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Multivariate statistical analysis was applied to investigate the dependencies and underlying patterns
between N,O emissions and online operational variables (dissolved oxygen and nitrogen component
concentrations, temperature and influent flow-rate) during biological nitrogen removal from wastewater.
The system under study was a full-scale reactor, for which hourly sensor data were available. The 15-
month long monitoring campaign was divided into 10 sub-periods based on the profile of N,O emis-
sions, using Binary Segmentation. The dependencies between operating variables and N;O emissions
fluctuated according to Spearman's rank correlation. The correlation between N,0O emissions and nitrite
concentrations ranged between 0.51 and 0.78. Correlation >0.7 between N,O emissions and nitrate
concentrations was observed at sub-periods with average temperature lower than 12 °C. Hierarchical k-
means clustering and principal component analysis linked N,O emission peaks with precipitation events
and ammonium concentrations higher than 2 mg/L, especially in sub-periods characterized by low N,O
fluxes. Additionally, the highest ranges of measured N,O fluxes belonged to clusters corresponding with
NO3-N concentration less than 1 mg/L in the upstream plug-flow reactor (middle of oxic zone), indicating
slow nitrification rates. The results showed that the range of N,O emissions partially depends on the
prior behavior of the system. The principal component analysis validated the findings from the clustering
analysis and showed that ammonium, nitrate, nitrite and temperature explained a considerable per-
centage of the variance in the system for the majority of the sub-periods. The applied statistical methods,
linked the different ranges of emissions with the system variables, provided insights on the effect of
operating conditions on N,O emissions in each sub-period and can be integrated into N,O emissions data
processing at wastewater treatment plants.

© 2018 Published by Elsevier Ltd.

1. Introduction

internal emissions generated by the use of imported energy to the
plants, and (iii) the indirect external emissions associated with the

The increasing demand to reduce the carbon footprint of
municipal wastewater treatment plants (WWTPs) by reducing
greenhouse gas (GHG) emissions and energy consumption, is
posing new challenges for the water industry (Flores-Alsina et al.,
2014). The climate change pressures prompt the quantification
and minimization of GHG emissions generated in WWTPs (Haas
et al., 2014). Three main sources of GHG emissions prevail in
WWTPs (Monteith et al., 2005; Mannina et al., 2016): (i) the direct
emissions mainly linked to biological processes, (ii) the indirect

* Corresponding author.
E-mail address: evina.katsou@brunel.ac.uk (E. Katsou).

https://doi.org/10.1016/j.watres.2018.04.052
0043-1354/© 2018 Published by Elsevier Ltd.

sources that are controlled outside the WWTPs (e.g. chemicals
production, disposal of sewage sludge, transportation). The GHGs
emitted into the atmosphere from biological wastewater treatment
processes are carbon dioxide (CO,), methane (CH4) and nitrous
oxide (N20) (Kampschreur et al., 2009b).

With the potential contribution of 265 times more than CO; for
a 100-year time horizon to global warming (IPCC, 2013), N,O is a
potent GHG and the most significant contributor to ozone depletion
(Ravishankara et al., 2009). WWTPs are significant generators of
N,O and are responsible for 3.1% of the N,O emissions in Europe
(EEA Report, 2017). N2O is generated mainly during the autotrophic
nitrification and heterotrophic denitrification (Kampschreur et al.,
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Abbreviations

AOR Ammonia oxidation rate
CHy Methane

CO, Carbon dioxide

DO Dissolved oxygen

GHG Greenhouse gas

N,O Nitrous oxide

NH4-N Ammonium nitrogen

NO»-N Nitrite nitrogen

NOs-N Nitrate nitrogen

PC Principal component

PCA Principal component analysis
PLS Partial least squares

TN Total nitrogen

WWTP  Wastewater treatment plant

2008) and can contribute up to 78% (Daelman et al., 2013) of the
footprint of a WWTP's operation. Recent studies have focused on
the understanding, quantification, control and minimization of N,O
emissions (Aboobakar et al., 2013; Mampaey et al., 2016; Pan et al.,
2016). However, several studies have resulted in contradicting
findings on the influence of operating and environmental variables
on N,O generation (Liu et al, 2016; Massara et al.,, 2017). For
instance, several studies have reported increasing N>O emissions
with decreasing DO concentrations during nitrification
(Kampschreur et al., 2009b). However, Rodriguez-Caballero et al.
(2014) found that N,O emission profiles in a full-scale biological
reactor did not change even for DO variations higher than 1.5 mg/L.
The latter, was attributed to the high nitrification efficiency and the
potential biomass adaptation to continuously varying DO concen-
trations. Results from real-field N,O monitoring campaigns cannot
fully explain long-term causes of N,O emissions and the combined
effect of operating, environmental and external factors that influ-
ence the biological systems (Jonsson et al., 2015). Long-term full-
scale monitoring campaigns have shown that N,O fluxes are highly
dynamic with significant diurnal fluctuations and seasonal varia-
tions; however, the dynamics cannot be fully explained (Daelman
et al., 2015; Kosonen et al., 2016).

Several mechanistic process models describing N,O emissions
from wastewater treatment plants have been developed over the
last few years (Massara et al., 2017). While they have been suc-
cessfully applied to identify N,O formation mechanisms and
pathways from experimental data (Ni et al., 2015; Pocquet et al.,
2016), their calibration and validation to long-term process data
remains a challenge. Domingo-Félez and Smets (2016) reported
that substrate affinity constants for NO, and NO reduction in
existing N,O models differ by a factor of about 100. Additionally,
calibration of models under specific operational conditions (i.e. dry
weather) can affect their performance and accuracy when the
system varies (Gernaey et al., 2004; Guo and Vanrolleghem, 2014).
Moreover, full-scale N,O emission data show long-term trends that
cannot be explained by commonly available operational data
(Daelman et al., 2015) but are possibly caused by microbial popu-
lation changes, which are hard to catch with the current models,
typically describing single functional groups with fixed parameter
sets. Multivariate statistical techniques are capable of identifying
relationships between N;O emissions and a multitude of influ-
encing factors, at the same time identifying various operating sub-
periods for which this behaviour may differ. This will lead to
increased understanding of experimental data, on its turn facili-
tating the application, calibration and validation of mechanistic

models. As such, multivariate statistical techniques maximize the
information acquired from N;O monitoring campaign data.

Statistical techniques have been used for the analysis of data
from full-scale monitoring campaigns, to identify interconnections
between operating and environmental variables on the one hand
and N»O formation on the other hand. Through multiple linear
regression analyses, Aboobakar et al. (2013) showed dependencies
between N,O emissions and nitrogen load, temperature and dis-
solved oxygen (DO) in various compartments of a plug-flow reactor
for biological nitrogen removal. Multi-regression analysis of one
year of data with bi-monthly sampling frequency, coming from a
full-scale SBR (Sun et al., 2013) indicated negative correlation be-
tween N,O emissions and temperature, while COD/N ratio lower
than 6 resulted in higher emissions. Brotto et al. (2015) used
Spearman's rank correlation to explain the behavior of N,O emis-
sions in an activated sludge process. The analysis showed negative
correlation between N,O emissions and pH but positive correlation
between N,O fluxes and temperature. However, most of the studies
did not consider continuous long-term operational data, while
further analysis is required to gain a better understanding on the
dynamics and trade-offs between N,O generation and the online
monitored and controlled process variables.

Multivariate analysis has been proven to be a suitable method
for the identification of patterns and hidden relationships within
WWTP data (Rosén and Lennox, 2001) and can be applied to pro-
vide insights on the combined effect of operational variables on
N,0 emissions in full-scale systems. Chemometric techniques have
been applied to the wastewater treatment sector for 40 years
(Rosén and Olsson, 1998), enabling the visualization and interpre-
tation of the multi-dimensional interrelations of the operational
variables monitored in biological processes (Platikanov et al., 2014).
Their application can (i) improve the efficiency of process moni-
toring (Mirin and Wahab, 2014) and provide further insights of the
biological processes (Moon et al., 2009), (ii) identify and isolate
process faults (Haimi et al., 2016; Liu et al., 2014; Maere et al., 2012;
Rosen and Yuan, 2001), and sensor faults (Lee et al., 2004), and iii)
predict significant operating variables in the biological systems that
affect performance (Rustum et al., 2008). Furthermore, the gradual
implementation of online sensors to monitor important parameters
in the biological treatment train of WWTPs results in the produc-
tion of time series, which require the application of specific sta-
tistical tools for their interpretation. The most widely applied
approaches include methods aiming to reduce the dimensionality
of large data-sets (i.e., principal component analysis (PCA), partial
least squares (PLS)) and data clustering techniques (i.e., hierarchical
clustering, k-means clustering) (Haimi et al., 2013). However, there
are limited studies investigating the behavior of N,O emissions
with the application of multivariate statistical techniques, espe-
cially utilizing online operational data in long-term monitoring.

The aim of this work is to investigate whether widely applied
multivariate statistical techniques can be applied to the online data
collected from real-field NO monitoring campaigns in order to
gain a better understanding on the dynamic behavior of N,O
emissions and explain the combined effect of the operating vari-
ables monitored in wastewater treatment processes on N,O emis-
sions. Hourly data from the operating variables monitored online
and N,O emissions data in a full-scale carrousel reactor from the
long-term monitoring campaign published by Daelman et al. (2015)
were used for the analysis. A statistical methodological approach
was developed, applying changepoint detection techniques to
identify changes in the N,O fluxes behavior combined with hier-
archical k-means clustering and PCA, to provide insights on N,O
emissions patterns and generation pathways.
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2. Materials and methods
2.1. Process description and data origin

This work was based on the data obtained by Daelman et al.
(2015) for the Kralingseveer WWTP, consisting of a plug-flow
reactor followed by two carrousel reactors in parallel (Fig. 1). The
plant treated 80.000 m>d~! of domestic wastewater from a com-
bined sewer system. The carrousel reactors were characterized by
alternating anoxic/oxic zones; aeration was performed through
surface aerators, which were manipulated to control the ammo-
nium concentration in the effluent. Aerator 1 operates under on/off
pattern, being on when the ammonium concentration was higher
than 1.2 mgN/L), while surface aerators 2 and 3 were always
operational to keep the solids from settling but operated at
maximum capacity when the ammonium concentration became
higher than 0.6 and 0.9 mg/L, respectively. Over the monitoring
period the average total nitrogen (TN) removal efficiency was
81 + 10%; the average COD removal efficiency was equal to 87 + 5%.

Ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N) and DO
were monitored in the middle of the second oxic zone in the plug
flow reactor (location 1, Fig. 1). The carrousel reactors were
equipped with, NH4-N, temperature probes, and 3 DO probes (DO1,
D02, DO3) (locations 2, 3, 4, Fig. 1). The Northern carrousel reactor
was also equipped with a nitrite probe. All the reactors were
covered, and the off-gas was collected in ducts and pumped to a
Servomex gas analyzer, where N,O was measured. Table S1 lists all
the variables monitored online (Supplementary material). The data
matrix developed consists of the variables monitored in the
carrousel reactor (DO, NH4-N C, NO3-N C, NO»-N C, N,O C), the
influent flow-rate, as well as the NH4-N and NO3-N concentrations
from the plug-flow reactor. 24 h composite samples of influent and
effluent, available about every 6 days, were used to support the
analysis. Fig. 2, summarizes the methodological framework applied
to the online database.

2.2. Methodological framework for data analysis

The monitoring period was divided into distinct sub-periods
based on the profile of N,O fluxes in the carrousel reactor. Spear-
man's correlation analysis, k-means clustering, hierarchical clus-
tering, and Principal component analysis were applied to the
database. The application of clustering algorithms facilitated the
identification of operational modes that have historically resulted
in specific ranges of N,O emissions. The PCA reduced the dimen-
sionality of the data-set transforming the sensor signals into useful
knowledge that that can be easily interpreted. The methodological
framework is extensively described in the following sub-sections.

The data-driven approach enabled the utilization of the infor-
mation and patterns embedded in the real-time monitored vari-
ables (from the system sensors) in the biological processes and
GHG measurements. Multivariate statistical analysis is an alterna-
tive to univariate analysis that is commonly applied for the analysis
of WWTP data. It enables the identification of patterns and in-
terrelations in data-sets by examining multiple variables simulta-
neously (Olsson et al., 2014). R software was used for the statistical
analysis (R Core Team, 2017). The complete list of packages used is
provided in the supplementary material (Table S2).

2.2.1. Preliminary data processing

The preliminary data analysis included: (i) data synchronization
under the same time-stamp, and ii) removal of duplicate and un-
reliable measurements (multiple readings at the same time stamp
for the same sensor). The data were aggregated into hourly aver-
ages in order to compensate for the missing data due to variation in
sampling frequency between the different variables monitored.
Exponential moving average imputation was applied when less
than 24 consequential data were missing for each variable. Longer
periods of missing data were excluded from the analysis.

2.2.2. Binary segmentation changepoint detection
Given a series of data, change point analysis investigates abrupt
changes in a data-series when specific properties change (i.e., mean

i1 =
; =
Aerated zone [t Selector
=
Anoxic zone =
Retom Primary/
studge sludge
Location Probes
1 NH,-N, NO;-N, DO
2 DO1, TSS
3 DO2, Temperature
4 DO3, NH,-N, NO;-N, NO,-N
4% DO3, NH,-N, NO;-N

Fig. 1. Layout of Kralingseveer WWTP with Plug-flow and Carrousel reactors, adapted from Daelman et al. (2015).
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Fig. 2. Methodology followed in the current study for data processing and visualization.

and variance) (Kawahara and Sugiyama, 2012). The Binary Seg-
mentation (Scott and Knott, 1974) is a widely applied and compu-
tationally efficient changepoint detection algorithm (Killick et al.,
2012). The algorithm employs initially single changepoint detec-
tion method to the complete data-set as described in (Killick and
Eckley, 2014). If a changepoint is identified the procedure is
repeated to the two new segments formed; before and after the
changepoint. The process continues splitting the data until there
are no more changepoints identified. The computational cost of the
algorithm is of the order of O(nlog n) with n being the number of
data in the data-set and therefore it is applicable in large data-sets.
A distribution-free test statistic was applied based on the work of
Chen and Gupta (1997). The penalty for the changepoints identifi-
cation was equal to log(n). The algorithm requires independent
data points. Therefore, first difference transformation of the N,O
timeseries was performed and changes in variance were identified
by the Binary segmentation algorithm. The profile of the N,O
emissions was highly variable during the monitoring campaign.
Binary segmentation enabled the identification of the sub-periods
characterized by different N,O emissions’ profile.

2.2.3. Spearman's rank correlation

Spearman's rank correlation coefficient (Spearman, 1904) was
used to detect bivariate temporal monotonic trends among the
system variables for the different sub-periods; it served as a mea-
sure of the association strength. This method is based on the rank of
the values and therefore, is less sensitive to outliers than Pearson's

correlation. P values lower than 0.01 were considered to be
significant.

2.2.4. Hierarchical k-means clustering

Clustering techniques are widely applied in data mining in order
to identify and group the underling patterns that exist in high
dimensional data sets (Jain, 2010). K-means clustering (Hartigan
and Wong, 1979) is a recognized clustering algorithm (Haimi at
al., 2013). K-means clustering was applied to categorize the data
in groups of similar observations and to investigate the patterns of
N,O emission fluxes, based on Euclidean distance. K-means algo-
rithm begins with the selection of k random centroids of the same
dimension within the original data. All the data-points are
compared and assigned to the nearest centroid. During each iter-
ation, the nearest data to each centroid are re-defined and cen-
troids are recalculated in a way that squared distances of all points
within a cluster to the cluster's centroid are minimized. However,
the randomly selected initial centroids can result into locally opti-
mized clustering results (Abu-Jamous et al., 2015). Therefore, hi-
erarchical k-means clustering that was proposed by Arai and
Barakbah (2007), was applied to the dataset. In this method
agglomerative hierarchical clustering (Kaufman and Rousseeuw,
1990) is applied for the selection of the centroids; Ward's method
is used in order to divide the dataset in clusters (Ward, 1963). The
data were normalized before the analysis. NBclust package in R
(Charrad et al., 2014) was used to select the number of clusters in
each sub-period. The package applies a number cluster validity
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indexes (i.e. average silhouette value (Rousseeuw, 1987); Hartigan's
rule (Hartigan, 1975)).

Hierarchical k-means clustering was applied to the carrousel
reactor data matrix from the different sub-periods identified
through binary segmentation, to investigate whether different
temporal patterns of the operating variables were responsible for
the different behavior of N;O emissions. Hierarchical k-means
clustering enabled i) the detection of frequency and persistence of
extreme ranges of operating variables, and ii) the comparison of the
operational modes between the plug-low and carrousel reactor.
Ammonium and nitrate probes in the plug-flow reactor were
included in the analysis, since they can provide indirect feedback in
terms of the carrousel reactor influent and additional information
for the operational behavior of the system. However, the analysis
was repeated excluding plug-flow variables (NH4-N and NOs-N).
Graphical comparisons of the clustered data-points versus time and
boxplots of the variables in each identified cluster are displayed in
the results’ section.

2.2.5. Principal component analysis

Principal component analysis (PCA) (Jolliffe, 2002) was applied
to the dataset in an effort to reduce the dimensionality of the data
by eliminating a small proportion of variance in the data. PCA
transforms the original correlated measured variables to uncorre-
lated variables, i.e., Principal components (PCs), explaining the
maximum observed variability. The principal components are
linear combinations of the original data variables. The loadings of
the variables in each principal component can map their relation-
ship with the respective principal component. PC scores are a linear
combination of the data, weighted by the PC loadings for each
variable. The scores of the principal components map the different
samples in the new dimensional space of the principal components
facilitating the investigation of the different relationships between
the variables. The data matrices (X) consisting of J columns (vari-
ables) and I data rows (number of observations) were normalized
with mean equal to 0 and standard deviation equal to 1. Each col-
umn of X, X; = (x4j,...x;)T , j=1, ...], represents a vector in the I-
dimensional space. In PCA, eigenvalue decomposition is used to
factorize the data matrix X (I x J) and to map the data matrix to a
reduced dimensional space:

X=TPT +E

where, T: matrix (I x S) representing the score of the principal
components, S: the number of principal components selected, P:
matrix (J x S) representing the loadings and E: matrix of residuals.

The biplot of the first 2 PCs was used in order to visualize the
combined behavior of significant variables that affect the system.
The biplots enabled the simultaneous visualization of i) the vari-
ables’ loadings in the first two principal components, ii) the scores
of the first two principal components, and iii) the different clusters.
The temporal variations of the PC scores enabled the identification
of occasions in which the behavior of the system changes. PCA was
applied to the data matrix of the carrousel reactor excluding N,O
emissions time series, i) to identify the most significant variables
that affect the system, (ii) to analyze the structure of the sensor
data, iii) to investigate if changes in the relationship of the system
coincide with changes in the N,O emissions profile, and iv) to
validate the results from hierarchical clustering. NoO emissions
time series were excluded from the PCA in order to investigate the
relationship between the PC scores and N;O emissions and to
examine which PCs are most significantly linked to the behavior of
N,O emissions.

3. Results and discussion
3.1. N,O emissions profile and main dependencies

The profile of all the variables monitored was fluctuating during
the monitoring period, which can justify the different profiles of
N,O emissions that resulted from the Binary Segmentation algo-
rithm. Overall, high ranges of emissions were reported when ni-
trate concentration in the plug-flow reactor was low, whereas
periods with lower ammonium concentrations in the plug-flow
reactor were linked with lower N,O emissions.

Table 1 shows the average values and standard deviations of the
variables monitored online and offline in the Northern carrousel
and plug-flow reactors. N,O fluxes peaked in March 2011 followed
by a period characterized by very low N,O emissions. Gradual
decrease was observed until November 2011 and negligible emis-
sions again until January 2011 (Fig. 3).

The application of Binary Segmentation algorithm to the N,O
emissions of the Northern carrousel reactor identified 9 change-
points that correspond to 10 sub-periods with distinct variance of
the N,O timeseries first difference (Fig. 3). The analysis identified
abrupt temporal changes in the emission dynamics that indicate
changes in the underlying mechanisms or environmental condi-
tions responsible for the N,O formation.

Offline data were analyzed in the different sub-periods in order
to investigate significant changes that can contribute to the high
N,O emissions in sub-periods 4 and 5. The average COD concen-
tration in the influent of the plug-flow reactor (effluent of primary
sedimentation) was 239 + 80 mg COD/L over the 15-month moni-
toring period. The average plug-flow reactor influent and carrousel
reactor effluent concentrations of COD, TKN, BOD, TP and the
effluent pH for all sub-periods are given in the supplementary
material (Table S3). In sub-period 5, 27% increase in the influent
COD concentration to the plug flow reactor (compared to average
value) was observed, which could be attributed to less precipitation
events and to the consequently lower average influent flow-rate
during this sub-period. Laboratory analyses did not show signifi-
cant seasonal changes in the plug-flow COD loading
(19,934 + 13310 kg COD/day). The COD loading in sub-period 4
(16,160 + 2546 kg COD/day) was 17% less than in sub-period 1. TKN
and TP loadings were reduced in sub-period 4 compared to sub-
period, by 11% and 12% respectively. The COD:TKN:TP ratio
remained quite stable, ranging between 1:0.17:0.02 (sub-period 2)
and 1:0.20:0.03 (sub-period 4).

Fig. 4 shows the different COD to TKN ratios measured for all the
sub-periods. There were cases with lower than average COD/TKN in
the influent of the plug-flow reactor that coincided with increased
N,O emissions, particularly in sub-periods 4 and 5. However, low
ranges of COD/TKN (<5) in sub-periods 1, 2, 7 and 6 corresponded
with low N,O emissions. These observations indicate that limita-
tion of COD cannot be considered the sole contributor of N,O
emissions via heterotrophic denitrification in sub-periods 4 and 5.

The COD removal efficiency remained relatively steady during
the monitoring campaign ranging from 79% (sub-period 8) to 91%
(sub-period 5). The range of TN and TP removal efficiencies ranged
from 73% (sub-periods 1 and 9) to 92% (sub-period 5) and from 67%
(sub-period 7) to 87% (sub-period 4) respectively. The effluent pH
was steady (~8) and did not show seasonal variability that could
influence the generation of N,O emissions.

On the other hand, a significant variation is observed for all
variables monitored online by analyzing at the complete database.
Table 2 summarizes the average values and standard deviations of
the online monitored variables considered in the analysis for the
target periods. In the carrousel reactor, the nitrite concentration is
relatively high in sub-period 4 (average = 2.6 mg/L) and in the first
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Table 1
Average value and standard deviation (std) of variables monitored in the Northern carrousel reactor (C: carrousel reactor, N: Northern, PF: plug-flow reactor).
Online variables Average Std Offline variables Average Std
N0 (kg/h) 14 2.1 COD influent (mg COD/L) 238.8 795
NH4-N C (mg/L) 1.63 22 TKN influent (mg/L) 421 10.0
NO3-N C (mg/L) 5.8 4 TP influent (mg/L) 7.0 2.1
NO,-N C (mg/L) 12 1.1 Flow-rate (m3/d) 85,898 41,786
DO1 (mg/L) 0.6 0.9 COD effluent (mg/L) 36.9 6.9
D02 (mg/L) 0.8 0.9 TKN efffluent (mg/L) 2.8 1.2
DO3 (mg/L) 1.9 0.6 TP effluent (mg/L) 1.1 0.6
Temperature (°C) 16 35 pH effluent 8.0 0.2
N,O PF (kg/h) 0.71 1.21
NH4-N PF (mg/L) 12.41 535
NO3-N PF (mg/L) 2.38 22
Influent Flow-rate (m>/h) 3973 2375
DO PF (mg/L) 2.61 0.65
1 2 3 4 5
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Fig. 3. (top): N20 emissions profile in the Northern Carrousel reactor (grey area: periods with missing N20 data) (bottom): First difference of the N20 emissions timeseries (blue
line) showing the sub-periods identified by the application of binary segmentation (grey area: periods with missing N20 data, blue dotted lines: changepoints identified by the
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part of sub-period 10 (average = 2.1 mg/L). The average tempera-
ture in both cases is ~13°C. In biological reactors operating in
continuous mode, appreciable (> 2 mg N/L) nitrite concentrations
are usually not observed, since nitrite is directly oxidized by nitrite

oxidizing bacteria into nitrate. However, in certain cases, high ni-
trite concentrations in biological processes have been observed,
which have been linked with low temperatures that affect N,O
reductase during denitrification enhancing N»O production
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Table 2
Average values and standard deviations of the main variables for the 10 sub-periods (C: carrousel reactor, N: Northern, PF: plug-flow reactor).
Variables N,O (kg/h) NOs-C N (mg/l) NOs-N PF (mg/l) NH4-N C (mg/l) NH4-N PF (mg/l) NO,-N C* (mg/l) Temperature (°C) DO1 (mg/l) DO2 (mg/l) DO3 (mg/l)
Mean Std Mean Std Mean Std Mean  Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
1 0 0.1 6.1 31 1.8 1.6 1.8 267 114 4.1 15.7 14 062 0.7 062 05 1.5 0.4
2 0.6 06 7.2 3.1 25 2 1.5 1.7 13 4 11.2 1.0 077 1 131 08 2 0.4
3 2.7 14 6.1 3.2 1.6 21 1.6 21 15.2 4.5 115 0.7 0.67 08 149 1 207 04
4 5.6 2.6 3 0.1 0.5 0.7 13 1.6 15 4.8 2.6 19 129 1.1 064 09 195 09 19 0.4
5 2.6 22 43 4.2 3.1 1.9 13 2 11.5 5.2 0.8 1 18.2 1.7 034 0.7 039 08 194 05
6 0.8 14 33 3.2 23 19 2 31 14.7 6.1 0.5 0.5 20 1.0 042 0.7 026 05 227 05
7 0.2 03 7.2 5 2.8 24 2 31 9.8 5.2 0.6 0.4 20 0.7 042 06 029 04 264 05
8 0.1 0.2 101 5.7 5.2 2.6 14 1 9.6 5.5 0.8 0.5 19.6 0.5 027 05 0.2 05 271 0.6
9 0.1 02 79 36 28 2.8 2 2 13.2 5.4 1.9 0.8 129 2.1 112 12 107 1 1.58 04
10 13 1.1 63 35 14 0.9 1.6 3.7 164 43 21 0.9 13 0.7 058 10 1.04 1 152 03

2 NO;-N concentration was monitored between 11/03/2011 and 19/01/2012.

(Holtan-Hartwig et al., 2002; Adouani et al., 2015).

Analyzing the whole profile, the emissions tended to be low at
higher temperatures (sub-periods 6, 7, and 8). Higher emissions
were also observed, though, at temperature higher than 18 °C and
low nitrite concentrations (i.e., sub-period 5). Ahn et al. (2010)
demonstrated that N>O emissions can be significant at higher
temperatures due to the higher enzymatic activities of the bio-
processes producing N»O. In the carrousel reactor during sub-
periods 4 and 5, the temperature increases from 11.8 to 20°C.
Low N>O emissions were also observed when ammonium con-
centration was lower than 13 mg/L and nitrate was higher than
2.5mg/L in the plug-flow reactor. The probe was located in the
middle of the second oxic zone; thus, lower ammonium concen-
trations in the plug-flow reactor can indicate less ammonium loads
in the carrousel reactor.

The analysis of the variables’ ranges for the N,O emission pro-
files provides limited insight on the dependencies between the
system variables monitored online, which is further analyzed in the
following sections.

3.2. Spearman's rank correlation analysis for carrousel reactor

The application of Spearman's rank correlation coefficient to the
data of the carrousel reactor could not identify significant correla-
tions between the N0 emissions and the operating variables. The

lack of monotonic univariate dependencies could be attributed to i)
the temporal fluctuations of the influent characteristics, ii) the
continuous variability in the operating conditions of the reactors,
and iii) the seasonal variations of the environmental conditions in
wastewater treatment processes. Fluctuating correlation co-
efficients between N,O emissions and carrousel reactor variables
were identified (Supplementary, Figs. S1:S2). The findings are in
line with the study of Kosonen et al. (2016). The authors compared
the results from two monitoring periods at the same biological
system and identified different relationships between N,O emis-
sions and BOD7(aty) loads.

The correlation coefficient between nitrite and N,O emissions
ranged from 0.78 (sub-period 7) to 0.51 (sub-period 9). As a general
remark, nitrite was correlated with N,O emissions in sub-periods 4,
6 and 7, while lower correlation was observed during sub-periods 5
(Fig. 5), 8 and 9. N»O emissions and NO3-N concentration in the
carrousel reactor exhibited a positive correlation with coefficient
higher than 0.7 for sub-periods 2 (Figs. 5), 4 and 10 (the tempera-
ture was lower than 13 °C in all cases). N>O emissions and NO3-N
concentrations followed similar diurnal patterns, wherein peaks in
nitrate concentration coincided with peaks in N;O emissions
(Daelman et al., 2015). The accumulation of nitrate is potentially
linked with higher nitrification than denitrification rates. This is in
line with Daelman et al. (2015), considering that the nitrate utili-
zation rate in these sub-periods is affected by the low temperatures
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(Elefsiniotis and Li, 2006). Additionally, during times when N;O
was positively correlated with DO1 (> 0.5), medium to significant
correlations between the N,O emissions and the ammonium con-
centration in the carrousel reactor were also observed (sub-periods
1, 6 and 7). Stripping of the already formed N,O can be a potential
explanation. Given that the surface aerator in the location of DO1
probe is manipulated to control the ammonium concentration in
the effluent, ammonium peaks trigger the surface aerators to start.

The correlation coefficient between any two of the system var-
iables did not remain stable between the different sub-periods.
Fig. 5 shows the correlograms for sub-periods 2 and 5. These sub-
periods were characterized by low and high ranges of N,O emis-
sions and temperature respectively (Table 2). In sub-period 2, the
average NOs-N concentration in the plug-flow reactor was equal to
2.5 mg/L (Table 2) and correlated negatively with the influent flow-
rate (~ - 0.63) (Fig. 5). In sub-period 5 the behavior of nitrate con-
centration (average equal to 2.1 mg/L) was mainly correlated
negatively with ammonium concentration in the same reactor. The
ammonium concentration in the carrousel reactor was positively
correlated with DO1 only in sub-period 2. NH4-N concentration in
the plug-flow reactor was correlated with the influent-flow rate
only in sub-periods 4 and 5. However, the profiles of these two
variables showed that in the majority of the sub-periods, abrupt
and rapid increase of influent flow-rate (i.e., precipitation events)
coincided with increase of the NH4-N. However, the NH4-N con-
centration reduced more rapidly in the system than the influent
flow-rate. For example, in sub-period 3 the correlation coefficient
between NH4-N in the plug-flow reactor and influent flow-rate was
0.26. However, when days with significant precipitation events
(and thus high influent flow-rate) were omitted, the correlation
coefficient was equal to 0.58. The latter shows that, in this example,
the lack of correlation between these two variables is most likely to
be an indication that the interrelationships are not monotonic and
that the method is not appropriate to identify complex relation-
ships within the data. In order to verify that increased influent
flow-rate was linked with precipitation events, daily precipitation
data were extracted from the Royal Netherlands meteorological
institute. Spearman's correlation coefficient between two days
moving average of influent flow-rate and daily precipitation in the

Netherlands was equal to 0.69. Therefore, there is a direct link
between higher than average flow-rates and precipitation events
(the timeseries are shown in Fig. S3, supplementary material). The
correlograms for all sub-periods are provided in the Supplementary
material (Figs. S1:52).

Spearman's rank correlation indicated structural changes in the
dependencies between the system variables. Therefore, the fluc-
tuating structural dependencies had a different impact on the
generation of N,O emissions. Previous studies have shown that
various monitored variables in the biological system (NH4-N, NO3-
N, NO,-N, Temperature) can affect N,O emissions generation.
However, further analysis is required to investigate their combined
effect in N,O formation in full-scale complex systems.

3.3. Hierarchical k-means clustering

The application of hierarchical k-means clustering enabled the
categorization of the different ranges of the operating variables and
N,0 emissions within each sub-period.

Hierarchical k-means clustering analysis was repeated
excluding NH4-N and NOs3-N concentrations in the plug-flow
reactor. The results showed that the majority of the data points
were allocated to the same clusters for each sub-period even when
the NH4-N and NOs3-N concentrations in the plug-flow reactor were
excluded. In the majority of the sub-periods (i.e. sub-periods 1—6)
more than 85% of the data points were assigned to the same cluster.
It can be concluded that specific patterns and ranges of NH4-N and
NO3-N monitored in plug-flow reactor, systematically resulted in
specific responses to the carrousel reactor. The latter is supported
by the Spearman's rank correlation analysis, where high correla-
tions were observed between the variables in the two reactors for
several sub-periods. For example, the correlation coefficient be-
tween NHgz-N in the plug-flow and carrousel reactors is higher than
0.7 for sub-periods 1 to 7. The similarity of the clusters for all the
sub-periods is shown in Table S4 in the Supporting Material.

The range of N,O emissions was differentiated in the majority of
the clusters. In all the sub-periods, two major clusters were iden-
tified characterized by significant differences in the NH4-N and
NOs3-N concentrations in the plug-flow reactor. In the majority of
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the sub-periods they represented the diurnal variability of the
system nutrient concentrations and influent-flow rate. Addition-
ally, clustering distinguished occasions with high influent flow-rate
and ammonium concentration in the carrousel reactor, which can
be an indication of precipitation events. In sub-periods character-
ized by low average N,O emissions (i.e., 1, 2, 7, 8 and 9), clusters
with increased N;O emissions (yet relatively low) were mainly
linked to higher loading rates due to the expected diurnal vari-
ability or to precipitation events. However, N,O emissions higher
than 3.8 kg/h were observed when the average NO3-N concentra-
tion was constantly lower than 1 mg/L in the plug-flow reactor and
the NO3-N concentration was lower than 4 mg/L in the carrousel
reactor. Table 3 compares the clustered average values for all the
variables in sub-period 2 (average N,O emissions equal to 0.6 kg/h
— Tables 2 and 4) (average NO emissions equal to 5.6 kg/h —
Table 2). The average value of N,O emissions for a set of clusters in a
specific sub-period (from Table 3) can be found taking into account
the number of data-points in the individual clusters. Sub-period 4
was characterized by very low NO3-N concentration in the middle
of the oxic zone in the plug-flow reactor. The latter indicates slower
oxidation of ammonia to nitrate or insufficient DO in the plug-flow
nitrification lane. This can lead to higher NH4-N loading in the
carrousel reactor. On the other hand, higher nitrification rates in the
plug-flow reactor (i.e. sub-period 2) resulted in lower N,O emis-
sions in the carrousel reactor. The average values of all the variables
in each cluster during all the sub-periods are given as supple-
mentary material (Table S5).

In clusters 2 and 16 the averages of operating variables had
similar ranges (Table 3). However, in these two occasions the N,O
emissions were different (0.01 and 0.51 kg/h). Similarly, in clusters
1, 4 and 7, the averages of operating variables were similar yet the
N,O emissions were different (0.09,0.87 and 3.22 kg/h respec-
tively). A corollary to this also existed. In clusters 1 and 2 the av-
erages of operating variables were different but the N,O emissions
were similar (0.09 and 0.01). Similarly, in clusters 5 and 6 the av-
erages of operating variables were different but the N,O emissions
were similar (0.21 and 0.24). Such observations indicate the un-
derlying complexities of the interdependencies. Additionally, it can
be concluded that the range of N,O emissions can partially depend
on the preceding operational mode of the system. Fig. 6 shows an
example of the variables monitored online for two separate occa-
sions in sub-periods 2 and 3 (from 00:00 am until 8:00 am) and the
respective N,O emissions. All the variables showed a similar
behavior (in terms of range and trends). N>O emission profiles had

Table 4

PCA loadings sub-period 2, carrousel reactor.
Variable PC1 PC2 PC3 PC4
NH4-N PF —0.28 0.47 -0.24 0.29
NOs-N PF 0.36 0.21 0.14 —0.67
Influent —0.38 —0.31 —0.09 -0.37
NH4-N C -0.34 0.03 -0.59 -0.29
NOs-N C —0.04 0.58 0.21 -0.31
DO1 -0.43 0.06 -0.15 -0.18
DO2 —0.40 0.08 0.48 -0.17
DO3 -0.37 0.21 0.40 0.28
Temperature 0.22 0.49 -0.33 0.11

also the same trend; however, their range depended on the initial
N,O fluxes at 00:00 am. The influent flow-rates, NH4-N and NO3-N
concentrations in the plug-flow reactor also were similar in these
two occasions. The average N,O fluxes were equal to 0.44 and
2.01 kg/h for occasion 1 and 2 respectively. More extensive data are
required for quantitative investigation.

3.4. Principal component analysis in the carrousel reactor

PCA was applied to transform the original correlated measured
variables to uncorrelated variables (Principal components) and
explain the maximum observed variability. In sub-periods with low
emissions (1, 2, 7, 8, and 9) the PCA analysis showed that N,O
emissions’ peaks are related with NH4-N and influent flow-rate
peaks in the carrousel reactor and with the effect of the diurnal
variability of these variables’ loading rates.

The current section discusses the PCA results for sub-period 2, as
an example. The results for all the sub-periods are given in the
supplementary material (Tables S6—S13, Figs. S4—S29). The appli-
cation of PCA reduced the dimensionality of the data with 4 prin-
cipal components (PCs) explaining ~86% of the total variance
(PC1 =39%, PC2 = 26%, PC3 =12%, and PC4 = 9%). Loadings for the
system variables in the 4 PCs are given in Table 4. The loadings of
each component are an indication of the variation in the variables
explained by a specific component. Influent flow-rate, ammonium
concentration in the carrousel reactor (NH4-N C) and the three DO
(DO1, DO2 and DO3) concentrations had the highest negative
loadings in PC1. This means that the first principal component
increased with the increase of these variables. Nitrate concentra-
tion (NO3-N PF) in the plug-flow reactor has a relatively high pos-
itive loading in PC1 (0.36). Therefore, PC1 describes how the

Table 3
Operating variables (average) for all clusters defined by hierarchical clustering in the carrousel reactor (P: Sub-period, Cl: Clusters).
P cl N,O C NH4-N PF NOs-N PF Influent NH4-N C NOs-N C DO1 D02 DO3 NO,-N
kg/h mg/l mg/l m3/h mg/l mg/l mg/l mg/l mg/l mg/l
1 1 0.09 14.13 1.48 3883 1.47 8.66 1.04 0.78 1.72
2 0.01 8.55 241 3824 0.87 4.26 0.13 047 1.25
3 0.05 14.74 0.30 8892 7.91 4.63 1.37 0.77 1.58
2 4 0.87 15.30 2.05 3827 1.51 8.61 0.94 1.53 2.22
5 0.21 9.13 3.69 3419 0.74 5.28 0.03 0.62 1.41
6 0.24 12.51 0.81 11132 4.52 5.42 2.27 231 2.22
3 7 322 16.85 1.52 3383 1.36 7.36 0.87 1.88 235
8 1.72 10.96 1.91 3672 0.82 4.29 0.05 0.85 1.56
9 2.40 21.40 0.12 7935 7.52 4.15 2.10 1.28 2.10
4 10 6.60 17.30 0.32 3207 1.26 3.79 2.14 0.95 241 4.10
11 3.83 10.82 0.77 2747 0.79 1.80 1.51 0.05 1.20 1.40
12 6.89 25.45 0.48 6375 10.86 3.62 1.98 2.12 2.34 4.28
6 15 2.54 17.66 0.75 5922 5.00 5.07 1.30 0.73 2.34 1.08
16 0.51 8.20 2.84 3811 0.98 2.64 0.10 0.10 221 0.35

*NO,-N concentration was monitored between 11/03/2011 and 19/01/2012.
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carrousel reactor responds to the behavior of the upstream plug-
flow reactor processes and conditions, the variation of the
influent flow-rate and variations in ammonium and DO concen-
trations in the carrousel reactor. The latter can be indirectly con-
nected with the control strategy of the carrousel reactor, since the
surface aerators were manipulated based on the effluent ammo-
nium concentration. PC2 linked ammonium concentration in the
plug-flow reactor, nitrate concentration in the carrousel reactor and
temperature (loadings higher than 0.47). In PC3 ammonium con-
centration in the carrousel reactor had high negative loading, while
DO2 and DO3 concentrations had positive loadings that was not
expected considering the control strategy of the system. Investi-
gation of the variables’ profiles, though, showed an increasing trend
of DO2 and DO3, whereas the ammonium profile did not present a
similar trend.

The biplot of the first 2 PCs is used to visualize the combined
behavior of significant variables that affect the system. Data points
assigned to cluster 6 (Fig. 7), had negative scores in PC2 and PC1.
Therefore, ammonium concentration in the carrousel reactor and
influent flow rate were higher than average, while the nitrate
concentration in the system was lower than average. Fig. 8 shows
the profile of N,O emissions and NH4-N in the carrousel reactor for
sub-period 2. The colored points in the diagram represent the
identified clusters. Peaks in emissions coincided with peaks in the
NHy4-N C profile, whereas peaks in NH4-N C coincided with pre-
cipitation events (cluster 6).

The scores of the data-points in cluster 5 were mainly positive in
PC1 and negative in PC2 (Fig. 7). PC2 increased with the increase of
NH4-N concentration in the plug-flow reactor (Table 4). Given that
PC2 had an average equal to O (data are standardized), data-points
with negative scores in PC2 represent occasions with lower than

average NH4-N concentration in the plug-flow reactor. This is
supported by the correlation plot (Fig. 7), where the arrow of NH4-N
concentration in the plug-flow reactor points to the direction of
increasing concentrations of NH4-N. Therefore, data-points
belonging to cluster 5 were characterized by higher than average
ammonium concentration in the plug-flow reactor. Similarly, NO3-
N concentration in the plug-flow reactor had relatively significant
positive loading in PC1 (0.36 — Table 4). The latter indicates that
NH4-N and DO concentrations (measured by three probes) in the
carrousel reactor (that had negative loadings in PC1 — Table 5)
tended to decrease when NOs-N concentration in the plug-flow
reactor increased. Given that all data-points in cluster 5 had posi-
tive scores in PC1, it can be concluded that they are characterized by
lower than average NH4-N concentration in the carrousel reactor
and higher than average NO3-N concentration in the plug-flow
reactor. According to the clustering results the latter can be an
indication of the high nitrogen loadings of the normal diurnal
variability in the reactor. This finding is supported from the results
presented in Fig. 8, where the data-points of cluster 5 correspond to
the daily low range of ammonium concentrations in both reactors.

Fig. 9 summarizes scores of the PC2 and the respective clusters
(colored points in the diagram) indicating strong diurnal cyclic
fluctuations of the water quality during this sub-period. It also
shows that after each precipitation event, a sudden temperature
drop occurred; the system was disturbed and cannot recover
immediately. Spearman's rank correlation coefficient between PC2
and N,O emissions is equal to 0.72.

In sub-period 4, mechanisms triggering high N,O emissions in
the carrousel reactor prevailed (average=5.6kg/h). The PCA
loadings were similar to sub-period 2, while the clustering results
indicated 3 clusters; clusters 10 and 11 were affected by the diurnal
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variability and cluster 12 was affected by the precipitation events
(Table 3). Again, the DO data obtained from the 3 sensors in the
carrousel reactor had significant negative loadings in PC1. However,
ammonium concentration in the carrousel reactor was not identi-
fied as a significant variable affecting the system in the first two
PCs. This can be attributed to the fact that less NH4-N concentration
peaks were observed in the effluent of the carrousel reactor (17
data points belong to cluster 12). The correlation coefficient of
PC1with NH4-N concentration in the carrousel reactor was —0.75.
Therefore, PCA analysis shows that PC1 is a good indicator of the
ammonium concentration in the carrousel reactor. The DO con-
centrations in this sub-period especially for cluster 10 (with
average NH4-N concentration in the carrousel reactor equal to
1.26 mg/L) was the highest observed in all the clusters with similar
NH4-N concentrations in the carrousel effluent. The alternation of
aerobic and anaerobic conditions observed in this reactor, com-
bined with high NH4-N and DO concentrations has been identified
as a significant cause of nitrification sourced emissions (Yu et al.,
2010).

In PC2, the NO3-N concentration and temperature had signifi-
cant positive loadings (Table 5). The score plot of PC2 (Fig. 10a)
presented an increasing trend and therefore, showed that nitrate
and temperature increased. The latter was verified by the profiles of
NOs-N concentrations in the carrousel reactor (Fig. 10b) and NOs-N
concentration and temperature in the plug-flow reactor
(Supplementary material S30). In the beginning of the sub-period 4
very low concentrations of nitrate were observed in the system and
they gradually increased especially after the 28th of March. The
Spearman's correlation coefficient between N,O emissions and PC2
scores were relatively high and equal to 0.62. However, contrary to
sub-period 2, the clustering analysis showed that there is no nitrate
accumulation (Table 3). The average nitrate concentration in the
plug-flow reactor was equal to 0.2 mg/L until the 28th of March and
increased up to 1.6 mg/L until the end of the sub-period. Therefore,
the observations in section 3.3 are supported by the PCA results
(low nitrate in the plug flow resulted in increased loadings in the
subsequent carrousel reactor and the denitrification activity in the
carrousel reactor is affected by the low temperature resulting in
nitrite accumulation).

In this section, the combination of hierarchical k-means clus-
tering and PCA was used in order to link the different emission
ranges with all the online monitored variables (i.e. Fig. 7). Even
though, the online dynamics of significant variables that can trigger

N,O emissions in biological processes (i.e. COD, pH) were not
available, the applied methodology enabled the identification of a
set of variables that are connected with N,O emissions in each sub-
period (i.e. Fig. 8). Considering that online data were not available
for the influent of the carrousel reactor, higher NH4-N loadings in
the carrousel reactor were linked with clusters characterized by
higher than average influent flow-rates and ammonium concen-
tration and lower than average NO3-N concentration in the plug-
flow reactor. The latter can be supported by the fact that the
behavior of variables in the carrousel reactor was significantly
dependent on the nutrient concentrations in the plug-flow reactor
(Table S4 — clustering results). Additionally, more intense aeration
in the carrousel reactor (that can affect the stripping of dissolved
N,0) was linked with clusters characterized by higher than average
NH4-N concentration in the carrousel reactor (since the surface
aerators were manipulated by the effluent ammonium
concentration).

3.5. N,O generation pathways

In line with Daelman et al. (2015) findings, both AOB pathways
can be considered responsible for the N,O emissions observed in
the carrousel rector. The combination of nitrite accumulation and
low oxygen concentrations can be linked with the nitrifier deni-
trification pathway, whereas higher AOR (ammonia oxidation rate),
correlation of NH4-N concentration in the carrousel reactor with
N,O emissions and higher DO concentrations can be linked with
the hydroxylamine oxidation pathway (Law et al., 2012). N;O
generation via heterotrophic denitrification can be also significant
especially in periods with nitrate accumulation, suggesting insuf-
ficient anoxic conditions (Daelman et al., 2015).

In terms of the offline monitored variables, low pH, accompa-
nied with nitrite accumulation, as observed in sub-period 4 has
been identified as a significant factor inhibiting N,O reduction
during denitrification (Pan et al., 2012). Zhou et al. (2008) reported
that under these conditions the production of free nitrous acid
(FNA) in a denitrifying-Enhanced Biological Phosphorus Removal
culture was the main contributor to N,O emissions production even
at low concentrations equal to 0.0007—0.001 mg HNO,-N/L (nitrite
concentration 3—4 mg/L at pH 7). Additionally, high pH values (>7)
combined low DO concentration (~0.55 mg/L) have been reported
to be responsible for nitrification driven N,O emissions via the
nitrifier denitrification pathway (Law et al,, 2011). The latter is
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Table 5
PCA loadings sub-period 4, carrousel reactor.
PC1 PC2 PC3 PC4

NH4-N PF -0.48 0.04 -0.11 0.25
NOs-N PF 0.26 0.56 —-0.04 -0.35
Influent -0.33 -0.07 -0.52 -0.17
NH4-N C —0.28 0.14 —-0.50 —0.46
NOs-N C -0.17 0.59 0.32 0.04
DO1 -0.37 0.24 -0.13 0.59
DO2 —-0.40 0.08 0.41 -0.14
DO3 -0.37 0.01 0.33 —0.40
Temperature 0.23 0.51 -0.27 0.19

attributed to increasing ammonium oxidation rate (due to the pH
increase), enhancing the nitrifier denitrification pathway through
electrons provision. On the other hand, lower pH (<7) has been
linked with elevated nitrification driven N,O emissions at higher
DO concentrations (~3 mg/L) (Li et al., 2015). The authors argued,
that at higher pH the electrons available from the ammonium
oxidation rate are mainly used to form water from molecular oxy-
gen and H™. In the current study, the pH in the effluent of the
reactor was steady during the monitoring campaign (~8 +0.2).
However, online pH data showing the exact dynamics of the pH in
the carrousel reactor were not available.

Low COD|N ratios have been reported to be responsible for
denitrification induced N,O emissions (Schulthess and Gujer, 1996).
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The offline data showed that COD/TKN ratio in the influent
remained relatively steady during the monitoring campaign with a
slight decrease in sub-periods 4 and 5 (<5) where emissions were
higher (5.6 and 2.6 kg/h respectively). However, low COD/TKN (<5)
was also observed in other sub-periods and did not result into high
N,O0 emissions (Fig. 4). The frequency of the offline data (~6 days)
did not enable the identification of the exact contribution of COD
loading to the system. Fig. 4 shows that COD limitation is not the
sole contributor to the increased N,O emissions in sub-period 4.
Therefore, the results indicate that heterotrophic denitrification
induced by COD/TN limitation was not the main N;O emissions

source in sub-periods 4 and 5.

The results from the application of multivariate statistical
techniques can be used for the identification and explanation of
potential pathways for N,O generation. In sub-periods with lower
average N,O emission fluxes (1, 6, and 7), emission peaks coincided
with ammonium peaks in the plug-flow reactor and therefore in
the influent carrousel reactor. In that case, average emission fluxes
ranged from 0.05 kg/h (sub-period 1) to 2.54 kg/h (sub-period 6).
Wunderlin et al. (2012) demonstrated that N,O production through
hydroxylamine oxidation is accompanied by excess ammonia, low
nitrite concentration and high ammonia oxidation rate.
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Additionally, in these sub-periods, N>O emissions were higher at
higher temperatures and DO concentrations. The high DO con-
centrations coincided with peaks in nitrite and nitrate concentra-
tions indicating also insufficient denitrification zones in the reactor.
AOB can use nitrite instead of oxygen as electron acceptor
(Kampschreur et al., 2009a) especially in oxygen limiting condi-
tions (low DO zones exist even when all surface aerators are under
operation); thus, nitrifier denitrification by AOB could potentially
contribute in N2O emissions. Burgess et al. (2002) found strong
dependency between nitrite accumulation and N;O emissions,
especially at sudden increase of ammonia loading.

Overall, N,O emissions increased significantly and peaked at
low nitrate concentrations in both reactors (i.e., sub-periods 3 and
4) and high nitrite concentrations in the carrousel reactor (i.e., sub-
period 4). Under aerobic conditions, nitrite accumulates in the
system when the ammonia oxidation rate to nitrite exceeds the
nitrite oxidation rate to nitrate (Guisasola et al., 2005) inducing the
nitrifier denitrification pathway. Sub-optimum DO, COD and pH can
also result in nitrite accumulation during denitrification
(Schulthess et al., 1994; Yang et al., 2012). Zheng et al. (2015)
observed a synergistic N,O generation between nitrifier denitrifi-
cation and heterotrophic denitrification in a pilot carrousel reactor
where the nitrite built-up during denitrification boosted nitrifier
denitrification pathway. The latter is in line with the N,O profiles
observed in this study in sub-periods with high emissions. The
combined results of PCA and hierarchical k-means clustering can
guide through the most significant N,O production pathways in
different sub-periods (supplementary material).

4. Conclusions

N,O emissions depend on a set of interacting biological and
chemical conversions and physical processes. This complex inter-
action obscures the determination of the governing processes in
individual treatment plants. With multivariate analysis correlations
between influential factors in a complex system might be revealed.

e A data-driven approach consisting of statistical-based methods
was applied to analyze long-term N,O emission dynamics and
generation mechanisms based on available high temporal res-
olution (hourly) data. Applying binary segmentation to the N,O
emission profile allowed to split up the 15-month N>O moni-
toring campaign into 10 sub-periods.

Spearman's rank correlation analysis showed significant uni-
variate correlations between N,O emissions and ammonium,
nitrate and nitrite concentrations. The correlation coefficients
fluctuated between the 10 sub-periods. Low values for the cor-
relation coefficients indicated non-monotonic interrelation-
ships that Spearman's rank correlation cannot identify.
Hierarchical k-means clustering provided information on the
existence of reoccurring patterns and their effect on N;O
emissions. N2O emission peaks were linked with the diurnal
behavior of the nutrients' concentrations and with rain events,
whereas low nitrate concentrations in the preceding plug flow
reactor (<1 mg/L) resulted in increased ammonium loadings and
high N,O emissions in the subsequent carrousel reactor.
Principal component analysis validated the findings from the
clustering analysis and showed that ammonium, nitrate, nitrite,
influent flow-rate and temperature, explained more than 65% of
the variance in the system for the majority of the sub-periods.
The first principal component corresponded to the control
strategy of the reactor.

The proposed methodological approach can detect and visualize
disturbances in the system (i.e., precipitation events, high NH4-
N concentrations, etc.) and their effect on N,O emissions.

Additionally, the ranges of operating variables that have his-
torically resulted in low or high ranges of N,O emissions can be
identified. Overall, multivariate analysis can assist researchers
and operators to understand and control the N,O emissions
using long term historical data.
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