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Abstract—A cyber-physical system is often designed as a
network in which critical information is transmitted. However,
network links may fail, possibly as the result of a disaster.
Disasters tend to display spatiotemporal characteristics, and con-
sequently link availabilities may vary in time. Yet, the requested
connection availability of traffic must be satisfied at all times,
even under disasters. In this paper, we argue that often the
spatiotemporal impact of disasters can be predicted, such that
suitable actions can be taken, before the disaster manifests, to
ensure the availability of connections. Our main contributions are
three-fold: (1) we propose a generic grid-based model to represent
the risk profile of a network area and relate the risk profile to the
availability of links and connections, (2) we propose a polynomial-
time algorithm to identify connections that are vulnerable to
an emerging disaster risk, and (3) we consider the predicted
spatiotemporal disaster impact, and propose a polynomial-time
algorithm based on an auxiliary graph to find the most risk-
averse path under a time constraint.

I. INTRODUCTION

A Cyber-Physical System (CPS) is a system of physical el-
ements that are managed and controlled by intelligent compu-
tational elements. The computational elements detect potential
issues with the physical systems and react accordingly by re-
configuring the physical systems. One of the important aspects
in managing the network of a CPS is that the availability of
network services, e.g., network connectivity, is ensured at all
times. A network connection between two network nodes is
often provided via an end-to-end path (a sequence of network
links) between the nodes. Network clients often care only
about their connection availability (the probability that the
connection is functioning at a random time in the future), and
are often oblivious to how the end-to-end path is assigned.
Different network clients may request different connection
availability and the assigned end-to-end path must satisfy that
requested availability, even under the failure of network links.

The availability of a connection depends on the availability
of the links constituting its assigned end-to-end path. Although
links are designed to be as robust as possible, link failures are
still a recurring problem, especially due to natural disasters
(adverse events due to the force of nature, e.g., earthquakes,
hurricanes and floods) and human-based disasters (adverse
events due to intentional or accidental actions of humans,
e.g., construction works, nuclear explosions and sabotage).
Safeguarding connections against disaster risks is important
for satisfying the requested connection availability.

Certain disaster risks may be anticipated beforehand, e.g.,
by disaster early warning systems (e.g., hurricanes can be
anticipated hours in advance [1]) or by predicting near-future

disaster occurrences from earlier statistics. For instance, Don-
nellan et al. [2] conducted a study to estimate the probability
that an earthquake of certain magnitude occurs near Los
Angeles between May 2015 and May 2018, based on the
earlier March 2014 earthquake. When the geospatial impact
of disaster risks on the network area can be foreseen, CPS
network operators can configure new connections with safer
end-to-end paths or reroute vulnerable existing connections
through safer network areas. Disaster risks may also display
spatiotemporal behavior by moving around in the network
area, affecting different parts of the network area at different
times. Hence, the spatiotemporal nature of disaster risks needs
also to be considered in ensuring the availability of connec-
tions.

Our main contributions can be summarized as follows:
• We develop a generic grid-based model to represent the

risk profile of a network area and relate the risk profile
to the availability of links and connections.

• We propose a polynomial-time algorithm to identify
connections that are vulnerable to a disaster risk.

• We propose a polynomial-time algorithm, based on the
generation of a flexible auxiliary graph, for finding the
most risk-averse end-to-end path under a time constraint,
when disaster risks are spatiotemporal.

The remainder of this paper is organized as follows. In Sec-
tion II, we introduce our proposed grid-based model, discuss
possible approaches for assigning the risk profiles, and relate
the risk profiles to the availability of links and connections.
We propose an approach for identifying connections that are
vulnerable to an emerging disaster risk in Section III and
analyze the effect of different disaster sizes on the number
of vulnerable connections and for different network utilization
levels. Section IV explains our approach for finding the most
risk-averse path under a time constraint. We discuss related
work in Section V and conclude in Section VI.

II. GRID-BASED MODEL

A. Availability of Grid Rectangles

We propose a grid-based model of equally-sized rectangles
for representing the network area (e.g., a terrestrial network
area, an undersea network area, an urban network area or any
combination of them). Assuming that the network area can
be projected onto a two-dimensional Cartesian plane, the grid
can be generated by partitioning the Cartesian plane into a set
F of |F | equally-sized rectangles. Each grid rectangle f ∈ F
is assigned with a risk in the form of an availability value
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Fig. 1. An example of a grid of risk profiles.
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Fig. 2. Different risk boundaries.

Af between zero to one, which represents the probability that
the network area bounded by rectangle f is free from the
impact of disasters during a specific time period. The risk that
is assigned to each grid rectangle depends on the geospatial
attributes of the network area bounded by the grid rectangle.

Adjacent grid rectangles may or may not be assigned with
equal risk value. For instance, almost ninety percent of the
world’s earthquakes occur along the Pacific Ring of Fire [3].
Link failures also occur more frequently in areas with higher
populations, such that a grid rectangle in a city should be
assigned with a grid availability that is lower than a grid
rectangle in a rural area. Figure 1 shows an example of a
network area modeled by 104 grid rectangles. The accuracy
of the grid in representing a network area can always be tuned
by adjusting the granularity of the grid (the value of |F |).

The availability of a grid rectangle can also be determined
by the risk of disasters in the grid rectangle. A disaster risk r
is characterized by its occurrence probability Pr(ro) and im-
pact probability Pr(ri). Both probabilities are important since
although natural disasters have less occurrence probability
than human-based disasters, natural disasters often have higher
impact probability than human-based disasters [4]. Disasters
can also occur without enough impact to damage their area-
of-effect, e.g., an earthquake of magnitude below 2.5 poses
no harm to buildings. The probability Pr(r) of a disaster r
occurring and damaging its area-of-effect is

Pr(r) = Pr(ro)× Pr(ri) (1)
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Fig. 3. Overlapping disaster risks.

Our grid-based model also eases the representation of
various risk boundaries (e.g., confined risks, scattered risks
and risks with unaffected interior gaps as shown in Figure 2).
Confined risks, e.g., controlled demolitions and electromag-
netic pulse attacks, have contained area-of-effect with regular
or irregular boundaries. Scattered risks, e.g., heat waves and
thunderstorms, have scattered area-of-effects. A grid rectangle
f can be affected by a set of disasters R as shown in Figure
3, with each disaster r ∈ R occurring independently of one
another, but can occur simultaneously. The availability Af of
a grid rectangle f is

Af =
∏
r∈R

(1− Pr(rf )) (2)

where Pr(rf ) is the probability of disaster risk r ∈ R occurring
and damaging grid rectangle f .

B. Availability of Links and Paths

A network G consists of a set N of |N | network nodes and
a set L of |L| network links. We focus on link availability,
since link failures are more frequent than node failures [5].
Each link (u, v) ∈ L can be represented as a straight line
between nodes u and v, or as non-straight concatenations of
multiple straight line segments of irregular lengths between
nodes u and v [6]. Each link (u, v) ∈ L overlaps a set of
grid rectangles Ouv ⊆ F . The failure of any grid rectangle
f ∈ Ouv causes the failure of link (u, v), irrespective of the
other grid rectangles in Ouv that do not fail. We consider the
availability Auv of each link (u, v) ∈ L as the product of the
availability of all the grid rectangles that link (u, v) crosses.



Algorithm 1 Detecting Vulnerable Connections
1: populate an R-tree Y with all the grid rectangles f ∈ F
2: for each link (u, v) ∈ L
3: compute its minimum bounding rectangle MBRuv

4: find the set Ouv ∈ Y that overlaps MBRuv

5: for each grid rectangle f ∈ Ouv

6: if f does not overlaps link (u, v)
7: remove f from Ouv

8: compute the projected availability A′uv of link (u, v)

9: for each connection c ∈ C
10: compute its projected path availability A′Pc

11: if A′Pc
< Ac

12: add c into the vulnerable connection set C ′

Auv =
∏

f∈Ouv

Af (3)

The availability of a connection equals the availability of its
assigned end-to-end path. Since a path P consists of a number
of links, the availability of a path AP is the product of the
availability of its links.

AP =
∏

(u,v)∈P

Auv (4)

III. DETECTION OF VULNERABLE CONNECTIONS

In the emergence of a risk of disaster to parts of the
network area at a point in time, vulnerable existing connections
(connections that cannot satisfy their requested availability
once the disaster manifests) need to be detected and properly
rerouted to safer paths. Only then can the availability of
connections be ensured.

A. Problem Definition

Detection of Vulnerable Connections (DVC) problem: Given
a network G of a set N of |N | nodes and a set L of
|L| links, a grid F of |F | grid rectangles representing the
area into which G is embedded, a set C of |C| existing
connections, and a set F ′ ⊆ F of |F ′| grid rectangles that
are vulnerable to disaster risk r. Each grid rectangle f ∈ F is
characterized by a grid availability Af , and each grid rectangle
f ∈ F ′ is characterized by a projected worst-case reduced grid
availability A′f due to disaster risk r. Each link (u, v) ∈ L
connects nodes u and v, and overlaps a set Ouv ⊆ F of |Ouv|
grid rectangles. Each connection c ∈ C is characterized by a
requested connection availability Ac and an end-to-end path
Pc. Identify the set C ′ ⊆ C of connections that are vulnerable
to disaster risk r.

The DVC problem is polynomially solvable when the grid-
based model of Section II is considered.

B. Our Approach

We propose Algorithm 1 for solving the DVC problem. In
line 1 of Algorithm 1, an R-tree [7] (a depth-balanced data
structure for organizing objects using bounded rectangles) is

populated with all the grid rectangles. Lines 3-4 use the min-
imum bounding rectangle (MBR) of each link for performing
a window query on the R-tree Y , by recursively checking the
R-tree nodes for grid rectangles that overlap the MBR of the
link. Lines 5-7 confirm that the grid rectangles overlap the
link and not just the MBR of the link. The R-tree eliminates
the need for checking pairwise overlap between all possible
link and grid rectangle pairs, by identifying beforehand the
grid rectangles that may overlap each link. The projected
availability of links is computed using Equation 3 in line 8, and
the projected availability of existing connections is computed
using Equation 4 in line 10. If the projected path availability
A′Pc

of a connection c is less than its requested connection
availability Ac, c is vulnerable to disaster risk r.

Populating the R-tree takes at most O(|F | log |F |) time [8].
Finding the grid rectangles that overlap each link takes at most
O(|F |) time, since in the worst case, a link can overlap all
grid rectangles. Computing the availability of connections and
identifying vulnerable connections takes at most O(|C||L|)
time. Summing up all contributions, the worst-case time com-
plexity of Algorithm 1 is O(|F | log |F |+ |L|(|F |+ |C|)).

C. Analysis

We analyze the effect of the size of the disaster risk to
the number of vulnerable connections for different levels of
network utilization. We generate the network as a Waxman
graph [9] in a grid F of |F | grid rectangles. The Waxman
network is frequently used for representing spatial networks,
e.g., the Internet topology [10]. |N | nodes are placed uniformly
at random coordinates in the grid, and the link existence is re-
flected by ie

`uv
ja , where `uv is the Euclidean distance between

nodes u and v, and a is the maximum Euclidean distance
between any nodes. Higher i leads to higher link densities,
and lower j leads to shorter links. We consider only connected
graphs, such that there is at least one path between each
node. Each grid rectangle f ∈ F is assigned with a random
availability Af between 0.9999 and 1.0000. Simulations are
conducted on an Intel(R) Core i7-4600U 2.1GHz machine of
16GB RAM memory, with |F | = 2500, |N | = 20, i = 0.6
and j = 0.6. All results are averaged over five thousand runs.

We generate a random set |C| of C existing connections
according to the network utilization level for each simulation
run. The network utilization is the average utilization of all
links, with each link having |W | = 50 capacity. In an
iterative manner (until the network utilization is reached), a
connection c is assigned with a random source-destination
node pair (xc, yc), and an end-to-end path Pc with the highest
possible availability APc (using Dijkstra’s algorithm [11] with
−logAuv as the link weight of each link (u, v) ∈ L). Each
connection c ∈ C is then assigned with a random requested
connection availability Ac between 0.7000 and APc

.
We consider both confined and scattered risks in our anal-

ysis. We generate a confined emerging risk by randomly
selecting a grid rectangle as the epicenter, and randomly
expanding set F ′ with one of the adjacent grid rectangles
until the required |F ′| is achieved. We ensure that confined
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Fig. 4. Effect of disaster size on the number of vulnerable connections.
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Fig. 5. Effect of network utilization on the number of vulnerable connections
(confined emerging risk).

emerging risks of different sizes have the same epicenter for
each simulation run for a fair analysis. We generate a scattered
emerging risk by randomly selecting |F ′| grid rectangles from
F . The projected reduced availability (once the risk manifests)
of each grid rectangle f ∈ F ′ is assumed to be half of its
original value.

Figure 4 shows the effect of the size of the emerging risk
on the number of vulnerable connections. As the size of
the emerging risk increases, more connections are vulnerable
to the emerging risk. A scattered emerging risk is more
detrimental to connections than a confined emerging risk.
More connections are also vulnerable to the emerging risk
as the network utilization level increases, as shown in Figure
5.

Vulnerable connections need to be rerouted through safer
network areas, such that the connection availability can be sat-
isfied when the risk manifests. Figure 6 categorizes vulnerable
connections into reroutable and unreroutable connections. A
connection is reroutable if there is at least an alternate path in
the network that can satisfy the requested connection availabil-
ity. Else, the connection is unreroutable. Although the number
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Fig. 6. Effect of network utilization on the number of (un)reroutable
connections (confined emerging risk with |F | = 200).

of reroutable connections increases with network utilization,
the ratio between the number of reroutable connections and
the number of unreroutable connections increases as well.

IV. SPATIOTEMPORAL RISK-AVERSE ROUTING

Disasters may also travel within or pass through the network
area, such that its impact on the risk profiles of the network
area differs in time. For example, consider the network area
shown in Figure 7. The network consists of four nodes and four
links, and the network area is represented as a grid of 36 grid
rectangles. It takes one time slot to traverse links (1, 3) and
(3, 4), and two time slots to traverse links (1, 2) and (2, 4). At
time slot t0, a hurricane manifests at the upper right part of the
network area, reducing the availability of the grid rectangles
in its area-of-effect. After a time slot, the hurricane moves
towards the lower middle of the network area with stronger
impact, while affecting links (1, 3), (2, 4) and (3, 4). After
another time slot, the hurricane grows stronger and moves
towards the upper left part of the network area, while affecting
links (1, 2), (1, 3) and (3, 4). Hence, some grid rectangles have
different availabilities at different time slots.

A. Problem Definition

Spatiotemporal Risk-Averse Routing (SRR) problem: Given
a network G of a set N of |N | nodes and a set L of |L|
links, a grid F of |F | grid rectangles representing the area of
G, a source node x ∈ N , a destination node y ∈ N , and a
time window T of |T | time slots. Each grid rectangle f ∈ F
is characterized by a grid availability Aft, for each time slot
t ∈ T . Each link (u, v) ∈ L connects nodes u and v, is
characterized by a link delay `uv (in the unit of time slots)
and overlaps a set of grid rectangles Ouv ⊆ F of |Ouv| grid
rectangles. Find a path P from node x to node y, between
the time period t∆1 ∈ T and t∆2 ∈ T , such that the path
availability AP is maximized.

The time window is assumed to be discretized into discrete
time slots (e.g., by using the common divisor among all link
delays as the unit of the time slots). Each link delay represents
the number of time slots required to traverse the link. A routing
decision is made before the travel commences, and traffic
follows the assigned end-to-end path irrespective of any further
network state change. Waiting may be allowed at certain or all
nodes, such that traffic can stay for a duration of time slots at
the nodes before leaving the nodes. By waiting at a node, the
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Fig. 7. An example of a grid with spatiotemporal risk profiles.

Algorithm 2 Auxiliary Graph Generation
1: initialize an empty graph H = (V,E)
2: for each node n ∈ N
3: for each time slot t ∈ T where t < tmax
4: add nodes nt and nt+1 into V
5: if waiting is allowed at node n at time slot t
6: add link (nt, nt+1) into E where Antnt+1

= 1

7: for each link (u, v) ∈ L
8: for each time slot t ∈ T where t+ `uv ≤ tmax
9: insert link (ut, vt+`uv

) into E

10: for each link (u, v) ∈ E
11: compute the worst-case availability Auv of link (u, v)
12: `′uv = − log Auv

link availability of an adjacent link might increase or decrease
in time. We consider only simple paths such that each link can
only be traversed once in a path.

The SRR problem finds the most risk-averse path (the path
with the highest possible availability), while ensuring that the
traffic reaches the destination node at least at t∆2 . In the SRR
problem, links have fixed delay but spatiotemporal availability
(since the availabilities of grid rectangles are spatiotemporal).
The SRR problem is thus a multi-criteria problem that maxi-
mizes the path availability under a path delay constraint. The
SRR problem is polynomially solvable when the grid model
of Section II and the notion of time slots are considered.

B. Our Approach

We propose a polynomial-time graph transformation algo-
rithm (shown in Algorithm 2) that uses an auxiliary graph
to reflect the notion of time slots. Using our auxiliary graph,
the SRR problem can be solved by a polynomial-time min-
cost routing algorithm (e.g., Dijkstra’s algorithm [11]). For
instance, the auxiliary graph for the network in Figure 7
is shown in Figure 8. In lines 2-6, each node n ∈ N is
represented by |T | auxiliary nodes. Vertical unidirectional
auxiliary links with perfect availability are added between
the different time slots of an auxiliary node when waiting is
allowed at the node during that time slot. In lines 7-9, each
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link (u, v) ∈ L is represented by at most |T | unidirectional
auxiliary links, which also reflect the time slots needed to
traverse the link. We consider the availability of an auxiliary
link to be the worst-case availability of the link during the time
slots spent to traverse the link. The auxiliary graph contains at
most |N ||T | auxiliary nodes and (|N |+ |L|)(|T |−1) auxiliary
links. In line 12, the auxiliary link weight `′uv of each auxiliary
link (u, v) ∈ E is set to the negative logarithmic value of its
availability. The worst-case time complexity of Algorithm 2
is O(|L||F |+ |T |(|N |+ |L|)).

The most risk-averse path from node x ∈ N to node
y ∈ N between t∆1 and t∆2 can be acquired by using
an appropriate min-cost routing algorithm (e.g., Dijkstra’s
algorithm [11]) to find the min-cost path (using `′uv as the
cost of each link (u, v) ∈ E) from node x∆1

∈ V to a
temporarily created node y′ ∈ V that is connected from
nodes (y∆1 , y∆1+1, . . . , y∆2 ∈ V ) via directed links with zero
link cost, in the auxiliary graph H . y′ is temporarily created
because the traffic may arrive at the destination node earlier
than t∆2

, while waiting is not allowed at the destination node.
When disjoint risk-averse paths are needed, an appropriate
min-cost disjoint paths algorithm (e.g., Suurballe’s algorithm
[12]) can be used instead.

C. Analysis

We analyze the effect of the size of the time window on the
time required to generate the auxiliary graph and find the most
risk-averse path. We again use a connected Waxman graph
with the properties mentioned earlier in Section III, for each
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simulation run. Each link (u, v) ∈ L is randomly assigned
with a delay `uv between one to four time slots. Each grid
rectangle f ∈ F is assigned with a random availability Af

between 0.00 and 1.00 for each time slot. Waiting is allowed
indefinitely at all nodes.

The time required to generate the auxiliary graph increases
with the increase of the size of the time window, as shown in
Figure 9, with line 11 of Algorithm 2 dominating the running
time. It is worth noting that the auxiliary graph need only be
created once for a specific time window, and can be reused to
find the most risk-averse path for any other node pair under
time constraints that are part of the time window. The time
required to find the most risk-averse path, if it exist, in the
auxiliary graph is substantially less than the time required to
generate the auxiliary graph in all the tested cases.

V. RELATED WORK

Kuipers provides an overview of survivability algorithms
[13]. Dikbiyik et al. [14] propose risk-aware provisioning of
connections to minimize the loss for network operators when
a disaster occurs. They also consider a post-disaster reprovi-
sioning scheme to recover disrupted connections. We, how-
ever, aim to reduce the number of disrupted connections by
detecting vulnerable connections before the disaster, and route
connections using the most risk-averse paths. We also consider
link availability as a function of the spatiotemporal risk profile,
instead of link component availabilities [15]. Conventional
temporal routing, e.g., [16], [17], often aims to minimize the
expected end-to-end path delay under temporal link delays.
On the other hand, we maximize the path availability under
spatiotemporal link availabilities, while also considering a time
constraint under fixed link delays. In addition, our grid-based
model enables the representation of more complex disaster
boundaries, complementing earlier work that assumes specific
geometric shapes of disaster boundaries, e.g., circular [18],
ellipses [19], general polygons [19] or half-planes [20].

VI. CONCLUSION

In this paper, we propose a generic grid-based model to
represent the risk profile of a network area, a polynomial-time
algorithm to identify connections that are vulnerable under the
risk of a disaster, and a polynomial-time algorithm to find the
most risk-averse end-to-end path under a time constraint when
disaster risks are spatiotemporal. We also show that larger

disaster size leads to more vulnerable connections, and scat-
tered disasters are more detrimental to network connections
than confined disasters. The number of vulnerable connections
increases with the increase in network utilization, and the pos-
sibility of rerouting vulnerable connections using alternative
paths decreases with the increase in network utilization.

Possible future directions that can be derived from this paper
are finding the minimum delay path that satisfies an availability
constraint, using a probability density function to represent the
risk profile, and extending the grid-based model for use in a
three-dimensional Cartesian plane.
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