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We extend the N-intertwined mean-field approximation (NIMFA) for the susceptible-infectious-susceptible
(SIS) epidemiological process to time-varying networks. Processes on time-varying networks are often analyzed
under the assumption that the process and network evolution happen on different timescales. This approximation
is called timescale separation. We investigate timescale separation between disease spreading and topology up-
dates of the network. We introduce the transition times T(r) and T(r) as the boundaries between the intermediate
regime and the annealed (fast changing network) and quenched (static network) regimes, respectively, for a fixed
accuracy tolerance r. By analyzing the convergence of static NIMFA processes, we analytically derive upper and
lower bounds for T(r). Our results provide insights and bounds on the time of convergence to the steady state
of the static NIMFA SIS process. We show that, under our assumptions, the upper-transition time T(r) is almost
entirely determined by the basic reproduction number R, of the network. The value of the upper-transition time
T(r) around the epidemic threshold is large, which agrees with the current understanding that some real-world
epidemics cannot be approximated with the aforementioned timescale separation.

DOI: 10.1103/PhysRevE.109.034308

I. INTRODUCTION

The modeling of infectious disease spreading has been cen-
tral in mathematical biology for almost a century [1]. Proper
models of disease spreading are fundamental in describing,
forecasting, and controlling the evolution of epidemics. One
of the most common assumptions is homogeneous mixing,
which implies that any individual in the population is equally
likely to encounter (and infect or get infected by) any other
individual. Although homogeneous mixing greatly simplifies
the analysis of the models, it is rather unrealistic, because
individuals in real populations have more contacts with, for
example, their family, friends, and colleagues, which suggests
that contacts are heterogeneous. Such heterogeneous scenar-
ios can be modeled as networks, in which nodes represent
individuals and links represent contacts.

A vast majority of papers on epidemics in networks fo-
cuses on static networks [2—4]. However, real-world contact
networks are evolving, as individuals move frequently and
encounter different groups (family, colleagues, commuters on
public transport, etc.). In particular, contact networks evolve
during an epidemic as well and changes in the contact network
play a crucial role on the spread of epidemics [5,6].

The analysis of epidemics on time-variant networks is of-
ten under the assumption of timescale separation: either the
network changes significantly faster than the spread of the
disease or the epidemic evolves significantly faster than the
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topology updates of the network. Timescale separation of the
network and the epidemic results in three regimes (Fig. 1). The
three regimes correspond to the network topology updates be-
ing much faster (annealed regime), comparable (intermediate
regime), or much slower (quenched regime) than the spread of
the disease.

In the quenched regime, the network changes very slowly
compared to the evolution of the epidemic. Quenched
processes are well approximated with processes on static net-
works and therefore well studied over the last two decades.
Indeed, as we will show in Sec. IC, the quenched regime
assumes that, before each topology update, the epidemic has
almost reached its equilibrium.

In the annealed regime, the epidemic evolves very slowly
compared to the network. The epidemic spreads as on an
“average” network. General results for the annealed regime
show that the annealed process shares attributes with the static
process on the edge-average graph [7-9]. Additional results in
the annealed regime have been derived under the degree-based
mean-field theory by Pastor-Satorras and Vespignani [10-14].

The intermediate regime, which resides between the
quenched and annealed regimes, is difficult to analyze. How-
ever, it is considered to be the most important in real-world
scenarios [6,15—18]. Diseases spread at a timescale compara-
ble to the timescale of the movement of individuals.

In this work, we introduce the lower- and upper-transition
times T(r) and T(r) as the boundaries between the three
timescale regimes in Fig. 1. In particular, we provide analyti-
cal bounds on the upper-transition time T(r), which indicates
whether the contact network can be considered approximately

©2024 American Physical Society
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FIG. 1. Timescale separation. The time between two changes in
the graph At is increasing on the ¢ axis. The transition times T(r)
and T(r) create the borders of the annealed and quenched regimes
by including processes that are approximately annealed or quenched
to the respective regimes, based on the accuracy tolerance r. The
annealed regime is bounded from below by At = 0. The intermediate
regime lies between the transition times T(7) and T(r). The quenched
regime extends from At = T(r) to infinity

static. As a function of the accuracy tolerance r, these transi-
tion times indicate to which regime a process with a specific
time between topology updates (interupdate time) At belongs.
The dependence on an accuracy tolerance r is required, be-
cause the annealed regime for small interupdate times At
and the quenched regime for large interupdate times Af de-
scribe the exact behavior only for At — 0 and At — oo,
respectively. Indeed, only approximately quenched and ap-
proximately annealed processes exist outside of these limits.
The accuracy tolerance r allows us to extend the quenched
and annealed regimes to include, per definition, these approx-
imately quenched and annealed processes. When the error due
to the quenched or annealed approximation does not exceed
the accuracy tolerance r, the process is considered quenched
or annealed. These transition times are the boundaries of the
intermediate regime (Fig. 1), when an error due to timescale
separation of at most r is allowed.

Epidemics on time-varying networks are studied analyti-
cally in [12,16,17,19-22], and results based on simulations
and analysis of real-world data are found in [18,23-30]. How-
ever, to the best of the authors’ knowledge, our quantification
of the boundaries in Fig. 1 is novel.

The paper is structured as follows. First, we briefly re-
call the N-intertwined mean-field-approximation (NIMFA)
susceptible-infectious-susceptible (SIS) process [31] in
Sec. T A. In Sec. I B we present our extension of NIMFA to
time-varying networks. In Sec. IC we discuss the timescale
regimes and timescale separation in more depth. In Sec. I we
formally introduce the upper-transition time T(r) and show
numerical results on the upper-transition time T(r). In Sec. III
we derive upper and lower bounds on the upper-transition time
T(r) and numerically compare them with results from Sec. II.
We conclude in Sec. IV.

A. The Markovian and NIMFA SIS processes

We consider the homogeneous continuous-time Markovian
SIS process on a static network, represented by a simple
undirected contact graph G(N, L), with corresponding N x N
symmetric adjacency matrix A, where a;; = 1 if nodes i and j
are connected and a;; = 0 otherwise [32]. A simple graph has
no self-loops and thus a; = 0 for all nodes i. These require-
ments on the adjacency matrix hold for all graphs considered
in this paper.

The Markovian SIS process has states specified by
Bernoulli random variables X; € {0, 1} for each node i. If
X; = 1 the node i is infected, else the node i is healthy but
susceptible. At a time ¢, the node i is infected with probability
v;(t) = Pr[X;(t) = 1] and healthy with probability 1 — v;(t).
We assume that the infection attempts from an infected node i
to a healthy node j are Poisson processes with infection rates
B. Each node also has a Poisson curing (or recovery) process
with curing (or recovery) rate §. The effective infection rate
is defined as 7 = % The vector of all v;(z) is denoted as
V() = [vi(t) v2(t) ... vy()]". We define the prevalence y(t),
which is the average fraction of infected nodes:

N

YO = ;v,m. (1
The SIS model exhibits a phase transition at the epidemic
threshold 7.. If T < 7., the epidemic dies out exponentially
fast [33]. If t > 7., the epidemic lasts very long [34,35]. For
any effective infection rate 7 the epidemic will eventually die
out [36], because the overall healthy state V (¢) = 0 is the only
steady state of the Markovian SIS process. The fact that the
Markov state X;(¢) is a Bernoulli random variable, for which
E[X;] = Pr[X; = 1] holds, leads to a differential equation for
the infection probability of node i, first proposed in [37]:

dE[X] E[

N
" — X + B(1 —x>Zai,,«Xf}

j=1

N N
= —SEX]]+ B Y ayEIX;]— B Y a;;EIXX;].

J=1 Jj=1

@

The joint probability E[X;X;] = Pr[X; = 1, X; = 1]is remark-
ably complicated [37,38]. Instead, one can consider the
N-intertwined mean-field approximation (NIMFA) [31,39]
for the SIS model. NIMFA replaces in the Markovian SIS
process the random variable X; with the expectation E[X;] and
E[X;X;] reduces to E[X;]E[X;]. Then, the governing NIMFA
equations for a static network are given by the differential
equations [40]

dv;(t) .
o = OO+ B — i) Y ayv;0),

j=1
i=1,2,...,N. 3)

The phase transition occurs in NIMFA SIS at the first-order
NIMFA epidemic threshold {1 = m, where A;(A) is the
largest eigenvalue of the adjacency matrix A. Additionally,
the NIMFA epidemic threshold lower bounds the Marko-
vian SIS epidemic threshold 7" < 7, for all networks [41].
The NIMFA steady-state prevalence is denoted as y,, and
the infection probability of node i in the steady state is de-
noted as v, ;. NIMFA has a nontrivial steady state (ys, # 0)
for T > t/1, which corresponds to the metastable (or qua-
sistationary) state in the Markovian SIS process. Therefore,
an analysis of the NIMFA steady state allows insights into
the metastable state of the Markovian SIS process. When

V(0) #0 and V(0) # Voo = [Vo0,1() Voo 2(1) - . . Voo N (D]
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the NIMFA process will tend [40,42], for  — oo, either to the
steady state Vo, = 0 (if T < V) or to an upper bound for the
Markovian SIS metastable state Vi > 0 (if T > V). Strictly
speaking, the probability vector V () = 0 is also a steady state
for T > rc(l). However, if 7 > tc(l), then we only denote the
non-negative vector Vo, > 0 as the steady state.

B. NIMFA on time-variant networks

The topology of a time-variant network is represented
at time ¢ by a simple undirected contact graph G(¢) =
G(N, L(t)). At all times ¢, the network has the same N
nodes, but the amount of links L(¢) may vary. The contact
graph G(¢) is represented by its N x N symmetric adjacency
matrix A(z).

We denote with #,, the occurrence time of the mth topol-
ogy change. Within the interval [t,,—1, t,,,), with length 7, =
tm — tm—1, the network remains static. We denote the graph
G(t) during the interval 7,,_; <t < t,, by G, and similarly the
adjacency matrix A(t) = A,, fort,,_; <t < t,,, with elements
a;j(t) = (ay);j. Denoting the total amount of topologies by

J

dv;(t)

WD) = —svi(t) + B — vi(1)) Y1 (an)ijv;(0),

In terms of the probability vector V(z)=
[vi(t) va(t)...vx()]", the matrix representation of (5)
on each interval [t,,_1, t,,) 1S

dv (@)
dr

where I denotes the N x N identity matrix and diag(x) is the
diagonal matrix with the elements x; of the N x 1 vector x
on the diagonal. Since the derivative of v;(¢) exists on the
entire interval [ty, f)7), we know that v;(¢) is continuous on
[70, far). The starting conditions at each update time v;(z,,) are
the limits v;(z,, — ¢) as € — 0T. It follows from (5) that the
derivative is, in general, discontinuous at z,,:

= (BAw — 8DV (1) — pdiag(V (1))A,V (1),  (6)

dv,» dvi
dr li=t,—e dr li=s,’

in the limit ¢ — 01 if A,, #£ A,41.

We will, without loss of generality, take § = 1, because for
any § > 0, we can rescale the time variable in units of the
average curing time % Indeed, we replace the time ¢ with 6 =
8t in (3), while keeping the rates the same in the new time
units:

d V; N

5 = u@ -+l - v,»(e»;ai_,-v_/(e), (7)
which are the “rescaled” NIMFA governing equations. The
same method can be applied to the system (5), where an
equivalent system with § = 1 is found. The intervals [t,,—1, t,,)
of the “rescaled” system are measured in units of the average
curing time . In the following, we will use (7) instead of (3),

40 = —su;(1) + B — vi(0) Y (a)ijvj(t),

M, the complete interval [f, f);] has exactly M — 1 topology
updates, and the sequences of graphs and adjacency matrices
are denoted by
gIZ{Gl,...,GM}, .AI:{Al,...,AM}.

We will call the times {ty,...,#y} the update times and
the lengths of the intervals [t#,_i,?,), namely, the set
{11, ..., Ty}, the interupdate times. In a time-variant network,
the NIMFA epidemic threshold equals t/"(G,,) = m,
which varies with the topology m. For each graph G,, or
adjacency matrix A,, and for a fixed effective infection rate
7, we define the basic reproduction number

“Pan. @

Ro)m = Ro(Gpy, T) 1= m 5

The phase transition coincides with Ry = 1, which follows
from substituting v = t{"(G,,) in (4). We say that Ry(t) =
(Ro)m if t,,—1 <t < t,,. The governing NIMFA equations for
the entire time period [fo, ;] for a node i are given by

re [t()v I )a
®)

t € [ty—1,tu).

(

and we write the dimensionless time ¢ instead of & when using
(7) for clarity. In the rescaled NIMFA governing Eqs. (7), the
effective infection rate t equals the infection rate 8 because
s=1

C. Timescale separation and the transition times

In this section, we explore the interplay between the
timescale of the epidemic process and the timescale of the
topology updating process. We assume first that the interup-
date times T, are constant and equal to A¢. The timescales
of the epidemic process are characterized by the average in-
fection time % between infection attempts on links and the

average curing time % Figure 2 shows the prevalence y(t) of
three temporal NIMFA processes that correspond to the three
regimes in Fig. 1. Three processes with the same infection
rate §, the same curing rate §, and random Erdés-Rényi [43]
contact graphs G,, with the same distribution but with differ-
ent interupdate times At are illustrated. The solid red line in
Fig. 2 shows the averaging behavior of the annealed regime.
The dotted blue line illustrates the convergence to equilibrium
on each network topology of the quenched regime. The dashed
black line shows the irregular process of the intermediate
regime.

We introduce the transition times T(r) and T(r) as func-
tions of a graph G, the infection rate B, the curing rate §
and the accuracy tolerance r. The transition times or the
boundaries of the regimes T(r) and T(r) are meaningful
only as a function of the accuracy tolerance r. The accu-
racy tolerance r identifies temporal processes that can be

034308-3



PERSOONS, SENSI, PRASSE, AND VAN MIEGHEM

PHYSICAL REVIEW E 109, 034308 (2024)

0.65

o
>

e
o
S

Prevalence y

0.5
0 20 40 60 80

100 120 140
Time in units of %

S

B

I~ TS

<I-
-:E:' -

-

,
_-mz=z=zT

—_
e
=)

FIG. 2. NIMFA SIS on a time-varying network for different interupdate times Az. Parameters: graph size N = 50; infection rate § = 0.1;
curing rate § = 1. The time-varying network is given by a sequence of Erdés-Rényi graphs, where the link density p is chosen uniformly at
random from the interval [0.4, 0.6]. The solid red line (small interupdate time Ar = 0.001) shows the averaging behavior when nearing the
annealed regime. The dashed black line (medium interupdate time Af = 1) shows the irregularity of the intermediate regime. The dotted blue
line (large interupdate time A¢ = 10) shows the convergence on each topology from the quenched regime.

approximated well with quenched or annealed processes. Here
the accuracy tolerance r can be lowered to increase the ac-
curacy of the approximation. Specifically, we classify any
process which has T, < T(r;G,,) forall m=1,...,M as
annealed and any process which has 7;, > T(r; G,,) for all
m=1,...,M as quenched. In this work, we restrict our-
selves to an analysis of the upper-transition time T(r). We
will also restrict ourselves to NIMFA SIS. We argue that
our results using NIMFA are a good approximation of the
physical Markovian SIS model. We compare the NIMFA
prevalence to the expected or average prevalence of a Marko-
vian SIS process [44] with the same parameters on the
same sequence of graphs at different interupdate times At,
which is shown in Fig. 3. Since the processes are similar for
all interupdate times, we claim that our mean-field results
are representative of Markovian SIS epidemics on temporal
networks.

In order to define a well-posed problem, we will make the
following simplifying assumptions:

(1) The number of nodes N and the number of topologies
M are fixed and finite.

(2) We consider the mean-field NIMFA SIS process in-
stead of the Markovian SIS process.

(3) We confine ourselves to homogeneous SIS with link
infection rates B;; = B for all links i ~ j and nodal curing
rates §; = § for all nodes i.

(4) In our numerical analysis all graphs G,, are Erdds-
Rényi graphs G(N, p), where the link density p is a uniformly
distributed random variable. We do not require that the ER
graphs are connected, because real-world time-varying con-
tact networks can be disconnected. Appendix A discusses
whether ER graphs are representative of general graphs. In
more realistic temporal networks, the graphs would plausibly
change less at each update time, which would result in shorter

0.7 .
0.65 — - = ” —NIMFA ... Markovian 0.6
= et =) b=
g 0.6 - 3 y £ 0.59
= 0.55 I e
GE o . § E 0.58; :
D_‘ . N D* ) 3 Q_‘ ; :r i
At=10 05 CTAt=1 0.57 At = 0.01
0 50 100 0 50 100 0 10 20 30

Time in units of %

Time in units of %

Time in units of %

FIG. 3. Comparison of NIMFA SIS and Markovian SIS on time-varying networks for different interupdate times At. Left: Ar = 10,
middle: At = 1, right: At = 0.01. The solid blue line corresponds to the NIMFA process and the dashed red line to the Markovian process.
Parameters are the same for NIMFA and Markovian. The infection rate 8 = 0.1 and curing rate § = 1. The time-varying network is given by a
sequence of Erdés-Rényi graphs, with N = 50 and link density p picked uniformly at random from the interval [0.4, 0.6]. The graph sequence
for NIMFA and Markovian SIS are the same in each panel, but the sequences are different between panels.

034308-4



TRANSITION FROM TIME-VARIANT TO STATIC ...

PHYSICAL REVIEW E 109, 034308 (2024)

transition times. Investigating specific temporal processes is
beyond the scope of this paper.

(5) We have simulated a range of values of the number of
nodes N and infection rate 8. With the exception of some dis-
connected graphs, the behavior of the transition time was not
influenced significantly by either N or B in these simulations.
Graphs with similar basic reproduction number Ry will have
similar upper-transition times, even if N and 8 differ. How-
ever, for large values of N, ER graphs become increasingly
more regular. Since changing N and § does not influence the
results for a given Ry, all simulations shown in this work have
N = 50 nodes and infection rate 8 = 0.1, where 8 is chosen
to have a good range of possible Ry values. The analytical
bounds hold for general N and S.

II. THE UPPER-TRANSITION TIME

The temporal NIMFA SIS process gains a Markov-like
property when the interupdate times 7,, tend to infinity. When
the interupdate times 7,, increase, the graphs {Gy}r,, have a
decreasing influence on the state vector at the next update time
V(t,). When the influence of the graphs {Gy}i,» becomes
negligible, the process becomes approximately memoryless
to the network updates: the current graph G,, determines the
probability vector at the next network update V (¢,,) almost
completely. The Markov-like memorylessness arises from the
fact that, in the quenched limit of 7, — oo, the static NIMFA
SIS process will tend to its steady-state vector V, from any
starting point V(0) # 0. Therefore, when T, increases, the
difference between the state vector V (¢,,) at the end of the
interval [£,,1, ,,) and the steady-state vector V, decreases for
all V(t,—1), when V(z,,_1) # 0. For large interupdate times
T,,, the state vector at the next update time V (¢,,) = Voo (G,,)
[which implies y(#,,) =~ yo0(G,,)], independent of all previous
graphs {Gy}i<n. In Fig. 4 it is shown that the prevalence at
the end of the second interval y(#,) is approximately inde-
pendent of the first graph G; and depends (almost) solely
on G,.

Since the state vector V (¢) for t € [t,, t;,+1) is completely
determined by the starting state V (z,,) and the graph G4,
the memorylessness of the state vector V (¢,,) extends to the
entire interval [t,,, #,,+1). When T, tends to infinity, V (f,,—)
is determined only by the graph G,,_;. Therefore, the state
vector V (¢) and prevalence y(¢) on the interval [t,,_1, t,,) are
fully determined by the graphs G,_; and G,. Similar to
the starting state V (¢,,), the state vector V (¢) on the interval
[fm—1, t) is approximately memoryless for large interupdate
times 7,,. Figure 4 shows the Markov-like memorylessness of
the prevalence y(¢) on the interval [f,, t3), which is (almost)
independent of the first graph G;.

When (Ry),, > 1 in the quenched regime, the steady-state
vector Voo (G,,) approximates the infection probability vec-
tor V(¢) at the end of the mth interval V (z,). The case of
(Ro)m < 1 should be treated carefully, because the steady
state V,,, = 0 describes an epidemic which is extinct. Hence,
when (Ry),, < 1 in the quenched regime, we should approx-
imate the entries of the infection probability vector at the
topology update as V;(t,,) > €, with a small 0 < ¢ < 1, be-
cause in NIMFA V() =0 is only actually reached in the

1
Gp(N) Kos05 Ks
0.8
> /
[<b)
= 0.6+ 1
(]
E
5 0.4+
o
ol
0.2 plincreasing |
0
to t t t3

Time t

FIG. 4. Ten different NIMFA SIS processes on time-varying net-
works with long interupdate times (i.e., #; — #;_; is large). The first
graph G, on the interval [fy, #;), is different for each process: the
different graphs are ER graphs with N = 50 and link density p =
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8.0.9, 1}. The second graph G, on
the interval [z, #;) is the same for each process and is the complete
bipartite graph Kjs »s. The final graph G; on the interval [#,, t3) is also
the same for each process and is the complete graph on 50 nodes K.
The graph G, has visibly negligible influence on the interval [z,, #3)
when G, and Gj are fixed due to the Markov-like memorylessness
property with respect to previous graphs that defines the quenched
regime.

limit as t+ — oo and would mean that the epidemic process
stops.

The Markov-like attributes that appear at large interup-
date times T, are what quantify a process as “quenched.”
We investigate whether we can specify the interupdate time
T,, = T(r), as a function of the effective infection rate 7, the
graph G,,, and an accuracy tolerance r, such that for 7, >
T(r, G, T), the NIMFA SIS process will reach the steady-
state prevalence y,, on the interval [t,,_1,1,) With an error
Voo — ¥(tm)| < 1, i.e., at most the accuracy tolerance r. Then,
at the update time t,, the process has converged and has
lost its dependence on the initial condition with respect to
the accuracy tolerance r. The time T(r, Gy, T) is called the
upper-transition time. In short, we write T(r) = T(r, G, 7).
An intuitive first definition of the upper-transition time T(r) is
the smallest time ¢ such that the error |y(t) — yoo| < 7 for all
starting values v;(0) € (0, 1] for all nodes i. This definition
implies that the steady state is reached up to the accuracy
tolerance r. However, for small starting infection probability
vectors ||V (0)||; = ¢ < 1 and graphs G with basic reproduc-
tion number Ry(G, t) > 1, the time of convergence to reach
|y(t) — Yoo| < r can be made arbitrarily long by selecting a
sufficiently small ¢, due to Lemma 1, which is proven in
Appendix B.

Lemma 1. Given a graph G, an effective infection rate
7 > 71, an arbitrary large time 7 and an accuracy tolerance
r < Yoo, there exists a starting infection probability vector
V(0) = e(r)u > 0, where u is the all-one vector, such that
ly(t) — yoo| > rforalls < T.

To ensure that the upper-transition time T(r) is finite, we
bound the infection probabilities v;(0) > r with the accuracy
tolerance r and define the upper-transition time T(r) for a

034308-5
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FIG. 5. The upper-transition time T(r) vs the basic reproduction number R, for different values of the starting prevalence y(0). The chosen
parameters are a graph size N = 50, accuracy tolerance r = 107*, and infection rate 8 = 0.1. Each graph is an Erd6s-Rényi graph G,(N) with
link density p chosen uniformly at random: p ~ Unif(0, 1). For Ry > 1, the small values of y(0) correspond to the top curves, i.e., to a higher
upper-transition time T(7). For Ry < 1, the small values of y(0) correspond to the bottom curves, i.e., to a lower upper-transition time T(r). For
y(0) = 10~* the upper-transition time T(r) is zero per definition. To determine the upper-transition time T(r) we approximate the steady-state
prevalence yo, With oo & y(tmax) = y(10*). The inset shows the dips below the curves in more detail.

fixed effective infection rate T and a fixed graph G as
T(r) = argmin,o{[y(t) — Yool <7 VV(0) > ru}, (8)

where y(¢) indicates the NIMFA SIS prevalence on the graph
G and we write VYV (0) > ru as shorthand for “for all V(0)
such that v;(0) € [r, 1] for all nodes i in G.” The definition of
the upper-transition time T(r) in (8) ensures that the steady
state y, is reached by the time r = T(r), provided that the
initial state V (0) is not too small and satisfies V (0) > ru. To
stress the dependence on the underlying, fixed graph G,,, we
also denote the upper-transition time as T(r, Gp).

For NIMFA on temporal networks, we emphasize that
T, > T(r, G,,) for all graphs G, € G does not imply that
|y(tm) — Yoo| < r for every graph G,,, even if the initial state
satisfies V(0) > ru. The underlying reason is that V(0) > ru
does not imply V (¢,,) > ru for all graphs G,,. For instance,
the graph G| may correspond to a basic reproduction number
(Ro)1 < 1, due to which the viral state V(¢) converges to 0O
as t — oo. Hence, when the graph G| changes to G, at time
11, it is possible that the viral state vector obeys V (¢;) < ru.
Then the prevalence y(¢) of the temporal process decreases
below r and the prevalence at each following graph update

Y(m)l;,~; 18 no longer guaranteed to be within the accuracy
tolerance r around the steady-state prevalence y, even though
T, > T(r, G,) for all graphs G,, € G (i.e., even though we
are in the approximately quenched regime). While it would
be preferable that 7, > T(r, G,,) for all graphs G,, € G im-
plies |y(t,) — Yool < r for all topologies m and all starting
infection probability vectors V(0), Lemma 1 shows that a
lower bound on the starting infection probabilities v;(0) is
necessary for the upper-transition time T(r) to be finite. We

argue that not considering processes where the prevalence y(t)
has dropped below y(¢) = r is a reasonable choice when inter-
preting y(¢) < r as a die-out. NIMFA has no actual die-out
in finite time, a characteristic that can be considered non-
physical or unrealistic. Since NIMFA SIS is an approximation
of Markovian SIS conditioned on nonextinction in the first
place, we make the assumption that no “NIMFA die-outs”
occur.

In the following, we will assume that 71 =T, =
--- =Ty = At. Only in this specific case, the require-
ment T, > T(r, G,,) for all graphs G,, € G becomes At >
maxcmeg(T(r, G)). The upper-transition time T(r, G) of the
graph sequence G can now be defined as maxg, g (T(r, G,,)).

A. Numerical results

The upper-transition time T(r) can only be determined
approximately, because there is no simple closed formula for
the steady-state prevalence yo, for general graphs. Therefore,
we numerically solve the NIMFA equations (7) to calculate
the steady-state prevalence y.,. We investigate an heuristic
for the upper-transition time T(r) that does not require y,, in
Appendix C.

Figure 5 shows the numerical approximation of the upper-
transition time T(r), with accuracy tolerance r = 10~*, for
different values of the basic reproduction number R, and the
starting prevalence y(0). Specifically, each node has the same
starting infection probability v;(0) = y(0), for different values
of y(0). The sharp lines in Fig. 5 show that the upper-transition
time T(r) is almost fully determined for each graph by the ba-
sic reproduction number R. Additionally, Fig. 5 illustrates the
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asymptotic behavior around the epidemic threshold at Ry = 1.
The asymptote splits the figure in two regimes: Ry < 1 and
Ro > 1. Figure 5 shows that, if Ry < 1, then the curves (from
top to bottom) are in decreasing order of y(0). Since, with a
higher initial prevalence y(0), the process must decay more
to reach the threshold of |y(f) — yoo| = y(t) < r. Therefore,
Fig. 5 shows that the upper-transition time T(r) is zero for
y(0) = 10~* (blue line) below the epidemic threshold. For
Ry > 1, the curves (from top to bottom) are in increasing order
of y(0), if we ignore the dips. The inset in Fig. 5 shows the
dips below the curves in more detail. The dips occur when the
starting prevalence y(0) is close to the steady-state prevalence
Yoo for the corresponding values of the basic reproduction
number Ry. The upper-transition time T(r) is small, because
the initial difference |y(0) — yoo| is small.

B. Applying the quenched approximation

Given that the interupdates times 71, 15, ..., Tyy = At are
all equal, we have extended the definition of the upper-
transition time T(r) = T(r, G) to sequences of graphs. In
the following, we consider the problem of predicting the
viral state vector V(¢) when only the sequence of graphs
Gy, ..., Gy is known. Predicting an epidemic in this setting
is relevant when it is possible to obtain (an estimate of) the
underlying, time-varying network structure of a population,
but it is difficult to observe the viral state of the individuals.
For instance, in some settings, estimates of contact networks
could be obtained from human mobility data and social con-
tact patterns [45,46], whereas accurately estimating the viral
state might require expensive surveillance systems. Here we
focus on predicting the viral state V (¢) on the graph G,,, dur-
ing the corresponding time interval [z,,_1, t,,), in the quenched
regime. We require only the graph G,,, the previous graph
Gn—1, and the interupdate time Ar > T(r, G) to be known
[47]. Particularly, our prediction method does not consider
any observations of the viral state V (¢), neither at times t <
t,,—1 nor at times ¢ € [t,,—1, ). We assume that there are no
“die-outs.” The prediction method is applying the quenched
approximation: the state vector V(f,—; +t) is predicted to
equal the state vector V (¢) of a NIMFA SIS process on a static
graph G,, starting in V (0) = Voo (Gyy—1).

In this section, we show how the quality of the prediction
improves with A¢. Similar to Figs. 2 and 3, the graph sequence
G exists of i.i.d. ER graphs with link density p uniformly dis-
tributed on the interval [0.3, 0.8]. For each interval [f,,_1, t,,,)
we make a “quenched prediction” based on G, and G,,.
We calculate Vo(G,,—1) and then predict the epidemic on
the interval to be equal to the NIMFA process on the static
graph G,, starting in V (0) = Vo (G,,—1 ). Figure 6 shows these
predictions for a sequence of ER graphs with link density p €
[0.3, 0.8]. As expected, Fig. 6 shows that the predictions im-
prove with increasing interupdate time Az. Additionally, when
Yoo (Gm—1) and y»(Gy,) are close to each other, the prediction
is accurate even at Ar = 1. The fact that the upper-transition
time T(r) is small when Yoo(Gp—1) X yoo(G,), corresponds
to the dips in Fig. 5, which appear when y(0) ~ y,. Interest-
ingly, the largest errors in Fig. 6 occur after intervals with a
(large) decrease in the prevalence y(¢). Additional simulations
with the same parameters also showed the largest errors after
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FIG. 6. On the left y axis the prevalence of a NIMFA process on
a time-varying network (solid blue) is compared with the prevalence
of the “quenched prediction” of each interval [¢,,_;, #,,) starting from
Yoo(Gi—1) (dashed red) for different interupdate times At. The top
figure has At =1, the middle has Ar =35, and the bottom one
has Ar = 10. On the right y axis the absolute error (dotted black)
between the prediction and the process is shown. Each graph G,, is
an ER graph with link density p € [0.3, 0.8] and the graphs G,, are
the same between subfigures.

intervals with decreasing prevalence y(¢). The reason that the
estimate V (¢,,) = Voo(G,,) is worse when y(t,,—1) is (much)
larger than y(t,,) is that the graph G,, has a lower basic re-
production number Ry. Above the epidemic threshold Ry > 1,
graphs with lower basic reproduction numbers Ry generally
converge slower [largely independent of V (0)], as shown in
Fig. 5. The graphs with low basic reproduction number Ry
correspond to the intervals where the prevalence strongly
decreases in Fig. 6, because the steady-state prevalence y.,
increases with the basic reproduction number Ry.

In addition, Fig. 7 illustrates the quenched prediction when
the process “dies out.” We will estimate the starting condition
of the interval with V(¢,,) = ru if yoo(G,—1) < r. Figure 7
shows the problem illustrated in Lemma 1. Since the interup-
date time is well above the transition time for many of the
graphs in the sequence, the prevalence drops below r and the
predictions fail, which is a major weakness of our method.

First, Lemma 1 shows that no matter how small the accu-
racy tolerance r is chosen, “die-outs” will continue to cause
bad predictions. Second, precisely when the approximation
should be accurate (namely, when At is large), the process
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FIG. 7. On the left y axis the prevalence of a NIMFA process
on a time-varying network (solid blue) is compared with the preva-
lence of the “quenched prediction” of each interval [7,,—, £,,) starting
from y.(G,,—1) (dashed red) with interupdate times At = 10. When
Yoo(G—1) = 0, we set y(t,,) = ru instead. On the right y axis the
absolute error (dotted black) between the prediction and the process
is shown. Graphs are specifically chosen for the epidemic to be both
above and below the epidemic threshold on different intervals. The
issue illustrated in Lemma 1 is visible: if the prevalence decreases
much below y = ru, the error in the prediction is large.

will stay on a graph with Ry < 1 long enough to reach a
prevalence y(t) < r more often. Luckily, most real-world epi-
demics are no longer interesting after they die out. Hence,
as mentioned before, the no “NIMFA die-outs” assumption
is reasonable in these cases. However, if, for example, mul-
tiple COVID-19 waves are modeled (which is possible with
NIMFA because there is no real die-out between waves), our
quenched approximation will likely fail to predict a new wave
accurately after a “die-out.”

III. BOUNDS FOR THE UPPER-TRANSITION TIME

We bound the convergence towards the steady state Vi
from above and below separately. We write V() > Vo if
V;i(t) 2 vso,; for all nodes i and similarly, V() < Vo if v;(¢) <
Voo,; for all nodes i. We call the convergence to the steady state
from an infection probability vector V (¢) > V the decay of
V(t) and convergence to the steady state from an infection
probability vector V(¢) < V, the growth of V(). We upper
bound the upper-transition time T(r) by deriving bounds for
decay (Sec. IIT A) and for growth (Sec. III B) and taking the
maximum to combine them in Sec. III C. The following The-
orem 1 (Theorem 5 in [48]) tells us that the slowest allowed
growth starts in V(0) = ru and the slowest decay starts in
V(0) = u for all contact graphs G, curing rates § and infection
rates 3.

Theorem 1 (Theorem 5 in [48]). Consider two NIMFA
systems with respective positive curing rates §; and §;, non-
negative infection rates f;; and B[ j» and viral states v;(¢) and
0;(t). Suppose that the initial viral states v;(0) and 7;(0) are
in [0, 1] for all nodes i and that matrices B and B, with
elements B;; and B,- j» respectively, are irreducible. Then, if
§; < §; and Bij > Bi; for all nodes i, j, V(0) >V (0) implies
that V(t) > V(¢) at every time ¢.

In the following, we derive bounds for the convergence
of NIMFA by considering two cases. First, we consider a
growing epidemic, where V (0) < V., for all nodes i. Second,
we consider a decaying epidemic, where V (0) > V,, for all

nodes i. We bound both cases with their extremal cases, which
are V(0) = ru and V(0) = u respectively. While the proofs
for the bounds in this section rely on Assumption 1 below for
generality, numerical simulations indicate that the bounds are
applicable to general conditions on the initial viral state V (0).
Specifically, the simulations suggest that mixed cases, for
which the bounds do not hold, are rare, if not nonexistent. The
underlying reason is that the mixed cases converge faster than
at least one of the extremal cases. This property is assumed
to be true in Assumption 1. Formally extending our results to
mixed cases is subject for future work.

Assumption 1. A NIMFA SIS process with effective in-
fection rate t, on the graph G, with a mixed initial condition
V(0), where r <= v;(0) < v,; for some nodes i and v;(0) >
max {vVy, j, ¥}, for some nodes j, converges slower to the
steady-state prevalence y., than the same process with the
initial condition either V (0) = u or V(0) = ru.

To compare different processes, we introduce the notation
y(t; G, t, V(0)) for the prevalence of the static NIMFA SIS
process at time ¢, on the graph G with effective infection rate
T and starting infection probability vector V (0).

A. Conjectures for upper bounds for the decay to the all healthy
state and endemic steady state

In this section, we first investigate the decay from the
all infected state V(0) = u on regular graphs, and we state
two conjectures that upper bound the upper-transition time.
Conjecture 1 gives an upper bound for the case Ry < 1,
and Conjecture 2 gives an upper bound for the case Ry > 1.
Afterwards, we derive a second bound for decay below the
epidemic threshold in Lemma 2.

By Theorem 1, the slowest decay towards the all-
healthy state V, = 0, for fixed effective infection rates v <
tD(Ky) = ﬁ occurs in the complete graph Ky. The de-
cay is slowest on the complete graph, because each node i
neighbors all other nodes j. Therefore, each node will re-
ceive the maximal possible infection attempts for each state
vector V (1).

Based on extensive numerical simulations, we conjecture
here that the prevalence y(t; Ky, 7" (Ky), u) on the complete
graph Ky at the epidemic threshold ‘! (Ky), starting in the
all-infected state V(0) = u, decays slower than any preva-
lence y(; G, T, u), on any graph G, when t < t\V(G), even
if t'V(Ky) < T < 7 V(G).

Conjecture 1. Given a graph G and T < t/(G), the preva-
lence y(t; G, t,V(0)) of the epidemic process on G with
effective infection rate v and starting infection probability
vector V (0) satisfies

y(t;G, 7, V(0) < y(t; G, 1V (G), u)

1
<yt Ky, TV (Ky), u) = T+ 9)

where y(t;KN,rc(l)(KN), u) = I—Jlrt is proven in Lemma 8§
in Appendix D. Analytical substantiation for Conjecture 1
is provided in Appendix E. Additionally, we conjecture
that the requirement © < t(G) is not necessary and that
the prevalence y(t; Ky, 7" (Ky), u) also converges to the

steady state V (0) = 0 slower than any prevalence y(¢; G, 7, u)
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FIG. 8. Error between the prevalence y(t) and the steady-state
prevalence y., [approximated by y(fn.)] vs time. The dashed red
line is the function y(¢) = %ﬂ Each of the blue curves corresponds
to a decay process starting in y(0) = u on different ER(N, p) graphs
where p ~ Unif(0, 1). The effective infection rate 7 is varied for the
different figures.

converges to its endemic steady-state prevalence y.(G, 7)
when 7 > rc(l)(G).

Conjecture 2. For any t > 71, the prevalence
y(t; G, T, V(0)) of the epidemic process on G with effective
infection rate t starting in V(0) > V, decays faster to the
steady-state prevalence y,(G; 7) than y(t; Ky, rc(l)(KN), u) to
Yoo = 0. In other words, it holds that

;G 7, V(0) = yoo (G D] < Iy(1: G, T, 1) — Yoo (G5 T)]

<ﬂan#%mwu)=—l< (10)
¢ ' 141

Simulations in Fig. 8 support Conjectures 1 and 2 and
suggest that the prevalence y(t; Ky, t\"(Ky), u) upper bounds
not only decay processes with effective infection rate v <
71, but converges slower to the steady-state prevalence yoo
than any decay process, for any effective infection rate 7. In
Fig. 8 the dashed red line represents y(t; Ky, ' (Ky), u) =
IL_H. Each of the 100 blue lines per subfigure corresponds to
a decay process starting in y(0) = u on an ER graph. In each
figure, T changes as a multiple of /" (Ky) and is the same for
each graph. In addition to the ER graphs in Fig. 8, the decay on
several graphs with a fixed structure (including, for example,
the path or star graph on N nodes) was simulated for varied
effective infection rates t. On the graphs with fixed structure,
the decay from y(0) = 1 to the steady-state prevalence y is
also faster than on Ky with 7 = rc(l)(KN).

If Conjecture 1 is true, then the prevalence y(¢) = 1+rt
upper bounds the prevalence of all epidemic processes with
Ry < 1.1In particular, the bound holds for disconnected graphs
with Ry < 1, because each subgraph corresponding to a con-
nected component will have Ry < 1 and the prevalence of the

disconnected graph is upper bounded by the largest of the
subgraph prevalences. If Conjecture 2 is true, then it follows
that y(r) = ILH upper bounds all decaying epidemic processes
with Ry > 1 as well. Assuming both conjectures are true, we
can combine Conjecture 1 with Conjecture 2 and invert the
upper bound to find that every static NIMFA process with

V(0) > Vi will satisfy [y(t) — yoo| < r at time ? such that

1—r

T(r) < p 1D

For effective infection rates v < 7V, we derive a second
upper bound on T(r) in Lemma 2.

Lemma 2. Given a graph G and t < t{"(G), the preva-
lence y(t; G, 7,V (0)) of the epidemic process on G with
effective infection rate T and starting infection probability
vector V (0) satisfies

y(t;G, 7, V(0)) < y(t;G, T, u) <RG-I (12)

which leads to an upper bound on the upper-transition time
T(r):

— 1 1

Proof. We start with the matrix NIMFA equation (6) and
upper bound the derivative of the infection probability vector
V (¢) by disregarding the nonlinear term. After rescaling time
such that 6 = 1 we find

dv(
® S (TA-DV(@), (14)
dr
whose solution is given in [49] as
V() < ™Dy (0). (15)
After using the norm || - ||, we obtain

VOl < IV O)]]2 1A = [V (0)]] e™D-1E
= [[V(0)]|; eFo@D=10,
(16)
where the first inequality follows from
" x[ 1> < [1e”[12]1xl]2 < ™R lx][5 = 1P| [x]],

where x is a N x 1 vector, M is a positive and symmetric
N x N matrix, and A;(M) is the spectral radius of M. Since
V(@)1 = Ny(t) < VN[V (©)]|2, we obtain from (16)

VN 1
1) <~V < —=I[V(0)]], o@D (17
y(t) NII Ol WII Oz e (17
Substituting ||V (0)||]2 = ||u||» = ~/N in (17) gives the right-
hand side inequality in (12). Evaluating (12) at the time 7 =
TR —R(,l(G,r) 10g(%) yields

WT5G, 2, V(0)) < gl ()

= eilOg(%) =,
from which the upper bound (13) follows. ]
The upper bounds (11) and (13) complement each other,

because the bound (11) is accurate around Ry = 1, where
the bound (13) diverges and the bound (13) is tighter than
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(11) for small Ry. We derive the value R of the basic re-
production number Ry where the bounds intersect by solving
L—log(}) = L=~ for Ry and obtain

1—R,
r 1

log (—) (18)
1—r r

lim—"log (1) =0
im og|-)=0,
—01—r g r

the intersection R is closer to Ry = 1 for stricter (smaller)
accuracy tolerances r. For the accuracy tolerances r used in
our simulations, the interval where (11) is tighter than (13) is
already negligibly small.

R=1-

Since

B. The upper bound for growth to the endemic steady state

For fixed t and graphs G with Ry(G, t) > 1, we briefly
recall theory deduced in [50].

Assumption 2 (Assumption I in [50]). Assume that §; > 0
for all nodes i and ;; > 0 for all nodes i, j. Additionally, we
assume in the limit of Ry | 1 that it holds that §; - 0 and
8; —» oo for all nodes i.

Assumption 2 is trivially satisfied in our case, because
we assume all §; =8 =1, and all B;; = B > 0. We will use
results in the limit Ry | 1 as an approximation for the case
when Ry > 1. Since the upper-transition time is largest around
the epidemic threshold, this approximation should be good for
these Ry values of interest. The precise mathematical descrip-
tion of the limit Ry | 1 can be found in [50].

Assumption 3 (Assumption 3 in [50]). For every basic
reproduction number Ry > 1, the infection matrix B is sym-
metric and irreducible. Furthermore, in the limit Ry | 1, the
infection rate matrix B converges to a symmetric and irre-
ducible matrix. This holds if and only if B (and its limit)
corresponds to a connected undirected graph.

Assumption 3 considers only connected graphs [38] di-
rectly. If a graph has disconnected components, the analysis
can be applied to the connected components separately, be-
cause the connected components are independent. Hence, it is
natural to assume, without loss of generality, that the graph is
connected.

Lemma 3 (Corollary 1 in [50]). Suppose that Assump-
tions 1 and 2 hold and that the initial viral state V(0) equals
V(0) = &)V for some scalar &, € (0, 1). Then for any scalar
& € [&o, 1) the largest time f at which the viral state satisfies
V(f) < &1vs,; for every node i converges to

A T &E11-&
= —1 —-—, 19
H Y °g<sol—sl) 1)

when the basic reproduction number Ry approaches 1 from
above.

Lemma 4 (Eq. (24) in [50]). Given Assumptions 1 and 2
and that the initial viral state V (0) is small or parallel to the
steady-state vector V,, we have that

vi(r) ()i
v;(t)

(x1);’

at every time ¢ when Ry | 1, where x| is the non-negative
eigenvector corresponding to the largest eigenvalue of the
adjacency matrix A.

We will use Lemma 3 and Lemma 4 to upper bound
the growth towards the steady state Vo (G) in Lemma 5.
Lemma 3 gives an expression for the convergence time to the
steady state 7 up to a proportionality tolerance &; in the limit
Ry | 1. Lemma 4 ensures that we can pick the proportion-
ality tolerance &; in such a way that the convergence time
implies y(f) > yoo — r in the limit Ry | 1. The convergence
time to the steady state 7 is then an upper bound for the
upper-transition time T(r) in the limit R, J 1. We derive this
bound, because the upper-transition time T(r) is largest for
graphs around Ry = 1. However, as shown in Sec. III E, the
bound holds for all Ry > 1 in our numerical simulations. The
unexpected accuracy of the bound (far) above the epidemic
threshold is either because the error in  is negative for large
Ry [making (19) an upper bound for all Ry > 1] or because the
additional bounding steps in the derivation are large enough
for the bound to hold for large Ry. In the following, we
assume, without loss of generality, that the nodes i are labeled
such that v | 2 Voo 2 2 -+ 2 Voon and write dpax for the
highest degree in the graph G.

Lemma 5 (Upper bound on T(r) for growth). For a con-
nected graph G, it holds that for all V (0) with v;(0) € [r, v ],
assuming |y(0) — yo| > r, the upper-transition time T(r); the
first time such that |y(T(r)) — Yool < 1, 1s bounded by

T(r) < 2 ) Voo, — T
r) < 0
ReG.T)—1 B\ &

2 Tdmax
< log -
R()(G, T) -1 r(rdmax + l)

1), (20)

when the basic reproduction number Ry approaches 1 from
above. When [y(0) — y.| < r, the upper-transition time
T(r) = 0.

Proof. By Theorem 1, we need to bound the case only

when V(0) = ru. We consider Lemma 3 and take & = v—’]

and &, = (1 — -Z-). For all nodes i, it holds that ;’*—1 <1.We

Voo, 1

obtain

Voo, i
V;(0) = éove0,i =71 <,
Voo, 1
r voo,i
E1Vs0,i = (1 - —>voo,i = VUeo,i — I 2 Voo,i — I
Voo, 1 Uso, 1

With our chosen &, and &, the requirements &; € (0, 1) and
&1 € [&, 1)in Lemma 3 become —— < 1 and ’l <1--L

B
Voo, 1

because ﬁ > 0 always holds. - -
When either inequality does not hold, we argue that
[¥(0) — yoo| < r and thus T(r) = 0.
If ﬁ > 1, then we have vy <r and thus

r

Voo,1”

y(0) = Yool < |7 — Voo.1| < r. Similarly, if o>

then —— > Z=t—f
Voo, 1 Voo, 1

1Y(0) = Yool < |Fr = Voo,1] < 1. _

In both cases, the upper-transition time T(r) is zero, be-
cause the starting prevalence y(0) is already closer to the
steady-state prevalence y., than the accuracy tolerance r.

, implying that r > vy —r and thus
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With the choice of & = v—’l and & = (1 — =) the time

Voo, 1

7 in (19) is an upper bound for T(r) in case of growth. First,
we have v;(0) < r for all i, which lower bounds the allowed
starting conditions v;(0) > r from the definition (8). Then
Theorem 1 states that the growth from &V, is slower than
the slowest growth considered for the upper-transition time
T(r), namely, the growth from V (0) = ru. Second, in the limit
Ry | 1, at time 7, we have |v;(f) — voo;| < r for all nodes i.
Lemma 3 states that |v;(f) — veo;| < r holds for at least one
node 7, but Lemma 4 guarantees that, for all nodes i, the value
of £ Vs, is Teached at the same time 7, because the initial
viral state vector V (0) is parallel to the steady-state vector
Vso. After substituting & and &; into Lemma 3, we find for
V(0) < V on connected graphs that

e (0
DS = RGn -1\ (=r

Voo, 1

2 VUoo,1 — T
= 1 . , 21
RoG.7)— 1 Og( r ) @D

(Tf;r)g in (19) with

where we have replaced because

we take § = 1 and

1
Ro(G.0)—1°

1V(G)

1 = T
-G T- Ro(Gr)

T
Ro(G,7)

T 1
T RG,T)T—T  Ry(G,T)—1"

Finally, we can upper bound v | invoking Eq. (15) from
[31]:

1

-, 22
1+Td,‘ ( )

0 <o, €1

where d; is the degree of node i. Equation (22) holds for
all nodes i and thus also for the node with maximum de-
gree such that vy < 1 — ﬁ Substituting this upper
bound into (21) proves the second inequality in (20) after

simplification. ]

C. Summary: The general upper bound
for time-variant networks

We have conjectured and proved upper bounds for indi-
vidual graphs on T(r) for decay processes in (11) and (13)
and proved an upper bound for growth on connected graphs
in the limit Ry | 1 in Lemma 5. We combine the results and
define an upper bound T.(r, G) on T(r) for a connected graph,
specified by the subscript c:

1

7’1‘ vG:—
- O=1"RG 0

1
log <—> if Ry(G, 1) < R,
r

1—r

if R <Ro(G,7) < 1

1—r 2 Tdmax
max , log -1
r Ro(G,t)—1 r(tdpax + 1)

ifRy(G,7)> 1. (23)

For disconnected simple graphs, the process on each of the
components is completely independent. We can upper bound
the convergence of the components separately using (23).
Consider a general graph G with connected component sub-
graphs Cy, ..., Cx, we define the upper bound T(r, G):

T, G) = mcax{f"c(r, C)l. (24)

Since definition (24) also holds for connected graphs, we write
our general upper bound for T(r) for a set or sequence of
graphs G = {G, G2, ..., Gy} as

T(r, G) < max{T (, G)} = max { max{7.(, C}}. ~ (25)

D. Lower bounds for the upper-transition time

In this section, we derive lower bounds on the slowest
growth V(0) = ru and decay V (0) = u processes to compare
with the upper bounds. Inequality (17) allows us to deduce a
nontrivial lower bound for T(r) in growth processes.

Lemma 6. Given a graph G, an effective infection rate 7 >
rc(l)(G) and an accuracy tolerance r, the upper-transition time
T(r) has a lower bound for growth given by

= 1 Yool G) — 1
T(r) > RG] log< . ) (26)

Proof. Theorem 1 shows that the slowest growth starts in
the lowest allowed starting probability vector V (0) = ru. We
have ||V (0)||, = ||rul|» = +/Nr. Substitution in (17) gives

y(t) < re[RU(G,T)—l]I

where Ry(G, 7) — 1 > 0 is now positive, contrary to Lemma
2. The time 7 such that

relfoGOUT — y (G)—r 27)

bounds T(r) from below, because y(7) < relfoGn-IT —
Yoo (G) — 1. We solve (27) for 7 and find (26). |
We also determine the following lower bound for decay
processes.
Lemma 7. Given a graph G, an effective infection rate t
and an accuracy tolerance r, the upper-transition time T(r)
has a lower bound for the decay given by

T(r) > log ( (28)

1

YoolG) + r>.

Proof. We consider a decay process and lower bound its
prevalence by ignoring the infection process. We have at all
times ¢ that % > —y, by ignoring the non-negative second
term in (7) and summing over the infection probabilities
v;. Using Gronwalls’ Lemma [51] we obtain y(¢) > y(0)e™".
The highest lower bound occurs when y(0) = 1, and we ob-
tain |y(#) — yoo(G)| = €7 — yoo(G). We find that t =T =
log(m) is the time such that e™" = y,,(G) + r and there-

fore a lower bound on T(r) in a decay process, because
V(T) = yool 2 €7 —yxe(G) =1 u

E. Evaluation of the bounds

We simulate the upper-transition time T(r), with r = 107#
for the extreme values of V (0), namely, V(0) = u and V(0) =
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FIG. 9. Comparison of the analytically derived bounds and nu-
merically determined upper-transition time T(r), with r = 10~*. The
upper-transition time T(r) is shown for y(0) = 1 in black with T, for
decay and for y(0) = r in red with T for growth. The blue lines are
the bounds on decay (black) and the green lines are the bounds on
growth (red). The lower bounds are indicated with the symbol L, and
the upper bounds are indicated with U,, where x is D for decay or G
for growth. The upper bound Uj, is given by Eq. (13) for Ry < R and
(11) for Ry > R. Here the intersection point R is given by (18). The
lower bound Ly, is given by (28), and the lower bound L is given by
(26). The upper bound Ug; is given by (20).

ru. Figure 9 shows the upper-transition time T(r) together
with the bounds from Sec. III. The lower bounds are indicated
with the symbol L, and the upper bounds with U,. Here x is
D for decay or G for growth. The upper transition times are
indicated with Tp and T. The upper bound Up, given by (13)
and (11), is remarkably accurate for Ry < 1, but is less sharp
for Ry > 1. This is expected, because the upper bound (11) is
an upper bound of the asymptote at Ry = 1. The upper bound
Ug, given by (20), is a solid bound for the upper-transition
time Tg. Additionally, for large Ry, the upper bound Ug ap-
proximates the upper-transition time well. The lower bound
Lg, given by (26), unexpectedly fits the upper-transition time
Tp very well for Ry > 1. The lower bound L, given by (28),
is weak. All bounds hold for all Ry > 0. The upper bound
Up and the lower bound Lg are both derived from the same
approximation (17), but Lg seems to perform worse than Up.

Last, we return to the temporal process and repeat the
simulations from Fig. 6. However, we choose the interupdate
time Atr to be equal to the upper bound for T(r) from (23)
with r = 10™*. We do not consider the upper bound (11) for
Ry > 1, because Fig. 9 suggests that (20) is a general upper
bound. For the lower bound, we can use only the loose bound
(28), because (28) is smaller than (26) everywhere. The upper
figure in Fig. 10 shows that, at the upper bound, the absolute
error is many times smaller than r. The lower figure in Fig. 10
shows that, at the lower bound, the absolute error is many
times larger than r. At its lowest point the error is 2r.

IV. CONCLUSIONS

The interplay of the topological process and the epidemic
process is a substantial challenge in the analysis of general
epidemics on time-variant networks. Timescale separation of-

x10~8
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>
2 ° &
=]
% 0.6 %
% 5
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o 4 =
0.4 L L 0=
200 400 600
Time in units of %
0.8 103
> 2
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<
é 0.1 T%
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FIG. 10. On the left y axis the prevalence of a NIMFA process on
a time-varying network (solid blue) is compared with the prevalence
of the “quenched prediction” of each interval [¢,,_;, #,,) starting from
Yoo(Gi—1) (dashed red). The interupdate times At equal the (modi-
fied) upper bound (23) in the top figure and the lower bound (28) in
the bottom figure. On the right y axis the absolute error (dotted black)
between the prediction and the process is shown. Each graph G,, is
an ER graph with link density p € [0.3, 0.8] and the graphs G,, are
the same between subfigures.

ten restricts studies to simpler scenarios, where the network
is assumed static or approximated by the average of the time-
variant networks over a finite interval. However, in real-world
epidemics, the network changes at a speed comparable to the
epidemic process. Hence, a thorough understanding of the in-
termediate regime, where the timescales cannot be separated,
is vital for a realistic and reliable modeling approach.

In this work a step towards the analysis of the intermedi-
ate regime is presented. We define the upper-transition time
T(r), a threshold quantity which characterizes the border of
the intermediate regime and the guenched regime, in which
the network is approximately static. In an analysis of an SIS
epidemic, this threshold quantity T(r) can determine whether
a network can be assumed to be static. Indeed, when the
interupdate time At is larger than T(r), the epidemic process
can, in most situations, be accurately predicted using the
quenched approximation. We show that for fixed infection
rate B, curing rate 6 and initial state vector V (0), but with
different graphs, the basic reproduction number R, determines
the upper-transition time T(r). We derive upper and lower
bounds for the upper-transition time T(r) in (25), (26), and
(28), and compare them in Fig. 9 to numerical estimations
of T(r). We introduce the derivative convergence time *(r*)
in Appendix C to upper bound the upper-transition time T(r)
and we argue that *(r*) is easier to determine numerically,
although the computation time saved varies depending on how
one determines the steady-state prevalence y,. Additionally,
we show that the upper-transition time T(r) is large when
networks around the epidemic threshold are present in the
temporal process.
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FIG. 11. The upper-transition time T(r) vs basic reproduction number R, for three different random graph types. Shown is the decay
process starting in the all-infected initial state vector V (0) = u, for N = 50 and 8 = 0.1. In blue, 3000 Erd6s-Rényi (ER) graphs with uniformly
distributed parameters [G,(N) with p ~ Unif(0, 1)]. In black, 3000 Barab4si-Albert (BA) graphs with uniformly distributed parameters (g ~
Unif{1, N} and m ~ Unif{1, mo}). In red, 3000 Watts-Strogatz (WS) graphs with uniformly distributed parameters [K ~ Unif{1, LNT’IJ} and
Bws ~ Unif(0, 1)]. In the inset, the same figure with log-linear axes is shown. In log scale, for Ry > 2, there is a significant difference from
BA graphs to ER and WS graphs, which are on top of each other and below the BA graphs.

Some real-world epidemics, e.g., influenza, are character-
ized by Ry slightly above the epidemic threshold [52]. For
similar diseases around the epidemic threshold, our work
shows that the upper-transition time T(r) is large in units of
the average curing rate % Therefore, these real-world epi-
demics near the threshold are in the intermediate regime;
hence, we expect that the network topology updates play an
active role in the disease spread. Additionally, the limits of
the quenched approximation and predictions of the process,
even if At > T(r), as explained in Sec. II, show that even
in the approximate quenched regime, temporal effects are not
negligible in general.

We leave various open paths for future work: (1) investigat-
ing heterogeneous NIMFA SIS; (2) considering interupdate
times 7,, that are random variables with arbitrary distributions
Fr,(x) = Pr[T,, < x] instead of fixed At as here; (3) consid-
ering a Markovian time-variant SIS process besides NIMFA;
(4) since the lower transition time T(r) is not as easily defined
as the upper-transition time, an analysis of the lower bound-
ary of the intermediate regime is also a promising topic for
further analysis; and (5) last, while our bounds (25), (26), and
(28) are general, our simulations of T(r) were limited to ER
graphs only. We show in Appendix A that different networks
do not behave significantly different for N = 50. However,
a thorough verification of our results on different classes of
networks might be of interest.
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APPENDIX A: ASSUMPTION OF ER GRAPHS

Figure 11 illustrates that for N =50 the ER graphs
are representative of general graphs. We plot the upper-
transition time T(r) for each graph type [Barabasi-Albert
(BA), Erd6s-Rényi (ER), and Watts-Strogatz (WS)]. We draw
3000 realizations of each of the three random graph models,
and we assume uniformly distributed parameters for each
random graph model, except for the number of nodes N,
which we consider fixed [53]. ER graphs have one param-
eter: the link density p ~ Unif[0, 1]. BA graphs have two
parameters: the size of the starting clique my ~ Unif{1, N}
and the degree of nodes when attached m ~ Unif{1, my}. WS
graphs have two parameters: the average degree divided by
two K ~ Unif{l, LNT’IJ} and the rewiring probability Sys ~
Unif[0, 1]. While Fig. 11 shows that the three different graph
types do result in a different transition times T(r), the absolute
difference of the transition time seems very small and almost
negligible. It is plausible that these differences will become
larger when N increases. The inset of Fig. 11, which is the
same as the main figure but with logarithmic axes, illustrates
that, while the absolute differences are negligible, there is
already a significant relative difference between ER/WS and
BA graphs.
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FIG. 12. The derivative convergence time t* vs the basic reproduction number Ry for different values of the starting prevalence y(0). The
chosen parameters are a graph size N = 50, accuracy tolerance * = 1077, infection rate 8 = 0.1, and step size h = 0.01. Each graph is a
ER(N, p) graph with p ~ Unif(0, 1). For Ry > 1, the small values of y(0) are on top. For Ry < 1, the small values of y(0) are at the bottom.

The inset shows the dips below the curves in more detail.

APPENDIX B: PROOF OF LEMMA 1

Proof. We consider the starting infection probability vec-
tor V(0) = e(r)u. We will upper bound the prevalence y(t)
and then substitute the starting condition and show that
[y(T) — Yool > r. The derivative DO of the prevalence y(t)

d
in (1) follows from (7) as '

ay) Ty ;
=5 = YO+ D= w1 ayv;).

i1 j=1

Since (1 — v;(t)) < 1and g;; < 1, we find that

dy(r)

N N
T
S < YO+ 53 Y v ==y + TNy(0),

i=1 j=1

where we have a strict inequality, because we do not consider
self-loops (a; = 0), which is a reasonable assumption for
individual-based contact graphs. Using Gronwall’s Lemma
[51] on the differential inequality % < (TN — D)y(r) gives
us an upper bound on the prevalence y(¢):

y(t) < y(0)e™N (B1)

The starting infection probability vector V(0) = e(r)u im-
plies that the starting prevalence y(0) = ¢(r). We set ¢(r) =
e such that y(0) = e(r) < yoo. The difference [y(t) —
Yool 18

STN-1x
V(@) = Yool = Yoo = ¥(1) > Yoo = (Voo = 1) -

Since Syr < 1 for times t < 7, we find |y(t) — yoo| >
Yoo — Yoo + ¥ = r, which proves Lemma 1. [ |

APPENDIX C: DERIVATIVE CONVERGENCE TIME

As an heuristic for the upper-transition time T(r), we
consider the derivative convergence time ¢*, which does not
depend on y.. The derivative convergence time is defined
as the time ¢+ > 0 when a NIMFA SIS process first obeys
the inequality |v;(t + h) — v;(¢)| < hr* for all nodes i in the
graph G:

* = min {[uit + h) —vi(O) < hr*; Vi=1....N}, (C1)
tz

where & is a step-size parameter and r* is an accuracy tol-
erance. We denote this accuracy tolerance as r* instead of
r, because the derivative convergence time #*(r*) does not
scale in the same way with the accuracy tolerance r* as the
upper-transition time T(r) with the accuracy tolerance r.

The derivative convergence time ¢t* does not depend on
the steady-state prevalence y,, and therefore does not require
information about future times. Therefore, given that r* is
chosen in such a way that it corresponds to r, the derivative
convergence time t*(#*) can be determined faster than the
upper-transition time T(r) as the calculation of y., can be
skipped. Additionally, the convergence check is computation-
ally cheaper.

Figure 12 shows the values of the derivative convergence
time t* for different values of the basic reproduction num-
ber Ry and the starting prevalence y(0). Specifically, we set
the initial state vector to V(0) = y(0)u and varied the initial
prevalence y(0). The inset in Fig. 12 shows sharp dips below
the curves due to the starting value y(0) being close to y., for
that specific value of Ry, resulting in fast convergence. When
the prevalence y(0) is small, the initial changes in the preva-
lence are also small, resulting in the process instantaneously
reaching the stopping criterion |v;(t + h) — v;(¢)| < hr*. Fig-
ure 12 illustrates a trend similar to the one shown in Fig. 5.
Indeed, both the upper-transition time T(r) and the derivative
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FIG. 13. Comparison of the upper-transition time T(r) [thick (dark) blue lines] and the derivative convergence time +*(+*) [thin (light)
red lines] for different values of r and r*. The initial infection probability vector V(0) = u and time-step parameter 2 = 0.01 are constant
throughout all simulations. The values of the accuracy tolerance r are 107!, 1072, 1073, 10~* and the values of the accuracy tolerance r* are

1071, 1072, ..., 1077, 1078

convergence time ¢*(r*) show the same qualitative asymptotic
behavior around Ry = 1 and have the same dips when the
starting prevalence y(0) is close to the steady-state prevalence
Yoo Similarly to the upper-transition time T(r), the deriva-
tive convergence time ¢* is almost fully determined for each
graph by the basic reproduction number Ry. The differences
are clearer in Fig. 13, in which the log scale shows that the
derivative convergence time ¢*(r*) (thin red lines) has larger
tails than the upper-transition time T(r) (thick blue lines).

In order to upper bound the upper-transition time T(r)
with the derivative convergence time ¢*(r*), which could save
computation time, it is of interest to know which value of r*
is sufficient for some arbitrary value of r and sequence of
graphs G.

We compare the convergence criteria |y(t + k) — y(t)| <
hr and [y(t) — y(tmax)| < 7 fOr tmax = 10* and different val-
ues of r and r*. The numerical results in Fig. 13 suggest that,
when r decreases by a factor of 10, »* must decrease by a
factor of 10% to remain an upper bound for all values of R,.
In Fig. 13 the smallest »* for which the upper-transition time
T(r) is upper bounded by the derivative convergence time
t*(r*)is r* = 107 when r = 1074, for some a € N. Indeed,
we notice that the derivative convergence times t*(r*) with
r* =102, 107*, 107°, 107% bound the upper-transition
times T(r) with » = 10", 1072, 1073, 10~ respectively.

APPENDIX D: PREVALENCE OF THE DECAY PROCESS
FROM THE ALL-INFECTED STATE ON REGULAR
GRAPHS AT THE EPIDEMIC THRESHOLD

In this section we state and proof the following lemma:

Lemma 8. For any k-regular graph G, the prevalence
y(t; G, TV(G), u) of the NIMFA SIS process on G, with
effective infection rate v = t{"(G) with starting infection

probability vector V (0) = u satisfies

¥(t;G, t(G), u) = (D1)

14¢

Proof. The graph G is k-regular, and symmetry in (7) im-
plies that v;(t) = v;(t) = y(¢) for all nodes i and j when the
starting infection probabilities v;(0) = v;(0) for all nodes i
and j. We substitute v;(r) = y(¢) and the degree of each node
di = 27:1 ajj = k in (7) to obtain the following differential
equation with initial condition y(0) = I:

dy

< = k(1 = y)y.
& y+ k(1 —y)y

For an effective infection rate T = 1{"(G) = 1, we find

dy
T =Ty =2 (D2)
t
The differential equation (D2) has solution y(t) = ﬁ and
¥(0)
substituting y(0) = 1 proves (D1). |

APPENDIX E: SUBSTANTIATION FOR CONJECTURE 1

In this section, we present a proof outline for Conjecture
1, highlighting which steps are missing. We restrict ourselves
to the case of T = t/(G), because this case is an upper
bound for other T < t/’(G). We denote the projection of the
viral state vector V (¢) on the principal eigenvector x; of the
adjacency matrix A as

ct)=x1V@). (ED)

Then the viral state vector V() can be written as a linear
combination of two vectors

V() = c(®Ox1 (1) + £(0), (E2)
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where the N x 1 vector
§(1)=V(t) — c(t)xi(r) (E3)
is orthogonal to the principal eigenvector, i.e., x] £(1) = 0. At

the initial time ¢ = 0, using V(0) = u the decomposition of
the viral state vector V (0) in (E2) becomes

V(0) = c(0)x; + £(0) = u. (E4)

We rewrite the definition (1) of the prevalence y(¢) as

— 1 TV

which yields with (E2) and (E4) that

1
() = e + EON [et)a +E@)].  (ES)
Since xT&(¢) = 0 at every time ¢ and x7 x; = 1, we obtain that

Ny(t) = c(0)c(t) + £(0) (). (E6)

To prove that y(7) < ]1? is an upper bound of the prevalence
y(t), we apply the triangle inequality to (E6), which implies
that the prevalence y(t) of any graph obeys

Ny(t) < c(0)c(t) + EO) E@)],

at every time t. Here we used |c(0)c(?)| = c(0)c(¢), because
(E1) and v;(r) > 0 for every node i at every time ¢ implies that
c(t) = 0 at every time ¢. Furthermore, we apply the Cauchy-
Schwarz inequality to obtain that

Ny(t) < c(0)c(@) + [1EO0)12[1E @I 2.

To prove Conjecture 1, it remains to show that

N
c(0)e(@) + 115211512 < T3 (E7)

at every time ¢. Numerical simulations suggest that this
inequality holds. To further specify a proof direction we
consider a regular graph. For a regular graph it holds that

X = «/LNM and £(¢t) = O for all times ¢. Solving the NIMFA

equations (7) we find that

VN

1+

Hence, since ¢(0) = +/N for a regular graph we obtain
c(0)

c(t) =

c@®) <

Now, if a graph is not a regular graph, then the eigenvector
x1 is not a multiple of the all-one vector u, which implies
that ||£(0)||, > 0. Intuitively, the less regular a graph is, the
smaller c(¢) and the larger ||£(¢)||, should be. It is therefore
reasonable to assume one could prove that

1
o) < O (E8)

We have not been able to prove (E8). However, as for (E7),
numerical simulations suggest that the inequality holds. In
Theorem 2 from [50], a similar decomposition is used in
which the error term ||£(¢)||, was bounded by a function of
the form

EDI2 < 115026,

at all times ¢, for some constant o > 0. Now, suppose that one

can show that the same inequality holds in this case and that

o = 1. Then after using e™" < e~ < 1+rt we would find
1

1+t

which has also been numerically verified in numerous simu-
lations. After substituting (E9) and (ES), the left side of (E7)
becomes

2 1 2 1
c(0)c@) + [1EO)21E@I2 < ¢ (0)1—+t + |I§(0)llzl—+t

_JN
T 1+t
(E10)

15 @Iz < 1152 (E9)

=Vl :
- 21 4+

where the terms can be combined due to the orthogonality
of x; and £(0) and the last equality follows from V(0) = u.
Note that this would prove Conjecture 1 by showing (E7).
We emphasize that Egs. (E7), (E8), and (E9) have been
numerically verified. Combined with the results shown in
Fig. 8, we believe that there is strong numerical evidence for
Conjecture 1.
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