A2 (w). Finding
the Fastest Mixing Markov Process on a graph, or FMMP, is thelpm of determining
the weightaw that maximize the algebraic connectivity of the graph, uradeertain linear
bound ornw. The FMMP problem can be written as

maximize A2 (w) (5.32a)

subject to Z rfjwij <1 (5.32b)
(i.5)€€
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w>0 (5.32¢)

or, since both the objective;(w) and the constraint functiop, ; ;. r3;w;; are positive
homogeneous, in the equivalent (re-scaled) fobun( et al.2006

minimize > rfwy (5.33a)
()€€

subject to Ao(w) >1 (5.33b)
w>0 (5.33c)

where the inequalityy > 0 has to be interpreted element-wise. The problem3 and
(5.33 are convex, sincg(w) is a concave function of the weights(De Gennaro and Jad-
babaie 2006). Moreover, we remark that at optimality; (w°P*) = 1 for problem £.33
(Sun et al.2009.

Based on Lemmd4.1of Chapter 3, problenB(33 can be written as the SDP

mingnize Z r?jwij (5.34a)
(3,5)€€

subject to L(w) + (1/N)1y1} = Iy (5.34b)
w>0 (5.34¢)

where, as usual, the Laplaciardepends linearly on the weighis

Remark 5.1 Notice that we can substitute the constralf(w) > 1 with Xa(w) > X, for any
positive 2 > 0 without difficulty. In fact, due to the linearity of the Laplan L on w, the scaling
w = w/\2 would normalize the problem to, = 1.

The dual of problem3.34) is the convex problem

maximize trace ((IN — (1/N)1N1]—'\—,)X) (5.35a)

X
subject to  X;; + Xj; — Xij — Xj; <r?, forall (i,§) € £ (5.35b)
X =0 (5.35c¢)

which, with the substitution of variable
X =(In = (1/N)IN1) X (In — (1/N)1n1y)
can be written asJun et al, 2006

max)i(mize trace (X) (5.36a)
subject to X” + X]‘j - Xij — in S TZ-QJ-, for all (Z,j) S 5,] > 1 (536b)
1,X1y=0, X >0 (5.36¢)

Problem 6.36) is equivalent to the convex MVU problens.@1), thus the primal-dual
relationship between FMMP problem and MVU problem. In maufir, assuming that
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Assumption 5.5 There exists a Slater vector for problé;31) and problem(5.33.

we can prove that the duality gap is zerSu( et al.2006, meaning

2 opt __ opt
E rijw;; = trace (X )
(.)€

Furthermore when solving the convex MVU probleg31) at optimality, its dual vari-
ables will be optimal for the FMMP problens 34 and vice versa. We remark that this is
also true for the non-convex MVU problers.80) if its global maximum is found. We for-
malize these primal-dual relationships by the use of KKTiropt conditions. In particular,
the optimal coupléw°Pt, X °Pt) satisfies:

Primal-Dual feasibility:
wP® >0, L(wP") = Iy — (1/N)1ny1)
INXP 1y =0, X% =0, X'+ X' — XP'— XOPT <4 forall (i,5) € €
Complementary slackness on edges:
(XPP 4 X590 — X0 — XPC — 2Pt =0, forall (i, ) € €

Matrix complementary slackness:

L(wopt)Xopt — Xopt

The last condition means that the rangeXo®* lies in the eigenspace df(w°P?) associ-
ated with), (w°P) (which we recall to be one). This leads to the following résiuidicate
with v5P* the normalized eigenvector associated wiglfw°Pt) and callc°P* the optimal
cost for the FMMP problem, i.ec??* = 3, . ¢ r7;wij, then an optimal solution fok
is
-
XOPt = (OPty Pty OPt (5.37)

Furthermore ifA; (w°P?) is isolated, this solution is also uniqusun et al. 200§. The
relation 6.37) also yields to
opt

— V/copty Pt (5.38)

X
for a global optimal optimizer of the non-convex problesmi30).

Equation 6.38) will be an importantingredient in the design of a distrimiglobal optimal
algorithm for the non-convex probler.G0 as we illustrate next.

5.3.3 Proposed Distributed Algorithm

We are interested in solving the MVU probletc30) in a distributed fashion. In order to
do so, we propose to utilize its dual convex FMMP33 problem and a primal-dual sub-
gradient technique. (We remark thet(w) is a non-smooth function ab). The intention
is to design a global optimal distributed algorithm f&r30 by solving in a distributed
way the convex FMMPH.33.
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Preliminaries

First of all we recall some useful definitions and some negutetiminary results. Lef
be a convex functiorf : R — R, while letg be a concave functiog : R® — R. The
vectors € R" is a subgradient of the convex functigrat a pointz € R™ if

fy) = f(x) +(s,y —x), forallyeR”
while s is a subgradieritof the concave function at a pointz € R” if
9(y) < g(x)+ (s,y —z), forallyeR"
Given a strictly positive scalas > 0, the vectors is ane-subgradient off at a point
x € R™if
fly) > f(x)+ (s,y —x) —e, forallyeR"™
while s is ane-subgradient of; at a pointr € R™ if

g(y) < g(x)+ (s,y —x) +¢, forallyecR”

The concept of-subgradient is useful when the computation of the subgraaif a given
function is affected by approximation errors. This is thasen why the schemes that
employe-subgradients instead of subgradients are often refeored aapproximate sub-
gradient method¥jwiel, 2004).

Consider the convex FMMP probler.83. Let the vectoky;; € RY be
1 ifg=1

(qi)g =14 -1 ifg=3 (5.39)
0 otherwise

We remark that the subscrigitsindj are bold since the objeqg; is a vector that refers to
the nodes and; and not the elemettt, j) of q.
The Laplaciarn (w) of the underlying grapty on which problem%.33 is based upon can
be written as
L(w)= Y ayai wy
(i,5)€€
The algebraic connectivity df(w) is a concave function af since for everyo € R¥ (De
Gennaro and Jadbabak906
Ao (W) < Aa(w) + trace((vavy , L(w) — L(w)))

wherev, is the eigenvector associated to the second smallest eilyenof L(w). Substi-
tuting the expression df (w) we obtain

Ao(W) < No(w) +trace| (vavy, Y agyay (@i —wij)) | =
(i,9)€E

"We note that some authors referstas supergradient if it is the subgradient of a concave fancti
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Xo(w) +trace| Y vovy agas | (i —wy) | =

(i,4)€€
A2 (w) + Z trace(vavy qijaiy | ) (Wi — wyj) =
(i,9)€€
Ao (w) + Z (Vai — va;)? (Wij — wij)
(i,5)€€

wherev,; andv,; are thei-th andj-th component of». Therefore the vectdv , A2 (w) €
R¥ with components

(Vo (w))y; = (V2 — va;)? (5.40)
is a subgradient for (the concave)(w) atw.
Let £L(w, ) be the Lagrangian function associated with the FMMP prol®ei3), i.e.,

L(w, ) = Z riwi 4 p(l = Az (w)) (5.41)
(i,5)€€

wherep € Ry is the dual variable of. LetV,, L(w, 1) andV ,L(w, 1) be the subgradi-
ents ofL(w, u) with respect tav andu, respectively. These subgradients can be expressed
component-wise as

(Vwl(w, 1)y = 15— (Vwra(w))y; =] — u(vai — vay)*
VuL(w,p) = 1—X(w).

We note that, for Assumptiob.5and the existence of a solution for problefn33), there
exist two closed, convex, and bounded ¥étCc R, andM C R, so thatw € W and
u € M. These sets are computable a pfigNedi¢c and Ozdaglaf009.

From the existence of these two sets, the following standssdmption holds true for our
problem formulation.

Assumption 5.6 The subgradient¥ ,,£L(w, 1) and 'V, L(w, i) are uniformly bounded,
i.e., there is a constant > 0 such that

[VoLl(w,m)|| <A, [[VuL(w,p)]| <A forallw e W, e M

Primal-dual iterations

In order to solve in a distributed way the FMMP probleBn33, we consider the primal-
dual iterations

w™) = Py [w(T) - avwﬁ(w(ﬂ,u(ﬂ)} (5.42)

P = py [M<T>+av#z(w<7>,u<7>)} (5.43)

8As a matter of fact, in practical situations, we could assume R andu € R .
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with a constant step size > 0.

We define the running average$™ andzi(™) generated by:

T—1 T7—1
1 , 1 )
(7)) — E (6B 1 G § (4)
w - jzow y M - jZOM

We can cite the following theorem fromiédi¢ and OzdaglaR009 that guarantees con-
vergence of the coupler(™), (™)) to a saddle-point of the Lagrangiahi41).

Theorem 5.2 [Proposition 1 ofNedi¢ and Ozdagla2009] Under Assumptiors.6 the
following relations for the iterate€s.42-(5.43 hold true:

(@) Forall > 1,

T—1

(0) _ ,opt||2 1 . )
- ||,U, M || < ; L(w(j)7ﬂ(])) - E(’LUOpt,‘LLOpt) <

a2
2

2ot

j=
||w(0) 7wopt||2 a2
- @ + -

2aTt 2

(b) The averages(”) and (") satisfy the following relation for at > 1:

1 = PP+ [f® — o)

2ar —ah® < E(w(T)a ﬂ(T)) — L(w°Pt, u°P*) <

ot® — woPt |2+ [ — )
2ot

+ aA?

The result in parfa) provides bounds on the averaged function values

1 T—1
- G,
- > L, )

Jj=0

in terms of the distances of the initial iterate$”) and ;(?) from the vectoraw°Pt and
1°PY that constitute a saddle point 6{w, ut). In particular, the averaged function values
converge to the saddle point valdgw°Pt, ;.°Pt) within error levelaA? /2. This conver-
gence goes ak/7 with the number of iteratioh The result in par{b) gives bounds on
the function valueZ(w(™), (7)) of the averaged iterates(™) and (") in terms of the
distances of the averaged iterates from the initial iterated saddle point vectors. Under
the assumption that the iterates generated by the subgtadigrithm 6.42-(5.43 are
bounded, this result shows that the function values of tleeaed iterates (™), (7))
converge to the saddle-point val(e°Pt, 4°Pt) within error levelaA? as1/7. The error
level is due to the use of a constant step size and can be Bedtby choosing a smaller

9n practice we could say that the rate of convergendg/is(Koshal et al, 2011).
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step size value at the price of increasing the number oftiterair. Therefore, Theo-
rem 5.2 provides explicit tradeoffs between accuracy (in termsp&nd computational
complexity (in terms of-) in choosing the step size value.

In the following theorem we characterize the value of thémakdual variable.°Pt, which
will enable us to derive a global optimal optimizer for thexrmonvex MVU 6.30).

Theorem 5.3 The optimal value of the dual variablé®* is unique and equal to the cost
of the FMMP problen{5.33), i.e., u°Pt = ¢°Pt,

Proof. An optimal point for the FMMP problemb(33) is a fixed point of the iterations
(5.42-(5.43, due to Theorerb.2 In particular, an optimizer ofy33), must satisfy

wiP' = Py [wiP* — a(rf; — poPt (vaP — vaP*)?)],  forall (i, 5) € €.

Sincea > 0, and sincew(™ < max,,, |[W||, this means that: eithap;™ = 0 and
12— pePt (Ve — viP)? > 0 orwiP* > 0 and
2 t opt opt\2 __
rig — KOV — vy )" = 0.
Due to the fact that°Pt is not null, we can write

STt (% e (v vE?) =,

(i,5)€E
thus
opt 2 __  opt opt /__opt opty\2
Z Wij Tij = H Z wij (Vay = Va57)7,
(i,5)€€ (i,5)€EE
and therefore
opt _ opt opt opt opt\2
Pt = P Z wii (Va; — Va5)
(i,5)€E
T
t t t t T
= pP > WP trace(vgp Vo aijas )
(i,5)€E
_ optt opt optT opt T
= W race| vy vy Z Wi dijdij
(i,9)€€

.
— u"lf’ttrace(vglf’tv‘z’pt L(w‘)pt))

-
= u““trace(vgptvgpt ): uoPt

T T .
where we use the fact thaf™"  L(w°Pt) = viP' , sincely(wPt) = 1. O

Theoremss.2 and5.3 with the iterations §.42-(5.43 provide a way to compute an op-
timal solution for the FMMP problem5(33), as well as for the non-convex MVU prob-
lem (5.30. In fact, recalling that by equatiors (38), z°P* = /coPtv5P*, once the cou-
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ple (u°Pt, voP*) is available through the iterations.42-(5.43, due to the equivalence

1Pt = c°Pt one can readily computeP?.

However, the iteration$(42-(5.43 are not distributed, since they require the knowledge
of the algebraic connectivity and its associated eigevect

Approximate Distributed Solution

In this section we propose a way to distribute the computatibthe subgradients of
L(w, u). Furthermore, we will analyze the case in which these suldgnis are affected by
some approximation error. This case is of practical imparéavhen the communication
effort among the nodes has to be limited, and therefore ¢énative distributed algorithm
to compute the subgradients 6fw, ) has to be stopped before reaching convergence.

Since L(w) is a sparse matrix, we can now utilize the already mentiongtdilslited al-
gorithm Kempe and McSher2008 to compute its eigenvalues and eigenvector. This
technique, named by the authorsas algorithm (for decentralized orthogonal iteration),
computes the spectral decomposition of a maddxthat owns the same sparsity of the
underlying graplg. The method is based ontaR decomposition and a consensus itera-
tion and converges within an accuracyedb the eigenspace of the matdf ¢ RY*¥ in
O(log?(N/¢)1/A2(G)) rounds of communication/computations. Using this metieagh
node of the network has a copy wf with which they can compute locally the algebraic
connectivity (by the multiplication of, with their row of the Laplacian).

The iterations%.42-(5.43 with thepol algorithm could be used to solve the FMMP/MVU
problems in a distributed way. It remains to prove that theveogence result of Theo-

rem 5.2 still holds if the subgradients of the Lagrangian functioa.( the algebraic con-

nectivity and its associated eigenvector) are computed agprescribed accuraey

LetVy L(w, pn) andV,, . L(w, 1) bee-subgradients of (w, 1) with respect tav andy,
respectively. Consider the modification of the iterated®-(5.43 as

W) = Py [wm — AV LW, u(”)} (5.44)
M(T_H) — Pu |:M(T) + avu,aﬁ(w(r),u(T))} (5.45)
Moreover, consider the modification of the AssumptioBas

Assumption 5.7 Thee-subgradient§/,, . £(w, 1) andV,, . L(w, 1) are uniformly bounded,
i.e., there is a constant. > 0 such that

IV, Lw, || <Ae, |VpLlw,p)| <A forallwe W, peM

We formalize the convergence of the running averagfés andji(”) based on the approx-
imated iteratesq.44)-(5.45) to a saddle-point of (w, 11) in the following theorem.

Theorem 5.4 Under AssumptioB.7 the following relations for the iterate®.44)-(5.45
hold true:
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(a) ForallT > 1,

1 = pert[2 aA?
2ar

< IS 2, 10y = e, perty <
.

\}

lw® —wP|? | ak?

2ar 2
(b) The averages(”) andji(") satisfy the following relation for at > 1:

I = )+ ® — 0|
2ar

—ah? < L@, 77— £, 1) <

Je® = w2 + || ® — ]
2ar

+ al?

(3
with /_Xg = Ag +2¢e/a.

Proof. The proof follows from Proposition 1 ofNedi¢ and Ozdagla”009. First we
prove that:
™+ — w2 < [Jw'™ —w|[? = 2a(L(wT, 1) = L(w, 1)) + a?A?  (5.46)
1T =l < ([ = P+ 20(L(wT, 1) = L@, p) + A7 (5.47)

In order to show’.46), we can expanflw(™*1) — w||? into

2
o™ — w2 = ||Pw [0 — aVa £, 1 )] —
™ — wl|? = 20(V e L(w ™, 1), 0™ — w) + A2

IN

where we use the non-expansivity property of the projecti®y the definition ofe-
subgradient and since the functidifw, 1) is convex inw we have

E(wa ,LL(T)) - ‘C’(w(T) ) ,LL(T))
(LD, 47 = L, D)) + e

(VLD 1y ) w—w™) —e <
—(waeﬁ(w(”, M(T)), w™ — w)y <
and therefore
™) = w2 < [l — w2~ 2a(£w ™, 1) = L(w, u7)) + a?A2 + 2ae
which is 6.46).
In order to show%.47), we can expandu (™1 — 4|2 into

[T+ — )2

2
HPM [u(” +aVL(w™, u(”)} - MH
11T = ul? + 20V L(w ), p ), u 7 — ) + A2

IN

where we use the non-expansivity property of the projecti®y the definition ofe-
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subgradient and since the functigiw, ;1) is concave in: we have

(Vi Ly )= D)+ > L™, p) — LT, ul7)
<Vw,8£(w(7),u(7)),u(7) —p)y < (g(w(f)7u(f)) — ﬁ(w(T),u)) +e

and therefore
1D =l < @ = Il + 2a(L(0, 1) = L, 1) + 6?A2 + 20

which is (6.47).

The proof of Proposition 1 ofNedi¢ and Ozdaglar2009, i.e., Theorenb.2, is based
on (5.46) and 6.47) with ¢ = 0. SubstitutingA? with A2 = A2 + 2¢/« it is not difficult
to see that the analysis iNédi¢ and OzdaglaR009 still holds and therefore the claims
(a) and(b) also hold. O

Theoremss.4 and 5.3 with the iterations §.44)-(5.45 provide a way to compute an ap-
proximately optimal solution for the FMMP probler.83, as well as for the non-convex
MVU problem (.30 in a distributed way as summarized in Algoritfin?

Algorithm 5.2 Primal-Dual Algorithm for the MVU and FMMP problems
1: Inputw (™) (7
> Available data: a, g, L(w), (ry;|for each(i, j) € £), W,M

2: Determinehz(w) andvy of L(w(T)) via the distributed o1 algorithm ofKempe and McSherrg2008 up
to an accuracy of
3: Compute: Ve L(w(™, u(M) andV,,  L(w(™), u(7)) as

(Vuw,eL(w,p)y; = 1 —n(Vwda(w)),; =13 — w(vei — vay)°
Viellw,p) = 1—Xa(w)
4: Compute:
w™D = Py [w(T) — Oévw,sﬁ(w(T),M(T))]
pTHD = py [Hm T avu’sﬁ(wm’“m)]
5. Compute the iteration of the MVU problem{™) = /u(" vy

6: Output:w (™D 1 (T+1) (1)

In the next section we show a small numerical example to agkesperformance of the
proposed algorithm.

5.3.4 Numerical Example

We use a small numerical example fro®uf et al. 2006 to show the performance of
the primal-dual iterations5(44)-(5.45 with the bol algorithm applied to the FMMP and
MVU problems, |e,533) and 63@ Let therz-j ber12 =1,r13=2,1r93 =1,1r34 = 1,
r45 = 1, andryg = 2. Figure5.2 gives a pictorial representation of the problem.
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T12

2 6

Figure 5.2: Representation of the graph of the numerical example.

The unique primal optimal solution (up to a multiplicatiop &n orthogonal matrix) for
the MVU problem 6.30) is

2Pt =25, a9 =15 2P =05, 2P =05, =15 2P =25

while the optimal set of Lagrangian multipliets; (thus the set of solutions of the dual
FMMP problem 6.33) is:

t t t
wiy =u, wyh =15+u, wk =1.25-0.5u,

wih' =45, wi' =15, wi' =1.25
with the paramete < [0, 2.5]. The achieved optimal costi&"* = 17.5.

We use the iteration$(44)-(5.49 with o = 0.15 ande = 0.01, starting from a random
initial condition forw(® andu(?). Figure5.3illustrates the convergence 6fw (™), (7))

to a saddle point of(w, ). We report that the total number of communication and
computation iterations of theol algorithm, per iteratior, was on averagé2, and the
computations required aroufidi ms per node per iteratian on an Intel Corés (2.3 GHz
and 4GB DDR3) laptop. This leads to a total required time sfif the scheme is run up
to 7 = 5000. These communication/computation requirements are derei acceptable
in many applications, especially in sensor network scesari

Finally we report the achieved tolerances
|£(w(5000),ﬁ(5000)) _ K(wopt, uopt)| — 001, |)\2(w(5000)) _ 1| =0.03

which can be considered acceptable given the valueaof .

5.3.5 Extension to Multi-dimensional Problems and Localiation Applications

In this section we extend the previous results to the casehichathe variabler; is a
vector, meaning; € R”, with n > 1. This scenario is particularly useful in localization
problems {Weinberger et al2007). In order to see this, considér different sensor nodes
sparsely placed in am dimensional space. Let; € R” be the position of sensor node
Assume that each node can determine its distance to thestlosighboring nodes and let
r;; be this distance for each connected couple of ngdgs. The problem of determining
all the positions of the nodes via the measuremegtis called (anchor-free) localization
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35

), 1) = L(wPt, poPt)
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Figure 5.3: Convergence of (w(™), (™)) to a saddle point of (w, 1) with respect
to the iteration number.

problem and it can be written ag/éinberger et al2007)

N
- 2
i 5.48a
maximize ;:1 ||| ( )
subject to |[|z; — z;[|> =r7; forall (i,j) € £ (5.48b)

N
Z ;=0 (5.48¢c)
i=1

Problem 6.48 is similar to the MVU problem&.30 with equality constraints instead of
inequalities, and via minor modificationSin et al.2006 one can pass from one problem
to the other.

To solve the MVU problem&.30 for a multi-dimensional case (in a globally optimal
way), we proceed in the same way as did in the scalar scerkari, we define the matrix
X € RV¥XN as the Gramian matriX = zx', wherez = (21,...,2y5)". Then, we
formulate the convex problenb31) and its dual the FMMP problent(33. We note
that these problems are not affectediynot being a scalar. Therefore all the analysis of
convergence of Algorithrb.2is still valid for z; € R™. The only notable difference is that
for the multi-dimensional case the geometric multipliafy\, (w) is greater than one, in
particular it isn (Sun et al.2006. This implies that\, = A3 = --- = A\,,41 = 1 and
therefore, the optimaX will be written as

opt n+1

xort = E 3 yortyort ! (5.49)
n
1=2
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_ copt opt opt \T 5.50
xr = T(VQ 7...,Vn+1) ( )

With these relations we can compute the optimal value fand solve the multi-dimensional
MVU problem (.30 in a distributed way via Algorithng.2.

We remark that the found solution will be globally optimah¢se we are solving the dual

convex problem). This is also true for the localization peob (5.48 (in case the under-

lying graph is rigid), if it is solved with Algorithn5.2 This means that we are able to
find the physical locations of the nodes up to rotations afidatons (more details on this

problem for the centralized setting can be foundWe{nberger et al2007%).

while

5.4 Conclusions

In this chapter we have focused on certain classes of comeem@n-convex networked op-
timization problems. We have shown how resource allocatiorstraints could be handled
in a distributed iterative way keeping the number of compaitdcommunication rounds
for each node of the network reasonable for real applicatc@marios. Finally, we have
illustrated how the proposed schemes could be used intieatbotic network problems.

5.5 Open Problems and Future Work

There are a number of interesting open problems and futsesareh directions for the
work presented in this chapter, which are summarized indhefing.

Convex resource allocation problems

The regularized primal-dual scheme of SectiBcan be optimized further with a more
in-depth study on the optimal design of the step sizes anddgelarization parame-
ters. Furthermore, other approaches to speed up convesgamnth as multi-step meth-
ods Ghadimi et al.2011), could be analyzed.

Finally, more extensive simulation studies on a varietypylecation scenarios should be
performed to further assess the performance of the scheraalistic situations.

Sequential Quadratic Programming approach

An alternative method to solve the non-convex MVU problén3() in a distributed way
is by standard Sequential Quadratic Programming. As paiate in Sectiorb.3.1this
method could encounter convergence problems when the isegoéquadratic programs
is regularized using the saddle-point algorithm of Sectdh In order to illustrate this,
we recall the concept of the Sequential Quadratic Prograigiagproach.

The Sequential Quadratic Programming approach, in shot &iproach, is based on a
sequence of linearizations of the original non-convex [wb Letz!*! be the value of the
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optimization variable: at the iteration step. Given an initial iterate:(*!, the SQP method
consists of the sequence:

e solve, at eaclr > 0, the quadratic problem

1
minimize — 229 5y + oV |6 (5.51a)

Sx
subject to  2(z" — acg-'{])—r(éxi —0x;) +
[k] [x] ;o
|a;™ — 27 |[* =77 <0 forall (4,5) € £ (5.51b)
170z = —1" gl (5.51c)

with optimization variablédxz and wherev is a strictly positive scalar, i.ey;, > 0.
The optimizer of .51) is indicated withjxz°Pt;

o updatez!"t1] = gzlvl 4 4[sl5z0Pt with a strictly positive scalar step-sizé®.

Conditions on the step sizgl"! for the sequence af!*! to converge to a local maxi-
mum of the original non-convex MVU problens.30 can be found in the standard ref-
erences Bertsekas1982 1999. We remark that in the quadratic problemb(57) is
important for the convergence properties of the SQP algorand, in general, can be un-
related to the second order derivative of the non-conveixfoastion, Bertsekas1982).

We can see immediately that the quadratic probl&r&] is a particular instance of the
convex resource allocation proble®.7) and could be regularized and solved using the
iterations 6.6)-(5.7) in a distributed way.

However, employing this regularization could undermined¢bnvergence proofs &ert-
sekas(1982 and therefore question the whole procedure. More analyseseeded to
generalize some of the theoremsBe(tsekasl1 982 to this regularized case. Furthermore,
an estimate on how the scheme depends on the number of Aodesild be beneficial.
In fact, it would be justifiable to apply this regularized S@pproach (which is deliver-
ing only local optimizers) only in particular circumstascnd if it scales better with the
network sizeN than the proposed global optimal one, i.e., iteratidnd4-(5.45.

A Dispersion Problem for Robotic Networks

In Section5.3.4we have considered a numerical example where the nodes wetk fi
This type of problem is typical in sensor network applicatiovhere the network structure
is predetermined. Interesting open challenges arise wiedetthe nodes be mobile as in
Chapter 3, and the weights depend on the position of the ndtes-MMP problem%.33
can then be rewritten as the following non-convex optinidzraproblem

mir;i(ir)lize | Z T?wa(sz(k/’) — (k)| |) (5.52a)
(i.5)€€ (k)

subject to A2 (z(k)) > Ao (5.52b)
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where the decision variables are the robot locatiofig, while ), is the prescribed level
of connectivity andf,, (-) is a function that describes how the weights depend on thre pai
wise distance between the robots, see Chapter 3 for detalils.

Problem 6.52) can be seen as the maximization of the dispersion (i.edigt@nce among
the robots) with the guarantee of the maintenance of a pbesttevel of connectivity.
This problem has been studied in the robotic literattitevfard et al.2002 Cortés et al.
2004 Susan and Dubowsky005 Arsie and Frazzoli2007, Hussein and Stipanovjic
2007, Dimarogonas and Kyriakopoulp2009; however no clear guarantees to obtain a
prescribed level of connectivity are given.

Further studies to solve this problem in a distributed wag reeded. We expect that
one could apply the methods presented in Chapter 3, with sooaications. Moreover,
it would be interesting to see whether two-step sequenpipi@achese Gennaro and
Jadbabaig2006 could be used here with the iteratios44)-(5.45 to deliver distributed
optimizers with given bounds on their distance to the céimérd solution.

For the interested reader, a detailed discussion of thidg@moand its possible solutions is
presented in§imonetto et a).2012h).
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Conclusions and Recommendations

6.1 Summary and Conclusions

In this thesis we have proposed and analyzed solutions &brildited estimation, con-
trol, and optimization problems in robotic networks. Theganted algorithms are more
suitable to be implemented in real-time applications amthamproved performance with
respect to the available literature (in terms of estimagicturacy and real-time execution).

In Chapter 2, we have investigated distributed nonlinegeststimation problems and we
have proposed a common framework in which to design didgtbastimators. This novel

framework allows the usage of different estimators on déffie sensor nodes which might
be very convenientin practice to implement local filteritgpaithms whose computational

requirements match the devices’ hardware. The proposeafrark is based on a merging
mechanism that combines the local estimates and their ieova matrices coming from

the different sensor nodes. From an implementation petispegbe proposed framework

does not require extensive communication among the sepsesrand it is implementable
in real-time.

Within the proposed framework, we have designed novel oassof distributed Mov-
ing Horizon Estimators (Algorithn2.2), Particle Filters (Algorithn®.3), Unscented and
Extended Kalman Filters (Algorithia4). The proposed distributed Moving Horizon Esti-
mator can incorporate convex constraints into the estongtroblem and it is guaranteed
to be stable and converging to an unbiased estimate for dlte Sthis estimator extends
the ideas ofarina et al(2010 to nonlinear dynamical systems.

Algorithm 2.3 proposes a distributed version of Particle Filters appliean sensor net-
works where measurements are taken locally and commudigéean information ex-
change network. This formulation of distributed Particikefs is parametric, meaning
that the a posterioRDF is parametrized by the mean and covariance of the partigle po
ulation. This is often convenient in practice for robotiesarios and gives significant
improvements compared to the results available in thealitee (Chapter 2, Sectidh4).

In particular, we observe an increase in accuracy of an aid@agnitude with respect to
similar available distributed algorithms. We show thastisidue to the proposed merging
mechanism and common framework.

147
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In Chapter 3, we have analyzed how to distribute the high egatjpnal demand of Par-
ticle Filters on the multiple parallel cores gPu-architectures. We have illustrated via
simulation and experimental results that nonlinear fittgrgan be run efficiently yet still
deliver accurate estimates. In particular, using over dianilparticles we have imple-
mented the proposed distributed computation scheme oroéicarm experimental setup
that involves a visual servo feedback control loop with a giamg frequency ofl00 Hz
(Chapter 3, Sectiod.2.7). This result is remarkable given the experimental setapetk
ucational platform equipped with an off-the-shelf webcating achieved estimation error
(3 mm RMS for the the position estimation), and comparednular efforts in the avail-
able literature. In particular, our implementation oufpens (often by orders of magni-
tude) the state-of-the-art implementations for numberaofiples, state dimension, and/or
runtime. Moreover, our method competes for estimationityuaith standard sequential
Particle Filters that are however even hundreds time slow@gh-number-of-particle set-
tings. In addition, we have illustrated how some of the défe user-tunable parameters
affect the estimation performance and discussed scajadiid portability of the proposed
scheme.

In Chapter 4, we have investigated two distributed controbfems for robotic networks.
First, we have presented a distributed real-time impleatgatsolution to the maximiza-
tion of the algebraic connectivity of the communicationgiraf a robotic network. Our
method can handle more realistic agent dynamics than thiragietavailable in the liter-
ature, including second-order dynamical systems. Theqs®g distributed algorithm is
proven to deliver feasible solutions in only one round of cwmication with the neigh-
boring robots (Chapter 4, Theoretr®). In addition, the solution monotonically increases
the cost function (Chapter 4, Theoretr) and persistent feasibility is proven to be a
property of the resulting optimization problem under stmddassumptions (Chapter 4,
Theoremd.5). Finally, the proposed solution can be adjusted locallgagh agent based
on available resources, and this adjustment can be donglosl relative sub-optimality
measures. All these characteristics make the proposeibdistd solution implementable
and adjustable in real-time, which is an important requaetifor realistic robotic net-
works.

In the second part of Chapter 4, we have extended the progo&gibn for the maximiza-
tion of the algebraic connectivity and proposed a disteduand non-iterative solution
for the problem of collectively tracking multiple mobilertgets using a robotic network,
while maintaining a certain level of connectivity. As foetproblem of the maximization
of the algebraic connectivity, our distributed algorithastbeen proven to deliver feasible
solutions in only one round of communication (Chapter 4,0feens4.9, 4.10, and4.11).

Simulation results have confirmed the efficacy of our disteld approaches and shown
their practical applicability. For both problems the distited solutions have similar be-
havior with respect to the centralized approximations aradeswell with the number of
agents.

The distributed solutions of Chapter 4 can be seen as conepliamy solutions of stan-
dard subgradient algorithms, see for example (Gennaro and Jadbaba?2®06). In sub-
gradient algorithms we implicitly assume that the commatiim among the agents is
somehow cheaper than the computation onboard. This tteestahaving communica-
tion extensive iterative algorithms, in which at each itera each agent has to evaluate
only a subgradient of a certain function. Our proposed &niulies on the other side
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of the “communication-computation” trade-off spectrumm fact, we assume that each
robot can solve a rather complex convex optimization problehile the communication
among them is limited. Given the current availability of apeonboard micro-processors
that have reasonable computational power, we believe thhtlerobotic networks could
benefit more from solutions closer to our proposed one.

In Chapter 5, we have analyzed issues related to certaisedad convex and non-convex
networked optimization problems involving resource adltben constraints. We have dis-
cussed how these problems are relevant for robotic netwopkications and we have

proposed additional interesting scenarios (related tgetaracking, localization, and dis-

persion control). We have shown how resource allocatiostraimts could be handled in

a distributed iterative way, keeping the number of comporétommunication rounds for

each node of the network reasonable for realistic apptinati

In Section5.2 we have discussed convex optimization problems with resoaliocation
constraints. We have analyzed regularized iterative sapdint methods and shown how
to embedthe resource allocation constraint in the iterations. Weeh@oposed a solu-
tion in Algorithm5.1and Theorenb.1that is faster than standard subgradient algorithms
(in particular, it has a geometrical convergence rate). Aasalt, our algorithm is more
suitable for real-time implementation in realistic roleatietworks. The direction we have
followed in this section offers another approach for réaletsolutions to distributed op-
timization problem. While, in Chapter 4 we have focused on-iterative methods that
guarantee feasibility, in this section we have proposddtistive methods that regularize
the original problem and provide a sub-optimal solutiortvgitven sub-optimality bounds.

In Section5.3 we have dealt with a non-convex resource allocation opttion prob-
lem, known as the Maximum Variance Unfolding problem anddsvex dual the Fastest
Mixing Markov Process problem. Both optimization problehave been solved via the
same primal-dual distributed subgradient algorithm (Aitdon 5.2) with guaranteed con-
vergence, even in the case where errors are present in thrutations of the subgradients
(Theoremb.4). These errors are common if we consider a limited (and fixeaber of
communication rounds among the computing units. As a result proposed solution
is more suitable to be implemented in real-time. The scheasebleen demonstrated on
relevant sensor network applications and we have discyssesible extensions to mobile
robotic networks such as dispersion problems.

6.2 Recommendations for Future Work

A number of open research challenges and possible diresctmtackle them are pre-
sented in this section. First of all, we will discuss somecfffieitems, summarizing or
complementing the ones analyzed in the main chapters ohtrsést Then, we will give
recommendations on broader research possibilities.

Specific research questions arise from the problems antiemuve have presented in
this Thesis. These questions lead to tangible researcttidins that could broaden the
applicability of the proposed algorithms. The main challesiencompass the following.

e The solution of the dispersion problem using the methodsgmted in Chapter 5 (as
discussed in Chapter 5, Sectidrd). In this scenario, we want to move the robots as
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far as possible from each other while maintaining a presdrlbvel of connectivity.
Given a stacked vector of edge-weights at the discreteftime. w(k), the problem
can be formulated as a Fast Mixing Markov Process for eadhnetestimek, whose
solutions are the optimal weights at the discrete time1, i.e.,w(k + 1).

One challenge to be addressed is how to control the robothtewe the prescribed
value of communication weights(k + 1). We note that, although potential func-
tion methods could be in principle used as e(Gennaro and Jadbaba2®06 to
drive the robots to an approximated vector of weights + 1), guarantees that the
differencel|w(k + 1) — w(k + 1)|| stays below a given threshold are more difficult
to obtain.

e Robust Multi-Target tracking (as discussed in Chapter 4fi&e4.5). This chal-
lenge is related to the fact that in the problem formulatioh€hapter 4 (Prob-
lem 4.1and Problenmt.2) each agent knows the position of the neighboring agents
and targets. Considering that in practice this informatsotypically affected by
measurement and estimation errors, we could extend thdepnolormulation to
more realistic applications. As a result, the proposediligied algorithms (Al-
gorithm 4.1, and Algorithm4.2) have to be redesigned to be robust to estimation
errors.

e Constrained Consensus (as discussed in Chapter 2, S@dfjorOne of the main
limitations of current consensus algorithms is their itighio handle generic (non-)
convex constraints. Extending the consensus protocoliga@ase would increase
their potential in many applications, such as distributedlimear estimation.

e Optimization of the merging mechanism (Chapter 2, Algonith.1). We have il-
lustrated that the merging scheme does not take into cansiidle the correlation
among the local estimates. This may deliver, in some cirtamegs, “optimistic”
covariance matrices in the senseB#r-Shalom et al(2001). An optimization of
the merging mechanism (taking into account the correlattmuld lead to better
nonlinear estimation.

Besides these specific directions of investigation, thezeaaxumber of other (more high-
level) research questions that need our consideration.matter of fact, distributed esti-
mation, control, and optimization are a very dynamic andvagesearch fields that have
still many unsolved fundamental questions. Among thenvedriby the results and the
focus of this Thesis, we highlight the following researchlgems.

Distributed algorithms for convex optimization problems implementable in real-time

As we have discussed in this thesis, one of the limitationsuofent state-of-the-art dis-
tributed optimization algorithms is that they requiredtidre schemes that guarantee feasi-
bility of the solution with respect to the constraints ofterly asymptotically (i.e., assum-
ing an infinite number of iterations). This is impracticat the real-time implementations
of optimization-based controllers and estimators in rabhoetworks.

We have shown that real-time feasible (but sub-optimal)tsmis can be achieved in some
cases by using specific methods. In Chapter 4 we have usddnackfications of the
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global optimization problem and merging mechanisms to traosfeasible solutions. In
Chapter 5 we have enforced the feasibility of a subset of timstcaints into the iterations
of a fast iterative method. Among the other possible metivegelcould cite stochastic
incremental subgradient methodmansson et alR009 and constraint tightening tech-
nigues Poan et al.20117).

With the exception of our method presented in Chapter 4 {ghain-iterative but its appli-
cability is limited to the specified optimization proble#d-4.2), all these more general
algorithms are still iterative (although the iterates agasible) and an acceptable sub-
optimal solution might be achieved only after several tierss. As a result these ap-
proaches might not be implementable in realistic applicesj when fast and real-time
solutions are required.

We believe that the development of a general approach tafakteal-time feasible dis-
tributed solutions with an acceptable level of sub-optitpdbr constrained convex op-
timization problems is of fundamental importance for thgpiementation of control and
estimation schemes in realistic robotic networks.

Fusion of the parallel and distributed computation paradigms

In Chapter 3, we have seen the differences between the glarad distributed computa-
tion paradigms. The first divides the computations amorfgmit cores with the intention
to arrive at the same result of a standard sequential ceeladlgorithm. As a result, typ-
ically, parallel schemes still involve some kind of ceritzation via the presence of one or
more computing hubs that collect all the information confiragn the different cores. The
second paradigm, the distributed one, which we have emglimyeur proposed solution
(Algorithm 3.1), allows for some degree of “sub-optimality” in computitgtsolution and
restricts the communication exchange to occur only amoighbering cores. In this way,
no central data collection is needed, although the solugitypically less accurate than a
standard sequential centralized algorithm. Nonetheledbe case of Particle Filters, the
final accuracy of the estimation scheme depends on the totabar of particlegand on
the achieved sampling frequency, and this favors diseithethemes compared to parallel
ones. We believe that the investigation of similarities difiérences between parallel and
distributed paradigms, and eventually their fusion in @l&inmethodology, is essential to
implement more efficient, accurate, and real-time algorgh

Asynchronous algorithms

In all the chapters of this thesis, we have worked under theraption that the robots (or
sensors) were synchronized among each other. In this watheatomputations could
happen at the same time in the whole network. Although inggule, one could synchro-
nize the clocks of the robots, and one could do so even in aldistd way, Simeone
et al, 2008 Schenato and Fiorenti2011), in many realistic applications, especially for
large-scale systems, this synchronization would be raiimer demanding. Furthermore,
if the clocks drift from each other considerably, the symctization routine has to be kept
running in the background.
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Methods that could address the asynchronism of the netwodks have been studied
in different areas. For the context of this thesis we dieyd et al, 2006 Fagnani and
Zampierj 2008 Song et al.2009 Oreshkin and Coate201Q Hu et al, 2010 Mathews
and Durrant-Whyte2007, Xu et al, 2008 Tsitsiklis et al, 1986 Zhong and Cassandras
2008 Johansson et al2009 Ram et al. 2010 that study asynchronism in estimation,
control, and optimization algorithms.

We believe that a deeper analysis of the algorithms predémtais thesis, with the inten-
tion to extend them to asynchronous settings would incréeeseapplicability in realistic
scenarios. However, we also think that this extension ianaasy task when feasibility
of the optimization solution is required at each time step.

Beyond discrete-time models

Another main assumption in the thesis is that discrete-tivodels for the mobile agents,
or for the process to estimate, are available. This is oftenciase for mobile robots
that are controlled with digital control (as in the case ofuaicycle robot with discrete
velocity control described in Chapter 2, or the robotic aomtoolled in Chapter 3) and not
subjected to any external forces. In these robotic scesidtie methods presented in this
thesis are more than reasonable and can be applied reliabigonentioned discrete-time
models.

However, in many real cases, the robots are immersed innatteontinuous force fields
(as itis the case for autonomous underwater vehicles dlitese or the process we would
like to observe is in continuous-time. In these cases, thbaderivation of a (nonlinear)
discrete-time model could be rather demanding. Curreptared directions, in the field of
event-triggered and quantized control and estimationldcovercome this difficulty and
offer a way to design the distributed algorithm without tleed of a discrete-time model.
Examples of such approaches can be found in the workg/ah¢ and Lemmarn2009
2011, Mazo Jr. and Tabuaga011, Dimarogonas et 812012 De Persis and Frasc2012
De Persis and Bjayawardha2®13.

These rather new fields will be very important for designingrenreliable algorithms
specifically tailored to the real behavior of the underly@ognmunication network.
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Symbols and Abbreviations

General Notation

Fields

R Set of real numbers

Ry Set of non-zero real numbers

R Set of non-negative real numbers

Constants and I ndices

1,5,D,4
k,T

crerz

3

Indices indicating different devices and targets
Discrete time indices

Number of mobile or non-moving devices
Identity matrix of dimensiom x n

Null matrix of dimensiom x n

Column vector of dimension with all entriesl
Column vector of dimension with all entriesd

Operations on Vectors, Matrices, and functions

[lall Euclidean norm

l|a||% = a' Aa, whereq is a vector andi a positive definite matrix
of appropriate dimensions

(a, b) = a'b, wherea andb are vectors of appropriate dimension

Vaf(a) (Sub)gradient off with respect taz

a;(k) Value of the variable for the device at the discrete timé

da(k) =a(k) —alk—1)

® Kroenecker product

Ela] Expected value of

N(a, A) Gaussian distribution with meanand covariancel

Graphs

1% Node set

& Edge set
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162 Symbols and Abbreviations

g Graph,ie.g = (V,€)

L Laplacian of the graph

i Element;j of the Laplacian of the graph

A2 Algebraic connectivity

Amax Maximum eigenvalue of the Laplacian matrix
N; Neighbors set of agert

Nt N; U {i}

Dynamical Systems

X State vector

x Position vector

v Velocity vector

At Sampling time
Chapter 2

Symbolsin order of appearance
x(k +1) = f(x(k),w(k)) Nonlinear dynamical model

w Process noise

X, W, M, Constraint sets

z; Local measurements

z;(k) = gi(x(k)) + p;(k) Nonlinear measurement equation

i, P; Local estimate and covariance before agreement
%, P Local estimate and covariance after agreement
T Iteration number for the agreement process

W Consensus matrix

R;,Q Weight matrices

x"(0), P(0) Initial estimate and covariance

Ty e, @ (Approximated) cost functions

oy Dot Real and approximated arrival cost

Bk —T) Scaling factor

x™N(k —T), P™(k — T) Solution at the beginning of the moving window
Tw(W), 7, (1;)  PDFthat model process and measurement noise
(x(k —1)7,w(k —1)7) Particle-weight couple

p(x(k)|z(k)) A posteriori distribution

q(x(k)|z(k)) Proposal distribution

Abbreviations

MHE Moving Horizon Estimator
PF Particle Filter
UKF Unscented Kalman Filter

EKF Extended Kalman Filter
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Chapter 3

Symbolsin order of appearance

N Number of local filters
m Number of particles on each computing unit
t Exchanged particles
pi(x(k)|z(k)) Local approximation of the a posterigrbF
ﬁl@ (x(k)|z(k)) Local approximation of the a posteriebF usingt particles
D(p1,p2) KullbackLeibler (KL) divergence between the distributson
p1 andps
Chapter 4

Symbolsin order of appearance

w Weights for the edges of the Laplacian

dfj Square distance between ageand;

fa, fw Distance and weighting functions

P1, P2 Weighting function’s parameters

5 Optimization variable

e v Partial derivatives of; and f,,

A Linearizing operator, i.eNf(k) = f(k— 1) + Vfof(k)

AQq1,NQs Sets of constraints

Sro, Parameter set

U; Control input of agent

Ay, Ao, by (Block) elements of the matrices of the dynamical system of
agent;

U; Closed polytopic set in which, is constrained

H; h; Matrix and vector that describe the ét

u; (k) Lifted control input for agent

xi(k +1) = Di(xi(k), ui(k))

Short-hand notation for the discrete-time LTI dynamicatsy
tem of agent as used in the optimization problem

L{Z Z/fl X L{Z

Fis Faiy Foi Invariant sets for the optimization problem

TJi Enlarged neighborhood set of cardinality

n; Size of the enlarged neighborhood set

L; ;& n,;, Xg,, ug, Variables referring to the enlarged neighborhood set
a Local version of the variable, set, or dynamical system
i Local optimization variable

oF Set of constraints

Xij, Uij State or control of the agefitas computed by the agent
Ji Set: {p|i € 7}

S; Constant of a positive linear combination

5 SV | si, assumed to bg 1
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Symbols and Abbreviations

Ti
Oq

Zpeji*mjj* 5p

Local solutions defined ird(45

Local solutions defined in Definitioh.2and4.3
Local sub-optimality measures

Number of targets

Position vector of the targets

Worst case position vector of the targets

Input associated to target

Maximal velocity for agent

Maximal velocity associated to target

Set of reachable positions at timhdor targetq

Set that collects the agents that see tagget
Visual weight function

Visual weight

Support of the functiorf

Constant relative weights in the optimization problems
Optimization variable

Partial derivative of the visual weighting function
Decrease of detection quality due to targets’ motion, Defini
tion4.4

Set of all the targets that ageiis aware of
Enlarged neighborhood set for target

x(k +1) = Ax(k) + Bu(k)

Chapter 5

Standard form for a discrete-time LTI dynamical system

Symbolsin order of appearance

T

fir gijy hi
thot o
X, X, X, M
L

v, €

1

aopt

a*

-

e

Pal]

w

a, 3

p

z

Nodal optimization variable
Non-strictly convex functions

Total resource vector

Convex constraint sets

Lagrangian function

Regularization parameters

Dual variable ofr

Optimal value of the variable
Optimal value of the variable in the regularized problem
Iteration counter

Value of the variable at the iteration
Projection on the set, e.9.Pg, [/]
Weight matrix

Step-sizes

Lagrangian multiplier

Stacked vectofz ", )T
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p

®(2)
We
F,G,
Mg, M,
®

Fg

C

K
Y

Lagrangian multiplier

Mapping(V,L(2) ", =V,.L(2) ") "

=W ®I,

Lipschitz constants of the gradients pandg,
Bounds on the gradient gfand on the dual variable
Strong monotonicity constant of the functién
Lipschitz constant of the functioh

= max(BAmax (W), 1)

=p - F<I> (BAmax(W) - 1)

Position of the target

Bound associated with the edge;)

Matrix optimization variable

Weight for the edge, j

Cost of the MVU problem

Eigenvector associated o

Vector defined in%.39

Bounds on the maximal value of the subgradient
Running average af(™)

e-subgradient off with respect ta:

Level of error in the subgradient calculations
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Summary

Distributed Estimation and Control for Robotic Networks

Andrea Simonetto

obile robots that communicate and cooperate to achieve anconask have been

the subject of an increasing research interest in recemgsy&ese possibly het-
erogeneous groups of robots communicate locally via a camgation network and there-
fore are usually referred to asbotic networks Their potential applications are diverse and
encompass monitoring, exploration, search and rescuelisaster relief. From a research
standpoint, in this thesis we consider specific aspectteckta the foundations of robotic
network algorithmic development: distributed estimaticontrol, and optimization.

The word “distributed” refers to situations in which the peoating robots have a limited,
local knowledge of the environment and of the group, as ogghés a “centralized” sce-

nario, where all the robots have access to the completenmaftion. The typical challenge
in distributed systems is to achieve similar results (im®of performance of the estima-
tion, control, or optimization task) with respect to a catired system without extensive
communication among the cooperating robots.

In this thesis we develop effective distributed estimatimontrol, and optimization algo-
rithms tailored to the distributed nature of robotic netk#r These algorithms strive for
limiting the local communication among the mobile robotsprder to be applicable in
practical situations. In particular, we focus on issueatezl to nonlinearities of the dy-
namical model of the robots and their sensors, to the coivitgatf the communication

graph through which the robots interact, and to fast feassblutions for the common
(estimation or control) objective.

First, we investigate a nonlinear state estimation problgama stationary robotic net-
work (often referred to as “sensor network”). Typically,thre distributed setting, only
linear time-invariant processes have been consideredivdet by the number of appli-
cation scenarios where such a linear model would not be adegwe instead present a
unified way of describing distributed implementations afiffeommonly used nonlinear
estimators: the Moving Horizon Estimator, the Particléd¥jlthe Extended and Unscented
Kalman Filter. Making use of the unifying framework, we poge new distributed ver-
sions of these methods, in which the nonlinearities ardljpnsmnaged by the various sen-
sor nodes and the different estimates are merged, based eiglted average consensus
process. We show how the merging mechanism can handledfifféiitering algorithms
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implemented on heterogeneous sensors, which is espassaifyl when they are endowed
with diverse local computational capabilities.

As a second step, we focus on methods that reduce the highutatiomal requirements
of the mentioned nonlinear estimators by distributing tbeputations among different
computing devices communicating with one another. We aiatetver real-time imple-
mentable solutions for the nonlinear estimation task, tieen be used in realistic robotic
networks. In particular, we propose parallel, networkeanfalations of Particle Filters
and investigate how they can be implementedsew-architectures, for real-time control
or monitoring applications. We validate our approach vipezimental and numerical
results which support the idea that real-time nonlineamesgton is achievable by a suit-
able adaptation of the Particle Filter algorithm and widalgilable parallel computing
platforms.

Then, we turn our attention to investigating distributeahtcol problems related to the
connectivity of the communication network among the robaigically in the available
literature, this has been considered to be guaranteed aildlze by assumption rather
than being seen as an objective to be reached via distrilootetdol actions. In addition,
the concept of “how well-connected” the robotic networkhas often been overlooked,
whereas this property can significantly improve the perforoe (e.g., the convergence
rate) of the distributed algorithms that run on the netwdrkthis respect, we formulate
a control problem leading to the maximization of the conwégtof the robotic network
measured by the so-called algebraic connectivity of theorkt graph. We propose a non-
iterative and feasible (thus implementable in practicilagions) distributed solution to
this problem which moves the mobile robots in more favorglolsitions in terms of con-
nectivity. This distributed solution is based on a sequefitgcal Semi-Definite Programs
(SDP) formulated using state-dependent graph Laplaciashen proceed to extend and
utilize the presented distributed method to tackle the leralof collectively tracking a
number of moving targets while maintaining a certain lede&lannectivity among the net-
work of mobile robots. Numerical simulations show the perfance of the distributed
algorithms with respect to the centralized solutions.

Finally, we focus on convex and non-convex networked opttidn problems with re-
source allocation constraints, which can be used in r@atigbotic network applications
where the mobile or non-moving robots share the same res®araong each other. We
propose a regularized saddle-point algorithm for convéwaokked optimization problems
with resource allocation constraints. Standard subgnadiethods suffer from slow con-
vergence and require excessive communication when apigdoblems of this type.
Our approach offers an alternative way to address thesdepngband ensures that each
iterative update step satisfies the resource allocatiost@ints. Then, we investigate a
particular non-convex networked resource allocation f@mob known as the Maximum
Variance Unfolding problem and its dual, the Fastest Mixiigrkov Process problem.
These problems are of relevance for sensor networks andemolbiot applications. We
solve both these problems with the same distributed promal-subgradient iterations
whose convergence is proven even in the case of approximetiors in the calculation of
the subgradients (which is of practical importance for gatieg real-time solutions). Fi-
nally, we illustrate the importance of the presented athors for target tracking in robotic
networks, localization, and dispersion problems.



Samenvatting

Gedistribueerde Schatting en Regeling voor Robotnetwerke

Andrea Simonetto

obiele robots die communiceren en samenwerken om een gsohegpelijke taak

te vervullen zijn de afgelopen jaren in een toenemende weteppelijke belang-
stelling komen te staan. Deze mogelijkerwijs heterogeoemgn robots communiceren
lokaal via een communicatienetwerk en worden daarom valastnetwerkergenoemd.
Hun potentiéle toepassingen zijn divers en omvatten otmtwverkenning, opsporing en
redding en hulp bij calamiteiten. Vanuit een onderzoeksktant beschouwen we in dit
proefschrift specifieke fundamentele aspecten gerethtssat de ontwikkeling van algo-
ritmes voor robotnetwerken: gedistribueerd schatterelezgen optimaliseren.

Het woord “gedistribueerd” verwijst naar situaties waatésamenwerkende robots be-
schikken over beperkte lokale kennis over hun omgeving en de groep, dit in tegen-
stelling tot een “gecentraliseerd” scenario waarin alleote volledige informatie tot hun
beschikking hebben. Een kenmerkende uitdaging in gelisterde systemen is om ver-
gelijkbare resultaten (in termen van de prestatie van datsofs-, regel- of optimalisa-
tietaak) te behalen als in een gecentraliseerd systemergndotschalige communicatie
tussen de samenwerkende robots.

In dit proefschrift ontwikkelen we effectieve gedistrilmrde schattings-, regel- en optima-
lisatiealgoritmes toegesneden op het gedistribueerdekiarvan robotnetwerken. Deze
algoritmes streven naar een beperkte communicatie tussaohbliele robots om zo toepas-
baar te zijn in praktische situaties. In het bijzonder gehive ons op kwesties gerelateerd
aan de niet-lineariteiten in de dynamische modellen waardgerobots en hun sensoren
beschreven worden, aan de connectiviteit van de commietcaaf die ten grondslag ligt
aan de communicatie tussen de robots en aan snelle, haaflassingen voor het ge-
meenschappelijke (schattings- of regel-)doel.

Allereerst onderzoeken we een niet-lineair toestandsngaprobleem in een stationair
robotnetwerk (vaak een “sensornetwerk” genoemd). In eéisgyioueerd kader zijn tot
op heden vaak slechts lineaire, tijdinvariante processschopuwd. Gemotiveerd door
het aantal scenario’s waarin een dergelijk lineair modetl twiereikend zou zijn, presente-
ren we een algemene manier om gedistribueerde implementatn vier gangbare niet-
lineaire schatters te verkrijgen: t8doving Horizonschatter, heParticle Filter, hetExten-
ded Kalman Filteren hetUnscented Kalman Filter Gebruik makend van dit algemene
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raamwerk, doen we voorstellen voor nieuwe gesdistribieeeadianten van deze metho-
des waarin de niet-lineariteiten lokaal door de versahikesensorknooppunten geregeld
worden en waarbij de verschillende schattingen samengeweerden, gebaseerd op een
consensusproces via het gewogen gemiddelde. We laten aéehet samenvoegingsme-
chanisme om kan gaan met verschillende filteralgoritmegeiimplementeerd zijn op he-
terogene sensoren, wat in het bijzonder bruikbaar is in &ée&tlgle lokale rekenvermogens
van deze sensoren van elkaar verschillen.

Als tweede stap richten we ons op methodes die de zware redadtkisen van de ge-
noemde niet-lineaire schatters reduceren door de berg@miie verdelen over verschil-
lende rekenapparaten die met elkaar communiceren. Onsigloghl-time implemen-
teerbare oplossingen te leveren voor de niet-lineairetSopataak, die gebruikt kunnen
worden in realistische robotnetwerken. We stellen voorlaknparallelle, genetwerkte
formuleringen voor van Particle Filters en onderzoekendem®e geimplementeerd kun-
nen worden opsPuU-architecturen voor real-time regel- of monitoringtoegpiagen. We
valideren onze benadering op basis van experimentele eaneka resultaten die het idee
ondersteunen dat real-time niet-lineaire schatting kbesir wordt door passende modifi-
caties van het Particle Filter algoritme en goed verkrijghzarallelle rekenplatforms.

Vervolgens richten we onze aandacht op het onderzoekeneadistgbueerde regelpro-
blemen in relatie tot de connectiviteit van het communéeatiwerk tussen de robots on-
derling. In de literatuur wordt veelal verondersteld dateleonnectiviteit gegarandeerd
aanwezig en bekend is, in plaats van beschouwd te wordemrmaldazl, te bereiken via
gedistribueerde regelacties. Bovendien wordt “hoe goei@dimg verbonden” het robot-
netwerk is vaak over het hoofd gezien, terwijl deze eigeapale prestaties (bv. de con-
vergentiesnelheid) van gedistribueerde algoritmes dibegmetwerk draaien significant
kan verbeteren. In dit kader formuleren we een regelprobleat leidt tot maximalisa-
tie van de connectiviteit van het robotnetwerk, uitgedinlde zogenaamde algebraische
connectiviteit van de netwerkgraaf. We stellen een negaitieve en haalbare (dus im-
plementeerbaar in praktische situaties) gedistribuesptiEssing voor dit probleem voor,
die de mobiele robots doet verplaatsen naar gunstiger¢igsosi termen van connec-
tiviteit. Deze gedistribueerde oplossing is gebaseerdavpreeks lokale semidefiniete
programma’s uitgedrukt met behulp van toestandsafhgk&edlaplacianen van de graaf.
Vervolgens breiden we deze gedistribueerde methode uiebruiken deze om het pro-
bleem op te lossen waarbij een aantal bewegende doelent@flgevolgd dient te worden
terwijl een zekere connectiviteit tussen de mobiele robetsaarborgd blijft. Numerieke
simulaties tonen de prestaties van de gedistribueerdetahgs aan in vergelijking met de
gecentraliseerde oplossingen.

Ten slotte concentreren we ons op convexe en hiet-convdkaalisatieproblemen met
beperkingen op de toewijzing van rekenkracht, die gebkuikhen worden in realistische
robotnetwerktoepassingen waar de mobiele of vaste rolotheeveelheid rekenkracht
onderling delen. We stellen een geregulariseerd zadefgorttme voor waarmee con-
vexe optimalisatieproblemen in netwerkverband kunnemeoopgelost met beperkingen
op de toewijzing van rekenkracht. Standaard subgradiétiimales lijden onder trage con-
vergentie en vereisen een grote hoeveelheid communicatieeer deze toegepast worden
op problemen van dit type. Onze benadering biedt een atteveananier om deze proble-
men aan te pakken en garandeert dat elke iteratieve c@stagtiaan de beperkingen op de
toewijzing van rekenkracht voldoet. Daarna onderzoekenavespecifiek niet-conves-
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source allocatiorprobleem in netwerkverband, bekend als Meiximum Variance Unfol-
ding probleem en het duale probleem hiervan, et Mixing Markov Procesgrobleem.
Deze problemen zijn relevant voor sensornetwerken en $s@pgen met mobiele robots.
We lossen beide problemen op met dezelfde primaire-dudlgradiéntiteraties waarvan
de convergentie bewezen is, zelfs in het geval van benapifouten in de berekening van
de subgradiénten (hetgeen van praktisch belang is vogemetreren van real-time oplos-
singen). Tot besluit illustreren we het belang van de bdspralgoritmes for het volgen
van bewegende doelen in robotnetwerken, lokalisatie gredigeproblemen.
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Stima e Controllo Distribuiti per Reti di Robot

Andrea Simonetto

Robot che comunicano e cooperano tra loro per realizzare isgane comune so-
no un soggetto di ricerca di crescente interesse. Quegipgdi robot, talvolta di
tipologie differenti, comunicano tra loro localmente swauate di comunicazione e sono
chiamati “reti di robot” per questo motivo. Le loro possilaipplicazioni sono molteplici
e comprendono il monitoraggio, I'esplorazione, la riceitaalvataggio e il soccorso in
caso di disastri. Da un punto di vista scientifico, in quessadi sono prese in considera-
zione le fondazioni teoriche del progetto di algoritmi peti di robot: stima, controllo ed
ottimizzazione distribuiti.

Il termine “distribuito” denota la situazione in cui i roblednno una conoscenza parziale e
locale dell'ambiente circostante e del gruppo di robot agircooperano, al contrario dello
scenario “centralizzato” in cui tutti i robot hanno a disizame un’informazione comple-
ta. Nell'ambito dei sistemi distribuiti, la sfida ritenutBigomune & di ottenere risultati pa-
ragonabili a quelli un sistema centralizzato in terminitidihg, controllo ed ottimizzazione
senza un utilizzo eccessivo di comunicazioni tra i robotl@eooperazione.

In questa tesi si sono sviluppati algoritmi efficienti peistana, il controllo e I'ottimiz-
zazione. Gli algoritmi sono specificamente progettati pendtura distribuita delle reti
di robot e, per essere applicabili a situazioni realistidingitano le comunicazioni intra-
robot. In particolare, ci si € soffermati sulle problerohé riguardanti le nonlinearita del
modello dinamico dei robot e dei loro sensori, la connattidel grafo di comunicazione
attraverso cui i robot comunicano, e la generazione veloseldzioni ammissibili per i
problemi analizzati.

In primo luogo, si & studiato il problema della stima di umogesso nonlineare attraverso
una rete di robot stazionari (nota anche come “rete di séhsarquanto in ambito distri-
buito, solo processi lineari tempo-invarianti erano gpadisi in considerazione. Motivati
dal gran numero di scenari applicativi in cui tali modeltidari non sono adeguati, si & pre-
sentato un metodo unificato per descrivere implementadistribuite di quattro stimatori
nonlineari di comune utilizzo: lo Stimatore ad Orizzonte e (Moving Horizon Esti-
maton), il Filtro Particellare Particle Filter) ed il Filtro di Kalman Esteso ednscented
Utilizzando tale approccio unificato, si sono introdottewelversioni distribuite di questi
metodi, in cui le nonlinearita sono gestite localmenteva@ai nodi sensore e le diverse
stime sono fuse in base ad un processo di consenso a media. f&isa inoltre mostrato
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come i meccanismi di fusione delle stime sono in grado diigediversi algoritmi di fil-
traggio implementati su sensori eterogenei. Questo é&pltmente utile quando la rete
di sensori & formata da sensori con diverse capacita ctaripnali.

In secondo luogo, ci si & concentrati su metodi che ridudteievato costo computa-
zionale degli stimatori nonlineari sopra elencati distebdo le operazioni su processori
differenti comunicanti tra loro. Lo scopo era la generagiomtempo reale di soluzioni
per il problema di stima nonlineare, soluzioni che possaser utilizzate in reti di robot
realistiche. In particolare, si sono proposte versionalele e distribuite del Filtro Par-
ticellare, e si sono investigate le loro possibili implet@aioni su architetture basate su
GPU, per applicazioni di controllo e di monitoraggio in tempalee L'approccio € stato
poi verificato attraverso studi numerici e sperimentalilcaeno confermano la possibilita
della stima nonlineare in tempo reale tramite un’oppormndifica del Filtro Particellare
e l'utilizzo di comuni piattaforme per il calcolo parallelo

In seguito, ci si & interessati allo studio di problemi dhtrollo distribuito riguardanti
la connettivita della rete di comunicazione tra i robot.i Netodi disponibili al giorno
d’oggi, la connettivita € spesso data per garantita oraastome ipotesi, piuttosto che
vista come un obiettivo da raggiungere attraverso aziooodirollo distribuito. Inoltre, il
concetto di “quanto” una rete € connessa € spesso ignanatutre questa proprieta pud
migliorare in modo significativo le prestazioni (per esempirdine di convergenza) di
un algoritmo distribuito che viene eseguito da una rete. dstpriguardo, si € formulato
un problema di controllo che porta alla massimizzazion&ad=innettivita di una rete di
robot misurata dalla cosiddetta connettivita algebrigbgilafo di rete. Si & poi proposta
una soluzione distribuita non iterativa e ammissibile @pezsto motivo implementabile in
situazioni reali) che guida i robot in una configurazione faivorevole in termini di con-
nettivitd. Questa soluzione distribuita si basa su unaeezp di Problemi Semi-Definiti
locali formulati usando Laplaciani di grafo dipendentildadosizioni dei robot. In seguito
si € proceduto all'estensione e I'utilizzo del metodondistito precedentemente sviluppa-
to al problema dell'inseguimento collettivo di un numerabiettivi mobili mantenendo
un certo livello di connettivita tra i robot nella rete. Sitazioni numeriche hanno mostrato
le prestazioni degli algoritmi distribuiti rispetto a seiani centralizzate.

Per finire, si sono considerati problemi di ottimizzaziooewessi e non convessi su re-
ti con limiti imposti alle risorse disponibili. Per prima &, si € proposto un algoritmo
a punto di sella regolarizzato per problemi convessi corsigugpo di vincoli. Metodi
standard basati sul sub-gradiente soffrono di convergiemta e necessitano di comuni-
cazioni eccessive in questi casi. L'approccio presenttfite mvece un metodo alternativo
di risolvere questo problema vincolato e garantisce ché aggiornamento iterativo ri-
spetti il limite sulle risorse disponibili. In seguito,einvestigato un particolare problema
non-convesso di distribuzione di risorse su rete, noto dorBpiegamento a Massima Va-
rianza Maximum Variance Unfoldinj il suo duale, il Processo di Markov a Mischiaggio
piu Veloce fFastest Mixing Markov ProcelsQuesti problemi sono rilevanti per applica-
zioni con reti di sensori e robot mobili. Si sono risolti erthi i problemi con lo stesso
metodo primale-duale distribuito basato su sub-grand&nti convergenza e stata dimo-
strata anche nel caso di errori di approssimazione nelleade sub-gradienti (il che & di
importanza pratica per la generazione di soluzioni in temgade). Infine, si & dimostra-
ta I'importanza degli algoritmi presentati per problemindbnitoraggio, localizzazione e
dispersione in reti di robot.
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“When one door closes another door opens;
but we often look so long and so regretfully upon the closeatr,do
that we do not see the ones which open for us.”

Alexander Graham Bell
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