
Delft Center for Systems and Control

Max-Min-Plus-Scaling Neural
Networks to Approximate Con-
tinuous Piecewise Affine Model
Predictive Control Laws

Bouke Stoelinga

M
as

te
ro

fS
cie

nc
e

Th
es

is

Max-Min-Plus-Scaling Neural
Networks to Approximate Continuous

Piecewise Affine Model Predictive
Control Laws

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Bouke Stoelinga

October 10, 2023

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Max-Min-Plus-Scaling Neural Networks to Approximate Continuous

Piecewise Affine Model Predictive Control Laws
by

Bouke Stoelinga
in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: October 10, 2023

Supervisor(s):
Dr.ir. A.J.J. van den Boom

Ir. K. He

Reader(s):
Prof.dr.ir. B.H.K. De Schutter

Abstract

This thesis extensively examines the influential factors affecting the performance of approx-
imations of Model Predictive Control (MPC) control laws using neural networks. MPC is a
control strategy that solves an optimization problem at each timestep. This problem can be
computationally complex and could be too slow to compute for online control. Sometimes
an explicit solution for MPC exists, but this can become very large in memory and is not
always available. That is why approximations with neural networks might offer a benefit.
Under certain conditions, the explicit solution yields a piecewise affine (PWA) control law. A
PWA model class is equivalent to the so-called Max-Min-Plus-Scaling (MMPS) model class,
which is a generalization of max-plus and min-plus algebra. Neural networks are made up of
neurons, which make use of activation functions. A feed-forward neural network with some
specific activation function can yield an MMPS function. This inspires us to research the
use of different activation functions in approximating MPC control laws. Additionally, we in-
vestigate different sampling strategies and the use of max-plus and min-plus layers in neural
networks.

We do this by setting up different PWA and non-PWA control laws for two inverted pendulum
systems and training several neural networks to approximate these control laws. We first
observe a significantly better performance in approximating the PWA control laws compared
to the non-PWA control laws. When varying the activation functions of the neural networks
we find that for PWA control laws a MMPS activation function can offer a better performance,
but it is not guaranteed for all MMPS functions. We also find that networks with custom
max-plus layers can offer a similar performance on approximating control laws compared to
networks with traditional layers. When investigating what sampling strategy is most beneficial
we find comparable performance with a stratified sampling strategy and a uniform sampling
strategy. Depending on what areas of the control law you want to capture with the most
detail, you can choose the most viable sampling strategy. With this, we have researched
various factors that influence the performance of approximations of MPC control laws. The
thesis ends with a recommendation to research even more factors that might offer even better
approximations.

Master of Science Thesis Bouke Stoelinga

ii

Bouke Stoelinga Master of Science Thesis

Table of Contents

Preface and Acknowledgements vii

1 Introduction 1
1-1 Background . 1
1-2 Problem description . 2

1-2-1 Research Questions . 2
1-2-2 Approach . 2

2 Max-Min-Plus-Scaling 5
2-1 Max-Min-Plus-Scaling functions . 5

2-1-1 Max-Min-Plus-Scaling systems . 6
2-1-2 Canonical forms of MMPS systems . 6

2-2 Piecewise affine functions . 7
2-2-1 Equivalence with MMPS functions . 7

2-3 Max-Plus Algebra . 8
2-3-1 Max-Plus matrix algebra . 9

2-4 Min-Plus Algebra . 10

3 Model Predictive Control 11
3-1 Optimal Control: Linear Quadratic Regulator 11

3-1-1 Receding horizon principle . 12
3-2 Quadratic programming . 13
3-3 Stability concepts . 14

3-3-1 Stability for constrained linear systems 16
3-3-2 Stability for nonlinear systems . 17

3-4 MPC for PWA systems . 18

Master of Science Thesis Bouke Stoelinga

iv Table of Contents

3-4-1 Mixed Logical Dynamical model . 18
3-4-2 Optimal control of MLD system . 20

3-5 Explicit MPC for linear systems . 21
3-5-1 Memory use . 22

4 Neural Networks 23
4-1 Neural Networks . 23

4-1-1 Activation functions . 24
4-1-2 Min-Max-Plus neural networks . 25
4-1-3 Neural networks as max-min-plus system 26

4-2 Linear regions . 28
4-3 Training neural networks . 29

4-3-1 Back-propagation . 30
4-3-2 Update rules . 32

4-4 Exact representation . 34

5 Approximation procedure 37
5-1 Making controllers and obtaining control law . 37
5-2 Approximating with different parameters . 38

5-2-1 Sampling Strategy . 38
5-2-2 Neural Network training . 39
5-2-3 Implementing max-plus and min-plus layers 39

5-3 Comparing results . 40

6 Case studies 43
6-1 Linear inverted pendulum . 43
6-2 Piecewise affine inverted pendulum . 45
6-3 Double pendulum . 46

6-3-1 Linear Model . 49

7 Results 51
7-1 Activation functions . 51

7-1-1 Controller for linearized system . 51
7-1-2 Controller PWA system 1-norm . 55
7-1-3 Controller PWA system infinity-norm . 58

7-2 Sampling Strategy . 61
7-3 Maxplus and Minplus layers . 64
7-4 Double Pendulum . 67

Bouke Stoelinga Master of Science Thesis

Table of Contents v

8 Conclusion 71
8-1 Conclusion to experiments . 71
8-2 Main conclusion . 72
8-3 Further research . 74

8-3-1 More experiments and different systems 74
8-3-2 Speed of max-plus and min-plus layers with different architectures 74
8-3-3 Post-processing methods on neural network approximations 74
8-3-4 More general forms of neural networks 74
8-3-5 Stability and constraint validation for neural network controllers 75
8-3-6 Other sampling strategies and parallels to identification techniques 75
8-3-7 Other metrics to measure performance of approximation 75

A Appendices 77
A-1 Discretization of continuous time piecewise affine system 78
A-2 Parameters of the physical systems . 80

B Algorithms and code 81
B-1 Max-plus and min-plus layers . 81
B-2 Linearized MPC controller . 83
B-3 PWA MPC controller . 85
B-4 Scoring metric . 91

Master of Science Thesis Bouke Stoelinga

vi Table of Contents

Bouke Stoelinga Master of Science Thesis

Preface and Acknowledgements

Dear reader,

After spending the last year focusing on this thesis and solving lots of challenges is finally
time to hand in my final thesis and conclude my studies at Delft University of Technology. I
am grateful for all the help I have received and I am proud of what I have achieved.

I would like to thank my supervisors Ton and Kanghui, who helped me with this topic that
started as something I found curious, and they supported me in making a thesis out of it.
Through many meetings and pointing out things that could be improved, they helped to get
me to the best result.

I would also Like to thank Bart De Schutter for taking the time and effort to read and evaluate
my thesis.

I would also like to thank my study friends from my association, with whom I spent numerous
sessions working in Pulse and other places. The coffee and lunch breaks helped to make
working on my thesis more fun and made writing this thesis a lot less lonely.

Finally, I would like to thank my family and my partner Casper, who supported me throughout
the entire process. Their motivation and support helped me push through all the difficult
challenges and made everything more enjoyable.

Delft, University of Technology Bouke Stoelinga
October 10, 2023

Master of Science Thesis Bouke Stoelinga

viii Preface and Acknowledgements

Bouke Stoelinga Master of Science Thesis

Chapter 1

Introduction

1-1 Background

Model Predictive Control [1], [2] is a very useful control technique that uses a model of a
system to compute an optimal solution. This optimal solution balances controller effort and
state trajectories and can also handle constraints. For this, an optimization problem does
need to be solved at each timestep. This optimization problem can in some cases be too
complex to be solved in time for the next timestep. A solution that would not require an
optimization problem at each step is explicit model predictive control [3]. This method uses
multiparametric programming techniques to reduce the control law to a simple-to-evaluate
function. These obtained control laws are sometimes Piecewise Affine (PWA), for example
for a linear system with linear constraints. A disadvantage is that obtaining these explicit
control laws can be nontrivial and they might have a large number of linear regions. However,
if such an explicit control law is not available, approximations are an alternative.
The PWA form of some control laws is related to another area of study. In discrete event
systems, PWA systems can be converted to a different class of functions, namely the max-
min-plus-scaling (MMPS) systems [4]. The functions they use, PWA functions, and MMPS
functions are also equivalent. These MMPS functions make only use of max, min, plus, and
scaling operators. Related to them are the max-plus algebra and min-plus algebra, in which
some nonlinear functions in conventional plus-times algebra are linear in their respective
algebra.
Looking for approximations instead of exact explicit MPC control laws leads us to a technique
for finding approximations of functions: artificial neural networks. We choose neural networks
over other function approximation methods because their structure. With certain activation
functions neural network can match the structure of a MMPS function. They are made up of
neurons, and each neuron often has an activation function. What is remarkable here is that
nowadays the most commonly used activation function Relu, and the standard feedforward
structure of a neural network in combination with these activation functions, works as an
MMPS function. MMPS functions also appear in a different type of neural network where
max-plus and min-plus layers are implemented [5].

Master of Science Thesis Bouke Stoelinga

2 Introduction

Neural networks have been used before to approximate control laws [6]–[8]. They use some
sampling strategies: They simulate trajectories or take samples from an explicit control law.
Several different neural networks structures have been used to approximate MPC control laws
such as Long short-term memory networks [7], [9] or recurrent neural networks [10].

1-2 Problem description

We want to go further with estimating MPC control laws with neural networks. There are a
few aspects that have yet to be thoroughly researched. These are namely:

• Differences in approximating PWA control laws and non-PWA control laws

• Difference in approximating PWA control laws with different MMPS and non-MMPS
activation functions

• Difference in sampling strategies when approximating MPC control laws

• Application of max-plus and min-plus layers in approximating MPC control laws

To guide this research, some research questions are formulated.

1-2-1 Research Questions

The main question that arises is:

What are the various factors that influence the performance of neural network approximations
of MPC control laws?
This main question will be answered with the help of the following subquestions:

• Is there a significant difference in approximating PWA MPC control laws compared to
non-PWA MPC control laws?

• Does the max-min-plus-scaling structure of a neural network offer a benefit compared to
other neural networks with other activation functions when approximating MPC control
laws?

• Do max-plus and min-plus layers in a neural network offer better performance?

• What is an appropriate sampling strategy to obtain a satisfactory approximation of an
MPC control law?

1-2-2 Approach

We will discover the various factors that influence the performance of neural network approx-
imations of MPC control laws by surveying the literature and setting up experiments.

The first four chapters will cover the literature that helps us set up the experiments, we start
in Chapter 2 by getting into different classes of functions and their equivalence. These classes

Bouke Stoelinga Master of Science Thesis

1-2 Problem description 3

of functions will come back in Chapter 3 where we will find all the concepts we need to set up
MPC controllers and obtain control laws. Chapter 4 will go into detail about neural networks
that we need for approximating these control laws, what algorithms are used and what type
of neural networks we want to test.

The rest of the chapters will contain our main contributions. Chapter 5 will describe the
detailed approach of our experiments and how the research questions will be answered. We
start by setting up MPC controllers for two different systems in Chapter 6 which will yield
different control laws. Using these control laws we will train several different neural net-
works with different parameters. Afterwards, we will see how they perform by analyzing the
validation loss and our own custom performance metric in Chapter 7.

Through the use of PWA and non-PWA control laws, we will find if there is a difference in
performance for approximating these control laws. We will also test several different activa-
tion functions, including two MMPS activation functions to discover if they offer a benefit
compared to other activation functions. Additionally, we also make use of max-plus and
min-plus layers in some neural networks and analyze their performance. Finally, we will take
subsets of our datasets to test different sampling strategies and find which find a satisfactory
approximation.

Master of Science Thesis Bouke Stoelinga

4 Introduction

Bouke Stoelinga Master of Science Thesis

Chapter 2

Max-Min-Plus-Scaling

This chapter will describe a specific group of functions called max-min-plus-scaling functions.
They make use of max, min, plus, and scaling operations and are used in max-min-plus-scaling
systems. These systems are equivalent to other forms and have canonical forms as well. The
chapter ends by mentioning max-plus and min-plus algebra.

2-1 Max-Min-Plus-Scaling functions

Max-Min-Plus-Scaling (MMPS) functions are a group of functions that allow for non-smooth
behavior while still being continuous. They are defined as:

Definition 2.1. Max-min-plus-scaling functions. A max-min-plus-scaling (MMPS) function
f mapping Rm → R for the variables x1, ..., xm ∈ R is defined by the grammar:

f := xi|α| min(fk, fl)| max(fk, fl)|fk + fl|βfk,

with i ∈ {1, 2, ...m}, α, β ∈ R and fk and fl recursively defined MMPS functions. The symbol
| stands for or.

The set denoted by R is either R,Rε
def= R ∪ {−∞},R⊤

def= R ∪ {∞} or Rc
def= R ∪

{−∞,∞} depending on if only scaling operations, scaling and max operations, scaling and
min operations or all scaling, min and max operations are used.

Example 2.2. An example of an MMPS function in conventional notation:

f(x) = min (max (x1 + 3, x2 − 4) + 5 max (x3 + 6, 3) , 4x4) .

These functions are often used to describe discrete event systems

Master of Science Thesis Bouke Stoelinga

6 Max-Min-Plus-Scaling

2-1-1 Max-Min-Plus-Scaling systems

A discrete event system can be described with the state-space equations:

x(k) = fmmps (x(k − 1), u(k))
y(k) = gmmps (x(k), u(k)) ,

(2-1)

where fmmps and gmmps are MMPS expressions, x(k) is the state and u(k) is the input. This
is called an MMPS system [11] and is a modeling class of hybrid systems. These MMPS
systems are equivalent to other classes of hybrid systems with certain conditions [4]. Such as
Piecewise Affine (PWA) systems [12], Mixed Logical Dynamical (MLD) systems [13], Linear
Complementary (LC) systems [14], [15] and Extended Linear Complementarity (ELC) systems
[16].

2-1-2 Canonical forms of MMPS systems

There are 3 canonical forms of MMPS systems [11], [17]–[19].

Definition 2.3. Conjunctive canonical form: Let ai,j be real-valued vectors, p(k) be a param-
eter vector of the current input and previous states and inputs

[x(k − 1), x(k − 2) . . . , u(k), u(k − 1), . . . ,]

and bi,j be real numbers. For some integers K,nK , a state-space model is described by

x(k) = min
i=1,...,K

max
j=1,...,ni

(
aT

i,jp(k) + bi,j

)
. (2-2)

This holds componentwise for vector-valued MMPS functions This form is called the conjunc-
tive form.

This form is itself an MMPS system as described by Equation 2-1. The classes of Equation
2-1 and 2-2 coincide, meaning any MMPS system can be written in the form of 2-2 since min
and max operations have the following properties: Let α, β, γ, δ ∈ R

min(max(α, β),max(γ, δ)) = max(min(α, γ),min(α, δ),min(β, γ),min(β, δ)) (2-3)

max(min(α, β),min(γ, δ)) = min(max(α, γ),max(α, δ),max(β, γ),max(β, δ)). (2-4)
This is proven with lemma 28 from [17].
Another canonical form is the disjunctive form:

Definition 2.4. Disjunctive canonical form: Let αi,j be real-valued vectors, p(k) be a param-
eter vector of the current input and previous states and inputs

[x(k − 1), x(k − 2) . . . , u(k), u(k − 1), . . . ,]

and βi,j be real numbers. For some integers K,mK , a state-space model is described by

x(k) = max
i=1,...,K

min
j=1,...,mi

(
αT

i,jp(k) + βi,j

)
. (2-5)

This holds componentwise for vector-valued MMPS functions. This form is called the dis-
junctive form.

Bouke Stoelinga Master of Science Thesis

2-2 Piecewise affine functions 7

Again this form is an MMPS function, and this form coincides with Equation 2-1. A different
form is the Kripfganz form [19], using the difference between two MMPS functions.

Definition 2.5. Kripfganz canonical form: let µi,j be real-valued vectors, p(k) be a parameter
vector of the current input and previous states and inputs

[x(k − 1), x(k − 2) . . . , u(k), u(k − 1), . . . ,]

and σi,j be real numbers. For some integers K,L, a state-space model is described by:

max
i=1,...L

(µ1,ip(k) + σ1,i) − max
j=1,...K

(µ1,jp(k) + σ1,j) (2-6)

This holds componentwise for vector-valued MMPS functions. This form is called the Kripf-
ganz form.

This form also coincides with 2-1, with the property

max(α, β) = − min(−α,−β), min(α, β) = − max(−α,−β) (2-7)

which can be shown [17].

2-2 Piecewise affine functions

A convex polyhedron is a convex set that is the intersection of a finite number of half-spaces
and is defined by its sides i.e. Mx ≤ Q. Now let a polyhedral partition of polyhedron D be
D =

⋃N̂
i=0 Ωi such that the finite amount of regions Ωi do not overlap in the interior.

Definition 2.6. A piecewise affine function (PWA function) f : D → R is a function that is
affine in every region of the polyhedral partition D. For example:

f(x) = ℓloc(i)(x) ∀x ∈ Ωi

ℓloc(i) = αkx+ βk.
(2-8)

A PWA function is continuous if it is continuous on every boundary of its partition. Some
local affine functions ℓloc(i) might occur in more than one subregion. Collect all unique affine
functions and note the indices with loc(i) ∈ {1, 2, . . . ,M}

2-2-1 Equivalence with MMPS functions

Now if we partition these subregions Ωi of D further into so called base regions Di,t with
t ∈ {0, 1, . . . ,mi}. Now to make sure that no other affine function intersects with ℓloc(i) in
the interior of D)i,t, in other words:{

x | ℓj(x) = ℓloc(i)(x), j ̸= loc(i)
}

∩ int (Di,t) = ∅. (2-9)

It is shown in [20] that all these regions can be partitioned such that Ωi =
⋃mi

t=0 Di,t and:

Master of Science Thesis Bouke Stoelinga

8 Max-Min-Plus-Scaling

1. The interior of each Di,t, int(Di,t) in short, is int(Di,t) ̸= ∅

2. Let
I≥,i,t =

{
j | ℓj(x) ≥ ℓloc(i)(x), ∀x ∈ Di,t

}
,

I≤,i,t =
{
j | ℓj(x) ≤ ℓloc(i)(x), ∀x ∈ Di,t

}
,

(2-10)

then for each Di,t:
I≥,i,t ∪ I≤,i,t = {1, 2, . . . ,M}. (2-11)

3. ∀i, j ∈ {1, 2, . . . , N̂}, t̄ ∈ {1, 2, . . . ,mi}, t̂ ∈ {1, 2, . . . ,mj}, t̄ ̸= t̂, i ̸= j

int(Di,t̄) ∩ int(Dj,t̂) ̸= ∅. (2-12)

After this partition, renumber the regions D1,1, . . . ,D1,m1 , . . . ,DN̂,1, . . . ,DN̂,mN̂
to D1, . . . ,DN

with N = m1 +m2 + . . .+mN̂ to simplify. Now define the active linear function as:

ℓact(i) = ℓloc(j), if Di ⊆ Ωj (2-13)

and determine the following index sets:

I≥,i =
{
j | ℓj(x) ≥ ℓact (i)(x), ∀x ∈ Di

}
I≤,i =

{
j | ℓj(x) ≤ ℓact(i)(x), ∀x ∈ Di

}
.

(2-14)

Then the PWA system in Equation 2-8 can be rewritten to an MMPS function in the dis-
junctive form as:

f(x) = max
i=1,...,N

{
min

j∈I≥j

{ℓj(x)}
}
, ∀x ∈ D, (2-15)

or in the conjunctive form as:

f(x) = min
i=1,...,N

{
max
j∈I≤j

{ℓj(x)}
}
, ∀x ∈ D. (2-16)

This means that any continuous piecewise affine function can also be written as an MMPS
function. Though this process of dividing the regions and reconstructing them into an MMPS
function is nontrivial. It also requires a complete description of all the regions. That is why an
approximation of a PWA function can also be useful. Approximations can be obtained quite
fast and if they are accurate enough they can substitute the need for an exact representation.
They also do not require an exact description of all the regions of a PWA function.

2-3 Max-Plus Algebra

Next, we will discuss two distinct algebras that we will be using in specific neural network
structures as will be explained in Section 4-1-2. The imposition of further constraints on the
operations of MMPS functions gives rise to specific algebraic structures. Here we will discuss
two of them, Max-Plus algebra and Min-Plus algebra. These algebraic structures have the
advantage that some equations that are nonlinear in traditional algebra, are linear in these

Bouke Stoelinga Master of Science Thesis

2-3 Max-Plus Algebra 9

specific algebras. Max-Plus algebra [21]–[24] consists of two main operations: addition and
maximization. These operations are represented by the symbols ⊕ and ⊗:

x⊕ y = max(x, y) and x⊗ y = x+ y (2-17)

for x, y ∈ Rε
def= R ∪ {−∞}. The ⊕ operation is called max-plus-algebraic addition and the

⊗ operation is called max-plus-algebraic multiplication.

There are some similarities between the traditional + and × operators, however, there are
also some differences. One difference is the absence of inverse elements with respect to ⊕ in
Rε, since this operator is idempotent i.e. a⊕ a = a for a ∈ Rε.

The zero element for max-plus algebra is ε := −∞. This has the properties

a⊕ ε = ε⊕ a = a

a⊗ ε = ε⊗ a = ε ∀a ∈ Rε

The identity element for max-plus algebra 1 := 0, since a ⊗ 1 = a ⊗ 0 = a. The structure
of (Rε,⊗,⊕) is then called max-plus algebra. The order of evaluation of the max-plus-
algebraic operators is the same as the conventional plus-times algebra. This means that
max-plus-algebraic multiplication has higher priority and max-plus-algebraic addition has
lower priority.

2-3-1 Max-Plus matrix algebra

The max-plus-algebraic operations extend to matrix operations. Let A,B ∈ R
(m×n)
ε and

C ∈ R
(n×p)
ε , The ⊕ and ⊗ operators [21]–[24] for matrices are defined by:

(A⊕B)ij = aij ⊕ bij = max (aij , bij)

(A⊗ C)ij =
n⊕

k=1
aik ⊗ ckj = max

k
(aik + ckj) .

The
n⊕

k=1
operator is analogous to the sum operator in conventional plus-times algebra.

Example 2.7. Let A =

0 ε 2
2 3 4
3 2 3

 and B =

2 1 2
ε 6 7
1 2 ε

.

Then A⊕B =

0 ε 2
2 3 4
3 2 3

⊕

2 1 2
ε 6 7
1 2 ε

 =

2 1 2
2 6 7
3 2 3

 and

A⊗B =

0 ε 2
2 3 4
3 2 3

⊗

2 1 2
ε 6 7
1 2 ε

 =

3 4 2
5 9 10
5 8 9

.

Note that the ⊕ operation stays communicative for matrices, but the ⊗ operator does not.
The zero (m × n) matrix in max-plus algebra is Em×n which has ε for every element. The
(n× n) max-plus identity matrix En which has 0s on the diagonal and ε everywhere else.

Master of Science Thesis Bouke Stoelinga

10 Max-Min-Plus-Scaling

2-4 Min-Plus Algebra

Min-plus algebra is much analogous to max-plus algebra, the definition for min-plus algebra,
similar to Equation 2-17, is:

x⊕′ y = min(x, y) and x⊗′ y = x+ y. (2-18)

The zero element for min-plus algebra is ⊤ := ∞, such that

a⊕′ ⊤ = ⊤ ⊕′ a = a

a⊗′ ⊤ = ⊤ ⊗′ a = ⊤ ∀a ∈ R⊤ := R ∪ {⊤}.

The tuple (R⊤,⊗′,⊕′) is called the min-plus algebra. Also similar are matrix multiplications.
Let A,B ∈ R

(m×n)
⊤ and C ∈ R

(n×p)
⊤ , The ⊕′ and ⊗′ operators for matrices are defined by:

(A⊕′ B)ij = aij ⊕′ bij = min (aij , bij)

(A⊗′ C)ij =
n⊕

k=1

′

aik ⊗′ ckj = min
k

(aik + ckj)

Note that for a scalar case, the ⊗ operator is the same as the ⊗′ operator, but not for matrix
multiplication.

Bouke Stoelinga Master of Science Thesis

Chapter 3

Model Predictive Control

Model predictive control (MPC) is an optimal control method that uses a model to make
predictions about the future behavior of the system. It can also handle constraints on the
states and inputs. This chapter discusses linear MPC controllers and how to formulate the
MPC problem as a quadratic programming problem. Then it discusses stability for linear
MPC controllers and expands this to nonlinear controllers. Next, we discuss Mixed Logical
Dynamical (MLD) and how to use MPC on these nonlinear systems. We also briefly touch
on explicit MPC.

3-1 Optimal Control: Linear Quadratic Regulator

Consider a linear time-invariant system

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k)
x0 = x(0)

(3-1)

with x ∈ Rn, u ∈ Rm and y ∈ Rp, and the matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈
Rp×n. With this information on how the state evolves, the states x(k) can be rewritten to:

x(k) = Akx0 +
k∑

j=1
Ak−j−1u(j)

= Akx0 +
[
B AB . . . Ak−1B

]
︸ ︷︷ ︸

=Ck

u(k − 1)
u(k − 2)

...
u(0)

︸ ︷︷ ︸

=u(0:k−1)

= Akx0 + Cku(0 : k − 1).

(3-2)

Master of Science Thesis Bouke Stoelinga

12 Model Predictive Control

Observe that the states x(k) are a function of the previous inputs u(1 : k) and the initial state
x(0). Now the goal is to find a controller that balances the states and outputs. Consider the
cost function V with prediction horizon N :

V (x(0), u(0 : N − 1)) = 1
2

N−1∑
k=0

[
x(k)TQx(k) + u(k)TRu(k)

]
+ 1

2x(N)TPfx(N). (3-3)

In this cost function, there are 3 relevant matrices: the Q matrix putting a weight on the
states x(0 : N − 1), an R matrix putting a weight on the inputs u(0 : N − 1), and a matrix
Pf on the terminal state x(N). Having larger entries in the Q matrix compared to the R
matrix means the goal is to drive the states to zero, with lesser regard to large control inputs.
Having larger R matrix entries means the states might be slower to be driven to zero, but the
controller effort is also lower. Choosing these matrices requires some tuning and is not too
straightforward. The matrices Q, R, and Pf need to be real and symmetric, the matrix Q and
Pf matrix need to be positive semi-definite and the R matrix needs to be positive definite.
To obtain a controller that finds the optimal control inputs u the cost function needs to be
optimized:

minimize
u(1:N−1)

V (x(0), u(0 : N − 1))

s.t. x(k + 1) = Ax(k) +Bu(k) for k = 0, 1, . . . , N − 1.
(3-4)

If there are no constraints in the optimization problem in 3-4, the result of this Linear
Quadratic Regulator (LQR) problem is famously known from [25] to be the control law
u(k) = K(k)x(k) with gain K(k) computed with:

P (k − 1) = Q+ATP (k)A− (ATP (k)B)
(
BTP (k)B +R

)−1
(BTP (k)A)

∀k = N,N − 1, . . . , 1
P (N) = Pf

(3-5)

also known as the backward Ricatti iteration. This yields the optimal gain

K(k) = −
(
BTP (k + 1)B +R

)−1
BTP (k + 1)A ∀k = N − 1, N − 2, . . . , 0. (3-6)

For an infinite horizon, this gain becomes constant, and the control law becomes u(k) = Kx(k)
with

P = Q+ATPA− (ATPB)
(
R+BTPB

)−1
(BTPA),

K = −(BTPB +R)−1(BTPA)
(3-7)

This does not yet consider any constraints on the inputs or states. Section 3-3-1 will discuss
this situation further.

3-1-1 Receding horizon principle

In MPC [1], [2], the first input of the sequence at time t u(t + 0), u(t + 1), . . . u(t + N) with
N as the prediction horizon is actually applied. After this the time window shifts to t + 1
and the optimization problem in 3-4 is recomputed for a new x0 to obtain a new sequence
u(t+0), u(t+1), . . . , u(t+N). This is called a receding horizon control approach. Often with
this technique, there is also a control horizon Nc, after which the control is kept constant
to reduce the computational complexity of the optimization problem. This is illustrated in
Figure 3-1 .

Bouke Stoelinga Master of Science Thesis

3-2 Quadratic programming 13

Figure 3-1: Principles of mpc

3-2 Quadratic programming

To solve the MPC problem of a linear system with n states and m inputs with a quadratic
cost function, we can reformulate the problem into a quadratic programming problem. A
general form for quadratic programming is:

min
z

1
2z

THz + cT z s.t. Jz ≤ m (3-8)

By rewriting in this form we can use an efficient algorithm such as the dual method described
in [26] to solve this problem. Now to rewrite the optimization problem we first define the
states and inputs as stacked vectors

x̄ =

x(k + 1)
x(k + 2)

...
x(k +N)

 , ū =

u(k)

x(k + 1)
...

x(k +N − 1)

 (3-9)

Master of Science Thesis Bouke Stoelinga

14 Model Predictive Control

and modify the state and cost matrices as follows

Ā =

 A
...
AN

 ∈ RNn×n, B̄

B 0 · · · 0
...
... . . . 0

AN−1B · · · · · · B

 ∈ RNn×Mn,

Q̄ =

Q
Q
...
P

 ∈ RNn×n, R̄ =

R
R
...
R

 ∈ RNm×m

(3-10)

to get the equation
x̄ = Āx0 + B̄ū. (3-11)

The cost function now becomes

V (x0, ū) = x̄Q̄x̄+ ūR̄ū (3-12)

And we can rewrite this in quadratic form as follows:

V (x0, ū) = x̄Q̄x̄+ ūR̄ū

=
(
Āx0 + B̄ū

)T
Q̄
(
Āx0 + B̄ū

)
+ ūR̄ū

=
(
xT

0 Ā
T + ūT B̄T

)
Q̄
(
Āx0 + B̄ū

)
+ ūR̄ū

= xT
0 Ā

T Q̄Āx0︸ ︷︷ ︸
does not depend on ū

+2xT
0 Ā

T Q̄B̄ū+ ūT B̄T Q̄B̄ū+ ūR̄ū.

(3-13)

Since there is a part of the equation that does not depend on u, we can leave it out of the
optimization. We get a new function Vopt:

Vopt(x0, ū) = ūT
(
B̄T Q̄B̄ +R

)
︸ ︷︷ ︸

H

ū+ 2xT
0 Ā

T Q̄B̄︸ ︷︷ ︸
cT

ū

= ūTHū+ cT ū

(3-14)

which is in the form of 3-8. Now if all constraints are linear inequality constraints we can use
x̄ and ū to construct the constraint matrix J and constraint vector m to the same form as
3-8.

3-3 Stability concepts

To determine if a model predictive controller is stable, we first need a proper definition of
stability. First start with some definitions for invariant sets:

Definition 3.1. Positive invariance: Suppose a dynamical system is x(k+ 1) = f(x(k)) and
a trajectory is x(k, x0) with initial point x0. A set P = {x ∈ Rn|ψ(x) ≤ 0} where ψ is a real-
valued function is said to be positive invariant if x0 ∈ P implies that x(t, x0) ∈ P ∀t ≥ 0.
That is to say, any trajectory of the system that enters P stays in P forever.

Bouke Stoelinga Master of Science Thesis

3-3 Stability concepts 15

Definition 3.2. Control invariance: A set P is control invariant for x(k+1) = f(x(k), u(k))
and u(k) = κ(x(k))x(k) with u ∈ U if for all x ∈ P there exists a u ∈ U that follows such that
f(x, u) ∈ P . In other words, for a dynamic system, there exists a set for which the trajectory
stays in the set with only one control input following the control law.

Next, we need definitions for different classes of functions for a definition of stability:

Definition 3.3. Class K,K∞and KL functions: A function α: [0, a] → [0,∞] is a class K
function if it is:

• Strictly increasing
• α(0) = 0

A function α is class K∞ if it is:

• class K
• a = ∞
• limr→∞ α(r) = ∞

A continuous function β: [0, a) × [0,∞) → [0,∞) is said to be class KL if’

• for each fixed s β(r, s) belongs to class K
• for each fixed r, the function β(r, s) is decreasing with respect to s, so β(r, s) → 0 for
s → ∞

With these definitions, we can construct a definition for asymptotical stability. First denote
the state of a dynamical system at timestep k with initial condition x0 and control sequence
u := u(0 : k) by ϕ(k, x0,u).

Definition 3.4. (Global) Asymptotical stability: Suppose X is positive invariant for x(k+1) =
f(x(k)). The origin of the system is asymptotically stable for x(k+1) = f(x(k)) in X if there
exist a class KL function β such that for each x ∈ X

|ϕ(s;x)| ≤ β(|x|, s) ∀s ∈ S≥0. (3-15)

The origin of the system is globally asymptotically stable if X = Rn.

Now we have a definition of stability, but to prove that a system is stable we need some more
definitions. One way to prove the stability of a system is by using Lyapunov functions. They
are defined as the following:

Definition 3.5. Lyapunov function: suppose that X is positive invariant for x(k + 1) =
f(x(k)). A function V : Rn → R≥0 is said to be a Lyapunov function in X for x(k + 1) =
f(x(k)) if there exists functions α1, α2 ∈ K∞ and a continuous positive definite function α3
such that for any x ∈ X

V (x) ≥ α1(|x|) (3-16)
V (x) ≤ α2(|x|) (3-17)

V (f(x)) − V (x) ≤ −α3(|x|). (3-18)

Master of Science Thesis Bouke Stoelinga

16 Model Predictive Control

To prove stability for a system we can now use the Lyapunov stability theorem:

Theorem 3.6. Lyapunov stability theorem (Theorem B.24 in [27]): Suppose X ∈ Rn is
positive invariant for x(k + 1) = f(x(k)). If a Lyapunov function exists in X for the system,
then the origin is asymptotically stable in X for x(k + 1) = f(x(k). The origin of the system
is globally asymptotically stable if X = Rn. If αj(|x|) = cj |x|a with a, ci ∈ R≥0, i = 1, 2, 3, the
origin of the system is exponentially stable.

This theorem is proven by [27] in Theorem B.24.

3-3-1 Stability for constrained linear systems

Using the previous theorem, we can determine stability for a linear system with linear state,
and control input constraints. These constraints do not allow us to simply use the control law
from the linear quadratic regulator. Consider the linear time-invariant system in Equation
3-1. with the linear state and control input constraints as

x ∈ X u ∈ U (3-19)

Now consider a general cost function with stage cost Vs and terminal cost Vf

V (x(0), u(0 : N − 1)) = Vs(x(0), u(0 : N − 1)) + Vf (x(N)) (3-20)

An example is a quadratic cost function, the same as the linear quadratic regulator in Equation
3-3:

V (x(0), u(0 : N − 1)) = 1
2

N−1∑
k=0

[
x(k)TQx(k) + u(k)TRu(k)

]
+ 1

2x(N)TPfx(N). (3-21)

The optimization problem becomes:

minimize
u(0:N−1)

V (x(0), u(0 : N − 1))

s.t. x(k + 1) = Ax(k) +Bu(k)
x(k) ∈ X ∀k = 0, 1, . . . , N − 1
u(k) ∈ U ∀k = 0, 1, . . . , N − 1
x(N) ∈ Xf

(3-22)

Here Xf is a terminal region to which we want the controller to drive the states. This could
be the origin. It can also be a set that contains the origin. The solution of the optimization
problem yields a control sequence u∗(0 : N − 1) and using the receding horizon principle only
u∗(0) is applied to the system. The closed loop system is then x(t+ 1) = Ax(t) +Bu∗(x(t)),
where u∗ is only a function of the state, conserving time-invariance.

Now that there are constraints on the system, the optimization problem is not feasible for all
x(0), as the controller effort required to end up in Xf could violate the constraints. The set
of all possible x(0) where a solution to the optimization problem exists is X0.

Now consider the following theorem as Theorem 12.2 from [28]:

Bouke Stoelinga Master of Science Thesis

3-3 Stability concepts 17

Theorem 3.7. Consider a model predictive controller for a linear system with constraints as
in Equation 3-19. Now assume that

(A) The stage cost Vs(x(0), u(0 : N − 1)) and terminal cost Vf (x(N)) are continuous and
positive definite functions.

(B) The sets U ,X , and Xf are compact and have the origin in their interior.

(C) Xf is control invariant and Xf ∈ X .

(D) min
v∈U , Ax+Bv∈Xf

(−Vf (x) + Vs(x, v)) + Vf (Ax + Bv)) ≤ 0, ∀x ∈ Xf . Where the functions

Vf (x) and Vf (x, v) are the terminal and stage cost functions.

Then the origin of the closed-loop system is asymptotically stable with the domain of attraction
X0.

This theorem is proven in chapter 12 of [28], it uses the cost function V (·) as a Lyapunov
function to prove stability using Theorem 3.6.

The cost function defined in 3-21 satisfies (A), the defined constraint sets U ,X , and Xf are
assumed to be compact and have the origin in their interior, satisfying (B). Now all there
is left to check if conditions (C) and (D) are satisfied. With these conditions fulfilled, any
feasible solutions to the optimization problem prove stability a posteriori, and by choosing
different x(0), the domain of attraction X0 can be determined with algorithm 10.3 from [28].

3-3-2 Stability for nonlinear systems

Now consider a constrained nonlinear system, where X is the set of non-constrained x(t),
U the set of non-constrained u(t) and Z the set of non-constrained x(t) and u(t) combined.
κ(x(t)) is the control law that arises from the MPC controller.

x(t+ 1) = f(x(t), u(t))
u(t) = κ(x(t))

(3-23)

This control law arises from solving the following optimization problem and applying the first
control input u(0) that is found.

minimize
u(0:N−1)

V (x(0), u(0 : N − 1))

s.t. x(t+ 1) = f(x(t), u(t)) ∀t = 0, 1, . . . , N − 1
x(t) ∈ X ∀t = 0, 1, . . . , N − 1
u(t) ∈ U ∀t = 0, 1, . . . , N − 1
u(t), x(t) ∈ Z ⊆ X × U ∀t = 0, 1, . . . , N − 1
x(N) ∈ Xf

U ⊆ U, X ⊆ X, Z ⊆ Z

(3-24)

With the cost function in Equation 3-20. Now to prove stability of the equilibrium for a
nonlinear as Equation 3-23, we can modify the assumptions of Theorem 3.7.By assuming the

Master of Science Thesis Bouke Stoelinga

18 Model Predictive Control

set Xf is control invariant we satisfy assumption C, and by modifying the terminal cost to be
Vf (f(x, u)) instead of Vf (Ax+Bv) in condition D and confirming that it is indeed a control
Lyapunov function, we also satisfy this condition. This gives us enough to prove asymptotic
stability of the origin.

3-4 MPC for PWA systems

Consider a system with the state transitions determined by a piecewise affine function. A
PWA system with s regions would be in the form:

x(k) =

A1x(k) +B1u(k) + F1 if x(k), u(k) ∈ Ω1
A2x(k) +B2u(k) + F2 if x(k), u(k) ∈ Ω2
...
Asx(k) +Bsu(k) + Fs if x(k), u(k) ∈ Ωs

(3-25)

where each Ωi is a linear region. We assume the linear regions are polytopic and can therefore
be defined by a set of linear inequalities.

3-4-1 Mixed Logical Dynamical model

To control a PWA system, we have to write it in a different form, namely as a Mixed-Logical-
Dynamical (MLD) [13] model. This model has the shape:

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k)
E1x(k) + E2u(k) + E3δ(k) + E4z(k) ⩽ g5

(3-26)

where δ(k) is a vector of binary variables (δi(k) ∈ {0, 1}) and z(k) a vector of auxiliary
variables defined by zi(k) = δi(k)x(k) or zi(k) = δi(k)u(k).

We can introduce the relation [δi(k) = 1 ↔ x(k) ∈ Ωi] and [δi(k) = 0 ↔ x(k) /∈ Ωi]. For a
simple system we assume that all inputs u(k) are allowed, such that every Ωi does not depend
on u(k), but only on x(k). Then the piecewise affine system becomes

x[k + 1] =

A1x(k) +B1u(k) + F1 if δ1(k) = 1
A2x(k) +B2u(k) + F2 if δ2(k) = 1
...
Asx(k) +Bsu(k) + Fs if δs(k) = 1.

(3-27)

From this formulation we can derive that the sum of these binary variables δi(k) is always
equal to 1, so

s∑
i=1

δi(k) = 1. (3-28)

To rewrite the constraint 3-28 we have column vector 1 filled with ones, such that we have
the constraints:

1δi(k) ≤ 1
−1δi(k) ≤ −1.

(3-29)

Bouke Stoelinga Master of Science Thesis

3-4 MPC for PWA systems 19

Our piecewise affine system in 3-25 is assumed to be well posed, which means that

Ωi ∩ Ωj = ∅ ∀i ̸= j
s⋃

i=1
Ωi = Ω.

(3-30)

We can define these polytopic linear regions with a set of inequalities

Ωi :
{[
x
u

]
: Six+Riu ≤ Ti

}
. (3-31)

By contradiction, we can write this as the inequality:

Six(k) +Riu(k) − Ti ≤ M∗
i (1 − δi(k)) (3-32)

with M∗
i := maxx∈Ω Six(k) +Riu(k) − Ti.

Now Equation 3-27 can be rewritten to

x(k + 1) =
s∑

i=1
(Aix(k) +Biu(k) + Fi) δi(k). (3-33)

Though we can simplify by using an auxiliary variable:

x(k + 1) =
s∑

i=1
zi(k) (3-34)

with zi(k) := (Aix(k) +Biu(k) + Fi) δi(k). This can be ensured with the following inequali-
ties:

zi(k) ≤ Mδi(k)
zi(k) ≥ mδi(k)
zi(k) ≤ Adix(k) +Bdiu(k) +B1di −m (1 − δi(k))
zi(k) ≥ Adix(k) +Bdiu(k) +B1di −M (1 − δi(k)) .

(3-35)

with m and M defined as:

M = [M1,M2, . . .Mn]T ,

Mj := max
i=1,...,s

{
max
x∈Ω

Aj
ix+Bj

i u

}
,

m = [m1,m2, . . .mn]T ,

mj := min
i=1,...,s

{
max
x∈Ω

Aj
ix+Bj

i u

}
.

(3-36)

Where Aj
i denotes the jth row of Ai. These can be computed by solving 2ns linear programs,

or estimated.

Now with the constraints of Equations 3-29, 3-32 and 3-35 and the relation 3-34, the system
can be rewritten to a simplified form of 3-26:

x(k + 1) = B3z(k)
E1x(k) + E2u(k) + E3δ(k) + E4z(k) ⩽ g5

(3-37)

Master of Science Thesis Bouke Stoelinga

20 Model Predictive Control

3-4-2 Optimal control of MLD system

We can control an MLD system using MPC by a procedure given in [28]. Consider the
following cost function:

V0 (x(0), u0:N−1) = ∥Px(N)∥p +
N−1∑
k=0

∥Qx(k)∥p + ∥Ru(k)∥p + ∥Qδδ(k)∥p + ∥Qzz(k)∥p (3-38)

Where the terms are evaluated with a p-norm. For this section, we will consider only the
1-norm and the ∞-norm as they simplify the problem to a mixed integer linear programming
problem.

Simplify by setting Qδ and Qz to zero gives us the following cost function:

V0 (x(0), u(0 : N − 1)) = ∥Px(N)∥p +
N−1∑
k=0

∥Qx(k)∥p + ∥Ru(k)∥p (3-39)

that is subject to the constraints:

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) k = 0, 1...N − 1
E1x(k) + E2u(k) + E3δ(k) + E4z(k) ⩽ g5 k = 0, 1...N − 1

(3-40)

The optimal control problem is:

V ∗(x(0)) = min
u0:N−1

V0 (x(0), u0:N−1)

s.t. x(N) ∈ Xf

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) k = 0, 1...N − 1
E1x(k) + E2u(k) + E3δ(k) + E4z(k) ⩽ g5 k = 0, 1...N − 1

(3-41)

Now the goal is to find a suitable form for the function V . The choice of 1-norm or ∞ is
motivated by the following theorem, which is proven in Theorem 17.3 in [28]:

Theorem 3.8. Consider an optimal control problem in the form of 3-41 with cost function
3-39 and the system is well-posed. Then there exists a solution in the form of a polyhedral
PWA state feedback control law.

In theory, there exsists a polyhedral PWA state feedback control law for a well-posed system.

From the standard form in Equation 3-26, we can derive an expression for each x(k):

x(k) = Akx(0) +
k−1∑
j=0

Aj (B1u(k − 1 − j) +B2δ(k − 1 − j) +B3z(k − 1 − j)) (3-42)

With our system from 3-37 this simplifies to:

x(k) = B3z(k − 1). (3-43)

Bouke Stoelinga Master of Science Thesis

3-5 Explicit MPC for linear systems 21

Now consider the vector ε = {εu
0 , ε

u
1 , . . . , ε

u
N−1, ε

x
0 , ε

x
1 , . . . , ε

x
N } that are subject to:

−1mε
u
k ≤ Ru(k), k = 0, 1, . . . , N − 1

−1mε
u
k ≤ −Ru(k), k = 0, 1, . . . , N − 1

−1nε
x
k ≤ Qx(k), k = 0, 1, . . . , N − 1

−1nε
x
k ≤ −Qx(k), k = 0, 1, . . . , N − 1

−1nε
x
N ≤ Px(N)

−1nε
x
N ≤ −Px(N)

(3-44)

which changes the cost function of Equation 3-39 to a sum of this vector, now we obtain:

V (ε) = εu
0 + εu

1 + . . .+ εu
N−1 + εx

0 + εx
1 + . . .+ εx

N (3-45)

So now we have the optimization problem:

min
ε

V (ε)

subj. to − 1mε
u
k ≤ ±Ru(k) k = 0, 1, . . . , N − 1

−1nε
x
k ≤ ±QB3z(k − 1) k = 1, . . . , N − 1

−1nε
x
N ≤ ±PB3z(N − 1)

x(k + 1) = B3z(k) k = 0, 1, . . . , N − 1
E1x(k) + E2u(k) + E3δ(k) + E4z(k) ⩽ g5 k = 0, 1, . . . , N − 1

x(N) ∈Xf

(3-46)

3-5 Explicit MPC for linear systems

A drawback of model predictive control is that an optimization problem has to be solved at
every timestep. If the optimization problem becomes too complex, it could take longer than
the sampling time, causing problems as well, though optimization algorithms and hardware
have been getting faster over the years. Another disadvantage is that some optimizers require
licenses to use. A solution that would not require an optimization problem at each step
is explicit model predictive control [3]. This method uses multiparametric programming
techniques to reduce the control law to a simple to evaluate function.

In explicit model predictive control, an explicit control law is computed offline, and using this
relatively fast-to-execute control law the control inputs are computed. With some conditions,
such as a quadratic cost function and linear constraints, [29] shows that the resulting closed-
form solution is continuous and piecewise linear. A control law could then be

u(t) =

F1x+ g1 x(t) ∈ Γ1
F2x+ g2 x(t) ∈ Γ2

...
Ffx+ gf x(t) ∈ Γf

(3-47)

Where Γ1,Γ2, . . . ,Γf are convex polyhedral regions. Explicit control solutions such as in
Equation 3-47 can be found by solving multiparametric linear programs.

Master of Science Thesis Bouke Stoelinga

22 Model Predictive Control

3-5-1 Memory use

The control law κ(x(t)) as the result of a linear MPC controller is known to be continuous
and piecewise-affine [29] as defined by Definition 2.6. For a linear system with A ∈ Rnx and
B ∈ Rnu , the memory use is

Γκ = αbit (nh(nx + 1) + nf (nxnu + nu)) (3-48)

with nh the number of unique hyperplanes, nf the number of unique feedback laws and αbit
the size of one number in memory. The main disadvantage of using explicit MPC is that the
number of linear regions increases with the degrees of freedom of the optimization problem.
This is influenced by the prediction horizon, the number of controls, and the number of
constraints with an exponential relation. It also increases with the number of states, until
the number of states is larger than the number of constraints [29]. A large number of linear
regions increases memory use.

Bouke Stoelinga Master of Science Thesis

Chapter 4

Neural Networks

Neural networks, also known as artificial neural networks, are inspired by the name and struc-
ture found in brains. They are used as a tool for regression and can approximate complicated
functions. This chapter will explain what neural networks consist of and what their con-
nections are to max-min-plus-scaling functions. It also gives a measure of complexity for a
neural network that is comparable to the complexity of max-min-plus-scaling functions. It
then explains how neural networks are trained to get a good approximation of a function.

4-1 Neural Networks

Hidden layers Output layer

Figure 4-1: Description of a neural network

A neural network has a set of n0 inputs in a vector x = [x1, x2, . . . , xn0]T and a set of m
outputs in a vector y = [y1, y2, . . . , ym]T . A neural network has nodes structured in layers, let

Master of Science Thesis Bouke Stoelinga

24 Neural Networks

l ∈ 1, 2, . . . , L with L the number of hidden layers containing n1, n2 . . . nL nodes respectively.
Also, it contains an output layer L+1, which is often slightly different than the hidden layers.
The inputs of each hidden layer are denoted as zl = {zl

1, z
l
2, . . . , z

l
nl

}. The outputs of each
hidden layer, meaning the result of an activation function [30], of the hidden layers are given
by hl = {hl

1, h
l
2, . . . h

l
nl

}. The output layer is not hidden and often has an activation function
that is different from the hidden layers. Each layer has a weight matrix W l of nl × nl−1 and
bias vector bl of nl × 1 to obtain the activation values. The weights are the coefficients of the
equation we are trying to resolve, and multiply the inputs of the layer before we apply the
activation functions. The biases make sure that when the input is zero, there is still a nonzero
output, as varying the weights would not change this. Given activation functions f l(x) and
fL+1(x), the activations and outputs are given by:

z1 = W 1x + b

h1 = f1
(
z1
)

zl = W lhl−1 + bl

hl = f l
(
zl
)

zL+1 = WL+1hL + bL+1

y = hL+1 = fL+1
(
zL+1

)
(4-1)

The number of total layers (hidden layers and output layer) is referred to as the depth of a
neural network and the number of neurons per layer is called the width.

4-1-1 Activation functions

To introduce nonlinearities in the neural network to increase its expressiveness, activation
functions are used. There is a large number of different activation functions each with different
advantages. Some widely used activation functions discussed in [30] are

• Linear activation function
f(x) = ax

• Sigmoid function
f(x) = 1

1 + e−x

• Tanh function
f(x) = ex − e−x

ex + e−x

• Softsign function
f(x) =

(
x

|x| + 1

)
• Exponential Linear Unit (ELU) [31]

f(x) = x, x >= 0
f(x) = a (ex − 1) , x < 0

Bouke Stoelinga Master of Science Thesis

4-1 Neural Networks 25

• Rectified Linear Unit (ReLU) function

f(x) = max(x, 0)

which is a MMPS function
• Gaussian Error Linear Unit (GELU) [32]

f(x) = x · 1
2[1 + erf(x/

√
2)]

• Scaled Exponential Linear Unit (SELU) [33]

f(x) = λx if x ≥ 0
f(x) = λα(ex − 1) if x < 0

with α ≈ 1.6733 and λ ≈ 1.0507.
• Hard sigmoid function [34]

f(x) = max
(

0,min
(

1, (x+ 1)
2

))
This is an approximation of the sigmoid function and is also an MMPS function

• Swish function
f(x) = x

1 + e−x

• SoftMax function
f(x)i = exi∑nl

j=1 e
xj

for i = 1, . . . , nl

and x = (x1, . . . , xnl
) ∈ Rnl and nl the number of neurons in layer l

• Softplus function [35]
f(x) = log(1 + ex)

This works as a smooth approximation of the ReLU function.

All these activation functions have different situations where they are more suited. Some
activation functions, such as linear activation or SoftMax activation, are often only used
in the last layer of a neural network. This makes sure the neural network has the desired
behavior. For example, a neural network with only Relu activations can not have a negative
output, but if the last layer has a linear activation, it can give negative output.

The ReLU, Hard sigmoid, and Linear activations fit within the MMPS structure given by
Definition 2.1. These produce an MMPS function and are therefore equivalent to PWA
functions.

4-1-2 Min-Max-Plus neural networks

Min-max-plus neural networks as introduced in [5] are a specific type of neural network, and
can consist of three types of layers: linear layers, min-plus layers, or max-plus layers. These
specific layers are "linear" in their respective algebra. Using only a combination of max and

Master of Science Thesis Bouke Stoelinga

26 Neural Networks

Figure 4-2: Example of a neural network layer l

min layers, the computation time decreases significantly, which makes them interesting to
use. An example layer is shown in Figure 4-2, with inputs x1, x2 in vector x and outputs
y1, y2, y3 in vector y. The operations for a layer are defined as:y1

y2
y3

 =

w11 w12
w21 w22
w31 w32

 ·
[
x1
x2

]
or

w11 w12
w21 w22
w31 w32

 ·
[
x1
x2

]
+
[
b1
b2

]
for a linear layer,

y1
y2
y3

 =

w11 w12
w21 w22
w31 w32

⊗
[
x1
x2

]
for a max-plus layer,

y1
y2
y3

 =

w11 w12
w21 w22
w31 w32

⊗′
[
x1
x2

]
for a min-plus layer.

(4-2)

Any layer can be described for inputs ∈ Rn and outputs ∈ Rm by either a linear transformation
ρ : Rn → Rm, a max-plus transformation α : Rn → Rm, or a min-plus transformation
β : Rn → Rm. These can be described by ρ(x) = L · x, α(x) = A ⊗ x and β(x) = B ⊗′ x
respectively, with x ∈ Rn, L ∈ Rm×n, A ∈ Rm×n

ε and B ∈ Rm×n
⊤ . Here the ⊗ operations and

extended R domains are the same as in Section 2-3. The transformations require the output
to be in Rm, so there should be at least one entry in each row of A ̸= ε and one entry in each
row of B ̸= ⊤. This makes sure all transformations are linear in their respective algebra. This
does however not mean they are linear in the conventional plus-times algebra. The max-plus
layers and min-plus layers have some additions in their operations, but the linear layer does
not. Therefore in some configurations of layers, it is useful to add bias to a linear layer, so
the output of the neural network can be nonzero for zero inputs.

4-1-3 Neural networks as max-min-plus system

A neural network may contain a section of only max plus and min plus layers. Two of these
examples are shown in Figure 4-3. Such a section can be considered as a max-min-plus system,
defined the same as a max-min-plus-scaling system as 2.1, but without the scaling operation.
A set of only max-plus and min-plus multiplications can be transformed into a conjunctive

Bouke Stoelinga Master of Science Thesis

4-1 Neural Networks 27

Ma
x-p

lus

Mi
n-p

lus

Lin
ea
r

Ma
x-p

lus

Mi
n-p

lus

Ma
x-p

lus

Mi
n-p

lus

Lin
ea
r

Ma
x-p

lus

Mi
n-p

lus

Ma
x-p

lus

Mi
n-p

lus

Lin
ea
r

Ma
x-p

lus

Lin
ea
r

Figure 4-3: Different neural network structures

or disjunctive form as defined in Definition 2.3 and 2.4, which suggests that there is a way
to write the system as a maximization of a minimization or vice versa. It is shown in section
4.2 of [36] that a max-min-plus system in general form:

z(k + 1) = fmmp(z(k)), k = 0, 1, 2, . . . (4-3)

can be split into an alternative form, and with z(k), y(k) ∈ Rn×n and C ∈ Rn×n, A ∈ Rn×n
ε

and B ∈ Rn×n
⊤ :

y(k) = B ⊗′ z(k), z(k + 1) = A⊗ y(k), k = 0, 1, 2, . . . (4-4)

which we can write as

z(k + 1) = A⊗
(
B ⊗′ z(k)

)
, k = 0, 1, 2, . . . (4-5)

This result can reduce a section of multiple max-plus and min-plus layers to two operations
using only max-plus or min-plus, though it increases the size of the required matrices for these
multiplications significantly. If we now apply it to the systems of Figure 4-3 to add scaling,
starting with the system depicted at the top we can write the forward computation of the
neural network as

z(k + 1) = C ·
(
A⊗

(
B ⊗′ z(k)

))
, k = 0, 1, 2, . . . (4-6)

Here conventional matrix multiplication is depicted with the · symbol. This system can not
represent every PWA function, since applying scaling after a max or min operation can not
influence at what point which function is active. If we have

α ∈ R, f1(x), f2(x) ∈ Rε

α · max(f1(x), f2(x))
(4-7)

then α has no influence on when f1(x) > f2(x) if f1 and f2 are linear functions of x. The other
two networks however can be used to represent any PWA function with enough parameters.
They can be described by

z(k + 1) = A⊗
(
B ⊗′ (C · z(k))

)
, k = 0, 1, 2, . . . (4-8)

Master of Science Thesis Bouke Stoelinga

28 Neural Networks

for the middle system and if we introduce another matrix D ∈ Rn×n we can describe the
bottom network with

z(k + 1) = D ·
(
A⊗

(
B ⊗′ (C · z(k))

))
, k = 0, 1, 2, . . . (4-9)

Often neural networks make use of a different activation in their last layer to get the correct
output shape. This is often a linear layer for function approximations, because if you use a
max o

4-2 Linear regions

Neural networks can have different degrees of complexity, a very complex neural network with
tropical activation functions, such as ReLU, has many different regions on which a different
linear function is active. This is called a linear region. Consider the structure given in
Equation 4-1, with f1,2,..L as ReLU functions and fL+1s as a linear function fL+1(x) = x.
The equation becomes

h1 = max
(
0,W 1x + b1

)
hl = max

(
0,W lhl−1 + bl

)
y = WL+1hL + bL+1.

(4-10)

now for each layer l we define a set Sl(x) ⊆ {0, 1, . . . , nl} with i ∈ Sl only if hl
i ̸= 0, so only

if the function is active. Next, collect these into the set S(x) = {S1(x), S2(x), . . . , SL(x)},
which is called the activation pattern for a set of inputs x. Now use the same definition as
[37] for a linear region.

Definition 4.1. Linear region: for a piecewise linear function f : Rn0 → Rm represented by a
deep neural network, a linear region is a set of inputs that corresponds to the same activation
pattern in the deep neural network.

The maximum number of regions n hyperplanes divide a d-dimensional space is shown by [38]
to be

d∑
s=0

(
n
s

)
(4-11)

which corresponds to the maximum number of regions of a single layer of a neural network
with d as input dimension and s ReLU functions. This can be summed up for every layer to
obtain an upper bound. Recently tighter bounds of the number of linear regions for multi-
layer networks have been found. [39] obtained an upper bound of 2N with N the number of
total units across layers. This result was improved by [40] assuming the number of neurons is
the same in every layer nl = n and n0 = O(1), they found that an upper bound for the number

of linear regions is O
(
nLn0

)
. This bound was made tighter by [41] to:

∏L
l=1
∑dl

j=0

(
nl

j

)
with dl = min(n0, n1, . . . , nL). Afterwards, this was improved even more by [37], as they
achieved the upper bound: ∑

(j1,...,jL)∈J

L∏
l=1

(
nl

jl

)

Bouke Stoelinga Master of Science Thesis

4-3 Training neural networks 29

With J = {(j1, . . . , jL) ∈ ZL} such that 0 ≤ jl ≤ min (n0, n1 − j1, n1 − j2, . . . nl−1 − jl−1, nL)
for l = 1, 2, . . . , L.
There are lower bounds too, given by [39](

L−1∏
l=1

floor
(
nl

n0

)n0
)

n0∑
j=0

(
nL

j

)
(4-12)

when nl > n0. Another lower bound is given by [37] as:(
L−1∏
l=1

(
floor

(
nl

n0

)
+ 1

)n0
)

n0∑
j=0

(
nL

j

)
(4-13)

with the more restrictive constraint nl > 3n0.
There are ways to compute the exact number of linear regions. [37] proposes the use of a
systematic method to count integer solutions, namely the onetree approach [42]. This method
counts the number of solutions to a mixed integer optimization problem defined in [37]. This
mixed integer problem can be quite complex to compute, therefore the use of the bounds
proposed could prove more efficient. Having an idea of how many linear regions a neural
network can describe is useful when you have more information about a PWA control law. If
you have an idea of how many linear regions your PWA function has, you have a lower bound
on how many linear regions you need to approximate this function.

4-3 Training neural networks

Training a neural network means fitting the weights and biases in such a way that they
accurately portray a function that maps from the given training inputs to the training outputs.
To train a neural network, first, a metric for performance: a cost function, sometimes called
a loss function is required. Given a set of recorded inputs x and measured outputs y. The
output of the neural network is an approximation of the measurements, as a function of the
weights and biases: ŷ = f

(
W 1,2,...L, b1,2,...L,x

)
. Once the network is trained the estimate

is simply ŷ = f(x). Let a cost function, for example, a mean squared error, be C (W, b) =
1
N

∑N
i=1 (yi − ŷi)2. The goal of training a neural network is to minimize this cost function

over the weights and biases.
minimize

W 1,2,...L,b1,2,...L
C(W , b) (4-14)

In general, this is a nonlinear and non-convex optimization problem. This optimization
problem can be solved by using variants of gradient descent.
The process of training with gradient descent-based methods is described in Figure 4-4. First,
with an initialized set of weights and biases, the estimate ŷ is put into the cost function and a
cost is computed. These steps are called the forward pass. Then the gradient of the error with
respect to the weights and biases is computed. For deep neural networks, this is often done
with a process called back-propagation, which will be discussed further in Section 4-3-1. With
this gradient, an update rule is performed and the weights and biases are updated. These
steps are called the backward pass. There are different update rules for different gradient
descent-based methods:

Master of Science Thesis Bouke Stoelinga

30 Neural Networks

Neural network
Objective function

e.g. :

(measurements)
Forward pass

Compute gradient Weight update rule
e.g. :

Backwards pass

Figure 4-4: Training of a neural network.

4-3-1 Back-propagation

To compute the gradient for a deep neural network, an algorithm called back-propagation
[43] is often used. The goal of this algorithm is to find the gradient of a cost function C with
respect to the weights and biases:

∇w,bC =
(

∂C

∂w1
1,1
,
∂C

∂w1
1,2
, · · · , ∂C

∂wL+1
nL+1,m

,
∂C

∂b1
1
,
∂C

∂b1
2
, · · · , ∂C

∂bL+1
nL+1

)T

(4-15)

Instead of writing this as one vector, we can retain the shapes of the matrices by writing it
as the tuple:

∇w,bC =
(
∂C

∂W 1 ,
∂C

∂W 2 , · · · ∂C

∂WL+1 ,
∂C

∂b1 ,
∂C

∂b2 , · · · , ∂C

∂bL+1

)
(4-16)

with ∂C
∂W l ∈ Rnl×nl−1 and ∂C

∂bl ∈ Rnl×1. A cost function to optimize for a neural network given
a set of measure outputs is y

C (W, b) = 1
N

N∑
i=1

(yi − ŷi)
2 (4-17)

This is an example of a cost function, there are other cost functions as well, some using
different norms such as the ∞-norm or the 1-norm. Now for each layer, consider an auxiliary
variable δl for l = 1, 2, ..., L+ 1 defined as

δl = ∂C

∂zl
. (4-18)

Bouke Stoelinga Master of Science Thesis

4-3 Training neural networks 31

For the last layer, we need the derivative with respect to the output of the neural network.
This is given by:

dC

dhL+1 = dC

dŷ
= ŷ − y (4-19)

Using this derivative, we can compute the δL+1 for the last layer as:

δL+1 = ∂C

∂hL+1
∂hL+1

∂zL+1

= ∂C

∂hL+1 ◦ f ′
L+1

(
zL+1

)
= (ŷ − y) ◦ f ′

L+1

(
zL+1

)
.

(4-20)

Here ◦ denotes the element-wise product. For the hidden layers, this becomes

δl = ∂C

∂zl

= ∂C

∂zl+1
∂zl+1

∂zl

= ∂zl+1

∂zl
δl+1

(4-21)

recall that zl+1 = W l+1hl + bl+1 = W l+1f l+1

(
zl
)

+ bl+1. Now differentiate with respect to
zl to obtain

∂zl+1

∂zl
= W l+1f ′

l+1

(
zl
)

(4-22)

With this result, the rest of the δl variables can be iteratively computed using the previous
result as:

δl = (W l+1)T δl+1 ◦ f ′
l+1

(
zl
)

(4-23)

untill l=1.

With these iteratively computed auxiliary variables, getting the partial derivative of C with
respect to all the weights and biases is straightforward.

∂C

∂bl
= ∂C

∂zl

∂zl

∂bl

= δL ◦ 1
= δl

(4-24)

and
∂C

∂W l
= ∂C

∂zl

∂zl

∂W l

= δl ◦ hl−1(
= δl ◦ x for l = 1

) (4-25)

Now we can compute the partial derivative of the cost function with respect to all the weights
and biases. If we put them back into a vector form, we obtain the gradient of the neural
network.

Master of Science Thesis Bouke Stoelinga

32 Neural Networks

4-3-2 Update rules

Given a cost function C(θ) and parameter vector θ there are different update rules [44] in the
backward pass step to optimize this cost function. They all use the gradient that is obtained
in the back-propagation algorithm. One option is to update the gradient with a set learning
rate η. For iteration t with t ∈ Z+

θt = θt−1 − η∇θC(θ)|θ=θt−1 (4-26)

if this happens for the full data set, all available inputs X and y, it is called batch gradient
descent. This method however is rather slow as it recomputes the gradient for every update,
and it requires a lot of memory, which can cause problems when the neural network is big
enough. It also does not allow for online learning, where new samples come in in training.
It converges to a global minimum for convex problems and a local minimum for non-convex
problems. Finding a good local minimum is difficult with this method.

Another option is stochastic gradient descend (SGD), where the updates happen separately
for every input xi and corresponding outputs yi :

θt,i = θt−1,i − η∇θC(θ;xi; yi)|θ=θt−1 . (4-27)

This method is much faster than batch gradient descent, as the same gradient can be used
for every sample update. This method also allows for online learning. One problem is that
this method is not guaranteed to converge to a minimum, as it will sometimes overshoot the
minimum. This is sometimes advantageous as it allows the algorithm to escape local valleys
to obtain a better local minimum, which works well when the learning rate η decreases over
time.

A combination of these two methods is minibatch gradient descent. This uses a smaller
shuffled batch of inputs to perform batch gradient descent each iteration.

θt,i = θt−1,i − η∇θC(θ;xi:i+n; yi:i+n)|θ=θt−1 . (4-28)

This makes sure there is a more stable convergence to local minima, while still allowing the
algorithm to escape some local minima to find better ones. This method also still allows for
online learning. There are still some difficulties, even in minibatch gradient descent. Choosing
the correct learning rate to not overshoot the optimum is one of them. Often learning rate
schedule, that reduces η over time is used to prevent this. The learning rate parameters can
be adjusted to reach an optimum within fewer iterations, but if it becomes too large it can
overshoot the optimal θ∗. [44] gives an overview of different update rules.

The gradient descent method with a set learning rate or learning rate schedule has some
variations. One method uses a momentum approach. This is similar to a ball rolling off a
hill, building momentum if the hill is steep. If the previous gradient descent step was large,
take another larger step in that direction. this accelerates the process. With a γ ∈ (0, 1],
typically set to about 0.9. The γ acts as a sort of terminal velocity, to not infinitely increase
the step size. The rule becomes:

vt = γvt−1 + η∇θC(θt−1)|θ=θt−1

θt = θt−1 − vt
(4-29)

Bouke Stoelinga Master of Science Thesis

4-3 Training neural networks 33

A more complex method is the Nesterov’s accelerated method [45], which uses a similar princi-
ple to the momentum approach, but uses the gradient at the position of what the parameters
will be after taking the step. This way it is harder to overshoot the optimal θ∗

vt = γvt−1 + η∇θC (θ − γvt−1) |θ=θt−1

θt = θt−1 − vt
(4-30)

Furthermore, there is Adagrad [46], which uses an adaptive learning rate for each entry of
θ. The idea behind this is that there is a different learning rate for different features of θ,
some of which change more frequently and require a smaller learning rate than others. Let
the adaptive gradient be defined by:

gt,i = ∇θC (θt,i) |θi=θt−1,i
(4-31)

for each feature i of θ.Now update the parameters by:

θ(t+ 1) = θ(t) − η√
G(t) + ϵ

◦ g(t) (4-32)

where G(t) a diagonal matrix with its diagonal entries i, i set to the sum of the gradients gi

squared up until step t and ϵ a small number (10−9) to avoid numerical errors. A problem with
this method is that the learning rate diminishes quickly. For this problem, another method
has been developed: Adadelta. Adadelta uses a running average of the gradient, instead of
the sum until time t. This running average is computed with:

E[g2](t) = γE[g2](t−1) + (1 − γ)g(t)2 (4-33)

Where again γ ∈ (0, 1], typically set to about 0.9.

A modern widely used algorithm is Adaptive Moment Estimation (Adam) [47], which com-
bines some of the previous concepts of adaptive gradients, and momentum.

mt = β1mt−1 + (1 − β1) gt

vt = β2vt−1 + (1 − β2) g2
t

(4-34)

mt estimates the first moment (mean) of the gradient and vt the second moment (the un-
centered variance). When these variables are initialized at zero, or when the decay rates are
small (β1, β2 close to 1), or in the earlier steps of the optimization, these variables are biased
towards zero. To counteract this they are bias-corrected first with

m̂t = mt

1 − βt
1

v̂t = vt

1 − βt
2

(4-35)

Now similar to Adagrad and Adadelta, the update rule is

θt+1 = θt − η√
v̂t + ϵ

m̂t (4-36)

which works well in practice.

Master of Science Thesis Bouke Stoelinga

34 Neural Networks

4-4 Exact representation

Multilayer neural networks are known from [48] to be universal function approximators. With
no bounds on the depth and width of a neural network, any continuous function can be
arbitrarily well approximated, and with infinite depth and width, a function can be perfectly
represented. However, we want to perfectly represent it with some tighter bounds on the
depth of the network. From [15] we know that the MMPS and PWA functions are equivalent
and [20] shows that MMPS functions can represent bounded PWA functions with a finite
number of terms. For approximating convex piecewise affine functions, Theorem 2 from [49]
provides bounds on the required size of the network. Now use the following lemma:

Lemma 4.2. every scalar continuous PWA function f(x) : Rnx → R can be written as the
difference of two convex PWA functions:

f(x) = γ(x) − η(x)

with γ(x) : Rnx → R with nγ linear regions and η(x) : Rnx → R with nη linear regions.

This is proven by [19], where any scalar PWA function can be written as the difference
of convex PWA functions. These convex functions can not only be perfectly represented
by neural networks but [49] also gives a minimum requirement for the depth of the neural
network. The requirement follows from this lemma:

Lemma 4.3. Any convex continuous PWA function g : [0, 1]nx → R+ that is defined as the
pointwise maximum of ng affine functions

g(x) = max
1,2,...,ng

gi(x),

can be exactly represented by a deep ReLU network with M = nx + 1 neurons per layer and
a depth ng.

The proof is given by Theorem 2 of [49]. Furthermore, [50] proves that any piecewise affine
control law κ(x) : [0, 1]nx → R+nu can be represented by a neural network with a predeter-
mined size. First, split the control law into a PWA function per output dimension and apply
Lemma 4.2 such that:

κi(x) : [0, 1]nx → R+

κi(x) = γi(x) − ηi(x)
(4-37)

with each γi(x) and ηi(x) convex PWA functions. Then by Lemma 4.3, each of these convex
PWA functions can be represented by a neural network with parameters θγ,i or θη,i, depth
rγ,i or rη,i and width M = nx + 1. This results in a vector of neural networks

κ(x) =

 N (x; θγ,1,M, rγ,1) − N (x; θη,1,M, rη,1)
...

N (x; θγ,nu ,M, rγ,nu) − N (x; θη,nu ,M, rη,nu)

 . (4-38)

This works for explicit control laws that map from [0, 1]nx to R+, in a more general case we
want this to hold for any PWA control law. This is the case for the following assumption:

Bouke Stoelinga Master of Science Thesis

4-4 Exact representation 35

Assumption 4.4. There exist two invertable affine transformations Ax : X → [0, 1]nx and
Au : U → R+nu for an explicit control law κ : X → U such that

κ(x) = A−1
u ◦ κ̃(x̂)

with x̂ = Ax ◦ x. These transformations always exist when X and U are compact sets.

With these transforms and the representation of the altered control law κ̃(x̂) : [0, 1]nx → R+nu

existing of 2nu deep neural networks, any PWA control law κ(x) can be approximated. A
PWA control law arises from a constrained LQR problem, where X and U are closed sets, so
Assumption 4.4 holds for these problems. With this, any continuous PWA function can be
exactly represented with neural networks. If the control law is discontinuous, this does not
hold. This exact representation can become quite large, and difficult to obtain due to the
nonconvex optimization involved in fitting the neural network to the PWA function. Therefore
an approximation could be easier to obtain and faster to use.

Master of Science Thesis Bouke Stoelinga

36 Neural Networks

Bouke Stoelinga Master of Science Thesis

Chapter 5

Approximation procedure

The main interest of this research is the approximation of MPC control laws. Approximations
are mostly relevant when an explicit MPC control law is not available, but a fast computation
is still required. Therefore we will not be using explicit MPC, whereas others sample an
explicit control law to obtain data for approximations [6]–[8], we will sample an implicit
MPC controller. Other works have seen the use in approximating either nonlinear MPC [10],
[51] or linear MPC with a long prediction horizon [52]. We will also consider only simple
feedforward neural networks, whereas others consider other structures such as Long short-
term memory networks [7], [9] or recurrent neural networks [10]. What is not thoroughly
researched yet and we will aim to contribute is an answer to the following questions

• Is there a significant difference in approximating PWA MPC control laws compared to
non-PWA MPC control laws?

• Does the max-min-plus-scaling structure of a neural network offer a benefit compared to
other neural networks with other activation functions when approximating MPC control
laws?

• Do max-plus and min-plus layers in a neural network offer better performance in ap-
proximating PWA MPC control laws?

• What is an appropriate sampling strategy to obtain a satisfactory approximation of an
MPC control law?

5-1 Making controllers and obtaining control law

In order to answer the main question of this research "What are the various factors that
need to be taken into consideration to successfully approximate a PWA MPC control law
using neural networks?" We first need to have MPC control laws. For this, we will consider
the control of two systems. First of all we consider the nonlinear system of an inverted

Master of Science Thesis Bouke Stoelinga

38 Approximation procedure

pendulum. This system is chosen because it can be described with only two states. This
low dimensionality makes it easy to gather enough data to approximate the control law, and
makes it easy to visualize the approximate control laws of different neural networks. First,
we will linearize the nonlinear system at the equilibrium and design a linear MPC controller.
This also gives a PWA control law. Besides this linearized description, we will also use a
PWA description. A piecewise affine MPC controller is useful because it is a more accurate
representation of the nonlinear system. The downside is, however, that computations for an
MPC controller are more complex. The derivative function of this system contains one sine
function, which can be approximated with a PWA function. This makes it easy to obtain a
PWA description of the system. The resulting control law will also be two-dimensional, which
makes it easier to study visually. We will use this PWA description to transform the PWA
system into an MLD system in order to construct an MPC controller.

Next, we will consider a system with a double inverted pendulum. This system description is
also much more complex, where the single pendulum had only a sine function in one dimen-
sion of the derivative function, and a linear description in the rest, this is not the case for the
double pendulum. This system has many more sine and cosine functions and other nonlinear
behaviors that are difficult to describe with a piecewise affine system description. Applying
MPC to such a complicated system with higher dimensionality would also significantly in-
crease the number of PWA regions, making the computation more complex. That is why for
this system we will only consider a linearized MPC controller at the upright equilibrium. The
nonlinearity of the system also makes it more difficult to control, and any errors in approx-
imating an MPC control law would be more significant. The increased dimensionality also
plays a role in getting enough data to sample the system, as it requires sampling in higher
dimensional state space.

5-2 Approximating with different parameters

5-2-1 Sampling Strategy

The controllers will be approximated using neural networks with varying parameters. In
this study, we assume that an explicit model predictive control (MPC) law is not available,
necessitating the development of an implicit strategy to approximate an MPC control law
through sampling. Sampling an infinite state space is impossible, so we first select a region of
interest. This will be a region based on the physical qualities of the system in which we expect
the controller to operate, and some extra margin. We can choose this to be a polyhedral set
centered at the origin. Initially, a uniform grid sampling strategy will be employed to generate
a sufficiently large dataset, which will then be divided into subsets. We will compare random
subsets and sparse subsets of the original dataset to determine if training the network on
these subsets yields significant differences. Besides this uniform grid sampling strategy, we
will compare a random sampling strategy with a uniform distribution function and a stratified
sampling strategy. The stratified sampling strategy will have a higher probability of selecting
more points if it finds that nearby points have a larger contrast. This contrast-based region
technique is similar to the strategy used in [53] and the goal is to avoid overrepresentation of
’simple’ areas, while still having enough representative samples from ’complicated’ areas.

Bouke Stoelinga Master of Science Thesis

5-2 Approximating with different parameters 39

These techniques will be compared using a single pendulum system. The two-state nature of
this system allows for better visualization and easier determination of stability regions.
For the double pendulum system, a different sampling strategy will be employed. We will
simulate trajectories from various initial states to capture the system’s dynamics and behavior.
In these initial states, we will only vary the position of the two rods, and not the initial angular
velocity. Because sampling for a four-dimensional system requires a lot of samples and for
some states finding a physical interpretation to find out what states need to be sampled can
be complicated. For example, we have a pendulum with two links and want to make sure it
stays upright and not moving. Finding out the maximum angle the two rods can be to be
stabilized by the controller is still doable, but finding out what initial angular velocities are
permissible makes the problem much more complex.

5-2-2 Neural Network training

The main motivation of this research is to find if there is merit to using MMPS activation
functions over smooth activation functions when approximating PWA control laws. Alter-
natively, to see if there is an advantage to approximating MPC control laws in general with
MMPS activation functions. The activation functions discussed in Section 4-1-1 are used for
many different purposes, but our main focus is on the difference between MMPS activation
functions and non-MMPS functions. For this, we will train models with different activation
functions in the hidden layers. The output layer will always be a linear activation to make
sure that every neural network we train has the ability to output all values in the input space
and not only positive values, for example.
The networks will all be trained on the same three datasets. We will keep the number of
layers and number of neurons per layer the same. Since we want to evaluate the eventual
neural network, and not the performance during training, we need to make sure the neural
networks are sufficiently trained. Some activation functions can train with fewer iterations, so
to ensure they are all sufficiently trained, we will not have the same exact number of epochs
for each network. We will have a maximum of 300 epochs, but we will implement an early
stopping approach [54]. After each epoch, we will validate the loss on a separate validation
set, and if this validation loss keeps increasing, with a set patience of 10 epochs, we will stop
the training and return to weights that caused the lowest loss. This ensures that all neural
networks are trained sufficiently, but not overtrained.
We will be using the Adam optimizer, as discussed in Section 4-3-2, on all networks, since
this algorithm is computationally efficient and well-suited for this problem. We will also be
using the same batch size of 50 on each network.

5-2-3 Implementing max-plus and min-plus layers

Another type of neural network that has not yet been used in approximating MMPS control
laws is a neural network with max-plus or min-plus layers. Since this is a more novel neural
network, we need to do more of the implementation ourselves, as opposed to using more
common neural network libraries. That is why one option is to build a neural network
from scratch, using max-plus and min-plus multiplication in its layers. This allows great
customization but does have a lot to be implemented. Some steps to be implemented are

Master of Science Thesis Bouke Stoelinga

40 Approximation procedure

• Define initial random weights and biases

• Do a forward pass to compute the current loss with the current weights and biases.

• Compute the gradient with respect to all the weights and biases, either numerically or
analytically.

• Use an update rule such as Adam to update the weights and biases.

Through some trials, finding the analytical gradient of a neural network proved to be more
difficult than finding a numerical gradient since there are more libraries available for this.
Because training requires multiple iterations, it is essential that the steps that are performed
in each iteration are performed efficiently. Finding the gradient is the most difficult problem,
but this can be done with the JAX autogradient library [55]. This allows the use of a taped
gradient, by running multiple iterations, the autogradient watches what computations are
done, and sees if there are any optimizations to be found. This adds more overhead but is
faster with more iterations. Eventually, testing all these combined steps, the neural network
seems to converge to a good fit but ends up in a more noisy state. Changing the step size,
batch size, and other network parameters had the same result. This made this network
difficult to compare to other results from other standard libraries.

This is why another option is to use the TensorFlow library [56]. Tensorflow is a widely used
neural network library that also allows for customization. It allows us to do so by using custom
layer types. However, this does require some knowledge of the library about how it handles
batch training and predictions, custom data types such as tensors, and its layer structure.
In order to handle a custom layer efficiently, we need to do a max-plus multiplication using
built-in functions. By using these built-in functions we can reshape and repeat the weights
to do an addition and use the reduction function to ensure the right maximization is done
and the result has the required shape. With this achieved min-plus multiplication is trivial
by using minimization instead of maximization. The code for this is in Appendix B, and now
there is a way to allow for max-plus and min-plus layers in our own defined neural networks.

5-3 Comparing results

The main way to assess the performance of an approximation of a function is by checking
the error between the function and the approximation. In this case, we will be looking at the
root mean squared error. In training a neural network, this happens many times, however
only to the training data. We also want to see how much error there is when providing test
data that the network has not trained on. We will be using this validation loss as a metric
to compare the performance of neural networks. Additionally, we want to see how these
differences between the exact control law and approximate control law affect the trajectory.
We will do this by simulating trajectories from many different initial states on the nonlinear
system. We will compute the cost of a trajectory by using the same cost as the MPC controller
that the controllers are approximating. This comes out the same cost as Equation 3-39 with
the p-norm the same as the respective controller. This is similar to the method used in [50],
[52]. Since the MPC controllers optimize a linearized, or PWA approximation of the system,
their control laws are not necessarily optimal for the nonlinear system. Since we want to

Bouke Stoelinga Master of Science Thesis

5-3 Comparing results 41

compare with the MPC controllers as a benchmark we will normalize the cost of the neural
network simulations by the cost of the MPC controller trajectories and subtract 1 to get a
single scalar score.

Master of Science Thesis Bouke Stoelinga

42 Approximation procedure

Bouke Stoelinga Master of Science Thesis

Chapter 6

Case studies

In order to approximate MPC control laws, we first need MPC controllers for systems. This
chapter discusses the derivation of the equations of motion for two systems. We will find a
linearized approximation of a single inverted pendulum, as well as a PWA approximation of
this pendulum. The other system, a double inverted pendulum, will only be using a linearized
approximation.

6-1 Linear inverted pendulum

Consider the model of an inverted pendulum:

Figure 6-1: Model of an inverted pendulum

All the parameters of this system can be found in Appendix A-2. From this model we can

Master of Science Thesis Bouke Stoelinga

44 Case studies

derive the following equations of motion:

ẋ(t) = f(x(t),u(t))[
θ̇(t)
θ̈(t)

]
︸ ︷︷ ︸

x(k)

=
[

θ̇(t)
3g
2L sin (θ(t)) + 3

mL2u

]
︸ ︷︷ ︸

f(x(t),u(t))

. (6-1)

To linearize this nonlinear system about the upside equilibrium (x̄ = 0, ū = 0), we use
Jacobian linearization. First we define the matrices A := ∂f

∂x

∣∣∣x=0
u=0

and B := ∂f
∂u

∣∣∣x=0
u=0

. The

continuous time matrices come out to be

Ac =
[

0 1
3g
2L cos (θ(t)) 0

]∣∣∣∣∣
θ̇=0,θ=0

=
[

0 1
3g
2L 0

]

Bc =
[

0
3

mL2

] . (6-2)

Next, we need to discretize the matrices. For this, we use a zero-order hold mechanism with
a constant timestep h. We can transform the continuous time state matrices Ac and Bc to
discrete-time (Ad and Bd) with the following equations [57]:

Ad = eAch

Bd = A−1
c

(
eAch − I

)
Bc.

(6-3)

So for constant time step h, the discrete system becomes:

x(k + 1) = eAchx(k) +A−1
c

(
eAch − I

)
Bcu(k) =

x(k + 1) = Adx(k) +Bdu(k).
(6-4)

Now with these discrete matrices, we can use the method in Section 3-2 to formulate and
solve an MPC problem.

This does not yet take into account any constraints of the inputs on the inputs or states.
Say we have a limit on the amount of torque we can provide, so for example |u| ≤ 10, and

the states can not exceed |x| ≤
[
π

10π

]
. We also want our pendulum to end up in its upright

position (or close to that position), or at least in a control invariant set Xf . We find this
invariant set by finding what states can still enter the set with the maximum control input

of 10 or -10. We also place a cost on the states and inputs by defining Q =
[
100 0
0 1

]
and

R =
[
1
]

So we add that to our constraints. The optimization problem becomes:

Bouke Stoelinga Master of Science Thesis

6-2 Piecewise affine inverted pendulum 45

minimize
u(1:N−1)

V (x(0), u(0 : N − 1))

s.t. x(k + 1) = Adx(k) +Bdu(k) ∀k = 0, 1, . . . , N − 1

x(k) ≤
[
π

10π

]
∀k = 0, 1, . . . , N

−x(k) ≤
[
π

10π

]
∀k = 0, 1, . . . , N

u(k) ≤ 10 ∀k = 0, 1, . . . , N − 1
−u(k) ≤ 10 ∀k = 0, 1, . . . , N − 1
x(N) ∈ Xf

(6-5)

, which we can now solve.

6-2 Piecewise affine inverted pendulum

Now consider the same inverted pendulum model as Section 6-1, which results in the same
nonlinear equations of motion:

[
θ̇(t)
θ̈(t)

]
=
[

θ̇(t)
3g
2L sin (θ(t)) + 3

mL2u

]
, (6-6)

but instead of using Jacobian linearization, we substitute the sine function with the following:

sin (θ(t)) = αiθ(t) + βi ∀θ(t) ∈ Ωi. (6-7)

Here each Ωi is a different affine region. We can use for example 7 regions of equal size on
the domain [−π, π]. This would look like Figure 6-2.

Master of Science Thesis Bouke Stoelinga

46 Case studies

3 2 1 0 1 2 3

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
sin

(
)

sin()
fpwa()

Figure 6-2: Piecewise affine approximation of the sine function with seven affine regions.

The resulting continuous time piecewise affine system is then[
(̇t)θ
θ̈(t)

]
︸ ︷︷ ︸

ẋ(t)

=
[

0 1
3g
2Lαi 0

]
︸ ︷︷ ︸

A

[
θ(t)
θ̇(t)

]
+
[

0
βi

]
︸ ︷︷ ︸

B1

+
[

0
3

mL2

]
︸ ︷︷ ︸

B2

[
u(t)

]
∀θ ∈ Ωi. (6-8)

Now to discretize this with a zero-order hold mechanism, with the extra constant terms B1
in Equation 6-8 there are also extra terms in the discrete result. The derivation of this
discretization method is in Appendix A-1

x(k + 1) = eAh︸︷︷︸
Ad

x(k) +A−1
(
eAh − I

)
B1︸ ︷︷ ︸

Bld

+A−1
(
eAh − I

)
B2︸ ︷︷ ︸

Bd

u(k).
(6-9)

This gives us a piecewise affine system with s regions in the following form:

x[k + 1] =

Ad1x(k) +Bd1u(k) +B1d1 if θ ∈ Ω1
Ad2x(k) +Bd2u(k) +B1d2 if θ ∈ Ω2
...
Adsx(k) +Bdsu(k) +B1ds if θ ∈ Ωs.

(6-10)

With this piecewise affine description of the system, we can use the method described in
Section 3-4 to set up an MPC controller.

6-3 Double pendulum

Consider the following double pendulum system: A double pendulum with two rods. Each
rod has a mass at the tip, shifting its center of gravity from the center. The position of the

Bouke Stoelinga Master of Science Thesis

6-3 Double pendulum 47

center of mass is denoted by ci. The pendulum is controlled by a torque u given by a motor
to the first rod.

hinge 1

hinge 2

Motor

Figure 6-3: Model of a double pendulum

All the parameters of this model are described in Appendix A-2 To obtain the equations of
motion in generalized coordinates

[
θ1 θ2

]T
we use the TMT method [58]. For this we have

the equation from [58]
TT MTq̈ = Q + TT (F − Mg) (6-11)

and from this, we obtain the equations of motion:

q̈ =
(
TT MT

)−1 (
Q + TT (F − Mg)

)
(6-12)

Consider the coordinates of the center of masses of hinge 1 and hinge 2. We can describe
the orientation and position of the two bodies with the position of their center of mass
(x1, y1) and (x2, y2), and their rotation around that point ϕ1 and ϕ2. But the goal is to
describe the system with only two generalized coordinates θ1 and θ2. If we write the original

Master of Science Thesis Bouke Stoelinga

48 Case studies

coordinates as a function of these generalized coordinates, we get:

Ti =

x1
y1
ϕ1
x2
y2
ϕ2

=

−c1 sin(θ1)
c1 cos(θ1)

θ1
−L1 sin(θ1) − c2 sin(θ1 + θ2)
L1 cos(θ1) + c2 cos(θ1 + θ2)

θ1 + θ2

(6-13)

By taking the jacobian of Ti, we obtain T:

−c1 cos (θ1) 0
−c1 sin (θ1) 0

1 0
−L1 cos (θ1) − c2 cos (θ1 + θ2) −c2 cos (θ1 + θ2)
−L1 sin (θ1) − c2 sin (θ1 + θ2) −c2 sin (θ1 + θ2)

1 1

(6-14)

We can set up the mass matrix M

M =

m1 0 0 0 0 0
0 m1 0 0 0 0
0 0 L2

1m1
12 0 0 0

0 0 0 m2 0 0
0 0 0 0 m2 0
0 0 0 0 0 L2

2m2
12

(6-15)

We can find the g vector by taking the second derivative of the Ti vector:

c1 sin (θ1)
(
θ̇1
)2

− c1 cos (θ1)θ̈1

−c1 sin (θ1)θ̈1 − c1 cos (θ1)
(
θ̇1
)2

θ̈1

c2
(
θ̇1 + θ̇2

)2
sin (θ1 + θ2) − c2

(
θ̈1 + θ̇2

)
cos (θ1 + θ2) + L1 sin (θ1)

(
θ̇1
)2

− L1 cos (θ1)θ̈1

−c2
(
θ̇1 + θ̇2

)2
cos (θ1 + θ2) − c2

(
θ̈1 + θ̇2

)
sin (θ1 + θ2) − L1 sin (θ1)θ̈1 − L1 cos (θ1)

(
θ̇1
)2

θ̈1 + θ̇2

(6-16)

and setting the accelerations of the generalized coordinates to zero:

g =

c1 sin (θ1)
(
θ̇1
)2

−c1 cos (θ1)
(
θ̇1
)2

0
c2
(
θ̇1 + θ̇2

)2
sin (θ1 + θ2) + l1 sin (θ1)

(
θ̇1
)2

−c2
(
θ̇1 + θ̇2

)2
cos (θ1 + θ2) − l1 cos (θ1)

(
θ̇1
)2

0

(6-17)

Bouke Stoelinga Master of Science Thesis

6-3 Double pendulum 49

The forces acting on the system can be described by the vector F:

F =

0
−gm1

0
0

−gm2
0

(6-18)

And the control forces described in the generalized coordinates are:

Q =
[
u
0

]
(6-19)

Putting all these matrices in Equation 6-12 yields:

θ̈1 = fθ̈1
(q) =

c2m2

(
−L1 sin (θ2)

(
θ̇1
)2

+ g sin (θ1 + θ2)
)(

−144L1c2 cos (θ2) − 12L2
2 − 144c2

2

)
L2

1L2
2m1 + 12L2

1L2
2m2 + 12L2

1c2
2m1 − 144L2

1c2
2m2 cos2 (θ2) + 144L2

1c2
2m2 + 12L2

2c2
1m1 + 144c2

1c2
2m1

+(
12L2

2 + 144c2
2

)(
2L1c2m2 sin (θ2)θ̇1θ̇2 + L1c2m2 sin (θ2)

(
θ̇2
)2

+ L1gm2 sin (θ1) + c1gm1 sin (θ1) + c2gm2 sin (θ1 + θ2) + u

)
L2

1L2
2m1 + 12L2

1L2
2m2 + 12L2

1c2
2m1 − 144L2

1c2
2m2 cos2 (θ2) + 144L2

1c2
2m2 + 12L2

2c2
1m1 + 144c2

1c2
2m1

(6-20)
and

θ̈2 = fθ̈2
(q) =

c2m2

(
−L1 sin (θ2)

(
θ̇1
)2

+ g sin (θ1 + θ2)
)(

12L2
1m1 + 144L2

1m2 + 288L1c2m2 cos (θ2) + 12L2
2m2 + 144c2

1m1 + 144c2
2m2
)

L2
1L2

2m1m2 + 12L2
1L2

2m2
2 + 12L2

1c2
2m1m2 − 144L2

1c2
2m2

2 cos2 (θ2) + 144L2
1c2

2m2
2 + 12L2

2c2
1m1m2 + 144c2

1c2
2m1m2

+(
−144L1c2 cos (θ2) − 12L2

2 − 144c2
2

)(
2L1c2m2 sin (θ2)θ̇1θ̇2 + L1c2m2 sin (θ2)

(
θ̇2
)2

+ L1gm2 sin (θ1)+
)

L2
1L2

2m1 + 12L2
1L2

2m2 + 12L2
1c2

2m1 − 144L2
1c2

2m2 cos2 (θ2) + 144L2
1c2

2m2 + 12L2
2c2

1m1 + 144c2
1c2

2m1
+(

−144L1c2 cos (θ2) − 12L2
2 − 144c2

2

)
(c1gm1 sin (θ1) + c2gm2 sin (θ1 + θ2) + u)

L2
1L2

2m1 + 12L2
1L2

2m2 + 12L2
1c2

2m1 − 144L2
1c2

2m2 cos2 (θ2) + 144L2
1c2

2m2 + 12L2
2c2

1m1 + 144c2
1c2

2m1

(6-21)

We now have a nonlinear model of the system.

6-3-1 Linear Model

From the nonlinear model of the system, we can get a linear model using Jacobian lineariza-
tion. First we define the matrices A := ∂f

∂x

∣∣∣x=0
u=0

and B := ∂f
∂u

∣∣∣x=0
u=0

we have our function

f:

f(x) =

θ̇1
θ̇2

fθ̈1
(x)

fθ̈2
(x)

 (6-22)

by taking the jacobian we obtain:

Master of Science Thesis Bouke Stoelinga

50 Case studies

A := ∂f

∂x

∣∣∣∣x=0
u=0

=

...
... 1 0

v1 v2 0 1
...

... 0 0
...

... 0 0

 (6-23)

with:

v1 =

0
0

12(−c2gm2·(12L1c2+L2
2+12c2

2)+(L2
2+12c2

2)(L1gm2+c1gm1+c2gm2))
L2

1L2
2m1+12L2

1L2
2m2+12L2

1c2
2m1+12L2

2c2
1m1+144c2

1c2
2m1

12(c2g(L2
1m1+12L2

1m2+24L1c2m2+L2
2m2+12c2

1m1+12c2
2m2)−(12L1c2+L2

2+12c2
2)(L1gm2+c1gm1+c2gm2))

L2
1L2

2m1+12L2
1L2

2m2+12L2
1c2

2m1+12L2
2c2

1m1+144c2
1c2

2m1

v2 =

0
0

12(c2gm2(L2
2+12c2

2)−c2gm2·(12L1c2+L2
2+12c2

2))
L2

1L2
2m1+12L2

1L2
2m2+12L2

1c2
2m1+12L2

2c2
1m1+144c2

1c2
2m1

12(−c2gm2·(12L1c2+L2
2+12c2

2)+c2g(L2
1m1+12L2

1m2+24L1c2m2+L2
2m2+12c2

1m1+12c2
2m2))

L2
1L2

2m1+12L2
1L2

2m2+12L2
1c2

2m1+12L2
2c2

1m1+144c2
1c2

2m1

(6-24)

and we obtain

B := ∂f

∂u

∣∣∣∣x=0
u=0

=

0
0

12(L2
2+12c2

2)
L2

1L2
2m1+12L2

1L2
2m2+12L2

1c2
2m1+12L2

2c2
1m1+144c2

1c2
2m1

12(−12L1c2−L2
2−12c2

2)
L2

1L2
2m1+12L2

1L2
2m2+12L2

1c2
2m1+12L2

2c2
1m1+144c2

1c2
2m1

 (6-25)

And again we can convert these continuous matrices Ac and Bc to discrete time with a zero-
order hold mechanism:

Ad = eAch

Bd = A−1
c

(
eAch − I

)
Bc

(6-26)

Bouke Stoelinga Master of Science Thesis

Chapter 7

Results

With the different dynamical systems and their controllers, we can set up different experi-
ments. In this chapter, we will vary different factors in different neural networks to see how
they influence their performance. For which we use two different metrics. We start by com-
paring different activation functions. Next, we investigate different sampling strategies and
we implement max-plus and min-plus layers. We also compare different activation functions
on our double pendulum system.

7-1 Activation functions

Our goal is to find if there are differences between the activation functions, therefore we trained
11 different neural networks with the same structure but different activation functions. Each
network has 3 hidden layers with 8 neurons each fully connected. The output layer consists
of 1 neuron with linear activation. Section 5-2-2 discusses the procedure further. We will
use two metrics to judge the performance, the validation loss after training and a custom
performance metric.

7-1-1 Controller for linearized system

For the linearized system, we expect a PWA control law, which is what we observe. Figure
7-1 shows both the original dataset obtained from the linearized MPC controller labeled
"Linearized MPC" and the approximations made. The area shaded in gray marks where there
is no data in the dataset because there was no solution found, or computation took too long.
It shows the control input u the controller gives at that point in state space. For this dataset
and the following PWA datasets, we used a dense uniform grid sampling method with 151
samples in each dimension, resulting in 151 × 151 = 22801 samples total. The original MPC
controller allows for constraint satisfaction, however, the approximations do not guarantee
these (physical) constraints stay satisfied so we impose them on the output of the neural

Master of Science Thesis Bouke Stoelinga

52 Results

network ûnn to obtain the input we apply unn:

unn = min(max(ûnn,−10), 10).

We can observe from the control laws that all the used activation functions seem to get a
decent approximation of the original MPC controller. From this figure however, we can not
observe much difference, for this, we use our other two metrics that are displayed in Figure
7-2 and 7-3

Bouke Stoelinga Master of Science Thesis

7-1 Activation functions 53

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Elu activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Gelu activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Hard sigmoid activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Relu activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Selu activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Sigmoid activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Softmax activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Softplus activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Softsign activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Swish activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Tanh activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Linearized MPC

10 8 6 4 2 0 2 4 6 8 10
u

Approximate control laws linearized MPC

Figure 7-1Master of Science Thesis Bouke Stoelinga

54 Results

Figure 7-2 displays the loss of the trained networks and the validation loss. We observe some
more differences here. The Relu activation function has the lowest loss and validation loss,
which is remarkable since it is one of the most commonly used activation functions in neural
networks. The other MMPS activation function, the Hard sigmoid, has the highest loss, which
is unexpected since it could theoretically exactly represent a PWA function.

El
u

Ge
lu

Ha
rd

 si
gm

oi
d

Re
lu

Se
lu

Si
gm

oi
d

So
ftm

ax

So
ftp

lu
s

So
fts

ig
n

Sw
ish

Ta
nh

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Lo
ss

Loss and validation loss for different activation functions
Dataset: Linearized

loss
validation loss

Figure 7-2

Figure 7-3 shows the cost of a set of 150 trajectories from a set of initial states. The benchmark
is here the linearized MPC controller executing its policy for 100 timesteps. The cost function
is similar to the MPC controller objective function, with the total cost, state cost, and input
cost as:

Vtotal ((x(1 : 150), u(1 : 150)) = 1
2

150∑
k=1

[Vstate (x(k)) + Vinput (u(k))]

Vstate (x(k)) = x(k)TQx(k)
Vinput (u(k)) = u(k)TRu(k)

(7-1)

The cost is normalized using the benchmark cost and centered around 0. This way we can
analyze the relative state and input cost as well as the total cost.

Bouke Stoelinga Master of Science Thesis

7-1 Activation functions 55

El
u

Ge
lu

Ha
rd

 si
gm

oi
d

Re
lu

Se
lu

Si
gm

oi
d

So
ftm

ax

So
ftp

lu
s

So
fts

ig
n

Sw
ish

Ta
nh

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

0.0025

(c
os

t /
 b

en
ch

m
ar

k)
 -

1
Proportional total, state and input cost for different activation functions

Dataset: Linearized

state cost
input cost
total cost

Figure 7-3

What we observe is that some controllers perform even better than the MPC controller. This
seems incorrect, but the MPC controller is for a linear system and the simulation is done on a
nonlinear system. So the linearized MPC control law is not optimal for this nonlinear system.
By deviating from this control law, which happens when approximating, the result might be
a lower cost. This metric means that the closer the score is to be exactly zero, the closer the
approximate neural network controller is to the MPC controller. We see that the networks
with the lowest validation loss in Figure 7-2, the Elu, Gelu, Relu, and Tanh networks, are also
closest in cost to the benchmark control law. The networks with the highest validation loss,
Hard sigmoid, Sigmoid, and Softmax, all have a lower cost when compared to the benchmark.
For the Sigmoid and Softmax, there seems to be a larger difference in the input cost, meaning
this controller gives less input than the linearized MPC controller.

7-1-2 Controller PWA system 1-norm

Now we want to compare how well we can approximate a different MPC control law. For
this, we take a controller of the PWA system described in Section 6-2. The optimal control
strategy for the MPC controller is described in Section 3-4-2, with a 1-norm cost. What we
would expect here is also a PWA control law, since Theorem 3.8 states that a polyhedral
PWA solution exists. The solver we use, however, through sampling yields a solution that
does not seem to be polyhedral PWA. The solver also takes much longer than the linearized
MPC controller to find a solution. It takes around 3.2 seconds per point on average but with
some points taking much longer. Therefore a timeout is set to 10 seconds of computation,
which gives some suboptimal solutions. Looking at Figure 7-4 we can see that some points
in the dataset labeled "1-norm MPC" mostly in the areas where the control law is nearly
constant are not optimal. The gray marked areas show where there is no data in the dataset.
For the approximations, we see a lot more diversity in the shapes of the functions. We see
that MMPS activation functions yield a result with straight lines, whereas other functions
such as the tanh give a more smooth function. To see how well these approximations perform
and how well the approximations fit we need to look at our other metrics.

Master of Science Thesis Bouke Stoelinga

56 Results

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Elu activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Gelu activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Hard sigmoid activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Relu activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Selu activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Sigmoid activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Softmax activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Softplus activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Softsign activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Swish activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Tanh activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

1-norm MPC

10 8 6 4 2 0 2 4 6 8 10
u

Approximate control laws PWA 1-norm MPC

Figure 7-4Bouke Stoelinga Master of Science Thesis

7-1 Activation functions 57

Figure 7-5 shows the resulting loss and validation loss of the approximate control laws. What
immediately becomes clear is that almost every loss is much higher than the loss of the
approximations of the linearized MPC controller. Only the tanh function has a comparable
validation loss. looking at Figure 7-4 we would expect the Hard sigmoid to have the highest
loss since the approximation does not seem to follow the same shape as the dataset. This
is indeed the case. The other MMPS activation function Relu seems to perform average
compared to other smooth functions.

El
u

Ge
lu

Ha
rd

 si
gm

oi
d

Re
lu

Se
lu

Si
gm

oi
d

So
ftm

ax

So
ftp

lu
s

So
fts

ig
n

Sw
ish

Ta
nh

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

Loss and validation loss for different activation functions
Dataset: PWA 1-norm

loss
validation loss

Figure 7-5

Now to analyze the comparative cost of the networks we use a metric that is similar to the
corresponding MPC optimization cost, which is largely the same but uses a different norm:

Vtotal ((x(1 : 150), u(1 : 150)) = 1
2

150∑
k=1

[Vstate (x(k)) + Vinput (u(k))]

Vstate (x(k)) = ||Qx(k)||1
Vinput (u(k)) = ||Ru(k)||1

(7-2)

We see the result in Figure 7-6, here we see that some of the networks with low validation loss
have a lower cost. This is the case for the Softsign and Tanh activation networks. What does
seem to differ is the performance of the Selu activation network, while having a relatively low
loss as shown in Figure 7-5, its relative cost is worse compared to the Hard sigmoid, Sigmoid,
Softmax, and Softplus, which all have a higher validation loss. This seems to indicate that
having a more precise approximation of the control law for the PWA approximation of the
nonlinear system does not necessarily guarantee better performance in a nonlinear simulation.

Master of Science Thesis Bouke Stoelinga

58 Results

El
u

Ge
lu

Ha
rd

 si
gm

oi
d

Re
lu

Se
lu

Si
gm

oi
d

So
ftm

ax

So
ftp

lu
s

So
fts

ig
n

Sw
ish

Ta
nh

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(c
os

t /
 b

en
ch

m
ar

k)
 -

1
Proportional total, state and input cost for different activation functions

Dataset: PWA 1-norm
state cost
input cost
total cost

Figure 7-6

7-1-3 Controller PWA system infinity-norm

This controller is analogous to the PWA system 1-norm controller but with the ∞-norm
instead of the 1-norm. The resulting control law, displayed in Figure 7-7, is also similar but
has a larger region where the control input u is zero. Despite the control laws looking very
similar, the approximations differ from the 1-norm controller. The hard sigmoid looks more
similar to the Relu activation network and other activation function networks such as the
Softplus, have a different shape from what they had in the 1-norm case.

Bouke Stoelinga Master of Science Thesis

7-1 Activation functions 59

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Elu activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Gelu activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Hard sigmoid activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Relu activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Selu activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Sigmoid activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Softmax activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Softplus activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Softsign activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Swish activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Tanh activation function

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

PWA -norm MPC

10 8 6 4 2 0 2 4 6 8 10
u

Approximate control laws PWA -norm MPC

Figure 7-7Master of Science Thesis Bouke Stoelinga

60 Results

Looking at the loss and validation loss of the networks in Figure 7-8 we see that the loss
for a lot of networks is higher than the 1-norm and the linearized controller. Except for the
Softsign and Tanh activation networks. The Sigmoid, Softmax, and Softplus also had a high
loss for the 1-norm controller, but here they have even higher losses.

El
u

Ge
lu

Ha
rd

 si
gm

oi
d

Re
lu

Se
lu

Si
gm

oi
d

So
ftm

ax

So
ftp

lu
s

So
fts

ig
n

Sw
ish

Ta
nh

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

Loss and validation loss for different activation functions
Dataset: PWA -norm

loss
validation loss

Figure 7-8

Comparing the losses from Figure 7-8 to the relative cost in Figure 7-9 we see that some
networks have a proportionally lower input cost, meaning they give smaller inputs than the
MPC controller. We also observe that the Softsign and Tanh with the lowest losses also have
the lowest costs, but the activation networks with the highest losses do not necessarily have
the highest cost. The Softmax for example has a high validation loss but scores relatively
well here.

Bouke Stoelinga Master of Science Thesis

7-2 Sampling Strategy 61

El
u

Ge
lu

Ha
rd

 si
gm

oi
d

Re
lu

Se
lu

Si
gm

oi
d

So
ftm

ax

So
ftp

lu
s

So
fts

ig
n

Sw
ish

Ta
nh

0.05

0.00

0.05

0.10

0.15

(c
os

t /
 b

en
ch

m
ar

k)
 -

1

Proportional total, state and input cost for different activation functions
Dataset: PWA -norm

state cost
input cost
total cost

Figure 7-9

7-2 Sampling Strategy

Since we want to approximate an MPC controller from data, we use sampling. In the previous
experiment, we had a dense uniform grid of samples, but in reality, so many samples are hard
to obtain. This also requires exponentially more samples if the dimensionality of the system
increases. A grid of 151 × 151 samples would require a lot of sampling. That is why we want
to compare 3 different sampling strategies that use far fewer sampling points. as described in
Section 5-2-1.

• A random sampling method with a uniform probability of sampling a point (Random
sampling)

• A stratified sampling method with a lower probability of sampling a point in general,
except if a point varies a lot from its neighbors (Stratified sampling)

• A more sparse uniform grid sampling method (Uniform sampling)

Figure 7-10 shows the datasets and the resulting approximate control laws from different
activation function networks. The gray shaded areas in the datasets are spots where there
is no data. We obtained these datasets from the PWA 1-norm controller. We observe quite
a few differences between the shapes of the control laws. For the random sampling method,
there is hardly any swirling effect visible on the approximate control laws. The effect is mostly
visible in the results from the stratified sampling method. The tanh function networks, even
a bit in the random sampling and uniform sampling method, seem to capture this shape the
most. What also stands out is the lighter shade in the uniform sampling method sigmoid
network. We will analyze them further with our other metrics.

Master of Science Thesis Bouke Stoelinga

62 Results

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Random sampling relu

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Stratified sampling relu

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Uniform sampling relu

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Random sampling sigmoid

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Stratified sampling sigmoid

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Uniform sampling sigmoid

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Random sampling tanh

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Stratified sampling tanh

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Uniform sampling tanh

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Dataset: Random sampling

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Dataset: Stratified sampling

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Dataset: Uniform sampling

10 8 6 4 2 0 2 4 6 8 10
u

Approximate control laws for different sampling strategies

Figure 7-10Bouke Stoelinga Master of Science Thesis

7-2 Sampling Strategy 63

Looking at the losses in figure 7-11, we see overall larger losses than our previous dense
uniform sampling method. The largest losses seem to be using the sigmoid activation function
networks. The tanh activation networks seem to have good losses with these fewer-data
methods. We can analyze how well they perform with our other metric

Ra
nd

om
 sa

m
pl

in
g

re
lu

Ra
nd

om
 sa

m
pl

in
g

ta
nh

Ra
nd

om
 sa

m
pl

in
g

sig
m

oi
d

St
ra

tif
ie

d
sa

m
pl

in
g

re
lu

St
ra

tif
ie

d
sa

m
pl

in
g

ta
nh

St
ra

tif
ie

d
sa

m
pl

in
g

sig
m

oi
d

Un
ifo

rm
 sa

m
pl

in
g

re
lu

Un
ifo

rm
 sa

m
pl

in
g

ta
nh

Un
ifo

rm
 sa

m
pl

in
g

sig
m

oi
d

0

2

4

6

8

10

Lo
ss

Loss and validation loss for different sampling strategies
Dataset: PWA 1-norm

loss
validation loss

Figure 7-11

We use again the same metric as the other PWA 1-norm controller as described in Equation
7-2. The resulting normalized and centered state, input, and total cost are displayed in
Figure 7-12 Here we see the biggest differences between our sampling strategies. Here the
uniform sampling strategies seem to perform nearly the same as our benchmark with only a
slightly higher total cost. The stratified sampling deviates slightly more from the benchmark
but still outperforms the random sampling method. The input cost is also comparatively
lower than our benchmark using the random and stratified sampling strategies. They seem to
structurally give a smaller input than the benchmark. Perhaps the resulting networks have a
larger region where they give zero input compared to the benchmark and the sparse uniform
sampling method.

Master of Science Thesis Bouke Stoelinga

64 Results

Ra
nd

om
 sa

m
pl

in
g

re
lu

Ra
nd

om
 sa

m
pl

in
g

ta
nh

Ra
nd

om
 sa

m
pl

in
g

sig
m

oi
d

St
ra

tif
ie

d
sa

m
pl

in
g

re
lu

St
ra

tif
ie

d
sa

m
pl

in
g

ta
nh

St
ra

tif
ie

d
sa

m
pl

in
g

sig
m

oi
d

Un
ifo

rm
 sa

m
pl

in
g

re
lu

Un
ifo

rm
 sa

m
pl

in
g

ta
nh

Un
ifo

rm
 sa

m
pl

in
g

sig
m

oi
d

0.8

0.6

0.4

0.2

0.0

0.2

0.4

(c
os

t /
 b

en
ch

m
ar

k)
 -

1
Average cost differential of 150 trajectories for different sampling strategies

Dataset: PWA 1-norm
state cost
input cost
total cost

Figure 7-12

7-3 Maxplus and Minplus layers

Another type of network that we want to explore is neural networks with maxplus and minplus
layers as described in Section 4-1-2. We will consider three network structures. All networks
have 7 hidden layers, of which the first is a layer with linear activation and 1 output layer
with linear activation. The 6 other hidden layers are either

• All max-plus layers

• All Relu layers (with similar results to Section 7-1)

• Alternating max-plus and min-plus layers

• Aternating max-plus and Relu layers

Each hidden activation layer will have 8 neurons each, and the first linear layer has 16 neurons
so that every network has the same number of parameters. We will look at how well these
networks approximate our previously mentioned controllers. The result is shown in Figure
7-13 and we can immediately see that there are some questionable control laws for the max-
plus only solution for the PWA 1-norm and PWA ∞-norm controllers. The same goes for
the max-plus and min-plus alternating networks, but here we see an interesting pattern of
sharp angles forming. We have seen the results for a smaller Relu network in Section 7-1 and
only the max-plus and Relu alternating networks and the maxplus-only approximation for
the linearized dataset come close to this, .

Bouke Stoelinga Master of Science Thesis

7-3 Maxplus and Minplus layers 65

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Maxplus only
Dataset: Linearized

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Maxplus only
Dataset: PWA 1-norm

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Maxplus only
Dataset: PWA -norm

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Maxplus and Minplus alternating
Dataset: Linearized

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Maxplus and Minplus alternating
Dataset: PWA 1-norm

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Maxplus and Minplus alternating
Dataset:PWA -norm

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Maxplus and ReLU alternating
Dataset: Linearized

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Maxplus and ReLU alternating
Dataset: PWA 1-norm

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Maxplus and ReLU alternating
Dataset:PWA -norm

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Dataset: Linearized

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Dataset: PWA 1-norm

1.5 1.0 0.5 0.0 0.5 1.0 1.5

6

4

2

0

2

4

6

Dataset:PWA -norm

10 8 6 4 2 0 2 4 6 8 10
u

Approximate control laws Maxplus variations

Figure 7-13Master of Science Thesis Bouke Stoelinga

66 Results

Based on the shapes of the approximations in Figure 7-13 we would expect high losses for
the max-plus and min-plus alternating networks, which is what we observe in Figure 7-14.
These networks do perform better on the linearized dataset, but still, the networks with Relu
only or Relu and max-plus alternating networks have far lower losses. The max-plus only
network seems to perform well on the linearized dataset, only slightly higher than the Relu
only and the Relu and max-plus alternating network, but only on the Linearized datset. The
Linearized controller dataset is PWA, and the PWA controller dataset is not, which might be
the cause of this larger difference. We also see that for the Linearized dataset, the max-plus
and Relu alternating network has nearly the same loss as the Relu-only network, whereas,
for the PWA 1-norm and ∞-norm dataset, the Relu only has a lower loss. We will see if this
holds in our other metric.

M
ax

pl
us

 o
nl

y
Da

ta
se

t:
Lin

ea
riz

ed

M
ax

pl
us

 a
nd

 M
in

pl
us

 a
lte

rn
at

in
g

Da
ta

se
t:

Lin
ea

riz
ed

M
ax

pl
us

 a
nd

 R
eL

U
al

te
rn

at
in

g
Da

ta
se

t:
Lin

ea
riz

ed

Re
LU

 o
nl

y
Da

ta
se

t:
Lin

ea
riz

ed

M
ax

pl
us

 o
nl

y
Da

ta
se

t:
PW

A
1-

no
rm

M
ax

pl
us

 a
nd

 M
in

pl
us

 a
lte

rn
at

in
g

Da
ta

se
t:

PW
A

1-
no

rm

M
ax

pl
us

 a
nd

 R
eL

U
al

te
rn

at
in

g
Da

ta
se

t:
PW

A
1-

no
rm

Re
LU

 o
nl

y
Da

ta
se

t:
PW

A
1-

no
rm

M
ax

pl
us

 o
nl

y
Da

ta
se

t:
PW

A
-n

or
m

M
ax

pl
us

 a
nd

 M
in

pl
us

 a
lte

rn
at

in
g

Da
ta

se
t:P

W
A

-n
or

m

M
ax

pl
us

 a
nd

 R
eL

U
al

te
rn

at
in

g
Da

ta
se

t:P
W

A
-n

or
m

Re
LU

 o
nl

y
Da

ta
se

t:P
W

A
-n

or
m

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Lo
ss

Loss and validation loss for different maxplus models
loss
validation loss

Figure 7-14

Figure 7-15 shows the custom score metric for all networks except the networks that did not
seem to converge, The max-plus only PWA 1-norm and infinity norm networks. They are
excluded because simulating them on the nonlinear system would yield unstable results, giving
a large score that is not comparable to the other control law results. We observe from the
figure that the linearized dataset has a result that is very similar to the benchmark, the max-
plus and Relu alternating network is nearly the same. The max-plus and min-plus alternating
networks on both controllers have a high cost, which we would expect since they deviate quite
a bit from their respective datasets. The max-plus and Relu alternating networks still have
a relatively low cost when approximating these PWA controller datasets.

Bouke Stoelinga Master of Science Thesis

7-4 Double Pendulum 67

M
ax

pl
us

 o
nl

y
Da

ta
se

t:
Lin

ea
riz

ed

M
ax

pl
us

 a
nd

 M
in

pl
us

 a
lte

rn
at

in
g

Da
ta

se
t:

Lin
ea

riz
ed

M
ax

pl
us

 a
nd

 R
eL

U
al

te
rn

at
in

g
Da

ta
se

t:
Lin

ea
riz

ed

Re
LU

 o
nl

y
Da

ta
se

t:
Lin

ea
riz

ed

M
ax

pl
us

 o
nl

y
Da

ta
se

t:
PW

A
1-

no
rm

M
ax

pl
us

 a
nd

 M
in

pl
us

 a
lte

rn
at

in
g

Da
ta

se
t:

PW
A

1-
no

rm

M
ax

pl
us

 a
nd

 R
eL

U
al

te
rn

at
in

g
Da

ta
se

t:
PW

A
1-

no
rm

Re
LU

 o
nl

y
Da

ta
se

t:
PW

A
1-

no
rm

M
ax

pl
us

 o
nl

y
Da

ta
se

t:
PW

A
-n

or
m

M
ax

pl
us

 a
nd

 M
in

pl
us

 a
lte

rn
at

in
g

Da
ta

se
t:P

W
A

-n
or

m

M
ax

pl
us

 a
nd

 R
eL

U
al

te
rn

at
in

g
Da

ta
se

t:P
W

A
-n

or
m

Re
LU

 o
nl

y
Da

ta
se

t:P
W

A
-n

or
m

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

(c
os

t /
 b

en
ch

m
ar

k)
 -

1
Average cost differential of 150 trajectories for different maxplus models

state cost
input cost
total cost

Figure 7-15

7-4 Double Pendulum

Now to consider another system, a double inverted pendulum as described in Section 6-3-1.
We expect the control law to be polyhedral PWA, though this is hard to visualize since the
resulting state space is four-dimensional. Therefore we will only be using the loss and cost
metrics to analyze the approximations. To get a dataset here we will sample from simulated
trajectories with initial stationary rod positions. So we select a set of initial rod configurations
and then run a simulation. If the simulation is stable, its states and the input the controller
gives are added to the training data. The resulting losses are shown in Figure 7-16. They
appear to be quite low, similar to the losses of the single pendulum linearized MPC controller
system. The lowest validation loss is for the Hard sigmoid network, which is an MMPS
function. The other MMPS function Relu seems to have a bit higher loss. The Softmax has
the highest losses, but comparatively, all the losses are quite close. The validation losses are
for some networks much higher than the (training) losses. We also see the max-plus network,
with 1 starting linear layer and for the rest max-plus layers have a higher validation loss.

Master of Science Thesis Bouke Stoelinga

68 Results

El
u

Ge
lu

Ha
rd

 S
ig

m
oi

d

Lin
ea

r

Re
lu

Si
gm

oi
d

So
ftm

ax

So
ftp

lu
s

So
fts

ig
n

Sw
ish

Ta
nh

M
ax

-P
lu

s N
et

wo
rk

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Lo
ss

Loss and validation loss for different activation functions
Dataset: Double pendulum

loss
validation loss

Figure 7-16

Figure 7-17 shows that also the proportional cost metric is very similar for most activation
function networks. The Relu activation network stands out here since it is the only network
with a higher cost than the benchmark and by a significant margin compared to the other
networks. Even though other networks have higher losses, they still have scores that are closer
to the benchmark. We do see here that the max-plus network has the lowest total cost, but
it is similar to many other networks.

Bouke Stoelinga Master of Science Thesis

7-4 Double Pendulum 69

El
u

Ge
lu

Ha
rd

 S
ig

m
oi

d

Lin
ea

r

Re
lu

Si
gm

oi
d

So
ftm

ax

So
ftp

lu
s

So
fts

ig
n

Sw
ish

Ta
nh

M
ax

-P
lu

s N
et

wo
rk

0.20

0.15

0.10

0.05

0.00

0.05

(c
os

t /
 b

en
ch

m
ar

k)
 -

1

Proportional total, state and input cost for different activation functions
Dataset: Double pendulum

state cost
input cost
total cost

Figure 7-17

Master of Science Thesis Bouke Stoelinga

70 Results

Bouke Stoelinga Master of Science Thesis

Chapter 8

Conclusion

8-1 Conclusion to experiments

In Section 1-2-1 we posed a set of research questions that we can now answer based on the
results of our experiment.

First, as pointed out in nearly all sections of Chapter 7, there are significant differences when
approximating a PWA control law compared to a non-PWA control law. Our PWA control law
arose from a linearized MPC controller and is used throughout the experiments with different
sampling activation functions and max-plus and min-plus layers. For all these experiments
the PWA-control law saw a lower validation loss and they score closer to the benchmark on
the performance metric than the experiments with our non-PWA control laws.

The conclusion we can draw from the first experiment with different activation functions is
that there is definitely merit to using different activation functions for different control laws.
Though Section 7-1-1 shows the fact that an activation function is an MMPS function does not
automatically guarantee better performance when approximating a PWA control law. The
Relu activation function does perform the best here, but the other MMPS activation function,
the hard sigmoid function performs way worse. Looking at the other two control laws that
are non-PWA and the performance there, some non-MMPS activation functions have a better
performance than the most commonly used Relu function. We also see this in our double
pendulum system where the Relu function scores the worst in the custom performance metric
compared to other activation functions. We did expect this somewhat for non-PWA functions,
as only MMPS approximations could yield a worse approximation. However, also for PWA
functions with small linear regions, a non-perfect MMPS approximation may be outperformed
by a smooth approximation function, which happened in our experiments.

We also looked into different sampling strategies, and these have a large influence on the
performance of the approximating neural networks. For this, we used a non-PWA dataset
and observed the performance of different activation function neural networks. What was
interesting to see here was the difference between the validation loss and other performance
metric. The stratified sampling strategy achieved some of the lowest validation losses, but the

Master of Science Thesis Bouke Stoelinga

72 Conclusion

uniform sampling network was performing more closely to the benchmark. This means that
not only the areas where points vary more from their neighbors are important to capture, but
also the more "simple" areas. We also learned that a uniform sampling strategy is not always
viable, with our double pendulum system, where we solve this with yet another sampling
strategy by simulating state trajectories over time and using them as our training data.

The more novel max-plus and min-plus layers were also implemented and we analyzed the
performance in Section 7-3. We see that or the max-plus and min-plus alternating networks
offer a far worse performance compared to networks with Relu activations. The max-plus
only network did offer a good performance comparable to other activation functions on the
linearized dataset. On the double pendulum system, we presumably have another PWA
control law and here it also performs comparatively to networks with a traditional structure.
So a network that starts with a linear layer, has more hidden max-plus layers and a final linear
output layer can offer a good performance in approximating polyhedral PWA control laws.
As for faster performance, the addition operation on most modern processors for floating
point numbers is about the same number of clock cycles as floating point multiplication, as
shown in Appendix D.3 in [59]. This means that with a low-level programming language,
there will not be a significant difference in speed when only using max and plus, or min and
plus operators, instead of also including multiplication.

8-2 Main conclusion

The goal of this thesis is to discover what various factors are of influence on the performance
of neural network approximations of MPC control laws. One factor we are interested in,
especially for piecewise affine control laws, is max-min-plus-scaling functions. These are
functions that contain max, min, and scaling operations and are used to model discrete event
systems. It is known that max-min-plus-scaling functions and piecewise affine functions are
equivalent, and can be represented as one another. We also briefly touched on the related
max-plus and min-plus algebra, which comes back later with max-plus and min-plus layers
in neural networks.

Next, we explored Model Predictive Control, which gives us the control laws that we want
to approximate. Model Predictive Control is a technique where we have a model of a system
and use future predictions of that model to compute an optimal control sequence. We discuss
MPC for linear systems and their stability. We also discuss model predictive control for Mixed
Logical Dynamical systems, which is another way to represent a piecewise affine system. In
all of these controllers still, an optimization problem has to be solved at each timestep. This
optimization problem can be computationally hard, and as a solution to this there sometimes
exist an explicit control law. Applying an explicit control law is much faster than solving an
optimization problem, but explicit control laws are not always available, so approximations
are still practical here.

These approximations make use of a technique for approximations of various functions: neural
networks. We discuss the structure of neural networks and what parameters they have. We
also survey what activation functions are widely used in neural networks, and find that with
the use of some activation functions, the neural network works as a MMPS function. There
are also some novel neural networks: min-max-plus-scaling neural networks, which make use

Bouke Stoelinga Master of Science Thesis

8-2 Main conclusion 73

of max-plus layers and min-plus layers. We also dive into how neural networks train by using
gradient descend and what different update rules for this are commonly used.

With the knowledge of these topics, we set out to answer the main question and subquestions
of this research by setting up experiments. We first set up different MPC controllers for a
single pendulum system, one linearized controller, and two PWA controllers. We also set up a
more complicated linearized controller for a double pendulum system. From these controllers,
we extract 4 large datasets as our control law to estimate with several neural networks. The
resulting

We first start with our 3 datasets for the single pendulum system. Here we first train sev-
eral neural networks with different activation functions. We then, like for the rest of our
experiments, use the validation loss and a custom performance score as a metric for their
performance. We see that the different activation functions have varying performance. Not
all MMPS activation functions have a better performance on the PWA control law, the hard
sigmoid activation scores worse than non-MMPS functions. The MMPS activation function
Relu does perform the best for the PWA control law. There is also a large difference when esti-
mating non-PWA control laws. The PWA control laws obtained from the linearized controller
are more accurately estimated by every activation function neural network.

Next, we use subsets of our large datasets to test the difference between a random sampling
approach, a stratified sampling approach with more samples where the surrounding points
vary from each other, and a uniform grid sampling approach. The stratified sampling has a
lower validation loss, but the uniform sampling strategy scores better with our custom metric.
What we learn from this is that capturing the area with more differences between points is
just as important as capturing more ’simple’ areas. For our double pendulum system we
find that the amount of data for a uniform sampling strategy grows exponentially and to
solve this we simulate trajectories from a lower dimensional set of initial states and use these
trajectories as data, which also gives workable results.

We also implemented the max-plus and min-plus layers in neural networks. Alternating max-
plus and min-plus alternating networks score poorly in both metrics, but the alternating
max-plus and Relu network could get a similar performance to a pure Relu network. We also
found that a network that starts with a linear layer, has more hidden max-plus layers and
a final linear output layer can offer a good performance in approximating polyhedral PWA
control laws. It does however perform very poorly on approximating non-PWA control laws.

Eventually, we found various factors that influence the performance of neural network approx-
imations of MPC control laws. There are significant differences between approximating PWA
and non-PWA control laws. The MMPS structure of neural networks can sometimes get a
better approximation, though this is not guaranteed and sometimes non-MMPS activation
functions achieve better results. Without doing more experiments we can not establish a clear
pattern when MMPS structures outperform non-MMPS structures. Some sampling strategies,
such as stratified sampling or uniform grid sampling offer good performance in approximat-
ing control laws, but the best suited strategy depends on the availability of data. Finally
we found that some max-plus networks can offer a similar performance when approximating
PWA MPC control laws compared to Relu networks.

Master of Science Thesis Bouke Stoelinga

74 Conclusion

8-3 Further research

Various factors that influence the performance of approximations of MPC control laws have
been researched by this thesis, yet more possible factors have arisen, as well as other areas
where further research is required.

8-3-1 More experiments and different systems

We could observe there are differences when using MMPS structures in a neural network
compared to non-MMPS structures. We could see that sometimes an MMPS activation
function would have a closer approximation of a PWA control law, but other times smooth
activation functions got a closer performance. We could not find a clear pattern when this
happens with our two different systems. For this more experiments with different systems
yielding more PWA control laws need to be done.

8-3-2 Speed of max-plus and min-plus layers with different architectures

The floating point operations for multiplication and addition are roughly the same on most
CPUs, so max-plus multiplication is not significantly faster than normal multiplication. How-
ever, there is a more significant difference between integer multiplication and integer addition.
Some works have already looked into integer arithmetic to train integer neural networks [60].
This could be extended to max-plus and min-plus layers in neural networks. The work could
also look more into the inclusion of −∞ and ∞ in the weights of the network, which currently
only uses finite weights.

8-3-3 Post-processing methods on neural network approximations

This thesis has done only limited post-processing on the neural network approximations of the
control laws. Only saturating the output to satisfy physical constraints. In training, we can
see that in maximization or minimization operations there can be parameters that become so
small or large that the operation itself becomes redundant. In a traditional neural network,
if weight values go to zero and a neuron becomes redundant, neurons can be removed during
training with a technique called dropout [61]. A similar technique could be used for training
weights that go to positive or negative infinity in a neural network with min-plus or max-plus
layers.

8-3-4 More general forms of neural networks

We showed in Section 4-1-3 that we can write a network with max-plus and min-plus layers
and a final or initial linear layer in a more compact form. This could possibly be generalized to
work for any neural network with MMPS activation functions such as Relu or Hard sigmoid.
These matrices in this general form grow significantly in size, but how exactly depends on the
neural network. We know that the depth of a neural network helps more with expressiveness
than the width of a network. How this translates to the size of the matrices of a general form

Bouke Stoelinga Master of Science Thesis

8-3 Further research 75

is yet to be researched. There is also not much research on the number of linear regions of
networks other than Relu networks. Section 4-2 discusses upper and lower boundaries for the
number of linear regions of a Relu network, as well as a way to compute an exact number.
These boundaries do not necessarily hold for networks with max-plus and min-plus layers,
so more research here could prove useful for estimating the required size of a network with
max-plus and min-plus layers.

8-3-5 Stability and constraint validation for neural network controllers

As shown in Chapter 3, there are proofs to show that a (nonlinear) MPC controller is stabi-
lizing the system. For neural network controllers, some stability proofs have been researched,
mostly for Relu and Tanh networks such as [62] and [63]. These proofs hold for some acti-
vation functions, but not yet all that we applied here for example. It is also not guaranteed
that a neural network controller does not violate constraints without post-processing. This
would require some constrained neural network, which is done by [64]. It could be beneficial
to research if such a constrained neural network yields a better result than a non-constrained
neural network with post-processing.

8-3-6 Other sampling strategies and parallels to identification techniques

In this thesis, we used a dense uniform grid to get subsets to test sampling strategies. From
this, we compared a sparse uniform grid sampling method, a random sampling method, and
a stratified sampling method. More types of sampling are possible, for example, cluster
sampling, or a different multi-stage sampling approach. We also used the trajectories from
various initial states as data with our double pendulum system. This is closer to other
system identification techniques. There has been some work done on input signal design for
identification of max-plus systems [65]. More research can be done to compare this input signal
design for max-plus systems to that for neural network approximations of PWA functions and
non-PWA functions.

8-3-7 Other metrics to measure performance of approximation

We used how closely a control law is approximated as a measure of performance, but there
could be other metrics. One flaw in the custom metric that we used is that trajectories further
from the origin give a higher cost, meaning you can have a very close approximation near the
origin, but if you have a slight error further away from the origin, the cost could come out
to be quite high. What could also be a metric is the amount of data it costs to get a close
enough approximation, or how many parameters are used in a network.

Master of Science Thesis Bouke Stoelinga

76 Conclusion

Bouke Stoelinga Master of Science Thesis

Appendix A

Appendices

Master of Science Thesis Bouke Stoelinga

78 Appendices

A-1 Discretization of continuous time piecewise affine system

Consider a continuous time piecewise affine system in the form

ẋ(t) = Ax(t) +B1 +B2u(t) (A-1)

First solve for x(t) and obtain the following:

ẋ(t) −Ax(t) = B1 +B2u(t)
e−Atẋ(t) − e−AtAx(t) = e−AtB1 + e−AtB2u(t)
d

dt

(
e−Atx(t)

)
= e−AtB1 + e−AtB2u(t)

e−Atx(t) − e0x(0) =
∫ t

0
e−AτB1 + e−AτB2u(τ)dτ

e−Atx(t) =
∫ t

0
e−AτB1 + e−AτB2u(τ)dτ + x(0)

eAte−Atx(t) = eAt
∫ t

0
e−AτB1 + e−AτB2u(τ)dτ + eAtx(0)

x(t) = eAt
∫ t

0
e−AτB1 + e−AτB2u(τ)dτ + eAtx(0)

(A-2)

Next up denote x(k) with timestep h as

x(k) = x(kh)

x(k) = eAkhx(0) + eAkh
∫ kh

0
e−AτB1 + e−AτB2u(τ)dτ

x(k + 1) = eA(k+1)hx(0) + eA(k+1)h
∫ (k+1)kh

0
e−AτB1 + e−AτB2u(τ)dτ

(A-3)

left multiply x(k) by eAh:

eAhx(k) = eA(k+1)hx(0) + eA(k+1)h
∫ kh

0
e−AτB1 + e−AτB2u(τ)dτ

eA(k+1)hx(0) = eAhx(k) − eA(k+1)h
∫ kh

0
e−AτB1 + e−AτB2u(τ)dτ

(A-4)

now plug this result into Equation A-3

x(k+1) = eAhx(k)−eA(k+1)h
∫ kh

0
e−AτB1+e−AτB2u(τ)dτ+eA(k+1)h

∫ (k+1)kh

0
e−AτB1+e−AτB2u(τ)dτ

this simplifies to

x(k+1) = eAhx(k)−eA(k+1)h
(∫ kh

0
e−AτB1 + e−AτB2u(τ)dτ +

∫ (k+1)kh

0
e−AτB1 + e−AτB2u(τ)dτ

)

x(k + 1) = eAhx(k) − eA(k+1)h
(∫ (k+1)h

kh
e−AτB1 + e−AτB2u(τ)dτ

)

Bouke Stoelinga Master of Science Thesis

A-1 Discretization of continuous time piecewise affine system 79

split the integral

x(k + 1) = eAhx(k) − eA(k+1)h
(∫ (k+1)h

kh
e−AτB1dτ +

∫ (k+1)h

kh
e−AτB2u(τ)dτ

)

bring the exponent in, and bring the constant terms outside of the integrals

x(k + 1) = eAhx(k) −
(∫ (k+1)h

kh
eA((k+1)−τ)dτB1 +

∫ (k+1)h

kh
eA((k+1)−τ)dτB2u(k)

)

Introduce an auxiliary variable v = (k + 1)h− τ . This simplifies the integrals to

x(k + 1) = eAhx(k) −
(∫ 0

h
eAvdvB1 +

∫ 0

h
eAvdvB2u(k)

)
x(k + 1) = eAhx(k) +

∫ h

0
eAvdvB1 +

∫ h

0
eAvdvB2u(k)

(A-5)

Finally solving the integrals gives us the result:

x(k + 1) = eAhx(k) +A−1
(
eAh − I

)
B1 +A−1

(
eAh − I

)
B2u(k) (A-6)

Master of Science Thesis Bouke Stoelinga

80 Appendices

A-2 Parameters of the physical systems

This section contains a description and value of all the parameters used in the description of
the physical systems.

Symbol Value Unit Description
g 9.81 m

s2 Gravitational constant
m 0.75 kg Mass of the pendulum rod
L 1.0 m Length of the pendulum rod
θ - rad Angle of the pendulum rod
θ̇ - rad/s Angular velocity of the pendulum rod
u - N Torque acting on the pendulum rod

Table A-1: Parameters of the inverted pendulum system

Symbol Value Unit Description
g 9.81 m

s2 Gravitational constant
m1 0.75 kg Total mass of pendulum rod 1
m2 0.75 kg Total mass of pendulum rod 2
L1 1.0 m Length of pendulum rod 1
L2 1.0 m Length of pendulum rod 2
c1 0.75 m position of center of gravity of rod 1
c2 0.75 m position of center of gravity of rod 1
θ1 - rad Angle pendulum rod 1
θ2 - rad Angle pendulum rod 2
θ̇1 - rad/s Angular velocity of pendulum rod 1
θ̇2 - rad/s Angular velocity of pendulum rod 2
u - N Torque acting on pendulum rod 1

Table A-2: Parameters of the double pendulum system

Bouke Stoelinga Master of Science Thesis

Appendix B

Algorithms and code

B-1 Max-plus and min-plus layers

This code defines two custom layers, MaxPlus and MinPlus, using TensorFlow’s Keras frame-
work. These layers implement specialized multiplication operations: max-plus for MaxPlus
and min-plus for MinPlus. Both layers take input data, weights, and optional biases to
perform their respective operations

1 import tensorflow as tf
2 from tensorflow import keras
3 from keras.layers import Layer
4 class MaxPlus(Layer):
5 def __init__(self, units=32, bias=True, input_dim=None, **kwargs):
6 self.units = units
7 self.bias = bias
8 self.input_dim = input_dim
9 if self.input_dim:

10 kwargs["input_shape"] = (self.input_dim,)
11 super().__init__(**kwargs)
12

13 def build(self, input_shape):
14 """Build the layer"""
15 input_dim = input_shape[1]
16 self.input_dim = input_dim
17 self.b = self.add_weight(
18 shape=(input_dim, self.units),
19 initializer="random_normal",
20 name='b',
21 trainable=True,
22)

Master of Science Thesis Bouke Stoelinga

82 Algorithms and code

23 if self.bias:
24 self.extra_bias = self.add_weight(
25 shape=(self.units,), initializer="zero", trainable=True
26)
27 self.built = True
28

29 def compute_output_shape(self, input_shape):
30 """Compute the output shape of the layer"""
31 return (input_shape[0], self.units)
32

33 def call(self, inputs):
34 """Execute the maxplus multiplication"""
35 # repeat the input vector to match the number of units
36 output = tf.repeat(
37 tf.reshape(inputs, [-1, self.input_dim, 1]), repeats=self.units, axis=2
38)
39 # add the weights and take the max
40 output += self.b
41 output = tf.reduce_max(output, axis=1)
42

43 # add the bias if needed
44 if self.bias:
45 output += self.extra_bias
46 return output
47

48 def get_config(self):
49 """" Get the config of the layer """
50 config = super().get_config().copy()
51 config.update(
52 {
53 "units": self.units,
54 "bias": self.bias,
55 "input_dim": self.input_dim,
56 }
57)
58 return config
59

60

61 class MinPlus(MaxPlus):
62 def call(self, inputs):
63 """Execute the maxplus multiplication"""
64 output = tf.concat(
65 [tf.reshape(inputs, [-1, self.input_dim, 1])] * self.units, 2
66)
67 output += self.b
68 output = tf.reduce_min(output, axis=1)
69 if self.bias:

Bouke Stoelinga Master of Science Thesis

B-2 Linearized MPC controller 83

70 output += self.extra_bias
71 return output

B-2 Linearized MPC controller

The MPC class provides a method simple_mpc_step_u to perform one step of MPC opti-
mization, aiming to find an optimal control action given a current state x. It relies on the
perform_mpc_step method which is implemented by it’s subclasses.

The LinearizedMPC class inherits from MPC and specializes in linearized MPC calculations.
It initializes matrices required for quadratic programming optimization, constructs constraints
and cost matrices, and provides a perform_mpc_step method to solve the optimization prob-
lem. The optimization aims to minimize a quadratic cost function, subject to linear inequality
constraints. If the optimization succeeds, the method returns the optimal control action.

1 class MPC:
2 def __init__(self, constants, horizon, control_horizon=None):
3 self.constants = constants
4 self.horizon = horizon
5 self.control_horizon = control_horizon
6

7 def simple_mpc_step_u(self, x, **kwargs):
8 """Perform 1 mpc step with x = x0. Return optimal control"""
9 u_opt, *args, success = self.perform_mpc_step(x, **kwargs)

10 if success:
11 if u_opt is not None:
12 return u_opt[0][0]
13 else:
14 return float('NaN')
15 else:
16 return float('NaN')
17

18

19

20 class LinearizedMPC(MPC):
21 def __init__(self, constants, horizon, control_horizon=None):
22 super().__init__(constants, horizon, control_horizon=control_horizon)
23 self.mpc_type = 'linearized'
24 self.init_matrices()
25

26 def init_matrices(self):
27 constants = self.constants
28 A, B, horizon = constants.SYS_DISCR.A, constants.SYS_DISCR.B, self.horizon
29 Q, R, P = constants.MAT_Q, constants.MAT_R, constants.MAT_P

Master of Science Thesis Bouke Stoelinga

84 Algorithms and code

30 umax, umin, xmax, xmin = constants.UMAX, constants.UMIN, constants.XMAX,
constants.XMIN↪→

31 xterminal_min, xterminal_max = constants.x_terminal_min, constants.x_terminal_max
32 horizon = self.horizon
33 nx, nu = B.shape
34 # prepare matrices for quadratic programming problem
35 # state constraints
36 Abar = np.zeros((nx * horizon, nx))
37 Bbar = np.zeros((nx * horizon, nu * horizon))
38

39 for k in range(horizon):
40 Abar[nx * k:nx * k + nx, :] = np.linalg.matrix_power(A, k + 1)
41 for i in range(k + 1, 0, -1):
42 Bbar[nx * k:nx * k + nx, i - 1:i] = np.linalg.matrix_power(A, k + 1 - i) @ B
43 if xmax is None:
44 xmaxbar = float('inf') * np.ones((horizon * nx, 1))
45 else:
46 xmaxbar = np.vstack([xmax] * horizon)
47 if xmin is None:
48 xminbar = float('-inf') * np.ones((horizon * nx, 1))
49 else:
50 xminbar = np.vstack([xmin] * horizon)
51 if umax is None:
52 umaxbar = float('inf') * np.ones((horizon * nu, 1))
53 else:
54 umaxbar = np.vstack([umax] * horizon)
55 if umin is None:
56 uminbar = float('-inf') * np.ones((horizon * nu, 1))
57 else:
58 uminbar = np.vstack([umin] * horizon)
59 if xterminal_max is not None:
60 xmaxbar[(horizon - 1) * nx:] = xterminal_max
61 if xterminal_min is not None:
62 xminbar[(horizon - 1) * nx:] = xterminal_min
63

64 self.constr = np.vstack([-Bbar, Bbar, np.eye(Bbar.shape[1]),
-np.eye(Bbar.shape[1])])↪→

65 self.umaxbar = umaxbar
66 self.uminbar = uminbar
67 self.xmaxbar = xmaxbar
68 self.xminbar = xminbar
69 self.Abar = Abar
70 self.Bbar = Bbar
71 Q_list = [Q] * (horizon - 1)
72 Q_list.append(P)
73 self.Qbar = scipy.linalg.block_diag(*Q_list)
74 self.Rbar = scipy.linalg.block_diag(*([R] * horizon))

Bouke Stoelinga Master of Science Thesis

B-3 PWA MPC controller 85

75 self.cross_matrix = Abar.T @ self.Qbar @ self.Bbar
76 self.ucost = Bbar.T @ self.Qbar @ Bbar + self.Rbar
77

78 def perform_mpc_step(self, x_0):
79 """Solve a strictly convex quadratic program
80 Minimize 1/2 x^T G x - a^T x
81 Subject to C.T x >= b
82 """
83 # Setup u_variables
84 cross_cost_vec = x_0.T @ self.cross_matrix
85 cross_cost_vec = -2 * cross_cost_vec.flatten()
86 Ax0 = self.Abar @ x_0.reshape(-1, 1)
87 constr_d = np.vstack([Ax0 - self.xmaxbar, self.xminbar - Ax0, self.uminbar,

-self.umaxbar]).flatten()↪→

88 try:
89 u_sol = quadprog.solve_qp(self.ucost, cross_cost_vec, self.constr.T, constr_d)
90 return u_sol, 'pass', True
91 except:
92 return np.array([[0]]), 'fail', False

B-3 PWA MPC controller

This code defines a class PiecewiseAffineMPC for MPC tailored to systems represented by
piecewise-affine models. The class includes methods to perform MPC steps, create piecewise
affine approximations of functions, and generate constraint matrices for the MPC optimization
problem.

1 class PiecewiseAffineMPC(MPC):
2 def __init__(self, constants, horizon, control_horizon=None):
3 super().__init__(constants, horizon, control_horizon=control_horizon)
4 self.mpc_type = "pwa"
5 self.affine_functions, self.breakpoints = self.create_pwa_approx()
6 (
7 self.E1,
8 self.E2,
9 self.E3,

10 self.E4,
11 self.G5,
12) = self.generate_mld_constraint_matrices()
13 self.B3 = self.create_mld_matrices()
14

15 def perform_mpc_step(self, x_0, verbose=False, solver="GUROBI", reoptimize=True,
Cuts=3,speedup=True, **kwargs):↪→

16 """Perform mpc step"""

Master of Science Thesis Bouke Stoelinga

86 Algorithms and code

17 # Define variables
18 if speedup:
19 if x_0[1] <(-5*np.pi/2)*x_0[0]-np.pi:
20 ans = 9.99
21 return (
22 np.array([[ans]]),
23 np.array([[0]]),
24 np.array([[0]]),
25 np.array([[0]]),
26 True,
27)
28 if x_0[1] > (-5*np.pi/1.9)*x_0[0]+np.pi:
29 ans = -9.99
30 return (
31 np.array([[ans]]),
32 np.array([[0]]),
33 np.array([[0]]),
34 np.array([[0]]),
35 True,
36)
37

38 constants = self.constants
39 Q, R, P = constants.MAT_Q, constants.MAT_R, constants.MAT_P
40 umax, umin, xmax, xmin = (
41 constants.UMAX,
42 constants.UMIN,
43 constants.XMAX,
44 constants.XMIN,
45)
46 E1, E2, E3, E4, G5 = self.E1, self.E2, self.E3, self.E4, self.G5
47 B3 = self.B3
48 nx = 2
49 nu = 1
50 nr = self.constants.N_REGIONS
51 u = cvxpy.Variable((nu, self.horizon))
52 delta = cvxpy.Variable((nr, self.horizon + 1), boolean=True)
53 z = cvxpy.Variable((nr * nx, self.horizon + 1))
54

55 epsilon_u = cvxpy.Variable((nu, self.horizon))
56 epsilon_x = cvxpy.Variable((nx, self.horizon + 1))
57 ones_m = np.ones((1, nu))
58 ones_n = np.ones((1, nx))
59

60 # initialize cost and constraints
61 cost = 0.0
62 constr = []
63 init_delta1 = [1 if x_0[0] >= bp else 0 for bp in self.breakpoints[:-1]]

Bouke Stoelinga Master of Science Thesis

B-3 PWA MPC controller 87

64 init_delta2 = [1 if x_0[0] <= bp else 0 for bp in self.breakpoints[1:]]
65 init_delta3 = [True if (init_delta1[i] == 1 and init_delta2[i] == 1) else False for

i in↪→

66 range(len(init_delta1))]
67 constr += [delta[:, 0] == init_delta3[:]]
68 constr += [z[:, 0] == (x_0.reshape(2, 1) * (init_delta3 * np.ones((2,

1)))).T.flatten()]↪→

69 constr += [epsilon_x[:, 0] == np.abs(x_0)]
70 N = self.horizon
71

72 for k in range(1, N + 1):
73 constr += [-ones_m @ epsilon_u[:, k - 1] <= R @ u[:, k - 1]]
74 constr += [-ones_m @ epsilon_u[:, k - 1] <= -R @ u[:, k - 1]]
75 constr += [-ones_n @ epsilon_x[:, k] <= Q @ B3 @ z[:, k - 1]]
76 constr += [-ones_n @ epsilon_x[:, k] <= -Q @ B3 @ z[:, k - 1]]
77 constr += [u[:, k - 1] <= self.constants.UMAX]
78 constr += [-u[:, k - 1] <= -self.constants.UMIN]
79

80 constr += [
81 E1 @ B3 @ z[:, k - 1] + E2 @ u[:, k - 1] + E3 @ delta[:, k] + E4 @ z[:, k]
82 <= G5[:, 0]
83]
84

85 # constr += [x[:, N] == B3 @ z[:, N - 1]]
86 constr += [-ones_n @ epsilon_x[:, N] <= P @ B3 @ z[:, N - 1]]
87 constr += [-ones_n @ epsilon_x[:, N] <= -P @ B3 @ z[:, N - 1]]
88 constr += [B3 @ z[:, N - 1] <= np.array([0.1, 0.1])]
89 constr += [-B3 @ z[:, N - 1] <= np.array([0.1, 0.1])]
90 for i in range(N + 1):
91 cost += cvxpy.pnorm(epsilon_x[:, i], 1)
92 if i == N:
93 break
94 cost += cvxpy.pnorm(epsilon_u[:, i],1)
95

96 try:
97 prob = cvxpy.Problem(cvxpy.Minimize(cost), constr)
98 prob.solve(
99 verbose=verbose, solver=solver, reoptimize=reoptimize, time_limit=10,

ConcurrentMIP=2, **kwargs,↪→

100)
101 except Exception as e:
102 return (
103 np.array([0]),
104 np.array([[0]]),
105 np.array([[0]]),
106 np.array([[0]]),
107 False,

Master of Science Thesis Bouke Stoelinga

88 Algorithms and code

108)
109

110 if prob.status not in ["infeasible", "unbounded"]:
111 return u.value, 3, delta.value, z.value, True
112 else:
113 return (
114 np.array([0]),
115 np.array([[0]]),
116 np.array([[0]]),
117 np.array([[0]]),
118 False,
119)
120

121 def create_pwa_approx(self, func=np.sin):
122 """create pwa approximate of function, returns affine functions ai and bi in

tuple"""↪→

123 # Equally divided breakpoints
124 n_regions = self.constants.N_REGIONS
125 breakpoints = np.linspace(-0.5 * np.pi, 0.5 * np.pi, n_regions + 1)
126 affine_functions = []
127 for i, bp in enumerate(breakpoints):
128 if i == len(breakpoints) - 1:
129 break
130 y1, y2 = func(bp), func(breakpoints[i + 1])
131 x1, x2 = bp, breakpoints[i + 1]
132 ai = (y2 - y1) / (x2 - x1)
133 bi = y2 - ai * x2
134 affine_functions.append((ai, bi))
135 return affine_functions, breakpoints
136

137 def create_mld_matrices(self):
138 """create matrices for the mld problem"""
139 # create matrices
140 B3 = np.zeros((2, 2 * self.constants.N_REGIONS))
141 B3[0, ::2] = 1
142 B3[1, 1::2] = 1
143 return B3
144

145 def generate_mld_constraint_matrices(self):
146 """create constraint matrices for the mld problem"""
147 # create constraint matrices
148 constants = self.constants
149 T_s, mass, length = constants.T_s, constants.M, constants.L
150 gravitational_constant = constants.G
151 nx = 2
152 nu = 1
153 nr = self.constants.N_REGIONS

Bouke Stoelinga Master of Science Thesis

B-3 PWA MPC controller 89

154 E1 = np.zeros((0, nx)) # x(t) constraints
155 E2 = np.zeros((0, nu)) # u(t) constraints
156 E3 = np.zeros((0, nr)) # delta(t) constraints
157 E4 = np.zeros((0, nr * nx)) # z(t) constraints
158 G5 = np.zeros((0, 1)) # constant constraints
159 constants = self.constants
160 umax, umin, xmax, xmin = (
161 constants.UMAX,
162 constants.UMIN,
163 constants.XMAX,
164 constants.XMIN,
165)
166

167 if xmin is None:
168 xmin = -99999999
169 if xmax is None:
170 xmax = 99999999
171 theta_is = self.breakpoints
172 M_star = 100 * np.ones((nx, 1))
173 m_star = -100 * np.ones((nx, 1))
174

175 for i in range(len(theta_is) - 1):
176 n_constraints = nx * nr + 2 * nu + 2 * nx
177 E1_row = np.zeros((n_constraints, nx))
178 E2_row = np.zeros((n_constraints, nu))
179 E3_row = np.zeros((n_constraints, nr))
180 E4_row = np.zeros((n_constraints, nr * nx))
181 G5_row = np.zeros((n_constraints, 1))
182

183 # constraints 1,2,.. nx
184 # Sx + Ru+ Mdelta <= M+Ti
185 E1_row[0:nx, :] = np.array([[1, 0], [-1, 0]])
186 E3_row[0:nx, i] = M_star.flatten()
187 G5_row[0:nx, :] = np.array([[theta_is[i + 1]], [-theta_is[i]]]) + M_star
188 #
189 # constraints nx+1, nx+2,.. 2nx
190 # -Mdelta +z <= 0
191 E3_row[nx:2 * nx, i] = -M_star.flatten()
192 E4_row[nx:2 * nx, i * nx:(i + 1) * nx] = np.eye(nx) # np.ones((nx, nx))
193 #
194 # constraints 2nx+1, 2nx+2,.. 3nx
195 # mdelta -z <= 0
196 E3_row[2 * nx:3 * nx, i] = m_star.flatten()
197 E4_row[2 * nx:3 * nx, i * nx:(i + 1) * nx] = -np.eye(nx) # -np.ones((nx, nx))
198

199 # compute matrices for constraints
200 cont_Ai = np.array(

Master of Science Thesis Bouke Stoelinga

90 Algorithms and code

201 [[0, 1], [(3 * gravitational_constant / 2 * length) *
self.affine_functions[i][0], 0]]↪→

202)
203 discrete_Ai = scipy.linalg.expm(cont_Ai * T_s)
204 preamble = scipy.linalg.inv(cont_Ai) @ (discrete_Ai - np.eye(2))
205 Fi = preamble @ np.array([[0], [self.affine_functions[i][1]]])
206 Bi = preamble @ np.array([[0], [3 / (mass * length * length)]])
207

208 # constraints 3nx+1, 3nx+2,.. 4nx
209 # -Ax -Bu - mdelta +z <=-m+F
210 E1_row[3 * nx:4 * nx, :] = -discrete_Ai
211 E2_row[3 * nx:4 * nx, :] = -Bi
212 E3_row[3 * nx:4 * nx, i] = -m_star.flatten()
213 E4_row[3 * nx:4 * nx, i * nx:(i + 1) * nx] = np.eye(nx) # np.ones((nx, nx))
214 G5_row[3 * nx:4 * nx, :] = (-m_star + Fi)
215

216 # constraints 4nx+1, 4nx+2,.. 5nx
217 # Ax +Bu + Mdelta -z <= M-F
218 E1_row[4 * nx:5 * nx, :] = discrete_Ai
219 E2_row[4 * nx:5 * nx, :] = Bi
220 E3_row[4 * nx:5 * nx, i] = M_star.flatten()
221 E4_row[4 * nx:5 * nx, i * nx:(i + 1) * nx] = -np.eye(nx) # -np.ones((nx, nx))
222 G5_row[4 * nx:5 * nx, :] = M_star - Fi
223

224 # constraints 5nx+1, 5nx+2,.. 6nx
225 # x <= xmax
226 E1_row[5 * nx:6 * nx, :] = np.eye(nx)
227 G5_row[5 * nx:6 * nx, :] = xmax
228

229 # constraints 6nx+1, 6nx+2,.. 7nx
230 # -x <= -xmin
231 E1_row[6 * nx:7 * nx, :] = -np.eye(nx)
232 G5_row[6 * nx:7 * nx, :] = -xmin
233

234 # stack the rows to the matrices
235 E1 = np.vstack((E1, E1_row))
236 E2 = np.vstack((E2, E2_row))
237 E3 = np.vstack((E3, E3_row))
238 E4 = np.vstack((E4, E4_row))
239 G5 = np.vstack((G5, G5_row))
240 # add one more constraint for all regions
241 E1 = np.vstack((E1, np.zeros((1, nx))))
242 E2 = np.vstack((E2, np.zeros((1, nu))))
243 E3 = np.vstack((E3, np.ones((1, nr))))
244 E4 = np.vstack((E4, np.zeros((1, nr * nx))))
245 G5 = np.vstack((G5, np.ones((1, 1))))
246

Bouke Stoelinga Master of Science Thesis

B-4 Scoring metric 91

247 E1 = np.vstack((E1, np.zeros((1, nx))))
248 E2 = np.vstack((E2, np.zeros((1, nu))))
249 E3 = np.vstack((E3, -np.ones((1, nr))))
250 E4 = np.vstack((E4, np.zeros((1, nr * nx))))
251 G5 = np.vstack((G5, -np.ones((1, 1))))
252

253 return E1, E2, E3, E4, G5

B-4 Scoring metric

This code implements the custom scoring method that uses a specified norm to compute a
cost on the states and inputs.

1

2 def score_results(result, P, Q, R, filter_unstable=False):
3 state_cost_list = []
4 input_cost_list = []
5 counter = 0
6 total = len(result)
7 for res in result:
8 y = res[0]
9 u = res[1].reshape(-1, 1)

10 if filter_unstable:
11 print(y.T[0])
12 if np.any((y.T[0] < -0.9) | (y.T[0] > 0.9)) or np.any((y.T[1] < -1.3) | (y.T[1]

> 1.3)):↪→

13 counter += 1
14 continue
15 state_cost_list.append(0)
16 input_cost_list.append(0)
17 for i in range(len(y) - 1):
18 state_cost_list[-1] += y[i].T @ Q @ y[i]
19 input_cost_list[-1] += u[i].T @ R @ u[i]
20 state_cost_list[-1] += y[-1].T @ P @ y[-1]
21 input_cost_list[-1] += u[-1].T @ R @ u[-1]
22

23 state_cost_list = np.array(state_cost_list)
24 state_cost_mean = np.mean(state_cost_list)
25 input_cost_list = np.array(input_cost_list)
26 input_cost_mean = np.mean(input_cost_list)
27 mean_cost_both = state_cost_mean + input_cost_mean
28 return state_cost_mean, input_cost_mean, mean_cost_both, counter, total,

state_cost_list, input_cost_list↪→

29

Master of Science Thesis Bouke Stoelinga

92 Algorithms and code

30

31 def score_results_pnorm(result, P, Q, R, pnorm=1, filter_unstable=False):
32 state_cost_list = []
33 input_cost_list = []
34 counter = 0
35 total = len(result)
36 for res in result:
37 y = res[0]
38 u = res[1].reshape(-1, 1)
39 if filter_unstable:
40 if np.any((y.T[0] < -0.7) | (y.T[0] > 0.7)) or np.any((y.T[1] < -1) | (y.T[1] >

1)):↪→

41 counter += 1
42 continue
43 state_cost_list.append(0)
44 input_cost_list.append(0)
45 for i in range(len(y) - 1):
46 #
47 state_cost_list[-1] += np.linalg.norm(Q @ y[i], pnorm)
48 input_cost_list[-1] += np.linalg.norm(R @ u[i], pnorm)
49 state_cost_list[-1] += np.linalg.norm(P @ y[-1], pnorm)
50 input_cost_list[-1] += np.linalg.norm(u[-1], pnorm)
51

52 state_cost_list = np.array(state_cost_list)
53 state_cost_mean = np.mean(state_cost_list)
54 input_cost_list = np.array(input_cost_list)
55 input_cost_mean = np.mean(input_cost_list)
56 mean_cost_both = state_cost_mean + input_cost_mean
57 return state_cost_mean, input_cost_mean, mean_cost_both, counter, total,

state_cost_list, input_cost_list↪→

Bouke Stoelinga Master of Science Thesis

Bibliography

[1] C. E. Garcia and M. Morari, “Internal model control. a unifying review and some new
results,” Industrial & Engineering Chemistry Process Design and Development, vol. 21,
no. 2, pp. 308–323, 1982. doi: 10.1021/i200017a016. eprint: https://doi.org/10.
1021/i200017a016. [Online]. Available: https://doi.org/10.1021/i200017a016.

[2] J. Richalet, “Industrial applications of model based predictive control,” Automatica,
vol. 29, no. 5, pp. 1251–1274, 1993, issn: 0005-1098. doi: https://doi.org/10.1016/
0005- 1098(93)90049- Y. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/000510989390049Y.

[3] A. Alessio and A. Bemporad, “A survey on explicit model predictive control,” in Nonlin-
ear Model Predictive Control: Towards New Challenging Applications, L. Magni, D. M.
Raimondo, and F. Allgöwer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 345–369, isbn: 978-3-642-01094-1. doi: 10.1007/978-3-642-01094-1_29. [Online].
Available: https://doi.org/10.1007/978-3-642-01094-1_29.

[4] W. Heemels, B. De Schutter, and A. Bemporad, “On the equivalence of classes of hy-
brid dynamical models,” in Proceedings of the 40th IEEE Conference on Decision and
Control (Cat. No. 01CH37228), IEEE, vol. 1, 2001, pp. 364–369.

[5] Y. Luo and S. Fan, Min-max-plus neural networks, 2021. arXiv: 2102.06358 [cs.NE].
[6] B. M. Åkesson and H. T. Toivonen, “A neural network model predictive controller,”

Journal of Process Control, vol. 16, no. 9, pp. 937–946, 2006, issn: 0959-1524. doi:
https://doi.org/10.1016/j.jprocont.2006.06.001. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0959152406000618.

[7] B. B. Schwedersky and R. C. Flesch, “Nonlinear model predictive control algorithm
with iterative nonlinear prediction and linearization for long short-term memory net-
work models,” Engineering Applications of Artificial Intelligence, vol. 115, p. 105 247,
2022, issn: 0952-1976. doi: https://doi.org/10.1016/j.engappai.2022.105247.
[Online]. Available: https : / / www . sciencedirect . com / science / article / pii /
S0952197622003177.

Master of Science Thesis Bouke Stoelinga

https://doi.org/10.1021/i200017a016
https://doi.org/10.1021/i200017a016
https://doi.org/10.1021/i200017a016
https://doi.org/10.1021/i200017a016
https://doi.org/https://doi.org/10.1016/0005-1098(93)90049-Y
https://doi.org/https://doi.org/10.1016/0005-1098(93)90049-Y
https://www.sciencedirect.com/science/article/pii/000510989390049Y
https://www.sciencedirect.com/science/article/pii/000510989390049Y
https://doi.org/10.1007/978-3-642-01094-1_29
https://doi.org/10.1007/978-3-642-01094-1_29
https://arxiv.org/abs/2102.06358
https://doi.org/https://doi.org/10.1016/j.jprocont.2006.06.001
https://www.sciencedirect.com/science/article/pii/S0959152406000618
https://www.sciencedirect.com/science/article/pii/S0959152406000618
https://doi.org/https://doi.org/10.1016/j.engappai.2022.105247
https://www.sciencedirect.com/science/article/pii/S0952197622003177
https://www.sciencedirect.com/science/article/pii/S0952197622003177

94 BIBLIOGRAPHY

[8] E. Maddalena, C. da S. Moraes, G. Waltrich, and C. Jones, “A neural network ar-
chitecture to learn explicit mpc controllers from data,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 11 362–11 367, 2020, 21st IFAC World Congress, issn: 2405-8963. doi: https:
//doi.org/10.1016/j.ifacol.2020.12.546. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2405896320308442.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[10] Y. Pan and J. Wang, “Model predictive control of unknown nonlinear dynamical sys-
tems based on recurrent neural networks,” IEEE Transactions on Industrial Electronics,
vol. 59, no. 8, pp. 3089–3101, 2011.

[11] T. van den Boom, G. Abhimanyu, and B. De Schutter, Internal Report. Sep. 2022.
[12] E. Sontag, “Nonlinear regulation: The piecewise linear approach,” IEEE Transactions

On Automatic Control, vol. 26, no. 2, pp. 346–358, 1981.
[13] A. Bemporad and M. Morari, “Control of systems integrating logic, dynamics, and

constraints,” Automatica, vol. 35, no. 3, pp. 407–427, 1999.
[14] A. van der Schaft and J. Schumacher, “Hybrid systems modeling and complementar-

ity problems,” English, in Proceedings of the European Control Conference, Brussels
(CDRom 868), CDRom 868. CDRom 868, 1997.

[15] W. Heemels, J. M. Schumacher, and S. Weiland, “Linear complementarity systems,”
SIAM Journal On Applied Mathematics, vol. 60, no. 4, pp. 1234–1269, 2000.

[16] B. De Schutter, “Optimal control of a class of linear hybrid systems with saturation,”
SIAM Journal on Control and Optimization, vol. 39, no. 3, pp. 835–851, 2000.

[17] B. De Schutter and T. J. van den Boom, “Mpc for continuous piecewise-affine systems,”
Systems & Control Letters, vol. 52, no. 3-4, pp. 179–192, 2004.

[18] M. Wild, “Idempotent and co-idempotent stack filters and min–max operators,” Theo-
retical Computer Science, vol. 299, no. 1-3, pp. 603–631, 2003.

[19] A. Kripfganz and R. Schulze, “Piecewise affine functions as a difference of two convex
functions,” Optimization, vol. 18, no. 1, pp. 23–29, 1987. doi: 10.1080/02331938708843210.

[20] J. Xu, T. J. van den Boom, B. De Schutter, and S. Wang, “Irredundant lattice repre-
sentations of continuous piecewise affine functions,” Automatica, vol. 70, pp. 109–120,
2016.

[21] R. A. Cuninghame-Green and P. Meijer, “An algebra for piecewise-linear minimax prob-
lems,” Discrete Applied Mathematics, vol. 2, no. 4, pp. 267–294, 1980.

[22] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, “Synchronization and linearity:
An algebra for discrete event systems,” 1992.

[23] B. Heidergott, G. J. Olsder, J. Van Der Woude, and J. van der Woude, Max Plus at
work: modeling and analysis of synchronized systems: a course on Max-Plus algebra and
its applications. Princeton University Press, 2006, vol. 13.

[24] B. De Schutter and T. van den Boom, “Max-plus algebra and max-plus linear discrete
event systems: An introduction,” in Proceedings of the 9th International Workshop on
Discrete Event Systems (WODES’08), Göteborg, Sweden, May 2008, pp. 36–42.

Bouke Stoelinga Master of Science Thesis

https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.546
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.546
https://www.sciencedirect.com/science/article/pii/S2405896320308442
https://www.sciencedirect.com/science/article/pii/S2405896320308442
https://doi.org/10.1080/02331938708843210

BIBLIOGRAPHY 95

[25] R. E. Kálmán, “Contributions to the theory of optimal control,” 1960.
[26] D. Goldfarb and A. Idnani, “A numerically stable dual method for solving strictly

convex quadratic programs,” Mathematical Programming, vol. 27, no. 1, pp. 1–33, 1983.
[27] J. Rawlings, D. Mayne, and M. Diehl, Model Predictive Control: Theory, Computation,

and Design, 2nd ed. Nob Hill Publishing, 2017, isbn: 9780975937730.
[28] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear and hybrid sys-

tems. Cambridge University Press, 2017.
[29] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear quadratic

regulator for constrained systems,” Automatica, vol. 38, no. 1, pp. 3–20, 2002.
[30] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural networks,”

Towards Data Acience, vol. 6, no. 12, pp. 310–316, 2017.
[31] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, Fast and accurate deep network learn-

ing by exponential linear units (elus), 2016. arXiv: 1511.07289 [cs.LG].
[32] D. Hendrycks and K. Gimpel, Gaussian error linear units (gelus), 2023. arXiv: 1606.

08415 [cs.LG].
[33] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, Self-normalizing neural

networks, 2017. arXiv: 1706.02515 [cs.LG].
[34] M. Courbariaux, Y. Bengio, and J.-P. David, Binaryconnect: Training deep neural net-

works with binary weights during propagations, 2016. arXiv: 1511.00363 [cs.LG].
[35] M. Zhou, Softplus regressions and convex polytopes, 2016. arXiv: 1608.06383 [stat.ML].
[36] J. Van der Woude, “A characterization of the eigenvalue of a general (min, max,+)-

system,” Discrete Event Dynamic Systems, vol. 11, pp. 203–210, 2001.
[37] T. Serra, C. Tjandraatmadja, and S. Ramalingam, “Bounding and counting linear re-

gions of deep neural networks,” in Proceedings of the 35th International Conference
on Machine Learning, J. Dy and A. Krause, Eds., ser. Proceedings of Machine Learn-
ing Research, vol. 80, PMLR, Jul. 2018, pp. 4558–4566. [Online]. Available: https:
//proceedings.mlr.press/v80/serra18b.html.

[38] T. Zaslavsky, Facing up to arrangements: Face-count formulas for partitions of space
by hyperplanes: Face-count formulas for partitions of space by hyperplanes. American
Mathematical Soc., 1975, vol. 154.

[39] G. F. Montúfar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of linear regions
of deep neural networks,” Advances In Neural Information Processing Systems, vol. 27,
2014.

[40] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein, “On the expressive
power of deep neural networks,” in International Conference On Machine Learning,
PMLR, 2017, pp. 2847–2854.

[41] G. Montúfar, “Notes on the number of linear regions of deep neural networks,” 2017.
[42] E. Danna, M. Fenelon, Z. Gu, and R. Wunderling, “Generating multiple solutions for

mixed integer programming problems,” in Integer Programming and Combinatorial Op-
timization: 12th International IPCO Conference, Ithaca, NY, USA, June 25-27, 2007.
Proceedings 12, Springer, 2007, pp. 280–294.

Master of Science Thesis Bouke Stoelinga

https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1706.02515
https://arxiv.org/abs/1511.00363
https://arxiv.org/abs/1608.06383
https://proceedings.mlr.press/v80/serra18b.html
https://proceedings.mlr.press/v80/serra18b.html

96 BIBLIOGRAPHY

[43] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[44] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[45] Y. Nesterov, “A method for unconstrained convex minimization problem with the rate
of convergence o(1/k2),” in Doklady an USSR, vol. 269, 1983, pp. 543–547.

[46] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization.,” Journal of Machine Learning Research, vol. 12, no. 7,
2011.

[47] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014. doi: 10.
48550/ARXIV.1412.6980. [Online]. Available: https://arxiv.org/abs/1412.6980.

[48] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are uni-
versal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[49] B. Hanin, “Universal function approximation by deep neural nets with bounded width
and relu activations,” Mathematics, vol. 7, no. 10, p. 992, 2019.

[50] B. Karg and S. Lucia, “Efficient representation and approximation of model predic-
tive control laws via deep learning,” IEEE Transactions on Cybernetics, vol. 50, no. 9,
pp. 3866–3878, 2020.

[51] S. Piche, B. Sayyar-Rodsari, D. Johnson, and M. Gerules, “Nonlinear model predictive
control using neural networks,” IEEE Control Systems Magazine, vol. 20, no. 3, pp. 53–
62, 2000. doi: 10.1109/37.845038.

[52] K. Kiš and M. Klaučo, Neural network based explicit mpc for chemical reactor control,
2019. arXiv: 1912.04684 [cs.LG].

[53] R. May, H. Maier, and G. Dandy, “Data splitting for artificial neural networks using
som-based stratified sampling,” Neural Networks, vol. 23, no. 2, pp. 283–294, 2010, issn:
0893-6080. doi: https://doi.org/10.1016/j.neunet.2009.11.009. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/S0893608009002949.

[54] L. Prechelt, “Early stopping - but when?” In Neural Networks: Tricks of the Trade, G. B.
Orr and K.-R. Müller, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 55–
69, isbn: 978-3-540-49430-0. doi: 10.1007/3- 540- 49430- 8_3. [Online]. Available:
https://doi.org/10.1007/3-540-49430-8_3.

[55] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Nec-
ula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, JAX: Composable
transformations of Python+NumPy programs, version 0.3.13, 2018. [Online]. Available:
http://github.com/google/jax.

[56] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S.
Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-scale machine learning on
heterogeneous systems, Software available from tensorflow.org, 2015. [Online]. Available:
https://www.tensorflow.org/.

Bouke Stoelinga Master of Science Thesis

https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/37.845038
https://arxiv.org/abs/1912.04684
https://doi.org/https://doi.org/10.1016/j.neunet.2009.11.009
https://www.sciencedirect.com/science/article/pii/S0893608009002949
https://doi.org/10.1007/3-540-49430-8_3
https://doi.org/10.1007/3-540-49430-8_3
http://github.com/google/jax
https://www.tensorflow.org/

BIBLIOGRAPHY 97

[57] L. Keviczky, R. Bars, J. Hetthéssy, and C. Bányász, Control Engineering. Springer,
2019.

[58] H. Vallery and L. A. Schwab, Advanced Dynamics. Stichting Newton-Euler, 2018, ch. 13.
[59] Intel, Intel 64 and ia-32 architectures optimization reference manual, Order Number:

248966-046A, Jan. 2023.
[60] M. Wang, S. Rasoulinezhad, P. H. W. Leong, and H. K.-H. So, “NITI: Training integer

neural networks using integer-only arithmetic,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 33, no. 11, pp. 3249–3261, Nov. 2022. doi: 10.1109/tpds.2022.
3149787. [Online]. Available: https://doi.org/10.1109%2Ftpds.2022.3149787.

[61] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[62] H. Dai, B. Landry, L. Yang, M. Pavone, and R. Tedrake, Lyapunov-stable neural-network
control, 2021. arXiv: 2109.14152 [cs.RO].

[63] B. Karg and S. Lucia, “Stability and feasibility of neural network-based controllers via
output range analysis,” in 2020 59th IEEE Conference on Decision and Control (CDC),
2020, pp. 4947–4954. doi: 10.1109/CDC42340.2020.9303895.

[64] J. Hendriks, C. Jidling, A. Wills, and T. Schön, Linearly constrained neural networks,
2021. arXiv: 2002.01600 [stat.ML].

[65] G. Schullerus, V. Krebs, B. De Schutter, and T. van den Boom, “Input signal design
for identification of max-plus-linear systems,” Automatica, vol. 42, no. 6, pp. 937–943,
2006, issn: 0005-1098. doi: https://doi.org/10.1016/j.automatica.2006.01.
025. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0005109806000938.

Master of Science Thesis Bouke Stoelinga

https://doi.org/10.1109/tpds.2022.3149787
https://doi.org/10.1109/tpds.2022.3149787
https://doi.org/10.1109%2Ftpds.2022.3149787
https://arxiv.org/abs/2109.14152
https://doi.org/10.1109/CDC42340.2020.9303895
https://arxiv.org/abs/2002.01600
https://doi.org/https://doi.org/10.1016/j.automatica.2006.01.025
https://doi.org/https://doi.org/10.1016/j.automatica.2006.01.025
https://www.sciencedirect.com/science/article/pii/S0005109806000938
https://www.sciencedirect.com/science/article/pii/S0005109806000938

98 BIBLIOGRAPHY

Bouke Stoelinga Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	Preface and Acknowledgements

	Main Matter
	Introduction
	Background
	Problem description
	Research Questions
	Approach

	Max-Min-Plus-Scaling
	Max-Min-Plus-Scaling functions
	Max-Min-Plus-Scaling systems
	Canonical forms of MMPS systems

	Piecewise affine functions
	Equivalence with MMPS functions

	Max-Plus Algebra
	Max-Plus matrix algebra

	Min-Plus Algebra

	Model Predictive Control
	Optimal Control: Linear Quadratic Regulator
	Receding horizon principle

	Quadratic programming
	Stability concepts
	Stability for constrained linear systems
	Stability for nonlinear systems

	MPC for PWA systems
	Mixed Logical Dynamical model
	Optimal control of MLD system

	Explicit MPC for linear systems
	Memory use

	Neural Networks
	Neural Networks
	Activation functions
	Min-Max-Plus neural networks
	Neural networks as max-min-plus system

	Linear regions
	Training neural networks
	Back-propagation
	Update rules

	Exact representation

	Approximation procedure
	Making controllers and obtaining control law
	Approximating with different parameters
	Sampling Strategy
	Neural Network training
	Implementing max-plus and min-plus layers

	Comparing results

	Case studies
	Linear inverted pendulum
	Piecewise affine inverted pendulum
	Double pendulum
	Linear Model

	Results
	Activation functions
	Controller for linearized system
	Controller PWA system 1-norm
	Controller PWA system infinity-norm

	Sampling Strategy
	Maxplus and Minplus layers
	Double Pendulum

	Conclusion
	Conclusion to experiments
	Main conclusion
	Further research
	More experiments and different systems
	Speed of max-plus and min-plus layers with different architectures
	Post-processing methods on neural network approximations
	More general forms of neural networks
	Stability and constraint validation for neural network controllers
	Other sampling strategies and parallels to identification techniques
	Other metrics to measure performance of approximation

	Appendices
	Appendices
	Discretization of continuous time piecewise affine system
	Parameters of the physical systems

	Algorithms and code
	Max-plus and min-plus layers
	Linearized MPC controller
	PWA MPC controller
	Scoring metric

	Back Matter

