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Abstract: 

Delays and disruptions reduce the reliability and stability of the rail operations. Railway 

traffic rescheduling includes ways to manage the operations during and after the 

occurrences of such disturbances. In this study, we consider the simultaneous presence 

of large disruptions (temporary full or partial blockage of tracks) as well as stochastic 

variation of operations, as a source of disturbance. The occurrence time of blockage and 

its recovery time are given. We designed a simulation-based optimization model that 

incorporates dynamic dispatch priority rules with the objective of minimizing the total 

delay time of trains. We moreover design a variable neighborhood search meta-

heuristic scheme for handling traffic under the limited capacity close to the blockage. 

The new plan includes a set of new departure times; dwell times, train running times. 

We evaluate the proposed model on a set of disruption scenarios covering a large part 

of the Iranian rail network. The result indicates that the developed simulation-based 

optimization approach has substantial advantages in producing practical solution 

quickly, when compared to commercial optimization software. In addition, the 

solutions have a lower average and smaller standard deviation than currently accepted 

solutions, determined by human dispatcher or by standard software packages. 
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1. Introduction 

Railway systems are frequently characterized by high flow density and mixed traffic which makes them 

sensitive to various types of disturbances [1]. Railway rescheduling deals with disturbances that create 

delays of some trains in the rail network. Rail transit systems seek to schedule trains in order to avoid 

passenger dissatisfaction and to improve the service reliability [2]. The impact of larger disturbances 

(termed disruptions) is more pervasive and can propagate easily in time and space. In this situation, there 

is a need to update and re-schedule train services in a short period. Train rescheduling problem is a 

dynamic decision making process that involves dispatching decisions. The simplest decisions are based 

on the planned timetable order, or static priorities (differentiating between classes of train services) but in 

general better decisions are taken based on actual data of the trains, real-time information of the 

disturbance, as well as operational constraints. Furthermore, the exact time and location of the 

disturbances may not be known in advance [3]. These facts bring many difficulties in designing train 

dispatching actions or policies.  

The present research is motivated by the situation where the recovery of the train services is of 

concern. In Iranian railway network, the important reasons for train delays are infrastructure failure, 

accident, engine breakdown, and unpredicted weather condition. Because of the complexity and dynamic 

behavior of the train traffic rescheduling, simulation modelling is becoming an effective method to assess 

the effectiveness of train rescheduling strategies. Simulation models are powerful tools to support 

resolving path conflicts in train rescheduling problem [4]. The integrated simulation models and 

optimization methods are able to address the complexity of real-time train rescheduling problems [5]. We 

argue that the stochastic factors, pertaining small variations, as much as large disruptions should be 

instead studied more in detail. To this end, we propose a simulation modeling in combination with an 

optimization procedure, which solves the train rescheduling problem, under uncertain operating 

conditions, and when facing large disruptions.  

Simulation modeling approaches were used extensively in transportation applications as a flexible and 

powerful method to evaluate the robustness and reliability of the system; see e.g. Suhl, Mellouli [6], 

Takeuchi, Tomii [7], Sajedinejad, Mardani [8], Motraghi and Marinov [9], Hasannayebi, Sajedinejad 

[10], Büker and Seybold [11], Eskandari, Rahaee [12], Hassannayebi, Sajedinejad [13], Abbott and 

Marinov [14], and Hassannayebi, Zegordi [2]. However, despite of the fact that the train rescheduling 

problem has been analyzed extensively, limited research has been directed to the combination of 

simulation platforms with advance search techniques to solve train rescheduling problems under 

uncertainty. By using advanced and flexible simulation systems to control trains, improved management 

of the rail transportation will be easy. Optimization models are also trying to minimize the cost of delay, 

finding solutions to repair and restore the disrupted scenarios and improve traffic flow on congested 

bottlenecks in the rail networks. A solution has to respect railway operational rules and capacity 

constraints, partial or full blockage during the disruption, and minimum headway constraints. The 

objective is to minimize the total average delay time of trains at rail stations. The main contributions of 

this study lie therefore in the subject of microscopic disruption management under uncertain conditions. 

First, we develop a flexible stochastic simulation model, which we sue for generating disposition 

schedules following principles acceptable to the local dispatchers (priorities) in a very short time. 

Secondly, a dynamic priority rule is proposed to accelerate the performance in terms of speed and 

convergence of the search algorithm. Third, a two-stage optimization method is proposed, based on meta-

heuristic search, which minimizes further the delays, with particular focus to the disrupted areas. We also 

show that the combination of the dynamic priority rule with the meta-heuristic gives particularly good 

results.  

The remainder of the paper is organized as follows. Section 2 presents a review of models and 

approaches to railway traffic rescheduling. In Section 3, the problem is described in details. Afterward, 

the details of the methodology are presented in Section 4. The framework of the simulation method is 

discussed in Sections 5. We describe a real case in Section 6, which we use to setup a comprehensive 

experimental study in section 7. Conclusive remarks close the paper in Section 8. 
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2. Literature Review 

The train rescheduling problem is known to be strongly NP-hard [15]. The management of train timetable 

is a complex procedure subject to the capacity and resource constraints [16]. This problem belongs to a 

wide-range class of combinatorial optimization models and methods being called railway disruption 

management. Railway disruption management mainly refers to the models and approaches used in the 
railway real-time traffic management [17]. A variety of approaches has been proposed, ranging from 

mathematical optimization (mixed-integer linear programs) to simulation techniques, heuristic and meta-

heuristic methods. All those methods have shown their value for in practice to evaluate the stability of the 

disturbance recovery strategies, or to generate near-to-optimal solutions in a reasonable computation time. 

Coverage surveys of railway disturbance management practice and theory can be found in Qu, Corman 

[18] or Cacchiani, Huisman [19], or Corman and Meng [20], or Fang, Yang [21]. In what follows, we 

discuss the most related contributions in this area of the research, according to the general structure 

proposed in this latter survey paper. 

Cheng [22] proposed a new integrated approach of a knowledge-based system with an operation 

research technique to solve train rescheduling problems. The critical path method was used to find near-

to-optimum solutions. In order to reach to a global optimal a feedback control function was designed to 

manage the delay and resolve the resource conflicts. The problem of controlling and coordinating rail 

traffic in a whole railway network is hard to tackle in reasonable time. Higgins, Kozan [23] applied a 

local search heuristic with an improved neighborhood structure, genetic algorithms, Tabu search and two 

hybrid algorithms for train scheduling problem. The computational result indicates that both hybrid 

algorithms provide better results compared with the other heuristics. A decision support system called 

ROMA was designed and implemented by D'Ariano [24] based on Alternative Graph (AG) techniques to 

cope with real-time train rescheduling problem with multiple delays more efficiently. The aim was to 

improve punctuality through better utilization of the railway infrastructure. The applicability of the 

ROMA was verified through extensive computational tests on instances of the Dutch railways. ROMA 

system was first implemented to optimize railway traffic within a single dispatching area. The system was 

extended by Corman, D’Ariano [25] to present an innovative distributed approach to manage train 

movements more effectively in a multi areas dispatching setting. The performance of the distributed 

approach was compared with the existing models in terms of computation time and reducing total delay.   

Corman, D’Ariano [26] proposed a novel approach to deal with multiple train classes in train 

rescheduling problem. An efficient scheduling procedure was adopted in order to generate feasible train 

timetables according to a set of priority classes. At each step, an advanced branch and bound algorithm 

was used to solve the sub-problems optimality. Dündar and Şahin [27] designed a decision support 

system using Genetic algorithms (GAs) and artificial neural networks (ANNs) for real-time conflict 

resolution problem. The methodology was tested with actual data extracted from train operations in 

Turkish State Railways. Hassannayebi and Kiaynfar [28] proposed three meta-heuristic algorithms based 

on greedy randomized adaptive search procedure (GRASP) for finding the near optimal train timetable in 

double track railway lines. The output results show the effectiveness of the proposed meta-heuristic 

algorithm in solving large-sized instances of the train timetabling problem. Dollevoet, Corman [29] 

proposed an optimization method that solves a macroscopic delay management problem on as well as a 

microscopic train scheduling model. The headway constraints were captured in the model with full details 

of the railway infrastructure, especially within the stations. The resulting disposition timetable was 

evaluated thoroughly for a bottleneck segment of the rail network. Some works integrate the concept of 

priorities, which is easily understood and accepted by practitioners Hassannayebi and Zegordi [30] 

proposed variable and adaptive local search algorithms to minimize the total and maximum waiting time 

of the passengers for urban rail transit systems. Narayanaswami and Rangaraj [3] designed a multi-agent 

system model with a learning mechanism for real-time train rescheduling in a bi-directional railway 

traffic on a single-track route. The developed framework employs a dynamic scheme of priority 

assignment procedure that allows to dynamically dispatching the disturbed trains in real-time, and 

constructs a deadlock free disposition schedule. Hassannayebi and Zegordi [31] proposed linear and 
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nonlinear mathematical models for train scheduling problem. In order to tackle large instances of the 

problem, variable neighborhood search approaches were designed. The efficiency of the meta-heuristic 

algorithms was verified through the application to the Tehran metropolitan network.  

The topic of railway rescheduling has attracted attention mostly from concerning small delays, while 

the study of large disruptions and especially the inclusion of many stochastic factors have been so far 

limited. The dynamic changes over time, in those situations, are quite strong; there needs to be an 

inherently dynamic environment, proposing adjustments such as rescheduling and partial reordering 

during operations, which is currently to be found in simulation environments. Therefore, despite the 

interesting scientific results reached by optimization models, there is a need to develop flexible simulation 

systems that is able to evaluate different partial reordering possibilities. Furthermore, the trade-off 

between delivered schedule quality and the rescheduling process time is of critical importance in the 

practical implementation of a train rescheduling tool. On the other hand, even though several simulation 

models have been developed for rail operation management formerly, an acceptable solution with regard 

to inclusion of optimized asynchronous choices has not been attained in this aspect. To the best of our 

knowledge, a direct application of the flexible simulation-based optimization approaches to train 

rescheduling problem has not been found in the literature and if so, it has not been addressed to the same 

extent that accounted in the present study. 

With particular regards to uncertain effects of small delays and large disruptions, we merge the 

descriptive power of stochastic simulations, with the easy accepted priority-based scheduling, for 

disruption management. We present an advanced discrete-event object-oriented simulation model, 

implemented in a commercial event-driven simulation package. In order to optimize the performance 

measures, a variable neighborhood search technique is proposed to improve solutions under the strong 

capacity limitations due to the disruption. The developed simulation-based optimization approach has the 

flexibility of adjusting train operations under time and resource constraints in an efficient way. 

3. Problem statement and formulation 

This section provides the problem statement and the notations used for the train rescheduling model. 

The main assumptions and characteristics of the problem are given in Table 1. It is assumed that an initial 

timetable for trains on the network or by the simulation model presented in this study is given. At the 

starting moment of the disruption, the trains are in a position, considered known, and set as data inputs for 

the simulation model. The considered rail infrastructure is illustrated in Fig, 1. It includes a set of stations 

(k=1,2,,,m) and a set of operating trains (i=1,2,..,n). The segments between each pair of stations are 

single/double-track block sections. We consider absolute fixed block operations between stations, by 

which block sections begin and end only at stations. Only one train is allowed on a track between two 

stations. Overtaking operation is allowed only at stations. 

 
Table 1. 

 

During the normal operations, a train can move from current station if the successor block section is 

available and there is at least one free track segment in the next station (absolute fixed block operations 

between stations). When a disruption occurs on a block section, the train traffic is heavily perturbed. At 

that moment, the main goal is to provide a new disposition schedule for all operating trains at the end of 

the scheduling horizon, so that the total delay cost is minimized. The model proposed in this study 

produces new disposition schedule from a combination of the following actions (at the vicinity of the 

disruption, or elsewhere): reordering, (changing the sequence of trains on the block sections), adjustment 

of the departure times, and changing the stop times at stations.   
 

Fig. 1. 
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A main constraint is that at stations, a train is not permitted to depart, in any case, before its scheduled 

departure time. A conflict happens when at least two trains request to use the same block section at the 

same time. In this case, a conflict resolution procedure is required to decide the ordering of the trains. 

This procedure aims locally (or globally) to decrease the total delay of the trains. The total delay is 

defined as the difference between the actual train arrival time and the scheduled time at a set of 

predefined stations in the network. Total delay of a train consists of two parts termed as initial delay and 

secondary delay. The initial delay is triggered by disruptions and longer travelling time, and cannot be 

recovered by rescheduling model. The secondary delay is the extra delay needed to resolve the potential 

conflicts during a planning time horizon. In this study, the train rescheduling model considers dynamic 

priority of trains during disturbed operations, in order to minimize the total delay of the train services. 

Next section provides the assumptions made on the train operations during both normal and degraded 

modes. Before the disturbance occurs (normal condition), the railway capacity utilization is at the regular 

level. In the first state (normal-to-disrupted situation) the utilization necessities to be reduced to achieve a 

utilization level that can be reserved during the disturbance. During second transition state (disrupted 

situation) start with the disruption recovery actions. In this state, the new timetable is functioned and the 

utilization level is steady. The third state (disrupted-to-normal) made the utilization level to the normal 

condition. In our research, the focus is on the second and third transition states. 

 

3.1. Train operation modeling during normal operation  

This section provides the assumptions made on the train operation during the simulation experiments. The 

stochastic parameters here are train running times on block segments. We consider a stochastic simulation 

model, to account for the inherent and relevant probability distribution of the running time. In this regard, 

a stochastic distribution of train running times is estimated and is used instead of the commonly 

considered deterministic running time. The normal distribution thus proved to be a good model for the 

large array of phenomena which can be found in real-life operations [32]. The probabilistic train running 

time distributions are fitted at a given level of significance (95%). From the statistical analysis, we 

conclude a good fit of the experimental data with the normal distribution. All the data sets show that the 

running times between consecutive stations fit the Normal distribution at the level of significance of 0.05 

according to Kolmogorov–Smirnov (KS) statistical tests. Thus, the hypothesis of Normal distribution is 

not rejected at the desired level of significance. However, in order to make the running time distribution 

more practical, we truncated the travel time function using the maximum train speed.  

In order to formulate the running time function, we consider distances between any consecutive 

stations k and k+1 (  ). Let   and    be the mean and standard deviation of the running time distribution. 

We assume that running time of train   between consecutive stations k and k+1 (   
 ) follows a normal 

distribution with average   
  

  
    and variance    (minutes

2
) where   

    and   
    are defined as 

average and maximum speed of train  . The variance can be determined through sampling methods. It 

should be noted that the running times between stations cannot be less than the minimum technically 

feasible. Thus, to ensure all train cannot exceed their maximum technically speed, the minimum running 

time (
  

  
   ) is defined in Eq. (1). Similar running time function was proposed by Nie and Hansen [33].    

 (1) 
   
     {      (

  

  
      )  

  

  
   }             

3.2. Train operations during disruptions  

An infrastructure failure occurring in the route is termed disruption, or degraded mode. Without loss of 

generality, consider a single-track segment of a railroad line between two major intersections as shown in 

Fig. 2. The dispatching rules on this single-track segment manage the movement of trains for both 

directions. Different dispatching policies will cause different amounts of delays for trains. In this 

research, the length of the train is not considered. The effect of train length on train delay would be 
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insignificant if the distance of the track segment is much lengthier than the length of the train. It is 

assumed that the disruption occurs at one block section and degrades the traffic in partial or in full. 

According to railway safety rules, no more than one train at a time is permitted to dwell in any block 

section (referring to the conflict-free situation). In this article, we focus on two frequent degraded modes 

in railway systems. In the first degraded mode (full blockage), the normal operation of a single-track 

block section is disrupted due to an incident between two neighboring stations as illustrated in Fig. 2. In 

this figure, the traffic flow under normal condition and the location of service disturbance are depicted. 

As can be seen, there is no possibility of passing during the disturbance. However, during the normal 

condition, the traffic between two consecutive stations is bi-directional. After the disturbance recovered, 

trains start normal operation on the single-track segment. According to the accepted operational rules in 

Iran, the allowed control actions in this case consist of retiming or re-routing the incoming trains toward 

the disturbance location, while there is no possibility for cancelling or short-turning trains. Thus, in the 

first degraded mode, the main decision variables are which train should be reordered or delayed at what 

locations.   
 

Fig. 2. 

The second degraded mode is a blockage of one track out of a double-track block segment (Fig. 3). In 

this situation, trains moving toward the disrupted area can bypass the blockage and after traversing a 

number of switch points they going back to the original route. The reordering policy (as illustrated in Fig. 

3) enables the waiting train to switch to the bypass direction track. Crossover tracks allow trains to be 

transferred from one track to another, enabling trains to bypass the incident location. During the 

disruption, the system effectively becomes a single-track between two consecutive switch points, and the 

trains requesting to pass through this part of route wait at stations until the single line is suitable for their 

trips. After the blocked track is repaired (which might take long time) the system again becomes a two-

parallel-tracks line, and traffic flow returns to normal. The conflict resolution of train on the single-track 

segment involves sequencing the inbound and outbound trains. Thus, the optimization model aims to find 

the best crossing order of the waiting trains, and the related times of operations. We focus particularly in 

finding the order of crossing the disrupted area, as we experimentally found out that it has a major 

influence. To this end, we define meta-heuristic procedures, explained in the remainder of the paper.  

Fig. 3. 

4. An Object-Oriented Event-Driven Simulation Framework For Train Rescheduling 

Discrete event simulation systems are extensively used for modeling the behavior of a complex 

dynamic system within a discrete time framework based on an event list. An event indicates the 

occurrence of a change in the status of the rail system at a specific time. Different modeling approaches 

e.g. process-oriented [9, 34] and object-oriented e.g. [35, 36] can be used for railway systems. The object-

oriented simulation model provides a flexible build-in framework that supports the design process of 

railway network layout. In the present study, we use Enterprise Dynamics (ED) simulation software as a 

simulation platform due to its capability of designing customized rail objects and ability to implement 

optimization algorithms. Enterprise Dynamics is a leading object-oriented simulation platform to design 

and implement simulation models [37]. It has also a built-in programming language called 4DScript, 

which can be used for advance modeling purposes. Another application of the 4DScript is the capability 

of programming, which allowed us to include the meta-heuristic optimization approaches right into the 

simulation system [38].  

The main procedure of the simulation-optimization of the train dispatching is presented in Table 2. 

When a train enters a waiting queue, a dispatching algorithm is applied to check the operational and 

safety constraints. If all conditions are satisfied then the train is allowed to move to the successor block 

section according to its route. Else, an event is created to execute dispatching algorithm and the involved 
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train waits in current position until all conditions are met. The conditions are the available free track on 

the next segment and a free platform for the train that has stopping plan at the next station.   

 
Table 2. 

5. Simulation-Based Optimization Approach 

The proposed two-stage simulation-based optimization framework for train rescheduling problem is 

illustrated in Fig. 4. As can be seen, it follows a kind of black-box approach to tackle large and complex 

simulation-based optimization problems. We refer solutions based on either the static timetable order, or 

priority based. Furthermore, the priorities can be static or dynamic. The latter is generally more flexible 

and can deliver better solutions with regard to delays. Concerning dynamic priorities, we restrict 

ourselves to dispatching algorithms that calculate and assign priorities based on time-based parameters. 

Our procedure works in two stages. In the first stage, the initial random solutions are generated based on 

heuristic dispatching rules based on dynamic priority. At this point, the goal is to reach a relatively good 

new disposition schedule, in order to handle the disrupted traffic conditions on the route in a short period 

of time. The initial generated schedules are evaluated by their total average delays (considered a 

reliability index) via simulations experiments. The best solution from this stage is regarded as a starting 

point for further optimization. A meta-heuristic algorithm (variable neighborhood search) is used in order 

to improve the solution to the train rescheduling problem algorithm, in term of mean and variance of 

delay times. During stage 1, due to time constraints, the number of simulation replication must be 

determined carefully for solving train rescheduling problem. The updated values of the decision variables 

refer to control actions such as retiming and reordering of train at rail segments. At each iterative step of 

the meta-heuristic optimization algorithm, a set of new departure times are decided and the new tentative 

schedule is tested in the simulation model. Given a train scheduling solution, simulation model obtained 

statistical bounds on the objective value, and the optimization model iteratively improve the expected 

value until the time limit reaches. At the end of each simulation run, the current solution is evaluated 

based on the quality and reliability criteria. The process continues to achieve a desired response plan with 

respect to time constraint. The objective function is defined as the total average delay of train services at 

all visiting stations.  
  

Fig. 4. 

5.1. Dynamic priority rule-based heuristic  

This sub-section gives the explanation regarding how to resolve the conflicts and generate good-quality 

initial rescheduled plans rapidly, by means of dynamic priority scheduling. For this purpose, heuristic 

dispatching rules are proposed that change the priorities of the operating trains dynamically in order to 

reduce the secondary delays. As we observe, train dispatchers in different railway companies mostly 

perform a preference-based process of conflict detection and resolution. The traditional dispatching rules 

do not take into account the updated information of the trains and may fail to find appropriate solutions. 

Consequently, it is essential to recognize the decision making process, in order to develop innovative 

conflict resolution models. The application of the dynamic priority rule-based model presented in this 

study seems to be an effective method to meet this objective. In what follows, we explain our method of 

train conflict resolution. As mentioned earlier, an initial static priority class is assigned to each train 

before the implementation of the rescheduling procedure. In the simulation experiments, the static priority 

class is then updated in order to further adjust the importance and urgency of the train service towards the 

objective value. Our dynamic priority-based train rescheduling is a type of scheduling algorithm in which 

the train priorities are computed during the execution of the simulation model. The main goal of dynamic 

scheduling is to adjust to dynamically dispatching order and design a good quality solution in an adaptive 

approach. The proposed framework is an iterative probabilistic procedure for determining the dispatching 
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priorities. The dynamic priority of a specific train is calculated as function of the initial priority class, the 

actual (accumulated) delay, and the allowed (maximum) delay time. Notations of dynamic priority rule-

based heuristic are summarized in Table 3. Every time a conflict happens, one train should be delayed to 

resolve the conflict. The resolving of the conflicts is mainly based on train priorities. The proposed 

dynamic priority rule preserves the overall delay of the trains, and resolves the train conflicts in a short 

period.  
 

Table 3. 

 

The initial values of the train priorities are based on the train classes. The adjusted priorities impose 

additional challenges into the optimization problem so that the priority of a particular train may change 

several times during a single simulation run. At the first step of the heuristic method, a new conflict-free 

disposition schedule is constructed through a conflict resolution model by the adjusted priorities. An 

initial train schedule is represented by a set of potential conflicts (C).    represents the j
th
 conflict as it 

occurs in time. Train conflicts are resolved according to the relative priority ratio chronologically. The 

adjusted priorities are calculated according to the calculated values of accumulative delay of trains. A 

piecewise linear utility function (U) is used to determine the adjusted train priority in terms of the 

deviation from the allowed delay. The train priorities update whenever they depart or arrive to stations 

according to equation (3). U(x) consists of K linear pieces joined together at breakpoints       . The 

priority of the trains increases when the accumulated delay exceeds the allowed delay. Using the initial 

set of train weights or initial priority, it is possible to calculate the dynamic priority    of any train i; a 

conflict is resolved according to their value, with a higher value resulting in a higher priority to reserve 

the path. In the second step, the objective function of the generated solution is measured by the reliability 

criteria. Once the time limit is reached, the heuristic algorithm terminates and provides the best solution 

found by the heuristic method. We consider a time limit of 10 minutes to execute the algorithms.  
(2)   *          + 
(3)        (   *       +)      (   *    +) 

(4)  ( )           

(5)                        

5.2. Variable neighborhood search algorithm 

In this section, we explain the proposed variable neighborhood search algorithm. This is specifically 

introduced to deal with the strong shortage of capacity near the blockage, which asks for more 

sophisticated optimization approaches. The Variable Neighborhood Search implemented here fixes the 

full order for trains going on the disrupted area, possibly overriding (dynamic) priorities. In the 

improvement stage of the proposed two-stage simulation-based optimization approach, a local search 

algorithm is required to perform a sequence of local moves in the neighborhood  ( ) of an initial 

solution   to improve the performance value until a local optimum solution (  ) is obtained. The basic 

function of the local search algorithm can be improved in order to avoid trapping in local optima. One of 

the most practical extensions of the local search is Variable Neighborhood Search (VNS). In this method, 

the systematic changes in neighborhood structure are performed in a way that to escape from the local 

optima. VNS method was originally introduced by Mladenović and Hansen [39] and after that it has 

received increasing attention both in theoretic extension and large-scale optimization problems [40]. VNS 

has been applied to a wide-range of combinatorial optimization problems including capacitated vehicle 

routing problems [41].  

The notations are given in Table 4 to better explain the method. Moreover, the pseudo code of the 

proposed variable neighborhood (a variable neighborhood descent (VND) method, in the terminology of 

Mladenović and Hansen [39], is provided in Table 5. In our implementation, the search method changes 

the neighborhoods in a deterministic way. The VNS algorithm starts with the best found solutions from 

the first stage optimization. VNS algorithms start with iteratively changing the properties of an incumbent 
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solution. A neighborhood search heuristic is performed by picking an initial solution xo, determining a 

search direction of descent from this solution, within a neighborhood N(x), and continuing to the 

minimum of F(x) within the neighborhood space N(x). At step seven, the neighborhood N(x) of x is 

explored completely. The highest direction of descent is related to as best improvement that is 

summarized in Table 6. The process of a move from a basic solution to a possibly better one is guided by 

evaluation of the fitness function value. Since the problem considered in this study has a stochastic nature, 

each potential solution of the problem is evaluated using the discrete-event simulation model. In step 8, 

the simulation function is employed to evaluate each solution like  . The result is the average fitness 

value of the solution that is stored in F(x).  
 

Table 4. 

Table 5. 

Table 6. 

 

In what follows, the neighborhood structures proposed in this paper is described in detail. A move 

alters the current solution to the neighboring one by shifting the relative order of some trains. We propose 

a combined remove-insertion with variable step-size mechanism to alter the order of trains. In order to 

better explain the way that the search method performs move, we provide an illustrative example. In this 

example, six trains approach the disrupted location. We report them along a time axis (horizontal) and 

space axis (vertical), with two stations; trains can overtake each other only at stations. Thus, each train (a-

f) is a line crossing the diagram from top to bottom, or vice versa. The blockage has occurred on a single-

track segment between station k and k+1 as illustrated with a shaded rectangular block in time and space. 

Let *           + be the initial order of train incoming to the disturbance location. Each of them has an 

origin and an initial priority (P0). If there is no change in the train orders then the resulting time-station 

graph is illustrated in Fig. 5. In this graph, train depart with the same order and follow the first come first 

serve (FCFS) dispatching rule.  
 

Fig. 5. 

 

Now consider the case that train order changes by insertion operators. The k
th
 neighborhood structure 

is defined as the neighbors described by k shifts performed in the train orders. For example, the first 

neighborhood structure only performs one shift in the sequence. In this case, a single train is selected 

randomly, removed from the sequence, and inserted either immediately before, or immediately after its 

original position. For example, an adjusted sequence using one-step move operator is 

*           + where train b is selected and inserted after train c (Fig. 6). Another example is to perform 

a three-step (k=3) move. Assume train   is removed from the sequence and it is inserted after train d. the 

adjusted train order is *           + as illustrated in Fig. 7. As can be seen, train a faces with the highest 

delay after the order adjustment.  
 

Fig. 6. 

Fig. 7. 
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In the cases presented in Fig. 5 to Fig. 7, each station (between segments k and k+1) hosts three trains. 

In longer blockage periods, station capacities may be insufficient to host all the visiting trains. We explain 

how simulation model deals with these occasions. In case of higher traffic volume, the trains must wait at 

the former stations to be ready to dispatch when the next station has a free track (or a free platform in case 

of passenger load/unloading). The main objective for applying the above mentioned moves is to attempt 

to recover the train schedule in terms of reducing total average delay time. In this regard, the validity of 

the proposed solution method is demonstrated in the next section.  

6. Test case description: Tehran-Razi corridor 

6.1. Infrastructure 

Tehran-Razi corridor is considered as a case study. This corridor is one of the most congested ones in 

Iran. The infrastructure considered is a main part of the railway network in the west of the Iran. As 

presented in Fig. 8, the network is composed of three major stations with dense traffic: Tehran, Tabriz, 

and Razi. Other intermediate stations in the network are also considered in our simulation model. The line 

between Tehran and Razi (eastbound route) and Razi serves the two main traffic directions to Tehran 

(westbound route). The network comprises a combination of single and double-tracks of different length, 

with a maximum distance between two end stations of about 930 km. Tehran-Razi corridor consists of 62 

stations, 57 single-track blocks, and 4 double-track block sections. The total number of daily operating 

trains is 46. Overall, there are more than 202 track segment and 90 platforms (i.e., track segments and 

platforms are actually used at stations). The networks operate based on absolute block operations, i.e. at 

all times only one train is allowed in the segment between two stations, for each track. The predefined 

classes of the static priority set is given in Table 7. 
 

Fig. 8. 

Table 7. 

 

6.2. Disruptions scenarios 

Due to the unknown nature of the disruptions, different possibilities for the start time and the location of 

the disturbance are probable. We consider the most effecting disruption scenarios, which start before the 

most congested period of the day, in the bottlenecks with the highest traffic. Formally, we identified those 

locations and times by computing a Congestion factor (CF) as the number of train conflicts in a schedule 

during a specified interval. Because of the high density of traffic through bottleneck segments, the buffer 

times added in the initial timetables are deficient to absorb train delays caused by unpredicted disruptions. 

According to the above explanation, the identified test cases are summarized in Table 8. The disruption 

scenarios are characterized by the location, type of the degraded mode, the expected duration, and hours 

of the blockage.  

 
Table 8. 

7. Computational results 

7.1.  Performance 

This section provides the computational results on the simulation model and the meta-heuristic technique 

proposed in this study. The simulation runs are executed via Enterprise Dynamics 8.2.5. All the 

experiments are performed on an Intel(R) Core2 Due personal computer with 3.3 GHz and 4 GB of RAM.  

We report the performance of the proposed VNS method compared with those obtained from the 

simulation-optimization methods embedded in OptQuest package. OptQuest is a well-known registered 
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optimization solution of OptTek Systems, Inc. (available in www.opttek.com). OptQuest works 

iteratively, using a black-box approach as a general-purpose optimizer that performs a series of simulation 

experiments to find optimal or near optimal solutions. OptQuest utilizes a mix of meta-heuristics 

algorithms including Scatter Search (SS), Genetic Algorithm (GA), Tabu Search (TS), and neural network 

learning algorithms to find global optimum [42]. In the present study, OptQuest is employed which takes 

the advantages of the decision-support features of the Enterprise Dynamics simulation software with the 

use of global optimization algorithms. The experimental results of the proposed two-stage simulation-

based optimization method and OptQuest solver are given in Table 9. In this table, two performance 

metrics are calculated: 

1. Total average travelling time 

2. Total average delay 

The cumulative delay time is defined as the sum of total delays at all relevant locations. It measures 

for all train the positive arrival time with the due date employed to measure the train delay with respect to 

the time at which the operation is planned, i.e., the arrival of a train at a planned stop or its planned exit 

from a relevant point. The best-found solutions with 10 minutes of execution are reported in this table. As 

can be seen in this graph, the disruption scenario #6 has the most disruptive impact on the performance 

measure compared with the other disruption scenarios. To compare the computation efficiency of the 

VNS and OptQuest, we recorded the computation time of the two methods when solving the train re-

scheduling problem. Both the solution quality and the computational performance are compared to the 

OptQuest. According to the data in Table 9, the total average delay time of all trains at all stops is reduced 

by almost 12.48% and 29.18% compared with the FCFS and the OptQuest, respectively. Furthermore, the 

total average travelling time of all trains is decreased by nearly 1.12% and 1.09% compared with FCFS 

and OptQuest, correspondingly. It should be noted that the total travelling time averaged over all test 

instances is nearly similar for VNS and OptQuest as well as FCFS.  

As mentioned earlier, the proposed a two-stage simulation-based optimization method that 

incorporates a dynamic priority rule-based algorithm to find the initial solutions. In what follows, we 

analyze the performance of the VNS without heuristic method, i.e., considering as initial solution the train 

order specified offline in the original timetable. This approach is being called single-stage VNS 

throughout the article. Furthermore, it is worth to show the significance of our contribution by testing the 

performance of two-stage VNS, i.e. with starting solution optimized. In this case, we refer to a static 

priority driven scheduling method, against the proposed dynamic priority scheduling approach. The 

computational results of two-stage VNS vs. single-stage VNS and static priority driven scheduling 

method are given in Table 10. This table provides the objective value (the expected value of the Total 

average delay in hours) of the best-found solutions obtained for each algorithm within 10 minutes. The 

outcomes indicate that the average improvement gained by the dynamic priority method is about 7.6% 

compared with the single-stage VNS and the two-stage VNS with static priority. As can be seen, the two-

stage VNS outperforms the single-stage VNS and static priority driven scheduling methods in all 

disruption scenarios. This finding verifies the applicability and improvement of the dynamic scheduling 

method over the single-stage VNS and static priority driven train rescheduling.  

 
Table 9. 

Table 10. 

7.2. Convergence analysis 

In case of an unexpected disruption, it is vital that dispatchers speedily provide a good solution in order to 

reduce the annoyance for the travelers. Thus, a faster convergence rate results in a better and more 

realistic solution for the real-time train rescheduling problem. We provide the plot of solution quality 

against time, which accounts for the convergence analysis of the proposed as well as benchmark 

algorithms. The search profiles of the VNS and OptQuest, which are both iterative procedures, is 

illustrated in Fig. 9. In terms of value per iteration, for one disruption scenario, namely #6. We remark 
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that the computation time is analogous to considering the iterations, as each simulation replication takes a 

nearly constant time. The computation result of the proposed VNS plus heuristic method (dynamic 

priority) illustrates that it could find better solutions within an improved computation efficiency compared 

with OptQuest. The VNS plus heuristic method (dynamic priority) converges faster than the pure VNS as 

well as the algorithms of OptQuest to find the solution of train rescheduling problem. It can be seen that 

the proposed two-stage simulation based optimization method is superior in terms of solution quality and 

convergence performance.  
Fig. 9. 

7.3. Statistical analysis 

This section provides a reliability-oriented evaluation of the generated solutions. As mentioned earlier, 

the designed system can stochastically evaluate train schedules by means of simulation. It is important to 

draw attention to the fact that while train rescheduling strategies will aim at optimizing efficiency; the 

impact of stochastic variables during a rescheduling procedure is mostly neglected. In the present study, 

by applying discrete-event simulations, the solutions are analyzed statistically in a test environment. The 

result of statistical analysis of the best-found solution under different disruption scenarios is summarized 

in Table 11. The reported results include the expected value, standard deviation, minimum and maximum 

values, the value of the (lower and upper) 95% confidence intervals (reported as LB and UB 

respectively). The reliability of the result is represented by confidence interval that indicates the 

probability (e.g. 95%) that the response variable is within the range specified. For every performance 

measure (PFM), an observation wi is collected after each observation period  . Each statistic is estimated 

based on the raw data w1, w2, …, wn, where   is the number of replications [43]. The lower bound and 

upper bound of the confidence interval (CI) are obtained from the equation (6). The values  
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For example, in the first scenario, the standard deviation of delay time is reduced by 60% compared to 

the OptQuest best found solution. For the second scenario, the blockage takes 2 hours and the standard 

deviation of delay time decreased by 47% compared to the OptQuest best found solution. In the third 

case, which imposes the longer duration of disruption, the standard deviation of the delay time decreased 

by more than 40% compared to the OptQuest best found solution. The result of the simulation model 

indicates that the average and standard deviation of the delay times are affected by the duration of the 

blockage. Compared to the results in Table 12, the standard deviation of the delay times calculated with 

the proposed VNS method is on average 1.95 hours less than that with the OptQuest package. It can be 

concluded that the approach proposed in this paper has more dominant optimizing capability compared 

with the OptQuest. From the computational results, we also conclude that the performance of the 

proposed simulation-based optimization method is robust because of the less variance of delays. We also 

remark that the performance of FCFS is much less attractive compared to the other two, and therefore we 

skip reporting it in full. 
 

Table 11. 

Table 12. 

8. Conclusion 

Railway systems are operated growingly at maximum capacity, timetables are becoming further at risk of 

instabilities, and delays propagate and reduce the service level perceived by the passengers. This makes 
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real-time train traffic planning becoming more and more challenging, as a result motivating the 

developing railway decision support systems. The procedure of disturbance management in rail 

transportation systems faces different challenges, for example the irregular occurrence time, the strong 

limitation of capacity for long period, and the presence of many other stochastic phenomena of smaller 

magnitude occurring in the network. This study developed an object-oriented discrete-event simulation 

model, which is able to model heavy disruption and small stochastic variations due to smaller delays; 

which optimizes traffic by means of dynamic priorities rules, and further employs a variable 

neighborhood search algorithm as a global conflict resolution method in order to decrease the total delays 

after line blockage disruptions. The computational experiments along with a discussion about practical 

strengths and limitations of the proposed simulation-based optimization approach were conducted on real-

world test cases of Iranian railway network. The outcomes indicate that the proposed variable 

neighborhood search meta-heuristic outperforms the commercial OptQuest optimization toolbox in both 

solution quality (delays and their deviation) and computational time. Computational results of the 

developed model on an important part of the Iranian railway network illustrates that the simulation-based 

optimization approach is capable of finding near optimal solutions in reasonable computation times.  

As accounted for the future research, many of the modeling characteristics can be adapted to more 

realistic situation. One important extension of the current study is to consider the network case. The 

determination of train priority can be handled through a comprehensive predictive model, or a more 

abstract optimization approach could be implemented, based for instance on robust or stochastic 

programming. In addition, it is worth mentioning that the simulation model can be extended to analysis 

other performance measure such as punctuality and robustness. Finally, a still open challenge for the 

railway community is the development of exact algorithms for scheduling traffic under stochastic factors. 
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Table 1. Assumptions and characteristics of the problem 

Assumptions  Description 

Rail infrastructure A corridor with single or double track segments 

Disruption Temporary partial or full blockage 

Disturbance management strategies 
Change the sequence of trains at the disruption site and elsewhere 

Overtaking is permitted at stations with available capacity 

Train types Passenger railway 

Priority of trains Different and variable over time 

Travel time function per train Probabilistic 

Rail capacity at stations Limited (taking into account the number of tracks and platforms) 

Signaling systems Absolute fixed block signaling system between stations 

 
Fig. 1. The considered rail infrastructure  

 

 
Fig. 2. The line blockage in the degraded mode #1  

 
Fig. 3. Train services on the Single-track segment during the degraded mode #2  
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Table 2. The main procedure of the simulation-optimization  
Step 1: Initialize necessary simulation parameters  

     (Confidence level 1–α,   number of replications)  

  Set simulation clock (t=0) 

      Initialize system state 

      Prepare event list (ascending order of time) 

Step 2: Perform several simulation runs using dynamic dispatching rules  

Step 3: Using a look-ahead procedure find out new event (either stop at current 

station or move to next station) 

Step 4: Update the priority of the train according to the accumulated delay   when 

it arrives at a station 

Step 5: Aggregate simulation results and store them in the database  

while stopping criteria is not met do  

Load aggregated parameters into simulation system  

Solve the optimization model using VNS 

Write new decision variables correspond to the re-ordering and adjusted priority 

to the database  

Load new decision rules into simulation model  

Perform several simulation runs to evaluate the solution  

Aggregate simulation results and store them in the database  

end-while  

Load the best found solutions 

Generate output reports  

 New rescheduled train graphs (time-station diagrams) 

 Estimate the expected value and the variance of the train delays at 

destinations.  

 

 
Fig. 4. The proposed two-stage simulation-based optimization framework for train rescheduling problem 

 

Table 3. Notation used in dynamic priority rule-based heuristic method 

Symbol Definition 

   The initial priority of train i 

   The accumulated delay of train i 

   The allowed (maximum) delay of train i 

   The surplus delay regarding the maximum allowed delay  

U The utility function  

        The start and end break points of the utility function 

L The total number of train conflicts in the schedule 
 

Table 4. Notation of the proposed VND method 

Symbol Definition 

k The counter of the neighborhood structures (            ) 

     The total number of neighborhood structures 

x The candidate solution for local search 

xo The initial solution 

Timetable evaluation 

with simulation 

experiments 

Variable neighborhood 

search (VNS) algorithm 

Disturbance recovery strategies (adjusted order and retiming) 

Average and variance of 

the train delays 

Select best 

performing 

solution 

Heuristic method 

based on dynamic 

priority rules 

Evaluation of the reliability of the 

generated solutions via simulation 

experiments 

Stage 1: generate 

good quality 

timetables  

 

Stage 2: 

improvement 

phase 
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Symbol Definition 

xbest The best incumbent solution 

  ( ) The set of solutions in the kth neighborhood structures 

F(x) The fitness function  

   The number of simulation replications to evaluate the objective function 

i The index of algorithm iteration 

Itermax The maximum algorithm iterations 
 

Table 5. Pseudo code of the proposed variable neighborhood search method for train rescheduling 

Input (    , xo , Itermax,   ) 
x := xo ; 

     
k := 1 ;  

While          do 

   While k <=      do 

      x
'
 := BestImprovement (x , k); 

      F(x
'
) := simulation (  , x'); 

             
      If F(x')<F(x) then  

              xbest := x' ;   

              k := 1 ;  

         Else  

             k := k + 1; 

     EndWhile  

     k := 1;  

EndWhile 

Return (xbest) ; 

End. 

1 
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4 
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10 

11 

12 
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15 

16 

17 
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19 

 

Table 6. Pseudo code of Best improvement (highest descent) heuristic 

Function BestImprovement(x) 

1 repeat 

2     x' ← x 

3     x←argmin{F(y)}, y∈N(x) 

4 until ( F(x) ≥ F(x')) 

5 return x 

 
Fig. 5. The disposition schedule based on the static train order  
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Fig. 6. The disposition schedule associated to one neighbor with k=1 (train b)  

 
Fig. 7. The disposition schedule associated to one neighbor with k=3 (train a) 

 

 
Fig. 8. The considered Iranian railway network (Tehran-Tabriz-Razi corridor) 
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Table 7. The priority classes of the static priority set S. 

Priority class (wi) Train type description Number of trains 

1 Local 12 

2 Intercity 16 

3 Express 18 

 
 Table 8. The disruption scenarios and the associated specifications 

Disruption 

scenario # 
Location Degraded mode 

Expected duration 

(hour) 
Blockage interval 

1 Qazvin-Kohandezh Full blockage 1 7:00-8:00 

2 Qazvin-Kohandezh Full blockage 2 7:00-9:00 

3 Qazvin-Kohandezh Full blockage 3 7:00-10:00 

4 Zanjan-Khorram pey Full blockage 1 2:00-3:00 

5 Zanjan-Khorram pey Full blockage 2 2:00-4:00 

6 Zanjan-Khorram pey Full blockage 3 2:00-5:00 

7 Karaj-Rabet One out of two tracks 2 7:00-9:00 

8 Karaj-Rabet-Aprin One out of two tracks 3 6:00-9:00 

9 Abyek-Ziaran Full blockage 1 20:00-21:00 

10 Abyek-Ziaran Full blockage 2 20:00-22:00 

 

Table 9. Result of the proposed two-stage simulation-based optimization method vs. FCFS and OptQuest solver 

Disruption scenario 

Total average delay (hours) Total traveling time (hours) 

FCFS
* 

VNS with 

dynamic 

priority 

OptQuest FCFS 

VNS with 

dynamic 

priority 

OptQuest 

1 43.01 27.16 32.72 391.43 388.71 393.91 

2 54.32 38.83 42.69 398.19 392.95 397.23 

3 65.83 42.34 47.51 410.58 394.70 398.02 

4 36.38 29.86 33.62 370.42 365.52 370.46 

5 54.73 45.02 47.09 353.62 348.04 358.90 

6 76.17 62.30 71.77 382.66 380.17 383.47 

7 37.05 24.33 29.02 394.98 385.46 391.06 

8 44.00 23.75 32.55 396.45 389.13 386.24 

9 39.23 28.31 31.76 391.61 390.99 394.12 

10 66.54 44.41 49.82 381.83 394.06 399.77 

Average 51.73 36.63 41.86 387.18 382.97 387.32 

 
Table 10. Computational results of two-stage VNS vs. single-stage and static-priority driven scheduling methods 

Disruption 

Scenario  

Single-stage: VNS+ 

planned timetable order
 

Two-stage: VNS + orders 

updated on static priority 

Two-stage: VNS with orders 

updated by dynamic priority  

1 29.71 30.98 27.53 

2 44.90 43.82 39.32 

3 45.12 48.66 42.72 

4 32.84 33.29 30.32 

5 47.31 45.48 45.20 

6 67.38 69.01 63.05 

7 26.35 25.58 24.40 

8 28.98 26.39 24.17 

9 29.34 31.18 28.73 

10 47.75 46.36 44.85 
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Fig. 9. The search profiles of the two-stage VNS, single-stage VNS, and OptQuest (Scenario #6) 

Table 11. Statistical analysis of the best-found solution by VNS under different disruption scenarios 

Disruption 

scenario # 

Total average delay time 

(hour) 

Standard deviation 

(hour) 

LB 

(95%) 

UB 

(95%) 

Minimum value 

(hour) 

Maximum value 

(hour) 

1 27.53 1.14 26.53 28.53 24.09 30.21 

2 39.32 1.81 37.73 40.91 35.93 44.51 

3 42.72 0.57 42.22 43.22 37.83 45.31 

4 30.32 1.41 29.08 31.56 25.51 33.08 

5 45.2 0.69 44.60 45.80 44.55 50.12 

6 63.05 0.59 62.53 63.57 58.89 67.66 

7 24.4 2.83 21.91 26.89 18.35 29.34 

8 24.17 0.14 24.05 24.29 20.87 26.91 

9 28.73 1.18 27.69 29.77 23.79 33.99 

10 44.85 1.77 43.29 46.41 41.07 49.56 

LB: Lower bound, UB: Upper bound 

 

Table 12. Statistical analysis of the best-found solution by OptQuest under different disruption scenarios 

Disruption 

scenario # 

Total average delay 

time (hour) 

Standard 

deviation (hour) 

LB 

(95%) 

UB 

(95%) 
Minimum value (hour) Maximum value (hour) 

1 31.31 2.89 28.74 33.88 26.61 38.88 

2 40.88 3.45 37.81 43.95 35.86 44.64 

3 45.57 0.95 44.72 46.42 39.15 49.96 

4 32.71 3.33 29.74 35.68 27.69 40.20 

5 46.97 4.94 42.58 51.36 38.86 53.53 

6 70.33 2.26 68.32 72.34 66.94 77.42 

7 27.92 4.89 23.57 32.27 22.23 37.83 

8 30.82 2.64 28.47 33.17 25.25 34.54 

9 30.42 2.79 27.93 32.91 28.59 32.41 

10 49.59 3.46 46.51 52.67 43.44 57.43 
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