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Abstract

The field of Airborne Wind Energy (AWE) is concerned with harvesting high-altitude wind
power. While there exist a multitude of approaches towards harvesting the wind potential
at high altitude, in the AWE group in Delft substantial research efforts have been put into
accomplishing this using a kite connected to a fixed ground station equipped with a generator
through its tether. Due to the high complexity that such a system ensues, it is of vital interest
to have a fundamental understanding of the critical aero-elastic modes of the structure in flight
for design and control of the device.

The aim of this project was to further extend on the existing research efforts in this area by
coupling a high fidelity Reynolds-Averaged Navier-Stokes solver with an improved version of
the existing structural solver framework and validate the model on simplified test cases using
a partitioned approach. The developed methodology uses the open-source Computational
Fluid Dynamics (CFD) solver foam-extend with an adapter to the coupling library preCICE
as implemented in the FOAM-FSI toolbox for the fluid model. For the structure model, an
in-house Python code based on a nonlinear shell element formulation is utilised.

A literature survey revealed that while there exists an abundance of publications on strongly
coupled Fluid-Structure Interaction problems, the majority of them are targeted at applica-
tions set in completely different flow regimes. Thus, the most difficult part of the project was
to find appropriate validation data for membrane wings at high Reynolds numbers. Never-
theless, the capabilities of the approach were demonstrated on three test cases.

First, the solver was applied to the classic FSI benchmark from Turek & Hron set in the
laminar flow regime [1]. The relative error in the results for the relevant properties was at
worst 10 %. The main source of inaccuracy is most likely the application of the thin shell
element formulation to a comparatively thick beam. Thus, the error is expected to decrease
when applied to thinner structures for which the shell model was developed for.

Finally, the solver was applied to two test cases with more realistic Reynolds numbers, where
a thin, flexible material was wrapped around rigid leading and trailing edge supports and the
force on the wing was measured for different membrane slack and angle of attack configurations
[2, 3]. Comparison of the results from numerical models and experiments showed that the
general trends for different slack lengths of the wing and angle of attack sensitivity were well
captured in the numerical outcomes. However, the qualitative validation was less promising
with a relative error in the mean lift and drag values of up to 15 % and 50 %, respectively.
While some of the deviations can be traced back to ambiguities in the experiment description,
the actual accuracy of the aeroelastic solver for membrane wings at high Reynolds numbers
is yet to be determined.

Concluding, this project developed a methodology to model membrane wings at high Reynolds
numbers. While the capabilities of the method have been successfully showcased on a classic
FSI benchmark case, only a partial validation on benchmark cases at more realistic Reynolds
numbers has been carried out. Hence going forward a full quantification of the accuracy of
the method for its target application range is recommended.
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Chapter 1

Introduction

Due to the limited availability of fossil and nuclear fuels and their questionable environmental
impacts, substantial research efforts have been made in the development of renewable energy
systems in the past couple of decades. In particular the potential of conventional wind energy
applications has been shown to be substantial as compared to the current energy demand
[4, 5]. However, promising onshore wind locations are limited due to various factors and
current developments are trending towards offshore applications due to higher wind speeds
and less environmental constraints [6]. Alternatively, the idea to harvest energy from high
altitude above 200m using airborne devices was first conceived by Lloyd in 1980 [7]. The
increased energy potential at higher altitudes has been confirmed by various publicatons
[5, 8, 9, 10]. Since then various Airborne Wind Energy (AWE) concepts have been conceived
[11].

In the AWE group at TU Delft a substantial effort has been made towards harvesting high
altitude wind power using different types of kites [12]. The chord-based Reynolds number of
the kite at typical flight conditions can be placed in a range between about one and eight
million. Moreover, over the course of the energy production cycle the wing is subjected to a
large range of inflow angles ranging from attached to strongly separated flow. In addition to
the complex flow field, the low mass and structural stiffness of the kite leads to large defor-
mations of the wing that result in a very strongly coupled Fluid-Structure Interaction (FSI)
problem. Observing the kite in flight, a few characteristic large and small scale deformations
modes can be observed, some of which lead to the termination of the flight. Thus, an accurate
aeroelastic model of the kite is expected to help with the understanding of it’s flight behaviour
and help determine the onset of instabilities.

In particular, this project is focused on expanding the work previously done by Breukels
(2010) [12], Bosch (2010) [13], Geschiere (2014) [14] and Berens (2015) [15] on developing an
aeroelastic model of the kite in flight. Because one of the limitations of the previous setups
was the low-fidelity aerodynamic model, this project aims at implementing and validating a
coupled Computational Structural Model (CSM) and Computational Fluid Dynamics (CFD)
model or in short a CSM-CFD solver.
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2 Introduction

However, given the complexity of the full AWE system, no attempt is made at modeling
a fully realistic setup. Instead with the end aim in mind, a methodology is developed and
validated step by step to satisfy the following research objective:

Further improve on the existing FSI solver by maintaining the existing structural solver
methodology, coupling it to a higher fidelity CFD fluid solver, reviewing the time integra-
tion methodology of the structural solver and applying the new framework to a simplified test
case. Construct the solver such that it can be used as a baseline for future projects in the
AWE group; thus it should be easily extendable to more complicated test cases, and all its
components are thoroughly validated.

To successfully comply with the research objective, the project is split into the following
milestones. First, in chapter 2 an extensive literature review is carried out to assess existing
methodologies and their suitability for this particular application, as well as to find suit-
able experimental and numerical reference data. Then, in chapters 3 and 4 the modeling
approaches for structure and fluid are documented and briefly validated. For the structural
model a nonlinear shell element formulation will be used, while three different fluid models
are employed at different stages of the project. Next, chapter 5 details the coupling algorithm
that links the structure and the fluid solver together. Subsequently, in chapter 6 the inter-
face force and displacement interpolation is outlined and tested. Finally, chapter 7 puts all
the previous pieces together. The full solver framework is first validated on a classical FSI
benchmark case and then on two two-dimensional membrane wing profiles at more realistic
Reynolds numbers. Lastly, in chapter 8 the project is concluded by summarizing the obtained
results, pointing out the strong and weak points of the research and making recommendations
for the future development of the solver.
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Chapter 2

Literature Review

This chapter comprises a general literature review on high fidelity modelling of the Fluid-
Structure Interaction of highly flexible wings. It is kept quite general, a more detailed de-
scription of the applied modelling approaches will be given at the beginning of the following
chapters.

The first section 2-1 will outline general modeling approaches for the structure whereas the
second section 2-2 will outline general modeling approaches for the fluid. The following section
2-3 will detail the boundary treatment for the fluid model in more detail. Then, section 2-4
will highlight suitable coupling algorithms. Subsequently, section 2-5 will showcase references
from literature that can possibly be used to validate the methodology to be developed within
this project. Lastly, section 2-6 will briefly summarize previous aero-elastic models that have
been developed within the AWE group in Delft with the aim of pointing out potential issues
and an existing body of work that can be built upon.

2-1 Structural model

This section will briefly touch upon the application of Finite Element methods to high fidelity
modelling of structural dynamics. The first subsection 2-1-1 will outline the governing equa-
tions as derived from continuum mechanics. In the following, subsection 2-1-2 highlights how
the equations are discretised. Lastly, in subsection 2-1-3 modelling approaches suitable for a
membrane wing with and without inflated components will be described in more detail.
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2-1-1 Governing equations

The governing equations for a structure in a Lagrangian framework enforcing a dynamic force
equilibrium at every point in the continuum are

σx,x + τxy,y + τxz,z + fx = 0 (2-1a)
σy,y + τyx,x + τyz,z + fy = 0 (2-1b)
σz,z + τzy,y + τzx,x + fz = 0 (2-1c)

where the dynamic terms are included in the volume forcing term fi alongside with other
volume forces, e.g. gravity. In direct correspondence with the continuum equations, the
Cauchy stress tensor is defined as,

Tij = σij (2-2)

where a stress is represented relative to its present configuration. Conversely, the second Piola-
Kirchhoff tensor can be introduced which expresses the stresses in a deformed configuration
D relative to an (undeformed) reference configuration R

D
RS = detFF (−1)TF (−1)T (2-3)

where DRF ij = ∂Dxi
∂Rxj

refers to the deformation gradient tensor that connects the two reference
frames and T is still the Cauchy stress tensor. As a consequence, for a small deviation between
the two reference frames (or small deformations) the Cauchy and the second Piola Kirchhoff
tensor are identical.

The structure continuum mechanics equations are not solved for the material stresses but
for the displacement field of the structure and the time derivatives thereof. Similar to the
stress tensor formulation different strain tensor formulations exist. The linear Cauchy’s strain
tensor is given through

eij = 1
2 (ui,j + uj,i) (2-4)

whereas the nonlinear Green-Lagrange tensor with nomenclature analogous to the Piola-
Kirchhoff stress tensor is defined as

D
Rεij = 1

2
(
D
Rui,j +DR uj,i +DR uk,i ·DR uk,j

)
(2-5)

where the nonlinear formulation reduces to the Cauchy strain tensor for small deformations.

The two stress and strain tensor formulations have been introduced such that the internal
work in the principle of virtual work can be expressed as

∫
tV

DτklδDekld
DV =

∫
RV

D
RSijδ

D
Rεijd

RV (2-6)
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2-1 Structural model 5

where the virtual displacements are given by δDekldD and δDRεij , respectively.

Now the analogy between the two formulations becomes obvious. Both of these formulations
were introduced such that now the Total Lagrangian framework for nonlinear problems with
large deformations can be formulated. Assuming an initial reference configuration R = 0 is
given as well as the deformed configuration at time D = t and the determination of the stress
and strain fields at time t + ∆t is of interest, the following decomposition can be made for
the displacement and the stress field

t+∆t
0 ui,j =t

0 ui,j +0 ui,j (2-7a)
t+∆t
0 εij =t

0 εij +0 εij (2-7b)
t+∆t
0 Sij =t

0 Sij +0 Sij (2-7c)

Such that the principle of work for t+ ∆t reduces to a variation around the configuration at
time t according to

∫
0V

t+∆t
0 Sijδ

t+∆t
0 εijd

0V =t+∆t R (2-8)

where R refers to the external virtual work.

Lastly, apart from nonlinearity due to large displacements, nonlinearity in the structural
response can also arise from nonlinear material behaviour or also due to nonlinear boundary
conditions or external forces. If the material behaviour is linear-elastic, the constitutive
relation between stress and deformation can be expressed with the same tensor independent
of the framework as

tσij = Cijrs ters (2-9a)
t
0Sij =t

0 Cijrs
t
0εrs = Cijrs

t
0εrs (2-9b)

2-1-2 Discretisation

For the discretisation of the virtual work principle, the domain is divided into multiple ele-
ments. For each element, the virtual work principle can then be reinterpreted as a weak finite
element formulation with the virtual displacements taken to be the shape functions used to
distribute the nodal properties.

For each element node either translational or rotational degrees of freedom are defined. If the
interpolation functions for the discretisation of the structure correspond with the interpolation
functions for the degrees of freedom, then the finite element formulation is referred to as
isoparametric.

If the Total Lagrangian framework is used then after assembly of the finite element matrices,
the nonlinear system of equations can be summarised as

M t+∆tq̈ +
(
t
0Klinear +t

0 Knonlinear(q)
)

q =t+∆t R−t0 F (2-10)
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where the damping terms were neglected but can be added as well if desired. The forcing
term t

0F on the right-hand side, as well as the linear and nonlinear stiffness matrices t
0K,

are a result of the linearization around time t in the Total Lagrangian framework. For the
detailed derivation of the system matrices, see Bathe (2007) [16].
For the time integration of the system, in principle any time integration scheme can be used.
However, in general, the stable integration of the dynamics of a structure using an explicit time
scheme, requires a very small time step, especially for stiff structures. Thus unconditionally
stable implicit or conditionally stable semi-implicit methods are preferred. This holds true
in particular for nonlinear problems where the natural frequencies of the structure depend
on the current deformation and thus the critical time step is not known a priori. While for
implicit time integration a number of schemes have been developed, some of them require
the evaluation of the external forces at intermediate time steps, which is in general not the
practice for FSI solvers [16].

2-1-3 Relevant element formulations

Based on the previous kite structural modelling approach by Bosch [13] and Berens [15],
relevant finite element formulations are shortly elaborated on with the intent of pointing out
the main characteristics and potential model shortcomings.

Membrane elements

Membrane elements are used to represent structures that have no bending stiffness and thus
the stress field, and as a consequence also the strain field will be planar. Depending on the
order of the element the nodal degrees of freedom either just correspond to two in-plane
translations or additionally also one drilling rotation perpendicular to the element plane. A
more detailed overview can be found in Felippa (2003) [17].
For curved membrane elements, a phenomenon referred to as membrane locking can occur,
where the bending stiffness of the element is significantly overpredicted by the Finite Element
Analysis [18]. The cause is that any change in curvature will also result in a change of the
length of the midline of the element, which then results in a change of the bending deformation
energy of the element.
Because a membrane has a very low bending stiffness, it will buckle under very low compressive
loads. However, a simplified finite element membrane formulation where the bending stiffness
is assumed to be zero will not be able to predict wrinkling (or buckling) phenomena. In
fact, the model will show unnatural compressive stresses. However, if a shell element with a
low bending stiffness and sufficient resolution is used wrinkling phenomena can be captured.
Albeit this requires a very fine mesh resolution. See also figure 2-1 for illustration. [19]
Alternatively, coarser grids can be employed in combination with subgrid scale wrinkling mod-
els. Two main approaches can be distinguished. First, the membrane deformation gradient
can be modified to incorporate the effect of wrinkling, see for example Schoop et al. (2002)
[20]. Second, the constitutive relations can be modified in wrinkled regions to eliminate com-
pressive stresses, see for example Barsotti and Ligaro (2014) [21] or Rossi et al. (2005) [22].
However, the introduction of wrinkling models can make the solution procedure unstable and
thus appropriate stabilisers need to be used.
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2-1 Structural model 7

Figure 2-1: Membrane wrinkling illustration [19]

Shell elements

Shell elements are more general than plate or membrane elements since they are subjected
to out-of-plane bending moments as well as in-plane shear deformations. Whereas plates
only model out-of-plane deformation and membranes only model in-plane deformation. Since
the derivation of shell models is very complex, here only the basic continuum mechanics
concepts behind general elements as well as the main challenges occurring in the finite element
implementation are touched upon.

Mathmatical formulations Early approaches to shell modelling simply superimposed the
stiffness matrices of plate and membrane elements, however at least initially these models did
not perform well [23].

Later on, different mathematical shell models were derived partly based on kinematical consid-
erations from plate theory. Namely the first basic assumption is plane stress in the tangent
plane of the shell midsurface. This implies that particles located on a line normal to the
mid-surface in the undeformed state will remain connected in this formation once the shell
deforms. The second basic assumption is that the stress normal to the shell mid-surface is
zero. [24]

The Naghdi shell formulation (1963) [25] is based on these assumptions, this type of shell
model is also referred to as Reissner-Mindlin based because the assumptions correspond with
their plate theory [26].

Alternatively, Koiter (1965) [27] derived a shell element formulation that uses the additional
assumption that the material line orthogonal to the shell mid-surface remains orthogonal
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throughout the deformation process. This type of shell is also referred to as Kirchhoff-Love
type due to the analogy with the corresponding plate theory [26].

Lastly, an additional simplification that can be made to both of the above mentioned mathe-
matical models, namely that the shell is shallow. This implies that the shell surface is assumed
to have a constant curvature radius, this holds true if the dimensions of the shell are small
compared to the curvature radius of the mid-surface [28].

Requirements for discretization Every arbitrary structural finite element formulation should
fulfil the basic requirements of consistency with the underlying mathematical formulation as
well as fulfil the ellipticity condition. The first condition ensures that in the limit of infinitely
small elements the solution of the discretised system converges to the solution of the continu-
ous mathematical formulation of the problem. The second condition ensures that no spurious
zero energy modes are present, this means that rigid body movements do not influence the
element formulation. [16]

Additionally, for a general shell element, it would also be desirable that it performs well
for bending as well as for shear dominated problems. Special care needs to be taken such
that shear locking can be avoided in bending dominated test cases. Shear locking refers to an
underprediction of displacement and stresses for beams and shells with a small thickness. This
is a consequence of a weakness in the finite element formulation where the shear deformation
does not tend to zero as the element thickness tends to zero and thus the shear strain energy
is overpredicted. The shear overprediction results in a locking element where the stiffness is
overpredicted [23]. Bathe and Chapelle (1998) [26] state that shear locking occurs independent
of the order of the degree of the interpolation functions and always occurs if pure displacement
based finite element formulations are used. Although it is less pronounced if higher order
elements are used [16]. Additionally, for curved shell elements as for membrane elements also
membrane locking can occur if no special care is taken.

To remedy the occurrence of shear and membrane locking, different solution strategies have
been proposed. Mixed or hybrid interpolation methods [29] [30], as well as introduction of
drilling degrees of freedom [31] or averaging over the element dimensions [31] have shown to
be successful.

Lastly, Lee and Bathe (2004) [32] also state that for triangular shell elements it is important
that the element formulation be isotropic. Namely, the element stiffness matrices should be
independent of the node numbering orientation.

Beam elements

Similar to shell elements the same kinematic assumptions are made with reference to the
deformation of the elements along the normal to the midline of the beam [16] . If the ele-
ments on the line perpendicular to the undeformed midline remain normal to the deformed
midline throughout the deformation process, Bernoulli beam theory applies. Otherwise, if the
elements maintain their relative positioning along a straight line throughout the deformation
process, but violate the midline normal condition due to the inclusion of shearing effects, then
Timonshenko beam theory applies.
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2-2 Fluid model 9

The requirements and issues with the discretisation of beam elements are similar to shell
elements. Thus shear locking can occur for pure displacement based elements. Moreover, for
curved elements also membrane locking can occur. In fact, shear and membrane locking are
related if a curved element description is used [18]. Lastly, the same techniques as for shell
elements are used to alleviate shear and membrane locking.

Pressurized beams The modelling of pressurised beams in a finite element analysis can
either be done explicitly through membrane elements or implicitly through beams. For the
explicit method, the tube is discretised using shell or membrane elements, and a pressure
field is described as a boundary condition on the inside of the tube. For the implicit method,
nonlinear beam models are used with appropriate material properties.
Veldman et al. (2004) [33] as well as Breukels (2010) [12] showed through experimental anal-
ysis that the bending behaviour of pressurised beams can be decomposed in two regimes.
First, for small deflections, the material behaviour remains linear, and the tube surface re-
mains taut. Once a certain threshold is bypassed, the material behaviour becomes nonlinear,
and large-scale wrinkling effects occur. Veldman et al. define a critical collapse moment
dependent on the internal pressure, size and material properties of the material that shows
satisfactory agreement with their experimental results. Lastly, they also suggest based on
an analytical analysis that for pressures below 25kPa shell elements are better suited than
membrane elements to model the beam deflection behaviour.
Malm et al. (2009) [34] compared experimental and numerical results from explicit and
implicit pressurised beam modelling. Their results indicate that explicit modelling is capable
of capturing the nonlinear effects in the wrinkled state and that implicit modelling compares
favourably with measurements as well as the unwrinkled state of the inflated beam.
Two further beam modelling approaches can be found in Apedo et al. (2010) [35] and Le Van
and Wilgosz (2007) [36], they might prove to be good references for the determination of the
material properties.
Lastly, Barsotti and Ligaro (2014) [21] developed a wrinkling model for the determination
of the equilibrium deformation of inflated membrane elements through modification of the
constitutive law. While this was only a static analysis, an elaborate four-stage loading process
had to be employed to make the solution procedure stable.

2-2 Fluid model

This subsection is dedicated to the Computational Fluid Mechanics modelling approach in
general. A more detailed description of the methods applied in this project will be given in
chapter 4. Again as for the structural model, the first subsection 2-2-1 describes the governing
equations and the second one 2-2-2 the discretisation approach. The last subsection 2-2-3 lists
different turbulence models including their limitations for this particular project.

2-2-1 Governing equations

The governing equations for fluid dynamics are the continuity equation, alongside with the
Navier-Stokes equation for momentum conservation and the energy conservation equation.
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Assuming that the kite flies at maximally roughly 40m/s during typical cross-wind flight
maneuvers with a wind speed of about 20m/s [37], then the local flow speed over the profile
is still expected to lie in the incompressible range with a Mach number of close toMa ≈ 0.15.
However, if in the future the kite will fly at higher altitudes and with increased wind and
flight speeds compressibility effects might become relevant.
Nevertheless, the assumption of incompressibility is valid within the scope of this project and
thus the incompressible Navier-Stokes equations can be used to model the fluid in combination
with the simplified continuity equation. The energy conservation equation for incompressible
flows is decoupled from the momentum equation and thus typically not relevant anymore
unless heat transfer phenomena are considered as well. The governing system of equations
to be solved for the fluid domain to be solved in an Eulerian framework is shown in equation
2-11.

∂ui
∂xi

=0 (2-11a)

∂ui
∂t

+ uj
∂ui
∂xj

=− 1
ρf

∂p

∂xi
+ ν · ∂2ui

∂xj∂xj
+ fi (2-11b)

In case, the governing equations are solved on a domain with moving boundaries, the equations
need to be rewritten in another framework. For Fluid-Structure Interaction problems, the
equations are usually rewritten in an Arbitrary Lagrangian-Eulerian representation.

2-2-2 Discretisation

The most commonly used discretisation techniques for differential equations are Finite Dif-
ference, Finite Volume and Finite Element methods. The methodology behind the methods
will not be elaborated here, since they are fairly standard and can be found in any textbooks
on CFD.
However, the key advantages of the methods will be briefly pointed out to motivate the choice
of the fluid solver for this particular project. The main general literature reference is [38].
First, Finite Difference methods are conceptually very simple, and extension to higher order
schemes is quite straightforward given that structured grids are used. However, the use of
structured grids significantly limits the applicability of the method for complex geometry.
Nevertheless, through the introduction of IB methods more recently, the application to flows
with complex geometry has been made possible. Lastly, since the differential form of the
governing equations is discretised, conservation of the transported properties is not given
unless special care is taken.
Second, the Finite Volume method is currently the most used discretisation technique in indus-
trial applications of CFD due to the ease of implementation and the conservative formulation
of the technique. However, as compared to Finite Different and Finite Element methods,
the extension to higher order methods is more complicated, especially on unstructured grids.
Because multiple approximations have to be made in the discretisation process.
Third, the Finite Element method is standard for structural mechanics applications and has
more recently also gained more popularity for fluid dynamics applications. One distinct
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2-2 Fluid model 11

advantage is the relatively simple implementation of higher order schemes either locally or
globally, especially for Discontinuous Galerkin methods. Moreover, the discretisation is adept
at handling unstructured meshes and due to this automatic mesh refinement is quite accessible
as compared to Finite Volume and Finite Difference methods.

2-2-3 Turbulence modeling

While the incompressible Navier-Stokes equation provides a full, unapproximated descrip-
tion of the physics behind fluid dynamics, the computational effort required to solve them is
significant. In fact, even with the computational resources available today solving Direct Nu-
merical Simluation (DNS) problems is mostly limited to academic benchmark cases, because
of the large ranges of scales present in high Reynolds number flows. Thus the application of
turbulence models is needed to reduce the complexity of the problem.

Two main approaches to turbulence modelling can be distinguished, namely RANS (Reynolds
Averaged Navier Stokes) and LES (Large Eddy Simulation). A short outline of the two
different methods will be given in the following with the intent of outlining the limitations
that are to be expected for the sake of computational effort.

RANS

A statistical approach to turbulence modelling is taken in the derivation of the Reynolds
Averaged Navier Stokes equations, namely the mass and momentum conservation are aver-
aged. Thus only the mean value is of interest. Ensemble averaging is used meaning that
the solution of the RANS equations at a specific location and instant in time is the average
between different imaginary identical experiments for the specified location and time instant.
The governing equations including the definition of the averaging procedure are written out
below

ui(x, t) = ui(x) + u′i(x, t) where ui = ui, u′i = 0 (2-12)

∂ui
∂xi

= 0 (2-13)

∂ui
∂t

+ uj
∂ui
∂xj

= − 1
ρf

∂pi
∂xi

+ ν
∂2ui
∂xj∂xj

+
∂u′iu

′
j

∂xi
+ fi (2-14)

The last term on the right-hand side of the averaged momentum equation 2-17 is referred to
as the Reynolds stress tensor. It arises from the non-linearity of the convection term and thus
needs to be modelled through additional closure models.

The most common approach to the modelling of the Reynolds stress is the Boussinesq hy-
pothesis in equation 2-15, that relates the shear in the mean flow to the averaged velocity
fluctuation pairs through introduction of a turbulent eddy viscosity
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− u′iu′j + 2
3kδij = νT

(
∂ui
∂xj

+ ∂uj
∂xi

)
= 2νTSij (2-15)

where k = 1
2u
′
iu
′
i refers to the turbulent kinetic energy. This term is added to ensure that the

trace of the Reynolds stress tensor is equal to the turbulent kinetic energy.
This type of RANS turbulence models is also referred to as Linear Eddy Viscosity Models
(LEVM). There are multiple implementations of LEV models available since they are most
frequently used in industrial applications. According to their degree of complexity, either
none or multiple partial differential equations are solved. The solutions from these transport
equations can then be used to calculate the eddy viscosity.
For example, there is the one-equation Spalart-Allmaras model which solves a transport
equation for an effective eddy viscosity that is then related to the prediction of the turbulent
viscosity through an algebraic expression. Other commonly used two-equation models are the
k− ε and the k−ω models that solve two model transport equations for the turbulent kinetic
energy k and the rate of dissipation thereof ε or the specific dissipation ω = ε

k , respectively.
Finally, through analysis of the units, the eddy viscosity can be calculated from the solutions
of the transport equations.
However, comparison with DNS and measurement data have shown that linear eddy viscosity
models have two distinct fundamental flaws, which prohibit them from performing well for
specific flow situations. Namely, LEV models are in general unable to accurately predict
wall normal Reynolds stresses, because the strain tensor relation can not account for the
redistribution of production between neighbouring Reynolds stresses for curved surfaces. Ad-
ditionally, for the same reason, the Boussinesq hypothesis also fails to predict the anisotropy
of the Reynolds tensor for the flow across a flat plate. The second weakness is that the time
history of the flow is not accounted for if changes in the mean strain rate occur, namely they
are immediately transmitted to the eddy viscosity, which is the opposite of what happens in
reality. [39]
To improve on this, also non-linear eddy viscosity models have been derived. This is done
by extending the Boussinesq approximation to a polynomial of the mean stress and vorticity
tensor [39]. However, this modelling approach still does accurately model the time history of
the Reynolds stresses.
The most complete RANS turbulence models solve six transport equations, so one for each
component of the symmetric Reynolds stress tensor. They are referred to as Reynolds Stress
Tensor (RST) models. The six transport equations can be derived directly from the momen-
tum equation; however new unknown higher order terms appear that need to be modelled. In
many situations, those models are superior to simpler linear eddy viscosity models, because
they can capture the anisotropy of the Reynolds stress tensor as well as the time history
thereof better [40]. Nevertheless, this comes with a significant increase in computation time,
and the equations tend to be numerically stiff [40].

LES

Contrary to the RANS approach, for LES the governing system of equations is not averaged,
but filtered to only resolve scales above a certain cutoff wave length. However, it should
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be noted that most LES calculations do not directly filter the equations, but let the mesh
implicitly filter the solution. The governing equations are shown below

∂ũi
∂xi

= 0 (2-16)

∂ũi
∂t

+ ũj
∂ũi
∂xj

= − 1
ρf

∂p̃i
∂xi

+ ν
∂2ũi
∂xj∂xj

− ∂

∂xi
(ũiuj − ũiũj) + f̃i (2-17)

where similar to the Reynolds stress tensor the non-linearity of the convection term gives
rise to the residual stress tensor Tij = ũiuj − ũiũj . The term represents the effect of the
unresolved on the resolved scales and thus a closure model - referred to as a Subgrid-scale
model (SGS) - is needed to be able to solve for the resolved scales.

The most simple SGS model is the Smagorinsky model, which is based on the Boussinesq
hypothesis and thus suffers from similar shortcomings as in the RANS formulation. Thus
more elaborate SGS models have been developed, for an overview of the different main ideas
in modelling see [41], [42].

When compared to RANS, LES offers some clear benefits in the prediction of anisotropic,
unsteady turbulent flows and correct representation of large vortices as well as turbulent
mixing [43]. However, this comes with a significant increase in computational requirements.

Especially in wall-bounded flows, LES requires very refined grids with refinements in three
directions to be able to accurately capture the relevant scales. RANS on the other hand only
needs refinement in wall normal direction [44]. To help reduce the computational requirements
for LES in wall-bounded flows, hybrid approaches that use URANS for the modelling of the
attached boundary layers and LES for the rest of the flow have been developed. They are
referred to as Detached Eddy Simulations (DES) [45]. However, this initial approach suffered
from grid-induced separation in the interface region between the two models [46]. This issue
has been solved by the introduction of Delayed DES (DDES) [47]. Nevertheless, DES still
remains an active area of research.

Alternatively to hybrid approaches, also wall-stress models that use analytical wall functions
in the attached region have been developed as well [48].

2-3 Immersed Boundary Treatment

Conventional fluid mechanics techniques employ body-fitted meshes. In the context of Fluid-
Structure Interaction problems with moving interface boundaries, the conventional approach
referred to as Arbitrary Lagrangian-Eulerian (ALE) is to deform the fluid and solid mesh
such that it follows the outline of the body. Such that the boundary of the fluid mesh always
coincides with the boundary of the physical fluid domain and the same for the structure.

Contrary to conventional fluid-solid boundary condition methods, Immersed Boundary (IB)
methods have been developed that allow the computation on non body-fitted meshes. While
a multitude of implementations of IB methods exists, the main characteristics remain the
same.
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The solid mesh is not modified, whereas the fluid mesh is extended to cover the entire domain
including the subdomain covered by the fluid. The reciprocal relationship between the fluid
and the solid is either modelled through fictitious body forces or through the direct imposition
of boundary conditions on the nodes close to the interface.

Mittal and Iaccarino (2005) [49], as well as Sotiropoulos and Yang (2014) [50] published
review papers on the topic of IB methods in general and more specifically for FSI applications,
respectively. A summary of their findings will be presented in the following. Subsequently,
the interface boundary conditions as relevant for this thesis will be outlined in more detail.

Mittal and Iaccarino, in particular, distinguish between continuous and discrete forcing meth-
ods, in reference to whether the interface forcing terms were introduced before or after discreti-
sation of the NS equations. Moreover, Sotiropoulous and Yang make an additional distinction
between schemes that enforce a sharp or diffuse solid-fluid interface.

Classical IB method This method was pioneered by Peskin in 1972 [51] and was the first
step towards IB modelling of fluid-solid interfaces. Counterintuitive to the usual approach in
FSI modelling, the solid boundaries follow the velocity of the surrounding fluid, and in turn,
the structure imposes deformation forces on the fluid. Fitting constitutive laws are used for
calculation of the interface forces depending on the deformation of the solid. Since this implies
a continuous forcing approach where the forces are calculated at the exact solid surface nodes,
force distribution functions have to be employed to spread the force to the surrounding fluid
nodes. In the original formulation of the method smoothed Delta functions are used for this
purpose. The same approach is taken for the interpolation of the fluid velocity to the surface
of the structure.

This method is well suited to FSI problems with elastic bodies - the original application
involved the flow patterns around heart valves - where simple constitutive laws for the de-
formation forces can be derived. However, for stiffer or rigid bodies this approach is not
well suited due to the necessity of using small time steps for numerically stable integration.
Moreover, due to the use of force distribution functions the interface is also not sharp.

Direct forcing IB method In contrast to the classical IB method for direct forcing methods,
the forcing term is not derived from a constitutive law but explicitly calculated from a desired
interface fluid velocity ~uf . The desired velocity is derived from the structural velocity ~us at the
interface. This is more clearly illustrated in equations 2-18 when an implicit Euler formulation
is used for the time stepping.

~un+1
f − ~unf

∆t = RHS + ~f → ~f =
~un+1
s − ~unf

∆t −RHS (2-18)

Two approaches exist for the calculation of the forcing term. First, for the explicit forcing
method, the forces are explicitly calculated at the solid boundary location with the extrap-
olated version of the right-hand side. Second, for the implicit forcing approach, a linear
system of equations has to be solved for the determination of the forcing terms. Here, a
coupling is established between the force and the velocity interpolation, which results in a
better agreement of the structural and the fluid velocity [50].
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As compared to the classical IB method the direct forcing approach is more stable, because
the IB approach does not introduce any additional stiffness into the system. However, the
solid interface is still diffused due to the use of forcing distribution functions.

Penalization method The forcing term is made proportional to the velocity difference at
the interface, namely see equation 2-19 for the full expression. χS ∈ [0, 1] is a mask function
that varies depending on the distance from the interface, since this is a smooth function the
interface is again smeared. λ is called the penalization parameter, similar to the classical IB
method if chosen too large the system of equations can become stiff. [50]

~f(~x = λχS (~us(x)− ~uf (x)) (2-19)

Cut-cell methods Since previous methods neither satisfy the underlying conservation laws
nor provide a sharp representation of the interface, cut-cell methods were developed for Fi-
nite Volume solvers. As the name suggests, cells that are split by the solid-fluid interface
are reshaped to follow the solid boundary more accurately. For the cut cell interfaces, a
reconstruction of the flux from the surrounding faces has to be carried out. [49]

However, once moving boundary problems are investigated, non-physical force oscillations are
observed with this method. The phenomenon originates from when solid or fluid cells switch
to fluid or solid cells during one time step, a spatial or temporal discontinuity takes place,
respectively. Thus, special care has to be taken to mend this. Moreover, the extension of the
method to 3D is also not straightforward due to the complicated geometrical nature of the
problem. [50]

Hybrid Cartesian-Immersed Boundary methods Similar to cut-cell methods, the interface
is sharply enforced through the imposition of boundary conditions on nodes of the fluid mesh
near the immersed boundary. Depending on the method either ghost cells within the solid
or background nodes within the fluid with neighbouring nodes in the solids are used for the
imposition of boundary conditions. Similar to direct forcing methods, the solid velocity is
known at the interface, and the goal is to approximately impose this velocity on the fluid at
the interface. An interpolation scheme is then used to determine the values that need to be
imposed on the ghost or background nodes to obtain the desired fluid velocity at the interface.
[50]

If background nodes are used in combination with a fractional step approach, special care
needs to be taken to ensure mass conservation. Since the boundary conditions are usually
imposed on the intermediate velocity field. [52]

In comparison with the cut-cell method, here the Cartesian grid can be maintained, and
no computationally expensive grid modifications need to be performed. However, for the
same reasons as before non-physical force oscillations can occur for moving boundaries [50].
Depending on the order of the interpolation scheme, the order of the base discretisation of
the solver can be maintained [53].
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Inclusion of wall functions For fluids meshes that are not body conforming, it is more
difficult to obtain a clustering of the cells in the boundary layer region, especially if Cartesian
meshes are used. Thus if the boundary layer is to be fully resolved on the mesh, either local
mesh refinement for Cartesian meshes [54] or mesh adaptivity for unstructured meshes[55]
are valid options. However, combined IB and wall function implementations can be found in
literature as well. Kaliztin and Iaccarino (2002) [56] implemented a direct forcing approach
with an analytically derived wall function in a Finite Volume RANS solver. Kalitzin et al.
(2005) [57] further improved on this by deriving a novel wall-function formulation approach,
that is consistent with the used turbulence model. They obtain a turbulence model specific
universal velocity profile from the numerical solution of a zero-adverse pressure gradient flow
on a flat plate. Subsequently, they use a look up a table for the skin friction velocity and the
turbulence quantities when wall functions are used. This makes the approach consistent with
the turbulence model, that is used for the outer flow; thus the results are grid independent as
compared to analytical wall functions. More recently, Bernardini et al. (2016) [46] used the
same wall function approach also in combination with a direct forcing approach on a DDES
finite difference solver.

2-4 Coupling

This section will discuss feasible methods to couple the fluid and the structure solver together
to form a full FSI problem. To clarify, the coupling approach is mostly independent of whether
an ALE or an IB approach is used for the fluid model. Moreover, the time discretisation
scheme for the structure and the fluid do not necessarily have to be the same. Although
certain combinations of the time integration schemes between fluid and structure model may
increase or decrease the discretisation error or influence the stability of the method.
The first subsection 2-4-1 will setup basic conventions. The second section 2-4-2 will give an
overview of different suitable coupling schemes. Subsequently, the third section 2-4-3 revolves
around the added mass effect for highly flexible wings.

2-4-1 General classification

For this project a partitioned solver setup will be used, thus contrary to a monolithic solver
setup two different solvers will be used for the structure and the fluid. This allows for better
modularity of the solvers, and thus they can be ideally suited to either a particular solid or
fluid situation. For this problem, in particular, this is important, because while both solvers
use a finite element discretisation, the structure mesh is much coarser than the fluid mesh.
Moreover, in the structural solver, the canopy will be modelled as a 2D shell element in 3D
space, whereas the fluid solver in 3D space can not resolve a zero thickness element. As a
consequence in an intermediate step, the structure needs to be artificially extruded. This
would not be possible as easily if a monolithic solver were to be used.
However, using a partitioned setup necessitates that the two solvers are properly coupled.
FSI problems can be classified into two main categories based on the underlying physics of
the problem. Namely, loosely coupled problems where only a single execution of the fluid and
the structure solver are necessary per time step and strongly coupled problems where sub-
iterations have to be employed for stability and accuracy reasons. One example of a strongly
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coupled case is highly flexible wings where small deviations in the aerodynamic forces can
lead to large structural deformations. Of course, the problem of this project falls into this
category, and thus most likely a loosely coupled technique will not be sufficient in this case.
Depending on the employed immersed boundary method, different boundary conditions are
imposed from the structure on the fluid and vice versa. However, for IB methods with
prescribed velocities at the borders, a Dirichlet-Neumann decomposition is used the same
as for ALE formulations. Namely, the structure imposes certain domain boundaries and
velocities on the fluid and the fluid, in turn, imposes forces on the structure at the interface.
Such that the fluid and structure solver can be represented as operators F and S, respectively.
The operators act on the interface displacements d and the interface pressure forces p.

d = S (p) (2-20a)
p = F (d) (2-20b)

2-4-2 Different coupling schemes

In the following, the ideas behind some commonly used serial coupling techniques are outlined,
if they show potential for application to the problem in this project. Namely, the coupling
techniques should only require access to the output of the two solvers at the interface, such
that the solvers can be treated as a black box. Apart from this, of course, the coupling should
be robust and require as few sub-iterations as possible.

Gauss-Seidel scheme

The most simple serial partitioning scheme, if necessary sub-iterations of the scheme can be
performed. Serial coupling refers to the sequential advancement of the two models that are
to be coupled to each other.

dk+1 = S
(
pk
)

(2-21a)

pk+1 = F
(
dk+1

)
(2-21b)

Gauss-Seidel with dynamic relaxation

Because for strongly coupled problems the evaluation of the fluid solver, in particular, is very
expensive, classical fixed point iteration schemes are used for the Gauss-Seidel scheme to
accelerate the convergence of the solution.
Namely, the problem can be rewritten as a fixed point iteration accordingly

d̃ = S ◦ F (d) (2-22a)
F̂(d) = S ◦ F (d)− d = d̃− d (2-22b)

dk+1 = dk + ω · (S ◦ F
(
dk
)
− dk) = dk + ω · F̂(dk) (2-22c)
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From this either Aitken’s underrelaxation method or the Steepest Descent (also known as
Conjugate Gradient) method can be used. Both methods are implemented on an incom-
pressible fluid and highly flexible structure FSI test case by Kuttler and Wall (2008) [58].
Comparison between these two methods and Newton-based schemes was made. The Aitken
under-relaxation scheme was clearly more efficient than the Steepest Descent one. It also
compared well with the Newton-based methods for this specific test case in terms of compu-
tational effort. However, this does not necessarily hold true in general because it required
more iterations per time step but had lower computational requirements in total for one time
step than the Newton-based methods. Because these calculations were done on a small test
case, the higher iteration count did not result in a significant increase in computational time,
but for more realistic problems Newton-based method can become more efficient.

Newton iterations

Newton methods are gradient based and derived from a simple Taylor expansion and trunca-
tion of second and higher order terms. The scheme can be summarised to

F̂(d + δd) = F̂(d) + JF̂ δd +O(|δd|2) (2-23a)

F̂(dk+1) != 0→ JF̂ δd = F̂(d) (2-23b)
dk+1 = dk + δd (2-23c)

with the Jacobian JF̂ = ∂F̂(d)
∂d of the combined application of the structure and the fluid

operator.

Of course, the Jacobian is not exactly known unless a symbolic expression thereof has been
derived. Thus an approximation of it needs to be obtained; the method is then referred to as
a quasi-Newton algorithm. In the following, one example from the relevant literature will be
outlined.

Linear combination of previous sub-iteration results Degroote et al. (2006,2009) [59, 60]
developed a reduced order model of the Jacobian or its inverse from linear combinations
of previous sub-iteration results. They named their technique interface quasi-Newton with
inverse Jacobian from a least-square model (IQN-ILS) or (IBQN-LS), respectively. In a sub-
sequent publication, Degroote and Vierendeels (2012) [61] extend the two algorithms through
use of multiple grids (or multiple levels). They refer to it as either ML-IQN-ILS or ML-IBQN-
LS. For both methods, the principles remain the same, but the convergence of the method
is accelerated through first converging the solution on a coarser grid for both the structure
and the fluid. The idea behind the technique is that coupling instabilities in Gauss-Seidel
iterations usually occur only in the low wave number range, hence the bulk of the coupling
iterations can be done on the coarser grid [61], [62], [63]. The two solvers are still treated as
a black box, thus the communication between grid levels and solvers is done via an interface
grid that corresponds to the target finest grid level, but is also used for the coupling of the
coarser meshes.
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2-4-3 Added mass effect

For very small time steps the dynamic equations of the structure can be rewritten such that
the effect of the pressure fluctuations in the fluid are contained in an additional mass term
(Causin et al., 2005 [64]). Hence for structures with low inertia and large fluid forces, the
added mass effects are strong, because the inertia effect of the fluid on the structure can be
larger than the inertia effect of the structure itself. Causin et al. also showed that loosely
coupled schemes and strongly coupled schemes without relaxation become unstable if the
added mass of the fluid is larger than the structural mass for a 2D incompressible test case
on a potential fluid and a linear elastic thin tube.

Brummelen (2009) [62] further extended on their results on a 2D model problem concerning
the fluid flow on a semi-infinite domain over a flexible panel. He applied the same test case to
both a compressible and an incompressible flow with a staggered coupling scheme. He showed
that for compressible flows the stability of the coupling process is independent of the mass
ratio given that the time step is sufficiently small and that with sub-iterations convergence to
the monolithic solution is obtained. However, for incompressible flows the opposite holds true.
Namely, independent of the time step sub-iterations can diverge for the staggered scheme and
the order of accuracy is lower than for a monolithic solver. Further for incompressible flows he
also derived that for very small time steps the viscous and convective terms are less critical
for the convergence than the added mass effect. Through a frequency analysis he showed
that for the limit of an infinitely small time step, the added mass term is proportional to the
time step for compressible flows and constant for incompressible flows. Thus, this explains
why even for very small time steps for incompressible flows explicit sub-iterations may not be
stable, because the time step does not influence the added mass effect.

Kuttler andWall (2008) [58] implemented a Gauss-Seidel scheme with Aitken under-relaxation
and tested it on several incompressible test cases with highly flexible structures. They showed
that a decrease in time step does not necessarily also result in a decrease in the number of
necessary sub-iterations for convergence within a time step. This is in good agreement with
Brummelen.

Similar to Brummelen [62], Degroote et al. (2008) [63] also performed a Fourier error analysis
on a 1D-linearized test case with incompressible flow and a varying stiff structure treating
both solvers as a black box. They showed that the low-frequency content of the solution
can make the explicit coupling with Gauss-Seidel sub-iterations unstable. Similar to Kuttler
and Wall, they also showed that a decrease in time step or stiffness of the structure can
result in higher instability of the solution. Then in a second step, they tested both explicit
coupling with Aitken under-relaxation and the IBQN-LS technique [59]. The results indicate
that IBQN-LS clearly outperforms the Aitken under–relaxation fixed point scheme requiring
roughly half the number of sub-iterations for convergence.

While all the previous publications were related to ALE implementations, the physics behind
the problem remains the same. Thus it is expected that the same conclusions regarding the
coupling algorithm also hold true for an IB implementation. For example, Borazjani et al.
(2008) [65] apply a curvilinear immersed boundary method (CURVIB) to a hemodynamics
test case with a strong added mass effect. The same conclusions with regards to the stability
of explicit and implicit coupling are drawn. Additionally, also Aitken’s under-relaxation is
applied which can stabilise previously diverging constellations.
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2-5 Verification

Since the main goal of this project is the development of a methodology that can in future
projects be applied to the modelling of a Leading Edge Inflated kite in flight, the solver needs
to be appropriately verified. This section outlines the findings of the literature review with
regards to validation data.

The first subsection 2-5-1 lists the classical FSI benchmark cases whereas the second subsec-
tion 2-5-2 lists references specifically tied to membrane wings. Finally, the last subsection
2-5-3 concludes which test cases are most suitable as well feasible within the context of this
project.

2-5-1 FSI benchmark cases

In literature, the two most commonly used benchmark cases for the implementation of a
coupled CFD-CSM solver are the Turek & Hron channel flow [66, 1] and the AGARD 445.5
wing [67]. Since the second case is set in flow regimes where compressibility effects of the fluid
can not be neglected, it is not relevant to this project. However, the Turek & Hron channel
flow benchmark case is well suited for the validation of methodology to be developed within
this report, because it models a two-dimensional strongly coupled problem.

(L,H) (2.5m, 0.41m)
(Cx, Cy) (0.2m, 0.2m)

r 0.05m
(l, h) (0.35m, 0.02m)

Table 2-1: FSI benchmark parameters

The geometry of the test setup is shown in figure 2-2 and further clarified in table 2-1 modelling
the flow around a rigid cylinder with an elastic flag attached to it. The height and H and
length L of the channel are set. The cylinder with radius r and centre location (Cx, CY ) as
well as the flag length l and thickness h are also described. The centre of the cylinder is
not congruent with the centre of the channel such that the onset of flag oscillations are not
dependent on numerical precision.

The initial report published by Turek and Hron [66] compromises not only of benchmark
data for the coupled simulation, but also of reference results for the separate validation of
the structure and fluid model. For this project, it would, of course, be useful to have a rough
estimate of the error introduced through the models themselves. The second report published
by Turek et al.[1] then lists benchmark results for the coupled simulations from different
authors using different methodologies. Three different coupled test cases are documented,
where the first and the second case correspond to a steady deformation of the flag and the
third case results in an unsteady periodic oscillation of the flag tip deflection and aerodynamic
forces.
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(a) Full Domain

(b) Structure detail

Figure 2-2: FSI benchmark case [66]

2-5-2 Membrane wings in literature

There exist various experimental references for the verification of the FSI solver applied to a
clamped cantilever beam as pointed out by Berens [15] that worked on this project previously.
For example, two steady cases as published by Levy in 1942 [68, 69] as well as multiple
references from Dowell et al. [70, 71, 72, 73] for a cantilever beam undergoing flutter.

However, the canopy of the kite has very little bending stiffness and thus while it can be
represented with shell elements, verifying the solver on test cases that are bending dominated
will only give limited insight into how well the structural model performs for shear dominated
applications and how efficient the coupling mechanism is in this case. Moreover, in case only
membrane elements will be available in the structural solver framework, the basic flat plate
benchmark case will have to deviate from a cantilever beam setup. Thus in the following, a
short literature review of experimental and numerical investigations of membrane wings at
different Reynolds numbers is presented with the aim of finding a more realistic benchmark
case beyond the Turek-Hron case.

Figure 2-3: Test case clamped membrane [74]

Moderate Reynolds number The setup as shown in figure 2-3 with a fixed leading and
trailing edge membrane wing is well documented in literature, however with the application
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to micro air vehicles or modeling of bird wings in mind, whose Reynolds numbers are of the
order of Re ≈ 104−105. Given the fluid solver methodology available for this project, such test
cases are out of reach, because a transition model is not available and the Reynolds number
is too high for a Direct Numerical Simulation (DNS). Nevertheless, a cautious qualitative
comparison might still prove useful, hence some outstanding publications are listed in the
following. Song et al. (2008) [74] investigated the setup shown in figure 2-3 with a low aspect
ratio of order of AR ≈ 1 for a Reynolds number between Re ≈ (0.7− 2.0) · 105 with steady
inflow speed and found that the Weber number We =

ρ
2U

2cCL
Et characterizes the steady as

well as the unsteady aero-elastic effects of the wing to some extent. Higher Weber numbers
were associated with higher maximum camber of the deflected shape, of course here also the
prestrain of the membrane plays an important role. For the static aerodynamic coefficients,
the found as compared to a rigid plate, the flow remains attached larger angles of attack and
shows a smooth stall onset. They conclude, that this is due to a decambering effect, where
the growth of the laminar separation bubble with increasing angle of attack is countered with
a decambering of the membrane due to the associated change in surface pressure distribution.
Moreover, it should be noted that for higher inflow speeds - within a certain interval where
Reynolds effects are not dominant - the decambering effect becomes stronger and thus the
flow is expected to be less likely to separate from the leading edge at a higher as compared
to a lower inflow speed. Apart from hysteresis effects in the stalled regime of the wing, that
pertain to the same principles for rigid as well as flexible wings, the membrane wing also
showed hysteresis effects around zero angle of attack. Due to the higher lift coefficients,
as compared to the rigid case, the membrane wing also shows higher drag values due to
downwash. Despite the steady inflow conditions, it was observed that membrane vibrations
were measured for all test conditions possibly excited through vortex shedding at the leading
edge. The dominant vibration frequencies were found to be close to the eigenfrequency of the
membrane and increase with increasing Weber number.

Rojratsirikul et al. (2009,2011) [75, 76] further investigated the unsteady effects present in a
similar setup for Reynolds number in the range Re ≈ (0.5− 1.0) · 105 with a low aspect ratio
wing. They showed that for this Reynolds regime, the mean maximum deflected camber of the
membrane is only weakly dependent on the angle of attack, and the changes in the membrane
deflection are small compared to the changes in the flow regime. For the unsteady analysis,
differences in predominant mode shapes were observed for different angles of attack and
inflow speeds, however, for large angles of attack, the second mode shape became dominant
independent of the inflow speed which might indicate a coupling with the vortex shedding
at the trailing edge. The maximum deflection amplitude increased with increasing Reynolds
number, possibly due to the shear layer staying closer to the membrane surface with the same
trend in inflow conditions. Comparing the unsteady flow field of the membrane wing at high
angles of attack with a rigid airfoil with the mean deflection shape of the flexible membrane
wing showed that the flexible membrane promotes vortex roll-up and thus the flow separates
at a higher angle of attack.

In another publication, Rojratsirikul et al. (2010) [77] investigated the effect of prestrain
and excess length of the membrane. The results indicated that prestrained membrane wings
behave similar to rigid airfoils and membrane wings with excess length can maintain attached
flow for higher angles of attack due to the increased camber.

Lastly, Arbos et al. (2013) [78, 79] investigated two different Leading and Trailing Edge
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supports, namely circular and rectangular ones. They concluded that the choice of supports
influences the mean deflected shape of the membrane wing, for example, circular cross-sections
result in an S-shaped membrane deformation at low incidence angles. Moreover, it was also
shown that especially for the rectangular supports, coupling between the natural frequencies
of the membrane, the support structure and unsteady vortex shedding at high angles of attack
can take place.

Low Reynolds number DNS simulations were first carried out by Gordnier (2009) [80]
through coupling of a two-dimensional high-order Navier-Stokes solver with a one-dimensional
nonlinear membrane model at Reynolds numbers in the range of Re ≈ 2500 − 10000. Later
on, Gordnier and Jaworski (2012) [81] extended this setup to include prescribed motions of
the trailing and leading edge supports for the same Reynolds number range. Then Gordnier
and Attar (2014) [82] extended the setup to be three-dimensional and applied them to the
test cases of Rojratsirikul et al. (2011) [76]. In the most recent publication, Gordnier and
Jaworski (2015) [83] included the effect of movement in the leading and trailing edge in their
three-dimensional simulation setup.

Figure 2-4: Experimental setup clamped membrane [84]

High Reynolds number Greenhalgh et al. (1984) [85, 84, 3] conducted experiments in a
two-dimensional wind tunnel on a membrane wing with fixed leading and trailing edge but
variable membrane excess length at a Reynolds number of Re = 1.3 · 106. Greenhalgh et
al. state, that the lift was determined from measuring the pressure distribution on the wind
tunnel bottom and top wall, the drag was determined from wake momentum deficiency as
measured with a wake rake and the membrane tension was measured with strain gauges.
The results were similar to the results obtained for lower Reynolds numbers, namely higher
maximum lift coefficient and attached flow up to larger angles of attack as compared to the
rigid plate, benign stall behaviour, lift hysteresis around zero degrees and visible vibration of
the membrane for separated flow. However, the experiment description is somewhat limited,
in particular, the material properties of the membrane are not specified beyond a certain
brand name. An illustration of the experimental setup is shown in figure 2-4.
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Earlier experimental research by Sweeney (1961) [86] at Princeton University as well, involved
the investigation of full sailplane model at Reynolds numbers up to Re ≈ 1.5 · 106. This was
followed up by other full sailplane model tests by Fink (1967) [87], Fink (1969) [88] and
Ormiston (1971) [89] at similar Reynolds numbers, see figure 2-5 for a schematic of one of the
experimental setups. Later on, Maughmer (1979) [90] investigated eight different sailplanes
with different cross-sections ranging from single to double membrane wings at a Reynolds
number of approximately Re ≈ 0.25 · 106. However, it should be noted that due to the high
turbulence intensity in the flow, Maughmer considered the effective Reynolds number to be
at least twice as high.

(a) Fink double membrane sailwing (b) Fink full sailplane setup

Figure 2-5: Experimental sailplane setup of Fink (1967) [87]

In Delft at the Aerospace faculty, two reports on single and double membrane sail wings
with adjustable slack were published by de Boer [2, 91] in 1980 and 1982, respectively. The
experiments were carried out in the low-speed low-turbulence wind tunnel, and the two-
dimensional setups are shown in figure 2-6. Both wings consist of a steel leading edge, a flat
plate at the trailing edge and a dacron sail material for the membrane. Lastly, both setups
have a slit between the wind tunnel wall and the end of the wing on both sides, such that air
can pass in and out of the midsection.

The first report from 1980 investigated single membrane airfoils with adjustable sail slack in
terms of lift and drag behaviour at Reynolds numbers ranging from Re ≈ (0.3− 0.5) · 106

within a limited angle of attack range as compared to the previous publications of roughly
α ≈ 3− 11◦. However, hysteresis effects were not considered and the sail material properties
are not characterised.

The follow-up report from 1982 placed double membrane airfoils in the wind tunnel with a
Reynolds number range of Re ≈ (0.5− 0.8) · 106. The measured properties were lift, drag
and deformed membrane shape as a function of the angle of attack α, the rotation angle of
the leading edge bar δ and the sail length on suction and pressure side lu, ll. However, here
again, the range of angles of attack is limited from α ≈ 2.5◦ − 10◦. The material stiffness is
noted this time.

Lastly, there also exists an old Master thesis from de Wachner (2008) [92] of a numerical and
experimental investigation of a Ram-Air Wing at a Reynolds number of one million.
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(a) Single membrane wing [2] (b) Double membrane wing [91]

Figure 2-6: Experimental sailwing setup as used by den Boer in 1980 and 1982

Other Apart from the literature on sail wings, micro air vehicles and animal wings, there
is a multitude of well-documented literature available for ram-air parachutes for military
applications. Two examples of full coupled high-fidelity simulations can be found in [93], [94].
While those concepts are not directly related to this project, they show that it is feasible to
implement the coupling between a non-linear membrane model and a high-fidelity fluid solver.

More recently, the application of flexible membrane wings with a rigid leading edge, trailing
edge and chordwise ribs periodically distribution along the blade span for wind turbines
have been reexamined by Piquee and Breitsamter (2015) [95] as well as Saeedi et al. (2016)
[96, 97, 98]. Figure 2-7 shows the undeformed and deformed setup of Saeedi et al. [98] for
uniform inflow.

(a) Undeformed blade (b) Deformed blade

Figure 2-7: Membrane wing turbine blade as modeled by Saeedi et al. [98] for uniform inflow
(Reynolds number unknown)

Saeedi et al. [96] coupled a nonlinear Finite Element structural solver with a RANS fluid solver
and concluded that for their setup the semi-flexible membrane blade had several advantages
over a fully rigid blade in terms of aerodynamic performance. Namely compared to the fully
rigid blade the semi-flexible membrane blade was predicted to have a higher lift slope although
with a lower lift coefficient at zero angle of attack, a higher maximum lift over drag ratio and
as a consequence a higher maximum lift coefficient.
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2-5-3 Proposed test cases

The first recommendation is to initially verify the solver on the Turek & Hron FSI benchmark
case [1, 66]. It is a complex test case that does not require much computational effort because
due to its low Reynolds number setting. However, it should be noted, that the structural
solver may not be ideally suited to model the flag part of the setup, because it is much
thicker than the canopy of a membrane wing. Moreover, the IB fluid solver may also perform
better at a high Reynolds number since this was its development target range. Nevertheless,
this will allow at the very least to check whether the proposed solver methodology is working
as expected.

The second recommendation is to then validate the solver on a more appropriate test case
with a higher Reynolds number and an actual membrane or sail wing. For the current kite
design in the AWE group in Delft the Reynolds number ranges from roughly one to eight
million depending on the size and flight speed. Thus, simply based on Reynolds number
similarity the best setup would be the one from Greenhalgh et al. (1984) [3, 84, 85], because
it has the highest Reynolds number out of all the mentioned references. However, there are
some inconsistencies present within the experiment description with regards to the membrane
material. Namely, no material properties are given even though the strain of the membrane is
measured. The one other reference treating a single membrane airfoil at a Reynolds number
close to one million is the one from den Boer (1980) [2] though it is also missing a complete
sail material characterisation. The same holds for the second publication of den Boer (1982)
[91].

Full sail plane or sail wing investigations as done by Fink [87, 88], Ormiston [89] and Maugh-
mer [90] are comparatively big test cases that would most likely conflict with the timeline of
this project due to the limited available computational resources. Moreover, the modelling
of a double membrane flexible wing section would further complicate the setup even if the
porosity of the material is assumed to be zero. Most likely, this would require a 3D simulation
setup with slits at the sides of the profile.

The moderate Reynolds number cases outlined in paragraph 2-5-2 are dominated by laminar
separation effects and thus are not directly comparable to the high Reynolds number flow
around a LEI kite. Moreover, the simulation setup of this project has no transition model and
is thus not capable of modelling transitioning flows. However, cautious qualitative comparison
especially with reference to unsteady effects should still be possible. Though, it should be
noted that for these cases due to the difference in Reynolds number, the stall behavior is
expected to be completely different. Moreover, since a URANS turbulence model, that is
only capable of reproducing mean flow unsteadiness, will be used, it is not clear how much of
the unsteady fluid-structure interactions can actually be captured even for a fully turbulent
case. Nevertheless, the setup should be capable of modelling the mean deflected shape of the
membrane for a given angle of attack and inflow speed as well as hysteresis effects due to an
unsteady inflow. Both of these effects can be used to test the solver efficiency, stability and
accuracy.

The publications on low Reynolds number DNS investigations of membrane wings by Gordnier
et al. [80, 81, 82, 83] would be possible to reproduce with solver setup of this project, however
physically speaking this would be very far removed from the kite application and require an
immense computational effort for three-dimensional calculations. Moreover, having a high
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Reynolds number is also important with reference to the validation of the Immersed Boundary
method, since high Reynolds number flows are more difficult to model for Immersed Boundary
methods due to the larger wall normal flow gradients.

Summarizing, given the requirement for a simple and computationally limited test case and
high Reynolds number, the publication from Greengalgh et al. [3] is the best validation case
for the solver methodology to be implemented within this project for the mean deflection
and possibly also flow hysteresis. However, given that the fluid solver is fully turbulent the
laminar onset will not be accurately captured, and thus discrepancies between measurement
and simulation results are to be expected. Smith and Shyy (1996) [99] numerically investigated
this test case with a fully turbulent solver with Menter’s SST κ-ω turbulence model as well
and results from this project can thus also be compared with their numerical results. In a
second step, if time allows this simple membrane setup can be extended to include a rigid
leading edge and validated although only for low angles of attack with the experimental results
from den Boer [2] again with discrepancies due to the fully turbulent solver. Then in a next
step, the setup can be further upgraded to include an inflated leading edge although here only
qualitative verification is possible with for example the lift polars obtained from Breukels [12].

2-6 Available research

This section will very briefly touch upon the research done at the AWE section in Delft, with
the aim to explain what tools or results are directly available and can be re-purposed for this
project.

Basic working principle In terms of aero-elastic modelling, the AWE group in Delft mainly
focuses on the development of a methodology that uses a kite connected to a ground-based
generator through its tether. The power production cycle or pumping cycle can be split into
two phases. In the traction phase, the kite pulls the tether out of the generator, and thus the
generator produces energy. In the retraction phase, the kite is reeled back in by the generator
that is now used as a motor and thus uses energy. While flight path optimisation of the
kite is an ongoing research topic, for this particular setup the reel-out phase usually involves
figure eight flight patterns [100]. Thus during a typical power production cycle of the kite, it
sees a varied range of flow inflow profiles in terms of angle as well as magnitude. Figure 2-8
illustrates the flight path of the wing.

Components of the kite Because in the following the modelling of the different components
will be referred to in detail, figure 2-9(a) shows an illustration thereof. The power lines are
attached to the leading edge - wing tip intersection of the kite and allow for manipulation
of the angle of attack of the wing. Bridle lines, if present, are also attached at the leading
edge of the kite, but they are only used to maintain a desired shape of the leading edge.
The steering lines are attached to the leading edge - wing tip intersection of the kite, the
turning deformation mode of the kite is shown in figure 2-9(b). Pulling the right steering
line results in an increase of the angle of attack at that side and a decrease of the angle of
attack on the left wing tip [12]. Because the pulling of the steering line also introduces a
torsional deformation of the wing, the difference in lift results in a yawing motion that turns

Master of Science Thesis J. Steiner



28 Literature Review

Figure 2-8: Kite pumping cycle [101]

the kite to the right [102]. Breukels refers to this deformation mode as cornering of the kite
in turning manoeuvres [12]. Cornering is one example of the strong aero-elastic coupling of
a kite system, which illustrates the importance of a proper aero-elastic model to explain the
flight behaviour of the kite.

Existing aero-elastic models of the kite In the AWE research group at TU Delft a re-
spectable amount of work has already been done towards modelling the flight behaviour of
the kite with varying degrees of complexity. Simple dynamic particle systems are used in
combination with parametric aerodynamic models and empirical correlations for control and
flight path optimisation purposes [100]. Then, Breukels [12] developed a multi-body kite de-
sign toolbox which is positioned somewhere in the middle between a rigid model and a fully
detailed FEM model of the kite. Schwoll [103] developed a full Finite Element model of a
25m2 kite. The model is detailed enough to not only capture global deformation modes of
the kite, but also local deformations such as wrinkling of the canopy. More recently, Bosch
[13] developed a coarse Finite Element model of a 16m2 kite as compared to the previously
constructed model of Schwoll. The solver developed by Bosch combines a nonlinear beam
model for the inflated tubes and sewn in wires, as well as a nonlinear shell element for the
canopy [102]. Subsequently, Geschiere [14] and Berens [15] worked on further extending this
structural model and coupling with simple aerodynamic models. Since the flow field around
the kite is quite complex, two highly simplified models have been coupled with the mentioned
structural model. First, Breukels [12] developed a parametric model that combines 2D CFD
results with a Lifting line code; this model, however, performs quite poorly for different de-
signs than the one it was calibrated with. Second, inviscid methods such as Lifting Line
and Vortex Lattice methods show some potential for computationally affordable aero-elastic
modelling of the membrane wing. Berens [15] in particular used an unsteady Lifting Line
implementation. Then, Van Kappel [104] and later on also Leuthold worked on the imple-
mentation of a non-linear Vortex Lattice method for LEI kites; however deformations of the
wing were not considered yet.
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(a) Launch [15] (b) Turning [102]

Figure 2-9: Leading Edge Inflatable (LEI) kite in flight during launch and during turning maneuver
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Chapter 3

Structural solver

As extensively discussed in the literature review section 2-1, different modelling methodologies
are expected to yield satisfactory results for this project. Thus, this chapter will first briefly
outline the specific shell element formulation that will be employed in section 3-1. Second
and third the implemented solver will be verified on a static test case in section 3-3 and then
on a dynamic test case in section 3-4. Lastly, the results of the separate structural solver
validation from the Turek & Hron FSI benchmark will be presented in section 3-5.

3-1 Shell element formulation

Given the low bending stiffness of the canopy of the kite, two different Finite Element for-
mulations are possible. First, the least complex element would be a membrane element, that
does per definition not possess any bending stiffness. As a consequence, the membrane de-
formation is undefined for certain load scenarios. For example, no static solution exists for
flat membranes which are loaded with normal pressure. Second, a shell element formulation
that models in as well as out of plane deformation can also be used if the formulation does
not incur any numerical issues at very low element thickness. The advantage of using a shell
over a membrane formulation is its versatility, by increasing the thickness of the element also
cantilever test cases can be used to verify the solver.

Given the existing code base of a nonlinear shell element formulation in Matlab as developed
by Tiso [31] and tested by Bosch [13] as well as Berens [15], this project will try to further
build on the work by the mentioned authors. However, the coupling interface of the fluid
solver requires the interface coupling to be done in Python, given this also the structural
solver will be rewritten in Python.

Tiso’s stiffness element formulation [31] is based on a simplified Green-Lagrange strain for-
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mulation as outlined below for the strains εab

εxx = 1
A

∫
A
u,x + 1

2
(
v2
,x + w2

,x

)
dA (3-1a)

εyy = 1
A

∫
A
v,x + 1

2
(
u2
,x + w2

,x

)
dA (3-1b)

εxy = 1
A

∫
A

1
2 (u,y + v,x) + 1

2 (w,xw,y) dA (3-1c)

and for the curvature χab

χxx = 1
A

∫
A
w,xxdA (3-2a)

χyy = 1
A

∫
A
w,yydA (3-2b)

χxy = 1
A

∫
A
w,xydA (3-2c)

where the strains as well as the curvature are obtained from an average over the shell area in
order to avoid shear locking [31]. Naturally, the displacements and their spatial derivatives
are given by (u, v, w) and (u,ab, v,ab, w,ab), respectively.

Tiso describes his implementation as a superposition of the triangular linear membrane ele-
ment by Allman (1976) [105] and the triangular linear plate element also by Allman (1988)
[106]. Both element formulations use cubic displacement fields, and each node k of the plate
element as well as the membrane element has three degrees of freedom

qmembrane =[uk vk θk,z] where k = [1, 2, 3] (3-3a)
qplate =[wk θk,x θk,y] where k = [1, 2, 3] (3-3b)

see also figure 3-1. As a result when the two models are combined each node has six degrees
of freedom, such that the full shell element has 18 DOFs.

While nonlinearity in the displacements is incorporated in the analysis, the material is as-
sumed to behave isotropic and linear, such that the constitutive relations with the Young’s
Modulus ES and the Poisson ratio νS can be written as

σ =Amε (3-4a)

Am = ESh

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 (3-4b)

where h refers to the thickness of the shell element. For dynamic analysis of the shell element
also the density ρS of the element will be needed.
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Figure 3-1: Degrees of freedom for Tiso’s superimposed shell element from a plate element (left)
and a membrane element (right)

The assembly of the mass matrix is done as described by Allman [107] using the same as-
sumed displacement fields as for the stiffness matrix. Allman compares the accuracy of the
eigenfrequency prediction using a consistent and a lumped approach and shows that the con-
sistent approach shows a faster grid convergence. However, Allman also shows that using a
lumped mass matrix for simple test cases does not incur significant errors in the prediction of
the eigenfrequency of the system. More importantly, using a lumped matrix approach allows
for the computationally efficient inversion of the mass matrix. Thus, here this will be the
preferred approach.

3-2 Detailed solver implementation

A summarized version of the full structural solver algorithm is shown in the text box 1. The
following paragraphs outline the different aspects of the full structural solver.

Structural framework The solver will be written in a Total Lagrangian framework where all
displacements and stresses are expressed as a deviation from an initial reference configuration.
The assembled system matrices then form the following nonlinear system of equations

t+∆tM q̈ +Dq̇ +
(
t
0Klinear +t

0 Knonlinear(q)
)

q =t+∆t Fext −t0 F (3-5)

where the forcing term t
0F on the right hand side, as well as the linear and nonlinear stiffness

matrices t0K, are a result of the linearization around time t in the Total Lagrangian framework.
For the detailed derivation of the system matrices see Bathe (2007) [16].

Boundary conditions For the enforcement of the displacement boundary conditions the full
system matrices need to be reduced to the non-constrained nodes only, and the effect of the
constrained nodes is moved to the RHS of the equation as illustrated below
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Kq =
[
Kff Kcf

Kfc Kcc

] [
qf
qc

]
=
[
gf
gc

]
→ Kffqf = gf −Kcfqc (3-6)

where the nonlinear stiffness matrix is summarized as K =t
0 Klinear +t

0 Knonlinear(q) and for
simplicity the RHS term g includes damping and inertial forces as well as the external force
term.

Time discretisation Based on severe time limit restriction previously faced by Berens [15]
due to the use of an explicit time integration scheme, for this project the aim is to use an
implicit time integration scheme. The integration of the structure is done by artificially
decomposing the system in two first order systems according to

[
q̇
q̈

]
=
[

0 I

−t+∆tM−1 (t
0Klinear +t

0 Knonlinear(q)
)
−t+∆tM−1D

]
·
[
q
q̇

]

+
[

0
t+∆tM−1

(
t+∆tR−t0 F

)] (3-7)

where I is the identity matrix sized according to context and the summarized version of the
equation is written out below

ẋ = Ax +B (3-8)

According to Bathe [16] the trapezoidal A-stable, 2nd order integration scheme is frequently
used in the time integration of structures, where no intermediate time step information is
available. Because this scheme is semi-implicit, sub-iterations have to be performed. However,
given the non-linearity of the stiffness matrix, this has to be done independently of the time
integration scheme. Thus, the use of an implicit method which allows for larger time steps
might prove to be advantageous, even though Berens [15] decided against this option in prequel
projects. Applying the trapezoidal time integration scheme to the summarized version of the
system as in equation 3-8 results in

xn+1 − xn

∆t − 1
2
(
An+1xn+1 +Bn+1 +Anxn +Bn

)
=( 1

∆tI −
1
2A

n+1
)

xn+1 +
(
− 1

∆tI −
1
2A

n
)

xn + 1
2
(
Bn +Bn+1

)
= 0

(3-9)

Again the equations can be further summarized to

M1
(
xn+1

)
xn+1 +M2 (xn) xn +N = 0 (3-10)

J. Steiner Master of Science Thesis



3-2 Detailed solver implementation 35

Nonlinear solving procedure Given the nonlinearity of the time integration scheme and the
finite element formulation, the system of equations has to be solved iteratively. Here this is
done using a Newton-Raphson scheme as described below

G (x) =M1(x)x +M2(xn)xn +N (3-11a)

G (x + δx) =G(x) + ∂G

∂x δx +O
(
δx2

) != 0 (3-11b)

−∂G
∂x δx =G (x) (3-11c)

xn+1 =xn + δx (3-11d)

where the full exact expression of the Jacobian is given by

J = ∂G

∂x = 1
∆tI −

1
2

[
0 I

−t+∆tM−1 ·t0 Kt −t+∆tM−1D

]
(3-12)

the the tangential stiffness matrix Kt is accordingly given by

Kt =t
0 Klinear + ∂t0Knonlinear(q)

∂q q +t
0 Knonlinear(q) + ∂t0F

∂q (3-13)

For this project full Newton-Raphson iterations are performed, this means that the system
matrices and the Jacobian are updated for every sub-iteration and that the step size is not
modified. Possibly looking into more sophisticated methods also in combination with the load
control algorithm could lead to a more optimized solver [108]. However, this is outside of the
scope of this project.

Structural damping The structural damping is determined using a Rayleigh approach where
the damping is derived from the stiffness and inertial characteristics of the system. The
damping matrix is simply taken to be a weighted linear superposition of the stiffness and
mass matrix according to

D = αM + βK (3-14)

Berens [15] implemented the algorithm for calculation of the proportionality constants α and
β according to Alipour and Zareian [109]. For Rayleigh damping given the proportionality
constants, the mode specific normalized damping ζn of an eigenmode with frequency ωn is
given by

ζn = α

2ωn
+ βωn

2 (3-15)

If one wants to apply a general structural damping based on the most important (or lowest)
eigenmodes with frequencies ω1 - ωN and not a mode-specific damping where a decoupling of
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the system in its different eigenmodes is necessary, expressions for the proportionality need
to be derived. For the derivation of the expression a range parameter R is introduced

R = ωN
ω1

(3-16)

Based on this the proportionality constants α and β can be calculated as

α =2ζω1
2R

1 +R+ 2
√
R

(3-17a)

β =2ζ 1
ω1

2
1 +R+ 2

√
R

(3-17b)

where ζ is the assumed general damping coefficient [109]. For structures with small relative
thickness, generally, a damping coefficient between 2 % and 5% is considered appropriate [15].

Figure 3-2 shows a cantilever oscillation linearized around the zero deflection point for a
damping ratio of 10 % and different ranges of considered eigenfrequencies. The simulation
settings are listed in table 3-3. In total the beam simulation has 870 unconstrained degrees of
freedom, in this particular case considering roughly only the lowest 4 % of the eigenfrequency
range of the beam already yields converged results in terms of the structural damping.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.1

-0.05

0

0.05

0.1

Figure 3-2: Tip displacement for linearized cantilever oscillation with a damping constant of 10
% and different ranges of considered eigenfrequencies of the linearized system

Since the shell element formulation is nonlinear the damping matrix indirectly depends on
the deformation of the structure through the stiffness matrix; it needs to be updated when
the stiffness matrix is updated. Thus, the eigenmode calculation of the structure needs to be
carried out multiple times throughout the solving procedure in one time step.

Load control algorithm For stability and faster convergence of the structural solver espe-
cially for larger time steps, a load control algorithm is used [108]. The algorithm relaxes
the external load from the previous time step to the external load from the new time step.
Depending on the convergence of the structure to the newly imposed external load, the re-
laxation parameter is either increased or decreased. A power law is used for the expansion
of the load increment; the tuning parameters were directly taken from Berens [15]. Again,
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much more sophisticated methods are available and could yield an increase in efficiency and
stability of the solver [108]. However, this is outside of the scope of this project and for small
structural test cases also not strictly necessary.

Convergence criteria Different absolute and relative error criteria were investigated. De-
pending on the simulation settings and the characteristics of the test case itself some criteria
are more efficient than others. The error criteria for the time step n + 1 is chosen based on
the residual of the discretised system R = G(xn+1) and the change in displacements between
sub-iterations δq according to

A Averaged absolute residual
√

RTR ≤ εconv

B Averaged relative residual
√

RTR ≤ εconv
√

RT
refRref

C Maximum residual max (R) ≤ εconv

D Averaged relative work δqTR ≤ εconvδqTrefRref

E Relative change in node displacement δq < εconvqref

where the reference values refer to the first sub-iteration of the structural solver for a corre-
sponding time step. Bathe, and Cimento [110] suggest that for more rigid structures force
based criteria should perform well, whereas for more flexible structures such as membranes
energy-based criteria should be more efficient.
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(a) Beam high load
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(b) Beam low load

Figure 3-3: Convergence criteria

Figure 3-3 shows the dependence of the convergence on the error criteria for the test case of a
uniformly loaded beam with two load magnitudes. The convergence of the solution is assessed
through comparison with results checking the convergence of the tip displacement with a very
strict convergence criterion. The figure suggests some reasonable values for the convergence
parameter for all error criteria, while also outlining that this is test case dependent.
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Algorithm 1 Structure convergence loop
Require: Initial condition for qn, q̇n and external load from previous and current time step

Fn
ext, Fn+1

ext

Initialize structure q = qn, q̇ = q̇n
while λ < 1 and j < jmax do

Update load control parameter λ(i, εNR) and reset counter i = 0
Relax external load Fext = λFn+1

ext + (1− λ) Fn
ext

Initialize residual R = Fint (qn, q̇n,q, q̇)− Fext and Jacobian J (Kt(q), D(q, q̇))
while εNR < tol and i < imax do

Newton Raphson iteration dx = J−1 ·R
Update structure x = x + dx→ q, q̇
Update stiffness, tangential stiffness and damping matrix K(q), Kt(q), D(q, q̇)
Update residual R = Fint (qn, q̇n,q, q̇)− Fext and Jacobian J (Kt(q), D(q, q̇))
Evaluate error εNR = RTR

RT
ref

Rref

i = i+ 1
end while
j = j + 1

end while

3-3 Static validation

For the static validation of the solver, two benchmark cases are used. Subsection 3-3-1 details
the validation if the membrane is subjected to a uniform pressure load and subsection 3-3-2
uses classical shell benchmark cases as available from the literature.

3-3-1 Uniformly loaded membrane

Similar to Berens, a limited static validation analysis of the solver is carried out based on
analytical results by Levy [68, 69] for the deflection of a square plate under a uniform pressure
load as described by the van Karman strain equations (see appendix A). He verified his results
through comparison with other approximate solutions as well as experimental results by Kaiser
[111]. Two different boundary conditions, fully clamped and simple supported are investigated
in the two publications. The fully clamped boundary conditions do not allow either translation
or rotation at the plate boundary. The simply supported boundary conditions do not allow
translation but permit rotation of the nodes at the plate boundary. Levy presented his results
as a function of normalized displacements w = w

h and normalized load pz = pzL4

Eh4 . See figure
3-4 for illustration of the three-dimensional deformed plate and figure 3-5 for visualization of
the boundary conditions.

Young’s Modulus ES 7e10N/m2

Poisson ratio νS 0.316
Plate dimensions Lx, Ly 1m

Table 3-1: Parameters
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Figure 3-4: Clamped membrane uniformly loaded

(a) Clamped (b) Supported

Figure 3-5: Boundary conditions uniformly loaded membrane [15]

The results from the solver implementation in this report for the parameteres listed in table
3-1 are compared with the analytical solution from Levy [68, 69] and simulation results from
Berens [15]. Figure 3-6 shows the normalized center displacement as a function of the nor-
malized uniform pressure load for two different resolutions alongside with the analytic results
from Levy for both of the mentioned boundary conditions. While the trend between the
simulation results and the reference data agree well for both boundary conditions, however
the error in the prediction of the center displacement grows as the load increases. This is also
observed in the results from Berens [15].
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Figure 3-6: Pressure-displacement plot with the analytic solution from Levy in black

Figure 3-7 illustrates why the deviation between the center displacement results increases for
higher loading of the structure, namely there seems to be a discrepancy in how the structure
deforms under the load. The cause of this is most likely the shell element formulation that
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differs in the assumptions made for the derivation of nonlinear plate theory in two aspects.
First, the Kirchhoff condition of perpendicular transverse normals even after deformation is
not enforced. Second, since it is a shell element in-plane shear deformations are also modeled
which could lead to a different load response.
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(b) Supported

Figure 3-7: Displacement plot for pz = 402.0 in the symmetric cutting plane of the plate,
analytical solution in black

However, as shown in figure 3-8 a grid refinement study shows a clear convergence of the
results towards higher resolution results. The number of nodes was chosen coinciding such
that no interpolation has to be carried out when comparing the results from different grid
densities. The RMS error is computed according to equation 3-18. Based on figure 3-8, it can
be concluded that the implemented shell element formulation is consistent for this particular
test case and the discrepancy with analytical results is most likely due to different modelling
assumptions. Moreover, given that for normalised load and displacements the results are
not sensitive to the shell thickness, it can also be reasoned that the shell element is indeed
shear locking free as claimed by Tiso [31], since a decrease in thickness does not result in a
nonphysical increase of the element stiffness.

ε =

√√√√ 1
N

∑
N

(
wN − wNref

wNref

)2

(3-18)

3-3-2 Shell benchmark case

Sze et al. (2004) [112] list classical benchmark problems for shell elements. Tiso’s shell
element [31] is tested on the two simplest listed cases, namely a clamped cantilever either
loaded with a shear force Ftip or an out of plane bending moment Mtip at the tip. The results
are shown in figure 3-9. The details of setup are listed in table 3-2.

Little correspondence between the results is obtained, because the shell element formulation
neglects transverse shear stresses. While this assumption is valid for very thin structures
such as a canopy of the kite, for thicker structures as in the benchmark case undergoing large
displacements this is not given. Thus, a large discrepancy between the results exists.
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Figure 3-8: Grid convergence for pz = 402.0 where the grid resolution corresponds to the number
of nodes N and the RMS error is computed with reference to a higher resolution simulation

Young’s Modulus ES 1.2e6N/m2

Poisson ratio νS 0.0
Beam dimensions (Lx, Ly) (10m, 1m)

Beam discretisation (Nx, Ny) (variable, 1)

Table 3-2: Shell benchmark parameters
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Figure 3-9: Shell element validation, displacements in the direction of the undeformed beam axis
(-) and perpendicular to this axis (–)
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Concluding, this benchmark case clearly showcases the limits of the sensible application range
for this particular shell element formulation. Namely, it will only yield accurate results for
relatively thin structures. This will be touched upon again in section 3-5.

3-4 Dynamic validation

The dynamic validation of a structural solver, in general, can be split into different subtasks,
namely the validation of the implemented time integration scheme, the verification of the
damping matrix assembly and the validation of the shell element formulation itself.

In the context of this project, a limited verification of all of these aspects will be carried out.

3-4-1 Linear spring-damper system

The validation of the implemented time integration scheme is done through integration of
the dynamic of simple linear spring-damper systems with either one or two mass points as
depicted in figure 3-10. While this may sound rather trivial, given the complexity of the code
database it is essential to eliminate the possibility of implementation faults.

(a) One DOF system (b) Two DOF system

Figure 3-10: Linear spring-damper setup

For a linear, subcritically damped one degree of freedom spring-damper system with a natural
frequency of ω0 =

√
k
m and a damping ratio of ζ = d

2

√
1
mk without external excitation an

analytic solution depending on the damping ratio exists, as written out below

m · ÿ + d · ẏ + k · y = 0 (3-19a)

y(t) =


A cos (ω0t+ φ) , for ζ = 0
A exp−ζω0t cos (ωt+ φ) , ω2 = ω2

0(1− ζ2), for 0 < ζ < 1
A exp−ζω0t +Bt exp−ζω0t, for ζ = 1
exp−ζω0t (A cosh (Ψt) +B sinh (Ψt) +) ,Ψ2 = ω2

0(ζ2 − 1), for ζ > 1

(3-19b)

where A, B and φ are constants to be determined by initial conditions.

Comparison between the analytic solution, numeric results from the structural solver and the
direct numerical integration are shown in figure 3-11. Direct numerical integration refers to
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Figure 3-11: One point mass system with an initial position of y0 = 10m and a natural frequency
of ω0 ≈ 90rad/s, (A) refers to simulations results, (B) is the analytic solution and (C) is directly
numerically integrated for a time step of ∆t = 1e− 4s
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Figure 3-12: Two point mass system

directly integrating the system matrices without the surrounding structural solver framework
such that the only error source is the accuracy of the time integration scheme.

For a damping ratio of ζ = 0.05 the analytic solution and the simulation results agree very
well, however for a higher damping ratio of ζ = 0.2 some deviations are visible especially for
the first oscillation. To identify the cause of this the system matrices were directly numerically
integrated and those results overlap with the one from the structural solver, thus it follows
that this is due to the accuracy of the time integration scheme.

Then to check whether the solver performs as expected also for a system with coupled degrees
of freedom a two degrees of freedom system according to figure 3-10(b) is compared with direct
numerical integration results as well, since here no analytical solution is available. The results
are shown in figure 3-12 and again the results overlap.

Thus, from this verification on linear spring-damper systems, it can be concluded that the
time integration scheme and the load algorithm are working as expected.

3-4-2 Linear cantilever oscillation

An unloaded cantilever clamped on one side with an initial displacement according to the
static solution of a uniform pressure load p0 is investigated. Initially, the nonlinear terms
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in the stiffness matrix formulation are removed. The material parameters and simulation
settings are listed in table 3-3.

ES 7e10N/m2

νS 0.316
ρS 2780kg/m3

hs 0.01m
(Lx, Ly) (1m, 2m)
(Nx, Ny) (5, 10)

∆t 1e− 4s
p0 500N/m2

Table 3-3: Fixed parameters

If only the linear part of the stiffness matrix is considered and the damping matrix is con-
structed via the Rayleigh method, then an analytic solution exists. Similar to one degree of
freedom spring damper system in equation 3-19 the system of equations for the linear multiple
degrees of freedom system can be decoupled and for each mode the one degree of freedom
analytic solution still holds. The decoupling of the system is done as follows

M q̈ +Kq = 0→ξ̈i + ω2
0,iξi = 0 (3-20a)

D = αM + βK →ζi = 1
2

(
α

ω0,i
+ βω0,i

)
(3-20b)

M q̈ +Dq̇ +Kq = 0→ξ̈i + 2ω0,iζiξ̇i + ω2
0,iξi = 0 (3-20c)

Figure 3-13 shows the simulation results alongside with the analytical solution and the directly
numerically integrated results for different damping ratios and the settings as specified in table
3-3. Given that the results coincide, at least for the linearized solver, the damping procedure
is correctly implemented.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.05

0

0.05

0.1

Figure 3-13: Tip displacement for linearized cantilever oscillation for different damping coeffi-
cients, analytic solution (o), simulation results (+) and direct numerical integration (x)
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3-5 Turek & Hron Benchmark

The Turek benchmark case for FSI solvers was already mentioned in the literature review in
chapter 2. For the separate validation of the structural solver without the presence of a fluid,
reference data from Turek et al. [66] is available for three different configurations. Thus only
the flexible beam part of the structure is relevant, and the only force acting on the beam is
gravity with acceleration constant g. The simulation parameters are shown in table 3-4. The
first and the second test case are the static deflection results, and the third test case refers to
the unsteady transient.

CSM1 CSM2 CSM3
ρS [kg/m3] 103 103 103

νS [−] 0.4 0.4 0.4
ES [N/m2] 1.4e6 5.6e6 1.4e6
g [m/s2] 2 2 2

Table 3-4: Turek CSM Benchmark

A limited grid and error criteria sensitivity study was carried out for both of the static deflec-
tion cases and the results are shown in figure 3-14 and 3-15, respectively. The convergence
and accuracy of the results are assessed through comparison with the benchmark results for
the tip deflection in streamwise ux and cross-streamwise uy direction. The relative error is
calculated according to

εux =
∣∣∣∣∣ux − ux,Refux,Ref

∣∣∣∣∣ (3-21a)

εuy =
∣∣∣∣∣uy − uy,Refuy,Ref

∣∣∣∣∣ (3-21b)

The most apparent finding from the grid convergence study is that for very high mesh refine-
ment the structure becomes artificially stiffer independent of the choice of the error criteria.
Since it is not feasible to run at such a high resolution anyways, the origin of this was not
further investigated. But it seems that this is related to the nonlinear shell element formu-
lation itself. Moreover, for the CSM1 settings the relative error of the displacement normal
and tangent to the inflow is at best 2% and 5%, respectively, as compared to the benchmark
results from Turek et al. [66]. Since for the benchmark result the full continuum mechanics
equations are solved in the domain of the beam, the benchmark results are expected to devi-
ate from the results obtained with the nonlinear shell elements and be more accurate because
the full strain formulation was used. For the derivation of the shell element, some of the
components of the strain formulation were neglected for the sake of simplicity and thus this
results in the observed difference in results.

For the CSM2 settings which results in a stiffer structure as compared to the CSM1 settings,
the relative error as compared to the benchmark results is smaller, because the displacements
are smaller and thus the neglected strain terms are smaller than for the larger deflection case.
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Figure 3-14: CSM1 grid convergence for four different error criteria for the streamwise (-)
and the cross-streamwise (-.) displacements with a work (D) and relative change in tip node
displacement (E) based error criterias with convergence constants εconv,D1 = 1e−5, εconv,D2 =
1e−8, εconv,E1 = 1e−5 and εconv,E2 = 1e−8
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Figure 3-15: CSM2 grid convergence for four different error criteria for the streamwise (-) and the
cross-streamwise (-.) displacements with a work (D) and relative change in tip node displacement
(E) based error criterias with constants εconv,D = 1e−5 and εconv,E = 1e−5

εux εuy
CSM1 nonlinear 5.06% 2.16%
CSM1 linear not predicted 2.16%
CSM2 nonlinear −0.70% −0.51%
CSM2 linear not predicted −0.51%

Table 3-5: Summary static deflection results
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The results from the grid sensitivity study indicate that using an error criteria based on
the relative change of the tip displacement (E) with a constant of εconv = 1e − 5 seems to
yield converged results at acceptable computational cost. Moreover, using 80 elements to
discretise the beam are also found to be sufficient. So these convergence settings will be used
for the CSM3 test case. Table 3-5 summarises the results for the CSM1 and CSM2 test cases
using both the linear and nonlinear shell element formulation for the mentioned convergence
criteria. The linear element formulation fails to capture the displacement in the direction
tangent to the inflow because deformation along the axis of the beam due to bending is not
modelled in the linear element description.

εux ε∆ux εuy ε∆uy
∆t = 0.02s 14.31% 14.21% 6.48% 5.00%
∆t = 0.01s 14.91% 14.80% 6.56% 5.28%
∆t = 0.005s 14.59% 14.45% 6.33% 5.35%
∆t = 0.001s 14.76% 14.63% 6.44% 5.35%

Table 3-6: Summary transient deflection results

For the transient test case the mean ux, uy and the amplitude of the deflection ∆ux,∆uy over
ten oscillations is used to quantify the results for comparison with the benchmark results.
The transient simulations are carried out for three different time steps as for the benchmark
cases and additionally also one smaller time step is used to see whether closer correspondence
with the benchmark data can be obtained. The relative error as compared to the reference
results is summarised in table 3-6. Only the nonlinear element formulation was used, because
as already mentioned the linear formulation does not model displacements along the shell
axis. As compared to the static deflection case of the beam, the relative deviation from the
benchmark results increases by about a factor of three. This is not ideal for the validation of
the aeroelastic solver in terms of error quantification, but given that the error mainly arises
from the limitation of the element formulation within the context of this project not much
can be done about this.

Figure 3-16 shows the time domain development of the tip displacements in the same format
as shown in the reference paper by Turek et al. [66]. One can see that the influence of the time
step on the phase and amplitude of the system response is small once the time steps become
smaller than ∆t = 0.02s. However, as compared to the benchmark results apart from the
deviation in amplitude and mean of the tip displacement, the frequency of the oscillation is also
offset by about 10 % although not explicitly quantified in the reference paper. This could be in
part due to the simplified stiffness formulation of the element, but also due to the formulation
of the mass matrix. In particular, for the assembly of the mass matrix mass lumping is used
according to Hinton et al. [113], which can lead to slower convergence of the elements to
the real inertial behaviour of the structure than using a consistent formulation. Moreover,
judging by eye and also observed in the Fourier transform of the signal, the oscillation has
two dominant frequencies, whereas the benchmark results seem to have only one dominant
frequency.
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(d) Tangent tip displacement uy closeup

Figure 3-16: Tip displacement development of the CSM3 test case for different time steps
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Chapter 4

Fluid solver

This chapter will elaborate on the implementation details of the fluid models used within the
context of this thesis alongside with a limited validation on benchmark cases. First, section
4-1 briefly outlines the inviscid method that was used for the debugging and initialisation of
the structure model before higher fidelity fluid models were used. Second and third, sections
4-2 and 4-3 focus on the two Computational Fluid Dynamics (CFD) approaches that were
employed for this project. The second approach uses a more novel Immersed Boundary
approach whereas the third one uses the conventional body-fitted mesh approach.

Because, as will be described in detail in the corresponding section, some unrecoverable issues
with the Immersed Boundary approach were discovered, a more mature solver framework was
then considered and used for the application to the fully coupled simulations.

4-1 Model 1: Vortex particle method

Fluid models based on inviscid methods are wildly used in engineering applications in the
early design stages, because of their ease of implementation and low computational demands.
However, since they do not model viscous effects they are not able to predict boundary
layer effects such as transition, separation and skin friction. Consequently, this limits the
applicability of the model to low incidence angles where attached flow can be expected.
Further, the assumption of an inviscid and irrotational flow implies that there is no vortex
decay due to viscous effects, and as such the wake vorticity of the wake will remain constant
in time. [114]

For the initial configuration of the structure solver and the coupling algorithms an unsteady
Vortex Particle Method is implemented in the Python solver framework. A short overview
over the theory behind the method and validation of its steady and unsteady behaviour can
be found in appendix B.
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4-2 Model 2: Immersed Boundary Computational Fluid Dynamics
Approach

For this part of the project, the transient, fully-turbulent Finite-Element solver Fluidity
[115] in combination with Menter’s k-ω SST turbulence model and an Immersed Boundary
treatment is used.

First, subsection 4-2-1 will shortly outline the different implementation specific details of the
fluid model. Then, subsection 4-2-2 will show the validation results on a benchmark case for
laminar flow.

4-2-1 Implementation details

Mesh One of the advantages of using a Finite-Element discretisation is its performance
on unstructured meshes. Moreover, Fluidity is an unstructured solver that is capable of
dynamic mesh optimisation which can be used to automatically refine and coarsen the mesh
in regions of high and low velocity gradients, respectively. For this thesis, this is especially
convenient since it allows the automatic meshing of complicated and deforming structures.
The implementation of the mesh adaptivity is briefly summarised in the following, the details
of the implementation can be found in [55].

To be able to optimise the mesh, an equally weighted objective based on the element size and
shape is defined. Additionally, the Hessians of solution fields - in this case, the velocity - are
used to calculate an element-specific metric. In turn, this is used to evaluate the contribution
of the element size to the optimisation objective. Based on an element’s objective value, one or
more modifications in the form of edge collapsing, edge splitting, face to edge swapping, edge
swapping and node movement are performed on the elements locally. Once the optimisation
procedure has been carried out, a mesh with appropriately sized and shaped elements should
be obtained. Finally, the field data from the initial mesh nodes is projected to the optimised
mesh nodes using a conservative Galerkin projection method.

Discretisation Because the application of Fluidity to aerodynamic flows is still in devel-
opment, the implemented options are still limited. For this project, piecewise-linear finite
element basis functions will be used for the weak Galerkin formulation in space and the
second order accurate Crank-Nicolson scheme will be used for temporal discretisation.

The fully discretised momentum and mass conservation equations are shown below

(
M + 1

2∆t(A−D)
) un+1 − un

∆t =− (A−D)un + Cpn+1/2 + fn+1/2 (4-1a)

CTun+1 =0 (4-1b)

where the derivation of the matrices from the integration of the shape functions was omitted,
moreover the gravity term is included in the force term f on the right-hand side of the
momentum equation. For the detailed derivation see [116].
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Solution procedure The solution method involves a two-step projection method. In the first
step, the full momentum equation is solved for a prediction velocity un+1

? using the pressure
from the previous time step pn+1/2

? = pn−1/2. In the second step, a correction is applied that
adjusts the velocity and pressure field such that the prediction velocity becomes divergence
free. The following two equations quantify the correction step

(
M + 1

2∆tA
) un+1

? − un

∆t = −Aun + Cpn+1/2 + fn+1/2 (4-2a)
(
CTMC +K

)
∆p = −C

Tun+1
?

∆t −Kpn+1/2
? (4-2b)

Mun+1 = Mun? + ∆tC∆p (4-2c)

where the pressure stabilisation matrix K is taken according to [117], again see [116] for the
details of the implementation. If desired, outer iterations on the coupled momentum-pressure
equations can also be specified.

Galerkin projection Since Galerkin projection is used for both the implementation of the
mesh adaptivity as well as the immersed boundary methods outlined later on, a short overview
over the main advantages will be given in the following based on the description by Farrell
and Maddison (2011) [118].

For the mesh adaptivity the projection method should be conservative, otherwise mass, mo-
mentum or energy is lost when the mesh is adapted. In particular, as compared to consistent
interpolation, Galerkin projection has the advantage of being conservative and well defined
also for discontinuous fields, i.e. when a Discontinuous Galerkin representation is used.

The theoretical background behind the projection method is relatively simple and its deriva-
tion is shown below for the projection between two overlapping meshes of the same dimension.
Given a donor mesh TD with nodesND and a target mesh TT with nodesNT , a field representa-
tion on the donor and the target mesh are given by qD =

∑ND
i=1 q

(i)
D ψ

(i)
D and qT =

∑NT
i=1 q

(i)
T ψ

(i)
T ,

respectively.

The projection error of a field qD on the donor mesh to a field qT on the target mesh is optimal
in the L2 norm if

‖qD − qT ‖ = min
q∈VT

‖qD − q‖2 (4-3)

where VT = span
{
ψ

(i)
T

}
for i ∈ {1, . . . ,NT }.

Expanding the norm in terms of the basis functions and the weighting coefficients and then
taking the derivative to obtain the optimal solution, results in

∫
Ω
qDψ

(k)
T dV =

∫
Ω
qTψ

(k)
T dV, ∀k ∈ {1, . . . ,NT } (4-4)
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or written in terms of the mass matrix

MT qT =MT DqD (4-5a)

(MT )ij =
∫

Ω
ψ

(i)
T ψ

(j)
T dV, i, j ∈ {1, . . . ,NT } (4-5b)

(MT D)ij =
∫

Ω
ψ

(i)
T ψ

(j)
D dV, i ∈ {1, . . . ,NT } , j ∈ {1, . . . ,ND} (4-5c)

The integration in eq. 4-5c requires the integration of the product of basis functions defined on
two different meshes. Numerical quadrature is only expected to be accurate if the integrand is
at least piece-wise continuous. Farrell et al (2009, 2011) [119], [118] constructed a supermesh
that creates new elements at intersection regions of the donor and the target mesh. Thus
in those intersections, both the shape function on the donor as well as on the target mesh
are continuous and well-defined polynomials. The algorithm used to create the supermesh
is complex, and thus the description is omitted here. However, it should be noted that the
evaluation of the mass matrix integrals is executed locally, such that the algorithm can also
be applied to large problems. In fact, as a consequence Farrell and Maddison [118] showed
that the computational effort of the whole projection method scales linearly with the problem
size. However, since mass lumping is employed, the additional numerical diffusion that is
introduced leads to a modification of the bounds of the projected field [119].

Summarising, Galerkin projection is a conservative projection method for overlapping meshes
of the same dimension with non-coinciding nodes and non-matching order shape functions.
Thus it is ideally suited for mesh adaptivity applications, but can also be used for the interface
projection in Fluid-Structure Interaction as will be done in this project.

Turbulence model Menter’s κ-ω SST turbulence model will be used for this project. A brief
overview will be given in the following, for a detailed description of the model the reader is
referred to the original paper by Menter (1993) [120].

In this model Menter combined the already existing κ-ω and κ-ε two-equation RANS turbu-
lence models and through the addition of a conditional term in the eddy viscosity relation a
better representation of the flow in separated regions was achieved.

The κ-ε model by Jones and Launder (1973) [121] performs well for some flow situations
but overpredicts the shear-stress in adverse pressure gradient flows. This leads to a delayed
flow separation prediction. Moreover, the viscous sublayer formulation is stiff and physically
incorrect boundary conditions are prescribed on the dissipation ε.

On the other hand, the κ-ω model by Wilcox (1988) [122] shows a stronger sensitivity to
adverse pressure gradients and has a comparatively simple formulation in the viscous sublayer,
that results in a more numerically stable formulation. Nevertheless, it also shows a strong
non-physical dependency of the eddy viscosity on the freestream specific dissipation rate ωf .

Menter thus proposed to combine the complementary advantages of the two models in one
new Baseline (BSL) formulation. He suggested to apply the κ-ω model up until roughly 50 %
of the boundary layer and then through the use of a blending function switch to the k-ε model.
This was done by reformulating the κ-ε to a κ-ω formulation and then superimpose the two
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transport equations and the model constants through a hyperbolical blending function. While
the new blended model outperformed their separate application, separation regions were still
underpredicted as compared with measurements.

Based on the main assumption of the algebraic Johnson-King (JK) model [123], that as-
sumes that the turbulent shear-stress is proportional to the turbulence kinetic energy in the
logarithmic and wake regions of the turbulent boundary layer, Menter implemented an addi-
tional modification to the newly developed Baseline model. This was done through use of a
conditional statement in combination with a blending function F2

νt = a1κ

max(a1ω,ΩF2) (4-6)

Here the first term refers to the eddy viscosity formulation as given the in the κ-ω formulation,
and the second term is taken from the JK model.

Testing the model on different, relevant flow scenarios showed that the κ-ω SST model out-
performed all the other mentioned models for all the investigated configurations. However,
while the prediction of the onset of the separation in adverse-pressure gradient flows was
significantly better predicted, the flow recovery is underpredicted [124]. In fact, all the pre-
sented models failed to accurately capture the relaxation of the velocity profiles behind a
backward-facing step flow [120].

For an LEI kite profile at a high Reynolds number, a permanent separation bubble exists on
the pressure side right behind the inflated leading edge and at large angles attack also another
separation bubble on the suction side [125]. For a simple membrane wing without an inflated
leading edge, the flow separates at the leading edge on the suction side as well as near the
trailing edge for high angles of attack. Depending on the Reynolds number either the leading
edge or the trailing edge separation bubble is more dominant. Since the κ-ω SST model
was developed specifically for strong adverse pressure gradient flows and has been thoroughly
validated, it seems a good choice for this project. However, the literature suggests that it has
a tendency to overpredict separation bubbles.

Immersed Boundary treatment Three different Immersed Boundary methods were imple-
mented in Fluidity all of which hinge strongly on the projection of a solid density field from the
mesh of the structure to the extended fluid mesh - covering both fluid and structure domain
- using Galerkin projection. The first two methods use penalty forcing for the enforcement of
the interface location with the first approach by Viré et al. [126] evaluating the force in the
whole extended fluid domain, whereas the second approach by Viré et al. [127] only calculates
the penalty forcing in a shell mesh localised at the fluid-solid boundary.

The most recent approach by Krishnan et al. [128] employs an implicit direct forcing ap-
proach where the interface is directly enforced through the imposition of velocity boundary
conditions. Since this formulation will be used for this project, the methodology is outlined
in more detail below.

Building on the use of the Galerkin projection in the two previously implemented IB methods
in Fluidity, a unity solid concentration field αs is projected from the structural mesh onto the
entire domain of the fluid mesh. Additionally, the structural velocity is also projected onto
the fluid mesh. Now two possibilities to enforce the boundary conditions arise.
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First, a smeared interface can be constructed if the imposed velocity is obtained from a linear
combination of the fluid dynamic equations and prescribed structural velocity weighted by
the solid concentration.

Second, if a sharp interface is desired a specific cut-off value for the solid concentration can
be defined. For examples, if a node has a solid concentration of above 50 %, then the solid
velocity is imposed. Otherwise, no velocity boundary condition is imposed on this specific
node. However, due to the nature of the Galerkin projection, in this case, the projected fields
will not be conserved.

In comparison with Finite Difference and Finite Volume methods with explicitly imposed
velocity boundary conditions, no extra interpolation scheme for the background or the ghost
nodes needs to be implemented. The Galerkin projection already takes care of this, because
it projects the desired interface velocity from the solid mesh on the nodes of the extended
fluid mesh.

In more detail, the method is implemented through the weighting of the test functions with
the solid concentration for the case of a smeared interface and through Boolean weighting for
the case of the sharp interface

ψj = ψfj + ψsj = α̃f,j · ψj + α̃s,j · ψj , ψs,jj = βj · ψj (4-7a)

Smeared interface:


α̃f,j = 1− αs,j , α̃s,j = αs,j

0 < αs,j < 1→ βj = αs,j

αs,j ≥ 1→ βj = 0
(4-7b)

Sharp interface:
{
αs,j ≥ 0.5→ α̃f,j = 0, α̃s,j = 1, βj = 1
αs,j ≤ 0.5→ α̃f,j = 1, α̃s,j = 0, βj = 0

(4-7c)

where ψj corresponds to the test function of the element j on the fluid mesh and αs,j is the
solid concentration obtained from the Galerkin projection.

The discretised mass and momentum conservation equations as given in equation 4-1, can
now be rewritten to

(
M + 1

2∆t(A−D)
) un+1 − un

∆t =− (A−D)un + Cpn+1/2 + fn+1/2 + fs (4-8a)

CTun+1 =− Cs,Tun+1 (4-8b)

The velocity and pressure approximation is introduced as

u = (u, v, w)T ≈
N∑
j=1

(uj , uj+N , uj+2N )T φj and p ≈
N∑
j=1

pjφj (4-9)

then for the formulation of IB method only the mass matrix and the forcing term need to be
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modified to include the velocity prescription from the structure motion

M̃i,j =
∫
Ve
ψfi (x)φj(x) + ψsi (x)φj(x)dVe for {i, j} ∈ [1, N ] (4-10a)

M = diag
(
M̃, M̃ , M̃

)
(4-10b)

f̃ s,ui =
N∑
j=1

∫
Ve
ψsj (x)φi(x)u

s,n
i − un

∆t dVe for {i} ∈ [1, N ] (4-11a)

fs = [f̃ s,u, f̃ s,v, f̃s,w]T (4-11b)

The advection and diffusion matrix remain unchanged except for being weighted with the
modified test function ψf , instead of just the test function ψ. The extension to the fractional
step method is analogue to the pure fluid equations.

Lastly, it is interesting to note how the gradient operator Cd - or the divergence operator
Cd,T - is obtained and applied.

C̃xi,j =
∫
Vi

∂
(
ψfj + ψs,jj

)
(x)

∂x
φj(x)dVi →C = diag

(
C̃x, C̃y, C̃z

)
(4-12a)

C̃s,xi,j =
∫
Vi

∂ψs,jj (x)
∂x

φj(x)dVi → Cs = diag
(
C̃s,x, C̃s,y, C̃s,z

)
(4-12b)

C̃f,xi,j =
∫
Vi

∂ψfj (x)
∂x

φj(x)dVi → Cf = diag
(
C̃f,x, C̃f,y, C̃f,z

)
(4-12c)

The first gradient operator C in equation 4-12 is applied to the pure fluid nodes and in case of
a smeared interface also to all the nodes that lie within the smeared interface. The second Cf
and the third Cs gradient operators are applied to the pure fluid and the pure structure nodes
on the extended fluid domain, respectively. The distinction between those different operators
is important to ensure that the pressure gradient in the interface region is well defined.

Moreover, the continuity equation 4-8b is written such that mass is conserved in the extended
fluid domain, such that mass flux between the actual fluid and the structure overlapping
fluid domain is possible. But because the structure velocity is prescribed in the overlapping
fluid domain and because the fluid is incompressible, the mass in the actual fluid domain is
approximately conserved.

4-2-2 Validation

The Turek & Hron benchmark case [66] also provides integrated force coefficients for the
separate validation of the fluid solver. Thus, some time was spent on the separate validation
Immersed Boundary solver on the non-moving case as well. This is done for two reasons.
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First, it will help better understand deviations from the benchmark results for the coupled
simulations in particular with regards to the limitations of the Immersed Boundary method.
While the Immersed Boundary treatment in combination with mesh adaptivity seems ideal
to treat aeroelastic problems with large deformations, the resolution of the boundary layer
is expected to be less accurate as compared to a body-conforming mesh. Second, the mesh
resolution requirements and the tuning parameters for the mesh adaptivity can already be
tested on a computationally less expensive test case with the rigid body.

CFD1 CFD2 CFD3
ρF [kg/m3] 103 103 103

νF [m2/s] 0.001 0.001 0.001
Re = Ud

νF
[−] 10 20 200

Table 4-1: Turek CFD Benchmark settings

Again, the illustration of the benchmark case can be found in figure 2-2 in the literature
review chapter. Similarly, to the structure benchmark case, for the separate fluid test case
three settings with Reynolds numbers of 20, 100 and 200 are investigated. A summary of the
settings is shown in table 4-1 where U refers to the mean inflow velocity. No slip boundary
conditions are imposed on the top, and the bottom wall of the channel. A parabolic velocity
profile according to equation 4-13 is imposed on the inlet. A zero mean pressure boundary
condition is set at the outlet.

u(0, y) =0 (4-13a)

v(0, y) =1.5U y(H − y)
(H/2)2 (4-13b)

In accordance with the separate structural model validation, the CFD1 and the CFD2 set-
tings will results in a steady solution, whereas the CFD3 test case exhibits periodic unsteady
behaviour due to vortex shedding once the initial transient has decayed. For this case, to
improve the convergence of the solution, the inlet boundary conditions are imposed incre-
mentally according to the equation below

u(0, y, t) =0 (4-14a)

v(0, y, t) =1.5U y(H − y)
(H/2)2

1− cos (π/2t)
2 (4-14b)

whereas the rest of the flow field is initialised as standing still.

Mesh convergence

A mesh convergence study is carried out for the CFD1 test case by varying the minimum
admissible edge length ∆xmin and the interpolation error bounds of the mesh adaptivity algo-
rithm in Fluidity [115]. For the mesh adaptivity, the solid concentration field and the velocity
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Case ∆xmin[m] εs[−] εu[m/s] nadapt
A1 2e− 4 0.005 0.001 123805
A2 4e− 4 0.005 0.001 76532
A3 8e− 4 0.005 0.001 53964
B1 1e− 4 0.01 0.002 195858
B2 2e− 4 0.01 0.002 102338
B3 3e− 4 0.01 0.002 65989
B4 4e− 4 0.01 0.002 64266
B5 8e− 4 0.01 0.002 41715
B6 12e− 4 0.01 0.002 29549
C 4e− 4 0.02 0.004 57322
D1 4e− 4 − 0.002 11499
D2 4e− 4 − 0.001 39420
D3 4e− 4 − 0.0005 67879
E1 4e− 4 0.1 0.001 64621
E2 4e− 4 0.05 0.001 72117

Table 4-2: Turek CFD1 mesh convergence

field are considered, where a certain percentage of the expected range of the corresponding
field is chosen for the interpolation error bound of the algorithm εu and εs, respectively. The
investigated constellations as well as the resulting number of elements nadapt in the adapted
mesh are summarised in table 4-2.

10
4

10
5

10
6

10
-2

10
-1

10
0

(a) Lift

10
4

10
5

10
6

10
-3

10
-2

10
-1

(b) Drag

Figure 4-1: Mesh convergence Turek & Hron CFD1 case, pay attention to the different scales
of the relative error in lift and drag

The benchmark data offers lift and drag values for the three test cases. Since the internal
force evaluation feature in Fluidity is currently not working in combination with the Immersed
Boundary Method used within this project, the force integration has to be done in a post-
processing script. Since external evaluation of these properties entails interpolation of pressure
and velocity gradient information, the force calculation is expected to be rather inaccurate.
Nevertheless, keeping this in mind, currently, no other option is available. However, it should
be noted that the calculation of the pressure forces is expected to be more accurate than the
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evaluation of the skin friction because here only a pressure interpolation and a subsequent
integration has to be carried out. For the evaluation of the skin friction, the velocity field
first has to be differentiated, then interpolated and finally integrated which leads to relatively
noisy skin friction data. Thus, the drag calculation which is dominated by the contribution
from pressure drag is expected to me more accurate than the lift calculation. The results of
the mesh convergence study in terms of the relative error as compared to the benchmark data
from Turek and Hron [66] are shown in figure 4-1.

Figure 4-2: Flow field detail Turek CFD1 case, on the top the D4 and on the bottom the A2
case are shown

Because of issues related to the mesh adaptivity and the force evaluation as explained in the
subsequent section, the simulations were only run with mesh adaptivity up to two seconds
by which time the number of mesh elements remained approximately constant with a CFL
number of 0.5. Afterwards, the simulations were restarted with a fixed mesh as obtained from
the adaptivity algorithm and rerun with a CFL number of 5 until convergence of the flow
field to a relative tolerance of ε = 1e− 6 was achieved.
The results of the mesh convergence study in figure 4-1 do not yield a clear conclusion towards
the mesh independence of the solution in part possibly due to the inaccuracy of the force eval-
uation. Nevertheless, some trends can be deduced with at least moderate certainty. Namely,
first reducing the minimum edge length of the mesh ∆xmin beyond 4e − 4m does not yield
a clear improvement of the accuracy of the solution for the given force calculation method.
Choosing the velocity interpolation error bound of the order of 0.5 % of the expected mean
velocity seems to yield the best results in terms of mesh size versus accuracy of the solution.
Third, in this particular case, using the solid concentration field in addition to the velocity
field to adapt the mesh mainly seems to increase the size of the mesh without improving (or
even decreasing) the accuracy of the simulation results.
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However, a closer look at the converged flow field for the cases A2 and D3 in figure 4-2, so
both cases with a minimum edge length of ∆xmin = 4e−4m and a small velocity interpolation
error bound, but without using the solid concentration field for mesh adaptivity for the second
one, reveals that this might be simply due to the inaccuracy of the force calculation method.
Because as can be seen in the figure, the outline of the body is less well resolved in the case
where the solid concentration field is not used for the mesh adaptivity algorithm even though
the lift and drag ar predicted more accurately. Thus, at least a relatively large interpolation
error bound on the solid concentration field should be used given the inaccuracy of the force
calculation method. However, setting the interpolation error bound too small as was seen for
the cases A and B results in an unnecessarily large mesh size.

Summarising, the adaptivity settings as chosen for the E1 and E2 test case seem to yield the
best results for the mesh convergence of the CFD1 case. The mesh size of roughly 70,000
elements also corresponds with what was used for the benchmark results by Turek and Hron
to obtain mesh-independent results. Although it should be noted, that direct comparison is
not advised, since the reference case uses a structured, body-conforming mesh. Moreover,
for the reference benchmark data convergence of the results is much faster, namely with only
about 15,000 elements results with approximately 1 % error can already be obtained.

Case ∆xmin[m] εs[−] εu[m/s] nadapt Norm Lm
A1 4e− 4 0.05 0.005 9503 2
A2 4e− 4 0.05 0.001 42948 2
A3 4e− 4 0.05 0.005 81130 ∞
A4 4e− 4 0.05 0.001 190205 ∞
B1 4e− 4 0.005 0.005 27220 2
B2 4e− 4 0.005 0.001 54860 2
B3 4e− 4 0.005 0.005 83354 ∞
B4 4e− 4 0.005 0.001 192283 ∞
C1 1e− 4 0.05 0.005 9596 2
C2 1e− 4 0.05 0.001 43368 2
C3 1e− 4 0.05 0.005 146779 ∞
C4 1e− 4 0.05 0.001 260445 ∞

Table 4-3: Turek CFD2 mesh convergence

Because, extending the same methodology to the CFD2 case yielded unsatisfactory results
with very noise body force computations, the force evaluation method described above was
implemented internally in Fluidity. While this does not correspond with the original approach
described in chapter 6, it is more accurate than doing the evaluation externally. In fact, what
was internally implemented is a consistent interpolation of the velocity gradients and pressure
evaluated on the fluid mesh to the interface nodes on the structure mesh. Subsequently, these
values were integrated along the exact interface location as given by the structure mesh.

Thus, another mesh convergence study was done for the CFD2 case for the settings shown
in table 4-3. The results are shown in figure 4-3. Conversely, to the CFD1 case here a clear
convergence of the integrated force values with mesh refinement is not distinguishable. The
cause of this is unclear. However, it was decided to not spend more time on this.

In fact, the unsteady CFD3 case was briefly investigated as well based on the mesh convergence
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Figure 4-3: Mesh convergence CFD2 case

results for the CFD1 & CFD2 case. However, the solver was not able to capture the vortex
shedding independent of the mesh resolution and the chosen time step. However, when
increasing the Reynolds of the setup to Re = 300 a vortex shedding was observed. Thus,
it can be concluded that this is due to the accuracy of the IB approach or the order of the
elements used to discretise the fluid.

Mesh adaptivity and force evaluation
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Figure 4-4: Convergence of lift and drag with mesh adaptivity for case A2 with either full
trajectory for every iteration or only trajectory of values directly before the mesh is adapted run
with adaptive time stepping with CFL = 5

Because the simulations using mesh adaptivity would not converge neither in terms of in-
tegrated force coefficients nor in terms of convergence of the flow field down to the desired
tolerance when using the standard Crank-Nicolson time integration scheme, a more detailed
analysis of the convergence of the transient simulation towards a steady state (for the CFD1
and CFD2 cases) was carried out. For transients with a CFL number of 0.5 as well as 5 as
shown in figures 4-4 and 4-5, respectively, significant oscillations in the integrated body forces
are observed for both time integration schemes. The source of this oscillations is numerical
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excitation through the mesh adaptivity. While the first order accurate Backward Euler finite
difference discretisation scheme damps the oscillations out within a few iterations after the
mesh adaptivity algorithm is applied, the second order accurate Crank Nicolson scheme takes
much longer to dampen the oscillations. In fact, the flow field will not converge because of the
noise introduced through the mesh adaptivity. A truncation analysis of both schemes shows
that while the Crank Nicolson method is more accurate, the leading error term is amplified by
the third derivative of the variable instead of the second one as for the Backward Euler term.
Thus, it introduces less numerical damping as compared to the other method. Going forward
when mesh adaptivity is used, the less accurate Backward Euler time stepping scheme will
be used. The numerical oscillations introduced through mesh adaptivity are better damped
as compared to the Crank-Nicolson scheme such that the dynamics of the system should still
be accurate.
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Figure 4-5: Convergence of lift and drag with mesh adaptivity for case A2 with either full
trajectory for every iteration or only trajectory of values directly before the mesh is adapted run
with adaptive time stepping with CFL = 0.5 and either the Crank-Nicolson (CN) or Backward
Euler (BE) temporal discretisation

Conclusions Some inconsistencies in the results from the Immersed Boundary methodology
were discovered through its application to the rigid Turek & Hron setup at Reynolds numbers
set in the laminar flow regime. First, the convergence of the integrated force values with mesh
refinement was not given. This could be due to the inaccurate force evaluation method, the
inaccuracy of the IB method or also the lower order of the used Finite Elements. Second, the
mesh adaptivity was shown to indeed influence the trajectory of the flow field variables. As a
consequence, its application was only useful if used sparingly. One possible cause here is that
the mesh was adapted to the solid concentration field on the fluid mesh. Since this property
changes as the mesh adapts, it is not well suited for this purpose. Moreover, some preliminary
results suggested that instead of adapting to the gradients in the solid concentration field, a
more suitable solution would be to adapt to an exponentially decaying field that scales with
the distance to the body as well as the channel walls. In addition to this, the mesh should
still be adapted to the gradients in the velocity field but with a higher threshold such that
vortex shedding in the wake of the body can still be resolved. Lastly, once deformations were
prescribed to the flag part of the setup, the discontinuity of the pressure field between time
steps would lead to divergence of the simulation because the gradient operator was not well
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defined. Given, these grave limitations it was decided that within the context of this project,
it is better advised to continue working with a more mature solver framework.

4-3 Model 3: Conventional Computational Fluid Dynamics Ap-
proach

As already mentioned in the previous paragraph, due to grave limitations in the Immersed
Boundary solver methodology, a more mature solver framework was considered. In this case,
going forwards the fluid solver foam-extend-3.2, a side branch of OpenFOAM, will be used
[129]. Blom coupled this version of foam-extend to the coupling library preCICE [130]. This
was ideally suited for this project because preCICE possesses Python ports. Both the fluid
solver as well as the coupling library are open-source. The coupled version of foam-extend
as implemented by Blom is referred to as FOAM-FSI [131]; the implementation details are
documented in the dissertations from Blom (2017) [132] and Gillebart (2016) [133].

Subsection 4-3-1 will outline the implementation specific details of the fluid solver methodol-
ogy also with respect to a moving interface. Then, subsection 4-3-2 documents a validation
of the solver on the Turek & Hron FSI benchmark results for the rigid setup.

4-3-1 Implementation details

Discretisation foam-extend uses a Finite Volume approach for the spatial discretisation of
the incompressible Navier-Stokes Equations, where various options for the discretisation of the
spatial derivative are available. The time integration is done using the method of lines, where
again some discretisation schemes are available. For this project, fairly standard discretisation
schemes were chosen, and the settings are listed in appendix C-1.

Governing equations on a moving grid Because the boundaries of the fluid domain move to
accommodate the current structure interface once the structure starts deforming the governing
fluid dynamics equations 2-11 need to be rewritten in a moving framework. First, rewriting
the equations in a conservative form and applying the basic assumptions related to the Finite
Volume approach yields the spatially discretised Navier-Stokes equations below

∑
f

ufnfSf =0 (4-15a)

V
∂u
∂t

+
∑
f

nf · ufuf + ν
∑
f

(∇u)f nfSf =−
∑
f

pfnfSf (4-15b)

for a cell volume V with face areas Sf , cell centre velocity u and interpolated cell face velocity
uf and pressure pf . For a moving grid, the momentum equation can now be rewritten in an
Arbitrary Lagrangian-Eulerian framework as
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V
∂u
∂t

+
∑
f

nf · (uf − umesh) uf + ν
∑
f

(∇u)f nfSf =−
∑
f

pfnfSf (4-16a)

where umesh is the speed of the mesh. In order to ensure time consistency of the discretisation
on a moving mesh the Discrete Geometric Conservation Law is used for the determination of
the mesh velocity. The conservation law ensures that for a uniform flow the time integration
is exact [?]. If a Finite Volume discretisation is used the semi-discretised conservation law
can be written as

∂V

∂t
=
∑
f

(umesh · nfSf ) (4-17)

such that the volume swept by the moving cell boundaries is equal to the change in the volume
of the cell. The mesh velocity to be used in the ALE formulation of the NS equations can be
obtained from this equation consistent with the temporal discretisation of the terms on the
left-hand side.

Mesh Because in foam-extend the Fluid-Structure Interaction problem will be solved using
an Arbitrary Lagrangian-Eulerian approach, mesh adaptivity is not needed as compared to
the Immersed Boundary approach in Fluidity where the mesh needs to be adapted to follow
the outline of the deforming body. Thus here a conventional unstructured mesh approach
will be used. However, because Finite Volume schemes are more sensitive to skewed cells
than Finite Element solvers, foam-extend has to employ non-orthogonal corrections within
the solution procedure of the solver to correct for non-orthogonality of the cells. In fact, since
only simple geometries are considered within the context of this project, de facto structured
meshes are used that are however written in an unstructured mesh format.

Interface interpolation and mesh deformation Radial Basis Functions (RBFs) are used for
mesh deformation as well as interface interpolation. The interface interpolation method is
detailed in section 6-2-4. Similarly, for the mesh deformation the RBF is calibrated with the
displacements at the interface, and then interpolation is used to transfer the displacements
away from the interface into the rest of the mesh. Here, Thin Plate Spline functions, because
they generally yield a good mesh quality for the deformed mesh [?]. For a detailed description
of the methodology, see Gillebart et al. (2016) [134].

Solution procedure Similar to Fluidity, in foam-extend a number of projection based al-
gorithms are implemented that solve the coupled pressure-momentum equations. The most
basic form of the Algorithm is the SIMPLE algorithm which involves one predictor and one
corrector step, where outer iterations (equal to the nonlinear iterations in Fluidity) can be
specified to ensure that the continuity as well as the momentum equations are fulfilled. The
predictor step solves the momentum equations for an uncorrected velocity that does in gen-
eral not fulfil the continuity equation based on the pressure information from previous time
steps. Subsequently, the corrector step solves a Poisson equation for the pressure based on
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the uncorrected velocity and thus obtains a prediction of the pressure. Subsequently, this
pressure correction is used to adjust the uncorrected velocities from the predictor loop. How-
ever, this corrected velocity does not fulfil the momentum equation anymore such that this
process has to be repeated until the continuity as well as the momentum equations are ful-
filled. For steady-state cases, different implementations of the basic SIMPLE, as well as the
SIMPLEC algorithm, are implemented, because inherently the basic SIMPLE algorithm is
not consistent and neglects some terms in the derivation of the momentum equation and thus
requires underrelaxation for convergence. Due to the inclusion of an estimate of those terms
the SIMPLEC algorithm generally converges faster. [135]

For transient cases, the PISO algorithm is used, which now also considers time derivative terms
and uses one predictor and a specified number of pressure corrector steps. Now, differentiating
between inner and outer correction loops for one time step, inner correction loops refer to
the number of pressure corrector steps in the algorithm and outer iterations refer to the
number of correction steps where the nonlinear advection terms (and possibly also source
terms) are updated. For small time steps which fulfil the CFL condition, outer correction
loops are usually not necessary because it is assumed the effect of the nonlinear terms in the
momentum equation is less significant than the pressure-velocity coupling [136]. However, for
large time steps as present in steady-state solvers, the opposite holds true.

Lastly, in foam-extend also the PIMPLE (or iterated PISO) algorithm is implemented which
blends the SIMPLE and the PIMPLE algorithm together and thus allows transient simulations
at CFL numbers larger than one. This is accomplished by applying a specified number of
inner pressure correction loops as is custom for the PISO algorithm and building and outer
correction loop around the PISO loop as necessary for the SIMPLE algorithm for convergence
of the nonlinear terms [136, 137]. While this implicit coupling makes the transient simulations
stable for larger time steps, it may not necessarily be physical depending on the importance
of the neglected time scales on the global behaviour of the flow and the order of the time
integration scheme.

As already mentioned in the literature review section 2-2-1, for FSI problem using an ALE
approach the Navier-Stokes Equations need to be solved on a moving grid. Thus, additional
complexities occur due to having to solve the equations on a moving mesh. For the specific
implementation used in this project see Blom (2017) [132] with particular reference to the
time-consistent implementation on moving meshes.

Turbulence model The conclusions that were drawn for Fluidity with reference to the most
suitable turbulence models also hold for foam-extend. Because foam-extend is only a side
branch of OpenFOAM, transition models are not available either.

4-3-2 Validation

Again, to gain some experience with the solver and its meshing requirements for the FSI
benchmark case, here also first a separate validation of the fluid solver without the coupling
to the structural solver is carried out based on the reference results from Turek and Hron [66].
The case setup was already documented in section 4-2-2 where the validation of Fluidity is
carried out and thus will not be repeated here.
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Figure 4-6: Mesh convergence Turek & Hron CFD benchmark cases

For each one of the three CFD cases, three simulations with varying mesh density were carried
out. The coarsest mesh consists of roughly 6000 elements, whereas the regular and the fine
mesh have close to 24,000 and 54,000 elements, respectively. The deformed fluid mesh is
shown in figure 7-4. The mesh convergence results for the steady as well as the unsteady
benchmark case are shown in figure 4-6. A clear convergence trend towards the benchmark
results can be distinguished for all the cases. Similar to the results from Fluidity, here also
drag values are more accurately predicted. However, it should be noted that especially for
the unsteady cases the deviation from the reference results is not insignificant and a much
finer mesh would be needed to capture the vortex shedding accurately. In fact, the coarsest
investigated mesh configuration fails to capture the onset of the vortex shedding for this
Reynolds number. In figure 4-7 an excerpt of the fully periodic lift an drag prediction for the
CFD3 case is shown. It can be seen, that while the mean value of the lift and the amplitude of
the amplitude of the drag oscillation are not well predicted, the qualitative behaviour agrees
well with the reference results.
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Figure 4-7: Time history of the unsteady vortex shedding for the CFD3 case alongside with the
reference results in black (:)

Concluding, for the separate validation of the fluid solver with the Turek & Hron benchmark
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case, the setup in foam-extend shows good convergence towards the reference results with some
inaccuracy for the unsteady results when using a mesh with up to roughly 54000 elements.
This is however not expected to be that important since for the FSI benchmark case the
deformation of the structure will dominate over the vortex induction for the non-moving
case. Thus the influence of the inaccuracy of the solver in the prediction of the onset of the
vortex shedding is less significant with regards to the overall accuracy of the solver.
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Chapter 5

Coupling algorithm

As outlined in the literature review in chapter 2, two different coupling methods have been
deemed useful for this project due to their efficiency gains over a standard serial coupling
scheme and their negligible implementation effort. The first scheme is the standard Aitken
under-relaxation scheme [58] and the second one is the IQN-ILS scheme, more recently de-
veloped by Degroote et al. [60].

A brief description of both methods is given in the following in section 5-1. Then the efficiency
of the methods is compared on a simple test case through coupling of the structural solver
framework with the vortex particle method in sub-section 5-2.

5-1 Methodology

The standard ALE domain composition is a Dirichlet-Neumann decomposition of the fluid
and structure domain, where the structure imposes certain domain boundaries and velocities
on the fluid and the fluid, in turn, imposes forces on the structure at the interface. For the
immersed boundary method used in this project, the same domain decomposition is used.
The fluid and structure solver can be represented as operators F and S, respectively. The
operators act on the interface displacements d and the interface forces f .

d = S (f) (5-1a)
f = F (d) (5-1b)

As already mentioned two coupling schemes were implemented in the Python solver frame-
work, the basics of the two algorithms have already been outlined in the literature review
section 2-4-2 and are further elaborated on in the following. Both algorithms are also imple-
mented in preCICE, and thus the Python implementations were only used for coupling with
the VPM method.
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Method 1: Serial scheme with dynamic relaxation

The relaxation parameter is calculated according to the Aitken under-relaxation method
detailed in Kuttler and Wall [58].

Method 2: Newton scheme with residual based Jacobian approximation

Degroote et al. [60] developed an inverse Jacobian approximation based on previous sub-
iteration results, the method is referred to as IQN-ILS and briefly outlined below.

First, the residual of an iteration step is defined according to

R (ds) = F̂ (ds) = S ◦ F (d)− d = d̃− d (5-2)

From this, two matrices are formulated at every sub-iteration step where k ≤ 2, the matrices
have to be updated at every sub-iteration step

V k =
[
∆Rk−1 . . .∆R0

]
with ∆Ri = Ri −Rk (5-3a)

W k =
[
∆dk−1 . . .∆d0

]
with ∆di = di − dk (5-3b)

Now the desired solver residual change ∆R = 0−Rk can be obtained as a linear combination
of the residuals from the previous sub-iterations. The coefficients α obtained from the solution
of this Least Square problem can then be used to gauge an estimate of the change in the
structure displacement d̃

∆R = 0−Rk = V Kαk → αk = . . . (5-4a)
∆d̃ = W kαk (5-4b)

From this now the change in displacement for the next sub-iteration can be determined. Thus
the inverse of the Jacobian was implicitly calculated

∆dk = −J (−1)
F̂ Rk = W kαk −∆R (5-5a)

dk+1 = dk + ∆dk (5-5b)

When a desired residual change ∆R is orthogonal to one or multiple rows of V k, then the
corresponding coefficients are zero αl = 0. When the displacement input for the next sub-
iteration is calculated accordingly, only the residual term is left for those basis vectors, and
thus then a standard Gauss-Seidel iteration is performed in that specific direction of the
solution room.
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5-2 Validation

The validation of the coupling algorithm is done using the quasi-steady structural solver and
the unsteady Vortex Particle Method. By choosing the grid points of the structural and
the vortex particle mesh coinciding error introduction through interpolation is avoided. The
test case is a membrane rigidly clamped at leading and trailing edge subjected to inflow at
different angles of attack. Since the unsteady Vortex Particle Method is two-dimensional and
the structural solver is three-dimensional, the loads from the aerodynamic model need to be
extrapolated to create a quasi-two-dimensional load on the three-dimensional structure. The
setup is chosen in close correspondence with the experimental setup of Greenhalgh et al. [84,
3]. The inflow conditions are chosen such that they correspond to a Reynolds number of 1.3e6
at standard air conditions. The wing properties and discretisation are chosen according to
table 5-1 with boundary conditions that support that quasi-two-dimensional load imposition,
namely no spanwise displacements and no rotation around the axes in the spanwise plane on
the side nodes of the clamped membrane. See figure 2-4 for illustration of the setup in the
literature review section.

ES 1.25e9N/m2

νS 0.3
hS 1e−3m

(Nx, Ny) (40, 1)
(Lx, Ly) (1m, 0.025m)

Table 5-1: Membrane properties and discretisation

The wind speed is kept constant throughout the simulation time; however, the angle of attack
undergoes periodic stepwise changes as shown in figure 5-1. A time step of ∆t = 0.025s is
used for the simulations, where each discontinuous change in angle of attack is followed by
two sub-iterations with a rigid structure with a time step of ∆tsub = 0.001s. Otherwise, the
simulation becomes unstable due to the time discretisation of the circulation in the Vortex
Particle Method. The resulting aerodynamic forces are shown in figure 5-1(a).

Then, figure 5-1(b) shows the necessary computation time for both the Aitken under-relaxation
and the IQN-ILS coupling scheme, both run with the same computational architecture. For
this strongly coupled problem with up to 40 coupling iterations, the IQN-ILS algorithm out-
performs the under-relaxation scheme in terms of efficiency. In fact, for the simulated time
where both methods were used, the overall computation time was reduced by a factor of
six when using the IQN-ILS method as compared to the simple under-relaxation algorithm.
Moreover, the under-relaxation overall required twice the amount of coupling iterations, but
with almost 30 times more evaluations of the fluid and structure solver.

Lastly, figure 5-2 shows the almost steady state lift coefficient versus the inflow angle for
the time domain simulation results shown in figure 5-1. Despite the dynamic and damping
effects being neglected in the structural model, the lift curve still shows a hysteresis effect as
described by Greenhalgh et al. [3]. Due to inertial effects in the flow field, the membrane
remains deflected to the same side as previous angles of attack past the zero degree inflow
condition. Shortly after zero degrees, it begins to show an inflexion point and then at around
two degrees it fully snaps through to the other side. This effect is more pronounced for more
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Figure 5-1: Coupling method comparison through time domain simulation with unsteady fluid
solver and quasi-steady structural solver

flexible materials or for a larger excess length of the membrane as compared to the chord
length [3].
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Figure 5-2: Lift hysteresis membrane wing
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Chapter 6

Interface interpolation

For the interpolation of the structure node displacements on the structure mesh and the forces
on the fluid mesh, a simple methodology had to be implemented. For the two different solvers
and FSI approaches, slight adjustments had to be made. This section outlines the method
for the Immersed Boundary solver in detail 6-1. Then section 6-2 lists the adjustment that
had to be made to apply the method to the Arbitrary Lagrangian-Eulerian approach.

6-1 Immersed Boundary technique

For the Immersed Boundary method implemented in Fluidity, the communication between
the structural and the fluid model requires three steps. First, the extrusion of the zero-
thickness structure mesh to a fully three-dimensional mesh. Second, the integration of the
interface forces on this mesh and the subsequent projection of the force from the extruded
mesh to the structure mesh. Lastly, in reverse, the velocity of the structure nodes needs to
be extrapolated to the fluid mesh as well. The following subsection outlines the methodology
in more detail.

6-1-1 Mesh extrusion

The two-dimensional surface mesh of the shell as modelled in the structure solver needs to
be extruded to a three-dimensional body because the fluid solver is unable to work with a
zero-thickness surface. The extrusion is done normal to the surface mesh with the actual
zero-thickness interface location of the shell located in the middle of the extruded mesh. If
possible, the thickness is chosen coinciding with the actual physical thickness of the shell
elements; however, a lower limit is imposed on the thickness through the Immersed Boundary
solver implementation in Fluidity. Thus for very thin structures, the thickness does not
correspond with its physical dimensions.

Due to restrictions in computational time, at least initially a two-dimensional setup is in-
vestigated. Thus given that the structural solver is inherently 3D, the loads from the 2D
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fluid solver need to be imposed on the structure such that the structural dynamics become
essentially two-dimensional. Thus in the following, the mesh extrusion is done for the two as
well as the three-dimensional case.
Due to the simple geometries investigated within the scope of this project, a simple geometrical
algorithm is used to create the surface normals. Depending on the dimension of the fluid
simulation space, this is done as outlined below.

(a) 2D mesh (b) 2D mesh refined

Figure 6-1: Example of a 2D extrusion mesh (black) with the underlying structure mesh (orange)
in the background

2D fluid domain For each node the normals based on the two intersecting lines and the
orientation of the two-dimensional simulation space are calculated, and then the mean
of both normals is taken to be the normal of the corresponding node. For boundary
nodes no averaging takes place. Now displacing from the structural mesh outwards
along the normals an extrusion mesh is created. Because Fluidity is not able to deal
with quadrilateral elements, they are split up into triangles as pictured in figure 6-1. For
increased accuracy of the interpolation scheme also a refined version of the extrusion
mesh is created, where between two structure nodes an additional interpolation node is
introduced. This will be explained further in the next subsection.

3D fluid domain For each node all intersecting elements are identified. Then for each
element, a normal is calculated based on the intersecting edge lines of the element.
Subsequently, for each node the normal is obtained by averaging the normals from all
the intersecting elements. The extrusion along the element normals results in a mesh
consisting of triangular prisms. Due to Fluidity’s inability to deal with this type of
elements, the triangular prisms are split into three tetrahedrons on both sides of the
original shell mesh as pictured in figure 6-2. The splitting needs to be done such that
the edge lines between the elements overlap, which is straightforward for an open mesh.
However, if the mesh were to for example form a cylinder, special attention should be
paid to this.

6-1-2 Force projection

Once the volume forces have been projected onto the extrusion mesh, a reduction of the
properties on the extrusion mesh to one dimension smaller structure mesh has to be carried
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(a) 3D mesh detail (b) 3D mesh

Figure 6-2: Example of a 3D extrusion mesh, the triangular prisms are split into tetrahedrons
according to (1, 2, 3, 2+),(1, 3, 1+, 2+),(3, 1+, 2+, 3+),(a, b, c, a+),(b, c, a+, b+),(c, a+, b+, c+)

out. This can either be done exactly through the integration of the shape functions on the
extrusion mesh or less accurately by averaging the values along wall normal directions. The
second methodology is somewhat justified if the extrusion mesh thickness is small and a
sufficient number of nodes are used in the tangential direction of the structure such that
gradients are sufficiently resolved. However, such an interpolation scheme is not conservative
- albeit consistent - such that momentum is either lost or created through the interpolation
process which can accumulate over the duration of the simulation. A direct comparison would
have to be made to quantify the effect of the less accurate interpolation scheme.

When the shape functions as defined on the extrusion mesh are used to integrate the volume
forces, either exact or numerical integration can be used. For non-uniform elements, it is
more practical to use numerical integration. However, in case numerical integration is used,
the accuracy of the integration scheme needs to to at least as high as the accuracy of the
Galerkin projection (used for the projection of the fluid properties to the extrusion mesh) and
the discretisation errors expected in the structure as well as the fluid model.

For the two-dimensional case the numerical integration of the shape functions is easily
implemented given that the extrusion mesh is refined as compared to the underlying structure
mesh, such that integration over four elements will yield the force on one node as pictured in
figure 6-1(b).

First, a standard isoparametric transformation - see figure 6-3 - for linear element formulations
is introduced to switch between the coordinates of a quadratic triangle and an irregular
triangle with vertices (ξi, ηi) and (xi, yi), respectively, according to

[
ξ
η

]
= 1

(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)

[
y3 − y1 −(x3 − x1)
−(y2 − y1) x2 − x1

] [
x− x1
y − y1

]
(6-1)
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The shape functions on the quadratic triangle are defined as

φ1 =1− ξ − η (6-2a)
φ2 =ξ (6-2b)
φ3 =η (6-2c)

where the volume force distribution with node values ai on the element in isoparametric
coordinates is given by

f(ξ, η) = a1ψ1 + a2ψ2 + a3ψ3 (6-3)

such that the integration of the force over the element can be written as

F e =
∫
A
f(x, y)dxdy =

∫
A
f(ξ, η) |det J | dξdη = |det J |

3 (a1 + a2 + a3) (6-4)

with J the Jacobian of the isoparametric transformation. The Jacobian is constant throughout
the entire element because the shape functions are linear. This also means that the force
integration can be done exactly as written out above. The force on a specific node is then
given by summing the element forces over the four elements having an edge coinciding with
this specific node.

Figure 6-3: Isoparametric transformation triangle coordinates

For the three-dimensional case, in principle, the same integration procedure can be per-
formed. However, this would require a more refined mesh with an additional interpolation
node between the regular nodes of the structure. The mesh generation procedure would,
however, become more complicated. Thus for this project, only the averaging approach is
implemented. The integral of the force in one tetrahedron F e on the positive side of the
structure mesh is approximated as
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F e = VE
2 (fa + fa+) (6-5)

where the sum of the force over all the tetrahedrons assigned to the appropriate node - in this
case node a - will yield the force distribution along the structure surface. This is identical to
the interpolation scheme employed by Viré et al. [127] for a very similar Immersed Boundary
Method as used for this project.

6-1-3 Velocity extrapolation

Because the thickness of the shell element is assumed to be small, the rotational velocity
of the element is neglected when extrapolating the velocity of the two-dimensional structure
mesh to the extrusion mesh. Thus only the translational velocity of the nodes as obtained
from the displacement difference between time step using forward Euler is used.

Alternatively, a more consistent way to prescribe the velocity on the extrusion mesh would
be to obtain the nodal velocity on the extrusion mesh from the node movement between time
steps.

6-1-4 Validation

The validation of the interpolation scheme is done in two steps. First, it is verified that the
volume of the mesh is conserved by imposing a uniform force field. For deformed geometries
due to the straight edge lines of the extrusion mesh elements, this is only satisfied approx-
imately. Second, the consistency of the integration scheme is checked by imposing simple
discontinuous force fields on the extrusion mesh and checking with the analytical solution.
Here, the integration is fully accurate because first-order basis functions are used for the force
imposition. Due to the simplicity of the interpolation scheme, the details of the validation
are not documented here.

6-2 Body fitted mesh approach

For the conventional ALE approach in FOAM-FSI, a very similar interpolation approach can
be taken as for the Immersed Boundary approach. The following subsections point out the
subtle differences and explain the interface interpolation method in more detail.

6-2-1 Mesh extrusion

In theory, foam-extend-3.2 should be able to model zero-thickness surfaces, however within
the context of this project some issues were encountered and thus the simplest solution was
to actually model the thickness of the surface. Thus, the same mesh extrusion algorithm as
for Fluidity was used. The only difference is that for an ALE approach only the interface
node location is of interest. Moreover, because foam-extend is a Finite Volume solver, it is
less sensitive to the types of element used for the surface mesh. However, since only 2D fluid
simulations are run within the context of this project, this does not matter.
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6-2-2 Force projection

The methodology implemented in Fluidity is based on volume forces, whereas in foam-extend
the methodology is based on surface forces. Thus, the force integration is only carried out
along the interface surfaces. According to standard conventions, the stress as obtained from
foam-extend is calculated at the centre of the line elements. Subsequently, the stress distribu-
tion can be integrated to yield the nodal force values on the extrusion mesh. In this work, the
stresses are assumed to be constant between two neighbouring centres of a line element. The
force integration is validated through comparison with the internal force calculation in foam-
extend. Then, the same force projection method as for the Immersed Boundary approach is
used to obtain the nodal forces on the structure mesh. Again, since a 2D fluid model and a
3D structure model is used, the fluid forces are extruded and scaled to the structure mesh to
obtain a quasi-3D load distribution.

6-2-3 Velocity extrapolation

The node velocity that the fluid solver uses is calculated internally within foam-extend; hence
this step is not needed for this methodology.

6-2-4 Interface interpolation

Since in general, the fluid and structure mesh do not match at the interface, an interpolation
scheme needs to be implemented. Hence two transfer matrices Hsf and Hfs need to be
derived that interpolate the surface forces f from the fluid to the structure interface and the
displacements q from the structure to the fluid interface as below

qfluid = Hsfqstructure (6-6a)
fstructure = Hfsffluid (6-6b)

such that kinematic and dynamic boundary conditions can be fulfilled at the interface between
fluid and structure. Similar to the Geometric Conservation Law used for the derivation of the
mesh velocity in the ALE framework, the interpolation should be consistent such that constant
values on one side of the interface are interpolated to constant values on the other side of
the interface. Additionally, for stability and accuracy of the solution, it would be desirable
that the work over the interface is conserved. This is done by establishing a relationship
between the two interpolation steps such that the interpolation from the fluid to the structure
and reverse are coupled through an integration of the work transmitted over the interface.
However, depending on the chosen interpolation scheme the conservative interpolation method
introduces unphysical pressure oscillations in the interpolated values [138].

Different approaches to interface interpolation exist based on either nearest neighbour inter-
polation, projection methods or spline interpolation. If the temporal and spatial discretisation
error in the fluid and the structural solver is of order two or lower, de Boer et al. (2010) [138]
recommend using a compact Radial Basis Function (RBF) interpolation with a high sup-
port radius and a consistent interpolation approach to avoid oscillations. If the order of the

J. Steiner Master of Science Thesis



6-2 Body fitted mesh approach 77

system is higher than two, they recommend using the more expensive conservative Gauss In-
terpolation approach (similar to Galerkin projection in Fluidity), because in case of the RBF
approach the interpolation error over the interface would be larger than the discretisation
error of the system itself.

Consequently, for this project given that the system discretisation order is lower or equal than
two, a consistent RBF approach will be used. For a generic spline interpolation function w(x)
with addition of a linear polynomial q(x) that ensures consistency of the interpolation can be
written as

wA(x) =
nA∑
j+1

γjφ (‖x− xAj‖) + q(x) (6-7)

where nA refers to the number of interface points WAj of the reference side of the interface.
For obtaining a consistent transfer matrixHAB two interpolation conditions have to be fulfilled

wA (xAj) =WAj ∀j ∈ [1, nA] (6-8a)
nA∑
j=1

γjs (xAj) =0 (6-8b)

for all polynomials s (x) with degree less than or equal to that of the polynomial q (x). The
first condition enforces that the source interpolation points are exactly recovered.

For this project, Thin Plate Spline functions with global support will be used, since this type
of spline function is expected to perform well for this type of problem [139]. A thin plate
spline function is given by the function below

φ (‖x‖) = ‖x‖2 ln ‖x‖ (6-9)

When using this in combination with a linear polynomial that ensures consistency of the
interpolation scheme a linear system of equations can be constructed based on equations
6-8. The derivation of the transfer matrices involves the inversion of two matrices roughly
of the same size as the number of the fluid and the structure interface nodes, respectively.
However, since it is assumed that interface deformation is not too large, the construction of
the conversion matrices is only done initially, and thus the computational effort necessary for
the matrix inversion is not significant.

Lastly, it should be noted that while in preCICE different interpolation schemes are imple-
mented, the author was not able to use the RBF interpolation in 2D. Thus, the interpolation
scheme was implemented internally in the Python solver. Such that in fact, preCICE uses
Nearest Neighbour interpolation.
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Chapter 7

Coupled simulations

In this chapter, a validation of the full solver methodology on three strongly coupled bench-
mark cases is carried out. First, in section 7-1 the model is applied to a classic FSI benchmark
case positioned in the laminar flow regime. Second, in section 7-2 a two-dimensional mem-
brane wing at a Reynolds number of above one million is modelled. Lastly, in section 7-3 a
two-dimensional single membrane sail wing constellation with a rigid leading edge is investi-
gated at a Reynolds number of roughly a third of a million.

7-1 Turek & Hron Benchmark

The results for the Turek & Hron FSI1 & FSI3 benchmark are presented below; the FSI2 case
is left out because there is only limited reference data available. Moreover, the second setup
contains quite large deformations and in initial attempts proved more difficult to model.
Additionally, given the limitation of the shell element as described in subsection 3-5 for
modelling the comparatively thick flag structure, it was decided not to investigate the FSI2
case in more detail. The structure and fluid properties are listed in table 7-1, information
on the geometry of the setup have already been in listed in table 2-1. The details of the
implementation on the fluid side with regards to boundary conditions and mesh requirements
were already described in subsection 4-3-2. The fluid solver settings can be found in appendix
C-1-1. For the coupling algorithm in preCICE the IQN-ILS method was chosen with a
relatively strict coupling tolerance of εcoupling = 1e−6, because otherwise, unphysical pressure
oscillations would introduce noise in the interface forces. Moreover, two mesh interpolation
approaches were tested. First, the most simple setup with Nearest Neighbour interpolation
and coinciding structure and fluid mesh nodes was tested. Second, consistent Thin Plate
Spline Radial Basis Functions with a global support radius were used. In case, RBF functions
are used for the interface interpolation, the structure is discretised using Ns = 80 equidistant
elements. The resolution is chosen accordingly, because from the separate validation of the
structural solver in subsection 3-5 on this particular setup it was determined that using this
number of elements is expected to give the best results. Further increasing the number
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of elements did not improve the accuracy of the solution and lead to the introduction of
convergence issues. For the fluid mesh, the same three meshes as for the separate validation
of the fluid solver with the number of elements ranging between roughly Ncells ≈ 6, 000 and
Ncells ≈ 53, 000 are used.

FSI1 FSI2 FSI3
ρS [kg/m3] 103 104 103

νS [−] 0.4 0.4 0.4
ES [N/m2] 1.4e6 1.4e6 5.6e6
ρF [kg/m3] 103 103 103

νF [m2/s] 0.001 0.001 0.001
Re = Ud

νF
[−] 10 20 200

Table 7-1: Fluid and structure properties for the benchmark case

The relative error as compared to the results from Turek & Hron [66] was evaluated by
comparing the tip displacement of the beam in the lateral and transverse direction, as well
as, the integrated body force exerted by the fluid so lift and drag of the body.

The mesh convergence results for the steady FSI1 case are shown in figure 7-1. When Nearest
Neighbour interpolation with coinciding nodes is used, the convergence of the solution on the
mesh is not given due to the restrictions of the structural solver and the convergence issues for
higher resolution of the structure mesh. However, when using consistent RBF interpolation
with a fixed number of structural elements and varying density fluid meshes, when going
from about 24, 000 to 53, 000 elements the change in the interface forces and as well as the
interface displacements is smaller than 1 %. Thus, for a fixed number of structural elements,
the solution seems to converge on the mesh. Now looking at the accuracy of the results
as compared to the benchmark results for a fixed number of structural elements with RBF
interpolation. The deviation is largest for the displacements in the lateral direction with close
to 25 % directly followed by the displacements in the tranverse beam direction with roughly
9 %. This was expected given the shortcomings of the structural solver for this particular
test case. Since the spread in results is relatively small, comparison with the other reference
results for this case as given in Turek et al. [1] was omitted.
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Figure 7-1: Mesh convergence of the FSI1 benchmark case
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The mesh convergence results for the unsteady, periodic FSI3 case are shown in figure 7-
2. Again the comparison with the results from Turek & Hron [66] is carried out. Direct
comparison with the other reference results as given in Turek et al. [1] is omitted, because the
spread in results is relatively small, as well as, Turek & Hron [1] obtained the most consistent
convergence of the results with increasing mesh density. Again, due to the restrictions of the
structural solver, coinciding meshes with Nearest Neighbour interpolation did not perform
well. Thus, only the cases run with RBF interpolation are discussed in more detail. It should
be noted that for the temporal discretisation of the structure the Implicit Euler scheme with
a time step of ∆t = 0.0005 was used for all the transient simulations. Given the difficulty
of this test case, the discrepancies between simulation and reference results in the averaged
mean, and amplitude values are quite high for some of the observed quantities. However,
some of these parameters are hard to predict or expected to be badly predicted. First, the
longitudinal beam displacements are not well modelled by the structural model. Second, the
drag amplitude, as well as, the mean lift values are quite small and thus difficult to attain. For
the remaining parameters, the maximum errors in the mean as well as amplitude values for
the remaining parameters are at worst about 10 % and show a clear trend with the refinement
of the fluid mesh.
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Figure 7-2: Mesh convergence of the FSI3 benchmark case with mean (−) and amplitude values
(−−) of the forces on the body and the tip displacement

Moving on to figure 7-3 and comparing with the time series plots from Turek & Hron [66]
shows a clear correspondence between the results even though the mesh is not fine enough
to indicate mesh-independence of the results. Thus, it can be concluded that qualitatively
the results agree well with the reference results. However, the quantitative agreement is poor
given the restriction of the structural model and possibly also the insufficient resolution of
the fluid mesh as indicated by the results from the separate validation of the fluid solver for
this particular setup.

To illustrate the full simulation setup, figure 7-4 shows the deformed configuration for the
FSI3 case using the finest fluid mesh with roughly ncells ≈ 53000 cells including also the
interface nodes of the structure.

Lastly, it should be noted that the initial simulation results showed very strong pressure
oscillations even for very small time steps that eventually lead to the divergence of the coupled
simulation. The origin of the oscillations was traced back to the undamped Crank-Nicolson
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Figure 7-3: Time series results for the FSI3 case using RBF interpolation and varying density
fluid meshes and the mean and extreme values of the reference results in black (:)

time integration scheme of the structure. Thus, in the following, at least for cases where
no structural damping is applied, the Implicit Euler scheme is used for the integration of
the structure to stabilise the coupled simulations. This diminishes the accuracy of the time
integration scheme but is in this case necessary to obtain converging results.

7-2 Greenhalgh setup

This section will apply the solver to a two-dimensional membrane wing constellation set in a
flow regime with a Reynolds number of above one million, where experimental reference data
is available from Greenhalgh et al. [3, 84, 85]. The experimental setup was already shown
in figure 2-4 in the literature review section. The following subsections outline the different
aspects of the case.

Sections 7-2-1, 7-2-2 and 7-2-3 outline the entire modeling process as well as the mesh conver-
gence study. Sections 7-2-4, 7-2-5, 7-2-6 describe the results using a steady-state and unsteady
model, as well as, the initialization procedure for the coupled simulations.
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(a) Mesh for the solid (white) and the fluid (black)

(b) Flow field

Figure 7-4: Snapshot of the results for the FSI3 benchmark case

7-2-1 Setup and modelling simplifications

Even though the experimental setup from Greenhalgh is quite elementary, the following mod-
elling simplifications are made.

• The canopy material is wrapped around rigid, elliptical metal rods at the leading and
trailing edge with a fixed chord length C. However, depending on the local inflow angle
the rods are mounted such that they can freely rotate around their centre. Because this
would require the implementation of unsteady boundary conditions for the structural
solver, the modelling of the rotation of the supports is neglected.

• On a similar note, because in the experiment the material is wrapped around the ellip-
tical supports and has virtually no bending stiffness at the attachment point depending
on the inflow angle, the material will be tangential to the support outline. However,
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this would be very difficult to model. Hence, to ensure that the membrane does not
overlay with the supports a nonlinear boundary condition would have to be introduced.
Thus, in the modelling process special care has to be taken to avoid crossover of the
membrane into the supports. Thus, the rotation about the attachment point is set to
zero in the structure model.

• Lastly, given that, in general, the order of the thickness of membrane wings is smaller
than 1 millimetre, it would be easiest to model it as a zero thickness surface with regards
to mesh generation and mesh deformation. However, with the external meshing tool
that was used for this project the author was not able to successfully import the zero
thickness surfaces (called baffles) in foam-extend-3.2. Even though, the same setup
worked in OpenFOAM-3.0.0. Thus, the membrane was modelled with a finite thickness
of h.

A preliminary experiment report by Greenhalgh [85] describes the investigation of the sen-
sitivities of the lift, drag, as well as tension measurements of the setup with regards to the
membrane thickness, the membrane porosity, the support geometry and the side leakage in
the wind tunnel. In particular, the influence of the support radius is interesting, since a
modelling simplification is made there. The report states that for a thickness below 0.5 %
of the chord length, the influence of the leading edge and trailing edge radius of the support
is negligible. For the given chord length this refers to rLE ≈ 2.285e−3 < sx, sy such that
modifications of the supports are expected to affect the accuracy of the simulation results.

The confidence placed in the absolute reference results is limited because the publications
have some limitations, in particular, the canopy properties are not defined. Also, conflicting
statements regarding the thickness of the membrane were found in the two different publica-
tions on the experiment. The first publication [85] states a thickness of h = 1e−4m whereas
the latest publication [3] states a thickness of h = 1e−3m. Since apart from this the same
wing dimensions are used, it is concluded that a mistake was made when converting to stan-
dard units. Moreover, it should also be mentioned that wind tunnel corrections have to be
applied to the measurement results to account for blockage and other boundary layer effects
in the wind tunnel. Otherwise, the results are not truly two-dimensional. The application of
such corrections is not mentioned in any of the reference papers. However, it is assumed that
this was done.

Finally, three different simplified geometries were investigated as detailed in table 7-2 and
illustrated in figure 7-11. The first model uses round supports with the membrane attached
at the centreline of the supports to avoid crossover of the membrane and sensitivity to a
particular inflow angle. The second model uses oval supports as described in the preliminary
experiment report by Greenhalgh and the membrane is attached at the upper corner of the
supports. The third model completely neglects the supports. Table 7-2 summarises the
geometric properties of the different profiles.

7-2-2 Mesh convergence

In the following, the meshing methodology for the fluid as well as the structural solver is
outlined. Then a steady-state mesh convergence analysis is carried out, and the sensitivity of
the fluid solver results to the inflow turbulence is briefly investigated as well.
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Experiment Round supports Oval supports No Supports
Chord C[m] 0.457 0.457 0.457 0.457

Supports sx [m] 1.27e−2 3.175e−3 1.27e−2 1e−3
Supports sy [m] 3.175e−3 3.175e−3 3.175e−3 1e−3

Membrane thickness h[m] 1e−4 or 1e−3 1e−4 1e−4 1e−3

Table 7-2: Geometry information for the Greenhalgh setup [85] including the modelling simpli-
fications

Figure 7-5: O-mesh topology of fluid mesh for Greenhalgh setup

Mesh convergence fluid solver The meshing methodology is such that only one initial mesh
is created using Pointwise and membrane excess or deformed initial configurations of the setup
are generated by using FOAM-FSI’s mesh deformation algorithm. General meshing guidelines
are adhered to for this initial mesh. The placement of the first cell away from the wall is such
that normalised wall spacing fulfils y+ < 1 as required by the turbulence model and the wall
expansion ratio is kept below 1.2 as necessary for appropriately capturing the boundary layer
[120]. The full fluid mesh with round supports is shown in figure 7-5. Lastly, it should be
noted that a safety factor of about 30 % is included in the calculation of the first wall node
location to account for the deformation of the setup.
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Coarse Regular Fine Extra Fine
Round supports

Nr of wall normal nodes nnormal 80 160 227 320
Nr of nodes on wing surface nsurface 196 376 534 756

Nr of cells ncells 15680 60160 121218 241920
Wall spacing y0 [m] 6e−6 6e−6 6e−6 6e−6
Oval supports

Nr of wall normal nodes nnormal 76 149 213 300
Nr of nodes on wing surface nsurface 207 420 586 848

Nr of cells ncells 15732 62580 124818 254400
Wall spacing y0 [m] 6e−6 6e−6 6e−6 6e−6

No supports
Nr of wall normal nodes nnormal 80 160 226 320

Nr of nodes on wing surface nsurface 172 348 494 700
Nr of cells ncells 13760 55680 111644 224000

Wall spacing y0 [m] 6e−6 6e−6 6e−6 6e−6

Table 7-3: Fluid solver mesh convergence for the Greenhalgh setup

The convergence of the solution on the fluid mesh is also studied by using four different
meshes for each support model as detailed in table 7-3 on the rigid wing at an angle of attack
of α = 5◦ for a Reynolds number of Re ≈ 1.3e6. Because the undeformed configuration
of the membrane wing was considered, the setup essentially simplifies to a flat plate with
an angled inflow. Since the experimental observations describe a steady behaviour of the
coupled system for inflow angles smaller than 15 degrees and membrane excess lengths up to
5 %, the main objective for this project is to obtain steady-state numerical results. Thus,
the mesh convergence is carried out only for the spatial discretisation and not the temporal
discretisation by employing a steady-state fluid solver. The spatial discretisation settings,
the solver settings as well as the utilised boundary conditions can be found in appendix C-1-
2. In theory, second-order schemes are used for the spatial discretisation on the fluid mesh,
however, in practice, the convergence of the error is usually slightly lower. Given the results
of the lift and drag for the four different refinement levels, the order p of the leading error
term of the spatial discretisation can be obtained as follows

f (h) = fconverged + C · hp (7-1a)

p =
log

(
f(r2h)−f(rh)
f(rh)−f(h)

)
log (r) (7-1b)

where f is a generic functional, C is a resolution independent constant, h is a characteristic
resolution length and r = h1

h2
is the ratio between the characteristic resolution lengths of two

different meshes. For simplicity, the grid refinement ratio is chosen as r = 2, such that the
number of nodes along the block edges is doubled when going from one level of refinement to
a more refined one. Given the actual order of the spatial discretisation, Richardson extrap-
olation can be used to get an estimate of the asymptotic value of the functional according
to
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fconverged = f (rh) + f (rh)− f
(
r2h

)
rp − 1 (7-2)

Based on this, an estimate of the error can be obtained, and a mesh refinement level which
is expected to provide a reasonable trade-off between accuracy and computational effort can
be picked. [140]
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Figure 7-6: Mesh convergence for the Greenhalgh setup with round supports for α = 5◦ and
Re = 1.3e6 using a first and second order scheme to discretise the convective terms in the
Navier-Stokes equations with mean (−), extreme (−.) and standard deviation (−−) values of the
integrated force coeffcients including the Richardson extrapolation thereof

However, given the low leading edge radius of the configuration, the flow around the rigid wing
was found to be not entirely steady with a periodic vortex shedding occurring in particular at
the leading edge and less pronounced also at the trailing edge [141]. Depending on how the
supports are modelled, this is more or less amplified. Thus, the relative velocity and pressure
residuals of the steady-state solver do in general not converge to the desired value of ε = 1e−5.
However, after a certain number of iterations, a periodic oscillation of the residuals occurs,
indicating the presence of vortex shedding. Of course, a steady-state solver cannot capture
unsteady developments in the flow; however, failure in the convergence of the steady-state
solver indicates that the problem is in fact unsteady. For the mesh convergence study, an
average over the last 10,000 iterations of the force coefficients from the steady-state solver is
used where a total of 50,000 iterations are performed. The mesh convergence results for the
three different support models are shown in figures 7-6, 7-7 and 7-8.

The setup using the round supports (figure 7-6) with the attachment point at the centreline
of the supports clearly indicates the presence of a strong vortex shedding yielding unsteady
results even when the highly dissipative upwind scheme is used for the discretisation of the
convective terms. Depending on the resolution of the mesh, the oval supports (figure 7-7)
prompt vortex shedding at the leading edge. Nevertheless, a clear trend of the results with
mesh refinement is visible. Judging from the convergence of the integrated force coefficients
only, the approach where modelling the supports (figure 7-8) is neglected, seems to yield the
weakest vortex shedding of the three models. However, looking at the residual plots shows
that a larger oscillation in the residuals is present as for the case with oval supports.

Figure 7-9 shows the lift and drag polars for the three different support models using the mesh
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Figure 7-7: Mesh convergence for the Greenhalgh setup with oval supports for α = 5◦ and
Re = 1.3e6 using a first and second order scheme to discretise the convective terms in the
Navier-Stokes equations with mean (−), extreme (−.) and standard deviation (−−) values of the
integrated force coeffcients including the Richardson extrapolation thereof
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Figure 7-8: Mesh convergence for the Greenhalgh setup without supports for α = 5◦ and
Re = 1.3e6 using a first and second order scheme to discretise the convective terms in the
Navier-Stokes equations with mean (−), extreme (−.) and standard deviation (−−) values of the
integrated force coeffcients including the Richardson extrapolation thereof

resolution titled as regular in table 7-3. The previous observation regarding the existence of
a steady-state solution is further confirmed.

Going forward the setup using the oval supports and the one neglecting to model the supports
will be further investigated in the fully coupled simulations because they correspond best
with the experiment results. It should be noted, that the target mesh size of roughly ncells ≈
50, 000 cells does not yield mesh-independent results yet. However, given the computational
restrictions of this project, it makes sense to at least initially not pursue a very high-resolution
mesh. The size of the mesh is also in line with what is used for a publication on an airfoil
benchmark case in OpenFOAM [142]. Moreover, while the experiment description presents
steady lift and drag values, it is also mentioned that oscillations of the membrane are observed.
Thus, given the low leading edge radius of the setup, it is entirely possible, that the experiment
setup, in fact, shows some unsteady effects that were however averaged out in the final results.
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Figure 7-9: Lift and drag polars for the undeformed profiles using the three different support
models for a Reynolds number of Re = 1.3e6 and a mesh size of roughly ncells ≈ 50, 000 cells with
mean (−), extreme (−.) and standard deviation (−−) values of the integrated force coefficients

Inflow turbulence Since the κ-ω SST turbulence model solves two transport equations for
the turbulence kinetic energy κ, as well as the specific dissipation rate of the turbulence kinetic
energy ω, boundary conditions need to be set for these properties. For external flows, as well
as internal flows, different correlations are used. Because here an external flow is present
external flow correlations are used that estimate the turbulence kinetic energy and its specific
dissipation rate in the inflow based on a specified turbulence intensity, the freestream velocity
and the eddy viscosity ratio [143]. Generally, for wind tunnel experiments low turbulence
intensity, as well as eddy viscosity ratios, are expected. However, the reference paper from
Greenhalgh [84] does not refer to the turbulence intensity in the flow. Thus, generic values
are used.

The sensitivity to the inflow turbulence settings is superficially investigated as well using the
steady-state solver at a Reynolds number of Re = 1.3e6 and an inflow angle of α = 5◦ for the
oval supports. The different inflow turbulence configurations, as well as the integrated force
coefficients, are listed in table 7-4.

Case 1 Case 2 Case 3 Case 4
Eddy viscosity ratio µt

µ [−] 0.01 0.053 0.053 0.1
Turbulence intensity TI [%] 0.1 0.1 0.5 1.0
Averaged lift coefficient cL [−] 0.6666 0.6664 0.6515 0.5927

Standard deviation lift coefficient σcL [−] 0.0016 0.0006 0.0053 0.0077
Averaged drag coefficient cD [−] 0.0561 0.0561 0.0548 0.0484

Standard deviation lift coefficient σcD [−] 1.829e−4 1.239e−4 5.218e−4 7.961e−4

Table 7-4: Effect of inflow turbulence settings on steady-state results for the Greenhalgh setup
at a Reynolds number of Re = 1.3e6 with oval supports

The results indicate that the influence of the turbulence intensity is stronger than the influence
of the eddy viscosity ratio. But overall, at least for the first three cases, the impact of the inflow
turbulence is not significant. Nevertheless, going forward it is assumed that the turbulence
properties correspond to the settings from Case 1.
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Mesh convergence structural solver Similarly, a mesh convergence study for the structure
mesh was also carried out for this setup. Given the element formulation and the load distri-
bution, it was not deemed necessary to use non-uniform elements, such that the only tuning
parameters remained the number of elements along the membrane axis. Figure 7-10 shows
the mesh convergence of the membrane excess length for a given analytical, continuous stress
distribution. The stress function was chosen somewhat similar to what the aerodynamic
loading is expected to look.

The stresses were imposed on the extruded fluid mesh that will be used for the coupled
simulations in the following such that the RBF interface interpolation has to applied to
transfer the stresses to the extruded structure mesh. This is why the convergence of the total
force on the structure is also shown in the convergence plot in figure 7-10(b). Second, the
loaded excess length of the membrane under the constant load picture in figure 7-10(a) for
different Young’s Moduli is also shown.
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Figure 7-10: Mesh convergence structure solver for Greenhalgh setup for different Young’s Moduli
with deformed excess length of the membrane ranging between 3 and 14 % loaded with a fixed
pressure distribution for the loaded length of the membrane (−) and the total force acting on the
structure (−−) as compared wither reference simluation run with ncells,structure = 2560

Two conclusions can be drawn from the convergence plot. First, the convergence occurs
quite fast, such that if more than roughly ncells,structure > 100 elements are used, the effect
on the structural model is expected to be negligible, and the interpolation error seems to
remain constant. Second, the convergence issues that were observed for the CSM Turek
& Hron benchmark case once the element number was increased past a certain threshold
are not present here. This could indicate, that the issues observed might only occur if the
given shell element formulation is utilised on comparatively thick bodies, where the modelling
assumptions applied in the derivation of the element formulation do not hold anymore. Thus,
in the following, the number of structural elements is chosen to roughly match the number
of the fluid elements along the interface of the fluid and solid mesh to reduce interpolation
errors and obtain a high quality of the deformed fluid mesh.
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7-2-3 Mesh deformation

As already outlined in subsection 4-3-1, given an updated location for the fluid interface nodes,
Thin Plate Spline radial basis functions with adaptive mesh coarsening are used for the fluid
mesh deformation algorithm in FOAM-FSI. In addition to this, Thin Plate Spline radial basis
functions are also used to transfer the node displacement on the extruded structure to the
fluid mesh. Given the large deformations and the small leading and trailing edge radius for
this particular setup, the corner nodes of the interface had to be additionally constrained to
ensure a high quality deformed mesh. Otherwise, in particular, a crossing of the grid lines
led to the divergence of the solver. Conversely, this was not necessary for the Turek & Hron
benchmark case given the less delicate geometry.

(a) Round supports detail deformed (b) Oval supports detail deformed

(c) Without supports detail undeformed (d) Without supports detail deformed

Figure 7-11: Illustration of the transition between fixed and deforming nodes of the fluid mesh
for two different supports type models

Initially, different approaches were tested, however, in the end, the most successful method-
ology was as follows. The nodes on the extruded structure mesh were not constrained, then
the consistent radial basis function approach was used to transmit the displacements from
the extruded structure mesh to the fluid mesh and finally the corner interface nodes of the
fluid mesh were corrected to their initial undisplaced location. This worked well for the
round supports, however for the model where the supports were neglected, this resulted in
the crossover of the neighbour node of the corner node over the corner node. Thus for this
setup, the displacements of the corner node were set to zero and displacements of the direct
neighbouring node were obtained through linear interpolation between its two neighbouring
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nodes. For larger deformations, higher order interpolation might be necessary to guarantee
a high mesh quality. Alternatively, the calibration of the Radial Basis Functions could also
include the nodes of the supports and could thus yield a smoother transition between the
fixed support and the moving interface nodes of the fluid interface mesh. Figure 7-11 shows
examples of the deformed mesh for all the investigated support types.

Lastly, it should be noted that the Thin Plate Spline radial basis functions were only calibrated
before the first time step of the coupled simulation. It is assumed that the relationship
between the nodes remains approximately the same even in the deformed configuration. This
assumption holds up if the deformations are not too large.

7-2-4 Choice of configurations and initialization of the simulation

Greenhalgh’s experiment description investigates the membrane wing at a chord-based Reynolds
number of roughly one million at different inflow angles and excess lengths. The excess length
of the membrane is defined as the difference between the length of the membrane lmembrane
and the chord length C as in equation 7-3. According to this definition, Greenhalgh et al. [3]
investigated excess lengths between 0.21 % and 5.69 %. However, the experiment description
leaves it unclear whether this refers to the loaded or the unloaded length of the membrane.
Whereas the theoretical results from sail theory - that are also presented in the same pub-
lication - indicate that in fact the deformed membrane length is meant by the membrane
length. Since a length constraint for the membrane is introduced in the system of equations
for a generic membrane material. Nevertheless, it is difficult to enforce such a constraint
in the model. Thus, an initial excess length corresponding to the experimental results was
prescribed. Then, a Young’s Modulus - due to lack of better reference data - corresponding
to the material properties of ripstop Nylon for kites was used [144]. For comparison with
the measurement results interpolation of the lift and drag coefficients according to the loaded
membrane excess length was carried out.

εwing = lmembrane − C
C

(7-3)

The detailed methodology that is used to obtain an initial condition for the membrane can
be summarised as follows

1. Prescribe parabolic deformation shape of the membrane that leads to desired deforma-
tion length by solving the nonlinear equations below for the desired membrane length
lmembrane, for the scaling parameter a leading to the transverse membrane displacements
qz,prescribed according to

a = sinh
(

2a(lmembrane −
C

2

√
1 + (ac)2

)
/C (7-4a)

qz,prescribed(x) = −a
(
x2 − Cx

)
(7-4b)

2. Prescribe desired material and load properties
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3. Find initial guess of loaded membrane shape using Vortex Particle Method

4. Initialize fluid with solution for rigid membrane shape as obtained from Vortex Particle
Method using foam-extend’s steady-state solver

5. Run either steady or unsteady fully coupled simulations in FOAM-FSI

From the experimental results, some general trends with respect to the excess length of the
membrane can be discerned. Increasing the excess length of the membrane result in an
upward shift of the lift curve due to the higher camber of the airfoil up to the point where
flow separation starts to dominate the flow. However, increasing the excess length beyond 2 %
resulted in a decrease of the lift slope due to increased areas of separated flow. For all excess
lengths, the stall behaviour of the airfoil is benign as the loaded shape adjusts accordingly.
Namely, the maximum camber point of the wing moves forward as the angle of attack grows.
In turn, the impact of the trailing edge separation bubble on the integrated force on the wing
is smaller as for a rigid profile. Larger excess length of the membrane was also associated
with more significant vibration amplitudes of the membrane in regions of separated flow.

Given the time and computational restraints of this project, not all configurations described
in the reference paper can be investigated. Moreover, since unsteady, strongly coupled CFD-
CSM simulations can be very computationally expensive even in 2D, the aim is to have either
steady or at least close to steady configurations. Moreover, because the fluid mesh is only
around 50’000 cells, splitting the fluid domain and solving the domain in parallel is not ex-
pected to yield a large speedup of the required simulation time. Thus, two configurations with
a membrane excess length of 0.21 % and 1.14 % are chosen. The details of the configuration
are listed in table 7-5. Since the density of the structure is unknown and for this setup close to
steady results are expected, the density was used as a tuning parameter for the convergence
towards a steady-state solution. In fact, it was chosen such that the ratio between fluid and
structure mass is roughly the same as for the Turek & Hron benchmark case according to the
following ratio

ρS,ref · hS,ref
ρF,ref

≈ ρS · hS
ρF

(7-5)

as a consequence roughly the same number of sub-iterations were necessary for convergence
as for the benchmark case.
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Case 1a Case 1b Case 2a Case 2b
Case specific settings
Membrane excess length εexcess 0.21% 1.14% 0.21% 1.14%
Support model Oval None
Angles of attack α [−4◦, 16◦] [−4◦, 16◦]
Structure properties
Young’s Modulus ES 1e8N/m2 1e9N/m2

Poisson ratio νS 0.3 0.3
Density ρS 250kg/m3 25kg/m3

Damping coefficient ζ 5% 5%
Fluid properties
Kinematic viscosity νF 1.47e−5m2/s 1.47e−5m2/s
Density ρF 1.23kg/m3 1.23kg/m3

Reynolds number Re 1.3e6 1.3e6
Discretisation
Number of structure elements Ncells,structure 150 150
Number of modes considered for 70 70structural damping Ndamping

Size of fluid mesh Ncells,fluid 62580 55680
Time step ∆t 1e−5s 1e−5s

Table 7-5: Simulation parameters
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7-2-5 Steady results

Given that the reference experiments report steady aerodynamic forces for moderate inflow
angles and excess lengths of the membrane, initially, FOAM-FSI’s steady-state RANS solver
was applied to the configuration. Investigating an inflow angle range ranging from α = −4◦ to
α = 16◦ with an interval of ∆α = 4◦, the steady aeroelastic solver only delivered reasonable
results for moderate inflow angles for α ≥ 0◦ and α ≤ 8◦ for some of the configurations. How-
ever, the convergence of the residuals below ε < 1e−4 was not achieved. A closer inspection
of the flow field showed again a weak vortex shedding at the leading edge for both supports
types that indicated in fact weakly unsteady flow behaviour.

7-2-6 Unsteady results

Since the results from the steady-state solver indicated a periodic unsteady behaviour of the
coupled system, unsteady simulations using foam-extend’s unsteady RANS solver were also
performed. However, unsteady simulations require very small time steps and have much more
significant computational demands than steady ones. In particular, for the fluid, the Courant-
Friedrichs-Levy (CFL) number has to be close to one for accuracy and for explicit methods
also the stability of the method.

CFL = u∆t
∆x ≤ Cmax (7-6)

While the fluid solver uses an implicit discretisation for the time-dependent terms in the
Navier-Stokes equations, the pressure-momentum coupling is still solved explicitly if no outer
iterations are performed. Thus, if the PISO algorithm is used CFL numbers smaller one
impose a very strong limit on the time step for unsteady simulations especially for high
Reynolds number flows where the whole boundary layer is resolved. Thus, for this particular
case with regards to the external time and computational restraints, the aim is to run with a
time step corresponding to a CFL number of roughly CFL ≈ 5 using the PIMPLE algorithm.
While this is still a very small time step, phenomena occurring on time scales smaller than the
time step will not be resolved. It should also be noted, that convergence of the solution with
the mesh and time step for unsteady simulations was not checked due to time limitations.

The detailed settings for the fluid solver with regards to discretisation and the solving algo-
rithm can be found in appendix C-1-3.

Rigid wing In figure 7-12 the lift and drag polar obtained for the unsteady simulations
with a fixed wing shape as obtained from the vortex particle method is shown for the two
different support models. These results were obtained to have a frame of reference as to
whether unsteady effects in the coupled system arise from unsteadiness in the flow pattern
itself or from the coupling of the two systems. It should be noted that the supports are not
modelled when using the Vortex Particle Method. For moderate angles of attack, convergence
to steady lift and drag coefficients is observed despite not obtaining fully converged results
with the steady-state solver. The cause of this is the dissipation introduced through the
time integration scheme because of the large time step. In fact, the vortex shedding at the
leading edge previously observed in the steady-state solver results is now visible as a fixed
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separation bubble at the leading edge. For increasing angles of attack, the reattachment point
of this separation bubble moves rearwards until finally the profile is fully stalled. Large-scale
unsteady vortex shedding is observed for the largest simulated angle of attack α = 16◦ and
in one case also for α = 12◦. The experimental report observed a gradual stall onset for all
profiles independent of the excess length of the membrane. Thus, the wing shows a typical
thin airfoil stall behaviour. As previously noted, in general, the oscillation amplitude in lift
and drag is larger for the setup with oval supports as compared to the one without supports.
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Figure 7-12: Lift and drag polar for the rigid wing without (−) supports and with oval supports
(−−) with the shape as obtained from the Vortex Particle Method

Flexible wing for negative angles of attack The experiment report describes a hysteris
in the wing shape near an angle of attack of zero degrees. This means that when slowly
reducing the angle of attack below zero from a moderate, positive angle of attack, the wing
will produce a positive lift beyond zero degrees inflow angle until at some point the membrane
snaps through to the other side. The report also found the larger the excess length of the
membrane, the larger the range of angles of attack at which hysteresis occurred. Moreover,
an increased occurrence of limit cycle oscillations near zero degrees was also observed for
configurations with large excess lengths.

Figure 7-13 shows two excerpts of the flow field for a negative angle of attack and an excess
length of the membrane of roughly 1%. Because the initial, unloaded shape of the wing is
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(a) Flow field at time t = 0.62s

(b) Flow field at time t = 0.72s

(c) Q-criterion at time t = 0.72s

Figure 7-13: Oscillatory motion of the wing for an angle of attack of α = −4◦ and a relaxed
excess length of εwing = 1.14% without modeling the profile supports

chosen such that the maximum camber point is directed upwards, the time history of the flow
ensures that this constellation remains stable instead of a snap through of the membrane to the
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other side. In the first time instant in subfigure 7-13(a), a separation bubble on the pressure
side is observed which then subsequently detaches from the wing surface and is convected
with the freestream velocity as seen in subfigure 7-13(b). The vortex location is more clearly
illustrated in subfigure 7-13(c) using the Q-criterion. It should be noted, however, that this
method of vortex identification fails within the boundary layer of the wing and should only
be considered further away from the surface. The profile surface moves further down as the
vortex convects along the chord. The cycle then repeats itself as a new vortex is detached
from the leading edge, resulting in a periodic oscillation of the wing displacement as well as
the forces on the wing. Lastly, this limit cycle oscillation is not observed for the shorter excess
length of close to 0.2%, where a convergence towards a steady deformed shape as well as flow
field is witnessed. These tendencies are in accordance with the experimental findings from
Greenhalgh.

Flexible wing at moderate angles of attack For moderates angles of attack where the
reattachment of the leading edge separation bubble is in front of the mid-chord location, con-
vergence to a steady deformed membrane shape is obtained. Figure 7-14 shows the converged
deformed shape of the loaded membrane for two angles of attack, and both of the investigated
support models.
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Figure 7-14: Loaded wing shape at moderate angles of attack for different initial excess lengths
of the membrane with oval supports (OS) and without supports (NS) as obtained from the Vortex
Particle Method (−−) as well as from FOAM-FSI (−)

The figure shows both the results obtained with the PIMPLE algorithm as well as with the
steady-state Vortex Particle Method when the supports are not modelled. The trends in the
simulation results agree with the experiments. Namely, the maximum camber point moves
towards the leading edge of the wing as the angle of attack is increased and the maximum
camber decreases. Moreover, the Vortex Particle Method is also capable of capturing these
tendencies. However, as the angle of attack is increased, the discrepancy between the inviscid
and the viscid method is expected to grow as viscous effects become more important.

Flexible wing at large angles of attack For large angles of attack where the reattachment
of the leading edge separation bubble occurs either aft of the mid-chord point or not at all, an
increase in the angle of attack is associated with a drop of the slope of the lift curve. Moreover,
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as previously noted even for a rigid wing large fluctuations in the aerodynamic forces are
present which for a membrane wing also result in an unsteady deformation behaviour of the
wing. In fact, the same unsteady stall behaviour as for a rigid wing is observed only further
amplified by the low bending stiffness of the wing.
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Figure 7-15: Unsteady coupled simulation results for α = 12◦ and different initial excess lengths
of the wing as well as with oval supports (OS) and without supports (NS), the total nodal
displacements are shown at a x/C = 0.2 (−) and x/C = 0.5 (−−) chord location

Figure 7-15 shows the transient of the integrated force coefficients, the wing excess length as
well as the displacements of specific nodes for an angle of attack of α = 12◦. Up to about
t = 0.08s the extension of the membrane wing from its relaxed initial state to the fully loaded
state is visible. After this, a somewhat periodic vortex shedding can be observed in all the
illustrated quantities. Namely, a leading edge separation bubble forms which continuously
grows larger leading to a temporary increase in lift. Right before the separation bubble
detaches from the wing surface, a local maximum in the lift is reached. To conserve vorticity,
vortices of opposite sign are shed from the trailing edge in accordance with the shedding of a
leading vortex. Simultaneously to the variation in the lift, the total membrane length increases
and decreases. On close inspection, a shift between the two node locations is observed, where
the one at the 20 % chord location is ahead of the one at the 50 % chord location in agreement
with the growth of the leading edge separation bubble. Some examples of the flow field are
shown in appendix D-1.
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Polar Figure 7-16 summarises the previously described results via a lift and drag polar
for the two different initial excess lengths alongside with the interpolated reference results.
However, in particular, for the lowest and the largest investigated angles of attack where
large fluctuations in the force coefficients were observed, the averaging period is too short
to deliver fully statistically relevant predictions. The reference lift and drag coefficients were
obtained via interpolation according to the deformed length of the membrane. It should also
be noted that the drag values are not very accurate due to how they were documented in the
experiment report.
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Figure 7-16: Lift and drag polar for the flexible wing with indication of the mean and extreme
values of the force coefficient and the reference solution in black

For a relaxed excess length of the wing of roughly 0.21% very good agreement between
experimental and numerical predictions is obtained for the lift and drag coefficients, whereas
for an initial excess length of roughly 1.14% the deviation between the results increases. This
highlights that there is a systematic increase in the modelling error as the excess length
increases. Possibly, a larger excess length is tied with an increase in the coupled error from
fluid and structure model. Furthermore, the type of support model does indeed have a non-
negligible influence on the results with on average 5 % and 20 % relative deviation between
lift and drag coefficients, respectively, for the two investigated support types. For the limited
investigated range of angles of attack with oval supports, the drag predictions are about twice
as accurate as when the supports were not modelled.
While the error in the prediction of the mean lift is still acceptable with at most roughy 15
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%, the mean drag prediction for both excess lengths is up to 50 % off depending on the angle
of attack and support model. This is most likely an accumulation of multiple error sources
such as the mentioned modelling simplications, insufficient averaging period, inaccuracy of
the turbulence model, the assumption of fully turbulent flow as well as possibly also the large
time step. In general, when CFD is used to predict lift and drag values, it is much easier to
predict lift accurately than drag. Here, more investigation is necessary to see whether a more
accurate prediction can be obtained. Moreover, it is unclear why an unsteady behaviour is
observed for some configurations where the experiment report still describes steady results.
This could be related to the support model or possibly also time-averaging in the experiment
since the mean values still agree well with the mean values from the experiment report.

7-3 Den Boer setup

The single-membrane sailwing profile shown in the literature review section in figure 2-6(a)
was also investigated for one specific angle of attack and Reynolds number of 300, 000 because
here the deformed shape of the profile is available from den Boer [2]. The mesh of the setup
is shown in figure 7-17.

Figure 7-17: O-mesh topology for the den Boer case

The specific settings for the case are listed in table 7-6. For all other settings and modelling
decisions consider the documentation of the previous test case. A mesh convergence study
was also not performed since experience mesh convergence values from similar sailwings at
similar Reynolds numbers were available [145].

Similar to the Greenhalgh setup where the small radius of the leading and trailing edge
supports lead to unsteady results even for a rigid wing due to vortex shedding, for a single-
membrane sail wing a separation bubble occurs behind the leading edge which can lead to
inconsistent convergence of the steady-state fluid solver. Similarily, if a first-order dissipative
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Case specific settings
Slack angle δ 15◦
Angles of attack α 7◦
Structure properties
Young’s Modulus ES

[
1e5N/m2, 5e5N/m2, 1e6N/m2]

Poisson ratio νS 0.3
Density ρS = ρS ∗ h 0.15kg/m2

Damping coefficient ζ 5%
Fluid properties
Kinematic viscosity νF 1.47e−5m2/s
Density ρF 1.23kg/m3

Reynolds number Re 2.95e5
Discretisation
Number of structure elements Ncells,structure 175
Number of modes considered for 100structural damping Ndamping

Size of fluid mesh Ncells,fluid 63872
Time step ∆t 1e−4s

Table 7-6: Configuration den Boer setup

scheme is used for the discretisation of the convective terms instead of a less dissipative second
order scheme, a better convergence of the results is obtained. However, this significantly
impacts the accuracy of the results. Thus, for this configuration, the SIMPLE solver in foam-
extend did not yield fully converged results despite steady-state reference results. This of
course also holds true for steady-state results of the aeroelastic solver in FOAM-FSI. Thus,
here the same methodology as already for the Greenhalgh case is applied; namely, the steady
solver is used for initialisation of the coupled solver, and then the unsteady solver is used in
combination with a large time step that smoothes out temporal oscillations such as vortex
shedding occurring at a higher frequency than the simulation resolves.

Rigid wing Since for this particular constellation of the test case the deformed shape of
the wing is given, first a simulation with a rigid profile according to the loaded shape is
performed to get an estimate of the error introduced through the fluid model alone. However,
the evaluation of the accuracy of the fluid model is restricted to the lift and drag values.
Table 7-7 lists the reference and the newly obtained numerical results.

Experiment foam-extend OF-plus [145] OF-plus with TM [145]
Lift coefficient cL [−] 1.255 1.229 1.123 0.755
Drag coefficient cD [−] 0.055 0.058 0.071 0.108

Table 7-7: Force coefficients for the rigid wing as obtained from foam-extend, the reference
experiment report and another reference using OpenFOAM-plus with and without a transition
model

Since the fluid solver is fully turbulent and the reference experiments are set at a Reynolds
number where laminar flow onset is expected, a disagreement between the force coefficients
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from experiment and numerical simulation is expected. The results from foam-extend over-
predict lift and drag as compared to the experiments. However, the deviation between the
force coefficients is small with roughly 2% and 5% relative error for lift and drag, respectively.
Hence, it seems that despite the modelling assumptions for this particular configuration foam-
extend still delivers reasonable predictions of the aerodynamic properties of the profile. It
should be noted though that to make a definite statement different angles of attack would
have to be investigated.

Flexible wing Since the Young’s Modulus of the material that is used for the membrane
part of the sailwing is not specified in the report from den Boer, the fully coupled simulations
were run for a range of different parameters. This way no quantitative validation can be
carried out, but the trends can still be checked. All coupled simulations using the PIMPLE
algorithm indicated a clear convergence towards steady-state results. However, due to the time
constraints of the project, full convergence of the simulations was not obtained. Nevertheless,
the close to converged loaded wing shape for different Young Moduli are shown in figure 7-18.
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Figure 7-18: Comparison of the deformed shape of the profile between the reference experimental
results and the numerial results from FOAM-FSI for different Young Moduli

A Young’s Modulus of about E ≈ 5e5N/m2 seems to correspond best with the reference
results. But then again as illustrated before, since even for a rigid wing the deviation between
the reference results and the fluid model are not negligible, no definite statements can be
made. Hence, the capability of the methodology was demonstrated, but due to an insufficient
experiment description and time constraints, quantitative validation of the method remains
incomplete.
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Chapter 8

Conclusions and Recommendations

The CFD-CSM modelling of membrane wings at high Reynolds numbers is very challenging
for two different reasons. First, the low density and bending stiffness of the wing material
result in a strongly coupled FSI problem that requires multiple coupling iterations per time
step. In combination with the meshing and time step constraints of the CFD model for
high Reynolds numbers, this results in a computationally expensive problem. Second, as the
literature survey revealed, only limited public reference data is available for the validation of
new methodologies.

Nevertheless, a methodology to model membrane wings at high Reynolds numbers was de-
veloped and partially validated within the context of this project. Section 8-1 will summarise
and conclude on what has been done during this project. Then section 8-2 will have a more
critical look at what improvements are recommended for the existing setup and what measures
would improve the confidence in the modelling outcomes.

8-1 Conclusions

Within the context of this project, a Fluid-Structure Interaction (FSI) solver for the aero-
elastic modelling of membrane wings at high Reynolds numbers was developed and validated
on selected test cases. This was done by essentially merging and improving on two previous
aero-elastic solver implementations. First, Blom [132] and Gillebart [133] created an adapter
for the open-source CFD solver foam-extend-3.2 [129] that allows communication to the cou-
pling library preCICE [130] forming the FOAM-FSI toolbox [131]. Second, a low-fidelity
aero-elastic solver developed with the aim to model a kite was implemented by Bosch [13]
and Berens [15] based on the nonlinear shell element formulation derived by Tiso [31] in
combination with inviscid and parametric aerodynamic models. The resulting methodology
of this project comprehends the coupling of the structural solver framework from Berens and
FOAM-FSI’s RANS fluid models.

On the side of the fluid solver, no modifications were made since the framework in FOAM-
FSI has been thoroughly validated already. Conversely, a multitude of adaptions have been
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made to the structural solver framework by Berens. Namely, the structural solver was made
more stable and efficient through the implementation of a more conventional time integration
scheme for the coupled solver instead of a staggered linear-nonlinear coupling loop as well as
the reimplementation in a more efficient programming language. Moreover, a more thorough
validation of the methodology was also carried out with the aim to rule out any implemen-
tation faults. The limitations of the shell element formulation were also outlined through
application to two benchmark cases highlighting that the model should only be applied to
very thin shells. This is indeed also the target application range for which it was developed
[31].

Since the structural mesh does not reflect the thickness of the element due to the assump-
tions made for the shell element formulation, an interpolation method for the communication
between the fluid and structure model that respects the thickness of the structure was im-
plemented. The developed methodology involved the creation of an extrusion mesh from the
current (deformed) structure mesh for every time step. For the imposition of the solid dis-
placements, node location and velocity were extrapolated from the structure to the extrusion
mesh. For the transmission of the fluid interface forces, the nodal forces had to be reduced
from the extrusion to the structure mesh. Based on this extrusion mesh, standard interface
interpolation methods developed for FSI applications can be used as was done in preCICE.
The methodology was written such that it will also work for a zero-thickness element if the
fluid solver of choice has this capability. Moreover, the solver was constructed to allow the
coupling to the Immersed Boundary (IB) fluid solver Fluidity. A particular IB method imple-
mented in this solver was also briefly considered within this project, however, eventually, the
idea was discarded because the solver framework was not mature enough for this application.

Below the research objective is restated highlighting that while the implementation part of
the objective was carefully adhered by, the methodology still needed to be validated to have
confidence in its application.

Further improve on the existing FSI solver by maintaining the existing structural solver
methodology, coupling it to a higher fidelity CFD fluid solver, reviewing the time integra-
tion methodology of the structural solver and applying the new framework to a simplified test
case. Construct the solver such that it can be used as a baseline for future projects in the
AWE group; thus it should be easily extendable to more complicated test cases, and all its
components are thoroughly validated.

The subsequent application of the coupled solver on the classical rigid beam-flexible flag
FSI benchmark case from Turek & Hron [1, 66] provided encouraging results regarding the
accuracy of the method. Specifically, for the integrated force coefficients as well as the beam
tip displacements the relative deviation from the reference results in mean and amplitude
was at worst 10 % except for values with very small mean or amplitude values. Moreover,
a clear trend with mesh refinement was distinguished. Two probable error sources can be
identified. First, the application of the thin shell element formulation to a comparatively
thick beam violated the element formulation modelling assumptions. This was already visible
in the comparison with the separate validation of the structural solver on the same geometry.
Second, for the pure validation of the fluid solver on the setup for the target Reynolds number
of the coupled case on a comparatively large mesh of about 50,000 elements, the solution was
not fully converged yet. In conclusion, the coupling of those two error sources resulted in the
non-negligible total error.
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Following this, the solver was applied to a two-dimensional test case with a Reynolds number
of above one million. In this setup, a thin, flexible material was wrapped around small rigid
leading and trailing edge supports. In this reference experiment, the force on the wing was
measured for different membrane slack and angle of attack configurations. The experimen-
tal reference results were one of the few publicly available data sets with a sufficiently high
Reynolds number to obtain sensitive results if the fluid solver is fully turbulent [3, 84, 85].
Comparison of the results from numerical models and experiments showed that the general
trends for different slack lengths of the wing and angle of attack sensitivity were well captured
in the numerical outcomes. However, the qualitative validation based on the two examined
excess lengths was less promising. While the relative error in the mean lift values was at most
15 %, the mean drag results were less favourable with deviations of up to 50 %. Moreover, in
some of the cases, the results were periodically unsteady, even though in the reference exper-
iments steady-state behaviour was observed. Potential error sources are the simplifications
made in the modelling process, limitations of the fluid and structure model itself as well as
limitations in the experiment description and execution.

Finally, the methodology was also tested on a two-dimensional sailwing configuration with
membrane slack at a Reynolds number of about one-third of a million [2]. The sail material of
the profile was wrapped around a rigid circular leading edge with a radius of about 5 % of the
chord length and a small rotatable plate at the trailing edge. Similar to the previous test case,
the sail material properties were not fully specified. However, for some of the constellations
the deformed shape of the wing was given, such that the error of the fluid solver alone could be
quantified for one specific moderate inflow angle to be about 2 % and 5 % for the lift and drag,
respectively. Thus, highlighting that the accuracy of the fluid model for single membrane sail
wing constellations that often show a stationary separation bubble on the pressure side as
well as trailing edge separation at higher angles of attack is already not negligible. This error
is then further amplified when coupling the fluid with the structural solver. Of course, this
also depends on the Reynolds number since for this specific constellation laminar flow onset
is expected in the experiments and the fluid model is fully turbulent.

Concluding, this project developed a methodology to model membrane wings at high Reynolds
numbers. While the capabilities of the method have been successfully showcased on a classic
FSI benchmark case, only a partial validation on benchmark cases at more realistic Reynolds
numbers has been carried out due to limitations in time, computational resources as well as
the availability of reliable experimental reference data.

8-2 Recommendations

The recommendations for the future development of the solver will be split into different
categories according to the different submodules of the full solver.

First, for the structural solver, the efficiency and the stability could be increased by imple-
menting a more sophisticated solving procedure for the nonlinear equation that arises due to
the implicit time integration scheme and the nonlinear shell element formulation. However,
as compared to a fluid model solving the full Navier-Stokes equations, the computational
effort spent on the structural solver is negligible. Nevertheless, if the solver is coupled with
lower fidelity aerodynamic models, the situation might reverse. Moreover, since the structural
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solver is written in a Total Lagrangian framework, in case of large element rotations the im-
plementation of follower loads for displacement dependant nonconservative loads will lead to
better accuracy of the structural model [108]. Additionally, implementing moving boundary
conditions in the solver could also help reduce the extent of the modelling simplifications for
the high Reynolds number test case and make the solver more universally applicable.

Second, some adjustments to the interface interpolation method are also expected to make
the interface communication more conservative with respect to the work transmitted over
the interface. Consistent Radial Basis Function interpolation was used to transfer the stress
from the fluid mesh to the structure extrusion mesh and to transfer the displacement of the
extrusion mesh to the fluid mesh. Comparison between the internal interface force integration
in foam-extend and the integration in the structural solver showed deviations of up to 5 %
in the total force integration. While the force integration was checked for the Turek & Hron
benchmark case, a close agreement was present. However, retrospectively analysing the results
of the cases using a membrane wing, showed larger discrepancies, because there larger ratios
between the length of the structure and fluid elements are present. Thus, to conserve the
force over the interface as much as possible, a higher order force integration method should
be implemented on the extrusion mesh. Currently, a first-order accurate method is used, that
fails to capture large gradients in the stresses on the fluid side. Defining intermediate points
along a structure mesh element and using a higher order integration method is expected to
improve the accuracy of the interface force integration.

Third, the absence of transition models makes the validation of the aero-elastic solver more
difficult, since the already very limited availability of benchmark data for membrane wings
is mostly restricted to Reynolds numbers below one million. While the fully turbulent solver
can be applied to these test cases, depending on the configuration a large penalty is already
present in the fluid model which then only further amplifies the error of the coupled simulation.
Thus, using OpenFOAM instead of foam-extend if an adapter to preCICE is available, would
significantly simplify the validation of the solver, because OpenFOAM has transition models.

Lastly, for the modelling of a kite in Airborne Wind Energy applications during a full load
cycle, in the author’s opinion, it would make more sense to investigate an Integral Boundary
Layer Approach with corrections for cross flow and tip effects [146, 147]. Because doing fully
three-dimensional simulations of a strongly coupled FSI problem over extended periods of
time is very computationally expensive and possibly only feasible for academic purposes or
detail analysis.
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Appendix A

Van Karman strain equations

In classical plate theory the displacement field is chosen such that it satisfies the Kirchhoff
hypothesis, namely the following constraints have to be fulfilled [148]

• Straight lines remain perpendicular to the mid-surface (i.e. transverse normals) before
deformation, remain straight after deformation.

• The transverse normals do not experience elongation.

• The transverse normals rotate such that they remain perpendicular to the mid-surface
after deformation.

Additionally carrying out an order of magnitude analysis, one can simplify the full nonlinear
strain formulations to the van Karman strains.

The governing equations for the normal displacement w and the stress function Φ are then
given by equation A-1 [149]

∂4Φ
∂x4 + ∂4Φ

∂x2∂y2 + ∂4Φ
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( ∂2w
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∂y2
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(A-1b)

where E is the Young’s Modulus of the material, D is the flexural rigidity given by equation
A-2, pz is the normal pressure and h is the plate thickness.

D = Eh3

12(1− ν2) (A-2)
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Through the introduction of the stress function Φ, the stresses at the midplane of the plate
are then given by

σx =∂2Φ
∂y2 (A-3a)

σy =∂2Φ
∂x2 (A-3b)

τxy =− ∂2Φ
∂x∂y

(A-3c)

and the extreme stresses are given by

σx =− Eh

2(1− ν2)

(
∂2w

∂x2 + ν
∂2w

∂y2

)
(A-4a)

σy =− Eh

2(1− ν2)

(
∂2w

∂y2 + ν
∂2w

∂x2

)
(A-4b)

(A-4c)

τxy =− Eh

2(1 + ν)

(
∂2w

∂x∂y

)
(A-4d)

(A-4e)

Lastly, the van Karman strains are then given by

εx = 1
E

(
∂2Φ
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γxy = 2(1 + ν)
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)
(A-5c)

(A-5d)
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Appendix B

Vortex Particle Method

B-1 Theory and implementation

Classical inviscid flow modeling assumes that the flow around a thin structure can be mod-
eled as an unsteady, inviscid, incompressible and irrotational flow. Thus, the flow can be
characterised as a time-variant potential flow. This assumption allows for a straight for-
ward discretisation of the flow in terms of singularity elements such as vortices, sources and
sinks. In the particular case of a Vortex Particle Method, the outline of the idealised zero
thickness structure is modeled using discrete vortex elements. As such on each panel of the
discretised structure a vortex point is placed at the quarter chord point of the panel and the
non-permeability condition is enforced at the collocation point chosen to coincide with the
three quarter chord point of the panel. This particular choice of the collocation point ensures
that the Kutta condition is fulfilled. The induced velocity of a vortex element Γj located at
(xj , yj) at an arbitrary location (x, y) is given by

[
u
v

]
= Γj

2πr2
j

[
0 1
−1 0

] [
x− xj
y − yj

]
(B-1)

where rj =
√

(x− xj)2 + (z − zj)2 is the distance between induction and source location.

It should be noted that since the permeability condition is only enforced at the collocation
point of each panel if an insufficient amount of panels is used there may still be flow through
the surface of the structure in between collocation points.

With the instantaneous position of the bound Γj and the free ΓW,j vortex particles as well
as external inflow conditions known, the impermeability boundary condition can be specified
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for each collocation point. This leads to a linear system of equations as follows


a11 a12 . . . a1N a1W
a21 a22 . . . a2N a2W
...

... . . . ...
...

aN1 aN2 . . . aNN aNW
1 1 . . . 1 1





Γ1
Γ2
...

ΓN
ΓW1


=



b1
b2
...
bN

Γ (t−∆t)


(B-2a)

bi = − [U (t) + uW + uDef , W (t) + wW + wDef ]i · ~ni (B-2b)

The induced velocity of the bound vortex particles is captured through the influence coef-
ficients aij whereas the influence of the external inflow (U,W ), the wake (uw, wW ) and the
movement of the structure (uDef , wDef ) is captured in the terms bi on the right hands side.
Finally, the last row refers to the enforcement of the Kelvin condition.

The convection of the wake particles is done at the beginning of each time step with the
velocities from the previous time step; no sub-iterations are performed. The location of the
first shed vortex is 25 % of the path covered by the trailing edge within on time step.

Solving the system of equations given in B-2 yields the strength of the bound vortices and the
induced velocity at the location on the structure surface. From this the aerodynamic loads
can be calculated through the pressure differences ∆pj across the structure according to

∆pj = ρ

[U (t) + uW + uDef , W (t) + wW + wDef ]j · ~τj
Γj
∆lj

+ ∂

∂t

j∑
k=1

Γk

 (B-3)

where ~τj refers to the tangential surface vector. The time derivative of the velocity is obtained
using a first order forward Euler scheme.

The linear system of equations is reset up for every time step after the wake nodes have been
convected with the information from the previous time step.

B-2 Validation and convergence

The steady state verification of the Vortex Particle Method is done for a flat plate through
comparison with results from classical thin airfoil theory on symmetric airfoils, in this case,
a flat plate. As such one would expect a lift slope of CL = 2πα. Figure B-1 shows the results
for different panel resolutions in terms of lift B-1(a) and vorticity distribution B-1(b). It
should be noted that the overall lift for the flat plate is independent of the number of panels
since it is fixed by the Kutta condition. For the membrane wing, the panel nodes are chosen
to coincide with the nodes of the structure mesh. The lift of the membrane wing shows a
weak dependence on the resolution due to the better resolution of the deformed structure.
As expected the membrane wing shows higher lift values due to the more cambered deformed
shape. From the convergence of the local loading, it can be concluded that 40 panels are
sufficient, a higher resolution mainly leads to an increase in the suction peak.
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Figure B-1: Verification Steady Vortex Particle Method for a flat plate (:) and the membrane
wing (-)

The unsteady verification of the Vortex Particle Method can be done through comparison
with the indicial plunge response of a flat plate airfoil as analytically determined by Wanger
for a flat plate in incompressible, potential flow.

L =2πρ∞U2
∞
c

2α0φ

(
U∞t

c/2

)
(B-4a)

φ

(
t? = U∞t

c/2

)
=1− 0.615 exp−0.0455t? −0.355 exp−0.3t? (B-4b)

The results of the implemented Vortex Particle method for a step increase in the angle of
attack is shown in figure B-2 alongside with the analytic solution fromWagner [150]. Figure B-
2(a) investigates the effect of the panel density on the lift of the flat plate and the membrane
wing for an inflow angle of eight degrees. Again only the membrane wing shows a weak
dependency on the panel density because for the flat plate the overall lift is fixed by the Kutta
condition. Comparison with the Wagner function shows that qualitatively the behaviour
matches, even though quantitatively the lift slope is too steep. The peak for the first step
stems from the discretisation of the time derivative of the circulation in equation B-3. For
the coupled simulations of the membrane wing, after every stepwise change in the angle of
attack the fluid model is advanced for two very small time steps without feedback from the
structure to make the simulation stable. Afterwards, the time step is increased again, and
the feedback from the structure is considered. The time step sensitivity of the lift transient is
checked in figure B-2(b), the difference between the three investigated time steps is minimal
and only visible for the first few time steps. Thus for the rest of this project unless otherwise
noted a panel density of N = 40 and a time step of ∆t = 0.025 will be used.
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Figure B-2: Verification Unsteady Vortex Particle Method for a flat plate and the membrane
wing at α = 8◦
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Appendix C

Solver settings

C-1 OpenFOAM settings

C-1-1 Laminar cases

Discretisation

1 F o a m F i l e
2 {
3 v e r s i o n 2 . 0 ;
4 f o r m a t a s c i i ;
5 r o o t " " ;
6 c a s e " " ;
7 i n s t a n c e " " ;
8 l o c a l " " ;
9 c l a s s d i c t i o n a r y ;
10 o b j e c t f v S c h e m e s ;
11 }
12
13 d d t S c h e m e s
14 {
15 d e f a u l t b d f 2 ;
16 }
17
18 g r a d S c h e m e s
19 {
20 d e f a u l t G a u s s l i n e a r ;
21 }
22
23 d i v S c h e m e s
24 {
25 d e f a u l t n o n e ;
26 d i v ( phi , U ) G a u s s s k e w C o r r e c t e d l i n e a r ;
27 d i v ( ( n u E f f ∗ d e v ( g r a d ( U ) . T ( ) ) ) ) G a u s s l i n e a r ;
28 d i v ( U ) G a u s s l i n e a r ;
29 }
30
31 l a p l a c i a n S c h e m e s
32 {
33 d e f a u l t G a u s s l i n e a r c o r r e c t e d ;
34 }
35
36 i n t e r p o l a t i o n S c h e m e s
37 {
38 d e f a u l t s k e w C o r r e c t e d l i n e a r ;
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39 }
40
41 s n G r a d S c h e m e s
42 {
43 d e f a u l t c o r r e c t e d ;
44 }
45
46 f l u x R e q u i r e d
47 {
48 d e f a u l t no ;
49 p /* e m p t y */ ;
50 }

Solver

1 F o a m F i l e
2 {
3 v e r s i o n 2 . 0 ;
4 f o r m a t a s c i i ;
5 r o o t " " ;
6 c a s e " " ;
7 i n s t a n c e " " ;
8 l o c a l " " ;
9 c l a s s d i c t i o n a r y ;
10 o b j e c t f v S o l u t i o n ;
11 }
12
13 s o l v e r s
14 {
15
16 p
17 {
18 s o l v e r P C G ;
19 p r e c o n d i t i o n e r D I C ;
20 t o l e r a n c e 1e−14;
21 r e l T o l 1 . 0 e−3;
22 }
23
24 U
25 {
26 s o l v e r B i C G S t a b ;
27 p r e c o n d i t i o n e r D I L U ;
28 t o l e r a n c e 1e−14;
29 }
30 }
31
32 P I M P L E
33 {
34 n C o r r e c t o r s 5 ;
35 n N o n O r t h o g o n a l C o r r e c t o r s 0 ;
36 t o l e r a n c e 1 . 0 e−13;
37 r e l T o l 1 . 0 e−2;
38 m a x I t e r 1 5 ;
39 m i n I t e r 1 ;
40 p i s o T o l 1e−3;
41 }
42
43 r e l a x a t i o n F a c t o r s
44 {
45 U 0 . 9 ;
46 }

C-1-2 Steady RANS cases

Discretisation

1 d d t S c h e m e s
2 {
3 d e f a u l t s t e a d y S t a t e ;
4 }
5
6 g r a d S c h e m e s
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7 {
8 d e f a u l t G a u s s l i n e a r ;
9 }
10
11 d i v S c h e m e s
12 {
13 d e f a u l t n o n e ;
14 d i v ( phi , U ) G a u s s l i n e a r U p w i n d G a u s s l i n e a r ;
15 d i v ( phi , k ) G a u s s u p w i n d ;
16 d i v ( phi , o m e g a ) G a u s s u p w i n d ;
17 d i v ( ( n u E f f ∗ d e v ( g r a d ( U ) . T ( ) ) ) ) G a u s s l i n e a r ;
18 }
19
20 l a p l a c i a n S c h e m e s
21 {
22 d e f a u l t G a u s s l i n e a r c o r r e c t e d ;
23 }
24
25 i n t e r p o l a t i o n S c h e m e s
26 {
27 d e f a u l t l i n e a r ;
28 }
29
30 s n G r a d S c h e m e s
31 {
32 d e f a u l t c o r r e c t e d ;
33 }
34
35 f l u x R e q u i r e d
36 {
37 d e f a u l t no ;
38 p ;
39 }

Solver

1 s o l v e r s
2 {
3 p
4 {
5 s o l v e r P C G ;
6 t o l e r a n c e 1e−8;
7 r e l T o l 0 ;
8 p r e c o n d i t i o n e r D I C ;
9 m a x I t e r 5 0 0 ;
10 }
11
12 " ( U | k | o m e g a ) "
13 {
14 s o l v e r B i C G S t a b ;
15 p r e c o n d i t i o n e r D I L U ;
16 n S w e e p s 1 ;
17 t o l e r a n c e 1e−9;
18 r e l T o l 0 ;
19 m i n I t e r 1 ;
20 }
21 }
22
23 P I M P L E
24 {
25 n O u t e r C o r r e c t o r s 2 0 0 ;
26 n C o r r e c t o r s 2 0 ;
27 n N o n O r t h o g o n a l C o r r e c t o r s 0 ;
28 t o l e r a n c e 5 . 5 e−5;
29 r e l T o l 1e−3;
30 m i n I t e r 1 ;
31 m a x I t e r 2 0 0 ;
32 p i s o T o l 1e−3;
33 }
34
35 r e l a x a t i o n F a c t o r s
36 {
37 p 0 . 7 ;
38 U 0 . 7 ;
39 k 0 . 7 ;
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40 o m e g a 0 . 7 ;
41 }

C-1-3 Unsteady RANS cases

Boundary condition

1 F o a m F i l e
2 {
3 v e r s i o n 2 . 0 ;
4 f o r m a t a s c i i ;
5 c l a s s v o l V e c t o r F i e l d ;
6 l o c a t i o n " 0 " ;
7 o b j e c t U ;
8 }
9 # i n c l u d e " i n i t i a l C o n d i t i o n s "
10 d i m e n s i o n s [ 0 1 −1 0 0 0 0 ] ;
11 i n t e r n a l F i e l d u n i f o r m $ v e l o c i t y ;
12 b o u n d a r y F i e l d
13 {
14 i n t e r f a c e
15 {
16 t y p e f i x e d V a l u e ; // m y M o v i n g W a l l V e l o c i t y ;
17 v a l u e u n i f o r m (0 0 0) ;
18 }
19 s u p p o r t s
20 {
21 t y p e f i x e d V a l u e ;
22 v a l u e u n i f o r m (0 0 0) ;
23 }
24 f a r f i e l d
25 {
26 t y p e i n l e t O u t l e t ;
27 i n l e t V a l u e u n i f o r m $ v e l o c i t y ;
28 }
29 s i d e s
30 {
31 t y p e e m p t y ;
32 }
33 }
34 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
35 F o a m F i l e
36 {
37 v e r s i o n 2 . 0 ;
38 f o r m a t a s c i i ;
39 c l a s s v o l S c a l a r F i e l d ;
40 o b j e c t p ;
41 }
42 # i n c l u d e " i n i t i a l C o n d i t i o n s "
43 d i m e n s i o n s [ 0 2 −2 0 0 0 0 ] ;
44 i n t e r n a l F i e l d u n i f o r m 0 ;
45 b o u n d a r y F i e l d
46 {
47 i n t e r f a c e
48 {
49 t y p e z e r o G r a d i e n t ;
50 }
51 s u p p o r t s
52 {
53 t y p e z e r o G r a d i e n t ;
54 }
55 f a r f i e l d
56 {
57 t y p e o u t l e t I n l e t ;
58 o u t l e t V a l u e u n i f o r m 0 ;
59 }
60 s i d e s
61 {
62 t y p e e m p t y ;
63 }
64
65 }
66 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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67 F o a m F i l e
68 {
69 v e r s i o n 2 . 0 ;
70 f o r m a t a s c i i ;
71 c l a s s v o l S c a l a r F i e l d ;
72 l o c a t i o n " 0 " ;
73 o b j e c t k ;
74 }
75 # i n c l u d e " i n i t i a l C o n d i t i o n s "
76 d i m e n s i o n s [ 0 2 −2 0 0 0 0 ] ;
77 i n t e r n a l F i e l d u n i f o r m $k ;
78 b o u n d a r y F i e l d
79 {
80 i n t e r f a c e
81 {
82 t y p e k q R W a l l F u n c t i o n ;
83 v a l u e u n i f o r m 0 ;
84 }
85 s u p p o r t s
86 {
87 t y p e k q R W a l l F u n c t i o n ;
88 v a l u e u n i f o r m 0 ;
89 }
90 f a r f i e l d
91 {
92 t y p e i n l e t O u t l e t ;
93 i n l e t V a l u e u n i f o r m $k ;
94 }
95 s i d e s
96 {
97 t y p e e m p t y ;
98 }
99 }
100 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
101 F o a m F i l e
102 {
103 v e r s i o n 2 . 0 ;
104 f o r m a t a s c i i ;
105 c l a s s v o l S c a l a r F i e l d ;
106 l o c a t i o n " 0 " ;
107 o b j e c t o m e g a ;
108 }
109 # i n c l u d e " i n i t i a l C o n d i t i o n s "
110 d i m e n s i o n s [ 0 0 −1 0 0 0 0 ] ;
111 i n t e r n a l F i e l d u n i f o r m $ o m e g a ;
112 b o u n d a r y F i e l d
113 {
114 i n t e r f a c e
115 {
116 t y p e o m e g a W a l l F u n c t i o n ;
117 v a l u e u n i f o r m 1 e8 ;
118 }
119 s u p p o r t s
120 {
121 t y p e o m e g a W a l l F u n c t i o n ;
122 v a l u e u n i f o r m 1 e8 ;
123 }
124 f a r f i e l d
125 {
126 t y p e i n l e t O u t l e t ;
127 i n l e t V a l u e u n i f o r m $ o m e g a ;
128 }
129 s i d e s
130 {
131 t y p e e m p t y ;
132 }
133 }
134 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
135 F o a m F i l e
136 {
137 v e r s i o n 2 . 0 ;
138 f o r m a t a s c i i ;
139 c l a s s v o l S c a l a r F i e l d ;
140 l o c a t i o n " 0 " ;
141 o b j e c t o m e g a ;
142 }
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143 # i n c l u d e " i n i t i a l C o n d i t i o n s "
144 d i m e n s i o n s [ 0 0 −1 0 0 0 0 ] ;
145 i n t e r n a l F i e l d u n i f o r m $ o m e g a ;
146 b o u n d a r y F i e l d
147 {
148 i n t e r f a c e
149 {
150 t y p e o m e g a W a l l F u n c t i o n ;
151 v a l u e u n i f o r m 1 e8 ;
152 }
153 s u p p o r t s
154 {
155 t y p e o m e g a W a l l F u n c t i o n ;
156 v a l u e u n i f o r m 1 e8 ;
157 }
158 f a r f i e l d
159 {
160 t y p e i n l e t O u t l e t ;
161 i n l e t V a l u e u n i f o r m $ o m e g a ;
162 }
163 s i d e s
164 {
165 t y p e e m p t y ;
166 }
167 }
168 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
169 F o a m F i l e
170 {
171 v e r s i o n 2 . 0 ;
172 f o r m a t a s c i i ;
173 c l a s s v o l S c a l a r F i e l d ;
174 l o c a t i o n " 0 " ;
175 o b j e c t n u t ;
176 }
177 # i n c l u d e " i n i t i a l C o n d i t i o n s "
178 d i m e n s i o n s [ 0 2 −1 0 0 0 0 ] ;
179 i n t e r n a l F i e l d u n i f o r m $ n u t ;
180 b o u n d a r y F i e l d
181 {
182 i n t e r f a c e
183 {
184 t y p e n u t W a l l F u n c t i o n ;
185 v a l u e u n i f o r m 0 ;
186 }
187 s u p p o r t s
188 {
189 t y p e n u t W a l l F u n c t i o n ;
190 v a l u e u n i f o r m 0 ;
191 }
192 f a r f i e l d
193 {
194 t y p e c a l c u l a t e d ;
195 }
196 s i d e s
197 {
198 t y p e e m p t y ;
199 }
200 }

Discretisation

1 F o a m F i l e
2 {
3 v e r s i o n 2 . 0 ;
4 f o r m a t a s c i i ;
5 c l a s s d i c t i o n a r y ;
6 l o c a t i o n " s y s t e m " ;
7 o b j e c t f v S c h e m e s ;
8 }
9
10 d d t S c h e m e s
11 {
12 d e f a u l t b d f 2 ;
13 d d t ( k ) b o u n d e d B a c k w a r d ;
14 d d t ( o m e g a ) b o u n d e d B a c k w a r d ;
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15 }
16
17 g r a d S c h e m e s
18 {
19 d e f a u l t G a u s s l i n e a r ;
20 }
21
22 d i v S c h e m e s
23 {
24 d e f a u l t n o n e ;
25 d i v ( phi , U ) G a u s s l i n e a r U p w i n d G a u s s l i n e a r ;
26 d i v ( phi , k ) G a u s s u p w i n d ;
27 d i v ( phi , o m e g a ) G a u s s u p w i n d ;
28 d i v ( ( n u E f f ∗ d e v ( g r a d ( U ) . T ( ) ) ) ) G a u s s l i n e a r ;
29 }
30
31 l a p l a c i a n S c h e m e s
32 {
33 d e f a u l t G a u s s l i n e a r c o r r e c t e d ;
34 }
35
36 i n t e r p o l a t i o n S c h e m e s
37 {
38 d e f a u l t l i n e a r ;
39 }
40
41 s n G r a d S c h e m e s
42 {
43 d e f a u l t c o r r e c t e d ;
44 }
45
46 f l u x R e q u i r e d
47 {
48 d e f a u l t no ;
49 p ;
50 }

Solver

1 F o a m F i l e
2 {
3 v e r s i o n 2 . 0 ;
4 f o r m a t a s c i i ;
5 c l a s s d i c t i o n a r y ;
6 l o c a t i o n " s y s t e m " ;
7 o b j e c t f v S o l u t i o n ;
8 }
9
10 s o l v e r s
11 {
12 p
13 {
14 s o l v e r P C G ;
15 t o l e r a n c e 1e−7;
16 r e l T o l 0 . 0 0 5 ;
17 p r e c o n d i t i o n e r D I C ;
18 m a x I t e r 5 0 0 ;
19 }
20 p F i n a l
21 {
22 s o l v e r P C G ;
23 t o l e r a n c e 1e−7;
24 r e l T o l 0 ;
25 p r e c o n d i t i o n e r D I C ;
26 m a x I t e r 5 0 0 ;
27 }
28 " ( U | k | o m e g a ) "
29 {
30 s o l v e r B i C G S t a b ;
31 p r e c o n d i t i o n e r D I L U ;
32 t o l e r a n c e 1e−9;
33 r e l T o l 0 . 0 ;
34 }
35 }
36
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37 P I M P L E
38 {
39 n C o r r e c t o r s 1 0 ;
40 n N o n O r t h o g o n a l C o r r e c t o r s 0 ;
41 t o l e r a n c e 5 . 5 e−5;
42 r e l T o l 1e−3;
43 m i n I t e r 1 ;
44 m a x I t e r 1 2 ;
45 p i s o T o l 1e−3;
46 }
47
48 r e l a x a t i o n F a c t o r s
49 {
50 p 0 . 9 ;
51 U 0 . 9 ;
52 k 0 . 9 ;
53 o m e g a 0 . 9 ;
54 }

C-2 preCICE settings

1 <? x m l v e r s i o n=" 1 . 0 " ?>
2
3 <p r e c i c e−c o n f i g u r a t i o n>
4
5 <s o l v e r−i n t e r f a c e dimensions=" 2 ">
6
7 <d a t a : v e c t o r name=" S t r e s s e s " />
8 <d a t a : v e c t o r name=" D i s p l a c e m e n t s " />
9
10 <mesh name=" F l u i d _ N o d e s ">
11 <use−data name=" D i s p l a c e m e n t s " />
12 </mesh>
13
14 <mesh name=" F l u i d _ C e l l C e n t e r s ">
15 <use−data name=" S t r e s s e s " />
16 </mesh>
17
18 <mesh name=" S t r u c t u r e _ N o d e s ">
19 <use−data name=" D i s p l a c e m e n t s " />
20 </mesh>
21
22 <mesh name=" S t r u c t u r e _ C e l l C e n t e r s ">
23 <use−data name=" S t r e s s e s " />
24 </mesh>
25
26 <p a r t i c i p a n t name=" F l u i d _ S o l v e r ">
27 <use−mesh name=" F l u i d _ N o d e s " p r o v i d e=" y e s " />
28 <use−mesh name=" F l u i d _ C e l l C e n t e r s " p r o v i d e=" y e s " />
29 <use−mesh name=" S t r u c t u r e _ N o d e s " from=" S t r u c t u r e _ S o l v e r " />
30 <use−mesh name=" S t r u c t u r e _ C e l l C e n t e r s " from=" S t r u c t u r e _ S o l v e r " />
31 <write−data mesh=" F l u i d _ C e l l C e n t e r s " name=" S t r e s s e s " />
32 <read−data mesh=" F l u i d _ N o d e s " name=" D i s p l a c e m e n t s " />
33 <mapping:nearest−neighbor d i r e c t i o n=" w r i t e " from=" F l u i d _ C e l l C e n t e r s " to="

S t r u c t u r e _ C e l l C e n t e r s " c o n s t r a i n t=" c o n s i s t e n t " t iming=" i n i t i a l " />
34 <mapping:nearest−neighbor d i r e c t i o n=" r e a d " from=" S t r u c t u r e _ N o d e s " to=" F l u i d _ N o d e s "

c o n s t r a i n t=" c o n s i s t e n t " t iming=" i n i t i a l " />
35 <master:mpi−s i n g l e />
36 </ p a r t i c i p a n t>
37
38 <p a r t i c i p a n t name=" S t r u c t u r e _ S o l v e r ">
39 <use−mesh name=" S t r u c t u r e _ N o d e s " p r o v i d e=" y e s " />
40 <use−mesh name=" S t r u c t u r e _ C e l l C e n t e r s " p r o v i d e=" y e s " />
41 <write−data mesh=" S t r u c t u r e _ N o d e s " name=" D i s p l a c e m e n t s " />
42 <read−data mesh=" S t r u c t u r e _ C e l l C e n t e r s " name=" S t r e s s e s " />
43 <! - -<master:mpi−s i n g l e />- ->
44 </ p a r t i c i p a n t>
45
46 <! - -<m2n:sockets exchange−d i r e c t o r y=" . . / " from=" F l u i d _ S o l v e r " to=" S t r u c t u r e _ S o l v e r " /> - ->
47 <m2n:sockets from=" F l u i d _ S o l v e r " to=" S t r u c t u r e _ S o l v e r " d i s t r i b u t i o n−type=" g a t h e r - s c a t t e r " />

<! - - F o r s e r i a l r u n s - ->
48
49 <coupl ing−s c h e m e : s e r i a l−i m p l i c i t>
50 <timestep−l e n g t h value=" 1 . 0 e -5 " />
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51 <max−t i m e s t e p s value=" 2 0 0 0 0 " />
52 <p a r t i c i p a n t s f i r s t =" F l u i d _ S o l v e r " second=" S t r u c t u r e _ S o l v e r " />
53 <exchange data=" S t r e s s e s " from=" F l u i d _ S o l v e r " mesh=" S t r u c t u r e _ C e l l C e n t e r s " to="

S t r u c t u r e _ S o l v e r " />
54 <exchange data=" D i s p l a c e m e n t s " from=" S t r u c t u r e _ S o l v e r " mesh=" S t r u c t u r e _ N o d e s " to="

F l u i d _ S o l v e r " />
55 <r e l a t i v e−convergence−measure l i m i t=" 1 . 0 e -6 " data=" D i s p l a c e m e n t s " mesh=" S t r u c t u r e _ N o d e s "

s u f f i c e s=" 0 " />
56 <max−i t e r a t i o n s value=" 40 " />
57 <e x t r a p o l a t i o n−o r d e r value=" 2 " />
58
59 <post−process ing:IQN−ILS>
60 <data mesh=" S t r u c t u r e _ N o d e s " name=" D i s p l a c e m e n t s " />
61 < i n i t i a l −r e l a x a t i o n value=" 0 . 0 0 1 " />
62 <max−used−i t e r a t i o n s value=" 2 0 0 " />
63 <timesteps−r e u se d value=" 20 " />
64 < f i l t e r type=" Q R 1 " l i m i t=" 1 e -8 " />
65 </ post−process ing:IQN−ILS>
66
67 </ coupl ing−s c h e m e : s e r i a l−i m p l i c i t>
68
69 </ s o l v e r−i n t e r f a c e>
70
71 </ p r e c i c e−c o n f i g u r a t i o n>
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Appendix D

Simulation results

D-1 Greenhalgh setup

Figure D-1: Flow field for converged shape of the wing with oval supports, α = 8◦ and εwing =
1.14%
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Figure D-2: Flow field for converged shape of the wing without supports, α = 8◦ and εwing =
1.14%

Figure D-3: Instantaneous snapshot of oscillatory flow field of the wing without supports, α =
16◦ and εwing = 1.14%
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