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Abstract

A new class of accelerator interfaces has significant implications on system architecture. An
order of magnitude more bandwidth forces us to reconsider FPGA design. OpenCAPI is a
new interconnect standard that enables attaching FPGAs coherently to a high-bandwidth, low-
latency interface. Keeping up with this bandwidth poses new challenges for the design of
accelerators, and the logic feeding them.

This thesis is conducted as part of a group project, where three other master students investigate
database operator accelerators. This thesis focuses on the logic to feed the accelerators, by
designing a reconfigurable multi-stream buffer architecture. By generalizing across multiple
common streaming-like accelerator access patterns, an interface consisting of multiple read
ports with a smaller than cache line granularity is desired. At the same time, multiple read
ports are allowed to request any stream, including reading across a cache line boundary.

The proposed architecture exploits different memory primitives available on the latest genera-
tion of Xilinx FPGAs. By combining a traditional multi-read port approach for data duplication
with a second level of buffering, a hierarchy typically found in caches, an architecture is pro-
posed which can supply data from 64 streams to eight read ports without any access pattern
restrictions.

A correct-by-construction design methodology was used to simplify the validation of the design
and to speedup the implementation phase. At the same time, the design methodology is doc-
umented and examples are provided for ease of adoption. With the design methodology, the
proposed architecture has been implemented and is accompanied by a validation framework.

Various configurations of the multi-stream buffer have been tested. Configurations up to 64
streams with four read ports meet timing with an AFU request-to-response latency of five
cycles. The largest configuration with 64 streams and eight read ports fails timing. Limiting
factors are the inherent architecture of FPGAs, where memories are physically located in specific
columns. This makes extracting data complex, especially at the target frequencies of 200 MHz
and 400 MHz. Wires are scattered across the FPGA and wire delay becomes dominant.

FPGA design at increasing bandwidths requires new design approaches. Synthesis results are
no guarantee for the implemented design, and depending on the design size, could indicate a
very optimistic operating frequency. Therefore, designing accelerators to keep up with an order
of magnitude more bandwidth compared to the current state-of-the-art is complex, and requires
carefully thought out accelerator cores, combined with an interface capable of feeding it.
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Chapter 1

Introduction

In recent years, data centers have been forced to embrace heterogeneous system architectures.
As microprocessor technology and design is not able to deliver cost per performance improve-
ments in line with historical rates, deployment of hardware acceleration will become common-
place.

Trends in system architecture show that interconnect bandwidth is significantly increasing in
order to provide data centers with the connectivity and ability to attach accelerators for any
workload. Traditionally FPGAs (Field Programmable Gate Arrays) lacked bandwidth and
programmability and could only be used for the most computationally intensive tasks, but
recent advancements target these shortcomings and accelerate adoption. While the change in
programming models is an interesting field of study, this thesis focuses on the emerging FPGAs
with main memory class bandwidth enabled by such advancements. This change requires re-
evaluation of our current design approaches and methodologies for accelerators. It does not only
pose a challenge for accelerator design, but also for providing them with data. New interface
logic is required to feed the accelerators, and new accelerator cores are needed, at least in those
cases where the problem is not trivially parallel.

A common memory access pattern for FPGA accelerators is streaming and examples include
content delivery, cryptography and databases. An interface capable of handling multiple streams
is desired because workloads exist that inherently use multiple streams or for which multiple
single-stream engines are required to work in parallel in order to exploit all of the available
bandwidth. Besides that, sustaining throughput is more difficult when using a single stream.
Multiple streams can more easily keep the interconnect fully utilized since concurrent requests
can be made. Partitioning the compute is left to the accelerator designer.

Previous work such as the Streaming Framework [11, 12] and SNAP (Storage, Networking,
and Analytics Programming) Framework [13, 14] for CAPI (Coherent Accelerator Processor
Interface) 1.0 will not suffice, since these frameworks are not capable of handling this class of
bandwidth, nor the number of streams. The frameworks target a bandwidth that is an order
of magnitude smaller compared to OpenCAPI. SNAP also uses the coherent cache present in
CAPI 1.0, but not present in OpenCAPI. Therefore a direct port is not trivial.
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1.1 Thesis Aim
To combine both efforts of re-evaluating the interface and accelerator engine design, this thesis
is part of a larger project, in collaboration with three other master students [15, 16, 17], that
focuses on accelerator core design. A harmonized effort is made by studying a re-emerging
and inherently multi-stream workload: database operators. Preliminary findings have been
presented at the H2RC 2017 workshop [18].

Database systems have been looking for architectures that achieve a high bandwidth to access
the required data. FPGA acceleration was used in the past, but a recent trend is the usage of in-
memory databases. In such systems, the database is located in host memory instead of on flash
or mechanical storage. Now that interfaces like OpenCAPI are approaching host memory-like
bandwidths and have coherent memory access, accelerating database operators using FPGAs
by means of low latency memory access becomes relevant again.

The three other master students are also under supervision of Prof. Dr. H. Peter Hofstee.
They will study three different multi-stream accelerators for database operators. The studied
operators are: Decompress-Filter, Merge-Sort and Hash-Join.

The aim of this thesis is to study the implications of emerging high-bandwidth interconnects
for FPGA accelerators, but more importantly their interface. Feeding accelerators with data
and keeping up with the increased bandwidth is challenging. Prerequisite are multiple streams
and read ports with less than cache line granularity. Providing such an interface is not trivial
at this bandwidth. Therefore, the focus is on getting the data to the FPGA. Writing results
back to the host is left as future work.

1.2 Thesis Contributions
The aims are to generalize across several common FPGA memory access patterns and to de-
sign and implement an interface that can be generally applicable to current and future high-
bandwidth interconnects. Supplying a general interface to the FPGA designer will improve
adoption and accelerate the design cycle. The contributions made in this thesis can be summa-
rized as follows.

• A study of a new class of accelerator interfaces, and a more detailed overview of OpenCAPI
(the first of its kind).

• Re-evaluation of design methodologies for high-bandwidth attached FPGAs.

• Provide documentation and examples for a delay-insensitive design methodology provided
by Andrew K. Martin.

• A multi-level buffer architecture proposal and implementation, aware of fixed-size memory
resources found on FPGAs, by exploiting features of different memory primitives and
state-of-the-art memory resources.

• Improve adoption of high-bandwidth interconnect, with a special interest in OpenCAPI,
attached streaming-based accelerators by providing a generalized and reconfigurable in-
terface. This interface supports multiple streams and access patterns in order to be widely
used while keeping up with the bandwidth.
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1.3 Thesis Organization
Chapter 2 describes technology trends with respect to system level bandwidth requirements and
interconnect standards. Chapter 3 takes a brief look at the state-of-the-art interconnect stan-
dards and what sets them apart. Chapter 4 characterizes OpenCAPI, the POWER9 processor
and future OpenCAPI-compatible Xilinx FPGAs. Chapter 5 takes a look at common acceler-
ator memory access patterns and shows naive buffer designs for full-utilization of the available
interconnect bandwidth. Chapter 6 introduces the Delay Insensitive Cell Library which accel-
erates FPGA design by providing cells with a built-in ready-valid protocol. Chapter 7 combines
the previous chapters and motivates the design choices made for a multi-stream buffer and high-
lights the essential modules of the design. Chapter 8 shows the validation setup, performance,
and implementation results, and Chapter 9 concludes the thesis.
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Chapter 2

Technology Trends

Data center workloads have increased and diversified over the last decade. These changes are
driven by emerging workloads such as artificial intelligence, big data and machine learning, but
also by an increased demand of cloud services and a shift of compute from the edge of the
network to the data center due to an increase in mobile devices. The following itemization
summarizes different classes of workloads and examples [19, 20, 21].

• Analytics: Big Data, High-Frequency Trading, and In-Memory Database.

• Cloud: Search, Virtualization, and Web Servers.

• Communication: Packet Processing and Virtual Switching.

• High Performance Computing: Artificial Intelligence, Genomics and Machine Learning.

• Security: Encryption and Decryption.

• Storage: Compression and Deduplication.

These changes in data center workloads demand not only more and faster resources (such as
cooling, network and servers), but also a diversification of compute resources that can be dy-
namically tailored to the workload in question. Traditionally, servers consist of a fixed set of
resources such as compute, memory, storage and I/O and are aggregated into a pool. Work-
loads are then scheduled on one or multiple pools. This architecture frequently results in
under-utilization of resources due to a drastic real-time adjustment in available resources for
specific workloads. This results in reduced power efficiency, or performance per Watt [22].
The most important metric when building a new data center is the Total Cost of Ownership
(TCO): the cost of purchasing and installing the hardware plus the cost to operate and maintain
the data center over time. The electricity costs are roughly 15% of the TCO [23] and power
consumption is becoming one of the most import metrics for data center operation and future
hardware investments. Systems have to offer performance and power efficiency, while in the
past performance was the dominant driver behind new investments. This makes Application
Specific Integrated Circuits (ASICs), FPGAs and Graphics Processing Units (GPUs) more and
more interesting due to their performance-to-Watt ratio.
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2.1 Acceleration in the Data Center
Traditionally, Moore’s Law (which predicted exponential growth in the number of transistors
on a chip) correlated well with single processor performance due to the increase in operating
frequency that accompanied device scaling. The increase in the number of transistors per chip
at a constant cost means that transistors become smaller and, if all dimensions are scaled, are
able to switch at higher speeds. This explains the constant increase in frequency of processors
until roughly 2006.

2.1.1 Dennard Scaling

In 1974, Dennard observed that the necessary current and voltage scale with transistor shrinking.
This observation is known as Dennard scaling. Therefore, power consumption is proportional
to transistor area. The total power consumed is the sum of dynamic and static power. Dynamic
power is consumed by charging capacitors in the circuit and is shown in Equation 2.1. Static
power is consumed when the circuit is in quiescence.

P = α × C × F × V2,where (2.1)

• P is the dynamic power,

• α is the percentage of time the circuit switches,

• C is the sum of gate and wiring capacitance,

• F is the frequency at which the circuit operates, and

• V is the operating voltage of the circuit.

However, Equation 2.1 involves simplified assumptions, because in the 1970’s sub-threshold
leakage was playing a relatively small role with respect to total power consumption. After several
decades, sub-threshold leakage constrains further scaling of the threshold voltage and therefore
also operating voltage. Due to leakage constraints, gate oxide scaling has also been affected.
This prevents voltages from scaling as in the past, and thus starts to play a significant part in the
total chip power. These factors limit the operating frequency of circuits [24]. Because voltages
no longer scale, shrinking transistors now leads to power density increases. Insufficient cooling
capacity resulted in hitting the so-called Power Wall in 2006 that limits processor frequency to
around 4 GHz [25].

2.1.2 Homogeneous Multi-Core Systems

Since 2006, after hitting the Power Wall, and well before 2006 for server processors, Central
Processing Units (CPUs) started to have multiple cores that work in parallel. Cores can be
located within the same package, across multiple sockets, or across multiple systems. However,
a workload across multiple homogeneous cores scales only as well as the portion of the workload
that can be parallelized. Amdahl’s Law [26], shown in Equation 2.2, formulates the theoretical
speedup of a workload when a portion of the system is improved and encapsulates this notion.
The speedup is limited by the fraction of the task that does not benefit from the improvement.
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For example, if a task consists of one portion that can be parallelized and one portion that
cannot, eventually the total latency is always bounded by the purely sequential portion.

Slatency(s) =
1

(1 − p) + p
s

,where (2.2)

• Slatency is the theoretical speedup of the workload at a fixed workload size, defined in
latency,

• s is the speedup of the portion of the workload that benefits from the improvement, and

• p is the fraction of the execution time that s initially occupied in the workload.

A refinement to Amdahl’s Law is Gustafson’s Law [27]. This law takes into account that larger
problems typically have a smaller sequential component.
The moment the energy to switch a single transistor does no longer decrease in a next process
generation, using twice as many transistors to build twice the number of cores, only to have
to turn off half of them because there is not sufficient power to feed them, is the end of the
homogeneous multi-core era.

2.1.3 Heterogeneous Multi-Core Systems
By applying a simple hardware model to Amdahl’s Law, it is shown that a system with asym-
metric cores can always achieve a higher maximum speedup than a system with homogeneous
cores [28]. Typically, FPGAs and GPUs are used to improve parallel workloads, but in rare
cases can also improve sequential workloads.

Arguably the most commonly used heterogeneous system in a nowadays’ data center is a CPU-
GPU system. In comparison to a CPU, a GPU consists of several thousands of cores operating
at a frequency of roughly 1 GHz. Dividing the workload between both compute resources is
done manually, but yields a higher speedup compared to parallelization on CPUs only. Pro-
gramming can be done in various languages but memory transfers between the CPU and GPU
have to be invoked manually.

Similar to a homogeneous multi-core architecture found in GPUs, Intel released the Xeon Phi
coprocessor. This coprocessor has a maximum core count and frequency of 72 and 1.7 GHz,
respectively, placing it in between a typical CPU and GPU [29]. The Xeon Phi can be considered
as a GPU stripped from its typical graphics pipeline. Even with all these types of accelerators,
there are workloads that do not benefit from the high operating frequency found in CPUs, nor
the high core count found in GPUs or the Xeon Phi. Compute-intensive workloads that benefit
from custom arithmetic units are an example.

2.1.4 Application Specific Acceleration
Two recent trends in the data center allow for a wider diversification of compute resources by
introducing application specific accelerators in the form of ASICs and FPGAs.
One trend is to use fixed-function ASICs, either tightly coupled on-chip or loosely coupled using
an interconnect. On-chip accelerators range from compression to cryptographic engines. An
example of a loosely coupled accelerator is Google’s recent Tensor Processing Unit (TPU) [30].
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While fixed-function ASIC accelerators provide a better power efficiency compared to a CPU
and free up resources since the CPU is able to off-load work, on-chip accelerators consume
valuable chip area while being dedicated to only one function. This renders a fixed-function
accelerator useless when the underlying algorithm changes in the (near) future. Besides that,
there are multiple time consuming steps in the design cycle of an ASIC that increase the time
to market.
Another trend is the adoption of FPGAs. While FPGAs might not offer the same level of
power efficiency that ASICs do, their (re)configurable nature allows for flexibility and reusabil-
ity. According to the same study mentioned earlier [28], reconfigurable or dynamic cores can
always achieve a higher maximum speedup than asymmetric configurations. While the design
cycle of ASICs can be up to several years, FPGAs can be designed in a fraction of that time
because layout and fabrication are not required. However, FPGAs are more difficult to use
compared to CPUs and GPUs since both hardware and software have to be developed. FPGAs
have not invested as heavily in double-precision floating-point pre-integrated units. Therefore
they specifically shine in non-floating point compute-intensive workloads, on parallel workloads
because of their inherently parallel architecture, and also in network communication related
acceleration. Parallelism can be exploited at different levels of granularity and optimized fixed-
function hardware accelerates the compute-intensity. The downside is that an FPGA consists
of various pre-defined resources, like memories and DSP slices, that constrain the degrees of
freedom of the design. When deployed as a compute accelerator FPGAs have typically been
connected using a relatively low-bandwidth and high-latency interconnect, limiting their use for
memory-intensive workloads. When deployed as network switches, FPGAs have typically been
deployed with very high bandwidth using leadership PHYs (Physical Layers).

2.1.5 FPGA Adoption in the Data Center
FPGAs are becoming more interesting for specific workloads in the data center for various
reasons. The (re)configurability allows for reuse and on-the-fly adaptation. In addition, FPGAs
are more power efficient than other compute resources. This aspects becomes increasingly
important for data center operators to keep the TCO down. Traditional limitations of FPGAs
are starting to fade away with recent advancements in interconnect standards and system design.

• Interconnect limitations, such as low bandwidth and high latency, limit FPGAs to parallel
and latency-insensitive workloads, because latency of the interconnect is much higher than
that of host memory. Upcoming interconnect standards target these limitations.

• Programmability is limited to the use of hardware description languages. Advancements in
software frameworks and high-level language to HDL compilers make FPGA acceleration
accessible to software engineers. Also manual data movement between the CPU and FPGA
is error prone and slow due to copy operations through memory and driver overhead. The
typical off-load programming model is being replaced by a shared memory model with
advancements in system design. This enables seamless integration of FPGAs with CPUs
and lets the FPGA act as a thread-level functional unit instead. Accessing FPGAs for
development becomes simpler by using cloud platforms such as Amazon EC2 F1.

One approach is integration of CPUs with FPGAs, like Intel is doing with their Xeon processors
[21]. The FPGA is currently on the same package as the CPU and expected to be on the same
die in the future. Such advancements enable a high bandwidth interconnect. Another approach
is by using off-chip interconnects to attach FPGAs. We are interested in the latter approach,
since such advancements in interconnects are also beneficial for other attached devices.
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2.2 Interconnect Trends
In this section, the two typical drawbacks of FPGA adoption are explored in more detail. First
bandwidth trends are explored, followed by reported improvements in FPGA programmability.
Software framework and high-level to HDL compiler advancements are not discussed further in
this thesis.

2.2.1 Attached Devices Push Bandwidth Requirements

Besides the adoption of various kinds of accelerators in the data center, the balance of band-
widths at system-level have changed significantly in recent years. Advancements in networking
and storage result in increased bandwidth requirements of such devices. With the increase in
complexity and volume of data center workloads, there is never enough or fast enough storage
available. Emerging workloads, such as big data and machine learning, using data sets in the
order of exabytes (1018), are good examples of this [31]. Therefore, new storage protocols are
quickly adopted, with NVMe over PCI Express being the latest achieving bandwidths of several
gigabytes per device. The previous generation reached only half a gigabyte at best. Network
bandwidths are increasing similarly by quick adoption of both the 100 Gbit/s and 400 Gbit/s
standards in only a few years time. With more and more data and services moving to the cloud,
network bandwidths have to increase rapidly.

2.2.2 Bandwidth Trends at Device-Level

Fritz Kruger, a SanDisk Fellow, collected data regarding DRAM, network and storage band-
width for a presentation in 2016 and predicted the future until 2020. Figure 2.1 shows his
findings, with the addition of PCI Express bandwidth to act as a proxy for interconnect band-
width. For each generation of the PCI Express standard, the bandwidth of sixteen lanes is
plotted, since this is typically the maximum number of lanes per PCI Express device. DRAM is
inherently uni-directional and several cycles are required to turn the channel around. A memory
controller takes care of this by combining reads and writes to limit the overhead cycles spent in
configuring the channel. Therefore, DRAM bandwidth should be interpreted as either a read or
write channel with the plotted bandwidth, while attached devices such as network and storage
typically have a bi-directional link.
The slope of each of the fitted lines is important here. Clearly, both network and storage band-
widths are increasing at a much faster rate (steeper slope) than DRAM and PCI Express. The
network and storage slopes are similar and double every 18 months. PCI Express doubles every
48 months while it takes DRAM 84 months to double in bandwidth. A shift in system balance
is expected for future systems where DRAM, interconnect, network and storage bandwidth are
about the same.
The fitted straight lines for each of the four data sets shown in Figure 2.0a indicate exponential
behavior, which can be clearly seen in Figure 2.0b. This figure shows exactly the same data,
but on a linear y-axis instead. While it might look like accelerators, such as GPUs and FP-
GAs, will have to compete for interconnect bandwidth with network and storage, vendors can
always scale memory and interconnect bandwidth accordingly. While scaling is the trend, as
becomes apparent from the next paragraph, and works in the short-term, it does not solve the
fundamental problem of lacking DRAM bandwidth improvements.
The reason that DRAM bandwidth is not increasing at a similar pace is two fold. Typically,
the number of channels or the channel frequency is increased. However, each solution has sig-
nificant implications. Every additional channel requires a large number of pins (order of 100)
on the processor package (assuming an integrated memory controller) that increases chip area
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cost. Increasing channel frequency requires expensive logic to solve signal integrity problems
at the cost of area, and more aggressive channel termination mechanisms at the cost of power
consumption [32, 33].
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(a) Data plotted on a semi-log scale.
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(b) Data plotted on a linear-linear scale.

Figure 2.1: Bandwidth trends at device-level [34]1.

2.2.3 Bandwidth Trends at System-Level
In order for vendors to stay ahead of the inevitable crossing of DRAM, interconnect, network
and storage bandwidths, scaling is applied to both DRAM and interconnect bandwidth for
the short-term. While the previous figures show predictions for future generations, more recent
information regarding upcoming or recently released CPUs indicate that there is a large push to
more DRAM and interconnect bandwidth. Figure 2.2 shows the peak2 DRAM and interconnect
bandwidth per CPU generation for single socket systems over a span of eight years. Per vendor
and generation, the highest rated model is shown. Note that in the case of Intel, the E5
models have more interconnect bandwidth, while the E7 models have more DRAM bandwidth.
Unreleased CPUs are plotted at the year 2018.

DRAM Bandwidth Trends

The DRAM bandwidth data shown in Figure 2.1 was mostly taken from the Intel Xeon product
family according to the author [34]. Figure 2.1a shows that AMD and IBM, compared to
Intel, scaled their DRAM bandwidth aggressively by increasing the number of memory channels
or by using additional buffer chips between the last-level cache and the DRAM. Only after
several years did Intel improve the memory bandwidth in their latest generation by increasing
the operating frequency and number of channels. While the Intel Xeon DRAM bandwidth
follows the predictions quite well, both AMD’s EPYC processors and IBM’s POWER8 and
POWER9 processor break the trend. The POWER processors offer roughly twice as much
memory bandwidth compared to the latest Intel Xeon family.
An implication for the slow DRAM bandwidth increase is that flash storage can be attached as
accelerator and act as DRAM or local storage for a data intensive accelerator, for example by
exploiting data locality.
1 Data points were approximated from the referenced figures in order to add the PCI Express standard bandwidth

and represent all bandwidths in GB/s.
2 The only exception are the IBM POWER8 and POWER9, which state the sustained DRAM bandwidth.
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(b) Peak aggregate uni-directional intercon-
nect bandwidth.

Figure 2.2: Study of bandwidth trends at system-level for single socket CPUs per generation.

Interconnect Bandwidth Trends

Figure 2.1b shows the peak aggregate uni-directional interconnect bandwidth per CPU socket.
This is calculated as the product of the uni-directional bandwidth per lane and the number of
lanes. In the past, nearly every vendor used their own interconnect standard, possibly with a
bridge to PCI Express. The general consensus is to use PCI Express and it has become the
industry standard. While the introduction of PCI Express Gen 4 took longer than previous
generations (see Figure 2.0a), initiatives took off to extend the PCI Express standard with
coherency protocols for seamless integration of attached devices. IBM started in 2014 with
CAPI and more recently the CCIX consortium tries to implement a protocol for current and
future PCI Express standards.
The aggregate interconnect bandwidth at system-level is increasing by an order of magnitude
and has passed DRAM bandwidths. In the latest generation, both AMD and IBM are investing
aggressively. AMD scaled the number of PCI Express Gen 3 lanes per socket to 128 lanes. For
comparison, the latest Intel processor offers a maximum of 48 lanes for the same PCI Express
generation. However, for multi-socket systems the AMD CPU will sacrifice half of its lanes for
SMP, while Intel has a dedicated link for that. IBM’s upcoming POWER9 processor has almost
twice the interconnect bandwidth compared to AMD. This is achieved by having 48 lanes of
PCI Express Gen 4 and 48 lanes of a new 25 Gbit/s link called BlueLink. Note that both types
of interconnect on the POWER9 can be used for SMP as well. This fundamental improvement
enables a massive increase in bandwidth compared to other state-of-the-art systems. Although
a significant improvement, it is only a small bump on the log-scale in Figure 2.0a.
Very recently, new players such as Applied Micro, Cavium and Qualcomm are entering the server
processor market with ARM-based processors. Such servers are targeted for cloud, content
delivery, storage and web workloads and differ greatly from the traditional high performance and
power consuming POWER and x86 architectures. These types of workloads do not require high-
bandwidth accelerators, but instead prefer fixed-function on-chip accelerators and integrated
network adapters. This class of servers does allow for memory bandwidths similar to those of
Intel.

This study shows that the latest generation of processors tries to keep up with the exponentially
increasing bandwidth of network and storage by scaling the interconnect in a similar fashion,
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and no longer follows the tradition shown in Figure 2.1. It is important that DRAM bandwidth
scales as well, in order to not become a bottleneck. Increasing the interconnect bandwidth by
an order of magnitude forces us to reconsider design choices for accelerators.

2.3 Current Interconnect Bottlenecks

It has been shown that an increase in interconnect bandwidth is required for emerging workloads
in the data center. However, this problem is not solely solved by blindly scaling the current
interconnects because the traditional Input/Output (IO) model will become a bottleneck. This
section introduces the traditional IO model and its bottlenecks.

2.3.1 Traditional IO Model

Workloads contain serial and parallel components, where parallel components typically benefits
from highly parallel architectures as mentioned in Section 2.1.3. Due to the need for hetero-
geneous systems, different compute elements must communicate efficiently without decreasing
potential execution speedup.
In a traditional IO model, the host processor has a shared memory space across its cores with
coherent caches. Attached devices such as FPGAs, GPUs, network and storage controllers are
memory-mapped and use a DMA to transfer data between local and system memory across an
interconnect such as PCI Express. Attached devices can not see the entire system memory, but
only a part of it. Communication between the host processor and attached devices requires an
inefficient software stack in comparison to the communication scheme between CPU cores using
shared memory.
Figure 2.3 shows the data flow in the traditional IO model. The yellow boxes within the purple
physical memories indicate seperate address spaces. In order to offload data from host memory
to an attached device, data is copied from the application (app) region by the CPU into a
pinned (non-pageable) section of the host memory called a buffer. Only the buffer is visible to
the attached device (due to different address spaces, therefore different instructions for memory
and Memory Mapped IO (MMIO) accesses), because it does not share the same translation
tables with the CPU. By reading the buffer, with the help of device drivers, the CPU is able
to write the data, across an interconnect, into the local memory of the attached device. The
attached device fulfills a certain Function, which reads the data from the local memory and
processes it. The result will then be written into the local memory after which the Function
informs the host it has finished. A DMA for example will move the result into a second buffer
within the host memory. From here, the CPU copies the data to the application address space
after which the application can continue.
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Figure 2.3: Multiple copy operations in the traditional IO model.

2.3.2 Communication and Synchronization Overhead
Communication and synchronization between the host and attached device using interrupts
and MMIO operations typically involves the device driver and introduces overhead [35]. These
communication channels are used to start or stop the attached device.
While the attached device is operational, typically the app running on the host is idle and waits
for the Function to finish, after which they synchronize and continue.
Functions with a relatively low number of data transformations suffer from a high interconnect
overhead per data element with the traditional model. The communication overhead decreases
the potential execution speedup, limiting acceleration to data transformation intensive work-
loads.

2.3.3 Host Memory Access Congestion
Another bottleneck, illustrated by Figure 2.3, is the host memory bandwidth for systems with
increasing interconnect bandwidth such as the ones shown in Section 2.2.3. The traditional
model requires four memory copy operations, of which the CPU is involved in a total of three
reads and two writes across the host memory channel. Since all attached devices can potentially
use all of their assigned bandwidth, the host memory channel will suffer from severe congestion
for servicing all copy operations. The fact that host memory is inherently simplex and cycles
are required to turn the channel around is not beneficial either.

Case Study: IBM POWER9

To illustrate the problem of host memory congestion, the IBM POWER9 processor is chosen as
an extreme example. It supports two new high-bandwidth interconnect standards: PCI Express
Gen 4 and OpenCAPI. Figure 2.3a shows a hypothetical system architecture where host mem-
ory, an accelerator (ASIC, FPGA or GPU), and a network and storage controller are attached
to the CPU.
A possible system configuration could have host memory attached with 200 GB/s of bandwidth
and each attached device with roughly 150 GB/s of bandwidth. Using the traditional IO model,
the IO devices will be fighting for access to the system memory channel. 450 GB/s of data is
competing for the same 150 GB/s memory channel, since data exchange happens by copying
through memory. Imagine that in this example, memory access requested by the CPU is not
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even taken into account. The host memory would seriously bottleneck the whole system in this
case, as shown in Figure 2.3b where the thick arrows indicate data transfers.
A system configuration like this would not be possible with a traditional IO model. The
300 GB/s of bandwidth that OpenCAPI provides mitigates the presented bottlenecks by in-
troducing a coherent and shared memory access model to host memory.

(a) Hypothetical system architecture. (b) Host memory access congestion.

Figure 2.4: Hypothetical system architecture suffering from the traditional IO model.

Case Study: AMD EPYC

Systems that heavily rely on interconnect bandwidth to improve performance by attaching FP-
GAs, GPUs, network and storage have to take care that DRAM bandwidth will not become
a bottleneck. As shown in Section 2.2.3, vendors make sure that DRAM bandwidth will not
become a bottleneck in the overal system architecture.
In contrast, AMD’s EPYC processor has a DRAM and duplex interconnect bandwidth of
170 GB/s and 256 GB/s, respectively. Since PCI Express Gen 3 is used, it could very well
be that a traditional IO model is used since PCI Express Gen 3 does not support a shared
address space between the processor cores and attached devices. If this is the case, system
performance could be seriously limited. However, half of the PCI Express Gen 3 lanes can be
used for SMP, and this way would remove the bottleneck.

2.4 Interconnect Coherency and Shared Memory: A Necessity
Recent initiatives target the limitations described in Section 2.3. Current widely adopted in-
terconnect standards such as PCI Express and AXI are based on the traditional IO model.
However, extensions try to improve the usage model. Chapter 3 will discuss the state-of-the-
art interconnects in more detail. This section explores necessary changes to the traditional IO
model to accommodate for the bandwidth scaling employed by current and future processors.

2.4.1 Coherent IO Model
In order to continue scaling of IO bandwidth to fulfill the requirements of emerging accelerators
and attached devices, the traditional IO model has to change and the bottlenecks presented in
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Section 2.3 have to be addressed.
Shared memory and coherency should be extended to attached devices since accelerators will
become an integral part of the ecosystem and should act as a peer to processor cores. System
memory should be relieved from performing data copies by employing a shared memory address
space between the processor cores and attached devices. Coherency will simplify the program-
ming model for attached devices. Communication overhead can be improved by allowing for
shared variables between the host and the attached device in shared memory.
The coherent IO model is shown in Figure 2.5. In comparison to the traditional IO model,
shown in Figure 2.3, there is no CPU involvement and no longer any driver overhead, since
copying to buffers is not required. The application has direct access to the address space of the
attached device and data exchange is coherent.

Figure 2.5: Coherent IO model.

With the coherent IO model, attached devices are no longer notified using MMIO communica-
tion but instead using shared memory. Similarly, completion by the attached device is signaled
using shared memory instead of an interrupt for example. By using shared memory, device
driver and operating system overhead is decreased significantly.
In comparison to Figure 2.4, the coherent IO model not only removes the memory copy over-
head and therefore avoids memory access congestion, it also allows attached devices to move
data between each other without touching host memory. An example could be that data is
coming in through a network controller and is immediately moved to an accelerator, as shown
in Figure 2.6.
The following sections discuss the required changes for the coherent IO model in more detail.

2.4.2 System-Wide Shared Memory Address Space
Shared memory is an abstraction of a system with multiple physical memory resources and
presents these memory resources as a continuous address space. It is desired by programmers
to hide details of memory accesses from different physical locations. Without shared memory,
data structures look different between the host and accelerator because the accelerator is not
able to dereference a pointer. All pointers have to be resolved before sending the code to the
accelerator for execution, and this may not even be possible.
A shared memory address space will decrease congestion of accessing system memory to result
in lower access latency and device driver overhead [36]. It also improves programmability since
it enables shared buffers (zero-copy) and pointer dereferencing, thus simpler data movement be-
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Figure 2.6: Hypothetical system architecture with a coherent IO model.

tween physical memories (host and device memory). The accelerator acts similar to a processor
thread and this allows to easily accelerate a single function in a big application, without having
to massively restructure the code.
It is obvious that interaction with attached devices using the traditional IO model is not perfect.
It requires complex drivers on the host, is error prone due to user data movement, and has a
high latency rendering it unpractical for latency sensitive workloads. Shared memory allows
the system memory address space to be shared with the IO. This enables for example direct
data movement from a network card to a GPU, instead of first copying to main memory or
interaction by the CPU. This is achieved by providing the IO with the same address translation
tables as the CPU.

2.4.3 System-Wide Coherence
Caches are widely used in microprocessors and cache hierarchies are becoming larger and more
complex, by using various cache levels. By scaling the number of processor cores on a single
die, multiple copies of the same data can exist. Cache coherency is required to keep data co-
herent without any software-intervention. Relying on software to provide snooping, write-back,
and invalidation is relatively slow. Hardware-based coherence is preferred since it simplifies the
programming model and is faster.
Currently, without coherence, the user has to take care of moving data between resources man-
ually, which is error prone. Typically, data is transferred to the accelerator and the application
waits for an interrupt signal from the accelerator to signal completion. The application fetches
the result from the accelerator across the interconnect. Caches have to be flushed before other
resources can access the data. The FPGA feels more like an off-load engine instead of an ex-
tension to a thread running on the CPU.
With coherency, a consistent view of memory contents by all participants (CPU cores and IO
devices) is guaranteed. Attached devices operate natively within the application’s user space
and coherently with the host CPU. This allows attached devices to fully participate in an ap-
plication without kernel involvement or overhead [5].
With software coherence, a large burden is placed on the application, drivers and OS to man-
age timed cache cleaning, maintenance and invalidations. Such operations take time and effort
(cache contents have to be written out to system memory). Since caches are invisible to soft-
ware, managing all of these copies in software is difficult. Keeping caches coherent in software
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means that all caches have to be flushed [37].
Hardware coherency removes the software challenges and makes sharing transparent to the
application, at the cost of additional memory traffic between caches about the state of their
contents in order to keep all of them synchronized.
Coherency also enables new types of workloads such as pointer chasing, but is not truly re-
quired. It does significantly simplify the programming model by providing synchronization
between the host and attached device mechanisms in hardware or software, therefore making
slow interrupt-based solutions obsolete.

2.4.4 Thread Synchronization
Before the usage of accelerators and other attached devices was as common as today, multiple
processor cores were used to exploit workload parallelism. Such workloads typically make ex-
tensive use of synchronization operations such as barriers, mutexes and semaphores. Therefore,
when attached devices act as a peer to processor cores, it makes sense to employ similar syn-
chronization operations. By doing so, notifications using interrupts can be avoided and makes
porting existing multi-threaded workloads easier. Instead, the host and attached device com-
municate through shared variables in shared memory [38].
A lock operation could be implemented from which more complex synchronization operations
can be built. Recent interconnect standards incorporate more complex atomic operations to
replace the lock operations.
Another benefit of moving away from interrupt-based synchronization is that the number of
hardware interrupt signals no longer limits the number of interrupts, since interrupts are han-
dled using shared memory. This solution scales much better.

2.5 Preliminary Concluding Remarks
Emerging workloads require a change in system architecture. A diversification of compute
resources enables speedups not possible with a single type. The adoption of FPGAs is slow
due to interconnect limitations and a complex programming model. To address these issues,
attached devices are required to be tightly coupled with the host processor at memory-like
bandwidths. Currently, this is not the case and interaction with attached devices involves
unnecessary overhead. By extending the shared memory space and coherence domain across
the interconnect, attached devices act as a peer to the processor cores. This simplifies FPGA
acceleration and enables new usage models. Chapter 3 takes a closer look at state-of-the-art
interconnect standards and evaluates the current state of the interaction between the host and
attached devices.
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Chapter 3

State-of-the-Art Interconnects

Nowadays the Peripheral Component Interconnect Express (PCI Express) and AXI are the
interconnect industry standard for PC and server systems, and embedded platforms, respec-
tively. Recently, three open initiatives were announced: CCIX, Gen-Z and OpenCAPI. These
open standards are all driven by ISA-agnostic tighter coupling of processors and accelerators,
by enabling direct memory access between compute resources and reducing data movement.
Also new and emerging memory and storage technologies are exploited [39].
This chapter focuses on interconnects targeted for accelerators, network, and memory and stor-
age solutions. However, specific memory and storage features of such interconnects will not be
discussed. Also interconnects tailored for specific domains such as Ethernet and InfiniBand for
networking, NVLink for GPUs and Gen-Z for storage are not discussed, nor are SMP protocols.

3.1 PCI Express
PCI Express has been around since 2003 and gone through several generations. The PCI-SIG is
a group of over 900 companies that maintain the standard. Currently the most widely adopted
generation is number three and generation four compliant devices are slowly being released.
The remainder of this section briefly explains the architecture of PCI Express and summarises
key features of current and future generations.

3.1.1 Architecture
This section explains the architecture of PCI Express Gen 3 and later, since various changes
have been made at the packet level compared to previous generations of PCI Express which will
not be discussed.
PCI Express is a packet-based, split transaction protocol with a point-to-point or switched
topology. Split transaction means that a request and response are separated by time. Each
device is connected to the root complex. The root complex is the root of the IO hierarchy and
is connected to the processor and host memory. A PCI Express bus link supports full-duplex
communication between two endpoints, with no inherent limitation on concurrent access across
multiple endpoints. It uses credit based flow control and typically each link consists of one,
four, eight or sixteen lanes. Legacy PCI features are backwards compatible with PCI Express.

Protocol Description

The PCI Express architecture consists of three logical layers called the Transaction Layer, the
Data Link Layer, and the Physical Layer [1]. Figure 3.1 shows a layering diagram and the receive

35



(RX) and transmit (TX) channels of the architecture. Each layer will be briefly discussed.
PCI Express uses packets to communicate between participants of the link. Packets are formed
in the Transaction Layer and are extended with additional fields when passing through other
layers. These additional fields contain information required by other layers to handle the packet
appropriately. The receiver of a packet removes these fields in reverse order and uses the
information.

Figure 3.1: Layering diagram of the PCI Express standard [1].

Figure 3.1 shows the layering diagram of the PCI Express standard. The Transaction Layer
is the top layer and assembles and disassembles Transaction Layer Packets (TLPs). TLPs are
the packets used to communicate information and data between two endpoints and consist of
a header and data part. Also flow control is managed by using a credit-based scheme and
ensures that TLPs are only transmitted when a buffer is available on the other endpoint. This
eliminates wasting bandwidth on packet retries due to resource constraints.
The Data Link Layer is the middle layer and tags TLPs and handles error detection and cor-
rection. The transmission side of this layer pre-pends a sequence number (tag) to the TLP and
appends a CRC field to it. The receiving side validates the sequence number, by checking if
it is continuous with the sequence number from the previous TLP. It also validates the data
by checking the CRC. If the TLP is valid, an acknowledgement (ACK message) is sent to the
transmitter. If one or both are invalid, a NAK message is sent and re-transmission of all TLPs
starting from the invalid one is requested. The ACK and NAK messages are communicated
between layers as Data Link Layer Packets (DLLPs).
The Physical Layer is the lowest layer and consists of both electrical circuitry, such as a seri-
aliser/deserialiser (SerDes), and logical components to initialize the interfaces. A lane between
two endpoints consists of two unidirectional differential signalling pairs and multiple lanes can
be bundled together to form a link.

Cache Coherency Snooping

Originally proposed as an extension to PCI Express Gen 2, TLP Processing Hints (TPH) [40]
provide hints for the host to improve memory access performance by taking the cache hierarchy
into consideration. This is done by providing several bits in the TLP. The host snoops memory
access requests from PCI Express attached devices to enforce cache coherency by hardware [41].
However, these snoop hints are not required for every memory access request. An example
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is when a speculative read-ahead buffer is used by the operating system to access storage.
Snooping this data could pollute host caches and, therefore, the TPHs can be configured on a
per packet basis [42].

Address Translation Services

Another extension proposed for PCI Express Gen 2 are the Address Translation Services (ATS)
[43]. This extension was included in the PCI Express Gen 3 specification and translates un-
translated addresses to physical addresses. ATS enables attached devices to request address
translation from the host in advance to alleviate potential congestion during times with inten-
sive communication across the interconnect [42].
To relieve the host translation agent, the extension proposes attached devices to implement an
address translation cache (ATC) on the device itself. This allows device designers to size the
ATC depending on the usage model of the device.

Atomic Operations

Atomic Operations [44] also have been added as an extension to PCI Express Gen 2 and were
incorporated in the PCI Express Gen 3 specification. Atomic operations are used as a locking
mechanism for shared memory and as a means of communication between host and attached
device to reduce overhead compared to traditional solutions [42]. Three different atomic oper-
ations are supported: FetchAdd, Swap, and Compare-And-Swap.

3.1.2 PCI Express Gen 3

The third generation of PCI Express was introduced in 2010 [41] and introduced various changes
at packet level compared to the previous generation. The theoretical bandwidth of a single lane
is 1.0 GB/s but in practice is lower due to encoding, packet and traffic overhead [45]. Latency
characteristics are difficult to come by. A study conducted in the field of real-time Ethernet
found highly variable results [46]. A network interface card is attached to an Intel i5 3550
processor, either in the graphics or IO PCI Express Gen 3 slot. The graphics slot is connected
directly to the root complex of the processor while the IO slot is connected through the chipset.
The impact of the location of the slot is clearly visible in the obtained latencies of 1.38 µs for
the graphics slot and 3.11 µs for the IO slot. These results have been obtained by reading the
clock register located in the network card. The latency is defined as the time passed between
two consecutive read requests of the clock register.

3.1.3 PCI Express Gen 4

In October 2017, the final specification for PCI Express Gen 4 was released, limited to members
of the PCI-SIG [47]. The most significant improvement is the doubling of bandwidth to 2.0 GB/s
per lane while retaining compatibility with previous PCI Express generations.

3.1.4 PCI Express Gen 5

In June 2017, PCI Express Gen 5 was announced [48]. Not much information has been shared
publicly besides the doubling of bandwidth to 4.0 GB/s per lane compared to the previous
generation. The information presented in Table 3.1 on Page 45 assumes that PCI Express Gen
5 supports all the features from previous generations.
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3.2 CAPI
To address emerging workloads and inefficiencies present in the traditional IO model (see Chap-
ter 2), IBM’s POWER8 processor introduced the Coherent Accelerator Processor Interface
(CAPI) in 2014. CAPI enables accelerators to be plugged into PCI Express slots and act as a
coherent peer of other caches within the system memory hierarchy [2]. CAPI also allows data
to be referenced by an effective address in the same way as an application running on the host
processor without the need for a device driver. A generic kernel extension enables CAPI in the
host operating system. This removes software overhead, traditionally present for a software
thread running on the host processor to share data with an attached device.

3.2.1 Architecture
PCI Express does not natively allow attached devices to operate as a coherent peer, since it has
no notion of the coherency protocol used within the host processor. To bridge both protocols, a
hardware proxy unit, called the Coherent Accelerator Processor Proxy (CAPP), resides within
the host processor and is connected to the coherent fabric as shown in Figure 3.2. Besides the
CAPP, also the PHB is present within the host processor and provides the necessary hardware
for the underlying PCI Express protocol used. The attached device, either an ASIC or FPGA,
contains the POWER Service Layer (PSL) and one or multiple Accelerator Function Units
(AFUs).

Figure 3.2: System architecture of a CAPI attached device [2].

When the CAPP, PHB, PCI Express and PSL are combined, the AFU is able to operate co-
herently on data in host memory. To reference the requested memory, the AFU uses effective
addresses that are translated by a memory management unit (MMU) within the PSL. The PSL
may also send interrupts to the host processor on AFU completion or to indicate a translation
fault.
The interface provided by the PSL to the AFU hides cache coherence complexities and address
translation. AFUs request host memory using a load-store model to user space effective ad-
dresses. Requests can be either cacheable or write-through (not cached). Cacheable requests
are typically used to communicate control information between multiple processes and can be
stored within a 256 kB cache within the PSL [49]. Write-through requests are typically used for

38



data manipulation outside of the coherence domain and therefore require less messages to be
transmitted over the PCI Express link and reduce overhead.
The programming model requires the application to setup data for the attached device in host
memory, and to notify the AFU when the data is ready to be consumed. It is not possible to
transfer data from the host processor to the AFU directly because the AFU has to master read
and write commands for data located in host memory [50]. The AFU can be notified in two
different ways, either the AFU polls a location in host memory or the application running on
the host writes into a specific MMIO register on the attached device.

Coherence

Coherent host memory access is enabled by a combination of the CAPP and PSL and both
contain cache lines used by the AFU. The CAPP acts as a proxy for the PSL and snoops
coherence messages on the fabric. Snoops that hit cache lines present in the CAPP could
generate messages, transmitted across the PCI Express link, for the PSL. Coherence enables an
AFU to cache data from host memory and to request locks to implement atomic operations for
example [51].

Address Translation

In order for the AFU to operate on effective addresses, the PSL consists of an MMU that uses
the host processor’s page tables [35]. This enables AFUs to de-reference pointers, similar to a
thread running on the host processor. System software manages page faults [49]. The MMU
performs address translations and caches recent translations, in order to avoid page table walks.
The CAPP also snoops translation invalidation messages from the fabric since the PSL consists
of a translation cache.

3.2.2 CAPI 1.0

The first generation of CAPI was introduced with the IBM POWER8 processor in 2014 [49].
Since there is only one CAPP unit per POWER8 processor, the number of attached CAPI
1.0 devices is limited by the number of processors in the system. To improve adoption, Xilinx
released an AXI4 to CAPI 1.0 adapter [52].
The total bandwidth available to a CAPI 1.0 attached device is determined by the underlying
PCI Express Gen 3 interconnect and the number of lanes. CAPI 1.0 supports eight or sixteen
lanes per attached device [5]. The online CAPI Developers Community used a Nallatech P385-
A7 FPGA attached using an eight lane PCI Express Gen 3 interface in conjunction with a
POWER8 S824 system to assess the bandwidth and latency of CAPI 1.0 [50]. The measurements
were obtained using a modified memcpy demo supplied with the developer kit. When data
resides in host memory, a read bandwidth of 3.42 GB/s was achieved with an average latency
from PSL request to response of 864 ns. Similarly, write bandwidth of 3.88 GB/s with an average
latency of 838 ns was achieved. Reads and writes that hit in the PSL cache achieved a latency
of 120 ns.
Due to the protocol overhead of CAPI 1.0 on top of PCI Express Gen 3, the obtained bandwidth
is significantly less compared to the theoretical capabilities of PCI Express Gen 3. On the
flipside, CAPI 1.0 provides several features and usage models that are not possible with a
traditional PCI Express Gen 3 interconnect.
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Streaming Framework

The Streaming Framework is an extension to CAPI 1.0, designed and implemented by Matthijs
Brobbel [11]. Instead of presenting the PSL interface to an AFU designer, a simple read and
write streaming interface is presented with cache line granularity (128 bytes), similar to a
DMA. It supports a single stream (multiple streams in simulation only) and returns read data in
order, whereas the underlying CAPI interface does not guarantee such ordering. The philosophy
behind the Streaming Framework is to hide the hassle of directly talking to CAPI by simplifying
the interface. Preliminary results of a memcpy AFU show a bandwidth of nearly 3.3 GB/s
using a Nallatech P385-A7 FPGA card with eight PCI Express Gen 3 lanes [12]. Similar to
the explanation in Section 3.2.2, the CAPI 1.0 protocol overhead on top of PCI Express Gen 3
limits bandwidth.

Storage, Networking, and Analytics Programming

The Storage, Networking, and Analytics Programming (SNAP) framework enables designers
to easily integrate FPGA-based accelerators to work with data located in host memory, flash
or attached storage, or from other connected devices such as Ethernet [14]. One could argue
whether it is a continuation of the Streaming Framework in the sense that a simplified interface
eases integration. SNAP consists of an AXI-to-CAPI bridge, MMIO registers, a host DMA,
and a job management unit [13].
An AFU can be controlled using an AXI-lite interface and the AFU has access to host memory
through a coherent 512 bits wide AXI interface operating at 250 MHz [53]. Additionally, AXI
bridges to DRAM and NVMe are available. All of these hardware units are accompanied by a
software library. No bandwidth results are public yet, but SNAP ought to be able to achieve
the same bandwidth as CAPI 1.0.

3.2.3 CAPI 2.0

The successor to CAPI 1.0 can be found in the IBM POWER9 processor [19]. Features from
CAPI 1.0 are retained and the main improvement is the use of PCI Express Gen 4 that doubles
the available bandwidth per lane. The effective bandwidth, compared to CAPI 1.0, will be more
than double because protocol overhead is reduced by including packets with a larger payload.
Another improvement is the addition of a host thread wake-up construct in hardware [5].

3.3 OpenCAPI

OpenCAPI is a continuation of CAPI, but an open standard, that allows a microprocessor, ag-
nostic to processor architecture, to attach to coherent user-level devices and advanced memories
[19]. It provides a high-bandwidth, low latency interface optimized for ease of programmability
and integration. By implementing complexities of coherence and virtual addressing on the host
microprocessor, attached devices can be simplified and are interoperable across multiple pro-
cessor architectures. Attached devices operate natively within an application’s user space and
coherently with processors, since it appears as a peer to the host processor cores by sharing the
same virtual memory space. This allows an attached device to fully participate in an application
running on a host processor without kernel and device driver overhead of data copies or pinned
pages and simplifies the programming model. Besides accelerators, OpenCAPI also supports
classic and emerging memory and storage technologies. Chapter 4 discusses OpenCAPI 3.0 in
much more detail.
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3.3.1 Architecture

In essence, OpenCAPI uses the philosophy behind CAPI and replaces the underlying PCI
Express based protocol with a streamlined point-to-point standard designed from scratch [5, 39,
7]. With CAPI, address translation was done on the attached device in the PSL. In OpenCAPI,
the virtual-to-physical address translation occurs in the host processor and enables a shared
virtual address space. By pushing the translation hardware into the host silicon, the protocol
layers are asymmetric on the host and attached device, and the data link and transaction
layers are very thin on the attached device. This reduces design complexity and is especially
beneficial for FPGAs since less resources are spent on the interconnect and more can be used for
the actual accelerator. Initially, OpenCAPI will not support a coherent cache on the attached
device, contrary to CAPI. Nonetheless, coherent memory accesses between the host and attached
device are supported.
Attached devices never have access to physical addresses due to the shared virtual memory
space. This improves security by eliminating the possibility of a defective or malicious device
accessing memory locations belonging to the kernel or other applications that it is not authorized
to access. Also pointers can be dereferenced on the attached device. This enables memory
access patterns such as pointer chasing and linked lists without driver involvement. Multiple
contexts are supported within the protocol, allowing multiple threads to utilize the attached
device simultaneously. To synchronize threads and facilitate multi-thread programming, atomic
memory operations are supported. In addition, special opcodes are available for warming up
the address translation cache in the host. Finally, in order to reduce translation latency when
using a new page, a new mechanism for waking up a host thread with low latency instead of
interrupts or polling of host memory.

3.3.2 OpenCAPI 3.0

The first processor to use OpenCAPI is the IBM POWER9. Since it is a continuation of
CAPI, the first generation of the OpenCAPI standard is called OpenCAPI 3.0. It will share the
BlueLink 25G I/O facility with NVLink 2.0, peaking at a half-duplex bandwidth of 25 Gbit/s
at eight lanes per attached device. More information regarding the POWER9 processor and
OpenCAPI 3.0 can be found in Chapter 4.
The most recent source as of writing this thesis is a slide deck to inform on the progress of
OpenCAPI 3.0 presented at the end of 2017. A POWER9 processor was paired with an Alpha
Data 9V3 FPGA card with a Xilinx VU3P FPGA and achieved a bandwidth of roughly 22 GB/s
for streaming read and write operations [5].
Throughout this thesis, OpenCAPI will be used as a proxy for OpenCAPI 3.0, unless specifically
stated otherwise.

3.3.3 OpenCAPI 4.0

OpenCAPI 4.0 will continue where 3.0 left off and is still in definition. One of the main features
is the re-introduction of cache coherency on the attached device. This provides a latency
advantage for frequently used data. This cache will use effective addresses while CAPI uses real
addresses [5]. Address translation will occur on the host similarly to OpenCAPI 3.0.
New features consist of additional link widths of four, sixteen and 32 lanes compared to a
single link configuration of eight lanes for OpenCAPI 3.0 [54]. The low latency communication
mechanism (wake host thread) between the attached device and host application as is present
in OpenCAPI 3.0 will be enhanced by rollover to interrupt. This avoids the use of current
inefficient mechanisms such as interrupts or polling of the host memory
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3.4 CCIX

Similar to OpenCAPI, CCIX is an initiative promoted by several companies for an open inter-
connect standard that is host architecture agnostic [55]. CCIX extends the processor’s coherency
domain to heterogeneous devices such as accelerators, network adapters, and memory and stor-
age solutions. This is done using a driver- and interrupt-free framework for data sharing across
the link in hardware and allows low-latency main memory expansion as well.

3.4.1 Architecture

CCIX is an extension to PCI Express. Therefore, little to no modification to PCI Express
controllers is required. It uses the PCI Express extension for address translation services via
ATS/PRI [39] and requires additional logic, as shown in Figure 3.3, to implement the CCIX
transaction layer. This layer carries the coherence messages, while the CCIX protocol layer
and link layer implement the coherence protocol and act upon it. These blocks require tight
integration with internal system-on-chip (SoC) logic for caching, and depend on the SoC’s ISA.
SoC designers implementing CCIX typically partition the CCIX protocol and link layers from
the CCIX transaction layer, so they can achieve tight integration with the internal SoC logic
[3].

Figure 3.3: Layering diagram of the CCIX standard [3].

The standard supports peer-to-peer and switched topologies with unidirectional bandwidths be-
tween 1 Gbit/s and 3.125 Gbit/s per lane. Links consist of eight or sixteen lanes. It provides full
cache coherence between the processor and accelerators. Communication with CCIX-attached
devices is managed by vendor-specific drivers and libraries.
During the typical PCI Express initialization process, the highest mutually supported transfer
speed is determined between the two CCIX components. Software running on the host checks
configuration registers on the attached device to decide on the transfer speed.
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3.5 AMBA AXI
The Advanced Microcontroller Bus Architecture (AMBA) is an open standard by ARM for
interconnect protocols. Today, protocols from AMBA are the de facto standard in the world
of ASICs, FPGAs, SoCs and embedded devices for communication between cores and between
cores and attached devices. Currently, FPGAs mostly use the Advanced eXtensible Interface
(AXI) protocol by AMBA that will be discussed in this section.

3.5.1 Architecture
While AMBA owns multiple interconnect standards, AXI is the most widely used standard in
the world of FPGAs. An example is the abundant use of it in the Xilinx FPGA tool chain
and all hardware modules available in the SNAP framework. The latest generation of AXI was
released in 2010 in the fourth iteration of the AMBA specification [56].
AXI targets high performance and high clock frequency systems by providing a memory-mapped
interface that consists of five independent channels: read address, read data, write address, write
data, and write response. AXI does not define a specific clock frequency or data width in order
to serve the needs for multiple requirements. As an example, the Xilinx AXI generated modules
can be configured with a data width of up to 1024 bits [57]. The frequency depends on the
FPGA used in this case and could be in the order of 250 MHz [53].

3.5.2 Handshake Protocol
The simple uni-directional protocol employs a ready-valid handshake to support flow control in
both directions [52]. In essence, the master provides data with an associated valid signal and
the slave indicates when it is ready by asserting a ready signal. When at a rising clock edge
both valid and ready signals are asserted, data is transferred and both signals are deasserted
again.

3.5.3 AXI Protocol Derivatives
AXI allows for bursts of data of up to 256 transfer cycles with a single address phase. A
derivative is the AXI-Lite standard that is mostly used for low-throughput memory-mapped
data transfers. In comparison to AXI, it does not support burst transfers but instead only
the transfer of an address-data pair. Another derivative is AXI-Stream, used specifically for
streaming applications. The complex address channels are removed and only the ready-valid
handshake signals are left. This results in the simplest interface within the AXI family.

3.5.4 AXI Coherence Extension
The AXI Coherence Extension (ACE) [56] is an extension to the fourth iteration AMBA speci-
fication introduced in 2011. ACE introduces additional signals to enable system-wide coherence
[37].
The introduction of ACE enabled heterogeneous SoCs such as the ARM big.LITTLE architec-
ture. A derivative of ACE called ACE-Lite enables IO coherency in the sense that an attached
device can read from the cache present in the ACE-capable host processor.
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3.6 Interconnect Comparison
The preceding sections provided information about the state-of-the-art interconnects. This
section summarizes their main characteristics and compares them to the desired requirements
for future interconnects discussed in Section 2.4.

3.6.1 Bandwidth and Latency
In order to compare various interconnect standards in more detail, the protocols involved and
the system that is used should be investigated in more detail. Protocol overhead in transmitted
data is for example not taken into account in the comparison presented in Table 3.1, nor are
other factors such as packet overhead, and how acknowledge packets incluence bandwidth.
System parameters can also affect performance such as payload size and the topology of the
interconnect [45]. With a switched topology, packet congestion can occur if multiple endpoints
make multiple requests simultaneously. Determining the latency has similar difficulties in that
it depends on so many factors.
In general, there is a clear trend to increase the per lane transmission rate in order to provide
for example enough bandwidth to accelerators for emerging workloads such as big data and
machine learning.

3.6.2 Address Space
There is a trend towards a shared memory model and coherent interconnect with more band-
width and lower latency. A shared address space across the host and attached devices simplifies
the programming model and allows for new use cases.
Since PCI Express Gen 3, ATS is included in the specification and enables an ATC on attached
devices. While this improves address translations, it does not share a translation table with the
host processor as CAPI and OpenCAPI do. Therefore, emerging use cases are not yet possible
on PCI Express nor on CCIX.

3.6.3 Coherence
Hardware-based coherence across host cores and attached devices should greatly simplify the
programming model.
PCI Express uses a snoop filter to keep host caches coherent when host memory is accessed by
the attached device. While this improves performance by decreasing data access latency, no
coherent cache is present on the attached device itself. CAPI does support a coherent cache
on the attached device at the cost of an increased protocol overhead. OpenCAPI will support
this in the next generation as well, while currently only coherent memory access is provided.
The additional protocol layers of CCIX enable cache coherency and the ACE extension works
similarly for AXI interconnects.

3.6.4 Synchronization
With access to shared memory by the attached device, synchronization using shared variables
between a thread running on the host and the attached device removes inefficiencies from using
interrupts or communication using MMIO registers.
PCI Express supports three atomic operations to implement synchronization mechanisms, while
CAPI only implements locks. OpenCAPI on the other hand supports multiple atomic opera-
tions with a ton of configuration possibilities per operation. This enables a wide variety of
synchronization mechanisms to be implemented.
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Table 3.1: Comparison of state-of-the-art interconnect standards.

Standard Bandwidth Address Space Coherence Synchronization
PCI Express Gen 3 16.0 GB/s ATS Snoop Atomics
PCI Express Gen 4 32.0 GB/s ATS Snoop Atomics
PCI Express Gen 5 64.0 GB/s ATS Snoop Atomics
CAPI 1.0 16.0 GB/s Shared Cache Locks
CAPI 2.0 32.0 GB/s Shared Cache Unknown
OpenCAPI 3 25.0 GB/s Shared Memory Atomics
OpenCAPI 4 100.0 GB/s Shared Cache Atomics
CCIX 32.0 GB/s ATS Cache Unknown
AXI1 16.0 GB/s Memory Mapped Cache Unknown

3.7 Preliminary Concluding Remarks
It is obvious that many advancements in interconnects have been made recently to bridge the gap
between host processor cores and attached devices by tighter coupling and extending common
concepts for homogeneous multi-core processors to attached devices.
Due to the desire of backwards compatibility, PCI Express is limited in terms of innovation and
protocol changes. This resulted in a slow release of the Gen 4 specification. At the same time,
multiple initiatives started to develop new interconnect standards such as CAPI, OpenCAPI,
and CCIX.
Due to the support of higher signaling rates than PCI Express, shared memory with address
translation and coherent host memory access, OpenCAPI 3.0 is of special interest during the
remainder of this thesis. All of these features allow for new usage models and new workloads
to be accelerated. In general, upcoming interconnect standards receive a significant increase in
bandwidth and this impacts accelerator architectures and design choices.
The objective of the remainder of this thesis is to explore how multiple classes of accelerated
workloads can be fed with the same or similar reconfigurable buffer architecture to improve
designer adoption of OpenCAPI, or other high-bandwidth interconnects. In order to do so,
Chapter 4 provides a deeper understanding of OpenCAPI.

1 The bandwidth is calculated as the product of a 512 bit wide data bus operating at 250 MHz as used by the
SNAP framework [53]. However, higher bandwidths could be obtained by improving either or both parameters.
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Chapter 4

OpenCAPI Characterization

To get a better understanding of the first OpenCAPI capable system, the system architecture
of IBM’s POWER9 processor is presented. While OpenCAPI is host architecture agnostic, the
standard will be looked at in more detail with respect to the POWER architecture. Several
supported accelerator paradigms are shown and finally two initial compatible Xilinx FPGAs
are characterized.
While our research was being conducted, much of the information on OpenCAPI could only be
obtained by talking to the right people, and we hope that this overview may prove useful to
others who want to gain a better understanding of this interface.

4.1 POWER9 System Overview

OpenCAPI [7] is a successor to CAPI 1.0 [2] and enables direct attachment of any micro-
architecture CPU to coherent user-level accelerators like ASICs and FPGAs and I/O devices
such as network and storage controllers. The goal is to have a high-bandwidth and low latency
interconnect optimised to enable streamlined implementation of attached devices. The first
OpenCAPI enabled system will be in the upcoming POWER9 processor by IBM [4].
Figure 4.1 shows the system architecture of a superset of the various configurations. Depending
on the model (SU or SO), there are up to 12 SMT8 or 24 SMT4 cores available accompanied
by a collection of various on-chip accelerators such as gzip, 842 compression and AES/SHA
cryptography engines. The memory controller supports either eight DDR4 channels or eight
”Centaur” memory buffer chips that also act as an off-chip L4 cache. This yields sustained
bandwidths of at least 120 GB/s and 230 GB/s, respectively.
POWER9 supports a wide collection of interconnect standards. In total, 48 PCIe Gen 4 lanes
are available, which can also be used for CAPI 2.0, for a total half-duplex bandwidth of 96 GB/s.
Additionally, there are 48 BlueLink lanes operating at 25 Gbit/s servicing either Nvidia NVLink
2.0 attached GPUs or OpenCAPI 3.0 attached devices. This enables an additional 150 GB/s of
half-duplex bandwidth. Other POWER9 sockets can be attached through an SMP interconnect,
by using 16 Gbit/s or 25 Gbit/s lanes. Finally, the cache hierarchy and on-chip interconnect,
called the fabric, ties all units together at a maximum bandwidth of 7 TB/s [19]. Due to the
coherent nature of the fabric, attached devices can seamlessly communicate with each other and
system memory. What sets the POWER9 apart from other vendors is the extended coherency
domain across processor cores and attached devices.
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Figure 4.1: POWER9 system overview [4].

4.2 OpenCAPI Architecture

The OpenCAPI architecture consists of several protocol layers divided between the host and
attached device [58] [6]. Logic is required on both sides to enable the protocol stack. All logic
required for enablement on the host is called the Coherent Accelerator Processor Proxy (CAPP)
and is architecture dependent. The CAPP for the POWER architecture is briefly mentioned,
but our main focus is on the attached device side. While OpenCAPI also targets emerging
storage class memory features, those will not be discussed further and are outside our scope.

4.2.1 Protocol Stack

Figure 4.2 shows the OpenCAPI stack that is partly located on the host CPU and partly on the
attached device. OpenCAPI is a credit-based point-to-point protocol. The link has a number
of credits that are consumed when data is transferred in order to throttle traffic. While in
essence there are no differences from the point of view of the stack between attaching an ASIC
or FPGA, only FPGAs will be considered due to the aim of the thesis.
In comparison to CAPI 1.0, the PSL is now located in the host processor, which removes the logic
overhead within the FPGA. Complexities of coherence and virtual addressing are implemented
on the host CPU to simplify the design of attached devices and facilitate interoperability across
different CPU architectures. Due to the coherent nature, attached devices can operate natively
within an application’s user space. This allows attached devices to fully participate in an
application without involvement or overhead of the kernel [19].
The stack consists of several layers that are briefly introduced. Messages (packets) can be
initiated by either the CAPP (host) or AP (AFU) and are called CAPP or AP command
packets, respectively (see Section 4.2.3). When the Transaction Layer on either side receives a
command packet, a response packet has to be sent back, called a CAPP or AP response packet,
respectively. Note that while the stack looks symmetric, the transaction layers on both sides are
very different, since their implementation depends on the host architecture and AFU protocol,
respectively.
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• Host Protocol Layer is the coherent connection to the rest of the host. The implementation
is host architecture dependent and all required logic to implement OpenCAPI is called
the CAPP (see Section 4.2.4).

• Transaction Layer (TL) converts host protocol-specific requests into CAPP command
packets and generates and handles CAPP response packets. Internally it consists of a
framer and parser.

– Framer packetizes CAPP commands and responses along with credit packets into
control flits according to various packing templates. Different templates exist since
packets have different sizes. Control and data flits are sent to the DL while ensuring
frame order.

– Parser receives DL frames consisting of control and data flits (see Section 4.2.2). It
parses the control flit into AP command and response packets and returns credits to
the Framer. The AP packets are passed to the host.

• Data Link Layer (DL) converts DL frames, consisting of a single control flit and between
zero and eight data flits, to PHY transmittable data.

• Physical Layer (PHY) represents the actual connector and link on the host CPU. Each
lane operates at 25.781 25 GHz. For the POWER9, each PHY brick consists of eight
duplex lanes.

In opposite order, the PHYX, DLX and TLX layers present on the FPGA act similarly to their
host counterparts, where X stands for eXternal. However, the TLX does not handle responses.
This has to be taken care of by the APL or AFU, depending on implementation.
An additional layer present on the FPGA is the AFU Protocol Layer (APL). This is an optional
layer and an AFU can also directly interface with the TLX if desired. An example of this layer
could be a bridge to AXI, the de facto standard for FPGAs, similarly to the AXI4 to CAPI
1.0 adapter by Xilinx [52]. On the other side the APL interfaces with the Attached Functional
Unit (AFU), or accelerator.

4.2.2 Data Link Layer Frame Format
Typically, packets are broken up in smaller pieces called flits, which stands for FLow control
unIT. The first flit is the packet header and contains control information. Other flits, corre-
sponding to the same packet, are data flits. In the context of OpenCAPI, the network packet
is called a (DL) frame and the term packets is reserved for CAPP and AP commands and
responses. The term TL packets acts as an umbrella for all different packets.
Both the TL and TLX framer and parser work with DL frames [58]. A DL frame consists of
one control flit and between zero and eight data flits, where at most four data flits belong to
a single TL packet. Every flit is 64 bytes in size. Flits are transmitted starting at the lowest
order control flit bytes and continuing in increasing address order. After that, the data flits
are transmitted similarly. A control flit consists of an 8 byte DL content field and 56 bytes
of TL packets, packed according to a predefined packing template. The OpenCAPI 3.1 TL
specification [6] adds a datum field to the control flit which embeds data smaller than 64 bytes
within the control flit for improved frame utilization.

The DL content field contains both DL and TL generated subfields. Important are the DL
injected CRC and TL injected TL template subfields. The CRC covers both the current control
flit and the data flits from the previous control flit. Upon detection of an error, all data flits
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Figure 4.2: The OpenCAPI stack from host to attached device [5].

from the previous control flit are invalid and the transmitter is requested to replay the data
flits. The final control flit never has any data flits, since it has to validate the last data flits
using its CRC.
Figure 4.3 shows several DL frames and their respective control and data flits. The same colored
flits indicate how a CRC in the DL content field corresponds to the data flit(s) from the previous
control flit. The TL template subfield specifies the location of TL packets in the remainder of
the control flit. The 56 bytes, or 448 bits, of TL packets in the control flit consist of sixteen, 28
bits, slots. TL packets differ in length and can consume between one and six slots per packet.
Different package templates exist that indicate how many TL packets are present and how many
slots they consume.

4.2.3 Transaction Layer Packets

TL packets are control instructions that can be sent within a control flit [6]. Depending on
which side of the OpenCAPI link initiated the packet, the prefix CAPP (for the host) or AP
(for the AFU) is used. There are several different types of packets, depending on the source.
The host can issue from the following categories of commands. Bear in mind that each command
requires a response (not listed below).
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Figure 4.3: Example of several DL frames showing the CRC control and data flit coverage [6].

• Address Translation The host notifies the AFU that a previous address translation request
has been completed.

• Configuration Space Reading and writing to the configuration space of the AFU is sup-
ported with specific commands.

• Interrupt The host updates the AFU regarding a previous interrupt request.

• Memory Access The host can read and write AFU memory at 64, 128 or 256 bytes data
sizes at a time. It supports partial reads and partial and byte-enabled writes.

• Metadata An optional and implementation specific field to hold metadata for a data block
held in memory.

The AFU supports a different set of command categories.

• Address Translation The AFU can request address translation prefetching for an EA to
warm up the address translation cache. This allows an accelerator to reduce translation
latency when using a new page.

• Assign acTag The Address Context Tag (acTag) is used to index a host table containing
the associated BDF and PASID. The BDF and PASID are used for address translation
authorization and operation validation.

• Atomic Operations are supported to host memory (read, write, read-write). An accelerator
can perform atomic operations in the same coherent domain just like any other host
processor thread. Multiple variations are supported by hardware.

• Interrupt The AFU can request interrupt service on the host.

• Memory Access Currently, the AFU has no coherent cache. Therefore, read commands
have a suffix to indicate no intent to cache. A coherent cache will be supported in Open-
CAPI 4.0. A partial read is supported, as well as byte-enabled and partial writing.
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• Wake Host Thread is an efficient low-latency mechanism used for communication between
the host and attached device instead of either interrupts or host polling mechanism of
host memory.

Both the CAPP and AP side support a response packet for returning credits. As mentioned
earlier, these are used for flow control.

4.2.4 Coherent Accelerator Processor Proxy
The CAPP, in a host architecture agnostic context, contains all logic required on the host
to enable OpenCAPI. Figure 4.3a shows a possible system architecture where the CAPP is
coherently connected to the rest of the host. An OpenCAPI device is then connected to the other
side of the CAPP. Note that module names used here might change in the official documentation.
Figure 4.3b shows CAPP implementations for the POWER9 [59]. It includes the OpenCAPI
Processing Unit (OPU) and Nest Memory Management Unit (nMMU). The OPU consists of
three stacks and each stack services two physical bricks of eight lanes. This brings the total to
48 lanes. Each stack consists of an XSL, and the DL and TL layers. The XSL handles address
translation and has a dedicated ERAT/TLB of 64 entries and each entry represents a 64 kB
page. Two stacks support OpenCAPI and are statically configured to use either OpenCAPI or
NVLink 2.0 DL and TL layers, that in turn are connected to the PHY. The nMMU handles
translation requests from other units than the CPU cores. It has its own ERAT/TLB with 8192
page entries, significantly more than the XSL.

(a) Host architecture agnostic. (b) POWER9 architecture specific.

Figure 4.4: System level view of OpenCAPI enablement on the host using the CAPP.

4.2.5 OpenCAPI Attached Device
The CAPP is provided by the host architecture. On the FPGA side, the physical layer is
supplied by the FPGA card vendor. Both the DLX and TLX are implemented using configurable
resources on the FPGA and a reference design is provided by the OpenPOWER Foundation.
The APL is an optional layer between the TLX and the AFU. Based on experience and customer
feedback of CAPI 1.0 [59], the OpenCAPI consortium decided to supply no specific interface
between the TLX and APL in the sense that there is no cache or buffer present that the AFU
can talk to directly. Instead, it provides an interface where TL packet opcodes can be sent to
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or received from the host.
Figure 4.5 shows the presented TLX interface from a high level [59]. The TLX consists of a
framer and parser, just like the TL. The parser receives frames from the DLX, unpacks the TL
packets and splits the command and response packets, each presented at a separate interface.
Each of these two interfaces consists of parsed control information from each TL packet and
corresponding data payload. The data payload interface is 64 bytes wide, the same size as a
data flit. If the payload of a single TL packet is more than one data flit, it takes multiple cycles
to receive the entire data payload. The framer has similar interfaces, but packs TL packets
instead to form control flits. There is also a configuration module present on the AFU which
holds registers for configuration of the TLX. For example, to enable certain packing templates.
There are separate interfaces for this module, not shown in the figure. The TLX also manages
credits and each interface has a credit interface in opposite direction. The TLX parser also
gives credits back to the TLX framer.
The latest generation of Xilinx FPGAs are used that allow an increased operating frequency of
up to 450 MHz. To minimize latency, the target frequency of the DLX and TLX is 400 MHz.
Each of the four data interfaces can supply up to 64 bytes per cycle at the target frequency.
Typically, highly pipelined FPGA designs can reach up to 250 MHz. If an AFU operates at
200 MHz, it will seem like OpenCAPI provides 128 bytes per cycle. This is also the size of a
cache line in the POWER architecture.

Figure 4.5: Interface between the TLX and APL or AFU, depending on the AFU design.

An OpenCAPI device may have three physical address spaces. The configuration space is in
a separate space from the MMIO and system memory spaces. These spaces share a PA space
and the host can differentiate between the two since the system memory space always starts
at offset zero of the PA, while the MMIO space starts at a fixed configured offset from zero.
The MMIO offset is configured using a BAR (Base Address Register) and multiple BARs are
present to service multiple attached devices.

• Configuration space may be used for configuring the TLX or AFU. It is accessed by using
the dedicated read and write commands. A reference configuration space module will be
provided by the OpenCAPI consortium.

• MMIO space may be used for configuration of the AFU and is mapped in the system
memory address space.
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• System memory space is a memory space owned by the OpenCAPI device and is mapped
to the system’s RA space. This memory is coherently accessed using the load/store model
used by the host.

A typical usage model is to write a work pointer in an AFU MMIO register or by communication
through shared memory. The MMIO module is flexible in the sense that the MMIO base address
register and sizes can be configured by the AFU designer. Also configuration registers are present
on a per-process basis. The MMIO module is provided by the OpenCAPI consortium and can
be integrated directly within a design.

4.2.6 Address Spaces and Translation
While address translation is present on the host and managed by hardware, it is of interest to
the AFU designer since it can greatly influence performance regarding translation misses. Page
table walks are very expensive and take many cycles to complete [59]. Therefore tuning the
AFU to optimally use the TLB and warming up the TLB is a good practice.

Address Spaces in the POWER Architecture

Three different address spaces exist in the OpenCAPI and POWER architecture.

• Effective Address (EA) is the address seen by a program, also known as a virtual address.

• Real Address (RA) is the address used to access the entire system address map. The
entire map consists of physical DIMM memory, PCIe memory, GPU memory, etc. Each
of the regions has a base and size region of the RA that maps to it. These addresses are
for example used within the fabric on the POWER9 to communicate between caches and
DIMM memory.

• Physical Address (PA) is the address used by a physical memory source, such as a DIMM
or local memory of an attached device. You can think of the physical address as the RA
minus the base. It maps directly to a location within the memory device.

The system memory address space includes all addresses within the system and uses real ad-
dresses. Main memory is the portion that is normally backed by physical DIMMs and marked
coherent. This can be cached by processor caches and coherency maintained. MMIO (memory
mapped I/O) is mapped into the system memory map, but it is marked in the page tables as
non-cacheable. This includes the PCI Express devices MMIO regions, AFU MMIO regions, as
well as the processor MMIO addresses. MMIO regions consist usually of registers and are used
for configuration of the system and communication with the device driver for I/O devices. It
is a region in the system memory map because it is accessed across the fabric from a program
running inside a core to communicate with the attached device via EA-RA translation.

Address Translation

Taking a look at Figure 4.1 again, the fabric uses real addresses. If a memory location within
a DIMM is accessed, the memory controller resolves a physical address from the real address.
Cores have their own MMU in order to translate an effective address to a real address via
page/segment table walking. An effective address will be translated to a real address if a
memory location has to be accessed outside of the current core.
In OpenCAPI, all translations happen on the host and occur either in the OPU or nMMU.
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In CAPI 1.0, part of the translation was located on the FPGA (in the PSL). Moving the
address translation to the host reduces design complexity of attached devices. Since an attached
device never has access to a physical address, malicious attached devices are not able to access
unauthorized memory locations, such as addresses belonging to kernel or other applications.
The AFU only uses effective addresses for mastering commands to host memory, that are
translated on the host to real addresses. When the AFU acts as a slave and receives commands
from the host, physical addresses are used to access the three different physical address spaces
mentioned in Section 4.2.6. These physical addresses have been translated from program EA,
to system RA, to PA. The host converts the RA to a PA using configuration settings in the
host that are determined during initialization of the attached OpenCAPI device.
Real addresses are mapped into the physical address space specified for an OpenCAPI device.
This eliminates any requirement placed on the OpenCAPI device to have knowledge of the
host’s real address space or how the OpenCAPI device’s PA space is mapped into it. The PA
for CAPP commands is all translated in the host (MMIO, Config, host memory). The host has
programmable base address (BAR) and offset registers for everything. The PA space in the
FPGA is either config space (indicated by command type), MMIO (indicated by matching the
AFU’s base address), or host memory (if it doesn’t match the AFU’s BAR).

Address Translation Example

As an example, consider a POWER9 with an OpenCAPI-attached device. A program on the
processor only sees an Effective Address for addressing the system address map. If the program
requests the AFU to fetch data from host memory it uses an EA. The AFU sends the EA across
the OpenCAPI link and the XSL translates the EA to a Real Address (RA). To do this, first
it looks in its ERAT. If it misses the XSL ERAT it forwards the request to the nMMU. The
nMMU will look in its ERAT before walking the page table in host memory to resolve the
translation into an RA. If the page walk fails it will return a bad status to the OPU, and it will
generate a fault interrupt to resolve the fault.
In the other direction, a program uses an EA and the OS sets up mappings between a page to
a physical resource. To communicate across the fabric, the program EA is translated to an RA.
The RA is then matched to a range within the OPU that is configured as AFU memory and
translated from RA to PA.

4.3 Coherent Programming Model
OpenCAPI enables new, easier and more natural programming models, as found on multi-
core systems, for IO that was not possible with the traditional approach. Attached devices
are more easily accessible due to the shared virtual memory space and appear as peers to the
processor cores. Also the setup and completion phases, by interacting with device drivers,
have been simplified and made faster. Combining this with attaching devices with a low-
latency interconnect, the attached devices become tightly coupled that allows for thread-level
parallelism between the application running on the host and the attached device.

4.3.1 Coherent Shared Virtual Memory
The approach of OpenCAPI (and CAPI for that matter) offers a virtual address space shared
between the processor caches and the attached device [7]. The host and accelerator can coher-
ently access each others physical memories. This removes the problem of having multiple copies
of the same data in a traditional IO model (see Section 2.3.1) and reduces setup and completion
time significantly for an application wanting to use the attached device. Typically, this might

55



take 12.8 µs as shown in Figure 4.6. Now it might take as little as 0.36 µs.
Not only can the host use atomic operations, but also the attached device has a vast set of
atomic operations to implement synchronization operations. A special wake host thread opcode
can be used for communication as well.
The shared virtual memory space also allows programmers to dereference pointers everywhere,
while previously host pointers could only be dereferenced on the host and vice versa [39]. This
removes the manual movement of data between the host and attache device. Overall it simpli-
fies the programming model since the attached device operates as a peer to the other processor
cores. With the traditional IO model, sharing an attached device between applications was
difficult because pinned memory belongs to only one application and cannot be shared. If the
attached device supports multiple hardware buffers, multiple applications could use the device.
The number of applications is dependent on the hardware. OpenCAPI allows for sharing the
accelerator between applications due to a special feature in the standard (context bits).
With CAPI, a coherent cache was present on the accelerated device. This allows for even more
programmer flexibility and lower latency for highly referenced data. However, this feature is
absent in OpenCAPI 3.0 but will return in OpenCAPI 4.0.

Figure 4.6: Traditional IO device setup and completion flow versus the OpenCAPI flow [5].

4.3.2 Accelerator Paradigms
Traditionally, an offload paradigm was used for accelerators, shown in Figure 4.7a. Figure 4.7
shows current and new paradigms enabled by OpenCAPI. A perfect example is an application
that uses pointer chasing or linked lists [54]. This was not possible because pointers were
not able to be dereferenced since the processor and IO device did not share the same address
space. Other applications could include using both the shared host memory and local memory
of the accelerator, since accessing host memory has a very low latency. An example of such a
bi-directional accelerator is shown in Figure 4.7e.

• Memory transform is the traditional offload paradigm. GPUs fall into this category.

• Needle-in-a-haystack engine processes a large data set from disk for example and filters
specific data of interest.

• Egress transform processes outgoing data, as it leaves the system. Examples are compres-
sion and encryption on its way to centralized storage.
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• Ingress transform processes incoming data, for example from a NIC, and places the output
in host memory. An example could be decompression and decryption.

• Bi-directional transform can be used for a hash-join database operator using a database
located on disk. The hash table can be build in host processor memory. Stream through
data from disk and do computations that while fetching hash table from host memory.

(a) Memory transform. (b) Needle-in-a-haystack engine.

(c) Egress transform. (d) Ingress transform.

(e) Bi-directional transform.

Figure 4.7: Accelerator paradigms enabled by OpenCAPI [7].

4.4 FPGA Characterization
FPGAs are integrated circuits that can be reconfigured after fabrication (field programmable).
A lot can be said about FPGAs and their operation, but the focus of this section is to provide
background information for those aspects of FPGAs that most directly relate to the implemen-
tation of the proposed architecture. The background information provided in this section will
be used throughout the rest of the thesis.

4.4.1 FPGA Architecture
Typically, FPGAs consist of arrays of programmable logic blocks that can be wired together.
Logic blocks can be used to implement combinatorial logic, by configuring look-up tables (LUTs),
or to implement sequential logic such as flip-flops and small memories. Besides configurable
blocks, also hardwired logic is present such as multiplexers, special DSP slices, networking
stacks, and PCI Express controllers.
Figure 4.8 shows the physical architecture of an FPGA. The most common resources such as
IO Blocks, CLBs, memories, and DSP Blocks are shown. What is important to notice is that
each type of resource is located in a separate column. Memories for example could be located
relatively far away from where their data is processed. Depending on the target frequency of
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the design, wire delays could start to play a large role. When routing within a single clock
cycle fails, additional registers are required between a memory and the data consumer. For this
reason, memory primitives typically contain one or multiple additional pipeline stages within
the primitive to help with routing, at the cost of increased latency.

Figure 4.8: Diagram showing the physical architecture of an FPGA [8].

4.4.2 Typical Resources
We study two Xilinx FPGAs for their suitability to be used as OpenCAPI accelerators. Both
FPGAs, the KU15P and VU37P, are from the latest UltraScale+ architecture and are the
highest model in each device family, Kintex+ and Virtex+, respectively. Compared to previous
architectures, UltraScale+ adds Ultra RAM (URAM). This memory resource falls in between
the typical BRAM and DRAM capacities, and High Bandwidth Memory (HBM) Gen 2 for the
top tier Virtex+ FPGAs. Table 4.1 shows a summary of specifications for both FPGAs. The
GTY transceivers mentioned in the table have a maximum bandwidth of 32.75 Gbit/s, which
is more than that of the OpenCAPI lanes at 25 Gbit/s. The table shows that both FPGAs can
easily handle eight lanes to attach to OpenCAPI. The following itemization explains most of
the specifications in more detail. It is important to note that the VU37P excels in every aspect
compared to the KU15P.

• CLB flip-flops reports the number of flip-flops across all CLBs in thousands.

• CLB LUTs reports the number of LUTs across all CLBs in thousands.

• Distributed RAM reports the maximum memory capacity.

• BRAM reports the total memory capacity, both with and without ECC support.

• URAM reports the total memory capacity, both with and without ECC support.

• HBM reports the total available HBM capacity on the FPGA.

• DSP slices reports the number of available DSP slices on the FPGA.

• GTY transceivers reports the total number of 25 Gbit/s transceivers available.
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Table 4.1: Specification summary of the Xilinx KU15P and VU37P FPGAs [10].

Resource KU15P VU37P
CLB flip-flops [k] 1045 2607
CLB LUTs [k] 522 1304
Distributed RAM capacity [Mb] 9.8 36.7
BRAM capacity with ECC [Mb] 34.6 70.9
BRAM capacity without ECC [Mb] 30.8 63.0
URAM capacity with ECC [Mb] 36.0 270.0
URAM capacity without ECC [Mb] 32.0 240.0
HBM capacity [GB] 0 8
DSP slices 1968 9024
GTY transceivers 32 96

4.4.3 Configurable Logic Blocks
The UltraScale+ architecture consists of an array of Configurable Logic Blocks (CLB), with
two distinct flavors [9]. Each CLB consists of eight six-input LUTs, sixteen flip-flops, and seven
hardwired multiplexers to select between LUT outputs if needed. A LUT is used to implement a
logic function and each of them is accompanied by two flip-flops and can be configured as either
a six-input one-output or a five-input two-output LUT. Besides the hardwired multiplexers, the
LUTs can also be used to implement a 4:1 multiplexer by using four inputs for data and two
inputs for the selection signal. Figure 4.9 shows how a 16:1 multiplexer can be implemented in
half of a CLB. Similarly, a 32:1 multiplexer can be implemented in a single CLB by using all
LUTs and hardwired multiplexers. Internally, a CLB can either be a SLICEL or a SLICEM.
The previously mentioned logic is present in a SLICEL. In addition to this, a SLICEM can also
be configured with up to 512 bit of distributed RAM or with a 256 bit shift register. Distributed
RAM can be configured as single, dual, quad, octal or simple dual-port with a minimum memory
capacity of 32 bit per primitive up to a maximum of 512 bit per slice with either 1 or 2 bit wide
data.

4.4.4 Memory Resources
Several different memory resources exist, either inside or outside of the FPGA. The UltraScale+
architecture brings two additional memory resources to the table: URAM and HBM. The
following list is sorted based on increasing memory capacity and latency [60].

• Distributed RAM is RAM built from LUTs within a slice and supports several configura-
tions. Multiple read ports are supported, but multiple write ports are not.

• Block RAM are dedicated RAM primitives with ECC support of 36 kbit in size. The
primitive consists of two independent 18 kbit RAMs that can be configured as a Simple
Dual Port (SDP) or True Dual Port (TDP) memory. Each BRAM has two independent
read and write ports. A 36 kbit BRAM can be configured with independent ports as 32K
x 1, 16K x 2, 8K x 4, 4K x 9, 2K x 18 or 1K x 36 for a TDP configuration or additionally
as 512 x 72 for an SDP configuration. An 18 kbit BRAM can be configured with the same
data widths, but with half of the entries. By default the read latency is one cycle, but an
optional read register can be configured.

• Ultra RAM are also dedicated RAM primitives with ECC support but have a larger
capacity compared to BRAM primitives. Two ports are available and one configuration
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Figure 4.9: 16:1 multiplexer using half a CLB in the UltraScale+ architecture [9].

of 4K x 72. A port either operates as a read or write port and port A always completes
before port B does. Similarly to a BRAM primitive, optional registers can be configured
between one and four cycles of latency.

• HBM is high-bandwidth memory reaching bandwidths up to 460 GB/s. This memory is
only supported on top tier Virtex+ FPGAs up to 8 GB [61].

• DRAM is located outside of the FPGA and has a capacity of up to several gigabytes.

BRAM Address Collision

An address collision occurs when both ports of a BRAM primitive access the same address in
a single clock cycle. The resulting behavior depends on the port configuration. If both ports
read, both accesses complete successfully. If both ports write, the memory location contains non-
deterministic data. If one port reads and the other writes, the write data operation completes
successfully. The read access is only successful for common clock designs and the write port is
configured as read-first [60].

URAM Address Collision

Similarly, an address collision can also occur for a URAM primitive. When both ports write in
the same clock cycle, the port B write takes effect since port A always completes before port B.
If port A reads and port B writes, port A receives the old data and the new data is stored at
the memory location. If port A writes and port B reads, the new data is written to the memory
location and port B reads the new data immediately [62].
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4.4.5 DLX and TLX Reference Design
As mentioned in Section 4.2.5, a DLX and TLX reference design is provided that can be in-
tegrated as a module by the AFU designer. Because the reference design is implemented in
FPGA logic, care must be taken that both the reference design and the AFU fit inside the spe-
cific FPGA resource budgets. Table 4.2 shows the resource utilization obtained using Vivado
2017.1 when targeting a Xilinx VU3P FPGA on the Alpha Data 9V3 OpenCAPI-capable card.
The number of resources used and the percentage consumed of the total number of resources
available are shown. These results are from October 10, 2017 and are subject to change [5].

Table 4.2: Resource utilization for the DLX and TLX layers [5].

Resource DLX TLX Total
CLB Registers 9392 (1.19%) 13806 (1.75%) 23198 (2.94%)
CLB LUTs 19026 (4.83%) 8463 (2.15%) 27489 (6.98%)
LUT as Memory 0 (0%) 2156 (1.09%) 2156 (1.09%)
BRAMs 7.5 (1.0%) 0 (0%) 7.5 (1.0%)

4.5 Preliminary Concluding Remarks
The bottlenecks present in the traditional IO model are addressed by OpenCAPI and this
chapter provided a deeper understanding of this protocol. Additionally, various emerging use
cases for attached accelerators are presented. A brief summary of the latest generation of Xilinx
FPGAs, compatible with OpenCAPI, is required for the remainder of this thesis. Due to the
order of magnitude increase in interconnect bandwidth, new challenge arise for AFU designers.
Questions regarding the partitioning of the algorithm, concurrent usage of multiple software
threads, and the design of the accelerator come to mind.
Another question we can ask ourselves is how the accelerator is fed with data, since no buffer
or cache is present on the attached OpenCAPI device by definition. Chapter 5 generalizes
across multiple common accelerator memory access patterns and proposes an architecture to
keep accelerators fed with data at OpenCAPI-like bandwidths.
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Chapter 5

Requirements and Naive Designs

Section 3.7 concluded that recent advancements in interconnect standards try to tightly couple
attached devices to host processor cores at an order-of-magnitude larger bandwidths. This has
serious implications for accelerator design and, more importantly, for feeding them.
This chapter compares common accelerator memory access patterns and tries to generalize
across several streaming-like access patterns. This benefits the data feeding architecture, since
it will be applicable to a wider range of accelerators. Thereafter the merge-sort database
operator is used as a case study to show that naive traditional design methodologies at these
bandwidths will not suffice.

5.1 Accelerator Classification
As mentioned in Section 2.1.5, FPGA accelerators are most commonly used for a specific class
of workloads. Therefore the memory access patterns found in these workloads are limited. The
following list shows the most commonly found memory access patterns of accelerators including
an example application [63].

• Complex accesses are considered to be more difficult than for example strided access, but
still regular and known a priori. An example is a Hessian computation found in augmented
reality. Image processing also uses similar access patterns.

• Gather accesses multiple pieces of data from non-contiguous locations in host memory.
Each request consists of an absolute address and an amount of data to retrieve. This type
of access often occurs for vector arithmetic.

• Indirect array accesses an array using a second array: A[B[i]]. The data for B[i] is retrieved
and the returned value is used to access array A. An example can be found in calculating
a histogram in image processing.

• Linked-list reads an address that points to another address and so on. An example could
be a network controller that handles header and payload data structures. The header
contains information regarding the payload and is typically stored as a linked-list.

• Streaming accesses continuous chunks of data from host memory and stores it into a local
buffer for processing. Examples include encryption and video processing.

• Strided accesses chunks of data with a fixed distance from the current address, called
strides. Matrix multiplication is an example of a strided access since columns of the
matrix have to be read where the stride is the row size.
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Typically a DMA engine is used to direct memory access between the host memory, over the
interconnect, and the local memory on the accelerator. A DMA enables compute to operate
in parallel with memory transfers and provides data in large spatial-continuous blocks of mem-
ory to the accelerator. From this list, it becomes apparent that only streaming access directly
benefits from a typical DMA transfer. The other access patterns do not, since they require ei-
ther spatial-continuous data from multiple starting addresses or a single element from multiple
starting addresses. For the first case, multiple DMA transfers have to be issued sequentially
or a scatter-gather engine could be used, where a list of transfers is provided. The latter case
requires buffering, since transferring data element-wise is inefficient over the interconnect due to
under-utilization of the available data bus. The complex access for example, would even benefit
from less than a cache line1 granularity of data. For the complex access, element granularity is
preferred, where an element is the data size of a single piece of meaningful data. In the image
processing example, the data of a single pixel. Element granularity access is not supported by
current frameworks such as the Streaming Framework or SNAP, discussed in Section 3.2.2.
However, a generalization across several streaming-like access patterns can be made. This ren-
ders the buffer architecture applicable to multiple access patterns and takes it out of the design
process of an AFU designer. While the three database operators mention in Section 1.1 are
streaming based, a smaller granularity allows for more flexibility, especially with other access
patterns in mind. Streaming access is the simplest pattern, because spatial-continuous data is
read from a single starting address. A similar pattern is the strided access because in essence
it consists of multiple stream accesses at the same time, where the starting addresses are at
equidistant. A generalization of the strided access is the gather access, where also multiple
non-spatial-continuous locations in memory are read. However, the starting addresses do not
necessarily have to be equidistant. Finally, the complex but regular access is a generalization
across all of the previous patterns. It could require element-sized data from multiple memory
locations at the same time. A buffer architecture with element-wise access enables, for example,
the Hessian matrix complex access case. Each pixel required for the computation is located in
a separate stream buffer, after which the accelerator is able to access each stream at any point
in time.

As mentioned in Chapter 1, other students are studying three different accelerators for database
operators: decompress-filter, hash-join, and merge-sort. In essence, each accelerator requires
streaming access, but in different ways. The decompress-filter operator decompresses incoming
compressed Parquet files and applies a certain filter to it. This accelerator exhibits perfect
streaming access behavior. The merge-sort operator merges multiple pre-sorted key-value pair
streams from main memory and merges them into a single sorted output stream. In the case of
the hash join, while hash table accesses are irregular, an efficient implementation of hash-join will
hold the hash tables in local memory such that the accesses to host memory are predominantly
streaming.

5.2 Merge-Sort Accelerator Case Study
The merge-sort operator is an interesting database operator since it inherently uses multiple
streams of key-value pair data from host memory. The complexity of the operator comes from
the merging of multiple streams, where the next chosen stream to read is unpredictable. For
databases, key-value pairs are a common data type. A key is a unique identifier with a size of
8 bytes for example. Most important for the key size is that it is large enough such that no
1 The data size transferred between the last level cache and host memory.
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collisions will occur. The value could be actual data or a pointer to the actual data. Since the
value could be a pointer, 8 bytes are sufficient to hold a 64 bit address. Combining both the
key and value size results in a 16 byte key-value pair, referred to from now on as an element,
and is the smallest amount of meaningful data.
As mentioned in Section 4.2.5, the cache line size for the POWER architecture is 128 bytes.
This means that each cache line holds eight of such elements. A reasonable, but extreme, use
case for a merge-sort operator would be to assume a system with 1TB of host memory capacity.
The latest generation of Xilinx FPGAs support up to 8 GB of HBM (or RAM, but our goal
in this thesis is to keep up with the OpenCAPI bandwidth rather than HBM bandwidth).
In order to merge-sort all pre-sorted streams in one pass, a total of 128 streams are needed.
Sustaining throughput is difficult when using a single stream. The inherent requirement of
multiple streams makes it easier to fully utilize the interconnect bandwidth since requests can
be made concurrently. For example, in the scenario where eight elements from different streams
are requested, a typical cache line granularity interface has to fetch eight cache line granularity
data blocks, select the requested element from each cache line, and buffer or discard the rest.
By using read ports with element granularity, no data is wasted.

5.2.1 Naive Buffer Design
Usually a buffer is placed between the incoming data interface and the data consumer (accel-
erator) since the availability and consumption of data may happen at different rates. A buffer
is also used to hide the latency of the interconnect by placing the data close to the consumer.
Since the addresses of all cache lines are known a priori for the streaming and the streaming-
like patterns discussed before, the cache lines can be easily pre-fetched to keep the buffers filled
without having to flush the buffers since no data is fetched speculatively.
In order for the accelerator to keep up with the OpenCAPI bandwidth, it has to consume 128
bytes (cache line size) per cycle. The interface provided by the TLX to the AFU designer
consists of 64 byte data buses, operating at 400 MHz, over which 64, 128 or 256 bytes of data
are transferred (taking one, two or four cycles, respectively). Since a cache line is 128 bytes in
the POWER architecture, transferring less than that seems wasteful. When 64 bytes of data
are requested for example, the CAPP fetches the requested 128 byte cache line and invalidates
one half and transmits the other.
OpenCAPI supplies 64 bytes per cycle at 400 MHz while a realistic target frequency for an
accelerator is 200 MHz. To cover an interconnect latency of 1 µs per stream (see Section 7.2.1
for a more detailed explanation), 200 cache lines, or 256 when rounded up to the nearest power
of two, have to be buffered on the FPGA per stream. Due to the unpredictable access pattern
of the merge-sort, each stream has to be able to be read, thus have its own buffer, in any given
cycle. The total buffer size B for such an architecture can be calculated as shown in Equation
5.1.

B = N × C × L =⇒ 128 × 128 × 256 = 4 MB,where (5.1)

• N is the number of streams,

• C is the cache line size in bytes, and

• L is the latency to be covered for OpenCAPI (rounded up to the nearest power of two).

As shown in Section 4.4, the Xilinx FPGA from the Kintex+ product line has a BRAM capacity
of 4 MB and a URAM capacity of 4.2 MB. This means that all BRAM or URAM resources are
consumed by this naive buffer architecture, leaving no resources for additional control, and more
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importantly, the actual AFU. Both N and L in this equation are subject to change and pose a
trade-off. Either have fewer streams or buffer fewer cache lines per stream. Fewer streams may
not be problematic, depending on the application. Buffering less per stream means that for a
worst-case latency scenario, the AFU has to stall since there is no meaningful data present in
the buffer. This might not be a problem if the access pattern of the respective AFU is evenly
distributed across all available streams (as is the case for the decompress-filter). However, in the
case of the merge-sort, the access pattern is unpredictable across streams. In order to maintain
the OpenCAPI throughput and support the worst-case, the number of streams is reduced to
64. This configuration consumes roughly half of all the available BRAM resources instead of all
of them.

5.2.2 Crossing the Cache Line Boundary

As previously mentioned, each cache line consists of eight key-value pairs or elements. Due
to the absence of a cache or buffer in OpenCAPI 3.0, multiple smaller than cache line data
granularity read ports are desired and would make the buffer architecture also more general.
A cache would be nice but is difficult to keep coherent in the current state of OpenCAPI
3.0. Relying on software is expensive and results in overhead and increased latency. Because
streaming-like patterns are targeted, a buffer is sufficient. In the future, the buffer could be
extended to a cache.
In order to accommodate element-wise read granularity, the buffer has to have eight read ports
to consume a cache line size of data every cycle. Each read port has to be able to supply an
element from any of the available streams. Due to the nature of streaming access, the next read
from a stream is always the next element. In essence there are four particular access patterns,
shown in Figure 5.1, that are interesting to explore, since the buffer architecture has to be able
to handle those access patterns. In this figure, each numbered block represents an element in a
cache line. The number represents the offset within the cache line and if the element is green,
the element is being read in order to show the access pattern.

• Figure 5.1a shows the entire current cache line being read for a single stream. In this case,
a single stream and cache line are being read.

• Figure 5.1b shows the current cache line being read for eight different streams, each reading
the next element at the respective offset per stream. In this case, eight different cache
lines and therefore eight different cache lines are being read.

• Figure 5.1c shows the current and next cache line being read, crossing the cache line
boundary. Crossing a boundary implies that at any given moment from any stream, two
consecutive cache lines have to be read in the same cycle. In this case, a single stream
from which two cache lines are being read.

• Figure 5.1d shows the worst case scenario. If four boundaries are crossed in a single cycle,
four different streams and eight different cache lines must be read concurrently.
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(a) Eight reads from a single stream. (b) Eight reads from eight different streams.

(c) Crossing a cache line boundary. (d) Crossing four cache line boundaries.

Figure 5.1: Four AFU access patterns using an eight read port buffer.

Internally increasing the cache line size will not solve the problem of crossing cache line bound-
aries because the new boundary can also be crossed at some point. In essence, besides requiring
a large memory to buffer the proper number of cache lines per stream, an eight read port mem-
ory is required with the granularity of a single element. This problem becomes less complex if
the eight read ports would be constrained in a certain way. For example, by dividing the num-
ber of streams by the number of read ports and have each read port be dedicated to a subset
of the streams. However, this contradicts the desire to keep up with the high-bandwidth and
low latency interface provided by OpenCAPI. For unpredictable access patterns across streams,
certain read ports may have nothing to do because of such a constraint. It also limits the access
pattern generalization to not exclusively support purely streaming accesses.

5.3 Design Requirements
It has become clear that a buffer architecture is needed for accelerators with streaming access
patterns for which we wish to fully utilize the high-bandwidth and low latency interface of
OpenCAPI. In order to do so, an access pattern generalization has been made that requires
multiple read ports to concurrently and independently read from multiple independent streams
of data. The merge-sort case study showed that a first-order naive design approach is not able
to solve this problem and that care must be taken in order to maintain the design philosophy of
high-bandwidth and low latency memory access for FPGA accelerators. Based on the previous
chapters, the following is a set of requirements to which the final design has to comply in order
to achieve these goals.

• Buffer 64 different streams in order to sustain the high bandwidth of OpenCAPI.

• Cover the OpenCAPI latency of 1 µs per stream.

• Go from 128 byte read port granularity to 16 byte data element granularity.

• Provide eight individual read ports such that if one read port cannot continue, the rest
can still make progress.
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• Handle reading across multiple cache line boundaries in a single cycle.

• Provide read ports with a low-latency between read request and data response.

• Provide a simple AFU interface by requesting data elements using stream identifiers.
Streams are initially functionally reset such that an AFU has no knowledge of the addresses
used.

• Provide a simple but generic interconnect interface that can be bridged to any current or
future interconnect standard.

• Target the KU15P FPGA since the design can be scaled to fit the VU37P. Especially due
to the vast increase in number of GTY transceivers, multiple OpenCAPI bricks can be
attached.

• Confirm that the reference DLX and TLX design, provided by the OpenPOWER Foun-
dation, also fits on the FPGA.

5.4 Naive Design Exploration

Section 5.2.1 showed that a traditional approach of placing a buffer between the OpenCAPI
interface and the accelerator for each stream will not fit on the target FPGA. The additional
problem is the possibility of reading across a cache line boundary as shown in Section 5.2.2.
While the number of streams, the number of cache lines buffered per stream, or both can be
reduced, the difficulty at hand is the required eight individual read ports with access to two
consecutive cache lines in every stream buffer. This problem can be generalized as an eight
read-port memory. Since FPGAs do not have the same level of flexibility as an ASIC has in
terms of custom multi-ported memory cells, a solution has to be found regarding the available
memory primitives. There are several traditional memory organizations that enable multi-port
read access, built from smaller memory primitives.

• Banked Memory divides the total memory capacity into smaller memories called banks.
Read requests are distributed across the banks. If multiple requests require access to the
same bank, arbitration is required.

• Duplication replicates the memory contents in multiple memories and divides the read
ports among them. Care has to be taken in order to keep the memories synchronized.
Either by writing to all memories simultaneously or by keeping a live value table that
keeps track of where valid data is located.

• Multi-pumping enables sharing of a common resource by running part of the logic at a
multiple of the global frequency. For example, a memory primitive can be run at twice
the frequency, effectively doubling the read ports or the data width.

• Multi-port Primitives provide multiple ports to the same memory. Since the target device
is an FPGA, custom cells are not an option, but BRAMs can be configured as a true dual
port primitive for example.
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5.4.1 Cache Line Interleaving

For each stream buffer, both cache line N and N+1 could be read in the same cycle, as illustrated
in Figure 5.1c. This can be achieved by using a banked memory organization and interleaving
even and odd cache lines, as shown in Figure 5.1a. Each bank consists of half of the total number
of cache lines per stream and is built from multiple BRAM primitives as shown in Figure 5.1b.
BRAMs are chosen because there is not enough distributed RAM available. URAMs have a
fixed configuration of 4096 entries. This is too large for a single bank and the access latency
of DRAM is too high. Each BRAM is configured as a 512 entry, 8 B wide memory, of which
sixteen are needed per bank. Basically each BRAM holds half of a 16 B element, where the
element offset is denoted by the numbers zero through seven and each half is denoted by suffix
a or b. The green box shows how a single element is divided between two BRAM primitives
and each half is located at address zero. The entire cache line is spread horizontally across
BRAM primitives and can be accessed by reading at the same address in all sixteen BRAMs
simultaneously. Doing this in both banks yields two successive 128 B cache lines from which
a single 16 B element has to be selected by means of a 256 B:16 B multiplexer for each read
port. This architecture works under the assumption of a streaming access pattern because only
successive elements are read. In a single cycle, only elements in two consecutive cache lines
can be read. Therefore, each bank does not have to have eight physical read ports, but the
requested element can be read by selection. While this architecture works in theory, there are
two distinct drawbacks: multiplexer logic and BRAM primitive usage.

(a) Two cache line banks per stream buffer. (b) Memory organization of a single bank.

Figure 5.2: Interleaving even and odd cache lines.

Multiplexer Logic

In order to extract the correct 16 B element from these two cache lines, the correct cache line
(2:1 MUX) and the correct element (8:1 MUX) have to be selected. Since any read port can
access any stream, the correct stream has to be selected, adding an additional 64:1 multiplexer.
In total, each read port requires a 1024:1 multiplexer per bit of an element, resulting in 128 (16
bytes is 128 bits) of these multiplexers per read port.
Table 5.1 summarizes several configurations of multiplexers after synthesis in the Xilinx Vivado
2017.1 tools targeting the KU15P. The column denoted by Ways is the number of selectable
inputs and Width is the width in bits of each of those inputs. The estimation of the number
of LUTs is based on the multiplex structures discussed in Section 4.4.3. Multiplexing of 32 or
fewer inputs can be done within a single CLB. Figure 4.9 can be used to deduce the circuit for
16 or fewer inputs. For multiplexing 32 or more inputs, under the assumption that the number
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of ways is a power of two, the optimal structure of eight LUTs is multiplied by the number of
times it is needed plus additional LUTs for selecting between the multiple optimal structures.
An additional LUT is required for every multiple of four optimal structures, since a single LUT
can act as a 4:1 multiplexer.

Table 5.1: Summary of several multiplex configurations by estimation and after synthesis with
the Xilinx Vivado tools targeting the KU15P.

Ways Width LUTs
Estimation Vivado

8 1 2 3
8 64 128 192
8 128 256 384
16 1 4 5
32 1 8 9
64 1 17 18
128 1 33 34
256 1 66 68
512 1 132 137
1024 1 264 273

Table 5.1 shows that the synthesis tool always consumes more LUTs than expected. LUTs
can also be used for routing of wires or for multiplexing instead of the hardwired multiplexers
available. It is clear that if the number of ways increases, the estimated and observed number
of LUTs start to differ more, or in other words, as the number of wires increases and therefore
the routing complexity, more LUTs are used for wiring. The table also shows that when the
width is increased, the amount of LUTs increases linearly with the initial observation for eight
ways. From these results an improved estimation regarding the total number of LUTs required
can be made.
Using the synthesis result for 1024 ways times the element width times eight read ports results in
279552 LUTs. This is roughly 53% of the total LUT resources available on the KU15P. Besides,
such deep multiplex structures are required to be pipelined in order to comply with the target
frequency of 200 MHz. Depending on the number of pipeline stages, an increasing number of
flip-flop resources are required that also decrease the available resources for control logic and
the accelerator itself. Besides that, there is also demultiplexing logic required for distributing
the read requests among the stream buffers. The bottom line is that building these multiplex
structures is very inefficient in terms of FPGA resource utilization.

Multiplexers can also be implemented using DSP slices. A single DSP slice can be configured
as a 48 bit wide 2:1 multiplexer [64]. Slices can also be cascaded due to the internal multiplexer
that selects between the two slice inputs and one cascaded input from another slice. Therefore,
to implement a 1024:1 multiplexer, 512 slices are needed. Since each slice has a width of 48 bit,
three slices will cover the width of a 16 B element. A single read port requires 1536 slices. Thus
a total of 12288 slices are required, which is more than six times as many slices as available on
the KU15P.

BRAM Primitive Usage

Besides the difficulty of selecting the correct element, due to using two banks per stream, each
bank consists of half the number of cache lines. As discussed in Section 4.4, there is only a
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limited number of different BRAM configurations. The 512 entry by 8 B wide configuration
has the smallest number of entries. A single cache line can be distributed over sixteen BRAM
primitives, but each primitive will effectively only utilize 128 out of the 512 entries or 25%, as
shown in Figure 5.1b. This solution would use 2048 BRAM primitives which is roughly 208%
of the available resources.
One optimization is to double pump the BRAMs such that each BRAM houses a single element,
denoted by the number zero through seven in Figure 5.3. The green box shows that a single
element is located within the same BRAM primitive: half at address zero and the other half at
address one. A cache line is horizontally spread over the eight BRAM primitives and vertically
over two indices within a primitive. Double pumping results in utilizing 50% of each BRAM
and 104% of the total BRAMs available.

Figure 5.3: Memory organization of a single double-pumped bank.

5.4.2 Element-wise Double-pumping

By observing the streaming access pattern more closely with respect to the organization of
BRAM primitives, it is clear that when a cache line boundary is crossed, each offset is read
once per cycle at most, but never twice at the same offset. By exploiting this observation, a
variation of the previous solution is possible which removes the need for two banks per stream
buffer. Figure 5.3a shows a single stream buffer where eight horizontal BRAMs contain a cache
line. Each BRAM is double pumped as shown in Figure 5.3b. The green box shows that a single
element is located within the same BRAM primitive, similarly as in the previous solution.
Since two banks are no longer required, all cache lines fit within the same primitive resulting
in a utilization of 100% per BRAM primitive. For eight read ports roughly 52% of the BRAM
primitives are used. Also, there is no longer need for the first level of multiplexing, that reduces
the per read port multiplexing to 512:1. Despite these improvements, this solution still requires
70144 LUTs utilize roughly 13% of the resources.
While the design would fit theoretically, each BRAM primitive will have a fan-out equal to the
number of read ports. Since getting data out of a BRAM and into processing logic is complex
at the target frequency of 200 MHz, the additional fan-out problem does not make this easier.
Besides that, using more than half of the available BRAM primitives means that multiple large
columns of BRAM primitives are used, scattered all over the FPGA as shown in Section 4.4.1.
This complicates a unified access latency for each data entry (also keep the fan-out in mind)
due to wiring delays across the entire FPGA. Pipelining helps with timing closure, but also
increases the read latency of the buffer, a critical metric in the design.

5.4.3 Cache Line Duplication

Duplication guarantees that each read port has access to every element in every cache line at
any time. Figure 5.5 shows a possible architecture for cache line duplication. Each read port
has a copy of every cache line in each stream buffer, removing the need for large selection logic.
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(a) Element selection from eight BRAM prim-
itives.

(b) Memory organization of a single stream
buffer.

Figure 5.4: Element-wise double-pumping.

The drawback is that the required memory primitives scale linearly with the number of read
ports. As shown in Section 5.2.1, the number of supported streams has been decreased to 64 in
order to save memory primitives and have resources to spare for control logic and the AFU. A
single copy of all buffered cache lines for all streams requires roughly 2 MB or 52% of BRAM
resources. This becomes 16 MB or 416% for eight read ports which is four times as much as
available on the target FPGA. Each read port also has to select the right element. A 512:1
multiplexer is required and if the BRAMs are double-pumped, the total LUT consumption is
roughly 13%. It is obvious that this solution will not fit the target FPGA either. However, the
benefit is that the wiring per read port stays within this slice that should make wire routing
easier. Also the fan-out per BRAM output has decreased from eight to one, in comparison with
the element-wise double-pumping proposal in Section 5.4.2.

Figure 5.5: Stream buffer duplication for each read port.

5.4.4 True Dual Port BRAM

Finally, memory primitives can be used with multiple ports. A BRAM can be configured as
either a simple dual port or a true dual port, as mentioned in Section 4.4. In the case of a
simple dual port, one port is a designated read port and the other a designated write port. The
ports of a true dual port can be configured on-the-fly to act as either a read or write port. Due
to the read-write imbalance of writing a cache line in one cycle and completely reading it for
eight cycles, the flexibility of a TDP memory seems appealing. However, the effective capacity
of a BRAM in TDP mode is reduced to 18 kbit. Therefore, not only are twice the number
of primitives required to obtain the same effective capacity, but also complex control logic to
configure the ports on-the-fly is required. Even worse is that the previously used configuration
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of 512 entries is not available in TDP mode. Instead, the smallest number of entries is 1024
with a data width of 36 bit. This means that any of the previously discussed proposals will
require twice as much BRAM primitives,not to speak about the additional control logic.

5.4.5 Summary of Naive and Traditional Designs

Traditional solutions for multi-ported memories have been shown above to not satisfy the desired
requirements. Interleaving is an effective way to increase the number of read ports without
increasing the required memory primitives. It does, however, pose the problem of under-utilized
BRAM primitives and requires large multiplex structures that do not fit in the FPGA resource
budget, not to speak of the wiring nightmare that will occur.
Element-wise double-pumping is a promising architecture. However, the fan-out of eight for
every BRAM and the large columns of BRAM primitives scattered around the FPGA will
require additional pipeline registers. This increases a critical metric: the read latency of the
AFU.
While duplication solves the problem of the large multiplexing structures and the fan-out,
there is no resource budget for it. Double-pumping BRAM primitives improves utilization and
decreases the required LUTs, but does not solve the underlying problem.
The bottom line is that duplication is needed to mitigate the fan-out and, therefore, the wiring
problem, but not for all cache lines.

5.5 Proposed Architecture

In essence there is a conflict between storing enough cache lines to hide the latency of OpenCAPI,
and providing eight individual read ports to the AFU. Simultaneously, on the one hand wiring
delay must be taken into account, and on the other hand not all of the available memory
resources can be used. Therefore, the proposed multi-stream buffer architecture is split into
two levels by exploiting different memory primitives. Figure 5.6 shows both levels, L1 and L2,
analogous to cache naming conventions.

• L1 is a ’small’ buffer that is fed by L2. It stores a subset of consecutive cache lines per
stream which are duplicated for each read port. This way, each read port has access to
exactly the same data and there are no large multiplexer structures required.

• L2 is a ‘big’ buffer that gets up to one new cache line every cycle through OpenCAPI.
It is targeted to cover the latency of OpenCAPI by using large memory primitives and
therefore does not consume all memory resources as was previously the case.

L1 is optimized for low-latency and multiple read port access while L2 is optimized for memory
capacity to cover the latency of OpenCAPI. By choosing the appropriate memory primitive for
each level, an architecture can be devised that complies with the requirements and does not
consume all available resources while doing so. To keep all duplicate cache lines synchronized
in L1, L2 writes new data to all BRAMs simultaneously.

73



Figure 5.6: Proposed stream buffer architecture with two levels of buffering.

The proposed architecture mitigates the fan-out problem from the critical AFU read path to a
signal path outside of this domain, namely, between the L2 and L1 buffers. This gives us more
time to move data out of the URAMs and into all BRAMs simultaneously. However, since cache
line granularity data is moved from L2 to L1, the number of fan-out signals increases. Pipeline
stages can be added to overcome this if necessary, due to the fact that memories are located
in specific columns as shown in Section 4.4.1. The smaller BRAM arrays in this proposed
architecture, as compared to the element-wise double-pumped architecture, make it easier to
obtain unified access latency for each data entry. This is also achieved by supplying a BRAM
array per read port such that cache lines used in the near future can be located closest to their
consumer.
Since L1 is basically a smaller version of the proposed data duplication architecture, the same
amount of LUT resources of roughly 13% is required. Depending on the chosen configuration as
to the number of streams and the number of cache lines, resource requirements differ. Section
7.2 describes the design choices made in more detail.
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Chapter 6

Design Methodology

This chapter briefly introduces a cell-based design methodology with an inherent ready-valid
protocol. The methodology consists of a workflow and cell-based design library. To motivate
the ease-of-use and applicability of the methodology, several complex examples are shown.

6.1 Design Philosophy

The methodology described is designed over a course of several years by Andrew K. Martin from
the IBM Austin Research Lab. The initial ideas concerning this methodology originate from a
paper published in 2001 called The Theory of Latency-Insensitive Design [65]. It describes the
fundamentals of a correct-by-construction design methodology. This paper forms the basis of
the ready-valid design methodology by Andrew K. Martin [66].

6.1.1 The Theory of Latency-Insensitive Design

The paper [65] presents a foundation of a correct-by-construction methodology which separates
a system based on communication and computation. A system is defined as a set of synchronous
computational processes that exchange data with one another over communication channels. An
abstract protocol is used for communication whose main characteristic is to be insensitive to
the latencies of the channels. The protocol works under the assumption that the computational
processes are stallable and guarantees that computational processes behave correctly indepen-
dently of the channel latencies. This enables changing the latency of a communication channel
without affecting the functionality of the system, which is a useful property for hardware design.
Suppose a system is implemented, but due to wire delay timing constraints are not met. This
theory guarantees that a relay station, or register, can be inserted in the communication channel
without affecting the functionality. Therefore no costly redesigns are needed.
The idea of relay stations is borrowed from the pipelining concept and a relay station in function
is similar to a register. This approach relaxes timing constraints during the early design phases
when accurate measures of delay paths between computational processes are not yet available.
If after physical implementation a mismatch exists between the timing constraint and the com-
munication channel delays, they can easily be corrected by inserting the correct amount of relay
stations. Since every computational process operates according to the latency-insensitive pro-
tocol, no changes are required in order to reflect the necessary changes in the communication
channel latencies.
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6.1.2 Ready-Valid Design Methodology
Typically, there are three types of flow control concepts a hardware designer can choose from.

• Credit-Based protocol manages credits between a start and end module. If no more credits
are available, the logic in between is stalled.

• Cycle-Based protocol indicates after how many cycles a response will be received for sent
data for example. A downside is that it is difficult to decide on what to do when no
response is received, or more generally, what to do when the protocol breaks.

• Ready-Valid-Based protocol has a valid signal to indicate the validity of an output and a
ready signal to indicate it is ready to receive a new input. Usually it is only used between
large modules in a system.

The ready-valid design methodology discussed here differs from the typical ready-valid protocol
since it uses the paradigm all the way down to the lowest level of a system. This combined
with the latency-insensitive design theory results in a methodology that consists of a library of
cells that are analogous to the computational processes. These cells are interconnected using
a ready-valid protocol, the communication channel, which makes it possible to stall at a cell
granularity. This means that progress is made whenever possible.
The cell-based nature allows to easily understand a design by following the ready-valid protocol
and associated data, if present. Due to a rich library of cells, writing a design mostly consists
of connecting the cells and compiling the design. Since cells are correct-by-construction, errors
only consist of typos, signal width mismatches, and other easily fixable errors. After that
the ready-valid protocol is functionally correct. Only the associated data signals could not
be functionally correct. This means that transformations on the data signal have been done
incorrectly.

6.1.3 Ready-Valid Communication Protocol
In general, a cell within the ready-valid design methodology has a set of configuration parameters
and a set of input and output signals, as shown in Figure 6.1. Examples of configuration
parameters are the number of inputs or the signal width in bits of each data input. The input
and output signals are named according to a predetermined scheme. The signals on the left of
the generic cell are all called input signals, even though physically the ready signal is an output.
Together they form the input interface and follow the naming convention of i_v and i_r for the
valid and ready signal, respectively. The data signal, typically denoted by i_d, is not obligatory
and some cells only have ready and valid signals. According to the same naming convention,
the output signals are called o_v, o_d and o_r and together form the output interface.

Figure 6.1: Input and output signals of a generic cell.
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The ready-valid protocol used by the cells on the communication channels between computa-
tional processes is a handshaking protocol. Progress is only made if both the input valid and
ready signal are asserted for a cell in a given clock cycle. The communication channel is explicit
and building a system mostly consists of connecting cells by a communication channel consist-
ing of a ready and valid signal. In a system consisting of multiple cells, the naming convention
dictates that a preceding cell is called upstream and the successive cell is called downstream.
In the ready-valid design methodology, a cell or computational processes can be combinatorial
or sequential logic. Examples of each type will be shown in Section 6.3. Independently of the
type, a cell has at least two ready-valid signal pairs. One as input and one as output interface.
In terms of physical input and output signals, a cell has two inputs, i_v and o_r, and two
outputs, i_r and o_v.
Typically, when a cell comes out of a reset state, its input ready signal is asserted independently
of any downstream cell ready signals it may receive at its output interface. The reason is that
progress can be made by supplying the cell with a valid input to be serviced. The output valid
signal is asserted when a valid input occurs and the cell is ready to service this valid input. In
other words, the cell is not in a stalled state. If the cell is in a stalled state, the input ready
signal will be de-asserted to indicate the upstream cells that a stall occurred. The concept of
indicating to upstream cells that a cell is stalled is called applying back-pressure in the ready-
valid design methodology. An example of applying back-pressure could be that a cell requires
data from multiple locations that do not arrive at the same time. Therefore, the cell has to
be stalled until all data is available and back-pressure has to be applied to upstream cells. It
is important to note that the input ready signal is only de-asserted if the cell is stalled, or if
a downstream cell has stalled that induces a chain reaction of stalls. This is different from a
typical ready-valid protocol where the ready signal is de-asserted after a transaction occurred
(an example is AXI [56]).

6.1.4 Differences Compared to Asynchronous Design
At first sight, the ready-valid design methodology may be interpreted as an asynchronous design
methodology. However, there are several differences between the two. First of all, asynchronous
design does not use a clock, while this methodology does. That means that the presentation of
a ready or valid signal would be by changing the value of a signal, rather than by asserting it.
The ready-valid design methodology allows a ready or valid signal to be asserted in one cycle,
and then de-assert in a subsequent cycle, even if the complimentary signal (valid or ready, re-
spectively) was never asserted and no transaction took place. Similarly, the data corresponding
with a valid signal is allowed to change on subsequent cycles, even though no corresponding
ready signal was received and hence no data transfer took place. This would not work in an
asynchronous framework and may have implications on design.
Finally, the base_aburp and base_alatch cells (discussed in Section 6.4.3) loose their meaning
in an asynchronous framework. Although something analogous may be needed to maintain
reasonable timing constraints between valid and data signals.

6.2 Workflow
Besides a supplied cell library, the ready-valid design methodology also comes with a workflow
of several steps and special cells to speed up the workflow.

1. Build the System The first step is build the system with the provided cells, possibly ac-
companied by other logic. Relay stations should be placed between combinatorial cells and
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with experience proper locations are easily identified. These relay stations are analogous
to configurable registers.

2. Functional Verification After compiling the design from Step 1 and fixing compiler errors
and warnings, the ready and valid signals should be verified first. Make sure they are
always defined and only then verify the associated data signals. If more in-depth debugging
is required, trace the valid and ready signals throughout the system and make sure cells
apply back-pressure when needed, in order to not lose valid information.

3. Synthesis and Timing Constraints After functional verification, the system should be
synthesised to see if it meets the timing constraints. If the constraints are met, the next
step can be started. If the constraints are not met, the register cells instantiated in Step
1 should simply be reconfigured accordingly or inserted multiple times to allow for multi-
cycle communication channels; this step should be restarted. This process continues until
the timing constraints are met everywhere in the design.

4. Physical Verification After meeting the timing constraints, the system has to be verified
again. When this step finishes successfully, it is possible to go back to Step 3 and tweak
the design in order to improve metrics such as area or operating frequency.

6.2.1 Tweaking Relay Stations
The positioning of registers or relay stations depends on whether the system will be implemented
on an ASIC or FPGA. For an FPGA, distribution of the wires is more difficult than driving
them. FPGAs have buffers and repeaters everywhere to simplify this for the designer.
An ASIC does not have this luxury, thus the instinct of the designer concerning relay station
positioning should be different. For ASICs, driving strength is more difficult. Positioning relay
stations should take the combinatorial path of the function that is being implemented into
account.

6.2.2 Synthesis Helper Cells
Systems or modules within a system typically have a large number of input and output signals,
especially when data widths are large. When implementing a design on an FPGA, the provided
tools try to connect each input or output signal of the system or module to a physical pin on
the FPGA package. Depending on the size of the system or module and target device, there
might not be enough physical pins for the tool to finish implementation. However, obtaining
an estimate on metrics such as area and operating frequency is often desired, also for modules
within the system.
In order to speedup synthesis and overcome the described problem, two helper cells are present in
the cell library called base_input_lat and base_output_lat. These modules are parametrised
shift registers. The base_input_lat cell is to be attached to one physical pin on the FPGA
package and to all input signals of the system or module to be synthesised. Similarly but in
opposite direction, the base_output_lat cell is used to connect multiple output signals to a
single physical pin.

6.3 Delay-Insensitive Cell Library
The cell library that is part of the ready-valid design methodology has been published on GitHub
[67] and is a work in progress. At the moment of writing, the version published on November
16, 2017 is used throughout this document.
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6.3.1 Diagram Legend and Naming Conventions

Throughout this thesis, implementation diagrams and signal names follow a predefined scheme
consisting of object shapes and colors and naming conventions to indicate various characteristics.

Diagram Legend

A cell is a submodule that is part of the design library. Figure 6.2a shows a combinatorial cell
and Figure 6.2b a sequential cell. Figure 6.2c shows a (de)multiplexer cell, depending on the
direction of the input and output signals.
Besides cells from the library, also logic that is not a cell can be included in a design called
a submodule, shown in Figure 6.2d. Figure 6.2e shows a combinatorial arithmetic operation.
A typical example is an addition to increment a counter. That could be implemented using a
sequential cell. A common construct in this methodology is shown in Figure 6.2f and is called
an act signal, often denoted by *_act. It is a logical AND operation on a valid and ready signal,
for example used as an enable signal.
To allow for hierarchy in diagrams, a collection of multiple cells and submodules can be replaced
by a module. The module name always starts with a capital and is shown in Figure 6.2g. To
show multiple identical instantiations of a cell or module, a generate construct is indicated by
a green box. Multiple objects stacked behind each other and the number of instantiations is
shown in the lower right corner, as shown in Figure 6.2h. The input and output signals are
solid lines for the first instantiated object and dashed for any other objects stacked behind it.
Typically, only the downstream signals are shown in the diagrams and only rarely are upstream
signals shown, such as ready signals. An act construct typically shows the ready signal until it
is terminated.

Naming Conventions

Typically the input and output signals of any cell or module start with i_* and o_*, respectively.
Internal signals of a cell or module also follow a naming convention, depending on the location of
the signal with respect to the sequential elements and whether the signal has a special purpose,
such as valid, ready, data, or act. Often the cell or module the valid signal originates from is
included in the signal name. An example could be the output valid signal of the initial register
cell: s1_reg_v. Another example could be a data signal after a counter cell operating after
four pipeline stages from the input signals: s4_cntr_d. Listings shown later on provide more
naming convention examples.
Cell or module instantiations follow a similar naming convention, indicating the pipeline stage
the signal operates in, the cell or module name and indication if it is a combinatorial or sequential
element. Typically combinatorial elements have no suffix while sequential elements have a *_-
reg or *_lat suffix, standing for register and latch, respectively. In the design methodology, a
register is a sequential cell with a ready-valid pair as input and output. A latch is a sequential
cell without ready-valid pairs.
Most cells have a prefix, either a* or e*. For historic reasons, the a* stands for asynchronous
and is used to mean that the cell has a ready-valid interface. The e* prefix means encoded and
typically refers to the select signal. Cells without this prefix typically have a decoded select
signal.
Most of the cells are implemented as big-endian, but for certain cells the endianness matters.
For example for multiplexers. For those cells a little-endian variant exists and is denoted by the
suffix *_le.

79



(a) Combinatorial cell. (b) Sequential cell. (c) (De)multiplexer cell.

(d) Combinatorial submodule.
(e) Combinatorial arithmetic.

(f) Act signal.

(g) Clocked module.
(h) Generate construct.

Figure 6.2: Implementation diagram conventions.

6.3.2 Pass Gate Cell

A basic cell is the pass gate agate shown in Listing 6.1. Due to its straightforward behavior, it
acts as an initial example of a cell from the library. The function of the cell is to grant access
to a downstream ready-valid cell if a certain condition is met. The condition is supplied to the
cell as the one bit input enable signal en. The cell has two additional input signals that are the
input valid signal i_v and output ready signal o_r. As the listing shows, the two output signals
i_r and o_v are nothing more than a logical AND operation on one of the input signals and
the input enable signal. The width parameter is used to configure the number of ready-valid
pairs this cell handles.
An application example of the pass gate cell is to grant read access to a memory, but only if the
memory contains valid data. In this example, the input valid signal could indicate a valid read
request, accompanied by a memory address as data signal. The enable signal could originate
from a counter cell that keeps track of the number of valid data entries.

1 module base_agate #
2 (
3 parameter width = 1
4 )
5 (
6 input [width-1:0] i_v,
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7 output [width-1:0] i_r,
8 input [width-1:0] en,
9 output [width-1:0] o_v,

10 input [width-1:0] o_r
11 );
12

13 assign i_r = en & o_r;
14 assign o_v = en & i_v;
15 endmodule

Listing 6.1: Pass gate cell from the ready-valid cell library.

6.3.3 Decode Cell
The library also consists of non-ready-valid capable cells such as the decode cell decode shown
in Listing 6.2. The function of this cell is to decode the input signal din if a certain condition
is met. Similar to the agate cell, the input enable signal is called en. Due to the parametrized
nature of the cell library, each cell has a variable width. In this case the input data width
is configured using the enc_width parameter that implies the output width as well. In order
to support the parametrization, a Verilog generate statement is used in combination with a
for-loop. During compilation, the for-loop is unrolled followed by generation of the associated
hardware.

1 module base_decode #
2 (
3 parameter enc_width = 1,
4 parameter dec_width = 2 ** enc_width
5 )
6 (
7 input en,
8 input [enc_width -1:0] din,
9 output [dec_width -1:0] dout

10 );
11

12 genvar i;
13 generate
14 for(i=0; i<dec_width; i=i+1) begin : Gen
15 assign dout[i] = en & (din == i);
16 end
17 endgenerate
18 endmodule

Listing 6.2: Decode cell from the ready-valid cell library.

6.3.4 Multiplexer Cell
Another basic non-ready-valid capable cell is the multiplexer cell emux shown in Listing 6.3.
In line with the cell library philosophy, a width parameter is available. Another recurring
configuration parameter in the ready-valid cell library is the ways parameter. This parameter
typically indicates the number of inputs of a cell, which in this case is the number of inputs to
select from. This parameter implies the encoded signal width of the input select signal sel that
uses the built-in $clog2() function of Verilog. This function returns the logarithm in base two
of the input argument to the function.
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1 module base_emux #
2 (
3 parameter width = 1,
4 parameter ways = 2,
5 parameter sel_width = $clog2(ways)
6 )
7 (
8 input [(width*ways)-1:0] din,
9 input [sel_width -1:0] sel,

10 output [width-1:0] dout
11 );
12

13 wire [width-1:0] din_array [ways-1:0];
14

15 genvar i;
16 generate
17 for(i=0; i<ways; i=i+1) begin : Gen
18 assign din_array[i] = din[(i+1)*width-1:i*width];
19 end
20 endgenerate
21

22 assign dout = din_array[sel];
23

24 endmodule

Listing 6.3: Multiplexer cell from the ready-valid cell library.

6.3.5 Ready-Valid Merge Cell
The reason for showing the previous two cells, besides introducing typical signal and parameter
names, is to illustrate how a ready-valid cell can be constructed from non-ready-valid capable
cells. A ready-valid merge cell, shown in Listing 6.4, merges ways inputs, each with width wide
data. The input select signal sel is first decoded using the decode cell discussed in Section
6.3.3, with the enable signal always asserted. The output valid signal is determined by whether
the particular input is valid and which input was selected. Since both signals are ways bits
wide, a logical reduction OR operator is used. Similarly, but opposite, the input ready signal
is determined by which input is selected, since that input is ready to receive a new valid input
data, and the output ready signal to determine if the downstream module is ready. Since there
are ways input signals and the output ready signal is only one bit, it is replicated as often as
there are inputs. Finally the input data i_d is selected using the multiplexer shown in Section
6.3.4.

1 module base_aemux #
2 (
3 parameter ways = 2,
4 parameter width = 1,
5 parameter sel_width = $clog2(ways)
6 )
7 (
8 input [ways-1:0] i_v,
9 output [ways-1:0] i_r,

10 input [(width*ways)-1:0] i_d,
11 input [sel_width -1:0] sel,
12 output o_v,
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13 input o_r,
14 output [width-1:0] o_d
15 );
16

17 wire [ways-1:0] sel_dec;
18 base_decode_le#(.enc_width(sel_width),.dec_width(ways))
19 isel_dec(.din(sel),.dout(sel_dec),.en(1'b1));
20

21 assign o_v = |(sel_dec & i_v);
22 assign i_r = sel_dec & {ways{o_r}};
23

24 base_emux_le#(.ways(ways),.width(width))
25 imux(.sel(sel),.din(i_d),.dout(o_d));
26

27 endmodule

Listing 6.4: Ready-valid merge cell from the ready-valid cell library.

6.4 Advanced Examples
The previous section introduced the cell library that is part of the ready-valid methodology.
This section uses the presented conventions to introduce several advanced examples of the
methodology.

6.4.1 Interfacing with a Credit-Based Interface
A common interface type is based on credits, which is for example used by interconnects such
as PCI Express and OpenCAPI to control the flow of packets. Typically it is used to share
a resource and give each consumer a credit if a credit is available. When no more credits
are available, consumers are no longer granted access until a credit becomes available again.
The interaction with modules that are not based on the ready-valid protocol such as memory
primitives may serve as an example. Memory primitives typically consist of a read and write
interface of three signals: enable, address, and data. More details concerning memory primitive
interaction will be discussed in Section 7.4.1. Another use case is when the ready-valid cells
and modules consume too much area in the design. A local transition to a credit interface (and
back) possibly overcomes this problem.
The cell library provides two cells to transition from a ready-valid protocol to a credit-based
protocol (source) and vice versa (sink). The cells are named credit_src and credit_snk,
respectively. Figure 6.3 shows a generalized setup and interaction with ready-valid-based cells.

6.4.2 Synchronization of Multiple Control Flows
When designs get more complex, often multiple control flows have to be synchronized with each
other before progress can be made. The cell library provides a single cell to synchronize N-to-M
inputs and outputs named combine. Two examples are shown below of uses of this cell during
the implementation of the multi-stream buffer.

Many-to-One

The first encounter involves synchronization of multiple inputs with one output, as shown in
Figure 6.4. In this example, the downstream module Request Consumer is shared by two ready-
valid-based modules, shown on the left of the Combine cell. The Request Producer produces a
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Figure 6.3: Diagram of a generalized transition between a credit- and ready-valid-based pro-
tocol.

request consisting of a ready-valid pair and a stream identifier as associated data signal. Since a
resource is shared downstream, that is only able to accept a predefined number of outstanding
requests, each request from the producer has to obtain a unique tag.
There are various scenarios possible in this case. If the downstream module is not ready, both
the Request Producer and the Resource Manager have to stall in order to prevent discarding a
valid request or waste a precious tag, or both. Similarly, if the Request Producer has no valid
request, the Resource Manager should not waste a tag and, vice versa, the Request Producer
should not discard a valid request when all tags are in use. The bottom line is that these two
control flows have to synchronized.

Figure 6.4: Diagram of a many-to-one synchronization example.

To do so, the cell library provides a cell that can be configured to accommodate any number of
inputs and outputs, independently of each other. Listing 6.5 shows the ease of use of the com
bine cell (line 26), by simply connecting the various cells and modules together and configuring
the number of inputs and outputs to synchronize. In this example, a hypothetical Request
Producer module is used and a simplified Resource Manager cell from the library. The res_mgr
cell provides a configurable number of unique tags that can be used to associate with a request.
The tag return interface has been omitted for simplicity.

1 wire s1_req_v, s1_req_r;
2 wire [nstrms_width -1:0] s1_req_sid;
3 request_producer # (
4 .width (nstrms_width)
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5 ) is0_req_prod (
6 .clk (clk),
7 .reset (reset),
8 .o_v (s1_req_v),
9 .o_r (s1_req_r),

10 .o_d (s1_req_sid)
11 );
12

13 wire s1_mgr_v, s1_mgr_r;
14 wire [tag_width -1:0] s1_mgr_tag;
15 base_res_mgr # (
16 .width (tag_width)
17 ) is1_res_mgr (
18 .clk (clk),
19 .reset (reset),
20 .o_v (s1_mgr_v),
21 .o_r (s1_mgr_r),
22 .o_d (s1_mgr_tag)
23 );
24

25 wire s1_comb_v, s1_comb_r;
26 base_acombine # (
27 .ni (2),
28 .no (1)
29 ) is1_cmb (
30 .i_v ({s1_req_v, s1_mgr_v}),
31 .i_r ({s1_req_r, s1_mgr_r}),
32 .o_v (s1_comb_v),
33 .o_r (s1_comb_r)
34 );
35

36 request_consumer # (
37 .width (nstrms_width),
38 .tag (tag_width)
39 ) is2_req_cons (
40 .clk (clk),
41 .reset (reset),
42 .i_v (s1_comb_v),
43 .i_r (s1_comb_r),
44 .i_sid (s1_req_sid),
45 .i_tag (s1_mgr_tag)
46 );

Listing 6.5: Many-to-One synchronization example.

One-to-Many

Another encounter involves synchronization of a single input with multiple outputs, as shown
in Figure 6.5. In this example, an incoming read request from the AFU starts two separate
processes. The first process calculates an address to index a memory based on a global pointer
stored in one of the Stream Pointer modules and the number of other read ports accessing the
same stream. The second process updates the global pointer based on all streams requested
and will request new data upstream if needed. More details concerning the operation of the
modules used can be found in Section 7.3.1 and 7.3.2.
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Similarly to the many-to-one synchronization example shown above, the combine cell is con-
figured with the appropriate number of inputs and outputs and connects the incoming read
request to both process modules. In essence, it would be similar to Listing 6.5, traversed in
reverse order. While the two presented examples have either one input or output, the combine
cell is able to synchronize any number of inputs with any number of outputs.

Figure 6.5: Diagram of a one-to-many synchronization example.

6.4.3 Timing Closure Using Relay Stations

The function of a relay station, as defined in the theory of latency-insensitive design [65], is
fulfilled by the reg cell in the ready-valid design methodology. Typically the reg cell is used
as a register for a ready-valid signal pair and the associated data signal. However, due to its
parametrized nature, the cell can be easily reconfigured to meet timing by inserting an empty
cycle, or to improve resource utilization by removing a cycle, either from the ready or valid path
or both.
Listing 6.6 shows the instantiation of the cell. It contains the typical ready-valid input and
output signal pairs and a parameter width to configure the width of the data signal. Unique to
this cell is the lbl parameter that stands for latch-burp-latch. When each bit is asserted, the
respective cell (latch or burp) is generated.

1 base_areg # (
2 .lbl (3'b110),
3 .width (width)
4 ) is0_reg (
5 .clk (clk),
6 .reset (reset),
7 .i_v (i_v),
8 .i_r (i_r),
9 .i_d (i_d),

10 .o_v (o_v),
11 .o_r (o_r),
12 .o_d (o_d)
13 );

Listing 6.6: Ready-valid register cell from the ready-valid cell library.
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Latch Cell

Listing 6.7 shows the latch cell from the ready-valid cell library. This cell is used within the
reg cell and provides a sequential element in the valid signal path. The o_v signal is the output
of a vlat cell of which the input signal is asserted only when the latch cell receives a valid
input or when the downstream cell does not accept the current transfer. Similarly, when an
associated data signal is present, an additional vlat_en cell is generated and is only enabled if
the downstream cell accepted the current transfer. This enable signal is also used to drive the
i_r signal.

1 module base_alatch #
2 (
3 parameter width = 1
4 )
5 (
6 input clk,
7 input reset,
8 input i_v,
9 input [0:width-1] i_d,

10 output i_r,
11 output o_v,
12 output [0:width-1] o_d,
13 input o_r
14 );
15

16 wire o_v_in = i_v | (o_v & ~o_r);
17 wire enable = o_r | ~o_v;
18 assign i_r = o_r | ~o_v;
19 base_vlat#(.width(1)) ivlat (.clk(clk), .reset(reset), .din(o_v_in), .q(o_v));
20

21 wire [0:width-1] din = i_d[0:width-1];
22 generate
23 if (width > 0)
24 base_vlat_en#(.width(width)) idlat (.clk(clk), .reset(1'b0),
25 .enable(enable), .din(i_d), .q(o_d));
26 endgenerate
27

28 endmodule

Listing 6.7: Latch cell from the ready-valid cell library.

Burp Cell

Listing 6.8 shows the burp cell from the ready-valid cell library. This cell is used within the
reg cell and provides a sequential element in the ready signal path. The o_v signal propagates
without any latency from the i_v signal, unless the previous transfer was not completed, indi-
cated by the burp_v signal. Note that when burp_v is asserted, the input data signal is not
captured in the vlat_en cell and the previously captured data signal is presented at the output.
If not, the current input data is captured and presented and the output. The input ready signal
is then equal to the inverse of the burp_v signal.

1 module base_aburp #
2 (
3 parameter width = 1
4 )
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5 (
6 input clk,
7 input reset,
8 input i_v,
9 input [0:width-1] i_d,

10 output i_r,
11 output o_v,
12 output [0:width-1] o_d,
13 input o_r
14 );
15

16 wire burp_v;
17 wire burp_v_in = ~o_r & (burp_v | i_v);
18 assign i_r = ~burp_v;
19 assign o_v = i_v | burp_v;
20 base_vlat#(.width(1)) ivlat (.clk(clk), .reset(reset), .din(burp_v_in), .q(burp_v));
21

22 generate
23 if (width > 0) begin
24 wire [0:width-1] burp_d;
25 assign o_d = burp_v ? burp_d : i_d;
26 base_vlat_en#(.width(width)) idlat (.clk(clk), .reset(1'b0),
27 .enable(~burp_v), .din(i_d), .q(burp_d));
28 end
29 endgenerate
30 endmodule

Listing 6.8: Burp cell from the ready-valid cell library.

Register Cell

Figure 6.6 shows a simplified view of the reg cell. Internally, the burp and latch cells, discussed
in the previous paragraphs, are used. The orange ovals represent combinatorial logic, as shown
in Listing 6.7 and Listing 6.8.

Figure 6.6: Diagram of the relay station cell with lbl = 3'b111.
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A typical starting point is to configure the cell as 3'b110 that generates one latch and one burp.
This configuration is shown in Figure 6.7 and results in a register in both the ready and valid
paths. As mentioned in Section 6.2, it is good practice to insert a reg cell regularly during
the implementation to minimize rewriting of the system description at a later stage. By simply
reconfiguring the relay station after the design failed timing, for example, a new compilation
can be run immediately without rewriting any code.

Figure 6.7: Diagram of the relay station cell with lbl = 3'b110.
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Chapter 7

Implementation

Section 5.5 made clear that duplication is needed in order to unify access latency for each data
entry. Due to exploiting different memory primitives, the proposed architecture consumes less
valuable memory resources compared to traditional architectures. By providing an element-sized
access granularity and select elements within or close to the memory primitive, the selecting
structures are also significantly smaller compared to traditional architectures.
This chapter describes the operation of the proposed design, followed by a section which dis-
cusses the design choices made based on resource limitations imposed by the target FPGA.
Afterwards the implementation of the proposed architecture is explained in more detail by
going through the entire design module by module.

7.1 Functional Operation
Each of the two levels of buffering have different requirements regarding the respective memory
primitive. L1 should be optimized for low latency and have enough capacity to cover the latency
of L2, while L2 should be optimized for memory capacity to cover the latency of host memory
accesses over OpenCAPI. Taking the memory resources presented in Section 4.4 into account,
BRAMs are best suited for L1 since several mega bytes are available and due to their low read
and write latency. URAMs are a good fit for L2 since also several mega bytes are available, but
each primitive is larger, and requires a slightly higher access latency.

7.1.1 AFU Read Request Operation
Figure 7.1 shows a block diagram of the interaction between the AFU, the two levels of buffering
and a host interface. In theory the host interface could be any current or future interconnect
standard, but this particular architecture focusses on the bandwidth specification and cache
line size of OpenCAPI 3.0 operating on a POWER architecture host system.
Because of the read-only nature of this buffer, there is a clear distinction between the control
and data path, or request and response path in this case, which flow in opposite direction. The
control flow starts at the AFU, which is able to request eight elements per cycle, each from
any stream. An AFU request consists of a ready-valid signal pair and a stream identifier. Each
Read Port module has its own logic to distribute the requests among the different L1 Control
modules. Every stream has a separate controller in order to keep track of the current read and
write pointers. This holds for both the L1 and L2 Control. If the last element of a cache line
in L1 is read, a request is sent to the respective L2 controller which will read a new cache line
from the URAM and write it in L1. This frees up an entry in the URAM and triggers L2 to
generate a new cache line request for the host. The Request Generation module translates a

91



stream number into an address for the host and attaches a unique tag to each request, which
also consists of a ready-valid signal pair. Meanwhile, both the L1 and L2 stream controllers
calculate addresses to index the BRAM or URAM module respectively.

Figure 7.1: Diagram of the multi-stream buffer architecture.

7.1.2 Host Data Response Operation
The complexities of OpenCAPI, or any interconnect for that matter, could be abstracted away
by using for example an OpenCAPI-to-AXI bridge. A similar bridge exists for CAPI 1.0 as
mentioned in Section 3.2.2. Attaching an AXI interface to the multi-stream buffer would make
it portable across interconnect standards, especially since AXI is the de facto standard in the
world of FGPAs.
Independent of the chosen interconnect to the host, interconnect standards often allow response
to be transferred out-of-order. Since the multi-stream buffer architecture expects response to
come back in-order, a Re-order Buffer module is required. This module allows new cache lines
to be written immediately to the URAM module, but only sends a response to the respective
L2 Control module, which in turn updates the valid counter for that L2 stream pointer, if it
is a consecutive response. If not, the response will be delayed until all previous response have
been received.
When an L1 stream controller requests a new cache line from L2, the cache line is written
simultaneously from the respective L2 buffer to all eight corresponding L1 stream buffers. Each
individual connection between the URAM and BRAM module for such write operations is called
a write channel. Ideally each stream has its own write channel, but that results in a complex
wiring job since each write channel has a width of 128 bytes or 1024 bits (wires). Each of the
modules shown in Figure 7.1 will be discussed in more detail in the remainder of this chapter.

7.1.3 Functional Stream Reset Operation
Before read requests from the AFU are accepted by the L1 Control modules, the desired stream
has to be functionally reset. A functional reset request consists of a ready-valid signal pair, a
stream identifier and two addresses to indicate the start and end location of the data in host
memory. This allows streams to consist of a different number of cache lines per stream. Both
addresses have to be cache line size aligned, which is 128 bytes in this case.
The functional reset interface is not shown in Figure 7.1 but is connected through a demultiplexer
to each L2 Control module. From there, each L2 controller is connected to the respective L1
Control module which presents a one-hot signal to the AFU indicating whether a stream has
finished or not. This signal is accompanied by a ready-valid signal pair such that the AFU
can be notified when a functional reset has been accepted by both levels of stream controllers.
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The functional reset interface input could for example be connected to a sideband signal of the
interconnect or an MMIO region on the FPGA card.
If a functional reset request is accepted, the respective L2 Control module will start requesting
cache lines from the host until its URAM is full. While requesting cache lines, the functional
reset request is forwarded to the respective L1 Control module. If the request is accepted,
the module will start requesting cache lines from L2 until its BRAM is full. A reason for not
accepting a functional reset request is for example when the stream has not yet finished its
current stream and thus still holds valid data which is not allowed to be overwritten.
When the AFU sends a read request for a stream, it is only accepted if the stream has been reset
and if at least two valid cache lines are present in the BRAM, since in the desired configuration
the AFU is capable of reading across a cache line boundary. Corner cases exist which will be
discussed in more detail in Section 7.3.2.
While the interface modules have been briefly discussed from a functional perspective, the
modules are not implemented in the final design. The Request Generation module has been
built and tested, but was not integrated within the verification framework discussed in Section
8.1. The module can be found on the GitHub page of this project [68]. Integrating both modules
is left as future work.

7.2 Multi-Stream Buffer Architecture Design Choices

This section motivates the design choices made before the implementation phase. The most
important choice to be made is determining the size of each level of buffering, while making
sure the memory primitives are fully utilized. Due to the wide data paths, routing delay has to
be taken into account.

7.2.1 Buffer Depth Analysis

For any configured number of read ports P, at most P new cache lines are requested from L2
during a single cycle. Ideally these requests are processed and written to the corresponding L1
buffer in parallel. Since all stream controllers in both levels operate in parallel, transmitting new
cache line requests from L1 to L2 occurs in parallel as well. The system architecture shown in
Figure 7.1 suggests a single write channel between the L2 and L1 buffer. This could potentially
become a point of congestion, depending on the AFU access pattern and the number of read
ports, and result in an empty L1 buffer. An equal number of write channels as read ports
is desired between L2 and L1 to minimize congestion. Each read port still has access to all
streams, because the L1 buffers are duplicates of each other.
Figure 7.2 shows a generalized diagram of the memory organization for multiple write channels.
Each write channel services a fixed subset of streams, even though not fixing this would be
better. However, such a solution requires each write channel to be able to access every stream.
This is very expensive in terms of wiring since each write channel is 1024 bits wide and drives
multiple BRAM slices. A BRAM or URAM slice is an array of possibly multiple memory
primitives that share the same write interface. In principle, a slice could contain any number
of streams. However, both the BRAM and URAM slice serve the same number of streams, be
it with a different number of cache lines. In the case of the BRAM slice, the write channel
drives as many BRAM arrays as there are read ports configured. This means that all BRAM
slices with the same slice number are driven by the same URAM slice. In the figure this is
shown by placing the BRAM slices horizontally next to each other. When multiple L2 requests
for the same slice occur in the same cycle, the different requests are serviced in parallel by the
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corresponding stream controllers and merged using an arbiter for example before accessing the
URAM slice, since only one read and one write interface is available per slice.

Figure 7.2: Diagram of the memory organization for multiple write channels.

AFU Access Patterns

For any number of read ports, there are two distinct access patterns that both generate the
maximum number of new cache line requests from L1 to L2 in one cycle. Figure 7.3 shows the
requested stream per read port per cycle. This is under the assumption that each cache line
consists of as many data elements as there are read ports. Another assumption is that each
stream is read by starting from the first data element at offset zero. All read ports have a
predefined priority, with port zero having the highest. That means that if multiple read ports
request the same stream, the highest priority read port will return the first unread data element.
Figure 7.3a shows one case where all read ports read from the same stream in each cycle, for
example stream zero. When the last element of a cache line is read, a request from L1 to L2 is
made. In this case, this happens once every cycle as illustrated by the green box. After P cycles
of this pattern, P cache lines have been requested, but the requests are evenly distributed as
one per cycle. In this example P equals eight.
Figure 7.3b shows the other case where all read ports read from different streams in a single
cycle. For example, stream zero through P-1. If such a pattern is sustained for P cycles, also
P requests are made from L1 to L2 but all in the same cycle, which results in a burst of L2
requests. In this example P equals eight.

Stream Exhaustion

When the burst access pattern is succeeded by the distributed access pattern and both request
streams from the same slice, L2 requests made by the distributed access pattern are queued up
behind those of the burst access pattern. This is under the assumption that L2 requests are
queued in ascending order, starting with stream zero. Depending on various factors such as the
number of streams per slice, the latency of the control logic and memory organization, and the
number of read ports, an L1 stream buffer could get exhausted. This is undesired behaviour
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(a) Distributed L2 requests. (b) Burst of L2 requests.

Figure 7.3: Eight read port stream access pattern.

and the L1 buffer should be adequately large.
Figure 7.4 illustrates a generalization of this worst case scenario by combining both access
patterns. Figure 7.4a shows a configuration with P read ports. The access pattern shown is
preceded by AFU read requests which resulted in a state where each stream has only one unread
data element left in the current cache line. Therefore, when a stream is read, an L2 request is
made.
For a configuration with a total number of streams N and C write channels, each slice services
N
C streams. To obtain a queue of L2 requests, the burst pattern is triggered using all read ports
for N

C×P consecutive cycles to trigger all streams within this slice. The green boxes indicate a
burst pattern read request resulting in an L2 request.
Next, stream N

C − 1 is read, the stream with the highest number, using the distributed access
pattern. Under the assumption that streams are serviced in ascending order means that the
highest numbered stream is in the last batch of read requests. If only this stream is read from
here on, it will have to survive the longest number of cycles before a new cache line will be
written into the corresponding L1 buffer, since the request is queued up behind requests from
all other streams. The orange boxes indicate a distributed pattern read request, that could
result in an L2 request. This depends on rate R and will be discussed later.

Figure 7.4b shows for each stream the number of valid cache lines present, as a result of the
read access pattern shown in Figure 7.4a. In the initial state in cycle zero, each buffer is full
with S valid cache lines. The valid counters per stream reflect changes due to the AFU access
pattern in the consecutive cycle the AFU read request was made. As an example, in cycle one
the green boxes indicate a change in the number of valid cache lines for the first P streams due
to the burst pattern triggered in cycle zero in Figure 7.4a. The burst pattern continues until
cycle N

C×P .
Rate R is defined as P

E and indicates how many cache lines can be requested per cycle for
the distributed pattern. During the burst pattern it is known that a cache line from L2 will
be requested. Therefore the valid counters are decreased by one. For subsequent cycles, this
depends on the chosen configuration of the number of data elements per cache line E and the
number of read ports P. This is under the assumption that P is always smaller or equal than E.
Cycle L indicates when the first L2 request has been completed and a new cache line has been
written in the corresponding BRAM array depends on the latency of the stream controllers and
the memory primitives. Cycle L is defined as the sum of the L2 Control, URAM, and BRAM
module latencies. Or in other words, the latency between issuing an L2 request and writing the
corresponding cache line into the BRAM array. From cycle L onward, blue boxes indicate that
a new cache line has been written and therefore the valid counter has increased by one. Since
each BRAM slice has only one write interface, there is an imbalance between the generation
and servicing of an L2 request by a factor of P to one. That means that in a single cycle, at
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(a) Requested stream per read port. (b) Number of valid cache lines present per stream.

Figure 7.4: Generalized worst case AFU access pattern.

most P L2 requests can be issued, while at best only one new cache line can be written.
At cycle W, the initial L2 request made by stream N

C − 1 has been written into the corresponding
BRAM array. In essence, stream N

C − 1 has to survive until cycle W and equals N
C + L − 1. To

calculate the buffer size S, an additional constraint V is added that indicates the minimum
number of valid cache lines required to accept an AFU read request.

L1 Buffer Depth

To determine the L1 buffer size per stream S, Figure 7.4 and the associated access pattern is
analyzed. Due to the initial burst pattern, at least one cache line has to be buffered. This is the
cache line consumed within the first N

C×P cycles for every stream. In order to survive until cycle
W, a minimum number of valid cache lines V must be present in the buffer. In between these
two events, stream N

C − 1 is read according to the distributed pattern and makes L2 requests
at rate R. The number of cycles between the two earlier mentioned events is multiplied by rate
R to obtain Equation 7.1.

S = R ×
(

W − N
C × P

)
+ V + 1 =⇒ P

E
×

(
N
C

+ L − 1 − N
C × P

)
+ V + 1,where (7.1)

• S is the number of cache lines to buffer per stream,

• R is the rate at which L2 requests are issued during the distributed access pattern,

• W is the cycle in which the initially requested cache line by stream N
C − 1 is written into

the BRAM array,

• N is the total number of streams,

96



• C is the number of write channels,

• P is the number of read ports,

• V is the minimum number of valid cache lines present in the BRAM array in order to
service an AFU read request,

• L is the sum of the L2 Control, URAM, and BRAM module latencies, and

• E is the number of data elements within a cache line.

Equation 7.2 shows the buffer size S when using the requirements for the multi-stream buffer
as mentioned in Section 5.3. V equals two such that the AFU is always able to read across a
cache line boundary. Only servicing a read request when there are two or more valid cache lines
makes complex logic, for when only one valid cache line is present, unnecessary.

S =
64
C

+ L − 64
C × 8

+ 2 (7.2)

Since the number of write channels C is limited, a series of approximations of the buffer size
can be made. Table 7.1 shows the number of write channels versus the buffer size per stream.
The benefit of multiple write channels is obvious, but the cost of a write channel in terms of
routing complexity has to be taken into account.

Table 7.1: Buffer sizes for a variety of write channels.

C S
1 L + 58
2 L + 30
4 L + 16
8 L + 9

Based on this analysis, multiple configurations are possible, depending on the AFU access
pattern, target FPGA, the latency of control logic and memory arrays, and many more. In the
following sections the BRAM primitive configurations and routing complexity will be taken into
account in order to make a final decision on the number of write channels.

L2 Buffer Depth

Determining the number of cache lines per stream to buffer for L2 is less complex compared to
L1. The goal of the L2 buffer is to hide the latency of OpenCAPI. At best, one cache line is
received per cycle from the host through OpenCAPI.
No real-world latency numbers are published for OpenCAPI at the moment of writing. Since
one of the goals of OpenCAPI is to deliver a lower latency than current interconnect standards, a
typical latency of PCI Express Gen 3 of 1 µs is used as a conservative upper bound as mentioned
in 3.1.2. Assuming that the FPGA operates at 200 MHz, 200 cycles on the FPGA have to be
covered and thus 200 cache lines have to be buffered. An access pattern where only one stream
is constantly requested could occur. Rounding this up to the next power of two results in 256
cycles, or cache lines, to buffer per stream.
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7.2.2 BRAM Sharing Among Streams
Section 7.2.1 made the assumption that the underlying BRAM primitives were utilized perfectly.
While this is fine for a first-order analysis, the BRAM primitive configuration has to be taken
into account during implementation. For example, implementing a single stream per BRAM
primitive is very wasteful because only sixteen entries are used per BRAM which equals to a
utilization of roughly 3%. Double pumping makes no significant difference. Therefore, BRAM
primitives have to be shared among streams in order to achieve full utilization. Without double
pumping, a BRAM primitive is fully utilized with 32 streams and with double pumping 16
streams are required. For example, in a configuration with eight write channels, or eight streams
per slice, each BRAM primitive is only utilized for 50%. A deeper analysis has to be made in
order to find the optimal number of write channels.

7.2.3 Multiple Write Channels Analysis
Section 7.2.1 showed that for a specific AFU access pattern outstanding L2 requests get queued
up and a specific L1 stream buffer could become exhausted. Under the worst case memory
access assumption and a configuration of 64 streams and one write channel, the required L1
buffer should contain at least 64 cache lines. It is obvious that with this architecture, the L1
buffer can get exhausted, resulting in stalls and degradation of throughput. The congestion of
L2 requests can be improved by increasing the number of write channels between L2 and L1,
such that potentially multiple new cache lines can be written in L1. Multiple write channels
delay and might even prevent the exhausted state of the L1 buffer, depending on the number of
write channels and the latency of surrounding logic and memory arrays. There is an incentive to
minimize latency L because it enables to delay total exhaustion of the target L1 stream buffer.
Since each L2 stream buffer ideally contains 256 cache lines, there should be more than enough
cache lines ready to be written into the L1 buffer. The number of write channels is however
bounded in two ways.

• BRAM Utilization impacts the number of streams per BRAM primitive and therefore
the number of write channels which can be efficiently implemented. As shown in Section
7.2.2, each primitive is fully utilized with 16 or 32 streams. By dividing the streams across
several BRAM primitives, the streams are interleaved. This efficient number of streams
per BRAM means that the only possible number of write channels, which results in an
evenly distributed number of streams per slice, is either one, two or four. It is desired to
distribute the number of streams evenly across write channels in order to have a balanced
system. If BRAM primitives are under-utilized, the required number of BRAM primitives
will explode and the design will not fit within the KU15P’s resource budget.

• Write Channel Wiring impacts the resource budget of the KU15P. Each channel requires
1024 bits. With multiple write channels, this results in a wiring nightmare and difficulty to
route the design. However, the more write channels, the smaller the maximum congestion
per slice.

Ideally, the system is balanced where each AFU read port is backed up by its own write channel
as mentioned earlier. However, eight write channels result in an under-utilization of BRAM
primitives, therefore an explosion of required primitives, and requires 8192 wires, making routing
more complex. This leaves the two and four write channel designs. A big benefit of the four
write channel design is that this results in using sixteen streams per BRAM primitive, double-
pumped. Because of the double-pumping, the physical write channel can also be double-pumped
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which means that 512 wires are used instead of 1024. Therefore, without any significant changes
in logic, the same number of wires are required for a two or four write channel design, while the
four write channel design avoids congestion by roughly a factor of two, under the assumption
that latency L is equal for both, compared to the two write channel design.

7.2.4 Buffer Memory Organization
Figure 7.5 shows the final memory organization for the multi-stream buffer architecture, based
on the previous sections in this chapter. The control flow starts at the AFU, which is able to
request eight new elements per cycle. Each read port has its own logic to distribute the request
among the different stream controllers (not shown). Every stream has a separate controller per
level, while the cache lines per stream share memory primitives. This is because the minimum
number of entries per memory primitive is much larger than what is required per stream. Sharing
memory primitives between streams is not a problem, since cache lines are duplicated in L1 and
each read port has access to a consecutive subset of cache lines per stream. Each AFU read port
will at most request one element per cycle and therefore no conflict can occur per read port.
Since all stream controllers operate independently and are connected directly to each other per
stream, multiple new cache line requests in L2 can be serviced per cycle. By keeping the stream
controllers independent and merging L2 requests only at the very last moment, when accessing
the URAM and writing it to L1, throughput can be sustained for as long as possible. The only
point of congestion is each write channel per slice. New data between the two levels is written
in cache line granularity since complex logic would be required to replace single elements per
stream for example.

Figure 7.5: Memory organization of both buffer levels.

L2 Primitive Organization

OpenCAPI can provide at most one 128 B per 200 MHz cycle. This cache line is then written
in the corresponding URAM of the requested stream. Since there are four write channels, L2 is
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divided in four slices where each slice houses sixteen streams, each containing 256 cache lines.
This results in 4096 entries. Since the memories are double pumped, two URAM primitives are
required to obtain this number of entries. Cascading multiple 8 B wide primitives results in a
cache line-width buffer.

L1 Primitive Organization

Similarly, L1 also consists of four slices where each slice houses sixteen streams, consisting of
sixteen cache lines per stream. This results in 256 entries. However, all of these cache lines are
replicated for each read port to solve the multi-read-port problem. When a new cache line is
written from L2 to L1, that data is written simultaneously to all eight corresponding slices. By
double pumping the BRAM primitive in a 512 entry 8 B wide configuration, a single BRAM
primitive supplies all required entries at data element width. Then multiple primitives can be
cascaded in order to obtain a cache line wide buffer.
For both levels the cache lines are direct mapped. During the functional reset of a stream, a
start and end address are provided from which cache lines are automatically fetched. Based
on the stream number and the physical address of a cache line, the address within a memory
primitive is calculated. By direct mapping cache lines, the architecture might be extended in
the future to act as a cache.

7.2.5 Expected Resource Utilization

The architecture described in this section has eight copies of sixteen cache lines per stream.
In total, this will consume 256 BRAM primitives or 26% of what is available for the desired
configuration. Each stream buffers 256 cache lines in L2. This will consume 64 URAM primitives
or 50% of the total. Since sixteen streams share the same BRAM primitive, the multiplexing
structure is smaller compared to the previous proposals. In this architecture, each read port
selects the correct data element per slice, after which the correct slice is selected. This results
in a 32:1 multiplexer at half the element width since the BRAMs are double-pumped. Roughly
2.6% of the available LUTs are required.
The large improvement in LUT utilization is due to the fact that BRAM primitives are shared
by multiple streams. Therefore the primitive takes care of a large part of the selection structure,
especially at these data widths. Double-pumping also has a large impact. A careful reader might
ask why this architecture was chosen, since a significant portion of both BRAM and URAM
resources will be consumed. The element-wise double-pumped architecture might work just as
fine. While this might be true at first sight, the proposed architecture considers the anticipated
routing problems and takes the FPGA topology into account. The BRAMs are situated in
a vertical direction on the FPGA, which makes guaranteeing the same read latency for every
location very difficult. Placing a subset of cache lines a special, smaller, L1 ensures that less
cache lines have to have the same low access latency and makes closing timing easier. Besides
that, this architecture consumes the least number of BRAMs of all proposals. Therefore most
primitives are left for use by the AFU (and DLX and TLX layers).

7.2.6 Design Implementation Details

Now that the high-level design choices have been motivated, each level of the design will be
discussed separately, based on the modules presented in Figure 7.1. The whole design is based
around a request-response philosophy, where requests are made between modules and responses
are given back. Implicitly this is done by using the design methodology described in Chapter 6.
Explicitly this is done by, for example, viewing an AFU read as a request containing a stream
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identifier, which is followed by a response containing the same stream identifier and associated
requested data. The entire project can be found on GitHub [68].

7.3 L1 Control

The first level of the design, shown in Figure 7.6, consists of the read port logic, L1 stream
pointer logic and a transpose module. In the desired configuration, each of the eight read ports
has its own read port module and BRAM array, while each of the 64 streams has its own
pointer module, indicated by N and M respectively. Note that the arrows drawn only represent
the valid and, if present, the associated data signal. The associated ready signal is most often
not explicitly drawn.
The read port module calculates the address to index the respective BRAM array and requests
new cache lines from L2 if necessary. Since each read port outputs the requested stream identifier
as a decoded signal (one-hot), the input of the transpose module is a matrix with the number
of read ports as entries, where each entry is the number of streams wide. Since each L1 stream
pointer module is only interested in requests made for that particular stream, this input matrix
has to be transposed, which is nothing more than a rewiring to make interfacing easier.

Figure 7.6: Diagram of the L1 control and data path showing the essential submodules.

7.3.1 L1 Stream Pointer

Figure 7.7 shows the L1 stream pointer, which is a controller to keeps track of the current read
pointer within the BRAM and requests new cache lines from L2 when necessary. Each stream
has its own dedicated controller and all controllers are identical. Since multiple streams share a
single BRAM, care must be taken in properly calculating the addresses and updating the global
pointer per stream, depending on the number of read ports accessing that particular stream
per cycle. In the desired configuration, that could be any number of read requests between zero
and eight, the number of read ports.
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Figure 7.7: Diagram of the L1 stream pointer module showing the essential submodules.

Global Offset and Cache Line Pointer

At the heart of each L1 stream pointer is the global stream pointer. This pointer keeps track of
which address has to be read next in the BRAM to obtain the next data element. The pointer
consists of two parts, one to indicate the cache line, ranging between zero and fifteen, and one to
indicate the offset within the cache line, ranging between zero and seven. This global pointer is
used by the read port modules to calculate the address for each AFU read request. Each cycle,
all AFU read request stream identifiers are presented to the L1 stream controllers as a matrix of
the number of AFU read ports times the number of streams and each stream receives a vector
with the number of read ports as width. This is a one-hot encoded vector, indicating which
read port (if any), made a request for this particular stream. If so, the bit is high, otherwise
it is low. This vector is then fed into a count and encode module which counts the number of
asserted bits. This number in turn is added to the global pointer.

Valid and Request Counters

Besides the global pointer, two counters are present which can be incremented and decremented.
One counter keeps track of the number of valid cache lines in the BRAM, where each cache
line consists of eight elements. This counter puts back-pressure on incoming AFU read requests
when there are no valid cache lines to read. In order to minimize the size of the counter and
because the cache lines are assumed to be 128B aligned and therefore the offset within each
cache line starts at zero, the counter granularity is in number of cache lines. In the desired
configuration, each stream has at most sixteen valid cache lines in L1. Initially the number of
valid cache lines is zero. The amount is increased when L2 write responses are received which
indicate that a new cache line has been read from the URAMs and written in the BRAMs.
The amount is decreased when the carry bit of the offset part of the global pointer goes high.
This means that the seventh element within cache line N has been read and that the next read
element will be the first element of cache line N+1.
The second counter keeps track of the number of outstanding requests to the associated L2
stream controller. This means that as long as the number of valid cache lines within L1 is
less than sixteen, requests have to be made to the L2 control logic to write new cache lines
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in the BRAM organisation. The purpose of this counter is keep the L1 buffer filled. Inversely
to the valid counter decrement condition, when the carry bit is high, the request counter is
incremented because a cache line has been completely read and therefore it has to be replaced
with a new valid (unread) cache line. Finally, when an L2 stream request has been accepted,
the request counter decrements by one.

Functional Reset Behaviour

When a functional reset occurs for this stream, it means that the corresponding L2 stream
controller has been functionally reset successfully. A reason for this not to occur is for example
when the respective stream still has valid data from the previous functional reset for this stream.
When a functional reset of an L1 stream controller occurs, the output of the valid counter is
set to zero and the output of the request counter is set to sixteen (number of cache lines per
L1 stream). For the particular stream, the functional reset interface between the L1 stream
controllers and the AFU is deasserted. At this point, the L1 stream controller is waiting to
have at least two valid cache lines available before servicing AFU read requests. The reason is
that the AFU is able to read across a cache line boundary and in order to service those, both
cache lines need to be present.
As mentioned earlier, streams are directly mapped onto the memory organisations. During a
functional reset, also a subset of the EA of the first cache line for this stream is sent from L2
to L1. The part of the global pointer which indicates the current cache line gets assigned this
address as a starting value.
Each L2 stream controller keeps track of the current address and end address of each stream.
When the end of the stream is reached, the corresponding L1 stream controller will be notified.
At that point, the conditions for accepting an AFU read request change since now a read request
will not only be accepted when there are two or more valid cache lines, but also when there is
only one valid cache line present. After the final cache line has been fully read, the functional
reset interface is asserted to indicate the end of the stream has been reached.

7.3.2 Read Port Module

Figure 7.8 shows a high level diagram of the read port module. The purpose of a read port
module is to calculate the BRAM address and update the global stream pointer based on the
requested stream by the AFU. An AFU read request consists of a valid bit and the requested
stream number. Since the AFU read request drives two separate control flows, both have to
be synchronised. That means that no new AFU read request can be accepted until both flows
have finished and are ready. In order to achieve this, the base combine module is used from
the library. In order to update the L1 global stream pointer, each read port module decodes
the stream identifier requested by the AFU as a one-hot signal. All decoded stream identifiers
together form a matrix which is transposed and fed to the respective L1 stream controllers as
discussed previously.
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Figure 7.8: Diagram of a read port module showing the essential submodules.

BRAM Address Calculation

The calculated address per read port depends on the requested stream and the requested streams
of the previous read ports during that cycle. What this means is that the read ports have a
predefined order, in the desired configuration ranging between zero and seven. When multiple
read ports request the same stream, assuming all upstream modules are ready, read port zero
will read the first unread element in the data stream, read port one the second unread element
and so forth. This means that the address for read port zero equals the global stream pointer,
provided by the respective L1 stream pointer module. If read port one requests the same stream,
its address is equal to the global pointer plus one, since the previous read port already reads
the data element at the global pointer address. In a general, this relationship can be expressed
as shown in Equation 7.3.

A(p, s) =

{
g(s[p]) if p = 0
g(s[p]) + ∑

p−1
n=0(s[p] == s[n]) if p > 0

(7.3)

Here A is the BRAM address, p is the read port number, s is an array with the stream identifier
of every read port in this cycle and g is an array of the global pointer of each stream, provided
by the L1 stream controllers. Calculating the address for any read port is basically a function of
the read port number and all requested streams for that cycle. This expression consists of two
parts, one statically generated as hardware, and one dynamically assigned during operation.
Indexing the array of requested streams is done statically in hardware and is therefore indicated
by [] brackets. The global pointer array is dynamically indexed using the result of the requested
stream array and is indicated by () brackets. The expression also shows that, depending on the
read port identifier, different logic for address calculation is generated from the same template.

Preventing Deadlocks

With the previously described implementation, deadlocks are possible in one or multiple read
port modules. In such a case, a read request for some reason can not be serviced and therefore
requests for that particular read port will not make any progress. In the process, this will stall
any other read requests until the deadlock has been resolved, or more common, stall for an
infinite amount of time. There are three distinct scenarios where a deadlock in a read port
module can occur.

• Servicing a read request before functional reset results in reading invalid data and should
therefore be discarded.
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• Servicing a read request after a stream ended also results in reading invalid data. When
the L1 stream has ended, which also implies L2 has ended, servicing read requests should
be discarded.

• Termination of a stream mid-cycle occurs when during a single cycle multiple read requests
are made for the same stream, but after a subset of the requests (in increasing port number
order), the stream ends and the successive read ports will read invalid data.

In either case, the read request should be discarded to prevent a deadlock. This is done by
testing various conditions and de-asserting the valid read signal before it reaches the combine
cell shown in Figure 7.8. The reason is that when a read is discarded, the two upstream control
flows are not allowed to notice the request or invalid data will be read and the global pointer
will be updated while invalid data was read.
Figure 7.8 also shows a discard conditions module, which tests the deadlock conditions. While
a properly designed AFU should use the provided functional reset interface to decide if a read
request for a particular stream is valid, the implementation assumes a naively designed AFU.
The first two scenarios can be solved by checking the output reset end signal provided by each
L1 stream controller. This signal (invalidate_rd) is asserted when the stream has not yet
been functionally reset or when it has terminated. Therefore, if for the requested stream this
signal is asserted, the read request should be discarded. A discard simply de-asserts the valid
signal from the ready-valid signal pair.
The third scenario requires to check multiple conditions. Reading out-of-bounds only occurs
when the L2 stream controller is finished and the last valid cache line in L1 is being read. If
within a single cycle a read port requests the last element from the last valid cache line and a
successive read port requests the same stream, the requested element is out-of-bounds since the
stream has ended. If the cache line offset carry bit of the calculated address is asserted in the
same cycle as the previous two conditions, the read request should be discarded.

An implication of this approach is that if the AFU makes a request and it is discarded, there
is no way of knowing in the current implementation. Currently the only guarantee is that each
read port operates in-order, but responses can come back to the AFU with different time offsets
between read ports, depending on the amount of back-pressure on upstream modules. The
current implementation provides the stream identifier as a response with the requested data
element. Since streaming accesses are always in the same order, the AFU can determine the
order of the response data.
The problem could be solved by, for example, providing the AFU with a discard signal per
read port which will be asserted when this occurs. Another solution could be to associate a
unique identifier (UID) with each AFU read request, which might as well be the address the
BRAM was indexed with, since it will not be reused unless that index was read. The UID will
be immediately returned to the AFU, after which the AFU can act accordingly.
However, in order to minimise wasted cycles of processing discarded read requests, the AFU
could pay attention to the output reset end signal, which is asserted when the L1 stream has
ended. Therefore no more valid data is present for that stream and no more requests have to be
made. This solution is sufficient for the first case, but not for the second case since this output
signal is not updated until after the current cycle, since a register has to be updated. For the
third case, at most the number of read ports minus one reads are discarded. Another solution
is to reset the AFU with the same start and end EAs as the L1 and L2 control modules. Then
counters are used to keep track of the number of received responses for each stream within the
AFU.
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7.4 BRAM Organization
The memory organization has been discussed extensively. The idea is to have a BRAM column
for each AFU read port, and each read port has access to identical data. Due to the fixed
configurations of BRAM primitives and the need for four write channels, each BRAM column
consists of four slices, where each slice holds one forth, or sixteen streams, which each hold
sixteen cache lines per stream. The BRAM primitives are double-pumped in order to utilize
them fully.

7.4.1 Ready-Valid Memory Interface

A BRAM primitive is inherently not directly compatible with the design methodology used.
Memory primitives, either read or write, consist of three signals: enable, address, and data. In
such a case a latch oe module is used, which is similar to a register with a so-called output
enable signal, to act as a read enable input of the BRAM. This signal is triggered when the
input is valid and the upstream module is ready.
This solution works when the operating frequencies of the control and data path are the same.
When using the design methodology with back-pressure, it is important to control the enable
signal of the registers within the BRAM as well or things will not work properly when there
is back-pressure. For example, when using a two cycle read memory latency, two latch_oe
modules could be cascaded. However, since our data path is operating at twice the control
frequency, a different scheme has to be used, while still supporting back-pressure. By switching
to a credit-based interface, using source and sink compatible modules, back-pressure does not
have to be supported in the data path but is supported by using a FIFO in the credit source
module. Any additional registers within the BRAM read path can be enabled all the time, since
they do not have to support back-pressure. Implementing a more sophisticated register enable
signal is strictly a power optimization.

7.4.2 Double-Pumped and Credit-Based BRAM

Due to the requirement of double-pumping the BRAMs, switching to a credit-based interface is
easier since it removes the requirement of controlling the pipeline registers within the BRAM
in order to allow for back-pressure. This is at the cost of a six entry, 16B wide FIFO to act as
the credit sink. Also multiple register stages are used in the data read path to be able to route
the output signals back to the AFU. Examples are the additional pipeline register within the
BRAM primitive and the FIFO within the credit_snk cell.
Figure 7.9 shows a high level diagram of the implementation of a single BRAM column using a
credit-based interface. This module will be instantiated as many times as there are AFU read
ports and the respective write channels are tied together.
The BRAM slice shown in the figure is a concatenation of eight BRAM wrapper modules to form
a cache line wide memory. A BRAM wrapper module is an abstraction of the clk2x domain.
It is basically the BRAM primitive instantiation, immediately followed by an 8:1 MUX at half
the data width (8B) to select the requested element of 16B from the cache line of 128B. Then
there is a free-running register at clk2x for the enable signal of the read pipeline register. For
clarity, the write interface of each BRAM slice is not drawn, but in the desired configuration,
four write channels are present.
The control path is shown in the upper half of the figure and operates at clk1x. The lower
half is the data path and operates at clk2x. Since the credit_src cell does not depend on a
clock for the valid logic, an input register is added. The toggle flip flop acts as the LSB for the
cache line read address. Instead of using the latch oe module to generate a read enable signal, a
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register is used where the output ready signal is constantly high. The reason is that the FIFO
inside of the credit sink module handles received data from the BRAM. The ready-valid outputs
of the credit_src cell generate an act signal which is the read enable of the BRAM slice and
it toggles the read address LSB flip flop. The vlat cell shown at the output of the BRAM acts
as an alignment register to obtain the full data width again before it goes into the credit sink.

Figure 7.9: Diagram of double-pumped BRAM column using a credit-based interface.

7.4.3 Absence of Write Channel Back-Pressure

Usually the ready signal is supplied by an upstream (output) or downstream (input) module,
but an example of a fixed ready signal is the input response from L2 when a new cache line
has been written in the BRAM organisation. This ready signal is always asserted, which means
that response can always be serviced right away. The reason is that there is no back-pressure
present on the write interface of the BRAMs, since the only case where back-pressure is desired
is when the read and write port have a conflict. This will never occur in this implementation
since a read to a specific address is only issued when that particular cache line is known to be
valid, and a cache line is only written to a particular address when it is known to be invalid.

7.5 L2 Control

The second level of the design, shown in Figure 7.10, consists of the L2 stream pointer logic,
Round-Robin multiplexers and URAM organisation. The input request signal i_req is con-
nected to the L1 control output request signal o_req and is as wide as there are streams. When
one or multiple of these bits are asserted, a new cache line for that stream has to be fetched
from the URAM organisation and written into the BRAMs.
However, since there are multiple L2 stream controllers within the same slice, a Round-Robin
multiplexer grants read access to only one stream per slice. In the desired configuration, this is
a sixteen-to-one Round-Robin multiplexer. In general, there are M slices, each with there own
output address signal o_addr.
When a new cache line is fetched from the URAMs and written into the BRAMs, the corre-
sponding L2 stream pointer decrements its valid counter and therefore requests a new cache line
from the host. Since there is only one channel, for example OpenCAPI, to make these requests
on, the same Round-Robin multiplexer modules are used to arbitrate between requests from all
streams. Each slice instantiates its own Round-Robin multiplexer module after which a final
Round-Robin multiplexer arbitrates between the slices.
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Figure 7.10: Diagram of the L2 control and data path showing the essential submodules.

7.5.1 L2 Stream Pointer
Figure 7.11 shows the L2 stream pointer module, which is similar to the L1 stream pointer
module. The input request signal i_req is connected to the output request signal o_req from
the L1 stream pointer module. This signal is asserted when a cache line has been fully read
by the AFU and indicates that the respective L2 stream pointer should fetch a new cache line
from the URAMs and write it into the BRAMs.

Global Cache Line Pointer

The input request signal is first connected to a gate module, which only passes the input signals
if the enable signal is asserted. In this case, the enable signal checks if there is at least one valid
cache line available in the URAM for this stream. Then, the act signal s0_rd_act is generated
and enables the cache line pointer, which keeps track of the current address of a particular
stream. When a valid input signal occurs, the respective URAM address to be read is presented
at the output signal o_addr. This output signal is used to index the URAM slice.

Valid and Request Counters

Similarly to the L1 stream pointer module, there is a valid and request counter present. Instead
of keeping track of sixteen cache lines per stream, as was the case for the L1 control, the L2
controllers keep track of 256 cache lines, as shown in Section 7.2.1. Both counters operate in
the same way as their L1 counter part, except that the act signal mentioned earlier drives the
request counter increment and valid counter decrement signals. The reason is that when an
input request is received, the valid counter has to be decremented since a cache line will be
transferred to the L1 BRAMs. Also, the request counter is incremented since the transfer of a
cache line entails an empty line in the URAMs.

Functional Reset Behaviour

On reception of a functional reset, the request first goes to a gate module, in order to assess if
a functional reset is permitted. This is only the case when the respective stream has consumed
all of the cache lines from the previous data stream and has no more valid cache lines in the
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Figure 7.11: Diagram of the L2 stream pointer showing the essential submodules.

URAM, nor outstanding requests. Both counters are used to assess these conditions.
If the functional reset is permitted, the request will be forwarded to the respective L1 stream
controller as well and an act signal will be generated. This signal is used to initialise registers for
the reset begin and end EAs respectively. The begin EA will be incremented during operation
and holds the next EA to be requested from the host to fetch a new cache line. This address is
sent alongside an output request from this stream. The end EA is used to determine when the
stream has ended and no more cache lines have to be fetched.
Also the cache line pointer is reset with the direct mapped address based on the begin EA
signal. This same address is sent with the response data from the URAM to index the BRAM
during the write operation. The valid and request counters are reset to their initial values, thus
zero valid cache lines and 256 outstanding requests. In the case that a data stream contains
less than the URAM capacity per stream (less than 256 cache lines), there is logic present
which decrements the valid counter by one every cycle to slowly converge to the end of a stream
condition.

7.5.2 Round-Robin Multiplexer

The Round-Robin multiplexer module consists of multiple Round-Robin multiplexers from the
design library. Contrary to a traditional multiplexer, which uses an input select signal to
select one out of multiple inputs, a Round-Robin multiplexer selects an input autonomously,
according to a Round-Robin arbitration scheme, and produces an output select signal which
indicates which of the inputs have been selected.
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The Need for Pipelining

Round-Robin arbitration allows multiple requestors to share a common resource within a fixed
time slot. All processes which are ready are serviced in a circular manner without the notion
of priority. When a requestor has been serviced, it will go to the end of the line and will be the
last to be serviced again, assuming that all requestors have a valid request.
For the modules used from the design library, this means that the multiplexer will first check if
input N is valid. If it is, it will be selected and during the next cycle input N+1 will be assessed,
and so on. If an input is not valid, the next input will be assessed until a valid one is found, or
until a full circle has been made assessing all inputs, where none were valid.
Due to the possibility of not a single valid input, the arbitration logic could be assessing every
input. Therefore, the critical path scales with the number of inputs, or requestors. In the
desired configuration, each L2 slice has to merge requests from sixteen streams to share the
associated URAM (the common resource). Naively a sixteen-to-one Round-Robin multiplexer
from the design library would be instantiated, but due to the number of requestors, achieving
the desired operating frequency will be challenging. Therefore multiple smaller Round-Robin
multiplexers are instantiated and their output is captured in a register, as shown in Figure 7.12.
Configuring each Round-Robin multiplexer in the top layer for four requestors results in an
equally shared critical path on both sides of the register, neglecting wire delay. This results in a
configuration where parameter N equals parameter M which equals four. Finally a second layer
of a Round-Robin multiplexer is needed to merge the four outputs present after the register and
present the downstream logic with a single chosen requestor. The associated data is presented
at the output signal o_req and the selected requestor at o_sel.

Figure 7.12: Diagram of the L2 Round-Robin multiplexer showing the essential submodules.

Use Cases within the L2 Control Logic

As shown in Figure 7.10, the Round-Robin multiplexer has two different use cases. First of all,
it is used to merge the requested address from each slice of L2 stream controllers to access the
associated URAM array. The data sent with a request consists of the current stream pointer,
supplied by the respective L2 stream pointer module. The output select signal of the Round-
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Robin multiplexer is the selected stream identifier and is concatenated with the stream pointer
to obtain the URAM address.
This module is also used for merging the host requests from all streams, shown to the left of
the L2 stream pointer modules in Figure 7.10. In the per slice use case, the data input of the
Round-Robin multiplexer consists of the EA requested by each stream and the output select
signal shows which stream has been chosen. When merging all slices, an additional four-to-one
Round-Robin multiplexer from the design library is used, preceded by a register due to critical
path considerations mentioned earlier. The input data of this final level of multiplexing is both
the requested EA and the previously generated output select signal, or stream identifier. The
output select signal of the final Round-Robin multiplexer indicates the selected slice and when
concatenated with the previously obtained stream identifier (the output select signal of the
Round-Robin multiplexer module) it represents the final chosen stream.

7.6 URAM Organisation

Contrary to the BRAM organisation, the URAM organisation has no data duplication and
consists of a module called URAM Top which is generated M times, or as often as there are write
channels between L1 and L2. Figure 7.13 shows the organisation and additional submodules
used.

Figure 7.13: Diagram of the URAM array for M channels showing the essential submodules.

7.6.1 URAM Slice

A URAM Slice module consists of a concatenation of double-pumped URAM primitives. Each
primitive is a 4k entry with 8 bytes per entry. By double-pumping, a 2k entry with 16 bytes per
entry memory is obtained and now each entry functions as a data element. Currently the URAM
primitive is configured to have a two cycle read latency, but depending on the implementation
this can be changed to four cycles as well. An additional register stage is implemented to be
able to route the output data from the URAM Slice to each BRAM array.
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7.6.2 Write Interface
In order to write to the URAM Slice, the input write interface is present denoted by i_wr. This
interface is double-pumped and consists of an address and half-sized data to be written. Part
of the address indicates to which channel the data should be written, which is used as the select
signal of the multiplexer.

7.6.3 Read Interface
The input read interface i_rd is connected to the output read interface of the L2 control module
and consists of a ready-valid pair and an address (stream identifier and pointer). The interface
is fed into a register after which an act signal is generated which acts as a read enable signal to
the URAM Slice. It also drives the enable signal of a toggle flip-flop which operates at clk2x. Its
function is to generate the least significant bit of the read address for the URAM Slice, which
is concatenated with the address supplied by the input read interface. This bit is required due
to the double-pumping since two addresses have to be read in a single clk1x cycle.
To keep the ready-valid pair synchronized with the URAM Slice, a register is used which operates
at clk1x, shown above the URAM Slice in Figure 7.13. Also the address from the input read
interface is registered here since it is required to write the obtained data into the respective
BRAM arrays. The earlier mentiond LSB of the address is also registered, shown below the
URAM Slice, but these modules operate at clk2x.
Finally, an act signal is generated which represents a write enable for the output write interface
o_wr. The remaining signals of this interface are the address, registered in two different flows
and the read data from the URAM Slice. The output write interface is directly attached to the
input write interface of the BRAM arrays.
A response is sent to the respective L1 stream controller that a new cache line will be written
into the BRAM arrays. Depending on the configuration, one URAM Top module contains N
streams, which in the desired configuration is sixteen.
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Chapter 8

Results and Discussion

This chapter explains the validation infrastructure built around the implemented design and
shows the functional correctness of several corner cases. Afterwards it reports on the results
obtained after synthesis and implementation and finally discusses these results.

8.1 Validation Framework
The validation framework consists of three modules to automatically test if the implemented
design is functionally correct, shown in Figure 8.1. This simplifies validation of adjustments to
the design, but also different configurations of the design.
The diagram follows the conventions mentioned in Section 6.3.1 but adds a yellow rounded
rectangle for validation modules. The function of each of the modules will be briefly discussed.

Figure 8.1: Diagram of the validation framework.

8.1.1 Data Set Generation Module
The function of this module is to generate a data set that acts as the stream data found in
host memory. Cache lines have to be written in two half cycles and 16 B data elements are
distributed between two physical addresses. Therefore, the data generation module initially
generates a two-dimensional array with a number of entries equal to twice the number of data
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elements required for all streams combined, with a data width of half a data element or 8 B.
This array is then shuffled into an array usable for the Host module and for the AFU module.
The Host module will write a new cache line to the URAM module in two half cycles. Therefore,
the initially generated data has to be shuffled to obtain a two-dimensional array with the number
of entries equal to twice the number of cache lines required for all streams combined, with a
data width of half a cache line or 64 B. Each entry is a concatenation of eight half-sized data
elements, either the even or odd indexed half data element from the original data set.
The AFU module also needs a shuffled version of the initial data set, but is different compared
to the Host module. The reason is that the AFU module has to compare one or multiple data
elements of 16 B, depending on the configuration received from the BRAM module or modules.
The new two-dimensional array has the number of entries equal to the number of cache lines
required for all streams combined, with a data width of a cache line or 128 B.

8.1.2 Host Module
The Host module consists of a register cell with a latency of one clock cycle that loops back the
request made by the Request Generation module to the Re-order Buffer module. The number
of cycles can be adjusted, depending on the host architecture.
When a valid request is received and the Host module is ready to accept, a task is initiated to
write the next cache line for the requested stream into the URAM module. The Host module
has a counter per stream to index the provided data set by the Data Set Generation module
and updates the counter accordingly.

8.1.3 AFU Module
The AFU module generates read requests for the Read Ports module by initiating a task that
has the read port and stream identifier as arguments. Each read request interface consists of a
ready-valid signal pair and a stream identifier.
The module also validates data received from the BRAM array. Since each individual read port
operates in-order, but read ports among each other do not, some logic keeps track of which
read ports received valid data this cycle and updates counters per stream accordingly. These
counters are used to index the shuffled data set provided by the Data Set Generation module.
Since read requests can be discarded for various reasons, the AFU module also keeps global
counters of the number of read requests made per stream and the number of valid data elements
received. When the test bench terminates, a summary of these counters per stream is printed.
It can then be assessed if reads have been discarded as intended, for example when reading after
a stream has ended, or if a discard has occurred due to a bug.

8.1.4 Setup and Operation of a Stream
Before using the multi-stream buffer, the circuit has to be reset first. After this has occurred,
the Host and AFU modules indicate that they are ready to receive requests and data. In one
cycle, only a single stream can be functionally reset. This is done by sending a request to the
functional reset interface consisting of a ready-valid signal pair, a stream identifier, and a begin
and end EA. The EA should point to a 128 B aligned (required due to the direct-mapping of
EAs to memory addresses). If the request is accepted, the L1 and L2 Control modules will
start to request cache lines from the Host module by using the begin EA and fill their associate
memory arrays. At any point after the functional reset request has been accepted, the AFU is
allowed to make a read request for that particular stream. Depending on how many cache lines
are valid in the BRAM arrays, the read request will be serviced right away or has to wait until
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there is enough valid data to continue.
The begin EA is recalculated according to requests made to the Host module. When the begin
EA surpasses the end EA, the stream has ended. This means that both the BRAM and URAM
arrays still have valid data, so until there is no more valid data available, read requests for that
stream will be accepted. The output functional reset interface will indicate when the stream
has entirely ended. At this point, read requests made will be discarded and the AFU should
use the read port to request unfinished streams, or functionally restart the stream again.

8.2 Functional validation
With the validation framework in place, changing the implementation and its functional val-
idation is as easy as pressing a button. This allows to quickly functionally verify different
configurations and corner case access patterns. This section visualizes various access patterns,
proves the L1 buffer size analysis, and validates corner cases.

8.2.1 Multi-Read Port Access Patterns
To not overwhelm the reader, the configuration is slightly tuned down to 32 streams, four read
ports, and two write channels. Section 5.2.2 showed four distinct access patterns possible for a
configuration with eight read ports and eight data elements per cache line. The configuration
used has four read ports and the same number of data elements per cache line, but this still
allows us to show the correct operation of these access patterns.
Figure 8.2 shows the waveform of the four access patterns. The signal list contains both clock
signals, the AFU read request interface showing the ready and valid signals and the stream
identifier associated with each read port. Similarly the data response from the BRAM arrays is
shown, accompanied by the ready and valid signals, and the stream identifiers. Also the cache
line offset and cache line number are shown for stream five, six and seven. Note that the time
dimension is not to scale.

All Reads from a Single Stream

The leftmost marker indicates the start of an access pattern where all read ports request the
same stream. The data response with the associated stream identifiers appears five cycles later.
Currently the first cache line is read and the starting offset is three. This is due to the fact
that this stream was read at an earlier stage to position the stream pointer at the desired offset
within the cache line to demonstrate other access patterns. There is a cycle latency between
the AFU read request and the offset update, since the AFU read request first flows through an
input register.

All Reads from Different Streams

The second marker indicates the start of an access pattern where all read ports request different
streams. The response contains data from the expected streams. Similarly as in the previous
access pattern, the streams have been read at an earlier stage. Therefore the starting offset is
six and since one read request is made per stream, the new offset is seven.

Crossing a Cache Line Boundary

The third marker indicates the start of an access pattern where a cache line boundary is crossed.
Currently, the offset is seven. Therefore when four requests for this stream are made, the first
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request reads at offset eight and the other three requests read the first three elements from
cache line one. This can be seen from the cache line offset and cache line identifier signals.

Crossing Multiple Cache Line Boundaries

The last marker indicates the start of an access pattern where two cache line boundaries are
crossed. Similarly to previous patterns, some requests are made at an earlier stage. Therefore,
the current offset is at seven for both streams six and seven. After making two read requests
per stream, both offset seven from cache line zero and offset zero from cache line one are read.

Figure 8.2: Waveform showing four distinct AFU access patterns.

8.2.2 L1 Buffer Depth validation

Section 7.2.1 analyzed the required L1 buffer depth for any configuration. When using the
desired configuration parameters in Equation 7.1, latency L is the only unknown parameter.
Chapter 7 discussed the implementation in detail and therefore the latency is known. Latency
L is defined as the latency between the L2 Control module accepting an L2 request from L1,
to committing the new cache line in the BRAM slice. The L2 stream pointer has a latency of
one cycle, followed by one cycle latency of the Round-Robin multiplexer, followed in turn by
three cycles in the URAM slice, and finally one cycle to commit the new cache line. Therefore
latency L equals six clock cycles.
Table 7.1 showed that a configuration with four write channels should have a buffer size of
L + 16 to accommodate for the worst case access pattern. The closest power of two is sixteen
and therefore this many entries was chosen. However, taking latency L into account, the buffer
size of each L1 stream should be 22 cache lines deep. This means that under the worst case
access pattern and the assumption that no back-pressure will occur during run-time, six cycles
of AFU read requests cannot be serviced. Depending on the access pattern of the AFU, this
may or may not be a problem.
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Functional Simulation

To illustrate this, a functional simulation was done and the results are shown in Figure 8.3. The
signal window shows AFU read requests, the number of L1 valid and requested cache lines for
stream fifteen, and the output of the Round-Robin multiplexer that arbitrates between sixteen
streams to schedule read access.
The leftmost marker shows the moment L2 requests are triggered using the burst access pattern
as described in Section 7.2.1. The next marker shows the start of the distributed access pattern.
During the second cycle of the burst access pattern, the last element of each cache line is read.
This is reflected by the number of valid cache lines signal s0_ncl in stream fifteen, since it is
reduced from sixteen to fifteen. During the following cycles, a full cache line is read from stream
fifteen and the valid counter decreases by one every cycle.

Figure 8.3: Waveform showing the worst case access pattern and the impact of the buffer size.

Discrepancy Between Analysis and Functional Simulation

The model used during the analysis assumed that L2 requests would be serviced in ascending
order. Due to the nature of the Round-Robin multiplexer, the request for stream fifteen is
scheduled earlier as shown in the waveform by signal o_sel, the output select signal of the
Round-Robin multiplexer. As a consequence, a valid response i_clrsp_v for stream fifteen is
received earlier than expected during analysis.
As expected, no AFU read requests are serviced for several cycles since the buffer is too small
to handle this configuration. The third marker shows the first occurrence of this, when all
read ports apply back-pressure to the AFU. Even though there is still one valid cache line
present, read requests are only serviced when two or more valid cache lines are present to
service access patterns that cross a cache line boundary, as mentioned before. Since the Round-
Robin multiplexer scheduled stream fifteen earlier than expected in the analysis model, the valid
counter is briefly incremented to two valid cache lines, which then removes the back-pressure.
The forth marker indicates the second time back-pressure is applied for the same reason. In
total, back-pressure is applied for six cycles. This is in accordance with the expectation to
facilitate this access pattern without any loss in performance, the buffer should have had 22
entries. Instead the buffer contains sixteen entries and consequently no AFU read requests are
accepted for six cycles.
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8.2.3 Discarding Read Requests to Prevent Deadlocks

Section 7.3.2 discussed three conditions for which incoming read requests from the AFU should
be discarded in order to prevent deadlocks. This paragraph validates this behavior by simulating
the conditions.

Servicing Read Requests before Functional Reset

Section 7.3.2 mentioned that servicing read requests before a functional reset, or after a stream
has terminated, results in a discarded request. No valid data is present and therefore no read
requests are allowed.
Figure 8.4 shows the AFU request interface. The leftmost marker indicates a read request on
read port one and the second marker indicates the same signal after the input register. Since
the invalidate_rd signal is high, meaning that the request stream has not yet been reset (or
has ended), the read request is discarded. Therefore the next downstream signal s1_rd_v is
de-asserted.
Since this implementation also discards a read request when it is issued after the stream has
terminated, no waveform is shown for this corner case.

Figure 8.4: Waveform shows read request discard when issued before a functional reset.

Termination of a Stream Mid-Cycle

Another discard condition is when multiple requests are made during the same cycle, but within
that cycle the last element from the stream is read. Therefore, one or multiple read requests
have to be discarded since no more valid data is present.
Figure 8.5 shows the AFU request and response interface, followed by internal signals of stream
five, and read port zero and one signals. The leftmost marker indicates an AFU read request
on two ports, both for stream five. Stream five is currently at offset seven, with one valid cache
line left. The second marker indicates the same signal after the input register (s1_rd_v). The
out-of-bounds signal tests if the stream has ended and a request is made. If this is the case, as
is in this example, the signal is asserted. This de-asserts the input valid signal s1_rd_v_test
to the combine cell in the read port logic and therefore the read request is discarded.
Read port one, however, does not discard the read request because it will service the element
at offset seven. Therefore the AFU response interface shows one valid output at the fourth
marker. This valid signal belongs to read port zero, as expected.

118



Figure 8.5: Waveform shows read request discard when stream terminates mid-cycle.

8.3 Synthesis and Implementation Results

Besides functional validation, the design has to be synthesized and implemented as well to verify
the operating frequency and resource utilization. First the setup of the Vivado 2017.1 toolchain
is explained and afterwards the obtained results for various configurations are presented.

8.3.1 Vivado Toolchain Setup

Since the multi-stream buffer is a sub-module in a larger design, obtaining implementation
results such as resource utilization and timing is complex and with uncertainty. Typically an
FPGA design is connected to the physical pins on the chip’s package. Since this is not the case
here, the tool has to be instructed neither to route wires to these pins, nor take the wires into
account during timing analysis. Vivado provides a special mode for such an isolated approach
called out_of_context. This mode is used to obtain the results presented below.
Typically, input and output signal constraints are provided, but this increases implementation
time dramatically. It has happened that the implementation phase increased from 15 min to 5
hours for a small configuration of the design. Since all inputs go directly to registers and all
outputs come directly off registers, no constraints are applied. Since an input signal constraint
would only check the path from the pin to the directly connected register, such a test is basically
meaningless. There is no logic and therefore it cannot be the critical path. The critical path is
between the input and output registers and it is thus sufficient to specify clocks only.
All clocks are related by default. The two clocks used for the final design will come from
the clock source. To make sure the tools include clock skew, an additional hierarchical design
constraint related to the clock source is added. With this constraint the tools know which source
is driving the clock. In the future, both clocks are expected to be driven by buffers, therefore
a different buffer is chosen for each clock constraint.
One of the downsides of the out_of_context mode is that it will typically only indicate a
best case scenario. When a sub-module is integrated in the final design, particularly when the
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design consumes a significant part of the available resources, the reported performance of the
sub-module will be at best the results obtained in the out_of_context mode [69].

8.3.2 Synthesis Results
Using the described Vivado toolchain setup, various configurations of the multi-stream buffer
have been synthesized and implemented. Both the synthesis and implementation target the
KU15P using the Vivado 2017. Since several versions are available within Vivado, the lowest-
end part regarding temperature and speed grade is chosen to allow for variations (xcku15p-
ffve1760-1-e).
In order to help FPGA designers with a specific workflow, Vivado provides various synthesis
strategies. Strategies range from fast results to performance optimized. The latter is chosen for
this project, in order to let the tool help as much as possible to obtain the target frequencies.
For that reason, the Flow_PerfOptimized_high is chosen and turns off resource sharing, and
decreases the maximum fan-out for example.
The timing constraints are set to 200 MHz and 400 MHz, respectively. When the tool finds a
solution that fits the timing constraints, it will no longer continue to search for a possibly better
alternative. Additionally, typically the timing constraints are higher than your actual target
frequency because in an FPGA the wire routing delay will be dominant. To accommodate for
both, usually a design is over-constrained. To find an optimum between the level of confidence
that the design will work, and the run-time of the tool, the design is not over-constrained.
The synthesis results of various configurations are shown in Table 8.1 and Table 8.2. The same
parameter naming scheme is used as in Equation 7.1. Table entry N indicates the total number
of streams, C indicates the number of channels, P indicates the number of read ports, F indicates
the clk1x constraint, WNS shows the worst negative slack, WHS shows the worst hold slack,
and WPWS shows the worst pulse width slack.
To reduce run-time of the tool, the number of L2 cache lines per stream is decreased from 256 to
128. Getting data out of the memory columns and the fan-out from the URAM to the BRAM
slices that increases with the number of read ports are the most difficult parts of the design to
place and route. These complexities are still present, even with this reduction in cache lines.

Table 8.1: Synthesis timing and power consumption results for various configurations.

N C P F [MHz] WNS [ns] WHS [ns] WPWS [ns] Power [W]
32 2 4 200 0.761 0.049 0.412 2.784
32 2 8 200 0.761 0.049 0.412 4.085
64 4 4 200 0.761 0.049 0.412 4.707
64 4 8 200 0.761 0.049 0.412 7.226

Table 8.2: Synthesis resource utilization for various configurations.

N C P F [MHz] CLB LUTs CLB Registers BRAM URAM
32 2 4 200 11274 (2.16%) 13329 (1.27%) 72 (7.32%) 16 (12.50%)
32 2 8 200 14195 (2.72%) 15185 (1.45%) 144 (14.63%) 16 (12.50%)
64 4 4 200 23286 (4.45%) 25205 (2.41%) 136 (13.82%) 32 (25.00%)
64 4 8 200 28667 (5.48%) 28248 (2.70%) 272 (27.64%) 32 (25.00%)

For each configuration, the synthesis tool reports that the timing constraints are met and the
resource utilization is in line with the expectations. The number of BRAMs is slightly higher
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than expected. Since each BRAM slice requires a credit sink cell, a First-In-First-Out (FIFO)
cell is used which uses a memory. Since the data width is equal to the data element width, two
BRAMs are required per FIFO.
The longest path for each configuration is the internal path between a URAM array and an
internal pipeline stage. However, the slack will dramatically decrease during implementation.

8.3.3 Implementation Results
After several initial implementation runs, it became apparent that small tweaks had to be made
to the original design. The timing constraints where not met, even after several hours. While the
synthesis results where promising with respect to meeting the timing constraints, the influence
of the inherent location of memory primitives in columns became quickly clear. Table 8.3 and
Table 8.4 summarize the obtained results for the same configurations as shown in the previous
section.

Table 8.3: Implementation timing and power consumption results for various configurations.

N C P F [MHz] WNS [ns] WHS [ns] WPWS [ns] Power [W]
32 2 4 200 0.006 0.030 0.412 3.226
32 2 8 200 0.012 0.030 0.412 4.997
64 4 4 200 0.014 0.031 0.412 6.713
64 4 8 200 -1.082 0.030 0.412 10.949

Table 8.4: Implementation resource utilization for various configurations.

N C P F [MHz] CLB LUTs CLB Registers BRAM URAM
32 2 4 200 11052 (2.11%) 13329 (1.27%) 72 (7.32%) 16 (12.50%)
32 2 8 200 13980 (2.67%) 15185 (1.45%) 144 (14.63%) 16 (12.50%)
64 4 4 200 22963 (4.39%) 25205 (2.41%) 136 (13.82%) 32 (25.00%)
64 4 8 200 28607 (5.47%) 28411 (2.72%) 272 (27.64%) 32 (25.00%)

The configurations besides the 64 stream, 8 read port configuration share a common critical
path. The BRAM slices operate at 400 MHz, but when the number of channels is increased,
more multiplexing is required. At this frequency and with half data element sizes of 8 bytes,
this path becomes too long. To solve this, the relay stations used by the ready-valid methodol-
ogy came to the rescue, and changing a parameter resulted in starting a new implementation
run immediately. However, this is not enough to close timing on the 64 stream, 8 read port
configuration. The critical paths are the write channels, that have to drive eight BRAM slices
each, and the combinatorial L1 address calculation by the read ports.
It is important to realize that the synthesis results came not even close to the results obtained
after implementation. During the design phase of the multi-stream buffer, memory arrays were
carefully analyzed. However, the impact of routing across the FPGA to each memory column
has a much bigger impact than expected.

8.3.4 Integration with the OpenCAPI DLX and TLX
Section 4.4.5 showed the latest resource utilization results from the OpenCAPI DLX and TLX.
Table 8.5 shows the results of the combination of both modules with the multi-stream buffer
configured as a 64 stream, 8 read port. While nearly 10% of the LUTs are consumed, the
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other resources see no significant change compared to the results presented for the multi-stream
buffer.

Table 8.5: Implementation resource utilization for the 64 stream, 8 read port configuration of
the multi-stream buffer plus the DLX and TLX.

CLB LUTs CLB Registers BRAM URAM
47633 (9.11%) 37803 (3.62%) 279.5 (28.40%) 32 (25.00%)

8.4 Discussion
The results obtained of various configurations of the multi-stream buffer have been presented.
Designing FPGAs at 200 MHz is challenging, especially when a uniform access latency is re-
quired from roughly 25% of the total available BRAMs. While the proposed design exploits
different memory primitives for the L1 and L2 buffers to provide an uniform access latency,
physical restrictions limit the attainable performance, both in terms of operating frequency and
AFU request-to-response latency.

8.4.1 Extracting Data from Memory Columns
As initially anticipated, extracting data from the URAMs and BRAMs is complex at the target
operating frequencies. The reason is that memories are in columns and relatively far away from
the CLBs, as shown in Section 4.4.1. BRAM and URAM columns contain internal configurable
pipeline stages, in order to help close timing and move data to its consumer.
The proposed architecture has taken this into account from the start and is therefore preferred
over other architectures. it moves the complex to route path from the latency critical AFU
request-to-response path, to the data transfer from L2 to L1. In order to close timing, additional
pipeline registers are required on the output data ports of these memories.
For this reason, the BRAM and URAM slices have been extensively tested and implemented
during the design phase. Closing timing within and between these modules was expected to be
complex. Therefore multiple pipeline stages are built-in. This is also a good example of the
strength of the design methodology introduced in Chapter 6. The relay stations allow pipeline
stages to be easily modified. This allows for an additional cycle of latency to close timing.
If that is not enough, an additional reg cell for example can be instantiated, either up- or
downstream.

8.4.2 Critical Paths
As expected, as the number of channels increase, the URAM slices have to drive more BRAM
slices that are scattered around the FPGA. Adding an additional pipeline stage for each write
channel closed timing for the 64 stream, 4 read port configuration. Timing is barely met, but
keep in mind that the tool will not continue endlessly when it has found an implementation that
fits the set of constraints. The 64 stream, 8 read port configuration was not able to meet the
timing constraints and future work includes improving the write channels for this configuration
and the combinatorial read port path.
Also the read port logic, inherently combinatorial since the address calculation of the last read
port depends on the stream requested by all previous read ports. With this amount of BRAM
primitives scattered around the FPGA, the combinatorial path is forced to span across the
FGPA as well and therefore fails the timing constraints.
Another complex path is the multiplexing outside of the BRAM slices. A data element has to
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be selected from up to four channels, where each channel consists of a multiplexer to select the
correct data element from a cache line size wide BRAM array. When the number of channels
increases, additional pipeline stages are required. This conflicts directly with the requirement
to decrease the AFU request-to-response latency as much as possible.

8.4.3 AFU Request-to-Response Latency
A critical performance metric of the multi-stream buffer is the AFU request-to-response latency.
This latency is defined as the number of clock cycles between the read port input register and
the cycle the AFU receives a response with the requested data from the BRAM slice.
The implementation discussed in Chapter 7, and used in this chapter for validation, has a
latency of five cycles. The read port logic requires one cycle to complete, while the BRAM slice
requires four cycles. There is an input register, a control register parallel to the double-pumped
BRAM primitves, and the credit sink cell which requires two cycles due to the internal FIFO.
After investigating preliminary implementation results, an additional regiser stage is required
for the multiplexer as mentioned in the previous section. This directly influences the AFU
request-to-response latency. Therefore in the current design, this critical latency is increased
to six cycles. For smaller configurations, the additional pipeline stages can be removed, and
possibly the input register of the BRAM wrapper module as well.
Depending on the workload and AFU, one might prefer a higher operating frequency versus
fewer cycles in the AFU request-to-response path, or vice versa. If a large buffer is required, for
example the 64 streams, 8 read port configuration, additional restrictions to the design could be
applied. An example is to restrict each read port to a fixed subset of all the streams. This would
work for the decompress-filter database operator for example, since it requests evenly from all
streams. However, the access pattern of the merge-sort operator is random. A restriction such
as this could hurt throughput.
Another possible solution is to decrease the number of channels, since this increases the AFU
request-to-response latency, and increase the L1 and L2 buffer sizes. This results in fewer
streams, but with more buffered data.

8.4.4 Possible Improvements
The complex paths mentioned require more attention for large configurations, in order to meet
timing. However, also architectural improvements can be made. Most importantly, Section
7.1 introduced the Request Generation and Re-order Buffer modules. The Request Generation
module has been validated, but not included in the validation framework yet. This is necessary
to bridge to an interconnect specific interface. Similarly, the Re-order Buffer module has to be
implemented and validated. Typically, responses from the host across the interconnect come
back out-of-order, Without this module, either order has to be guaranteed by the host or the
AFU will fail to produce useful data. Based on the fact that interconnects often operate out-of-
order, an interesting architecture to pursue is a full out-of-order design and thus omitting the
Re-order Buffer module.
Another performance metric left untouched is if address translation misses occur. In order
to hit the translation cache in the host, host requests for the same stream could be grouped
together, instead of using the Round-Robin scheduler. The Round-Robin scheduler could also
be modified to, after chosing the next winner, not move away from this request producer but
instead see if a second request is made.

123





Chapter 9

Conclusions

A new class of accelerator interfaces has significant implications on system architecture. An
order of magnitude more bandwidth forces us to reconsider FPGA design. Naively scaling
the interconnect will become a bottleneck due to the traditional IO model, but also because
traditional solutions are unfit. New standards are required to provide a shared memory space
with the IO, and extend the coherence domain of the host processor.

Therefore, OpenCAPI is of interest due to the coherent, high-bandwidth and low-latency inter-
connect it provides. Such an interconnect enables tightly coupled FPGAs in the data center.
This allows for acceleration of emerging workloads and new usage models. Since very little
public information about OpenCAPI is available, an overview of the interface is provided for
those who want to gain a better understanding of it.

In this work, feeding such emerging FPGA accelerators is studied by generalizing across multiple
common streaming-based access patterns and providing a data element granularity interface
with multiple read ports, instead of a typical cache line granularity interface. In order to fully
utilize the available bandwidth, multiple streams are required. Buffering cache lines under
OpenCAPI assumptions requires re-evaluation of traditional solutions and approaches. The
proposed architecture exploits different memory primitives available on the latest generation of
Xilinx FPGAs. By combining a traditional multi-read port approach for data duplication with a
second level of buffering, a hierarchy typically found in caches, an architecture is proposed which
can supply data from 64 streams to eight read ports without any access pattern restrictions.

A correct-by-construction design methodology was used to simplify the validation of the design
and to speedup the implementation phase. At the same time, the design methodology is doc-
umented and examples are provided for ease of adoption. With the design methodology, the
proposed architecture has been implemented and is accompanied by a validation framework.

The Vivado toolchain was used for synthesis and implementation using the out-of-context mode.
Various configurations of the multi-stream buffer have been tested. Configurations up to 64
streams with four read ports meet timing with an AFU request-to-response latency of five
cycles. The largest configuration with 64 streams and eight read ports fails timing.
Limiting factors are the inherent architecture of FPGAs, where memories are physically located
in specific columns. This makes extracting data complex, especially at the target frequencies
of 200 MHz and 400 MHz. Wires are scattered across the FPGA and wire delay becomes
dominant.
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FPGA design at increasing bandwidths requires new design approaches. Synthesis results are
no guarantee for the implemented design, and depending on the design size, could indicate a
very optimistic operating frequency. Therefore, designing accelerators to keep up with an order
of magnitude more bandwidth compared to the current state-of-the-art is complex, and requires
carefully thought out accelerator cores, combined with an interface capable of feeding it.
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