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Metrics of green chemistry: Waste minimization
Roger A. Sheldon1,2, Moira L. Bode1 and
Stephanie G. Akakios3

The increasingly apparent negative impact of human activities
on the environment has heightened the urgency for the
chemistry community to adopt greener and more sustainable
practices. The E-factor can still be considered a valuable tool in
this drive, particularly because of its broad acceptance and
familiarity amongst both industrial and academic chemists. An
important factor in broadening the adoption of green principles
is ensuring that the academics responsible for training the next
generation of chemists prioritise green and sustainable prac-
tices in their undergraduate and post graduate laboratories.
Green metrics must be easy to use to motivate the broader
chemistry community to develop greener syntheses. For
maximum impact to be achieved the detail of the exact green
metrics applied are less important than their adoption by the
broader chemical community. Of growing importance is the
replacement of fossil resources with renewable alternatives to
reduce greenhouse gas emission that is a significant driver of
climate change. The C factor is used to compare the carbon
footprints of different routes to a particular product.
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Introduction
An important goal of green chemistry is to reduce or,
preferably, eliminate waste generation in the manu-
facture and application of chemicals. In order to manage
waste formation in chemical processes it is essential to
have metrics for measuring it. Two important metrics
for measuring the mass efficiency of chemical

processesdatom economy (AE) [1] and the E-factor
[2], were introduced 30 years ago. AE is the molecular
weight of the product divided by the sum of the mo-

lecular weights of the starting materials. Calculation of
the AE assumes the use of stoichiometric amounts of
starting materials and a 100% chemical yield and is very
useful for comparing different routes to a target mole-
cule before any experiments are performed.

The E-factor: The environmental footprint of
chemicals
The E-factor is the actual amount of waste, defined as
“everything but the desired product” produced per kg of
product, including solvent losses and chemicals used in
work-up. E-factors of individual steps are additive and
are readily calculated for single- or multi-step processes.
The ideal E-factor is zero conforming to the first prin-

ciple of green chemistry: “It is better to prevent waste
than to treat or clean up waste after it is formed.”

The substantial environmental footprint of chemicals
manufacture, expressed as the E-factor, was illustrated
with the now well-known Table of E-factors, derived
from data of mature commercial processes, in various
industry segments from oil refining to pharmaceuticals.
Publication of Table 1 in 1992 provided an important
challenge to the industry, particularly the fine chemicals
and pharmaceuticals segments, to reduce the amount of

waste generated in their manufacturing processes.

The pharmaceutical industry accepted the challenge
and has spent the last 2e3 decades cleaning up their
manufacturing operations [3]. However, in the inter-
vening years APIs have become increasingly compli-
cated molecules, compared with 40 years ago, thus
requiring longer syntheses for their production. As
Roschangar et al. have recently reported (ref. 50), the
average cEF, which includes water and solvent with no
recycling, of commercial scale syntheses of a selection of

97 APIs is 182 with a spread from 35 to 503.

An important driver for the widespread introduction of
green chemistry in chemicals manufacture was always
waste prevention at source [4], not only for its envi-
ronmental benefits but also for its economic compet-
itiveness through efficient and cost-effective use of
raw materials. Higher E-factors correspond to more
waste generated and greater environmental impact.
Lower E-factors translate to smaller quantities of
materials used and show a strong positive correlation
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with reduced manufacturing and waste disposal costs

[5e7]. Using the E-factor places emphasis firmly on
designing cleaner, waste-free processes, and the ideal
E-factor of 0 clearly reflects the ultimate goal of zero
waste manufacturing plants.

So what does the E-factor include? Originally we
considered all reagents used and assumed that solvents
would be recycled. If the recycle figures were not known
we assumed a 90% recycle of the solvent(s), that is we
counted only 10% of the solvent used as waste in the
process and work-up steps. In hindsight, this was in

most cases rather optimistic. The propensity of organic
chemists for optimizing the solvent for each step in a
multi-step synthesis leads to cross-contamination and
difficulties in solvent recycling. We excluded water
because we thought that its inclusion would lead to a
skewing of E-factors. However, disposal or reuse of
process water will involve some sort of pretreatment and
current thinking is to calculate E-factors both with and
without water [8,9]. This has led to the use of simple E-
factors (sEF), that disregard solvents and water in early
route scouting, and complete E-factors (cEF) that

include solvents and water with no recycling [5]. The
true commercial E factor will fall between the sEF and
cEF and can be calculated when reliable data for recy-
cling and solvent losses are known.

The inclusion of the energy requirements of a process in
the E-factor was always implicit since energy con-
sumption generates waste as carbon dioxide. However,
fine chemicals and pharmaceuticals are often produced
in multi-purpose facilities where energy usage is not
allocated to particular processes, making it difficult to

assign waste derived from energy to individual products.
In contrast, bulk chemicals are produced in dedicated
units and energy consumption is an important compo-
nent. In order to improve the energy accounting of the
original E-factor, the Eþ factor, which considers the
greenhouse gas emissions generated from electricity
used for processes such as cooling, heating, stirring, and
pumping, was recently proposed [10].

Use and acceptance of the E-factor
The strength of the E-factor is its simplicitydboth in
terms of concept and applicationdand because it was

introduced 30 years ago, it is familiar to many and is
widely used. Other mass-based green metrics such
as process mass intensity (PMI) and reaction mass
efficiency (RME) have not reached the broad accep-
tance of the E-factor and their use is largely confined
to small-molecule pharmaceuticals [11e13]. Of
particular relevance, in our opinion, is the acceptance
of the E-factor by university academics as evidenced

by recent literature [14e19]. We believe that for
universal adoption of greener and more sustainable
processes, the concepts and practices need to be
introduced to undergraduate students and rigorously
applied in academic post graduate chemistry labora-
tories [20]. These practices will become second-
nature to the students who will then ensure they are
propagated in their places of future employment. It is
gratifying to note that significant efforts are being
invested in making green chemistry concepts acces-
sible to undergraduate and post graduate stu-

dents [21e26], but these efforts need to be
accelerated. Simplicity is the key to stimulating broad
adoption of the “greening of organic syntheses” by
academics and we suggest continued use of the
familiar E-factor for assessing process greenness.

The original E-factor has the serious limitation of not
considering the nature of the waste, assigning all waste
types the same weighting. However, the environmental
impact of the waste generated is of paramount impor-
tance [12,25,27e29]. Consequently, the E-factor must

be considered in conjunction with other metrics [30].
The environmental quotient (EQ) [31], where Q rep-
resents the nature of the waste, was suggested over two
decades ago but the problem becomes how to quantify
Q. Subsequently, Eissen et al. [32] developed the
simple and easy-to-use EATOS (environmental assess-
ment tool for organic synthesis) software to assess the
potential environmental impact (PEI) of waste by
assigning penalty points based on human and eco-
toxicity. This approach was later further refined by
various groups [12].

Which other metrics could be widely adopted by the
broader chemistry community?
When deciding on which metrics should be a priority, it
is useful to consider where the biggest impact can be
achieved for relatively little effort. In pharmaceutical

manufacture solvents account for 80e90% of the total
mass of non-aqueous material used, the majority of
waste formed and 75e80% of the environmental life
cycle impacts [33e35]. Recognizing the importance of
this, several drug companies have developed in-house
solvent selection guides to stimulate replacement of
environmentally undesirable solvents using a traffic-
light inspired color codingdgreen, amber, and red
dto signify “preferred,” “useable,” and “undesirable”
solvents [36e39]. These can be readily adapted for use

Table 1

Factors in the chemical industry.

Industry segment Product
tonnage (p/a)

E-factor
(kgs waste/kg product)

Oil refining 106–108 <0.1
Bulk chemicals 104–106 <1–5
Fine chemicals 102–104 5–50
Pharmaceuticals 10–103 25 - >100

2 Metrics for Green Chemistry (2022)
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in academic research laboratories, allowing students to
make informed choices about solvent selection for re-
action and work-up.

Traditionally, the E-factor is based on the chemical pro-
cess conducted at the manufacturing site, that is, on
gate-to-gate system boundaries, rather than cradle-to-
grave [40]. Hence, the E-factor is dependent on the

starting point of the synthesis and the E-factor of a multi-
step synthesis can be significantly reduced overnight by
purchasing an early intermediate instead of making it in-
house. We recently used the E-factor alongside other
metrics in selecting a route for the synthesis of a key
intermediate for HIV protease inhibitors [41]. Overall,
the E-factor fared well in route assessment, but inclusion
of so-called intrinsic E-factors to account for the syn-
thesis of advanced starting materials (ASMs) was essen-
tial. Hence, an agreed upon definition of starting material
is essential. For example, in pharmaceuticals manufacture

this has been defined as being readily available at a price
of <$ 100 per kg from a reputable commercial supplier
[5,12]. Since E-factors are additive, the intrinsic E-factor
for the ASM synthesis may be simply added to the main
synthesis E-factor to obtain an unbiased E-factor value
for a complete synthetic pathway.

We found that using a range of metrics in addition to E-
factor allowed for a more rigorous route evaluation. One
of the most conceptually simple measures we applied
was the Green Motion� penalty point system [42].

Here seven fundamental conceptsdraw material, sol-
vent selection, hazard and toxicity of reagents, reaction
efficiency, process efficiency, hazard and toxicity of final
product and waste generationdare considered. Each
process is assessed by means of a questionnaire requiring
simple yes/no answers, pictograms, numerical values or a
selection of multiple choice options that then assigns
penalty points based on the answers. Deduction of the
penalty points from 100 affords an overall score, meaning
the higher the score the more sustainable and the lower
the environmental impact of the process. Adaptation of
this measure, specifically developed for the flavor and

fragrance industry, or a similar measure [43e45], could
lead to a penalty-point system ideally suited for use in
academic laboratories. Another useful visual tool is the
radial polygon that provides an overview of multivariable
performance indicators. An ideal green synthesis corre-
sponds to a regular polygon, while distortions towards
the center identify weak points in a synthesis and pro-
vide guidance for optimization [46e48].

In order to set meaningful goals for industrial research it
is necessary to compare processes with an industry

benchmark. The green aspiration level (GAL�) [5] is
such a benchmark and is based on the average waste
generated per kg API in 46 commercial manufacturing
processes from nine large pharmaceutical companies
[49]. A further refinement, the innovative green

aspiration level 2.0 (iGAL 2.0) was recently introduced
[50]. However, these tools are only relevant for process
evaluations of multi-step syntheses of relatively complex
APIs.

E-factors of commodity chemicals
The E-factor was always intended to be used in
pharma, fine and bulk (commodity) chemicals manu-
facture. Although the E-factors for pharmaceuticals are
higher, in absolute terms bulk chemicals produce more
waste, for example, if the total annual production of a

chemical is 500,000 tonnes and the E-factor is 5 then
2.5 million tonnes of waste are generated. Indeed, it
was becoming increasingly obvious in the 1990s, to
anyone paying attention, that bulk chemicals manu-
facture was responsible for the generation of copious
amounts of chemical waste, mainly owing to the use of
antiquated technologies using stoichiometric amounts
of (inorganic) reagents. The solution was obvious:
substitution of stoichiometric reagents with catalytic
alternatives.

A case in point is caprolactam manufacture [51]. The
conventional process involves production of cyclohexa-
none oxime, by reaction of hydroxylamine sulfate with
cyclohexanone, followed by sulfuric acid promoted
Beckmann rearrangement (Figure 1). It generates ca.
4.5 kg of ammonium sulfate per kg of caprolactam. In
contrast, the Sumitomo process involved two catalytic
steps generating two molecules of water as the sole co-
product, that is, it is salt-free with an E-factor of<0.1. It
was gratifying, therefore, that Sumitomo used the E-
Factor to showcase the merits of their new, catalytic

process.

Measuring the carbon footprint of chemicals: The C
factor
In 1992, the number one environmental problem was
the hole in the ozone layer caused by ozone depleting
chemicals in the atmosphere. Thirty years later it is
climate change caused by greenhouse gases, particularly
carbon dioxide. The number one priority is climate
change mitigation, which is motivating a transition from
an economy based on fossil resources to a bio-based
economy based on renewable energy and raw mate-
rials. We are on the cusp of the decarbonisation of the

energy sector and the defossilization of the chemicals
sector.

Christensen et al. [52] proposed the use of the climate
factor, defined as the total mass of CO2 emitted divided
by the mass of product formed (kg CO2/kg product), as a
metric for comparing the CO2 burdens of different
processes to a particular product. It is the sum of kg CO2

emitted in the production of the raw material(s) and in
the conversion of the raw materials to the product(s). It
is also useful for comparing biomass-vs fossil resource-
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based processes [53] but, as is the case with E-factors,
system boundaries will need to be defined for deter-
mining the C factor. More recently, Gallou et al. [54]
used the C factor for measuring the ecological footprints
of APIs.

Closing comments
Green metrics used to assess process greenness do not
have to be perfect but they must be easy to use if they

are to motivate the broader chemistry community to
develop greener syntheses. Application of “imperfect
metrics” by many will achieve more than application of
“perfect metrics” by few.
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