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Reliability of Intergreen Interval Based on
Combined Dilemma and Option Zones

Said M. Easa, M.ASCE1; Narayana Raju2; and Shriniwas S. Arkatkar3

Abstract: Currently, dilemma and option zones’ failures are independently used to analyze the intergreen interval at signalized intersections.
Therefore, the present research work was initiated to integrate these failures. First, the dilemma and option zones were modeled using the first-
order second-moment method. Then, game theory was used to model the association between the dilemma and option failures. The failure
probabilities of the dilemma and option zones were evaluated for various traffic conditions using Monte-Carlo simulation considering the
Nash equilibrium. Next, the overall system probability was analyzed, based on the combined dilemma and option failures, given different
intergreen intervals, speeds, and coefficients of variation. Finally, the study proposed a methodology for identifying the intergreen interval to
limit system failure. This would aid practitioners in designing traffic lights at intersections and keeping proper intergreen intervals to limit the
dilemma and option failures. DOI: 10.1061/AJRUA6.0001234. © 2022 American Society of Civil Engineers.

Author keywords: Signalized intersections; Intergreen interval; Reliability; Dilemma zone; Option zone; Failure probability; Game theory.

Introduction

Intersections are one of the critical elements in urban transportation
networks. The vehicular traffic over intersections must be handled
for an efficient transportation network. At the same time, traffic
throughput instability can accumulate and lead to network failure.
In this direction, numerous studies have been carried out to address
the intersections’ problems. In this direction, initially, researchers
focused on studies related to traffic signals and signal optimization
to achieve maximum throughput over the intersections.

Further, due to controlled traffic movement and traffic signals at
the intersections, the driver was found to experience a dilemma in
the amber time. In this direction, Gazis et al. (1960) initially pro-
posed the dilemma zone concept and explained the case as a zone
within which a driver can neither make a safe stop nor clear the
intersection before the traffic light turns red. On these lines, at high-
speed signalized intersections, studies reported that the issue of the
dilemma zone had been well recognized as a significant cause of
read-end and right-angle crashes (Bar-Gera et al. 2013; Li 2010;
Zhang et al. 2014). Parsonson (1992) uncovered another type of
dilemma zone (Type-II dilemma) where vehicles at the onset of
amber time can either clear the intersection or safely stop during
the intergreen interval. On these lines, researchers focused on
understanding the Type-II dilemma failure (Easa 1993; Hurwitz
et al. 2012; Papaioannou 2007; Tarko et al. 2006). In the option

zone case, if two cars are present and the leader vehicle decides
to stop, the follower vehicle perceives enough time to cross the
intersection and tends to cross the intersection. This phenomenon
would increase the probability of rear-end collisions. Further, stud-
ies have shown that drivers in the option zone experience indeci-
siveness, resulting in rear-end collisions (Köll et al. 2004; Saito
et al. 1990).

In connection with the dilemma zone, various studies have been
reported, such as driving behavior biases (Lavrenz et al. 2014), road
environment (Kim et al. 2016), rear-end collisions (Wu et al. 2013),
the effect of countdown timer (Ma et al. 2010), and surrogate safety
measures (Machiani and Abbas 2016). Along with that, researchers
modeled the dilemma on various approaches, which included using
a hazard function (Sharma et al. 2011), vehicle platooning (Gates
and Noyce 2010), hidden Markov models (Li et al. 2016), drivers’
perception using machine learning (Abbas et al. 2014), and logit
Bayesian (Chen et al. 2018). Further, Peng et al. (2021) used the
communication of autonomous vehicles to reduce the dilemma for
human-driven vehicles at unsignalized intersections using deep
reinforcement learning.

Further, it has been identified that as the failure probability of
the dilemma zone (Type I) increases, the failure probability of the
option zone (Type II) decreases and vice versa. However, most pre-
vious studies addressed only the dilemma or option zone. On the
other hand, in actual traffic streams, both zones exist for vehicles
and depend on the intergreen interval and vehicle speed. If the sys-
tem is designed to reduce the failure probability of the dilemma
zone, the failure probability of the option zone could increase.
As a result, the dilemma and option failures still occur in signalized
intersections, representing a significant gap in this research area.

This study aimed to address this research gap by simultaneously
considering the dilemma and option failures. In line with previ-
ous studies (Easa 1993, 1994a, b; Easa et al. 1996), the first-order
second-moment method (FOSM) quantified the failure modes.
Further, game theory was used to integrate both failure modes.
Games were played with the respective probabilities using indi-
vidual failure probabilities to determine the systems failure prob-
ability for various intergreen intervals and approach speeds. Finally,
design graphs were established to determine the required intergreen
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interval for signalized intersections, given specified system surviv-
ability and traffic characteristics.

In addressing the research gaps from the literature, the present
research work was carried in three stages, as shown in Fig. 1.
Initially, an arbitrary symmetric intersection was assumed, with all
arms having equal widthW (m). In the first stage, using the FOSM
method, both dilemma and option zones were modeled inde-
pendently. In the second stage, after identifying the nature of the
dilemma and option zones, both failure modes were combined
using the game theory logic with the help of the Nash equilibrium.
Finally, simulation was performed in the last stage to identify the
optimum intergreen interval for the system survivability.

Dilemma and Option Zones

The existence of dilemma and option zones was determined using
the relationship between a vehicle’s minimum safe stopping dis-
tance Xs and maximum intergreen clearance distance Xc. As noted
in Fig. 2, if Xs > Xc, the dilemma zone exists, and the drivers in
this zone could neither stop nor pass. If Xc > Xs, the option zoneFig. 1. Research methodology of the study.

Fig. 2. Definition of dilemma and option zones: (a) dilemma zone; and (b) option zone.
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exists, and the drivers in this zone have the choices of passing or
stopping. If Xc ¼ Xs, both types of zones are eliminated.

A driver approaching a signalized intersection will have to stop
or clear the intersection if the green signal becomes amber. The
minimum safe stopping distance is given by

Xs ¼ v0τ þ
v20

2ðdþ GgÞ ð1Þ

where v0 = approach speed (m=s); τ = driver reaction time to
stop (s); d = deceleration rate (m=s2); G = acceleration due to grav-
ity (m=s2); and g = approach grade (%). The maximum intergreen
clearance distance Xc is the distance within which a vehicle can
proceed to clear the intersection before the end of the intergreen
interval. Therefore, during the intergreen interval, the vehicle trav-
els a total distance equaling to the maximum intergreen clearance
distance, the intersection width, and the length of the vehicle, math-
ematically given as follows:

Xc ¼ Iv0 −W − Lþ 1

2
ðaþ GgÞðI − τ1Þ2 ð2Þ

where I = intergreen interval (s); W = intersection width (m); L =
vehicle length (m); a = acceleration rate (m=s2); and τ1 = driver
reaction time to clear the intersection (s). The intersection width W
was measured along the actual vehicle path from the near-side stop
line to the far-side edge of the conflicting traffic lane when there is
no pedestrian traffic. When there is significant pedestrian traffic,
or pedestrian signals protect the crosswalk, W is measured to the
far side of the farthest conflicting pedestrian crosswalk. This re-
search assumed that the driver will clear the intersection without
acceleration, which is more conservative. Thus, Eq. (2) is simpli-
fied as follows:

Xc ¼ Iv0 −W − L ð3Þ
Because both the dilemma and option zones have adverse

impacts on intersection safety, traffic authorities have been trying
to reduce the size of these two types of zones at intersections.
However, if the probability of occurrence of the dilemma zone de-
creases, the probability of occurrence of the option zone increases
and vice versa. Therefore, in this study, the FOSM method and
game theory were used to combine the dilemma and option zone
failures and to determine the optimal intergreen interval.

Proposed Methodology

First-Order Second-Moment Method

One of the standard reliability methods is FSOM. The method
simplifies the implied functional relationship using a truncated
Taylor series expansion. The inputs and outputs of the method
are expressed as means and variances. FOSM has been widely used
because it involves straightforward mathematics (Haukaas and
Gardoni 2011). A brief description of the FOSM method is first
presented, followed by the proposed reliability analysis of the inter-
green interval.

The FOSM analysis approximates the first two moments (mean
and variance) of a random variable, a nonlinear function of other
random variables. Suppose that Y is a nonlinear function of sev-
eral random variables, which is

Y ¼ fðX1;X2; : : : ;XnÞ ð4Þ
Then, the function Y can be expanded in a Taylor series

about the means μX1
to μXn

(Berry et al. 2015). Considering the

first order (linear) terms, then the expected value of Y, EðYÞ, is
given by

EðYÞ ¼ fðμX1
;μX2

; : : : ;μXn
Þ þ

Xn
i¼1

ðXi − μXi
Þ
� ∂f
∂Xi

�
þ ε ð5Þ

where the partial derivatives are evaluated at μX1
;μX2

; : : : ;μXn
; and

ε = higher-order terms. A simple expression of EðYÞ was obtained
by considering the first term of Eq. (5). That is

EðYÞ ≅ fðμX1
;μX2

; : : : ;μXn
Þ ð6Þ

The variance of Y, varðYÞ, is given by

varðYÞ ≅ Xn
i¼1

� ∂f
∂Xi

�
2

σ2
Xi
þ
Xn
i≠j

Xn
i¼1

� ∂f
∂Xi

�� ∂f
∂Xj

�
covðXi;XjÞ

ð7Þ
where the partial derivatives are evaluated at the mean values; σ2

Xi
=

variance of Xi; and covðXi;XjÞ = covariance of Xi and Xj, which is
given by

covðXi;XjÞ ¼ ρXiXj
σXi

σXj
ð8Þ

where ρXiXj
= coefficient of correlation between Xi and Xj.

The reliability method is based on Eqs. (6) and (7). A valuable
measure of the dispersion of a random variable Xi that will be used
later is the coefficient of variation, CVXi

, which is defined

CVXi
¼ σXi

μXi

ð9Þ

Eqs. (5)–(9) require no assumptions about the type of the prob-
ability distributions of the component random variables. To deter-
mine the system failure probability for the intergreen interval, the
failure probabilities for the dilemma and option zones are formu-
lated next.

Failure Mode 1: Dilemma Zone

For the dilemma zone, the safety margin is defined as the difference
between the clearing distance and the stopping distance

Y1 ¼ Xc − Xs ð10Þ
where YI = safety margin of the dilemma zone. Eq. (10) is the limit
state function. If Y1 > 0, the state is considered as safe; if Y1 < 0,
the state is a failure state; if Y1 ¼ 0, the state is limit state. Substi-
tuting for Xc and Xs from Eqs. (3) and (1), then

Y1 ¼ Ivo −W − L − voτ − v2o
2ðdþ GgÞ ð11Þ

According to Eqs. (6) and (7), the expected value and variance
of Y1, EðY1Þ, and varðY1Þ, respectively, are given by

EðY1Þ ¼ Iuvo −W − uL − uvouτ −
u2vo

2ðud þ GgÞ ð12Þ

varðY1Þ ¼
�
I − uτ − uvo

ðudÞ
�

2

σ2
vo þ σ2

L þ ðvoÞ2σ2
τ þ

�
u2vo

2ðudÞ2
�

2

σ2
d

þ
�
I − uτ − uvo

ðudÞ
�
ð−voÞσvoστρvo;τ

þ
�
I − uτ − uvo

ðudÞ
��

u2vo
2ðudÞ2

�
σvoσdρvo;d ð13Þ
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where ρvo;τ = correlation coefficient between vehicle speed and re-
action times; and ρvo;d = correlation of coefficient between vehicle
speed and deceleration rate. The partial derivatives of Eq. (13) are
given by �∂Y1

∂vo
�

¼ I − uτ − uvo
ðud þ GgÞ ð14Þ

�∂Y1

∂L
�

¼ −1 ð15Þ

�∂Y1

∂τ
�

¼ −uvo ð16Þ

�∂Y1

∂d
�

¼ u2vo
2ðud þ GgÞ2 ð17Þ

The reliability index is represented by the quotient of the ex-
pected value of the safety margin E½YI � and its standard deviations.
Mathematically

βYI
¼ ½YI�pðvar½YI �

ð18Þ

A greater value of βYI
indicates that the failure probability is

small. We assumed that Y1 follows a normal distribution without
loss of generality, as shown in Fig. 3(a). An estimate of the failure
probability (dilemma zone), PY1

, is then given by

PY1
¼ 1 − ϕðβY1

Þ ð19Þ
where ϕðβY1

Þ = standard normal distribution. Eq. (19) makes
no assumptions about the distributions of the component random
variables. In many cases, especially when the nonlinear function
has several random variables, the distribution of the safety margin
tends to be close to normal even though the component random
variables are not normal. However, for many skewed distributions,
Monte Carlo simulation can achieve more accurate results.

Failure Mode 2: Wide Option Zone

As previously mentioned, the option zone exists if Xc > Xs. The
width of this zone equals (Xc–Xs). If this width is large enough for

two drivers to be present in the zone, this would be unsafe and
considered a failure. The maximum safe width of this zone corre-
sponds to a distance where the first driver is at the start of the zone
(t near the stop line) and the second driver is at the other end of the
zone. This width can be approximately formulated as the distance
headway, between two vehicles, D. Thus, the safety margin for the
option zone is defined as the difference between the distance head-
way and the option zone width, Y2. Mathematically

Y2 ¼ D–ðXc − XsÞ ð20Þ
Expressing the distance headway in terms of the time headway h

and approach speed vo, then

Y2 ¼ hvo − Y1 ð21Þ
The expected value of Y2, EðY2Þ, is given by

EðY2Þ ¼ μhuvo − EðY1Þ ð22Þ

The variance of Y2, varðY2Þ, is given by

varðY2Þ ¼
�∂Y2

∂vo
�

2

σ2
vo þ

�∂Y2

∂L
�

2

σ2
Lþ

�∂Y2

∂τ
�

2

σ2
τ þ

�∂Y2

∂d
�

2

σ2
d

þ
�∂Y2

∂h
�

2

σ2
hþ

�∂Y2

∂vo
��∂Y2

∂τ
�
σvoστρvo;τ

þ
�∂Y2

∂vo
��∂Y2

∂d
�
σvoσdρvo;dþ

�∂Y2

∂vo
��∂Y2

∂h
�
σvoσhρvo;h

ð23Þ

where the partial derivatives concerning L, τ , and d equal the right
sides of Eqs. (15)–(17), respectively, multiplied by −1. The partial
derivatives for vo and h are given by

�∂Y2

∂vo
�

¼ uh −
�∂Y1

∂vo
�

ð24Þ

�∂Y2

∂h
�

¼ uvo ð25Þ

Like Failure mode 1, the reliability index and failure probability
for Failure mode 2 (option zone), βY2, and PY2

, respectively, are
given by

Fig. 3. Probability distribution of the safety margin for individual failure modes: (a) dilemma zone; and (b) option zone.
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βY2
¼ EðY2ÞpðvarðY2Þ

ð26Þ

PY2
¼ 1 − ϕðβY2

Þ ð27Þ

where Y2 follows a normal distribution, as shown in Fig. 3(b).

Variation of Individual Failure Modes

The variations of the dilemma and option zones for different com-
binations of intergreen interval and mean approach speed are illus-
trated in Fig. 4. Using Monte Carlo simulation, the figure shows the
distances XC and XS of Eqs. (1) and (3) and the safety margin Y1

(dilemma) and Y2 (option) of Eqs. (11) and (21). Negative values of
Y1 indicate a dilemma zone failure, whereas negative values of Y2

indicate an option zone failure. The data used for simulation were
uvo ¼ 48 km=h (30 mi=h), ut ¼ 1.5 s, ua ¼ 3.1 m=s2 (10 ft=s2),
uL ¼ 3.66 m (12 ft), h ¼ 2 s, and W ¼ 15.2 m (50 ft). The coef-
ficient of variation of uvo, ut, uL, and uh was 10%, and that of ua
was 15%.

The results of Fig. 4(a) correspond to I ¼ 4.5 s. As noted, Y2

was entirely positive, indicating no option zone failure. In contrast,
except for a few drivers, Y1 was entirely negative, indicating that
the option zone mostly exists. In Fig. 4(b), the intergreen interval
was increased to 5 s. The increase in the intergreen interval has
caused fewer drivers to experience the dilemma zone, and the op-
tion zone started to have smaller positive values. In Fig. 4(c), the
intergreen interval was increased further to 8 s. As noted, the
dilemma zone was eliminated entirely (Y1 is positive), whereas
the option zone became problematic because Y2 was mostly neg-
ative (i.e., the distance headways are mostly less than the option
zone width). It is evident from Fig. 4 that as the intergreen interval
increased, the option zone failure increased, whereas that of the
dilemma zone decreased.

The variation of the failure probability of the dilemma and op-
tion zones is conceptually shown in Fig. 5. For small I, XS > XC
and PY1 (dilemma zone) would be high and PY2 (option zone)
would be low. As I increases, PY2 increases and PY2 decreases.
The system failure probability, which is a function of PY2 and PY2,
would have a minimum point that corresponds to the optimal inter-
green interval.

System Survivability: Game Theory

Furthermore, assessing the system survivability given the dilemma
and option failures forms a complex problem by their nature. As
previously shown, the dilemma and option failure probabilities
vary in opposite directions. At the same time, both affect the
system’s functionality. Therefore, game theory was proposed to
understand the trade-off between the failure modes and assess
system survivability.

In general, a game theory is an architectural framework to assess
the solutions based on the competing players (Breen 2017). One
player’s payoff depends on the other player’s strategy, which is
one of the fundamental notions in game theory. Even in the present
case, the chance of the dilemma or option failure mode is condi-
tional on the probability of the other failure mode. Further, in game
theory, the players’ strategies are assembled in the form of a pay-
off matrix (Matsumoto and Szidarovszky 2015). Additionally, the

Fig. 4. Variation of the dilemma and option zones for different values
of I (uvo ¼ 48 km=h): (a) I ¼ 4.5 s; (b) I ¼ 5 s; and (c) I ¼ 7 s.

Fig. 5. Variation of failure probabilities of the dilemma zone, option
zone, and system with I.
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players can be divided into two forms as row and column players.
In general, the row player applies the strategies over the rows of the
payoff matrix. Similarly, the column player plays the game over the
columns of the payoff matrix.

On these lines, initially the payoff matrix was developed. The
system will be any of the three modes in the present system, such as
dilemma failure, option failure, and no failure. In combination with
the three modes, system failure was determined. For example, if the
dilemma failure mode exists, there would not be an option failure or
no failure mode. Similarly, there would not be a dilemma failure
or no failure mode with the option failure mode. With the three
modes, three strategies are defined as follows:
1. Reason 1: Dilemma (yes), Option (no), No failure (no). Result:

Dilemma wins over the other two modes.
2. Reason 2: Option (yes), Dilemma (no), No failure (no). Result:

Option wins over the other two modes.
3. Reason 3: No failure (yes):

• No dilemma mode: there is a high chance that option failure
can prevail, or

• No option mode: there is a high chance that the dilemma
failure can prevail.

To simplify, all three reasons are illustrated in Table 1. In line
with the game theory, all reasons can be visualized through row
operations. The dilemma win is represented by 1, the option win
is represented by −1, and 0 represents no interaction.

Based on Table 1, the Payoff matrix A is given by

A ¼

2
64
0 1 1

−1 0 −1
−1 1 0

3
75

where the matrix element Aij = utility of the mode controlling row
i when they play the ith row (dilemma) and the column player
(option) plays the jth column. On these lines, the generally ex-
pected payoffs for the players (dilemma and option) are given by

E ðdilemmaÞ ¼ PY1½PY2A11 þ ð1 − PY2ÞA13�
þ ð1 − PY1Þ½PY2A31 þ ð1 − PY2ÞA33� ð28Þ

E ðoptionÞ ¼ PY2½PY1A11 þ ð1 − PY1ÞA13�
þ ð1 − PY2Þ½PY1A31 þ ð1 − PY1ÞA33� ð29Þ

For example, scenario A13 ¼ 1 indicates that the dilemma has
occurred in the system, and there is no chance for option failure,
resulting in dilemma victory. Further, a mathematical approach for
the presented case can be represented in vector form with the num-
ber of strategies as its size. In the scenario A13 ¼ 1, for the dilemma
(row player), its strategy is (1, 0, 0) and for the option (column
player), its strategy is (0, 0, 1). Given the probabilities of the
dilemma and option zones, the strategies are (PY1, 0, 1 − PY1)
and (0, PY2, 1–PY2).

The system failure depends on how both the dilemma and op-
tion players respond to each other. Based on this, the Nash equi-
librium between the failure modes was analyzed in the present case.
From a game theory point of view, if the dilemma (Player 1) and

the option (Player 2) failures are in the Nash equilibrium, then
Player 1 decides considering Player 2 unchanged decision. Simi-
larly, Player 2 decides considering Player 1 decision. This process
is repeated until the players’ decisions remain unchanged. Further,
this can be extremely helpful in analyzing system failure probabil-
ity, given the dilemma and option failures.

Typically, the Nash equilibrium is considered as a profile of
strategies from each player. At equilibrium conditions, all players
do not have any incentive to change their strategies. In the present
case, let ðPY1Þ1; ðPY1Þ2; : : : ; ðPY1Þn be the strategies for a dilemma
zone player, where ðPY1Þi ∈ PY1 (PY1 is the player’s strategy set).
Also, let ðPY2Þ1; ðPY2Þ2; : : : ; ðPY2Þn be the strategies for an option
zone player, where ðPY2;Þi ∈ PY2; (PY2; is the player’s strategy set).
Then, the Nash equilibrium is given by

maxðPY1;Þi∈PY1;ðPY2;Þi∈PY2
UðPY1;PY2Þ ð30Þ

where UðPY1;PY2Þ = combined utility of PY1 and PY2.

Simulation Analysis

Monte Carlo simulation was performed for different conditions to
understand system survivability, given the intergreen intervals over
the speeds of the approaching vehicles. In the present case, the
intergreen interval was varied from 3 to 10 s, with an interval
of 0.25 s. The speed was varied in the range of 16 to 128 km/h
(10 to 80 mi=h) with an interval of 16 km/h (10 mi=h). The prob-
abilities PY1 and PY2 were computed individually for four different
coefficients of variations (COVs). Finally, the entire game theory
was conceptualized in the programming language Python to
compute the system probability. Using the probabilities PY1 and
PY2, with the help of the Nash game, the system failure probability
(PF) was computed as shown in Fig. 6.

Thus, the probability of system survivability (PS) is given by

PS ¼ 1 − PF ð31Þ

Further, PS for various scenarios is presented in Fig. 7. The
analysis shows that the system survivability has been varied over
speed and intergreen interval. As noted, low speeds, say 16 km/h
(10 mi=h), require more time for the vehicles to cross, resulting in

Table 1. Payoff matrix of the dilemma and option failures

Condition Dilemma Option No failure

Dilemma 0 1 1
Option −1 0 −1
No failure −1 1 0 Fig. 6. Simulation process for analyzing system failure probability.
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option failure at fewer intergreen intervals. For the present case,
around 6.5 to 8.5 s, the intergreen interval was required for system
survival. On the other hand, from speeds of 32 km/h (20 mi=h) and
greater, the vehicles can overcome the dilemma and option failures,
for intergreen intervals between 5 and 6 s. Further, with an increase
in speeds, the survival intergreen interval increased.

Similarly, with an increase in the coefficient of variation, the
probability of system survival has been diminished. For example,
at COV ¼ 5%, the system will survive at even 128 km/h (80 mi=h),
whereas with an increase in the coefficient of variation, the prob-
ability is reduced. Given this at the same 128 km/h (80 mi=h), the
system hardly survived at a higher coefficient of variation. This
clearly explains that by a decrease in the discipline among the ve-
hicles, system failure has increased.

Design Graphs

The proposed method can be used to develop design tools for de-
termining the intergreen interval, given a speed’s mean and coef-
ficient of variation and the desired failure probability. An example
of a design graph for COV ¼ 10% is shown in Fig. 8. As noted,
the intergreen interval varied with the change in the speed and the
system survival probability. For example, for a mean approach
speed of 48 km/h (30 mi=h), if the intergreen interval is 8 s, the
probability is zero, indicating that a complete system failure will
occur. For the same scenario, if the intergreen interval is 5.5 s,

the probability of system survival equals, indicating that the system
will function without failure. Consider another scenario with an in-
tergreen interval of 5 s for a mean approach speed of 80 km/h
(50 mi=h) (Fig. 8). The corresponding PS ¼ 0.8 (PF ¼ 0.2). By
reducing the mean speed to 72 km/h (45 mi=h), PS will increase
to 0.95 (PF ¼ 0.05). Thus, the necessary traffic regulatory mea-
sures can be taken to reduce the system failure probability.

Fig. 8. Mapping the intergreen intervals for system survivability
(COV ¼ 10%).

Fig. 7. Probability of system survivability for different conditions: (a) COV ¼ 5%; (b) COV ¼ 10%; (c) COV ¼ 15%; and (d) COV ¼ 20%. Legend
on the right side of the plots shows the system survivability scale.
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Traditionally, practitioners and enforcement officers evaluate
the intergreen intervals, primarily considering the dilemma fail-
ure and in some instants the option failure. However, in this
study, both dilemma and option failures are combined. This pro-
posed method would help practitioners identify suitable inter-
green intervals for signalized intersections based on prevailing
conditions.

Concluding Remarks

Transport agencies have been concerned about the crash risk
caused by the dilemma and option zones at intersection approaches.
However, previous studies have considered only the individual
effects of these zones. This paper has presented a method that
combines the safety effects of the dilemma and option zones to
determine the optimal intergreen interval. Based on this study the
following comments are offered:
• This research has proposed a FOSM reliability method inte-

grated with game theory to determine the optimal intergreen
interval that minimizes the system failure probability associated
with combined dilemma and option zones. The results showed
that when vehicles approach the intersections at higher speeds,
the dilemma zone will dominate the failure probability. How-
ever, the option zone will dominate the failure probability for
high-volume intersections with low limits.

• A game theory between the dilemma and option failure modes
was conceptualized using the Nash equilibrium. The failure
modes were combined to evaluate the probability of system sur-
vivability, which was computed for various intergreen intervals,
average speeds, and coefficients of variation. Design graphs
were developed to help practitioners determine the optimal in-
tergreen interval based on intersection characteristics.

• For signalized intersections with fixed timings, the developed
method can be used to determine the optimal intergreen interval
that eliminates or minimizes the system failure probability. The
method could also be used in a dynamic manner where the inter-
green interval of each cycle is varied within specified limits to
minimize system failure probability. This would require collect-
ing real-time data related to the intersection approach speeds for
each cycle to determine the optimal intergreen interval, which
is then fed to the signal controller. Such data may be collected
through an intelligent highway infrastructure. For human-driven
vehicles (HDV) mixed with connected and autonomous vehicles
(CAV), the arrival times and speeds of the HDV vehicles could
be estimated using CAV’s trajectories.
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