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Guaranteed Error Correction Rate for a Simple In many applications, it is required to design coding schemes for
Concatenated Coding Scheme with Single-Trial Decoding which the alphabets and the dimensions of the codes are fixed. Two
criteria play an important role in designing such schemes: the code
Jos H. Weber Member, IEEE,and rate, which is the number of information symbols per transmitted
Khaled A. S. Abdel-GhaffatMember, IEEE symbol, and the guaranteed error correction rate, which is the number
of correctable symbol errors per transmitted symbol. In general,
) ] ) ~over all codes of fixed dimension and alphabet, the supremum of the
_Abstract—We consider a concatenated coding scheme using a singley  aranteed error correction rate, whichLj€2, is not attained by any
inner code, a single outer code, and a fixed single-trial decoding strategy . | h f h
that maximizes the number of errors guaranteed to be corrected in a con- code. Instead, it can only b? a_pproac Ed_b_y a Sequef‘ce of codes whose
catenated codeword. For this scheme, we investigate whether maximizing code rates tend to zero. This is not surprising at all since strong codes,
the guaranteed error correction rate, i.e., the number of correctable i.e., codes with large Hamming distances, have low rates.
errors per transmitted symbol, necessitates pushing the code rate to zero.  pqr the simple concatenated coding scheme considered in this cor-
We show that this is not always the case for a given inner or outer code. d h . d des h fixed alphab d
Furthermore, to maximize the guaranteed error correction rate over all re_spon - ence, W_ ose I.nner and outer Co_ ejs. ave fixed alphabets an
inner and outer codes of fixed dimensions and alphabets, the code rate of dimensions, we investigate whether maximizing the guaranteed error
one (but not both) of these two codes should be pushed to zero. correction rate necessarily means pushing the code rate to zero. Sur-
Index Terms—Concatenated codes, decoding strategy, erasure correc- pr.|S|.neg, we show Fhat if the inner or the outer code are glyen, then
tion, error correction, error detection. this is not necessarily the case. Furthermore, we show that if the guar-
anteed error correction rate is maximized over all inner and outer codes
of fixed alphabets and dimensions, then the code rate of one, and only
|. INTRODUCTION one, of these two codes should be pushed to zero. Therefore, to aim

In concatenated coding schemes, elementary codes are combiednaximizing the guaranteed error correction rate, we should either
into a powerful code that can be encoded and decoded with relativejp0se a strong outer code and a weak inner codecerversa(de-
low complexity. Concatenated codes have been introduced by Fori&jpding on the codes’ dimensions and alphabets), and avoid choosing
[4]. An excellent overview has been provided by Dumer [3]. the inner and outer codes to be both weak or both strong! In fact, by
In this correspondence we study optimization issues concerning #¥00sing the two codes to be weak we lose in correction rate but gain

single-trial decoding version of the scheme proposed by Zyablov in [#]. code rate, while by choosing the two codes to be strong we lose in
This scheme uses a single inner code, a single outer code, and a fik@h correction rate and code rate.
single-trial decoding strategy based on bounded distance decoding. AIThis correspondence is organized as follows. First, in Section II, we
though this may not be the best scheme in terms of performance, ifigscribe the scheme under consideration. Next, in Section Ill, we de-
still worth studying, mainly because of its great simplicity. In particulafive an expression for the maximum number of channel errors which is
the decoder has some attractive low-complexity features compare@#granteed to be corrected by the scheme, and we discuss a slight dis-
other schemes, as will be argued in the following. First of all, it is baséfepancy between this result and the corresponding result by Zyablov
on bounded distance decoding techniques only. Furthermore, the inRdP]. In the same section, we also study the ratio between the number
decoder directly produces the input symbols or erasures for the oltégorrectable errors and the (designed) Hamming distance of the con-
decoder. By contrast, in generalized minimum distance (GMD) baséenated code. Finally, in Section IV, we consider, for given inner and
decoding techniques [4], [6], the output symbols of the inner decod@ter code alphabets and dimensions, the guaranteed error correction
first need to be ordered according to reliability, after which an erasifigte- In particular, we determine all cases for which the optimal guaran-
rule is applied. Finally, in the scheme under consideration, outer dged error correction rate is achieved by finite-length inner/outer codes.
coding is performed only once. By contrast, in multitrial decoding,
there are several outer decoders, operating either on the outputs of just
as many different inner decoders [9], or on the output of a single inner
decoder on which different erasing rules are applied [6]. These outer
decoders produce (possibly different) concatenated codewords, one gf; this section we describe the simple concatenated coding scheme
which being closest to the received sequence, is the final output. iifger consideration in this correspondence, which is in fact the single-
information about multitrial decoding, and many other issues relatgh| yersion of the more general scheme proposed by Zyablov in [9]. It
to concatenated codes, we refer the reader to [3]. uses an outdtV, K, D] block code (i.e., a code of lengii, dimension

K, and Hamming distanc®) over the finite field GR ¢*) and an inner

[n, k, d] block code over GIfg). For ease of notation, we introduce

Q.= ¢". The data sequence composedidfQ-ary symbols is first

Manuscript received November 16, 1997; revised June 7, 1999. The work .
K. A. S. Abdel-Ghaffar was supported in part by the National Science Fouﬁ?{coded using the outer code to form a sequencé Gf-ary symbols.

dation under Grant CCR-96-12354. The material in this correspondence w4 inner code is used to map each such symbolg¢eey sequence
presented in part at the 1997 IEEE International Symposium on Informatiofilengthn. This results in a sequence &t ¢-ary symbols, which we
Theory, Ulm, Germany, June 29-July 4, 1997, and at the 1998 IEEE Intgsa|| the overall codeword, that carri@sk ¢-ary information symbols.

national Symposium on Information Theory, Cambridge, MA, August 16—2]1-,he N g-ary symbols are then transmitted ovey-ary channel and
1998. -

J. H. Weber is with Delft University of Technology, Faculty of Information™&Y suffer from channel errors. The output of the channel is partitioned
Technology and Systems, 2600 GA Delft, The Netherlands (e-mail: j.h.webBto N sequences of ¢-ary symbols. Each one of these sequences
@et.tudelft.nl). o _ is decoded using the inner code to produce an output sequerice of

K. A. S. Abdel-Ghaffar is with the Department of Electrical and Compute&_ary symbols, which corresponds to a symbol in(@‘j’. As it will be

Engineering, University of California at Davis, Davis, CA 95616 USA (e-mail; . . : .
ghaffar@ece.ucdavis.edu). explained later, it may happen that the inner decoder fails to produce

Communicated by E. Soljanin, Associate Editor for Coding Techniques. & Symbol in GH () and produces an erased symbol instead. ¥he
Publisher Item Identifier S 0018-9448(00)04645-9. @-ary symbols/erasures produced by the decoder of the inner code are

Il. THE ZYABLOV SCHEME WITH SINGLE-TRIAL DECODING

0016-9448/00$10.00 © 2000 IEEE



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000 1591

decoded with respect to the outer code to produce a sequerie oproposition gives an explicit expression ¥ d, D) and the values of
Q-ary symbols. t for which it is achieved.
Since the inner code has distanteit can be used to simultane-

ously correct up te and detect up td — 1 — ¢ channel errors, where Proposition 2: Ford, D > 1, we have

0<t<|(d—1)/2].Suchacode is denoteda&C (d — 1 — t)-ED Bl if D=1
_(t error correcting a_mdl_— 1 -t error detecting). If there e_xists an p,Dy=4 2 [247 — 1, if D is even
inner codeword which is at distanc¢eor less from the received se- S . . .
: - ; DL [2d] 4 [422] if D >3 and D is odd
quence of: g-ary symbols under consideration, the inner decoder de- 2z |3 R = @

codes the received sequence into ¢hary symbol corresponding to

that codeword. Otherwise, an erasure is declared. Hence, dif‘ferentTh(-3 only choices for: maximizing E(t,d, D) and thus achieving

coding strategies can be developed based on the same inner code ‘§;D> are
varying the parametet With regard to the outer decoder, we only as- |42, if D=1
sume that it returns the original input sequenc&of)-ary symbols if HJ ) HJ +1.-e. LH%J i if D=3
the number of error&” and the number of erasurgsproduced by the ¢ =< °° ~7 7 ’ S ~
inner decoder satisfyX +Y < D — 1. 5 L3, if D is even andd = 0mod 3
|4], otherwise
l1l. OPTIMAL INNER DECODING ®)

o ) o ~ Proof: From Proposition 1 it follows that
In designing a concatenated coding scheme, as described in Section

I, many choices need to be made that may have an enormous impac%)é} 1.D)= Di+D-1, if t< |52
the system performance. One of these choices concerns the choice of’ ™’ (D=3 2])t+D—1+|2] (d-2), ift>[%].
the inner decoder. Instead of exploiting the full error correction capa-

bility of the inner code (i.e4 = [(d — 1)/2]), it could also be decided SinceE(t,d,1)=t, the only choice of that maximizesZ(¢. d, D) in
to use this capability only partly (i.et,< |(d — 1)/2]), thus leaving caseD=1is¢=|(d—1)/2]. Further, note that fob > 2, E(t.d, D)
more erasures but less errors for the outer decoder. Since more eradgr@g increasing function afon the interval0, [(d—2)/3]]. Finally,
can be corrected than errors, there is a tradeoff problem to be sol@d function of on the interva([(d+1)/3], [(d—1)/2]], E(t,d, D)
in order to determine the optimal choice. In this section, we will dds decreasing ifD = 2 or D > 4 and constant ifD = 3. Hence, for
termine the choice of maximizing the number of channel errors in aP > 2 the maximum ofE (¢, d, D) is achieved for= [(d—2)/3] or
concatenated codeword for which correction is guaranteed. Further, e L(d+1)/3]. Therefore, we consider

will study the ratio between the number of correctable errors and the o

(designed) distance of the concatenated code. E(l(d+1)/3],d, D) = B(|(d - 2)/3],d, D)

Let E(t,d, D) be the maximum number ofi{ary) channel errors =D+ |D/2](d-2-3[(d+1)/3])
in the overall codeword for which correction is guaranteed in the con- D—-2|D/2] >0, ifD2>2andd=0mod3
catenated coding scheme described in Section I, i.e., a scheme with =< D-|D/2| >0, if D>2 andd = 1mod3
an outer code of distanc® and at-EC (d — 1 — ¢)-ED inner code D -3|D/2] <0, if D>2 andd=2mod3.
of distanced. The next proposition gives an explicit expression fo

B4 D Note that above equality holds if and onlyfifis even and = 0 mod 3
(., D). orD = 3andd = 2 mod 3. This concludes the proof of (5). Finally, (4)

Proposition 1: For0 < ¢ < [(d — 1)/2] andd, D > 1, we have follows by substituting the from (5) into the expression fdE(t. d. D)
, from Proposition 1. |
E(t,d,D)=Dt+ D — 14+ min{|D/2|(d — 3t —2),0}. (1)
] In [9] Zyablov presented a concatenated coding scheme with
Proof: For the decoder of theEC (4 —7 — 1)-ED inner code o jnner/outer decoders. As stated before, the simple scheme considered
cause a)-ary symbol error or erasure, at least ¢ ort + 1 channel i this correspondence can be seen as:the 1 case of Zyablov's
errors, respectively, have to affect the transmitjeaty sequence of scheme. However, the results presented in Proposition 2 slightly
lengthn corresponding to that symbol. Further, for the outer code @ftter from the results obtained by substituting= 1 in the relevant
distanceD, correction ofX errors and” erasures is guaranteed if andigymulas from [9]. Zyablov claims the best choice féorin the
onlyif 2X +Y < D — 1. Hence simple scheme is obtained by rounding 6ff— 2)/3 to the nearest
E(t,d,D) = min{(d— )X + (t+ 1)Y —1:2X +Y > D} (2) integer. Indee_dt, = (d—-2)/3 maximizes_the functior®(¢,d, D)
over allreal ¢t if D > 2. However, Propositions 1 and 2 assert that
where the minimum is taken over all nonnegative integérandY.  maximizing E(t,d, D) over allintegert is not always achieved by
Fora givenX, (d — t)X + (t + 1)} — 1 achieves its minimum when the integer closest t&d — 2)/3. In particular, forD > 3 odd and
Y = max{D — 2X,0}. Hence d = 0mod 3, the optiont = d/3 indicated by Proposition 2 gives
Y , E(d/3,d,D) = Dd/3, while Zyablov's choice = d/3 — 1 gives
E(t,d,D) = IIl?Il{(d - )X+ (t+1)(D—-2X)-1} only E(d/3 —1,d, D) = Dd/3 — 1.
= min{(d =3t —2)X + Dt + D - 1} ®3) In order to study the number of correctable errors as a fraction of the
where the minimum is taken over all intege¥ssuch thah < X < Hamming distance of the concatenated code, we define the functions

|D/2]. Sothe minimum is attaingd ff:?f = 0incasel 2 3t+2,and o(t,d, D) = E(t,d, D)/dD 6)
for X = | D/2] otherwise. Substituting these values in (3) concludes
the proof. g an

¢(d.D) = E(d,D)/dD. @)

For our purpose of optimizing the use of an inner code of Hamming
distanced, we want to maximizeE (¢, d, D) over all integers such Note that the denominataD in (6) and (7) is strictly speaking only a
that0 < ¢ < [(d — 1)/2]. Let E(d, D) be the maximum value of lower bound on the Hamming distance of the concatenated code. Nev-
E(t,d, D) overallintegers with0 < ¢ < [(d—1)/2]|. Thefollowing ertheless, we still calb(t, d, D) andé(d, D) correction-to-distance
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Fig. 1 #(r, D) for0 < 7 < 1 and various values ob.

ratios, since the simple (de)coding scheme under consideration dedsere the supremum is achieved only for
not exploit any advantages a true minimum distance beydndight d— oo fD=129
give, and sincé D can be considered aglasignedistance. Next, we alld > 1 it D= 3’

determine the asymptotic behavior and the supremgofi, D) and
(d, D) ymp prema(0id, ) d=2, if D >4 and D is even (12)
First, we studys(t, d, D) for large values of, while fixing the ratio d=12 if D>5 and D is odd
betweert andd. Therefore, we introduce = ¢/d and define »
Proposition 6: Ford > 1, we have
¥(r,D) = lim ¢(7d,d, D). (8) .
d—oo Dhm o(d, D) =[2d/3]/2d. (13)
The next result follows immediately from (8), (6), and Proposition 1. -
Proposition 3: For0 < 7 < (1/2) andD > 1, we have Proposition 7: Ford > 1, we have
1 i —
¢(r,D) =7+ min{|D/2|(1 — 37)/D,0}. 9) 2’ ifd=1,2
p(d,D) = ¢ 3, ifd=4 14
Fig. 1 shows) (7, D) for 0 < 7 < % and various values ab. S%p(’j( D) 8’ (14)
2%t ifd=3ord>5
Now, we studyg(d, D). The next six propositions can be derived h h ) hi v
from an easy analysis of the result (4) in combination with definivhere the supremum Is ac ieved only for
tion (7). D — oc, ifd=1,2,4
Proposition 4: For D > 1, we have D — oo and alloddD > 1,  ifd=3,6 (15)
! D—ocandD =1, ifd=15,8
>, if D= - TR
lim (b(dD) = 27 ] (10) D= 1, ifd=7ord > 9.
d—oo 3 if D> 2.
Proposition 8: We have
The result (10) can also be observed from Fig. 1. P
Proposition 5: For D > 1, we have uhilio 4151010 ¢(d, D) =1/3. (16)
1 i —
2 ifD=1 Proposition 9: We have
sup ¢(d, D) = %, if D=2 (12)
d | . . supo(d, D) =1/2 a7
5 T 3D if D Z 3 d,D
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where the supremum is achieved only for the following three cases:over all positive integersd. Let (g, D, k) denote this supremum. We
say that an inner code achievgg, D, k) if F/n = n(q, D, k) where
n is the length of the inner code arfd is the number of correctable
errors in an overall codeword. We say that an infinite sequence of inner
codes of increasing lengths asymptotically achieyes D, k) if the
sequencer /n tends toy(q, D, k). Clearly, if no inner code achieves
IV. GUARANTEED ERROR CORRECTIONRATE n(q, D, k), then there exists a sequence of inner codes that asymptoti-
. . ally achieves)(q, D, k). On the other hand, if there exist inner codes
The maximal number of errors in an overall codeword of lengt]

nN for which correction is guaranteed B(d, D). The concatenated hat achievey(q, D, k), thenitis desirable to specify the shortest length
s[:heme can thus corredt(d, D)/nN error; pér transmitted-ary n among all these codes since the overall code rate of the concatenation

. iskK)/(nN k, K N ixed.

symbol. We callE(d, D)/nN the guaranteed error correction rate scheme igk K )/(nN), Where I anc_iz_ are flxeq

. . : AR . . We are now ready to derive an explicit expression for
In this section, we consider optimization issues with regard to this rate.
Throughout, we assumg %k, and I’ have been given. First, we con- lim 74(q, D, k)
sider the situation of a given outer code and optimize the guaranteed d—o0
error correction rate over all possible inner codes. Next, we considgid bounds on(q. D. k).
the situation of a given inner code and optimize the guaranteed error » . .
correction rate over all possible outer codes. Finally, we consider”T0POsition 10: ForD > 1, ¢ s a prime power, and > 1, we have

optimization of the guaranteed error correction rate over inner and L

d=1 and D — oo,
d=2 and D — oo, (18)
d—oc and D =1.

1—q— i —
outer codes jointly. Of particular interest is whether an optimum is lim 74(¢, D, k) = { 2““17"'1)’ D=1 (26)
attained for a finite-length inner/outer code or only asymptotically for d—co ’;((117—7;;)) if D> 2.
an infinite sequence of inner/outer codes of increasing lengths.
Let ny(%k,d) be the length of a shortest linear code over(@fof Proof: From (25) and (7) it follows that
dimensionk and distance. An important result which is used in our ‘
analysis is the Griesmer bound [5], [7] na(q, D, k) = E(d, D) - dDQ(d*D)_ (27)
ng(k,d) ng(k,d)
k—1
ng(k,d) > Zw/qq. (19) Taking the limitas! — oo and using (24) and Proposition 4 completes
=0 the proof. O

Baumert and McEliece [1] proved that for any fixedandg, equality Proposition 11: For D > 1,¢ is a prime-power, and > 1, we
holds in this bound for all sufficiently largg i.e., there exists a number have
d*(k,q) such that D(1—q )

lim na(g, D, k) < supnalq, D, k) < ———2 supé(d, D)
d—oco d 1- q_k d

k—1
ng(k,d)y=>"[d/q"],  forall d>d"(k,q). _ _ o o (28)

s where equality holds in the first inequality if and onlylf < 3 or
D = 4 andqg = 3 andk > 2; among these cases, the supremum of
na(q, D, k) is achieved for a finitel if and only if D = 3orD = 4
andg = 3 andk = 2.

From this we easily obtain the following results ok, d):

k—1 —k
ng(k,d) > Z L]L = (](1_79’_1) (20) Proof: The first inequality in (28) is trivial, while the second fol-
i 1 l—q lows from (20) and (7):
k—1 —k
d _dl-q ") E(d,D) _ D(1—q~")é(d,D)
n (k,(l)I — = ,Dk — 2 < q St 29
4 ;q, 1_(1 1 77d(q, » ) ILq(k,(l) = 1_q_k ( )
if d > d"(k,q) andd =0mod ¢"~* (21) foralld > 1.In order to prove the remaining statements in the propo-
n (ko) = d+§ d+1 _ d(l—g ") +q7 =¢7F sition, we distinguish between three cases.
o = ¢ I—q~t i Case 1)D < 3. From Propositions 5 and 10 it now follows that
if d>d*(k,q) and d=-1 modg* ' (22) equality holds everywhere in (28) I» < 3. Hence
d(1 —q %) . . E(d,D) dD¢(d,D) _ ..
k,d ———~ +k ifd>d(k, 2 ,D, k)= ’ = ,D.k
ng(k,d) < T TR Az (k.q)  (23) na(q. D, k) naOhd) = nahad) < lim na(g, D, k)
n _ gk 30
dlim nq(l;:,d) = 1 q,l- (24) (30)
o ! foralld > 1.ForD < 2theinequality in (30) can be shown
o to be strict for alld > 1, while for D = 3 equality holds
A. Inner Code Optimization forall d > d*(k,q) which are multiples of*~' because
We now start by considering the situation of a given outer code. of (21). _ o
Then, the parameters, K, D, ¢, andk (and thusp = ¢*) are fixed. Case 2)D > 4andg = 1,2 mod 3. Inthis case there exitdia;uch
The inner code is a linear code over GfF of dimensionk, lengthn, thatd > d*(k, q),d = 2mod 3, andd = 0mod ¢"~". For
and distancel. We are interested in optimizing the guaranteed error thisd, it follows from (21), (4), and Proposition 10 that
correction rate over alf-ary inner codes of dimension SincelXV is E(d,D) (1-q ')E(d, D)
fixed, it suffi ider th f nalq, Do k) = ———= = —— '
ixed, it suffices to consider the supremum o no (k) Tl—q "
g\~ @, '
E(d, D) D(1-q ")y .
,D. k)= 25 —— =1 ,D,E). 31
na(q, D, k) g (s d) (25) > 30=¢ ") Jim 7a(q. D, k). (31)
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TABLE | (5D — 2)/26, and(3D — 1)/14 ford = 1,---,8, respectively. It
PARAMETERS [1, k. d], 1 < k < 7, OF THESHORTESTINNER BINARY CODES g easy to check that the smalleksthat attains the maximum & if
ACHIEVING (2, D, k) FORD > 3 AND (2, k, K) FORK > 2 D = 4and2if D > 6 is even. Thugno(3,8) = 14,3.8] and

k | achieving 1(2, D, k) achieving (2, k, K) [n2(3,2) = 4,3,2] are the parameters of the shortest inner binary
11[1,1,1]if D >3isodd [[1,1,1] codes achieving(2, D, 3) for D = 4 and everD > 6, respectively.
[2,1,2)if D > 4 is even It can be concluded from Proposition 11 that, for a givérary
21[3,22/ifD>3 (3,2,2] [N, I, D] outer code, the guaranteed error correction rate optimiza-
3|[7,3,4if D=3 [4,3,2] tion only requires an infinitely long-ary inner code of dimensiahif
[14,3,8]if D=4 D <2orD =4andg = 3 andk > 3. In all other cases, the optimal
[4,3,2]if D>5 guaranteed error correction rate is achieved for an inner code of finite
4([15,4,8]if D >3 [5,4,2] length, and so it is not necessary to push the code rate to zero in order to
5[31,5,16] if D=3 (16,5, 8] optimize the guaranteed error correction rate. For example, it follows
[62,5,32]if D =4 from Table I that for; = 2,k = K = 3,and {7, 3, 5] Reed—Solomon
[16,5,8]if D > 5 code over GK8) as outer code, the guaranteed error correction rate is
6|[63,6,32]if D > 3 [63,6,32] optimum when using a binaf, 3, 2] inner code. This leads to a code
71[127,7,64]if D=3 [64,7,32] rate of(3 x 3)/(7 x 4) = 9/28 = 0.321 and a guaranteed error cor-
[254,7,128)if D =4 : rection rate of£'(2,5)/(4 x 7) = 4/28 = 0.143. Note that choosing a
[64,7,32]if D > 5 binary inner code of dimensidghwith a higher distance (e.g., a binary

[6, 3, 3] code [2]) does not improve upon either the code rate of the con-
catenated codg3 x 3)/(6 x 7) = 9/42 = 0.214) or its guaranteed

Case 3)D > 4 andq = Omod 3. In this case there existsfasuch €ITor correction rat¢E(3,5)/(6 x 7) = 5/42 = 0.119). Ultimately,

thatd > d*(k,q),d = 2mod 3, andd = —1mod¢*~'. an infinitely long binary inner code of dimensi8mwould lead to a code
For thisd, it follows from (22) and (4) that rate of 0 and a guaranteed error correction rate@f147 = 0.136,
, where the latter value (derived using Proposition 10) is indeed smaller
na(q, D k) = E(d, D) than the guaranteed error correction 1@fst3 obtained by using the
ng(k,d) [4. 3. 2] binary inner code.
_ Dd/3+(D-3)/3
T dl—g M) g =g ) (1 - ¢) B. Outer Code Optimization

_DA-gH+(D=3)1-q ")/
S TsU-a 48— P

Next, we continue by considering the situation of a given inner code.
Then, the parameters k, d, K, andq (and thusQ = ¢*) are fixed.
We are interested in optimizing the guaranteed error correction rate
Comparing this expression and (26), it follows that the supremum @¥er allQ-ary outer codes of dimensidi. Sincen is fixed, it suffices
na(q, D, k) overd is achieved for a finite value af and not asymptot- to consider the supremum of
ically (d — oc0)if D > 50rq > 60orD =4andg =3andk = 1.
Further, the supremum @f;(3. 4, 2) overd is achieved both asymp-
totically (d — o) and for a finite value ofi. Finally, the supremum
of 174(3,4, k) overd is achieved only asymptoticallyy — o) if
k> 3. D overall positive integer®. Letd(Q, d, K') denote this supremum. We
Table | lists the parameters of the shortest inner binary cod@@w derive explicit expressions for botnp ... #p(Q.d, K) and
achievingn(2, D, k) for k¥ < 7andD > 3. These values of are (Q.d. K).
considered sincex(k, d) is known for alld if & < 7 [8]. As an
illustration of the derivation of the entries in the second column of thj

E(d,D)

b0(Q, . K) = s

(35)

Proposition 12: Ford > 1, () is a prime power, and > 1, we

ve
table, we consider the cage= 3. From (28), (26), and (11) we have
. . e 1-Q!
2 <neny< P2 (33) g 90(Q.d. K) = [24/3\55—p=py- (39)
From [8] we know that:»(3,d) = d + [d/2] + [d/4] for all d. In Proof: From (35) and (7) it follows that
particularn:(3,8) = 14, and so it follows with (20) and (4) that
N E(d,D)  dD¢(d,D)
’ _FE@,D) EWD) _ES8D) p(Q,d, K) = = . (37)
na(2,D,3) = 2(3.d) < 7/ < 4 = ns(2, D, 3) no(K, D) ng(K,D)
(34)

Taking the limitasD — oo and using (24) and Proposition 6 completes
if d > 8 andD > 3. Hence, for a fixedD > 3, the maximum of the proof. O
n4(2, D, 3) is attained by soméd in the rangel < d < 8.If D is
odd, n4(2,D,3) = (D — 1)/6,(D — 1)/4, D/6, (3D — 1)/14,
(2D — 1)/10, (2D)/11, (5D — 1)/26, and (3D — 1)/14 for d =
1,---,8, respectively. It is easy to check that the smalleshat at- .0, (0, d, K)
tains the maximum ig if D = 3 and2 if D > 5 is odd. Thus D '

Proposition 13: Ford > 1, @ is a prime-power, an&™ > 1, we
have

[n2(3,4) = 7.3,4] and[n(3.2) = 4.3,2] are the parameters of l(d-1)/2|/K, fK=1and@>2andd>7
the shortest inner binary codes achievifi@, D, 3) for D = 3 and . or K=2and@ =2 and (38)
odd D > 5, respectively. IfD is even,nq(2,D,3) = (D — 2)/6, - d> 15 and d # 16,20
(D—-1)/4,(D -1)/6,(3D — 2)/14,(2D - 1)/10, (2D — 1)/11, [2d/3] =97, otherwise

30-Q=F)
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d=1andD — oo, d=2 and D — oo,

d—ocand D =1, fk=1and K =1
d=1andD — oo, d=2 and D — oo, ifk=1and K > 2
d=2andD — oo, d— > and D =1, fk=2and K =1 andg =2

d=2and D — oo, fk=2and K >2 andq =2 (46)
d—ocand D =1, ifk=2and K =1 andq > 3,

ork>3and K =1
one or more finitel and D — oo, ifk=2and K >2 andq >3

ork>3and K > 2.

where the supremum is achieved for leads to a code rate 8f/(13D) and a guaranteed error correction rate
o _ of 5/26 —1/(13D) if D isevenand 0of/26 — 1/(26D) if D is odd.
D=1, if X - landd>7 andd#8 Hence, for this example, applying an outer code gives both a lower code
ork=2 and Q=2 rate and a lower guaranteed error correction rate compared to the situa-
andd>15 and d#16,17,18,20,22,26  tjon of using no outer code at all. On the other handgfer 2, k = 3,

D=1andD—oo, if K=1andd=3,5,6,8 (39) K =1, and a7.3,4] binary inner code [2], using no outer code at all
orK=2 and Q=2 leads to a code rate 8f/7 = 0.429 and a guaranteed error correction
and d=9,13,17, 18, 22, 26, rate of1/7 = 0.143. Using a[D, 1, D] outer code over GRB) with

D — o, otherwise. D > 2 leads to a code rate 8f/(7D) and a guaranteed error correc-

) tionrate of3/14—1/(7D)if D isevenand o8/14 — 1/(14D) if D
Furthgrmore, thes® are the only values for which {he supremums o4d. Hence, for this example, applying an outer code Witk 3
is achieved, except wheR” = 1 andd = 3,6, or K > 2 and gies a higher guaranteed error correction rate compared to the situa-
@ = 1mod2 andd = Omod 3, in which cases the supremum is alsqjo, of using no outer code. Ultimately, the optimal guaranteed error

achieved for infinitely many finite values db. correction rate3/14 = 0.214 is achieved foD — sc.
Proof: We start by considering the cage> 2. It follows from

(20), (4), and Proposition 12 that
C. Joint Inner and Outer Code Optimization
, - _ FE(d.D) E(d, D) . : . N ,
0p(Q.d, K) = no(K.D) = DA=0-F)/(1=q-7) Finally, we consider the joint optimization of inner and outer codes
@ ) ) for giveng, k, andK (and thusy = ¢*). For anyd andD, the guaran-
[2d/3] i_h = lim 6,(Q,d, ) (40) teed error correction rate is then optimized by choosing an inner code
2(1-Q7%) Do of lengthn,, (%, ) and an outer code of length,« (I, D). Therefore,

for all D > 2. Note that equality holds in the last inequality in (40)Ve introduce the function

if and only if d = Omod 3 andD = 1mod 2. From (19) and (20) it : E(d,D)

is clear that in order to have equality in the first inequality in (40), it Ca.nlg.k, K) = m (42)
must hold thatD = 0 mod Q¥ . Hence, it can be concluded that for e

equality to hold everywhere in (40), it is necessary theta multiple Let((q, k, i) denote the supremum ¢f, > (g, k, I{') over all positive
of 3 and D is both odd and a multiple @™ ~". With (21) it is thus integersd andD. We now derive an explicit expression for

clear that (infinitely many) finite values dp > 2 exist for which

IA

lim lim {a.n(q,k, K)
9p(Q.d. K)= lim #p(Q.d, K) Do d—ee
Pee and bounds oi(q, k., K).
if and only if either@® is odd and{ is a multiple of3 or ) is even and
d is a multiple of3 and K’ = 1.

Based on the preceding analysis for> 2, it can be concluded that 1 -1

Proposition 14: Forq is a prime power ané, K > 1, we have

sup,, 8 (Q,d. K) is achieved fotD = 1 or for D — oc. Analyzing Ll Coplg. b K) = 3(1:—(1_“\) (43)
when the difference 1
Proof: From (42) and (7) it follows that
lim 0,(Q,d,K)—60:(Q,d, K)
Do ) Con(ah K) E(d,D) dD¢(d, D)
— - d,D\{, K, 1L = - - - .
= [2d/3] _-en [(d-1)/2]/K (41) ng(k,d)nq(K,D)  ng(k,d)ng(K,D)
2(1 - Q—K) / (44)

is smaller than, equal to, or greater than zero concludes the proof. . e . .
€4 ' 0rg prod Taking the limits asl — oo andD — oc and using (24) two times

From Proposition 13 it can be concluded that, for a giyeary and Proposition 8 completes the proof. O
[r, k,. d] |nne_rc_0(?e, optimization of the guara_mteed error correction rateProposition 15: Forq a prime power and, K > 1, we have
requires an infinitely long outer code for quite a broad range of cases.
However, there are also cases for which the optimal guaranteed error 1—q" : —q!
correction is achieved by choosing an outer code itk= 1, i.e., by a1 =y < SUPCan (k. K) < o e (45)

: ; (1-g¢ N (1-¢ )
having no outer code at all. For example, fo= 2,k = 3, K = 1,
and g[13, 3, 7] binary inner code [2], using no outer code at all leads tavhere equality holds in the latter inequality if and onlyiif = 1 or
a code rate 08/13 = 0.231 and a guaranteed error correction rate of = 1 or k¥ = 2 andg = 2; the supremum is achieved only for the
3/13 = 0.231. Using a[ D, 1, D] outer code over GR) with D > 2 conditions in (46), shown at the top of this page.
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Proof: With (20) and Proposition 9 it follows that

Co._ _B(@D)  _  dDs(d,D)
Stk K) = o= e DY = nendyng (K. D)

(1-g")éd.D) _ 1—-q"'
STtk S 7o speldD)

1— —1
= - “n

forall d, D > 1, which proves the upper bound in (45). From Prop
sition 9 it follows that equality holds in the second inequality in (47) ig

and only ifd =1 andD — > ord = 2 andD — > ord — oo and
D = 1. Fromny(k,1) = k,nq(k,2) = k + 1, and (24), it follows

that, among these three cases, equality holds in the first inequality in

(@7)ifandonly if K = 1ork = 1 ork = 2 andg = 2. Also, for

these parameters the only valuesdand D achieving the supremum

are indeed as given in (46).

In the rest of this proof we consider the cases in which the second

inequality in (45) is strict, i.e., the cases in whith > 2 andk = 2
andg > 3 or K > 2 andk > 3. If ¢ is not a multiple o3, then there
exists &l such thatl > d*(k,q),d = 2mod 3, andd = 0 mod ¢*~".
For thisd, it follows from (21), (24), and Proposition 6 that
dDg¢(d.D)  _ [2d/31(1—q"")

Giroolas b, K) lim

D—co ng(k,d)ng(K, D) To2d(1- Q-r)
_([@d+D(1—-q7") 1—q "
T3d(1 = g—FK) 3(1—q KKy (48)

If ¢ is a multiple of3, then there exists & such thatd > d*(k.q)
andd = —1 mod ¢*~'. For thisd, it follows from (22), (24), and
Proposition 6 that

. . dD¢(d, D)
a JEK) =1 _—
Cd,oo(qr ) ) Dljgo nq(k,d)’l'b@(ff, D)

_ [2d4/31(1—¢~")(1-Q7")
2d(1 = ¢ )+ ¢ — ¢~ F)(1 - Q7 F)
(d+D(1-¢Hd-q¢ ")
3(d(1—q*)+1— g F)(1— g +K)
1 —q_1

= 3= (49)

This completes the proof of the lower bound in (45).
Finally, note that

supla,p(q, k, K) = sup{ supOp(Q,d, I()} (50)
d,D d

o
ng(k,d) p

and observe from Proposition 13 thatp,, 6, (Q, d, K') is achieved
forD — >~ incasek > 2andk = 2andgq > 3 or K > 2 and

k > 3. Furthermore, no finitd achieves this supremum, except when

¢ is odd andl is a multiple of3. It follows from (20) and (4) that

o E(d,D) 1—¢!
Cd‘n(qﬂkv I‘) - nq(k’ d)’nQ(IX’,D) = 3(1 — q,kk') (51)
if D > 2 andd is a multiple of3, and that
e E(d,1) 1—q¢ " 1—¢ !
Ca g, b, K) = ng(k,d)ng(K,1) " 2K(1—qg=F) ~3(1—q=*K)
(52)

if ¢ > 3. The latter inequality in (52) follows by observing that

2K(1—q ") >4(1-37%)=32/9>3(1-¢*"). (53)

0_

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

Hence, it can be concluded thaip,, ;, (4,0 (¢, k, i) is only achieved
for D — oo and one or more finitd in casek” > 2 andk = 2 and
q>3orK >2andk > 3. O

Table | lists the parameters of the shortest inner binary codes
achieving((2, %, K) for ¥ < 7 and K > 2. (Note that no such codes
exist if K = 1 andk > 3.) From Proposition 15D should tend to
infinity to achieve((2. k, K'). Indeed, except in cage= 4, the code
parameters are identical to those listed in the second column of the
table as the parameters of the shortest inner binary codes achieving
(2,D.k) as D tends to infinity. We choose the exceptional case
: = 4 as an illustration of the derivation of the entries in the third
column of this table. Proposition 6 and (24) imply that

lim —dD(’b(d’ D)
D—oo ng (4. d)?'l,lg(l-(, D)
15 [2d/3]

T 32(1- 16 K) na(4,d) (54)

Cd,oo(2< 4, I{)

Furthermore, from [8] we know that
ny(4,d) = d + [d/2] + [d/4] + [4/8]

for all d. Thus maximizing(s,- (2,4, k') over alld is equivalent to
maximizing

_ [2d/3]
T d+[d)2] + [d/4] + [d/8]

over alld. Clearly, ford > 9
1
1+< ) = fs.
< +8> fs

(56)

fa

(55)

2(d+1)/3 16/ 1\ 16
< —_— = — _— —_—
Jis asrajatans = B\ Ta) <5

Hence, the maximum qf; is attained by somé in the rangd < d <
8.ltiseasytoseethg = 1/4,2/5,2/7,3/8,4/11,1/3,5/14,2/5
ford = 1,---,8, respectively. Therefore, the smallest valueldhat
maximizesf; and(.,« (2, 4, K) is 2. However, we should notice that
d = 2 does not maximiz€,, (2, 4, K'), which is equivalent to max-
imizing nq4(2, D, 4), for any fixed finite integeD. The smallest such
d is actually8 if D > 3. In fact,72(2,D.4) = (D — 1)/5 and
ns(2,D,4) = (D — 1/3)/5for D > 3.

We can conclude from Proposition 15 that in order to optimize the
guaranteed error correction rate overghry inner codes of dimen-
sionk and all¢®-ary outer codes of dimensiafi, it is necessary to
choose an inner or outer code of infinite length. However, not both the
outer and the inner codes should be infinitely long, since that leads to
a suboptimal guaranteed error correction rate!
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Forp < #(C') the bound (1) is still valid. In particula€; is good for
error detection if and only if(C') = 1/2. Note thatf(C) is a root of
the equationP.4(C,p) = P.4(C,1/2) and it is the smallest root in
the interval (0, 1/2] except in the rare cases wiign(C, p) happens
The Undetected Error Probability Threshold to have a local maximum for this smallest root (this is not the case for
of m-out-of-n Codes Q.
It is easy to show and well known that

PualQ.p) =) () <_> - (@)

Fang-Wei Fu, Torleiv KlgveSenior Member, IEEEand Shu-Tao Xia

Abstract—The well-known m-out-of-rn code 27, consists of all binary i=1
vectors of lengthn and weight m. It is known that it is good for error ) . o
detection (in the technical sense, that is, the probability of undetected error In particular, P.a (27, p) = P.a(Q3 ™, p) for all n, m, andp.

P07, p) < Pa(Q,1/2)forall p,0 < p < 1/2)onlyforafew  Therefore, we can restrict our attentiontosuch thatl < m < n/2.
small values ofm and n. Itis therefore of interest to determine (bounds Wang et al. [5]-[10] showed that2™ is good for error detection
for) the threshold in general, that s, find the range of bit-error probabilities exactly for the following values afre, m) with 1 < m < n/2: (2, 1),

p for which P,q (27, p) < P,q(Q7,1/2). In this correspondence 2
such bounds arg given. ¢ / (3,1), (4-, 1), (4-,2)> (5a2)-, (6>3)a (7,3), (8-, 4). Another proof of

Index Terms—Error detection, m-out-of-n codes, undetected error this fact is glven_ in [1] . L .
probability threshold. The goal of this correspondence is to estintdte;” ). We start with
a heuristic argument for approximationshof?,’ ). We will then prove
one such approximation. We use the notations
The well-knownrm-out-of-: codef?; consists of all binary vectors

of lengthn» and weightm:. The m-o.ut-of-n .cgdes have peep widely T =U(n,m) = Paa(Q7,1/2) = (7’;)— 1
used as the error-detecting codes in the digital communication systems 2m
with feedback, such as the automatic-repeat-request (ARQ) error-con- ) U(n,m) 1/2
trol system. The undetected error probability of an error-detecting code Y =1(n,m) = <m> :
is one of the major parameters for evaluating the efficiency of ARQ
error-control system. For a general introduction to the theory of tfigom (2) we see that = §(2;") is the smallest positive root of the
probability of undetected error for codes, we refer the reader to [3] agguation
its references. Wang, Yang, and Zhang, [5]-[10] studied the caffes
for error detection. m(n —m)y? = Z <'".‘> <n B m’) 9% (1 — o))",
Let C' be a binary code of length and sizeV/. When the cod€ is -1 \? ¢
used for error detection on a binary-symmetric channel with symbol
error probabilityp, the undetected error probability is denoted b)lfn
PLa(C,p). Ageneral rule of thumb is that to ugéfor error detection,

we want | . B | |
m(n —m)y® = n.l n ] m 201 = p)n—2 3
Pua(C,p) < Pua(C,1/2) 1) ( )y ; < ; ) < ; ) p(1=p) 3)

particular, ifd = 6(€2") is small, therf =~ ¢.
Consider the corresponding general equation

mainly because this gives a simple upper boundPen(C', p) for all ~ wherep andy are variables. Solving far, we getp as a function ofj,
p €[0,1/2]. Therefore, if (1) is satisfied for aji € [0.1/2], the code and it can be expressed as a power series

C'is calledgoodfor error detection. However, many codes are not good oo

in thjs sense. On the other handis u§u§IIy small in most practical p= Z si(n,m) ¥ (4)
applications and (1) may well be satisfied for the actual values of =1

The simplest way to determine the coefficientén, m) is to substitute
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