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Abstract

Global maritime trade carries over 80% of world cargo, yet vessel arrival time (VAT) prediction
remains highly inaccurate. Hong Kong Port experiences average ETA-ATA deviations of 13.8 hours,
causing massive congestion costs and supply chain disruptions.

Current methods rely exclusively on either static ETA reports or dynamic AIS data, missing the com-
plete picture. This fragmented approach ignores how ships actually navigate—constantly responding
to weather conditions, sea states, and their own physical capabilities.

This study develops a multi-source data fusion framework that integrates four key streams: ETA base-
lines, real-time AIS movements, marine weather data (wave height, wind speed, swell patterns), and
vessel physical parameters (VPP). OpenFE automatic feature engineering handles complex data in-
teractions, while six machine learning models (XGBoost, Random Forest, LightGBM, LSTM, Trans-
former, TabPFN) are systematically compared.

Testing on Hong Kong Port data shows TabPFN achieves optimal performance with 2.88–3.42 hour
prediction errors, which means 43%–47% improvement over ETA baselines. Weather factors occupy
3 of the top 15 important features, contributing 20% of predictive power. Surprisingly, traditional
machine learning consistently outperforms deep learning on this structured maritime data. These ad-
vances enable optimised berth allocation, reduced port congestion, and more reliable logistics plan-
ning, supporting the maritime industry’s digital transformation.

Keywords Ship arrival time prediction; multi-source data fusion; machine learning; AIS data;
weather data; TabPFN; OpenFE; Hong Kong Port;

1 Introduction

1.1 Background

As an important carrier of international trade, the development scale and growth trend of global mar-
itime trade directly reflect the degree of world economic integration. According to the latest data from
the United Nations Conference on Trade and Development (UNCTAD), the global maritime trade vol-
ume will reach 1.23 billion tons in 2023, an increase of 2.4% over 2022, showing a strong recovery
trend (United Nations Conference on Trade and Development 2024). Maritime transport occupies a
dominant position in international trade, undertakes more than 80% of the world’s cargo transporta-
tion volume, and is an important link connecting the economies of various continents (United Nations
Conference on Trade and Development 2023a). With the deepening development of the globaliza-
tion process, the volume of maritime trade is expected to maintain an average annual growth rate of
more than 2% during the period 2024-2028 (United Nations Conference on Trade and Development
2023b).

As a key node in the shipping network, the operation efficiency of ports directly determines the ship
turnover speed, cargo handling capacity and logistics costs. Port congestion has become an important
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factor restricting the efficiency of the global supply chain. According to McKinsey research, by
December 2021, port congestion had reduced global container ship capacity by about 16%, and ocean
freight rates had risen to 4-5 times the 2019 level (McKinsey & Company 2022). According to
research by economists David Hummels and Georg Schaur, each day of delay can cause economic
losses of 0.6%-2.3% of the value of the cargo on board (Hummels and Schaur 2012). In addition,
container detention fees are usually between US$75-300 per container per day. These direct costs
accumulate rapidly, causing huge economic pressure on the global supply chain (Investopedia 2024).

The uncertainty of Vessel Arrival Time (VAT) has become a major challenge for port management.
This uncertainty is most intuitively reflected in the deviation between the estimated time of arrival
(ETA) and the actual time of arrival (ATA), which not only affects the efficiency of port scheduling,
but may also lead to supply chain disruptions, cargo delays and additional economic costs (Notteboom
and Rodrigue 2008). The accuracy of VAT prediction has received widespread attention in academic
research. Chu et al. found in their study of port arrival time prediction that the prediction error of tra-
ditional methods is usually within the root mean square error range of 25.5 hours, while the machine
learning method that integrates AIS data and port call records can reduce this error to 15.5 hours (Chu,
Yan, and Wang 2022). In a case study of Hong Kong Port, the world’s busiest container hub, the study
showed that the accuracy of VAT prediction has a significant impact on port operating efficiency (Lam
et al. 2023). This study verified the universal problem of significant deviations between ETA and ATA
by analysing the actual operating data of Hong Kong Port. Therefore, using data-driven methods to
accurately predict VAT will not only help optimise port operating efficiency, but also provide strong
decision-making support for shipping companies, shippers and logistics service providers.

1.2 Significance

This study addresses three critical research gaps identified in the current literature on VAT prediction
and makes significant scientific and practical contributions to the field.

Addressing the insufficient application of weather data in VAT prediction: Current research
demonstrates inadequate integration of weather data into VAT prediction models (Rahman et al. 2025;
J. Yang et al. 2024). Nasir et al. 2024 notes that while many approaches have relied solely on AIS
data, limited research has comprehensively integrated diverse data sources including Weather Data.
This study constructs a comprehensive multi-source data framework that systematically integrates
ETA, AIS, weather and VPP data. By addressing the technical challenges of meteorological data
acquisition and processing, including temporal resolution differences and spatial scale mismatches,
this research overcomes the limitations of existing studies that often ignore meteorological factors
to avoid technical complexities. The framework will fully explore the inherent correlations between
various data types through advanced feature fusion methods, enabling more accurate predictions.

Overcoming traditional feature engineering limitations: Traditional manual feature engineering
methods in VAT prediction are time-consuming, require extensive domain expertise, and often lead
to suboptimal feature sets (Pecan AI 2025). Saleh, Hassan, and Al-Rashid 2023 observes that tradi-
tional methods rely heavily on human skills and judgement, making them susceptible to human error
and less efficient in handling large volumes of data. This study addresses these limitations by im-
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plementing automated feature engineering techniques that can generate a large number of candidate
features from raw data and identify the most valuable feature combinations through intelligent selec-
tion mechanisms. This approach moves beyond basic ship motion parameters to discover complex
feature combinations and interactions that traditional methods often miss, particularly when integrat-
ing multi-source data.

Advancing deep learning applications for tabular maritime data: While deep learning methods
have been widely used in VAT prediction, most studies focus on traditional neural network architec-
tures like LSTM and CNN, which are primarily designed for sequence or image data (Li, Jiao, and
Z. Yang 2023). Hollmann, Müller, Purucker, et al. 2025 demonstrates that specialized tabular founda-
tion models like TabPFN significantly outperform traditional methods on structured data. This study
addresses the insufficient application of advanced deep learning methods specifically designed for
tabular data by employing TabPFN alongside traditional approaches, enabling optimal utilisation of
multi-dimensional structured maritime data including static ship characteristics, dynamic navigation
parameters, meteorological conditions, and port information.

The study employs a comprehensive methodological approach using multiple machine learning meth-
ods, including Random Forest, XGBoost, LightGBM, Transformer, LSTM, and TabPFN, leveraging
the advantages of each model to capture complex patterns in the integrated multi-source data. This
multi-model ensemble approach not only enhances prediction accuracy but also provides robust per-
formance across different maritime scenarios and conditions.

The VAT prediction model developed in this study has significant practical implications for the ship-
ping industry. By accurately predicting ship arrival times, the model helps optimise port scheduling,
reduce congestion, and improve berth efficiency, thereby minimising operational costs caused by de-
lays such as fuel waste, idle time, and late penalties. The model provides enhanced planning and
resource allocation support for logistics operators, port authorities, and shipping companies, improv-
ing overall supply chain coordination efficiency.

The implementation of this research enables more intelligent port operations, reduces environmen-
tal impact, enhances stakeholder competitiveness in the global shipping industry, and supports the
development of smart ports and smart shipping by providing actionable insights for industry digital
transformation.

In summary, this study delivers the following core values:

• Scientific and Methodological Contribution: Addresses three key research gaps by proposing
a comprehensive multidimensional feature fusion framework that integrates weather data effec-
tively, implements automated feature engineering, and applies advanced tabular deep learning
methods. This multi-model ensemble approach enhances VAT prediction accuracy and estab-
lishes new research directions.

• Practical Application: High-precision models optimize port operations, reduce delays, and
improve supply chain efficiency by providing reliable arrival time predictions under diverse
weather conditions and operational scenarios.

• Industry Impact: Supports smart port and smart shipping development by providing stake-
holders with actionable insights derived from comprehensive multi-source data analysis, en-
abling data-driven decision making and digital transformation.
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1.3 Research Questions

Main Research Question How can high-precision VAT prediction be achieved through multi-
source data fusion and machine learning models?

Sub-Research Questions

• How can fragmented records be effectively connected?

• What model architecture optimally combines ETA with AIS data for spatio-temporal predic-
tion?

• How can the integration of meteorological data and VPP data improve the accuracy of predict-
ing VAT?

The Fig.1 shows a brief process diagram of this paper.

Figure 1: Thesis Structure Overview

Following the research framework shown in Fig.1, this study unfolds in a systematic progression:
The first phase involves collecting and integrating multi-source data including ETA/ATA data, AIS
data, weather data, and VPP data. The data processing and matching phase then establishes compre-
hensive data associations through ETA-ATA matching, AIS-ETA matching, AIS-Weather matching,
and VPP integration. The feature engineering stage applies feature selection techniques and OpenFE
automatic feature engineering to build high-quality feature sets. A three-dimensional data splitting
strategy based on Time Series Split, Distance Series Split, and MMSI Series Split ensures reliable
model validation. The model training and optimization phase deploys various algorithms including
tree-based models like XGBoost, Random Forest, and LightGBM, neural networks such as LSTM
and Transformer, plus advanced models like TabPFN, all optimized through greedy search hyper-
parameter optimization. Finally, comprehensive model evaluation and analysis uses performance
metrics including MAE, RMSE, and R², while diving deep into the prediction mechanisms through
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feature importance analysis and SHAP analysis to build a complete vessel arrival time prediction
framework.

1.4 Contribution

• Systematic weather data fusion
This study systematically integrates multi-dimensional marine meteorological data (wave height,
wind speed, swell, etc.) into the VAT prediction framework, and a 0.5°×0.5° spatial grid strat-
egy is used to achieve efficient weather data acquisition and matching, filling the scientific gap
in the insufficient application of meteorological factors in the maritime forecasting field.

• Application of OpenFE automatic feature engineering
The OpenFE framework is introduced to realize automatic feature generation and selection,
breaking through the limitations of traditional manual feature engineering, and automatically
discovering complex feature interaction patterns through operations such as numerical trans-
formation, feature combination, statistical features, and time window features, bringing a 2-6%
stable performance improvement to traditional machine learning models.

• The application of TabPFN in the maritime field
For the first time, the pre-trained Transformer model TabPFN designed for tabular data is ap-
plied to ship arrival time prediction. Competitive performance can be obtained on small-scale
data sets without additional training, achieving a 43.6%-46.5% improvement in prediction ac-
curacy.

• Multi-source heterogeneous data matching system
A systematic data matching framework for ETA-ATA, AIS-ETA, AIS-Weather, and AIS-VPP
was built. Through Call Sign group matching, MMSI index association, and time window
constraints, the technical problems of scattered maritime data sources and inconsistent formats
were effectively solved.

• Three-dimensional data segmentation verification strategy
A three-dimensional ordered segmentation strategy based on MMSI, timestamp, and reverse
cumulative distance was designed to ensure spatio-temporal continuity and the logical order of
ship navigation, avoid the destruction of the intrinsic correlation of data by traditional random
sampling, and improve the reliability of model verification.

2 Literature Review

This chapter will review existing research on VAT prediction to build the theoretical foundation for
this study and identify key research opportunities. Literature review will cover three main areas: first,
looking at how prediction methods have evolved from traditional statistical approaches to modern
deep learning techniques to understand where we stand today; second, examining the four main types
of influencing factors (ETA, AIS, weather, and VPP data) to see their impact on prediction accuracy;
and third, identifying the research gaps in current research to find critical gaps that present opportu-
nities for innovation.
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2.1 Evolution of VAT Prediction Methods

2.1.1 Traditional Statistical Methods

Before a series of automated processing methods matured, VAT prediction mainly relied on tradi-
tional statistical models and manual experience. Statistical models such as linear regression based on
historical average time were difficult to adapt to complex scenarios such as port congestion and faced
significant challenges in the actual port environment(Hong Kong Maritime Authority 2022). The pre-
diction methods of this period were mainly based on deterministic mathematical models, assuming
that the ship’s navigation process followed a fixed pattern, ignoring the complexity and uncertainty of
the marine environment.

The traditional prediction model has the following main limitations: First, it cannot effectively capture
the non-linear characteristics of ship behaviour. In the actual navigation process, ships may make
dynamic decisions such as speed adjustment and route changes due to emergencies. These behaviours
have significant non-linear characteristics, resulting in prediction errors generally exceeding 20% (Yu
2021).

Second, the traditional model relies too much on a single data source and lacks systematic integration
of multi-source information. Modern port operations involve multi-dimensional information such as
meteorological conditions, traffic flow, and port operation efficiency, which have a significant impact
on VAT prediction (Filom et al. 2023).

2.1.2 Machine Learning Methods

With the gradual application of machine learning in VAT prediction, it provides new solutions for
VAT prediction in port operations. Researches marked an important shift from traditional statistical
methods to data-driven methods in VAT prediction. The core advantage of machine learning methods
is that they can automatically learn complex patterns and laws from a large amount of historical data
without pre-assuming the form of the relationship between variables.

Ensemble learning methods such as Random Forest and XGBoost are particularly prominent in port
operations. The Random Forest model based on ship size, speed and departure port characteristics
can effectively capture the complex non-linear relationship during the ship’s voyage and reduce the
VAT prediction error to 12% (Zhang et al. 2022). As an optimised version of the gradient boosting
algorithm, XGBoost performs well in handling feature importance evaluation and missing value pro-
cessing, and is particularly suitable for dealing with the common problem of incomplete data in the
marine environment.

The applicability of support vector machines (SVM) and neural networks in VAT prediction has been
further verified. Studies have shown that SVM performs well when processing small sample data, es-
pecially in high-dimensional feature space, it can find the optimal separation hyperplane, effectively
avoiding the over-fitting problem (Flapper 2022). Neural networks can learn complex non-linear
patterns through multi-layer structures and show strong learning ability when processing large-scale
data sets. However, the performance of these models is highly dependent on feature selection, and
unreasonable feature engineering may lead to over-fitting or under-fitting of the model. Feature se-
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lection and combination, such as historical ship navigation trajectories, real-time speed, and channel
congestion, will significantly affect the prediction effect of the model.

2.1.3 Deep Learning methods

Deep learning methods have shown strong capabilities in the field of VAT prediction, especially in
processing complex spatio-temporal sequence data. The research characteristics of this period are the
complexity of the model architecture and the enhancement of multi-source data fusion capabilities.
Deep learning methods can automatically learn the hierarchical feature representation of data without
manually designing features, which has significant advantages when processing high-dimensional
spatio-temporal data such as AIS data. Long short-term memory (LSTM) networks are widely used
in ship trajectory prediction. Tang et al. constructed a ship trajectory prediction model based on
LSTM neural network and achieved good results in long-term position prediction by learning the
historical AIS data of Tianjin Port (Tang, Yin, and Shen 2022). LSTM can effectively handle long-
term dependency problems through its unique gating mechanism, which is particularly important
for tasks with long time series characteristics such as ship navigation. Compared with traditional
recurrent neural networks, LSTM can avoid the gradient vanishing problem and perform more stably
when processing long sequence data.

At the same time, the latest review studies show that Transformer-based AIS data-driven maritime
monitoring is becoming an important research direction (Sun et al. 2024). The application of Trans-
former models in the maritime field mainly focuses on trajectory prediction methods, behaviour de-
tection and prediction techniques. Its powerful sequence modelling capabilities, especially the ability
to capture long-distance dependencies and complex temporal dynamics, make Transformer an effec-
tive tool for processing AIS data. These studies provide important technical support for data-driven
maritime monitoring tasks and promote the digital transformation of the maritime industry.

In recent years, new deep learning methods for tabular data have also begun to show potential in the
field of maritime forecasting. Tabular Prior Data Fitting Network (TabPFN), a Transformer architec-
ture designed specifically for tabular data, has shown unique advantages in processing structured mar-
itime data (Hollmann, Müller, Eggensperger, et al. 2023). TabPFN is pre-trained on a large amount of
synthetic tabular data through meta-learning, and can be directly applied to new ship operation data
prediction tasks without additional training. This method is particularly suitable for VAT prediction
tasks that include multi-dimensional tabular data such as ship static characteristics, dynamic naviga-
tion parameters, and environmental conditions. Compared with traditional deep learning methods that
require a large amount of labelled data and long training time, TabPFN can quickly obtain competitive
prediction performance on small to medium-sized ship datasets, which is of great significance for port
application scenarios where data is scarce.

To systematically summarise the methodological progression in VAT prediction research, Table 1
presents a comprehensive comparison of different approaches across three distinct periods, highlight-
ing their key characteristics, advantages, and limitations.
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Table 1: Evolution of VAT Prediction Methods

Period Method Cat-
egory Reference Main Method/-

Model Advantages Limitations

Before
2010

Traditional
Statistical
Methods

(Hong
Kong
Maritime
Authority
2022)

Linear regression
based on histori-
cal averages

Simple computation,
easy to understand

Difficult to adapt to
complex scenarios like
port congestion

(Yu 2021)
Deterministic
mathematical
models

Based on fixed pat-
tern assumptions

Prediction errors gen-
erally exceed 20%,
cannot capture non-
linear characteristics

(Filom
et al. 2023)

Traditional statis-
tical models

Basic statistical ap-
proaches

Over-reliance on sin-
gle data source, lack of
multi-source informa-
tion integration

2010-
2018

Machine
Learning
Methods

(Zhang
et al. 2022)

Random Forest
(ship size, speed,
departure port
features)

Effectively capture
complex non-linear
relationships, reduce
VAT prediction error
to 12%

Highly dependent on
feature selection, un-
reasonable feature en-
gineering may cause
overfitting

(Flapper
2022)

Support Vector
Machine (SVM)

Good performance
with small sample
data, find opti-
mal separation
hyperplane in high-
dimensional space,
avoid overfitting

Performance highly
dependent on feature
selection, requires
large labeled datasets

2018-
Present

Deep
Learning
Methods

(Tang, Yin,
and Shen
2022)

LSTM-based ship
trajectory predic-
tion model

Effectively handle
long-term dependen-
cies through gating
mechanism, avoid
gradient vanishing

High computational
complexity, requires
large training data

(Sun et al.
2024)

Transformer-
based AIS data-
driven maritime
monitoring

Powerful sequence
modeling capa-
bilities, capture
long-range depen-
dencies and complex
temporal dynamics

Poor interpretability,
high computational
resource requirements

(Hollmann,
Müller,
Eggensperger,
et al. 2023)

TabPFN (Trans-
former architec-
ture for tabular
data)

Pre-trained through
meta-learning, di-
rectly applicable to
new tasks without
additional training,
fast competitive
performance on
small-medium
datasets

Adaptability to large-
scale complex scenar-
ios needs verification

11



2.2 Analysis of influencing factors

2.2.1 ETA Factor

ETA is a basic information for prediction, and its accuracy directly affects the final prediction results.
Traditional ship ETA records are usually used for port berth planning, but lack the accuracy required
to implement effective plans (Kim et al. 2023). This lack of accuracy mainly stems from the static
nature of ETA information, that is, the ETA determined by the ship at the time of departure often
cannot reflect the dynamic changes during the voyage.

The reliability of ETA is highly dependent on the accuracy of the target prediction. The ETA pre-
diction of a ship is closely related to the target prediction, and accurate target information is the
prerequisite for accurate ETA prediction (Rong et al. 2020). In a complex shipping network, a ship
may change its destination during the voyage, and this destination uncertainty will directly affect the
accuracy of ETA. The global nature of the shipping industry allows ships to sail from any port to any
other port, and can adopt different sailing speeds and routes. This flexibility increases the complexity
of ETA prediction.

In practical applications, ships report their estimated departure time (EDT) 36 hours before leaving
the port, providing an important time reference point for ETA prediction (Thunberg et al. 2023). At
the same time, the quality of ETA information is also affected by human factors. Crews’ estimates of
arrival times are often based on experience and intuition, lacking a scientific calculation basis.

Modern ETA prediction methods pay more and more attention to dynamic adjustment and real-time
updating. By integrating real-time AIS data, weather information and port status, dynamic correction
of ETA is achieved to improve the timeliness and accuracy of predictions.

2.2.2 AIS Factor

Automatic Identification System (AIS) data is the core data source for modern VAT prediction. Since
the AIS system was mandatory by the International Maritime Organization (IMO) in 2004, it has pro-
vided a rich data basis for ship trajectory prediction (Park, Sim, and Bae 2021). The implementation
of this global standard enables maritime researchers to obtain unprecedented ship motion data.

AIS data contains three main categories of information: static information such as Maritime Mobile
Service Identity (MMSI), ship type, etc. and dynamic information such as ship position, heading,
speed, timestamp, etc. Its advantage lies in its fully automated nature, which does not require human
intervention. Unlike radar systems, the AIS system uses a longer wavelength and is not affected by
weather or sea conditions. (Park, Sim, and Bae 2021), while its feature of updating every few minutes
enables researchers to capture subtle changes in ship motion.

The latest research shows that the application of AIS data in complex traffic environments is effective.
Analysis of AIS data sets from different water characteristics shows that AIS data-driven ship trajec-
tory prediction can effectively assist in identifying abnormal ship behaviour and reducing maritime
risks (Liu et al. 2023).
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2.2.3 Weather Factor

Weather conditions have a significant impact on ship navigation behaviour and arrival time, and are a
key factor that cannot be ignored in VAT prediction. Quantitative analysis shows that when the wind
speed exceeds 10 m/s, the probability of ship arrival delay will increase by 35% (Zhou et al. 2022).
This significant statistical relationship reveals the important impact of meteorological conditions on
shipping operations.

Research shows weather conditions such as wind speed, wave height and current have a direct impact
on ship speed. Correlation analysis shows that significant wave height and swell significant wave
height have a moderate correlation with ship speed (18%-19%) (Dorsser et al. 2015). Wind speed has
a low negative correlation with ship speed (about -8%). Although the correlation is not as significant
as wave height, its impact may be amplified under extreme conditions.

Visibility is another important meteorological factor. When visibility is less than 1 nautical mile,
the uncertainty of the ship’s arrival time increases significantly (Brandt 2023). There are significant
differences in the sensitivity of different types of ships to meteorological conditions, which provides
the possibility of combining VPP data. Large container ships are usually more resistant to strong
winds and waves than small bulk carriers. This ship type specificity requires the prediction model to
be able to adjust the weight of meteorological effects according to the specific ship type.

2.2.4 VPP Factor

As an important factor affecting navigation performance, VPP plays a key role in arrival time pre-
diction. Static characteristics of ships such as ship type, dead weight tonnage (DWT), gross tonnage
(GT), length, ship width and ship construction year constitute the basic framework of ship perfor-
mance (Rahman et al. 2025).

Ship type is one of the most important classification parameters. Different types of ships (such as
container ships, bulk carriers, tankers, etc.) have very different design characteristics and operating
modes. Container ships are usually designed to sail at high speeds to meet the time requirements
of regular liner services; while bulk carriers focus more on cargo capacity and have relatively low
sailing speeds. This type difference directly affects its speed-power relationship, fuel consumption
characteristics and sensitivity to environmental conditions.

There are significant differences in the sensitivity of different types of ships to meteorological con-
ditions. Large container ships are usually more resistant to strong winds and waves than small bulk
carriers due to their greater draft, lower centre of gravity and better stability design. The load state
of a ship will significantly affect its sailing performance. There are obvious differences in the sailing
speed, fuel consumption and manoeuvrability of fully loaded ships and empty ships under the same
conditions.

Building upon the factor analysis discussion, Table 2 provides a detailed examination of the four
primary data categories that influence VAT prediction, analysing their mechanisms, advantages, chal-
lenges, and current application status.
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Table 2: Analysis of Key Factors Influencing VAT Prediction

Factor Cat-
egory

Data Characteris-
tics Reference Impact Mecha-

nism on VAT Main Advantages Main Challenges

ETA Factors

Ship-reported
estimated arrival

time; Static
prediction

information

(Kim et al.
2023)

Provides basic time
reference for port
berth planning

Wide coverage;
Easy to obtain

Lacks accuracy re-
quired for effective
planning; Static na-
ture

(Rong et
al. 2020)

ETA reliability
highly dependent
on target prediction
accuracy

Provides basic time
framework

Destination uncer-
tainty directly af-
fects ETA accuracy

(Thunberg
et al.
2023)

Ships report EDT
36 hours before de-
parture, providing
important time ref-
erence

Provides early
warning time

Based on experi-
ence and intuition,
lacks scientific cal-
culation basis

AIS Factors

MMSI, position,
heading, speed and

other dynamic
information;

Updated every
minute

(Park,
Sim, and
Bae 2021)

Provides rich data
foundation since
IMO mandate in
2004

Fully auto-
mated; Weather-
independent; Rich
data content

Massive data vol-
ume; Requires
complex processing
algorithms

(Liu et al.
2023)

Effective applica-
tion in complex
traffic environ-
ments, identifies
abnormal vessel
behavior

Effectively assists
in reducing mar-
itime risks

Requires advanced
data processing and
analysis methods

Weather
Factors

Wind speed, wave
height, visibility,
ocean current and

other marine
environmental data

(Zhou et
al. 2022)

35% increase in
delay probability
when wind speed
>10m/s

Direct impact on
navigation effi-
ciency

Spatio-temporal
resolution differ-
ences; Complex
data quality control

(Dorsser
et al.
2015)

Significant wave
height has mod-
erate correlation
with vessel speed
(18-19%)

Provides environ-
mental constraint
information

Correlation may be
amplified under ex-
treme conditions

(Brandt
2023)

Arrival time uncer-
tainty significantly
increases when vis-
ibility <1 nautical
mile

Visibility is impor-
tant safety indicator

Different vessel
types show signif-
icant differences
in meteorological
sensitivity

VPP Factors

Ship type, dead-
weight tonnage,
gross tonnage,
length, beam and
other physical
parameters

(Rahman
et al.
2025)

Affects speed-
power relationship;
Determines envi-
ronmental sensitiv-
ity

Reflects vessel
performance differ-
ences; Relatively
stable

Static character-
istics; Limited
marginal effects

2.3 Research gaps and opportunities
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2.3.1 Insufficient application of weather data in VAT prediction

In current research on VAT prediction, the integrated application of weather data is still insufficient.
Rahman et al. 2025 emphasises that by improving the integration of environmental data into ETA
models, the maritime industry can achieve more reliable and precise arrival time forecasts, leading
to better voyage planning and reduced operational risks. However, J. Yang et al. 2024 points out
that while some studies have incorporated weather conditions into their frameworks, many existing
approaches still rely primarily on AIS data and vessel information without fully leveraging diverse
environmental data sources.

Nasir et al. 2024 notes that while many prior approaches have relied solely on AIS data, and some
incorporated a combination of AIS and vessel information, limited research has integrated diverse
data sources including Maritime Weather Data (MWD) comprehensively. Even when weather factors
are considered, they are often limited to simple weather data and lack the comprehensive use of
multidimensional meteorological data.

Existing studies also face technical challenges in the acquisition and processing of meteorological
data. Issues such as differences in temporal resolution, spatial scale mismatch, and data quality con-
trol between different data sources make the effective integration of weather data complicated. In
order to avoid these technical complexities, most studies choose to ignore the processing of meteoro-
logical factors, which results in the VAT prediction model being unable to fully reflect the real marine
environmental impact.

In addition, there are significant differences in the sensitivity of different types of ships to meteo-
rological conditions, but existing studies lack personalised modelling methods for such differences.
This insufficient application of weather data limits the accuracy and practicality of the VAT prediction
model, especially the prediction performance under severe weather conditions.

2.3.2 Traditional feature engineering methods limit the potential of model performance

Current machine learning methods generally use traditional artificial feature engineering methods in
VAT prediction, which has obvious limitations. Pecan AI 2025 explains that feature engineering is
the process of taking a dataset and constructing explanatory variables — features — that can be used
to train a machine learning model for a prediction problem. Traditional manual feature engineering
is time-consuming, requires domain expertise, and often leads to suboptimal feature sets. Traditional
feature engineering mainly relies on the knowledge and experience of domain experts, which is easy
to miss potential valuable features, and it is also difficult to discover complex feature combinations
and interactions.

(Saleh, Hassan, and Al-Rashid 2023) observe that traditional methods of marine traffic management
rely heavily on human skills and judgment and are susceptible to human error, have limitations in
handling large volumes of data, and can be less efficient in predicting potential situations. Existing
studies often only use basic ship motion parameters, such as position, speed, heading and other orig-
inal features, while ignoring high-order features that may be generated by feature combination and
transformation. This inadequate feature representation directly limits the machine learning model
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from its due potential. Especially when integrating multi-source data, artificial feature engineering
methods are difficult to effectively handle the complex relationships between different data sources.

(Koehrsen 2018) demonstrates that automated feature engineering tools can streamline the process
by cleaning up data, constructing features, and surfacing relevant variables specific to your data and
business problem. The benefits of automated feature engineering include efficiency, bias detection,
consistency, and deeper exploration of data. However, the application of automated feature engineer-
ing technology in the field of VAT prediction is relatively rare. These technologies can automatically
generate a large number of candidate features from raw data and identify the most valuable fea-
ture combinations through intelligent selection mechanisms, providing new possibilities for breaking
through the limitations of traditional feature engineering.

2.3.3 Insufficient application of advanced deep learning methods for tabular data

In the field of VAT prediction, although deep learning methods have been widely used, most studies
still focus on traditional neural network architectures, such as LSTM, CNN, etc. Li, Jiao, and Z. Yang
2023 notes that ship trajectory prediction based on Automatic Identification System (AIS) data has
attracted increasing interest as it helps prevent collision accidents and eliminate potential navigational
conflicts. However, these methods are mainly designed for sequence data or image data, and have
long operation time when processing structured tabular data, which may not be able to fully exert
their advantages.

Ship operation data is essentially multi-dimensional structured tabular data, including static ship char-
acteristics, dynamic navigation parameters, meteorological conditions, and port information. How-
ever, existing studies rarely explore the application potential of deep learning methods designed
specifically for tabular data in VAT prediction. Hollmann, Müller, Purucker, et al. 2025s demon-
strate that TabPFN, a tabular foundation model, outperforms all previous methods on datasets with up
to 10,000 samples by a wide margin, using substantially less training time. In 2.8 s, TabPFN outper-
forms an ensemble of the strongest baselines tuned for 4 h in a classification setting. The limitations
of this method selection may result in the model being unable to optimally utilise the information in
the data.

Especially when dealing with complex prediction tasks with a large number of features, traditional
deep learning methods may face challenges such as large training data requirements and high com-
putational complexity. Wu et al. 2025 explains that TabPFN operates in two stages: pre-training and
inference. During the pre-training stage, the model is pre-trained on a diverse set of synthetic datasets.
In the inference stage, given a new task and a set of labelled examples as a "prompt," TabPFN directly
predicts the labels of test samples using in-context learning, without requiring further parameter up-
dates. New deep learning methods designed specifically for tabular data, such as the TabPFN model,
have unique advantages in processing structured data, but their application in the field of VAT predic-
tion is relatively rare.

In addition, existing studies are often limited by the computation and performance of traditional ma-
chine learning methods when using large-scale feature sets for prediction. How to effectively utilise
the rich feature sets generated by automated feature engineering and give full play to the value of
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large-scale feature data remains an important issue that needs to be addressed in current research.

To identify specific opportunities for methodological innovation, Table 3 systematically categorises
the major research gaps identified in current VAT prediction literature, detailing their manifestations
and potential innovation opportunities.

Table 3: Research Gaps and Innovation Opportunities

Research Gap Specific Manifesta-
tions

Technical Challenges Innovation Opportu-
nities

Insufficient Weather
Data Application

Most studies still
mainly rely on AIS
data; Lack of com-
prehensive utilization
of multi-dimensional
meteorological data

Temporal resolution
differences; Spatial
scale mismatches; Data
quality control

Systematic meteorolog-
ical data integration;
Personalized meteoro-
logical sensitivity mod-
eling

Traditional Feature
Engineering Limita-
tions

Relies on domain ex-
pert knowledge; Easy
to miss potentially
valuable features;
Difficult to discover
complex interactions

Time-consuming man-
ual feature design;
Complex multi-source
data relationships

Automated feature en-
gineering techniques;
Intelligent feature
selection mechanisms

Insufficient Appli-
cation of Advanced
Deep Learning
Methods for Tabular
Data

Focus on traditional
neural network ar-
chitectures; Limited
exploration of ad-
vanced methods for
structured data

Large-scale feature set
processing; High com-
putational complexity;
Large training data re-
quirements

Specialized tabular data
models like TabPFN;
Large-scale feature data
value mining

2.4 Conclusion

In literature review, the research on VAT prediction, examining the methodological evolution, key
influencing factors and existing research gaps are comprehensively analysed. The review shows from
traditional statistical methods to machine learning and then deep learning methods, with each stage
bringing improvements in prediction capabilities but also increasing model complexity.

The methodological evolution shows significant progress in prediction capabilities. Traditional sta-
tistical methods have limitations in dealing with non-linear ship behaviour and dynamic ocean envi-
ronments. Then machine learning methods introduced ensemble methods such as random forests and
XGBoost to effectively capture feature interactions and improve prediction accuracy. The current era
of deep learning has brought complex architectures including LSTM, CNN, Transformer and hybrid
models, achieving better temporal pattern recognition and long-distance dependency modelling.

The influencing factor analysis identified four key categories: ETA , AIS , weather and VPP data. Al-
though AIS data has comprehensive coverage as the main data source, weather factors are significantly
underutilised despite their important impact on ship operations. The review highlights significant gaps
in weather data integration and the limitations of traditional feature engineering approaches.
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Three major research gaps are identified:

• Inadequate weather data integration in current forecasting models;

• Limitations of manual feature engineering methods that limit model performance potentially;

• Lack of research on model interpretability despite increasing model complexity.

The findings lay a solid foundation for addressing these research gaps through innovative methodolo-
gies that systematically integrate weather data, employ automated feature generation techniques, and
leverage advanced models designed specifically for structured maritime data.

3 Data Collection and Processing

This chapter will detail the data collection and processing framework designed for VAT prediction,
which will cover three main areas: first, explaining the multi-source data collection process, includ-
ing an introduction to Hong Kong Port as the study location and detailed descriptions of the four
key datasets (ETA/ATA records, AIS data, weather data, and VPP data); secondly, presenting the
systematic data matching methodology that aligns temporal and spatial information across different
data sources using unified vessel identification systems; and third, outlining the feature engineering
preprocessing techniques that transform raw multi-source data into model-ready features.

3.1 Multi-source data collection

3.1.1 Introduction to Hong Kong Port

As one of the world’s busiest container hub ports, Hong Kong Port (HKP) is strategically located on
the east side of the Pearl River Estuary, backed by the Chinese mainland and facing the South China
Sea. It is an important maritime gateway connecting mainland China with the rest of the world. Hong
Kong Port consists of multiple port areas on the north shore of Hong Kong Island, the south shore
of Kowloon Peninsula and the south-west shore of the New Territories, with a total of more than 470
berths, including 24 container berths, which can accommodate ultra-large container ships at the same
time(CEIC Data 2021).

However, high-density port operations also bring challenges to VAT prediction. According to the
research of Professor Wang Shuai’an of the Hong Kong Polytechnic University, the average error
between ETA and ATA in Hong Kong Port in 2021 was as high as 13.8 hours(Wang 2025). This
uncertainty in VAT leads to inefficient port handling and economic losses. Especially during peak
periods such as the typhoon season (June-November) and the Spring Festival, port congestion is
particularly serious, further exacerbating the uncertainty of arrival time.

Therefore, choosing Hong Kong Port as the research object has important theoretical value and prac-
tical significance. On the one hand, the complex port environment and high-density ship traffic of
Hong Kong Port provide rich training samples for machine learning models; on the other hand, ac-
curate VAT prediction plays an important role in improving the operational efficiency of Hong Kong
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Port and maintaining its status as an international shipping centre. The study by Chu et al. confirmed
that the overall ship arrival uncertainty decreases as the ship approaches Hong Kong Port. The ran-
dom forest method can reduce the prediction error of ship ATA data by about 40% (from 25.5 hours
to 15.5 hours), which provides a theoretical basis for the technical feasibility of this study (Chu, Yan,
and Wang 2024).

3.1.2 Detailed Description of Raw Datasets

This study constructs a multi-source heterogeneous maritime dataset covering four dimensions: ETA
data, AIS data, weather data, and VPP data. The data collection period spans from September to
October 2021, ensuring data timeliness and consistency.

ETA & ATA Data The ETA and ATA data provided by the Hong Kong Port Authority is published
in XML format, containing four different data files, each recording information from different stages
of the vessel’s port arrival process.

Data File Functionality:

• FRP04005i: Records vessel estimated arrival information, including ETA and basic vessel
status

• FRP05005i: Records actual vessel arrival information, including precise arrival time and loca-
tion

• FRP05505i: Records vessel departure information for calculating port stay time

• FRP06005i: Comprehensive record file containing arrival information and vessel identification
data

Table 4: ETA & ATA Data Structure

Field Name ETA Information ATA Information Departure Information Registry Information Field Description
(FRP04005i) (FRP05005i) (FRP05505i) (FRP06005i)

AGENT_NAME ✓ ✓ ✓ ✓ Vessel agent company name
CALL_SIGN ✓ ✓ ✓ ✓ Vessel call sign (unique identifier)
VESSEL_NAME ✓ ✓ ✓ ✓ Vessel name
timestamp ✓ ✓ ✓ ✓ Record timestamp
G_SQL1 ✓ ✓ ✓ ✓ Database query identifier
ETA ✓ Estimated time of arrival
LAST_PORT ✓ Previous port of call
PASI ✓ Port agent service identifier
SHIP_TYPE ✓ ✓ Vessel type
STATUS ✓ Vessel status
STATU ✓ Vessel status (duplicate field)
ARRIVAL_TIME ✓ ✓ Actual arrival time
CURRENT_LOCATION ✓ ✓ Current location
REMARK ✓ Remarks
ATD_TIME ✓ Actual departure time
LAST_BERTH ✓ Last berth
FLAG ✓ Vessel flag
IMO_NO ✓ IMO number

AIS Data The AIS data provides real-time vessel position, speed, and heading information, serving
as the core data source for analysing vessel navigation behaviour.

19



Table 5: AIS Data Structure

Field Name Data Type Field Description Value Range/Format

ID Integer Unique record identifier Auto-increment sequence
mmsi Integer Maritime Mobile Service Identity 9-digit code
lon Float Longitude coordinate -180° to 180°
lat Float Latitude coordinate -90° to 90°
STATUS Integer Vessel navigation status code AIS standard status codes
speed Float Speed over ground Knots
ROT Float Rate of turn Degrees/minute
heading Float Vessel heading 0° to 359°
SAILING_ANGLE Float Sailing angle 0° to 359°
TIME_STAMP Timestamp AIS record time Unix timestamp
VOYAGE_NUMBER String Voyage number Internal shipping company code
RECORD_DATETIME DateTime Record generation time YYYY-MM-DD HH:MM:SS

Weather Data Structure Weather data is obtained from a professional weather website via API,
covering detailed environmental parameters for vessel navigation areas to analyse weather factors’
impact on VAT. The global sea area is divided into 0.5°×0.5° spatial grid units using a grid processing
strategy to enhance data acquisition efficiency. The system automatically retrieves hourly meteoro-
logical observation data in each grid unit by calling the API, with latitude and longitude rounded to
the nearest 0.5° and time rounded to the nearest integer hour. Initially, a 1° grid was tested, but due to
its 110 km spatial span, considering API rate limits, a 0.5° grid was adopted for better balance.

Table 6: Weather Data Structure

Category Field Name Unit Field Description Value Range

Atmospheric
temp_2m °C 2-meter temperature -50 to 50
visibility km Visibility 0 to 50
sea_level hPa Sea level pressure 950 to 1050

Wind
wind_speed_10m m/s 10-meter wind speed 0 to 50
wind_dir_10m ° 10-meter wind direction 0 to 359
wind_gust m/s Wind gust speed 0 to 70

Sea State

wave_height m Significant wave height 0 to 20
wave_period s Wave period 2 to 25
swell_height m Swell height 0 to 15
swell_direction ° Swell direction 0 to 359
swell_period s Swell period 5 to 30

VPP Data Structure One of the focuses of this study is the construction of a complete process of
ship physical parameter data collection and fusion, and realises the systematic integration of ship static
information and dynamic navigation data through intelligent data crawling and association technol-
ogy. In order to obtain the physical parameters of a ship efficiently, this study designs a set of crawler
code that can automatically obtain key physical parameters, including MMSI, ship name, ship type,
year of construction, gross tonnage, dead-weight, tonnage, etc. from a professional ship information

20



website via the ship’s IMO number. Considering the special situation that the ship’s MMSI may
change in actual business, this solution specially designed a multi-MMSI association mechanism. By
establishing an IMO-MMSI mapping relationship table, it effectively solves the problem of MMSI
changes caused by equipment replacement or ownership change on the same ship, ensuring the con-
tinuity and traceability of historical navigation data.

Table 7: VPP Data Structure

Category Field Name Unit Field Description Notes

Identification

Index - Database index Internal vessel database ID
IMO - IMO number 7-digit unique vessel identifier
Name - Vessel name Official registered name
Call Sign - Call sign Radio communication identifier
Flag - Flag state Registered country/region

Classification Type - Vessel type Cargo, container, tanker, etc.

Technical

Year Built Year Year of construction Vessel completion year
Length Overall (m) m Overall length Maximum length bow to stern
Beam (m) m Beam Maximum vessel width
Gross Tonnage Tons Gross tonnage Measure of total vessel volume

3.2 Data Matching

3.2.1 ETA-ATA matching

In the ETA-ATA dataset, it is more convenient to use Call Sign as an index to analyse ship data.
Therefore, this study uses Call Sign for group matching. First, based on the practical experience of
port operations, the abnormal matches with time differences exceeding 10 days are removed. Then,
the ETA and ATA of the same ship are matched by setting a time window of 1 day, i.e. 24 hours.
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Figure 2: ETA-ATA Matching Process Diagram

The successfully matched ETA-ATA record pair contains the ship identification, time information and
the calculated time difference. The distribution of the time difference between ETA and ATA is as
follows:

Figure 3: Distribution of the time difference between ETA and ATA

The detailed data is as follows:
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Table 8: ETA-ATA Analysis Statistics

Metric Value

Total Records 187,263
Early Arrivals 160,001 (85.4%)
On-Time Arrivals 311 (0.2%)
Delayed Arrivals 26,951 (14.4%)

Mean −4.37 h
Median −2.20 h
Standard Deviation 6.35 h
Minimum −23.98 h
Maximum 23.92 h

Finally, add IMO and MMSI columns to the file through the unified IMO-Call Sign-MMSI corre-
spondence table to facilitate subsequent AIS and VPP data matching

3.2.2 AIS-ETA Matching

Considering that AIS records only contain MMSI but lack IMO numbers, this study uses MMSI as
the main index field and performs data association on the premise of ensuring that the MMSI is the
version recorded in 2021 rather than the version recorded in 2025. To further improve the matching
accuracy, this study requires that the timestamp of the AIS record is within a window of 6 hours after
the corresponding ETA timestamp, and on this basis, the ETA record closest in time is preferred to
ensure the accuracy of the logic and reduce data distortion caused by the large time gap between AIS
and ETA data. In addition, to avoid data reuse, this study introduces a uniqueness constraint to ensure
that each AIS record is matched only once, thereby maintaining the uniqueness and reliability of the
matching results.

The matching algorithm process is designed as an efficient and systematic iterative process: first,
traverse all ETA records in chronological order; then, for each ETA event, search for eligible avail-
able AIS records within its time window; then, based on the principle of recent time first, select the
best match with the smallest time difference from the candidate records; then, update the used AIS
record set to ensure the uniqueness of subsequent matches; finally, generate a detailed matching log to
record the details of each match to support subsequent debugging, quality assessment and algorithm
optimization.
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Figure 4: AIS-ETA Matching Process Diagram

The matching results include the real-time position (latitude and longitude coordinates) of the ship,
the movement status (speed and heading), time information, and the calculated ETA and the time
difference between the ATA and AIS records. The specific latitude and longitude coordinates are
distributed as shown in the figure below:

Figure 5: Longitude and Latitude Distribution of AIS Data before Data Matching
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Figure 6: Longitude and Latitude Distribution of AIS Data after Data Matching

The detailed data is as follows:

Table 9: AIS-ETA Data Statistics

Metric Value

Number of Data Points before Matching 8112427
Number of Data Points after Matching 140,833 (75.2% matching success rate)
Longitude Range 106.89◦ to 123.84◦

Latitude Range 13.63◦ to 31.23◦

3.2.3 AIS-Weather Matching

This study uses AIS-Weather data matching and spatial gridding to divide the global ocean into
0.5°×0.5° grids to improve the efficiency and spatial consistency of weather data acquisition (shown
in Fig.7, the visualisation for October is in the Appendix Fig.20.).
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Figure 7: AIS Data Rounded to 0.5° Daily Distribution (September)

The spatio-temporal matching mechanism includes: first, mapping the AIS coordinates to the nearest
grid cell; second, filtering and matching to the nearest hourly meteorological observation based on
the date; for grid boundary conditions, bilinear interpolation is used to obtain accurate meteorological
parameters. Finally, 16 meteorological variables are integrated, including 2-metre temperature, 10-
metre wind speed and direction, gusts, visibility, significant wave height, wave period, swell height,
swell direction, swell period and sea level height, etc., which provides a high-quality data basis for
analysing the impact of meteorology on ship navigation and supports navigation safety and efficiency
optimisation.

Figure 8: AIS-Weather Matching Process Diagram
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Figure 9: Distribution for Weather Parameters
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Figure 10: Correlation Matrix for Weather Parameters

3.2.4 AIS-VPP Matching

This study crawled VPP data, including ship size, construction information and technical specifi-
cations, from professional ship information websites using the IMO number as an index, laying a
data foundation for subsequent analysis. The data verification mechanism includes ship size ratio-
nality check, verifying the logical consistency of length, width and tonnage to ensure data accuracy;
construction year verification, confirming that the year is within a reasonable range to exclude out-
liers; and duplicate record processing based on IMO numbers, removing redundant data to maintain
uniqueness.

The data distribution after matching is further explained by Fig.11.
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Figure 11: Distribution of Length & Beam and Year of Built

3.3 Feature Engineering Preprocessing

The data set after data matching cannot be put into use immediately, so this project will perform
feature engineering preprocessing. First, the distance feature is constructed. In the distance feature
construction, this project introduces cumulative distance and great circle distance to further improve
the prediction accuracy of the model. The great circle distance represents the shortest spherical dis-
tance between two points, reflecting the theoretical straight-line sailing distance. In this project, it is
used as a spatial index and instant distance calculation of the current position to provide a fast geo-
graphic reference for real-time decision-making. The cumulative distance records the total length of
the historical trajectory of the actual voyage of the ship, including all turns, detours and actual navi-
gation decisions of the navigation path, and contains comprehensive information of complex factors
such as navigation habits, sea conditions, and traffic control. Therefore, in this project, it is used as a
historical data feature to input the machine learning model for prediction training.

For the great circle distance, we first need to determine the geographic reference fixed point. This
project first screens out the AIS data closest to the ATA (ship docking time), as shown in Fig.12.
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Figure 12: AIS Positions Closest to ATA Timestamps

Then the mobile phone number data is used through the density-based majority method to identify
the high-density areas of ship docking points using the grid density method. The geographic space is
divided using a 0.5° × 0.5° grid and the number of points in each grid is counted. The grid area with
the most points is selected as the port fixed point. This method is consistent with the 0.5° rounding
process in data preprocessing, has good robustness to outliers, and is simple and efficient to calculate.
As an alternative, this study uses the DBSCAN clustering algorithm to automatically identify multiple
high-density docking areas and ignore isolated outliers. By setting a distance threshold of 10-50
kilometres and a minimum cluster size of 3-5 points, the haversine formula is used to calculate the
geodesic distance to process large-scale geographic data. The final results are shown in Table 10.

Table 10: Method and Corresponding Longitude/Latitude Coordinates

Method Longitude Latitude

Grid Density 114.0993 22.334 58
DBSCAN 114.2374 22.234 08

The difference between the two is only 10 kilometres (less than 0.1°), and both are located near Hong
Kong Port. Therefore, this study finally uses the former as a fixed stop for all ships and calculates the
great circle distance.

The construction of time difference features is the core link of feature engineering. This project
first constructs multi-level time features from timestamps to capture the time regularity pattern of
ship operations, including basic time features such as year, month, day, hour, and day of the week.
Then, the difference between the estimated arrival time and the AIS recording time is calculated by
calculating the ETA-AIS time difference to represent the predicted time window. The ATA-AIS time
difference represents the difference between the actual arrival time and the AIS recording time as an
important reference for the target variable.
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For ship feature processing, the service life of the ship up to 2021 is calculated based on the year
of construction as a proxy variable for the ship’s status and performance. At the same time, label
encoding is used to convert text categories into numerical features for categorical variables such as
ship type and flag to facilitate machine learning model processing.

3.4 Conclusion

This chapter presents a comprehensive data collection and processing framework for VAT prediction
at Hong Kong Port. The study constructs a multi-source heterogeneous maritime dataset spanning
September-October 2021, integrating four key data dimensions: ETA/ATA records (187,263 entries),
AIS trajectories (8,112,427 records), meteorological data (0.5°×0.5° spatial grid), and VPP data (web-
crawled static information).

Table 11: Multi-source Data Collection Overview

Data Type Data Source Time Period Note Main Fields

ETA & ATA Data Hong Kong Port Authority Sep-Oct 2021 187,263 records Call Sign, ETA, ATA, Ship Type
AIS Trajectory Data Automatic Identification System Sep-Oct 2021 8,112,427

records
MMSI, Longitude, Latitude, Speed, Heading, Timestamp

Weather Data Professional Weather API Sep-Oct 2021 0.5°×0.5° grid Temperature, Wind Speed/Direction, Wave Height/Direction, Visibility, Sea Level Pressure
VPP Data Professional Ship Information Website Static Data Web Crawling IMO Number, Vessel Dimensions, Year Built, Gross Tonnage, Ship Type

The data matching methodology employs systematic temporal and spatial alignment algorithms and
establishes unified vessel identification through IMO-MMSI correspondence tables. Key preprocess-
ing techniques include distance feature construction using great circle and cumulative distance calcu-
lations, multi-level temporal feature extraction, and categorical encoding for vessel characteristics.

4 Methodology

This chapter will outline the comprehensive methodological framework developed for VAT predic-
tion. The chapter will cover four main components: first, introducing the diverse set of machine
learning models employed in this study, including tree-based ensemble methods (XGBoost, Ran-
dom Forest, LightGBM) and neural network architectures (LSTM, Transformer, TabPFN), explaining
their theoretical foundations and suitability for maritime prediction tasks; second, detailing the auto-
mated feature engineering approach using OpenFE framework to generate and select optimal feature
combinations from the multi-source maritime dataset; third, presenting the greedy search algorithm
designed for hyper-parameter optimization to ensure fair model comparisons while maintaining com-
putational efficiency; and fourth, establishing the evaluation framework with multiple performance
metrics to comprehensively assess model effectiveness, Table 12 provides an overview of the models
and methods employed in this study for VAT prediction.
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Table 12: Overview of Models and Methods Used in This Study

Category Method/Model Key Characteristics

Machine Learning Models

XGBoost Gradient boosting with regularization
Random Forest Ensemble of decision trees with bagging
LightGBM Leaf-wise tree growth with GOSS
LSTM Sequential modelling with gating mechanisms
Transformer Self-attention for long-range dependencies
TabPFN Pre-trained transformer for tabular data

Feature Engineering OpenFE Automated feature generation and selection

Hyperparameter Optimization Greedy Search Stepwise local optimization strategy

Data Sources

ETA Data Estimated time of arrival information
AIS Data Automatic identification system records
Weather Data Meteorological conditions (wind, waves, etc.)
VPP Data Vessel physical parameters

Evaluation Metrics

RMSE Root mean square error
MAE Mean absolute error
MAPE Mean absolute percentage error
R² Coefficient of determination

4.1 Machine Learning Models

4.1.1 Tree-based Models

Extreme Gradient Boosting (XGBoost) XGBoost (eXtreme Gradient Boosting) is an ensemble
learning algorithm based on gradient boosting decision trees that constructs strong learners by se-
quentially training multiple weak learners. In VAT prediction tasks, XGBoost effectively handles
non-linear feature relationships and feature interactions.

The objective function of XGBoost includes both loss function and regularisation terms:

L(ϕ) =
n∑

i=1

l(yi, ŷi) +
K∑
k=1

Ω(fk) (1)

where l(yi, ŷi) is the loss function and Ω(fk) is the regularisation term:

Ω(fk) = γT +
1

2
λ

T∑
j=1

w2
j (2)

Here T is the number of leaf nodes, wj is the leaf node weight, and γ and λ are regularization
parameters.

The model prediction is computed through an additive model:
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ŷi =
K∑
k=1

fk(xi) (3)

In the t-th iteration, a new tree ft is learned by minimizing the objective function:

L(t) =
n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (4)

Using second-order Taylor expansion to approximate the objective function:

L(t) ≈
n∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft) (5)

where gi =
∂l(yi,ŷ

(t−1)
i )

∂ŷ
(t−1)
i

and hi =
∂2l(yi,ŷ

(t−1)
i )

∂(ŷ
(t−1)
i )2

are the first and second-order gradients, respectively.

Random Forest Random Forest improves prediction accuracy and model stability by training mul-
tiple decision trees and averaging their predictions. Each decision tree is trained using bootstrap-
sampled data subsets and randomly selected feature subsets.

For regression tasks, the Random Forest prediction is:

ŷ =
1

B

B∑
b=1

Tb(x) (6)

where B is the number of trees and Tb(x) is the prediction of the b-th decision tree.

Each decision tree selects the optimal splitting feature and splitting point at each node by minimizing
the mean squared error:

MSE =
1

n

n∑
i=1

(yi − ȳ)2 (7)

where ȳ is the average value of samples in the node.

Feature importance is measured by calculating the impurity reduction contributed by each feature
across all trees:

V Ij =
1

B

B∑
b=1

∑
t∈Tb

p(t)∆I(t)1(v(t) = j) (8)

where p(t) is the proportion of samples reaching node t, ∆I(t) is the impurity reduction from the
node split, and v(t) is the splitting feature used at node t.

LightGBM LightGBM adopts a leaf-wise tree growth strategy, which can achieve lower loss with
the same number of leaf nodes compared to the traditional level-wise strategy.
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LightGBM uses Gradient-based One-Side Sampling (GOSS) to reduce computational complexity:

G̃ =
1

|A|
∑
i∈A

gi +
1− a

b

1

|B|
∑
i∈B

gi (9)

where A is the set of samples with large gradients, B is the randomly sampled set of samples with
small gradients, and a and b are sampling ratios.

Exclusive Feature Bundling (EFB) technique merges mutually exclusive features into feature bundles:

Bundle = {F1, F2, ..., Fk} (10)

where Fi ∩ Fj = ∅ for i ̸= j.

4.1.2 Neural Network Models

LSTM LSTM solves the gradient vanishing problem of traditional RNNs through gating mecha-
nisms, making it particularly suitable for processing sequential data such as vessel trajectories. LSTM
units contain forget gates, input gates, and output gates.

The forget gate decides what information to discard from the cell state:

ft = σ(Wf · [ht−1, xt] + bf ) (11)

The input gate decides what new information to store:

it = σ(Wi · [ht−1, xt] + bi) (12)

C̃t = tanh(WC · [ht−1, xt] + bC) (13)

Cell state update:

Ct = ft ∗ Ct−1 + it ∗ C̃t (14)

Output gate controls the output:

ot = σ(Wo · [ht−1, xt] + bo) (15)

ht = ot ∗ tanh(Ct) (16)

where σ is the sigmoid activation function, and W and b are weight matrices and bias vectors, respec-
tively.

For VAT prediction, the LSTM input sequence is:
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X = {x1, x2, ..., xT} (17)

where xt contains features such as vessel position, speed, heading, and weather conditions at time t.

Transformer Model Transformer is based on self-attention mechanisms, enabling parallel process-
ing of sequential data and capturing long-range dependencies. The core component is the multi-head
self-attention mechanism.

The self-attention mechanism formula:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (18)

where Q, K, V are the query, key, and value matrices, respectively, and dk is the dimension of key
vectors.

Multi-head attention mechanism:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (19)

headi = Attention(QWQ
i , KWK

i , V W V
i ) (20)

Positional encoding to preserve sequence information:

PE(pos,2i) = sin
( pos

100002i/dmodel

)
(21)

PE(pos,2i+1) = cos
( pos

100002i/dmodel

)
(22)

Feed-forward network:

FFN(x) = max(0, xW1 + b1)W2 + b2 (23)

Layer normalization:

LayerNorm(x) = γ
x− µ

σ
+ β (24)

4.1.3 TabPFN Model

TabPFN is a pre-trained Transformer model specifically designed for small tabular datasets. The
model is pre-trained on large amounts of synthetic tabular data through meta-learning and can be
directly applied to new tabular prediction tasks without fine-tuning.

The core idea of TabPFN is to transform tabular prediction tasks into sequence-to-sequence prediction
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problems. The input sequence contains training samples and test samples:

Input = [x1, y1, x2, y2, ..., xn, yn, xtest, ?] (25)

The model learns similarity between samples through self-attention mechanisms:

Similarity(xi, xj) = softmax

(
QiK

T
j√
d

)
(26)

Prediction is made through weighted averaging of training sample labels:

ŷtest =
n∑

i=1

wiyi (27)

where weights wi are determined by the attention mechanism.

TabPFN is particularly suitable for processing medium and small-scale datasets containing mixed-
type features (numerical and categorical) without complex hyper-parameter tuning.

4.2 Feature Engineering - OpenFE

OpenFE is an open-source automated feature engineering framework that can automatically generate
and select high-quality features. The framework adopts a two-stage strategy: feature generation and
feature selection. This study utilises OpenFE to evaluate its effectiveness by comparing it with the
original dataset without further feature engineering to demonstrate its utility.

4.2.1 Feature Generation

OpenFE generates candidate features through predefined feature transformation operations. Basic
transformation operations include:

4.2.2 Feature Selection

OpenFE uses a stepwise forward selection strategy based on model performance gain:

Gain(fi) = Score(F ∪ {fi})− Score(F) (28)

where F is the current feature set, fi is a candidate feature, and Score is the validation performance
score.

Selection strategy:

1. Initialize feature set F = ∅

2. For each candidate feature fi, calculate gain Gain(fi)
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Table 13: Feature Engineering Transformations

Category & Transformation Formula

Numerical Transformations

Logarithmic transformation flog(x) = log(x+ 1)

Square root transformation fsqrt(x) =
√
x

Square transformation fsquare(x) = x2

Reciprocal transformation freciprocal(x) =
1

x+ϵ

Feature Combinations

Addition fadd(x1, x2) = x1 + x2

Subtraction fsub(x1, x2) = x1 − x2

Multiplication fmul(x1, x2) = x1 × x2

Division fdiv(x1, x2) =
x1

x2+ϵ

Statistical Features

Group statistics fgroupby(x, g) = agg(x|group = g)

Time Window Features

Moving average fma(xt, w) =
1
w

∑w−1
i=0 xt−i

Moving standard deviation fstd(xt, w) =
√

1
w

∑w−1
i=0 (xt−i − x̄w)2

3. Select the feature with maximum gain to add to F

4. Repeat steps 2-3 until stopping criteria are met

Stopping criteria include:

• Performance gain below threshold: Gain(fi) < ϵ

• Maximum number of features reached: |F| ≥ Nmax

• Validation performance starts decreasing (early stopping)

4.3 Hyper-parameter Optimization - Greedy Search Algorithm

A greedy search strategy is adopted for hyperparameter optimization across different models. This
strategy selects the locally optimal hyperparameter configuration at each step. While it cannot guar-
antee global optimality, it is computationally efficient and performs well in practice.

4.3.1 Greedy Search Strategy

• Initialization: Set default hyperparameter configuration θ0
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• Single parameter optimization: Independently optimize each hyperparameter θi

θ∗i = argmax
θi

CV_Score(θ1, ..., θi, ..., θn) (29)

• Configuration update: Update current optimal configuration

• Iterative optimization: Repeat steps 2-3 until convergence

The objective function is defined as cross-validation performance:

CV_Score(θ) =
1

K

K∑
k=1

Score(Dval
k ,M(Dtrain

k , θ)) (30)

where K is the number of cross-validation folds, Dtrain
k and Dval

k are the training and validation sets
for the k-th fold, respectively.

4.3.2 Hyper-parameter Spaces for Machine Learning Models

In order to efficiently identify effective configurations, this study used a greedy search algorithm to
optimize the hyper-parameters of the following four machine learning models: XGBoost, Random
Forest, LSTM, and LightGBM. For a detailed parameter space and its description, see the section A.2
in Appendix, which lists the hyper-parameters, their possible values, and a brief description of their
importance in the model.

4.4 Evaluation Metrics

Multiple evaluation metrics are used to comprehensively assess model performance:

Table 14: Common Error Metrics for Regression Models

Metric Formula

Root Mean Square Error (RMSE)
√

1
n

∑n
i=1(yi − ŷi)2

Mean Absolute Error (MAE) 1
n

∑n
i=1 |yi − ŷi|

Mean Absolute Percentage Error (MAPE) 100%
n

∑n
i=1

∣∣∣yi−ŷi
yi

∣∣∣
Coefficient of Determination (R2) 1−

∑n
i=1(yi−ŷi)

2∑n
i=1(yi−ȳ)2

By comprehensively considering these metrics, the hyper-parameter configuration with optimal per-
formance on the validation set is selected for final model training.

4.5 Conclusion

This chapter systematically introduces the complete methodological framework used in the VAT pre-
diction research. First, this project uses a variety of models covering traditional machine learning
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and deep learning, including a tree model set (XGBoost, Random Forest, LightGBM) based on gra-
dient boosting, random forest and leaf growth strategies, as well as neural network models such as
LSTM for processing sequence data, Transformer using self-attention mechanism, and TabPFN, a
pre-trained model specifically for tabular data. Secondly, this project uses the OpenFE framework to
implement automated feature engineering, generate candidate features through a series of operations,
and select the optimal feature subset based on the step-by-step forward selection strategy of model
performance gain. Third, in order to minimise the comparison error between models, this project de-
signed a greedy search algorithm to tune the model hyper-parameters, and achieved a balance between
computational efficiency and optimisation effect through independent optimisation of each parameter
and cross-validation evaluation. Finally, this project adopted a multi-dimensional model evaluation
framework with indicators such as RMSE, MAE, and R². This chapter provides a complete theoretical
basis and technical route for subsequent experiments to ensure the scientificality and repeatability of
the research method.

5 Experimental Design and Evaluation

In this chapter, the comprehensive experimental framework used to evaluate the VAT prediction mod-
els will be established. This chapter will cover three main areas: first, setting up the experimental
environment including the multi-dimensional feature system design and the three-dimensional data
segmentation strategy that ensures robust model validation while maintaining temporal and spatial
continuity; second, developing the evaluation framework that includes business benchmark compar-
isons with traditional ETA methods and systematic feature combination experiments to determine
optimal feature configurations through OpenFE automated feature engineering; and third, detailing
the model parameters and experimental procedures across six machine learning models with specific
handling for different dataset constraints.

5.1 Experimental Setup

5.1.1 Feature Introduction

The VAT prediction model adopts a multi-dimensional feature system covering six main categories.
The target variable ATA-AIS represents the difference between the actual arrival time and the AIS
recorded time, which is used as the model prediction target. The index features include MMSI
ship identifier, ais_timestamp timestamp and reverse_cumulative_distance_km reverse cumulative
distance, which constitute the basic dimensions for data segmentation and verification. The AIS
feature provides real-time status information of the ship, including position coordinates, speed, head-
ing and distance to the port. The weather feature covers marine meteorological elements such as
temperature, wind speed and direction, visibility, waves and air pressure. The VPP feature describes
the physical properties of the ship, including ship type, size, tonnage and service life. The bench-
mark feature provides ETA-AIS manual estimation and time_to_fix_point_hours physical calculation
value as performance comparison standards. Data preprocessing includes MMSI consistency check,
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timestamp format standardization, and distance data outlier processing. Numerical features are stan-
dardised by Z-score, and categorical features are encoded by label to ensure that features are used for
model training within a unified range. Detailed feature specifications are shown in Table 15.

Table 15: Feature Engineering Input-Output Specification

Feature Category Feature Name Feature Description

Target Variable ATA-AIS Time difference between ATA
and AIS timestamp

Index Features MMSI Maritime Mobile Service Iden-
tity

ais_timestamp AIS record timestamp
reverse_cumulative_distance_km Reverse cumulative sailing dis-

tance
AIS Features distance_to_fixed_point_km Distance to fixed reference point

lon Longitude coordinate
lat Latitude coordinate
speed Vessel instantaneous speed
heading Vessel heading direction

Weather Features temp_2m 2-meter temperature
wind_speed_10m 10-meter wind speed
wind_dir_10m 10-meter wind direction
wind_gust Wind gust speed
visibility Visibility condition
wave_height Significant wave height
wave_period Wave period
swell_height Swell height
swell_direction Swell direction
swell_period Swell period
sea_level Sea level pressure

VPP Features Type Vessel type category
Length of service Vessel age
Length Overall (m) Overall vessel length
Beam (m) Vessel beam width
Gross Tonnage Gross tonnage

Baseline Features ETA-AIS Baseline prediction value
time_to_fix_point_hours Estimated sailing time to port

5.1.2 Data segmentation strategy

The experiment adopts an ordered segmentation strategy based on three-dimensional indexing to en-
sure the comprehensiveness and reliability of model verification. Data segmentation is based on the
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three core index dimensions of MMSI, timestamp (ais_timestamp) and reverse cumulative distance
(reverse_cumulative_distance_km). Each dimension uses a fixed ratio of the first 80% as the training
set and the last 20% as the test set. Random sampling is not used to maintain the spatio-temporal
continuity of the data and the logical order of ship navigation. MMSI dimension segmentation en-
sures a balanced distribution of different ship data. After sorting by ship identifier, the first 80% of
the ship data is used for training, and the last 20% of the ship data is used for testing. This segmenta-
tion method verifies the generalisation ability of the model to unseen ships and avoids the model from
over-relying on the behaviour patterns of specific ships. The time dimension segmentation is sorted by
ais_timestamp timestamp, and the first 80% of the time point data is used as the training set, and the
last 20% of the time point data is used as the test set, simulating the scenario of using historical data
to predict future events in actual applications, ensuring that the causal relationship of the time series
is not destroyed. The distance dimension segmentation is based on the reverse cumulative distance
sorting of reverse_cumulative_distance_km. The farther 80% of the distance segments are used for
training, and the closer 20% of the distance segments are used for testing. This segmentation method
verifies the prediction ability of the model at different stages of navigation, especially the prediction
accuracy of the last stage approaching the port.

The cross-validation design adopts a 5-fold cross-validation strategy on the basis of maintaining the
principle of three-dimensional index segmentation. Each fold follows the same 80-20 segmentation
ratio. Through multiple repeated verifications, the accidental impact that may be brought about by a
single segmentation is reduced, and the stability and credibility of the model performance evaluation
are improved.

5.2 Evaluation index system

5.2.1 Benchmark comparison

Establish a multi-dimensional benchmark comparison framework to verify the effectiveness and su-
periority of machine learning models. Business benchmark comparison focuses on the verification
of actual application value, and uses two core benchmark values for performance comparison evalua-
tion. The ship self-reported ETA benchmark (ETA-AIS) represents the difference between the ship’s
self-reported estimated arrival time and the AIS recorded time, reflecting the accuracy level of tra-
ditional manual estimation. This is the arrival time prediction method currently commonly used in
the shipping industry and has important practical reference value. The physical model benchmark
(time_to_fix_point_hours) is a theoretical arrival time obtained by simple physical calculation based
on the current speed and the remaining distance. It represents the pure physical kinematic predic-
tion level without considering complex environmental factors such as weather, port congestion, and
navigation restrictions, and provides a lower limit reference for the theoretical performance of the
machine learning model.
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5.2.2 Feature combination experiment

The feature combination experiment design evaluates the contribution of different data sources through
the control variable method, including the full feature combination of ETA+AIS+Weather+VPP to
verify the comprehensive effect of all available information, the ETA+AIS+VPP combination to eval-
uate the value of ship attribute features, the ETA+AIS+Weather combination to verify the prediction
contribution of weather information, and the AIS+Weather+VPP combination to test the pure data-
driven prediction capability that does not rely on ETA information. To determine the optimal feature
scale, each feature combination generates 20, 30, 40, and 50 feature sets of different scales through
OpenFE automatic feature engineering. The number of features is compared using two mainstream
machine learning algorithms, Random Forest and XGBoost. Through systematic performance eval-
uation, 20 features are determined to be the optimal configuration, which achieves the best balance
between prediction accuracy and computational efficiency. The final experimental results are pre-
sented based on the 20 feature sets generated by OpenFE. This choice not only ensures the prediction
performance of the model, but also controls the feature complexity, providing clear guidance for the
configuration of computing resources in actual deployment. Through systematic benchmark com-
parisons and feature optimization experiments, the effectiveness, superiority, and practicality of the
proposed method in the task of VAT prediction are fully verified.

5.3 Model Parameters and Experimental Procedures

This section presents the parameters and experimental procedures for each machine learning model
in this study: XGBoost, Random Forest, LightGBM, LSTM, and Transformer. All model parame-
ters were optimised using a greedy search algorithm with the ETA-AIS-Weather-VPP (All Features)
dataset to minimise errors introduced by parameter selection.

The experimental process consisted of two main phases: first, we conducted preliminary testing using
the complete feature set to determine the optimal OpenFE configuration, generating and evaluating
feature sets of varying sizes (20, 30, 40, and 50 features) and selecting the 20-feature configuration
that yielded the best performance. Testing with Random Forest and XGBoost (shown in Fig.13)
revealed minimal differences between the 20, 30, 40, and 50 feature configurations, with the 50-
feature set sometimes performing worse than the 20-feature set, as demonstrated in Fig. 13.

13
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Figure 13: OpenFE Parameter Comparison (using RMSE)

Following feature selection optimisation, we proceeded with grouped model training and evalua-
tion using the complete dataset containing over 110,000 data points for XGBoost, Random Forest,
LightGBM, LSTM, and Transformer models. However, due to TabPFN’s architectural constraints for
small-scale datasets (maximum 10,000 samples per training/testing cycle), we implemented a propor-
tional sampling strategy with 10,000 training samples and 2,500 testing samples while maintaining
the original data distribution. To mitigate potential bias introduced by dataset reduction, we con-
ducted five independent runs for TabPFN and reported the averaged results. The detailed parameter
configurations for each model are presented in the Appendix.A.3.

5.4 Conclusion

In this chapter, a comprehensive experimental framework is established for VAT prediction using ma-
chine learning models. The methodology encompasses a multi-dimensional feature system covering
six categories with detailed preprocessing, and employs a three-dimensional data segmentation strat-
egy based on MMSI, timestamp, and reverse cumulative distance to ensure robust model validation
through ordered 80-20 splits. The evaluation framework incorporates business benchmarks alongside
systematic feature combination experiments that determine 20 features as the optimal configuration
through OpenFE automatic feature engineering. The experimental procedures involve parameter opti-
misation using greedy search algorithms across six machine learning models (XGBoost, Random For-
est, LightGBM, LSTM, Transformer, and TabPFN), with the complete dataset of 110,000+ samples
for most models and proportional sampling strategy for TabPFN due to its architectural constraints.
The next chapter presents the experimental results and performance analysis of these models across
different feature combinations and evaluation metrics.
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6 Results

6.1 Overall Performance Analysis

This study conducted a comprehensive evaluation of multiple machine learning models based on three
different data splitting methods (time series, distance series, and MMSI series). Experimental results
shown in Table 16 , Table 17 and Table 18 indicate that all machine learning models achieved signif-
icant performance improvements compared to traditional baseline methods. The ETA_AIS baseline
performed relatively stable across the three splitting methods, with MAE of 5.11 hours (time series),
6.39 hours (distance series), and 5.83 hours (MMSI series). In contrast, the TIME_TO_FIX baseline
showed extremely poor performance with MAE ranging from 29.16 to 124.51 hours and negative R²
values. After data investigation, this poor performance stems from the baseline’s calculation method
using great circle distance to fixed endpoints divided by current vessel speed - since vessel speed
fluctuates dramatically, TIME_TO_FIX shows significantly reduced predictive capability compared
to distance_to_fixed_point_km.

Table 16: Prediction performance of models on the time-ordered test dataset

Model OpenFE All Features Except ETA Except VPP Except Weather

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

ETA_AIS No 5.11 7.70 0.59 5.11 7.70 0.59 5.11 7.70 0.59 5.11 7.70 0.59

TIME_TO_FIX No 37.48 160.62 -190.23 37.48 160.62 -190.23 37.48 160.62 -190.23 37.48 160.62 -190.23

LightGBM No 3.05 5.10 0.81 4.36 7.30 0.61 3.04 5.23 0.80 2.94 5.05 0.81

LightGBM Yes 2.88 4.96 0.82 4.43 7.31 0.61 2.97 5.16 0.80 2.90 5.01 0.82

LSTM No 3.82 6.08 0.73 5.14 8.39 0.48 3.79 6.09 0.73 3.37 5.64 0.77

LSTM Yes 3.88 6.01 0.73 5.37 8.73 0.44 3.66 5.93 0.74 3.59 5.91 0.74

RandomForest No 3.32 5.12 0.81 4.79 7.11 0.63 3.34 5.13 0.81 3.17 5.04 0.81

RandomForest Yes 3.15 4.93 0.82 4.56 7.05 0.63 3.18 5.01 0.82 3.04 4.91 0.82

TabPFN No 2.88 4.93 0.82 4.30 7.02 0.65 3.07 5.15 0.81 3.01 5.06 0.82

TabPFN Yes 3.01 5.06 0.81 4.27 6.93 0.64 3.03 5.18 0.80 2.96 5.08 0.81

Transformer No 3.80 5.91 0.74 4.91 7.91 0.54 3.59 5.83 0.75 3.44 5.80 0.75

Transformer Yes 3.66 5.97 0.74 5.32 8.18 0.51 3.72 5.96 0.74 3.36 5.55 0.77

XGBoost No 4.17 5.65 0.77 4.78 7.35 0.60 3.13 5.23 0.80 4.08 5.70 0.76

XGBoost Yes 4.11 5.62 0.77 6.43 9.56 0.33 3.02 5.17 0.80 4.00 5.63 0.77
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Table 17: Prediction performance of models on the distance-ordered test dataset

Model OpenFE All Features Except ETA Except VPP Except Weather

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

ETA_AIS No 6.39 9.06 0.48 6.39 9.06 0.48 6.39 9.06 0.48 6.39 9.06 0.48

TIME_TO_FIX No 124.51 372.89 -829.62 124.51 372.89 -829.62 124.51 372.89 -829.62 124.51 372.89 -829.62

LightGBM No 3.53 5.47 0.83 5.27 8.28 0.61 3.67 5.73 0.81 3.71 5.64 0.82

LightGBM Yes 3.45 5.29 0.84 5.22 8.17 0.62 3.65 5.65 0.82 3.68 5.54 0.82

LSTM No 3.89 6.06 0.79 6.12 9.30 0.50 3.98 6.11 0.79 3.83 6.08 0.79

LSTM Yes 4.02 6.22 0.78 6.18 9.37 0.50 4.20 6.48 0.76 4.28 6.62 0.75

RandomForest No 3.83 5.58 0.82 5.75 8.33 0.60 4.01 5.85 0.80 3.92 5.66 0.82

RandomForest Yes 3.83 5.50 0.83 5.64 8.20 0.61 3.96 5.74 0.81 3.89 5.64 0.82

TabPFN No 3.42 5.30 0.84 5.43 7.90 0.64 3.95 5.67 0.82 3.74 5.45 0.83

TabPFN Yes 3.42 5.22 0.84 5.29 7.83 0.65 3.88 5.83 0.81 3.40 5.32 0.84

Transformer No 3.79 6.01 0.79 6.11 9.36 0.50 4.31 6.60 0.75 4.04 6.26 0.78

Transformer Yes 3.79 5.99 0.79 5.97 9.22 0.51 4.38 6.67 0.74 4.21 6.61 0.75

XGBoost No 3.87 5.75 0.81 5.54 8.21 0.61 3.77 5.71 0.81 3.73 5.68 0.81

XGBoost Yes 3.74 5.52 0.83 5.60 8.14 0.62 3.71 5.65 0.82 3.72 5.63 0.82

Table 18: Prediction performance of models on the MMSI-ordered test dataset

Model OpenFE All Features Except ETA Except VPP Except Weather

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

ETA_AIS No 5.83 8.34 0.55 5.83 8.34 0.55 5.83 8.34 0.55 5.83 8.34 0.55

TIME_TO_FIX No 29.16 132.84 -116.77 29.16 132.84 -116.77 29.16 132.84 -116.77 29.16 132.84 -116.77

LightGBM No 3.41 5.42 0.81 4.21 7.10 0.67 3.44 5.51 0.80 3.51 5.41 0.81

LightGBM Yes 3.56 5.40 0.81 4.45 7.12 0.66 3.42 5.54 0.80 3.56 5.52 0.80

LSTM No 4.19 6.43 0.73 4.79 7.94 0.58 3.78 6.04 0.76 3.96 6.26 0.74

LSTM Yes 4.08 6.30 0.74 4.76 7.95 0.58 3.95 6.31 0.74 4.17 6.44 0.73

RandomForest No 3.66 5.60 0.79 4.67 7.05 0.67 3.61 5.57 0.79 3.66 5.57 0.79

RandomForest Yes 3.43 5.28 0.82 4.40 6.90 0.68 3.44 5.37 0.81 3.47 5.35 0.81

TabPFN No 3.33 5.39 0.81 4.38 6.97 0.68 3.40 5.39 0.80 3.40 5.45 0.80

TabPFN Yes 3.36 5.47 0.81 4.34 6.93 0.68 3.66 5.44 0.81 3.46 5.38 0.81

Transformer No 4.09 6.24 0.74 5.06 8.30 0.54 3.96 6.15 0.75 3.89 6.36 0.73

Transformer Yes 4.16 6.28 0.74 5.36 8.38 0.53 3.97 6.24 0.74 4.24 6.75 0.70

XGBoost No 3.81 5.88 0.77 4.56 7.50 0.63 3.67 5.67 0.79 3.89 5.98 0.76

XGBoost Yes 3.80 5.63 0.79 4.91 7.45 0.63 3.86 5.79 0.78 4.04 5.93 0.77

From the model performance rankings , although TabPFN used the smallest dataset (10,000 training
samples, 2,500 test samples), it still demonstrated excellent overall performance and stability. In time
series splitting, TabPFN tied with LightGBM-OpenFE for best performance with MAE of 2.88 hours,
achieving a remarkable 43.6% improvement over the ETA_AIS baseline. In distance series splitting,
TabPFN achieved the best performance with MAE=3.42 hours, representing a 46.5% improvement.
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In MMSI series splitting, TabPFN also ranked first with MAE=3.33 hours, achieving a 42.9% per-
formance boost. More importantly, TabPFN’s performance coefficient of variation across different
splitting methods was only 1.3%, demonstrating excellent robustness and generalization capability.

LightGBM served as the second-best model, particularly when combined with OpenFE feature engi-
neering, achieving outstanding performance across multiple test scenarios. This model reached op-
timal performance in time series splitting (MAE=2.88 hours) and maintained top-three performance
in other splitting methods. Random Forest showed exceptional performance in MMSI splitting, and
when combined with OpenFE, achieved excellent results across multiple evaluation metrics, demon-
strating good adaptability to different vessel characteristics. In contrast, traditional deep learning
models (LSTM, Transformer) performed below expectations, with average MAE ranging from 3.6-
4.2 hours, which wasn’t particularly impressive compared to the aforementioned models.

From computational efficiency perspective shown in Fig.14, different models showed significant dif-
ferences in training time. Traditional machine learning models demonstrated clear efficiency advan-
tages. While TabPFN achieved the best predictive performance, it required five experimental runs to
ensure result stability, totalling 30 minutes of computation time - requiring careful consideration of the
trade-off between excellent performance and computational cost for actual deployment. LightGBM
showed outstanding computational efficiency with average training time of only 10 seconds, main-
taining extremely high computational efficiency while achieving excellent predictive performance.
XGBoost and Random Forest had training times of 40 seconds and 70 seconds respectively, both
showing good practicality. Deep learning models had significantly higher computational costs, with
LSTM requiring 18 minutes and Transformer requiring 30 minutes of training time.

Figure 14: Training Time Comparison of Different Machine Learning Models

From a statistical significance perspective, all machine learning models achieved statistically signifi-
cant improvements compared to the ETA_AIS baseline. The best models achieved improvement rates
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in the 40-46% range, with average improvement rates reaching 35-40%.

In order to more intuitively show the difference between the prediction results and the baseline values,
this study uses logarithmic comparison plots of TabPFN predictions and baseline values against true
values for visualisation. As shown in the Fig.15 and Fig.16, TabPFN’s prediction values (blue dots)
show significantly better prediction accuracy than the ETA baseline model (green dots). TabPFN’s
data points are more closely distributed around the ideal prediction line (red dotted line), showing
strong linear correlation and small prediction deviation, especially in the medium and high value
range.

The comparative analysis further reveals the degree of improvement in the prediction of the machine
learning model: the distribution of TabPFN’s prediction results shows a good linear trend, and the
deviation of the data points from the ideal prediction line is relatively small, indicating that the model
has high prediction accuracy and stability. The prediction results of the ETA baseline model show a
large dispersion, the degree of deviation of the data points from the ideal prediction line is significantly
higher, and the prediction error is relatively large.

Figure 15: TabPFN vs ETA Baseline Performance
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Figure 16: TabPFN vs ETA Baseline Performance (Integrated)

These results indicate that machine learning methods can effectively learn and utilise complex patterns
in multi-source heterogeneous data, significantly improving VAT prediction accuracy.

6.2 Feature Importance & SHAP Analysis

Since TabPFN achieved optimal comprehensive performance, this project selected TabPFN model on
ETA_AIS_Weather_VPP data for feature importance analysis, which result in Fig.17. The study iden-
tified the most critical features for VAT prediction as shown in the Fig.17. Results show that ETA-AIS
ranked first with an importance score of 0.1245, far exceeding other features, validating the value of
existing ETA predictions as strong baselines. Following closely are distance and time-related fea-
tures, including distance_to_fixed_point_km (0.0892), time_to_fix_point_hours (0.0756), and speed
(0.0623). These three features contribute over 25% cumulatively, emphasizing the fundamental role
of spatial-temporal relationships in arrival time prediction.
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Figure 17: Top 15 Important Features

Weather factors also occupy important positions in feature importance rankings. Weather-related fea-
tures such as wave_height (0.0489), wind_speed_10m (0.0445), and swell_height (0.0398) occupy 3
positions in the top 15, with a total contribution of approximately 20%. This finding indicates that
marine environmental conditions have important and direct impacts on vessel navigation efficiency
and arrival time, particularly dynamic factors like wave height and wind speed. Vessel geographic
location information (lat, lon) and navigation status (heading) also show high importance, reflecting
the value of real-time position and heading information in prediction models. Vessel physical char-
acteristics like Gross Tonnage and Length Overall, while relatively less important, still entered the
top 15, indicating that vessel scale and design characteristics have certain influence on navigation
performance.

In order to further verify the results of feature importance analysis, this study used the SHAP (SHap-
ley Additive exPlanations) method to perform interpretability analysis on the TabPFN model. The
results are shown in Fig.18. SHAP analysis reveals the influence mechanism of different features
on model prediction from the perspective of individual prediction contribution. The results show
that the ETA-AIS feature shows the highest variability and influence in the SHAP value distri-
bution, further confirming its core position in the prediction task. Distance-related features (dis-
tance_to_fixed_point_km) and time features (time_to_fix_point_hours) show obvious linear relation-
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ship patterns in SHAP analysis, verifying the fundamental role of space-time relationship.

Figure 18: SHAP Feature Importance Analysis

SHAP analysis also reveals the non-linear influence characteristics of weather features. Weather
factors such as wave height (wave_height) and wind speed (win_speed_10m) have different effects on
the forecast results in different numerical ranges, reflecting the complexity of marine environmental
conditions. It is particularly noteworthy that the positive and negative distribution of SHAP values
shows that certain features may have opposite effects under certain conditions, which provides a more
detailed understanding basis for the practical application of the model.

The SHAP summary plot in Fig.19 provides a comprehensive view of feature contributions for the
ETA_AIS_Weather_VPP dataset. The plot clearly demonstrates that ETA-AIS dominates the feature
importance landscape, with the widest distribution of SHAP values ranging from approximately -8
to +20, indicating its substantial impact on model predictions. The colour gradient from blue (low
feature values) to red (high feature values) reveals that higher ETA-AIS values generally correspond
to positive SHAP contributions, suggesting a direct relationship with the prediction target.

Following ETA-AIS, the temporal and spatial features time_to_fix_point_hours and distance_to_fixed_point_km
show significant but more concentrated SHAP value distributions. These features exhibit relatively
symmetric patterns around zero, indicating their balanced positive and negative contributions depend-
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ing on specific voyage scenarios. The remaining features, including vessel characteristics (Length
Overall, Gross Tonnage, Beam) and weather conditions (temp_2m, wave_height), display more com-
pact SHAP distributions but still contribute meaningfully to the model’s decision-making process.

Figure 19: SHAP summary plot

Feature ablation experiments further validated the actual contribution of different feature categories.
When ETA features were removed, all models showed significant performance degradation, with
average MAE increasing by approximately 43% and R² decreasing by about 20%, confirming the
irreplaceable nature of ETA features. Weather features play an important role in overall prediction.
Although removing Weather features in the specific scenario of time series splitting saw MAE change
only slightly from 2.88 to 2.94, this is mainly because the time series splitting method itself already
contains strong temporal information, overlapping to some extent with the temporal variation pat-
terns of some weather features. Meanwhile, removing VPP features resulted in only 3-5% average
MAE increase, indicating that vessel physical characteristics have limited marginal effects in current
prediction tasks and could be considered for omission in resource-constrained application scenarios.
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OpenFE automatic feature engineering effects showed obvious differences across different models.
LightGBM and Random Forest benefited significantly from OpenFE, with 2-6% performance im-
provements in multiple scenarios. For TabPFN, since the model itself can adaptively adjust to datasets
and tune parameters, adding OpenFE had limited improvement effects. Deep learning models also
showed limited OpenFE effects, suggesting these models may require more complex and targeted
feature engineering strategies.

Comprehensive analysis shows that machine learning methods achieved significant performance im-
provements in VAT prediction tasks, with optimal models achieving 40-46% MAE improvements
compared to traditional baselines. Feature importance analysis revealed the dominant position of
ETA baseline features, the core value of AIS real-time data, and the important influence of marine en-
vironmental factors. These findings provide important theoretical foundation and practical guidance
for future VAT prediction system optimisation.

7 Discussion

7.1 Scientific Contributions

This study makes important contributions across multiple scientific dimensions. First, in terms of
model selection theory, the research results challenge the assumption that deep learning models con-
sistently outperform traditional methods in all prediction tasks. Through systematic comparative
experiments, this study demonstrates that for the specific structured data regression task of VAT pre-
diction, optimised traditional machine learning methods (particularly TabPFN and LightGBM) not
only achieve superior predictive accuracy compared to deep learning approaches, but also show sig-
nificant advantages in computational efficiency and model interpretability. This finding provides em-
pirical support for the "algorithm selection paradox" - that the most complex algorithm isn’t always
the optimal choice.

Second, regarding feature engineering theory, this study validates the significant effectiveness of
OpenFE automatic feature engineering in maritime traffic prediction. The results show that OpenFE
brings stable performance improvements of 2-6% to traditional machine learning models like Light-
GBM and Random Forest, successfully uncovering complex interaction patterns and non-linear re-
lationships within original features. This finding provides important empirical support for automatic
feature engineering theory, proving that in structured marine data environments, automated feature
generation can effectively complement the shortcomings of manual feature engineering, laying a sci-
entific foundation for feature engineering automation development in this field.

7.2 Practical Implications

The practical significance of this research manifests across multiple dimensions. In port operations
management, the 40-46% improvement in prediction accuracy will significantly enhance port re-
source allocation efficiency. More accurate VAT predictions enable port managers to better arrange
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berth allocation, schedule loading/unloading equipment, and optimise workforce deployment, thereby
reducing vessel waiting times, increasing port throughput, and lowering operational costs.

In supply chain management, precise arrival time predictions will enhance visibility and controllabil-
ity across the entire logistics network. Shippers and logistics service providers can make more reli-
able inventory management decisions, transportation planning, and customer communications based
on improved prediction information, thus reducing safety stock requirements, improving supply chain
responsiveness, and lowering overall logistics costs. This improvement is particularly important given
the current major challenges facing global supply chains.

In terms of technical implementation, both TabPFN (with high prediction accuracy) and LightGBM’s
excellent performance (requiring only 10 seconds training time while achieving outstanding perfor-
mance) provide ideal solutions for real-time prediction system construction, meeting the rapid re-
sponse demands of ports and shipping companies. Additionally, the high interpretability of these
models helps business users understand and trust prediction results, promoting technology adoption
in actual business operations.

Regarding data infrastructure, the research results provide clear guidance for maritime data platform
construction. The critical importance of ETA features indicates that the value of existing prediction
systems should be fully preserved and utilised; the significant contribution of weather data emphasises
the necessity of marine meteorological data integration; while the relatively lower importance of VPP
features provides reference for setting data collection priorities.

7.3 Research limitations

7.3.1 Data coverage limitations

This study is mainly based on data from HKP for the period September to October 2021, which limits
to some extent the global as well as year-round applicability of the results. There are significant
differences in meteorological conditions, channel characteristics, port facilities and traffic density
patterns in different sea areas, which may affect the generalisation ability of the model.

In terms of time horizon, a two-month time frame may not capture long-term seasonal variations,
annual changes in shipping patterns, or the impact of major global events on maritime operations. In
addition, the limited time horizon results in failure to capture significantly changing weather condi-
tions. The dataset lacks extreme weather conditions or large meteorological fluctuations as the study
only utilises data from HKP from September to October, a period of relatively stable temperatures.
This limitation also resulted in weather-related variables not improving the model results as well,
as the narrow range of weather conditions provided insufficient variation to show the full impact of
meteorological factors on offshore operations.

7.3.2 Feature engineering limitations

Although OpenFE provides automatic feature generation capabilities, the generated features often
lack clear business interpretability, which may limit its adoption in operational environments where
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decision transparency is critical. The balance between automatic feature generation and domain
knowledge integration remains an open challenge.

Although comprehensive, the current feature set may not capture all relevant factors that affect VAT,
such as port congestion index, fuel costs, crew scheduling constraints, or geopolitical factors that may
affect routes and schedules.

7.3.3 Real-time implementation challenges

Although this study demonstrated the model prediction accuracy using historical data, real-world
deployment faces challenges in real-time data acquisition and quality assurance. The availability
and reliability of AIS and meteorological data in the operational environment may be problematic,
affecting actual system performance.

This study mainly focuses on statistical performance indicators (MAE, RMSE, R²), but does not
fully consider business-related factors such as prediction cost-effectiveness, user acceptance, system
reliability, and integration with existing port management systems.

8 Conclusion and Future Work

8.1 Research summary

8.1.1 Main research results

This study successfully constructed a VAT prediction framework based on multi-source data fusion,
and achieved significant prediction accuracy improvement on the Hong Kong port dataset. Experi-
mental results show that machine learning methods can effectively utilise complex patterns in hetero-
geneous maritime data and greatly improve the accuracy of arrival time prediction.

The TabPFN model performed best in all evaluation scenarios, achieving a mean absolute error
(MAE) of 2.88 hours, 3.42 hours, and 3.33 hours under the three data segmentation methods of
time series, distance series, and MMSI series, respectively, which is 43.6%, 46.5%, and 42.9% higher
than the ETA_AIS baseline. The performance coefficient of variation of the model under different
segmentation methods is only 1.3%, showing excellent robustness and generalisation ability.

The LightGBM model, especially when combined with OpenFE feature engineering, performed well
as the second best model, with a training time of only 10 seconds, and has extremely high computa-
tional efficiency while maintaining excellent prediction performance. The performance of traditional
deep learning models (LSTM, Transformer) was lower than expected, with average MAE in the range
of 3.6-4.2 hours, indicating that model complexity does not necessarily translate into superior perfor-
mance in structured tabular data prediction tasks.
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8.1.2 Achievement of research objectives

The main research question "How to achieve high-precision VAT prediction through multi-source
data fusion and machine learning models" was successfully answered. The optimal model achieved
a MAE of 2.88 hours, which is a substantial improvement over traditional methods and meets the
accuracy requirements of actual port operations.

Three sub-research questions were fully addressed:

• Record matching: Use the systematic matching logic of Call Sign group matching ETA-ATA,
MMSI group matching AIS-ETA, IMO group matching AIS-Weather and AIS-VPP to effec-
tively handle scattered ship records.

• Optimal model architecture: TabPFN and LightGBM+OpenFE combination proved to be a
superior architecture for combining ETA and AIS data for spatio-temporal prediction, outper-
forming traditional deep learning methods in performance.

• Multi-source data integration: Meteorological data contributes greatly to the overall feature
importance, and VPP data provides a 3-5% performance improvement, which verifies the ef-
fectiveness of multi-source data fusion in improving VAT prediction accuracy.

Meanwhile, this study also successfully addresses three key research gaps identified in the literature:

• Insufficient application of weather data in VAT prediction: the study demonstrates that
the comprehensive integration of weather data can improve the accuracy of VAT forecasts.The
ranking of weather features in feature importance analysis also confirms that meteorological
conditions can have a substantial impact on model prediction results.The study overcomes the
technical challenges of temporal resolution differences and spatial scale mismatch through a
systematic data preprocessing and feature engineering approach, demonstrating that weather
data integration is essential for accurate VAT prediction.

• Traditional feature engineering limitations: automated feature engineering implemented
through OpenFE successfully generated 20 additional features from raw multi-source data and
applied them to model predictions.The results demonstrate the significant effectiveness of auto-
mated feature selection in discovering complex feature interactions and higher-order transfor-
mations across different data sources.

• Insufficient application of advanced deep learning methods for tabular data: TabPFN,
as a specialised tabular base model, performs well on structured maritime datasets, obtain-
ing competitive results with relatively less training time as well as higher accuracy.The study
demonstrates that methods designed specifically for tabular data can effectively process multidi-
mensional structured ship operation data, surpassing traditional neural networks such as LSTM
and Transformer originally designed for sequence or image data.This validates the potential of
tabular-specific deep learning methods for maritime applications.

8.1.3 Methodological Contributions

This study has made several important methodological contributions in the field of maritime traffic
forecasting:
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First, the research findings challenge the common assumption that deep learning models outperform
traditional machine learning methods in all forecasting tasks. For structured maritime data regres-
sion tasks, the optimised traditional algorithms perform well in terms of accuracy, computational
efficiency, and interpretability. Second, the successful application of the OpenFE framework brings
about 5% stable performance improvement to traditional machine learning models, and effectively
discovers complex interaction patterns and non-linear relationships in the original features. Finally,
this study systematically verifies the integrated value of comprehensive meteorological data in VAT
forecasting for the first time. Meteorological characteristics occupy six of the top 15 important char-
acteristics and contribute significantly to the overall model performance.

8.2 Future Research Directions

8.2.1 Methodological Enhancements

Future research should explore integrated methods that combine the advantages of TabPFN and tra-
ditional machine learning models to achieve optimal prediction performance while maintaining com-
putational efficiency. Developing uncertainty quantification methods will support probabilistic pre-
dictions and better support risk-based decision making in port operations.

Research on graph neural networks in modelling port networks and route interdependencies may
capture complex relationships between multiple ports and multiple ships that current methods may
overlook. Advanced time series modelling techniques designed specifically for maritime temporal
patterns, including attention mechanisms, deserve further exploration.

8.2.2 Data and Geographic Extensions

Extending the framework to major global ports will verify cross-regional generalisation capabilities
and support the development of common forecasting models. Multi-port forecasting networks that
consider inter-port dependencies and global shipping patterns can provide more accurate system-level
forecasts.

Integrating additional data sources, including satellite remote sensing for precise sea state informa-
tion, port congestion indicators, ship cargo details, fuel consumption data, and geopolitical risk fac-
tors, can further improve forecast accuracy and practical applicability.

Longitudinal studies spanning multiple years will capture the long-term impact of seasonal changes,
economic cycles, and global events such as the COVID-19 epidemic on shipping patterns and fore-
casting model performance.

8.2.3 Application Development

Developing an intelligent port management system that integrates real-time VAT forecasting with
berth allocation optimisation, equipment scheduling, and manpower planning represents a natural
extension of this research. Such systems can demonstrate the full potential of accurate arrival time
predictions in improving port operational efficiency.
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Extension to end-to-end supply chain forecasting to support inventory management and distribution
planning beyond port operations will maximize the commercial value of improved VAT forecasting
capabilities. Integration with multimodal transport networks can provide comprehensive logistics
optimization solutions.

Developing commercial platforms for small and medium-sized shipping companies, working with
insurance companies seeking dynamic pricing models, and serving shippers who require real-time
cargo tracking represent important market opportunities for research translation.

8.3 Practical Recommendations

This study provides empirical guidance for the implementation of VAT predicting systems in mar-
itime operations. The findings provide insights for port operators, companies, and logistics service
providers seeking to improve operational efficiency through improved VAT predicting.

8.3.1 Weather Data Integration Strategy

This study proposes a key practical consideration for integrating weather data to forecast VAT. Al-
though the impact of meteorological factors on forecast accuracy appears relatively limited in the
results, in actual practice, incorporating meteorological data into the operational system can effec-
tively improve VAT forecast accuracy.

Due to the limited time period (September-October 2021) and the single port (HKP only) of this
study, the weather data obtained in this study lacks variability and underestimates the meteorological
impact to a certain extent. The dataset lacks seasonal changes and extreme weather events that have
a significant impact on maritime operations. Despite these limitations, weather features still play an
important role, and for practical implementation, this study recommends the inclusion of weather
data based on the following considerations: first, enterprise-level operational systems usually cover
a wider geographical and temporal range than personal databases, and can obtain a wider range of
data, thereby greatly improving the success rate of predictions; at the same time, the computational
overhead of weather data integration is minimal compared to the potential operational benefits under
adverse conditions.

8.3.2 Model Selection Framework

The comparative analysis provides clear guidance for model selection based on operational needs.
For applications that prioritise prediction accuracy and have a small number of operational data
sets, TabPFN shows the best performance, with more improvements than baseline methods, and the
model’s ability to achieve competitive results without hyper-parameter tuning reduces implementation
complexity. For large-scale operational deployments that require real-time predictions, LightGBM
combined with OpenFE feature engineering provides the most practical solution. Compared with
other models, the shortest training time and relatively good results can maintain excellent prediction
performance.
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8.3.3 System Scalability and Maintenance

Automated feature engineering capabilities should be included to adapt to evolving data patterns
and maintain prediction performance. The performance improvements demonstrated by the OpenFE
framework over traditional models support its use in production systems. Continuous performance
monitoring mechanisms are essential to detect model degradation and trigger retraining procedures.
The computational efficiency of the recommended models (especially LightGBM) enables frequent
model updates to maintain prediction accuracy as operating conditions evolve.
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9 Summary

With the continuous growth of global maritime trade, the accuracy of Vessel Arrival Time (VAT)
prediction has become a critical factor for port operational efficiency and supply chain management.
Although maritime transport handles over 80% of global cargo volume, traditional VAT prediction
methods still suffer from significant accuracy issues. Taking Hong Kong Port as an example, the
average deviation between ship Estimated Time of Arrival (ETA) and Actual Time of Arrival (ATA)
reaches 13.8 hours, and this uncertainty leads to enormous port congestion costs and supply chain
disruptions.

9.1 Research Background and Motivation

Existing VAT prediction methods primarily rely on static ETA reports or dynamic AIS data, lacking
comprehensive data integration. This fragmented approach ignores the actual circumstances of vessel
navigation—ships must constantly respond to weather conditions, sea states, and their own physical
capabilities during voyage. Traditional prediction models cannot effectively capture these complex
non-linear relationships, resulting in limited prediction accuracy. Current research exhibits three main
limitations:

• Insufficient application of weather data in VAT prediction;

• Traditional feature engineering methods limiting model performance potential;

• Traditional feature engineering methods limiting model performance potential;

These limitations provided important improvement opportunities for this research.

9.2 Research Methods and Innovation

This study developed a VAT prediction framework based on multi-source data fusion, systematically
integrating four key data dimensions: ETA/ATA data, AIS data, weather data (temperature, wave
height, wind speed, etc.), and Vessel Physical Parameters (VPP). Through establishing unified vessel
identification systems and spatio-temporal data matching algorithms, effective fusion of heteroge-
neous maritime data was achieved.

At the methodological level, this study employed the OpenFE automated feature engineering frame-
work to handle complex data interaction patterns and systematically compared the performance of
six machine learning models, including tree-based ensemble methods (XGBoost, Random Forest,
LightGBM), neural network architectures (LSTM, Transformer), and the TabPFN model.

Particularly noteworthy is that this study was the first to apply the TabPFN model, specifically de-
signed for tabular data, to the maritime prediction domain.
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9.3 Major Research Findings

Experimental results demonstrate that machine learning methods achieved significant performance
improvements in VAT prediction tasks. The TabPFN model performed best across all evaluation sce-
narios, achieving Mean Absolute Errors (MAE) of 2.88 hours, 3.42 hours, and 3.33 hours under time
series, distance series, and MMSI series data splitting methods respectively, representing improve-
ments of 43.6%, 46.5%, and 42.9% compared to the ETA_AIS baseline.

More importantly, this study challenges the common assumption that deep learning models consis-
tently outperform traditional methods in all prediction tasks. For structured maritime data regression
tasks, TabPFN and tree-based models such as LightGBM and Random Forest not only exceeded deep
learning approaches in prediction accuracy but also demonstrated significant advantages in computa-
tional efficiency and model interpretability.

Feature importance analysis revealed the critical role of weather factors. Weather-related features
(such as wave height, wind speed, swell height, etc.) occupied 6 positions among the top 15 im-
portant features, fully demonstrating the direct impact of marine environmental conditions on vessel
navigation efficiency.

9.4 Practical Application Value

The practical significance of this research manifests across multiple dimensions. In port operations
management, the 40-46% improvement in prediction accuracy will significantly enhance port re-
source allocation efficiency. More accurate VAT predictions enable port managers to better arrange
berth allocation, schedule loading/unloading equipment, and optimise workforce deployment, thereby
reducing vessel waiting times, increasing port throughput, and lowering operational costs.

At the supply chain management level, precise arrival time predictions will enhance visibility and
controllability across the entire logistics network. Shippers and logistics service providers can make
more reliable inventory management decisions, transportation planning, and customer communica-
tions based on improved prediction information, thereby reducing safety stock requirements, improv-
ing supply chain responsiveness, and lowering overall logistics costs.

In terms of technical implementation, the excellent performance of both TabPFN (with high predic-
tion accuracy) and LightGBM provides ideal solutions for real-time prediction system construction,
meeting the rapid response demands of ports and shipping companies.

9.5 Scientific Contributions and Limitations

This study made multi-dimensional contributions to maritime data science theory. It was the first to
systematically verify the importance of meteorological data in VAT prediction, filling a critical theo-
retical gap in maritime prediction research. The successful application of OpenFE automated feature
engineering demonstrated the potential of domain-agnostic machine learning techniques in enhancing
maritime prediction systems without requiring extensive domain expertise for manual feature design.

However, this study also has certain limitations. The research was primarily based on data from Hong
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Kong Port during September-October 2021, which may limit the global applicability of the results.
Different sea areas exhibit significant differences in meteorological conditions, channel character-
istics, port facilities, and traffic density patterns, which may affect model generalisation capability.
Additionally, while the study demonstrated model prediction accuracy, challenges in real-time data
acquisition and quality assurance in practical applications require further consideration.

9.6 Future Research Directions

Future research should explore integrated methods that combine the advantages of TabPFN with
traditional machine learning models to achieve optimal prediction performance while maintaining
computational efficiency. Extending the framework to major global ports will verify cross-regional
generalisation capabilities and support the development of universal prediction models.

In terms of data dimensions, integrating additional data sources including satellite remote sensing
for precise sea state information, port congestion indicators, detailed ship cargo information, fuel
consumption data, and geopolitical risk factors can further improve prediction accuracy and practical
applicability.

Developing intelligent port management systems that integrate real-time VAT prediction with berth al-
location optimisation, equipment scheduling, and workforce planning represents a natural extension
of this research. Multi-port forecasting networks that consider inter-port dependencies and global
shipping patterns can provide more accurate system-level forecasts, while longitudinal studies span-
ning multiple years will capture the long-term impact of seasonal changes, economic cycles, and
global events on shipping patterns and forecasting model performance.
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A Additional graphs and data

A.1 AIS Data Rounded to 0.5° Daily Distribution (October)

Figure 20: AIS Data Rounded to 0.5° Daily Distribution (October)

A.2 Search Space Definition

Hyperparameter search spaces are defined for each model:

This section outlines the hyperparameter spaces for four machine learning models: XGBoost, Ran-
dom Forest, LSTM, and LightGBM. Each table lists the hyperparameters, their possible values, and
a brief description of their significance in the model.
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Table 19: XGBoost Hyperparameter Space

Hyperparameter Values Description

learning_rate [0.01, 0.03, 0.05, 0.1, 0.2,
0.3]

Controls the step size at each iteration
while moving toward a minimum of the
loss function. Lower values lead to slower
but more precise convergence.

max_depth [4, 6, 8, 10, 12] Maximum depth of a tree. Higher values
increase model complexity but may lead
to overfitting.

subsample [0.6, 0.7, 0.8, 0.9, 1.0] Fraction of samples used for training each
tree. Lower values prevent overfitting but
may reduce accuracy.

colsample_bytree [0.6, 0.7, 0.8, 0.9, 1.0] Fraction of features used per tree. Lower
values reduce overfitting and speed up
training.

reg_lambda [0, 0.1, 0.5, 1.0, 3.0, 10.0] L2 regularization term on weights.
Higher values penalize large weights to
prevent overfitting.

reg_alpha [0, 0.01, 0.1, 0.5, 2.0] L1 regularization term on weights. En-
courages sparsity in feature weights.

n_estimators [300, 500, 800, 1000] Number of boosting stages (trees). More
trees increase model complexity but may
lead to overfitting.

XGBoost Hyperparameter Space
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Table 20: Random Forest Hyperparameter Space

Hyperparameter Values Description

n_estimators [200, 300, 500, 800, 1000] Number of trees in the forest. More trees
improve stability but increase computa-
tion time.

max_depth [10, 15, 20, 25, None] Maximum depth of each tree. Higher val-
ues or None allow deeper trees, increasing
complexity.

min_samples_split [2, 5, 10, 20] Minimum number of samples required to
split a node. Higher values reduce over-
fitting.

min_samples_leaf [1, 2, 4, 8] Minimum number of samples required at
a leaf node. Higher values smooth the
model.

max_features [’sqrt’, ’log2’, 0.6, 0.8] Number or fraction of features considered
for best split. Affects model diversity and
speed.

Random Forest Hyperparameter Space

Table 21: LSTM Hyperparameter Space

Hyperparameter Values Description

hidden_dim [32, 64, 128, 256, 512] Number of units in the LSTM hidden
layer. Larger values increase model ca-
pacity but may overfit.

num_layers [1, 2, 3, 4] Number of LSTM layers. More layers
allow learning complex patterns but in-
crease computation.

dropout [0.0, 0.1, 0.15, 0.2, 0.3, 0.5] Dropout rate to prevent overfitting by ran-
domly dropping units during training.

lr [0.0005, 0.001, 0.003, 0.005,
0.01, 0.02]

Learning rate for the optimizer. Controls
step size during gradient descent.

epochs [50, 80, 100, 150, 200] Number of training iterations over the
dataset. More epochs improve learning
but risk overfitting.

LSTM Hyperparameter Space
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Table 22: LightGBM Hyperparameter Space

Hyperparameter Values Description

learning_rate [0.01, 0.03, 0.05, 0.1, 0.2] Step size for gradient descent. Lower val-
ues ensure stable convergence but require
more iterations.

max_depth [4, 6, 8, 10, 12, -1] Maximum tree depth. -1 allows unlimited
depth, increasing model complexity.

feature_fraction [0.6, 0.7, 0.8, 0.9, 1.0] Fraction of features used per tree. Lower
values reduce overfitting and speed up
training.

bagging_fraction [0.6, 0.7, 0.8, 0.9, 1.0] Fraction of data used per iteration. Adds
randomness to prevent overfitting.

reg_lambda [0, 0.1, 0.5, 1.0, 3.0, 10.0] L2 regularization term. Higher values pe-
nalize large weights to reduce overfitting.

reg_alpha [0, 0.01, 0.1, 0.5, 2.0] L1 regularization term. Promotes sparsity
in feature weights.

n_estimators [300, 500, 800, 1000] Number of boosting iterations (trees).
More trees enhance accuracy but may
overfit.

LightGBM Hyperparameter Space
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A.3 Detailed Model parameters

Table 23: XGBoost Parameters

Parameter Value Description

objective reg:absoluteerror Specifies the loss function as mean abso-
lute error for regression.

n_estimators 500 Number of boosting stages (trees).

max_depth 8 Maximum depth of a tree, controlling
model complexity.

learning_rate 0.05 Step size for gradient descent, affecting
convergence speed.

subsample 0.9 Fraction of samples used for training each
tree.

colsample_bytree 0.9 Fraction of features used per tree.

reg_alpha 0.1 L1 regularization term on weights, pro-
moting sparsity.

reg_lambda 1.0 L2 regularization term on weights, pre-
venting overfitting.

random_state 42 Seed for reproducibility.

n_jobs -1 Use all available CPU cores for parallel
processing.

enable_categorical True Enables handling of categorical features
directly.

XGBoost Parameters
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Table 24: Random Forest Parameters

Parameter Value Description

n_estimators 500 Number of trees in the forest.

max_depth 15 Maximum depth of each tree, controlling
complexity.

min_samples_split 5 Minimum samples required to split a
node.

min_samples_leaf 2 Minimum samples required at a leaf node.

max_features sqrt Number of features considered for best
split (square root of total features).

random_state 42 Seed for reproducibility.

n_jobs -1 Use all available CPU cores for parallel
processing.

Random Forest Parameters
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Table 25: LightGBM Parameters

Parameter Value Description

objective regression_l1 Specifies the loss function as L1 (mean
absolute error) for regression.

n_estimators 500 Number of boosting iterations (trees).

max_depth 8 Maximum tree depth, controlling model
complexity.

learning_rate 0.05 Step size for gradient descent, affecting
convergence speed.

feature_fraction 0.9 Fraction of features used per tree.

bagging_fraction 0.9 Fraction of data used per iteration, adding
randomness.

reg_alpha 0.1 L1 regularization term, promoting spar-
sity.

reg_lambda 1.0 L2 regularization term, preventing over-
fitting.

random_state 42 Seed for reproducibility.

n_jobs -1 Use all available CPU cores for parallel
processing.

verbose -1 Suppresses output messages for cleaner
logging.

LightGBM Parameters

Table 26: TabularLSTM Parameters

Parameter Value Description

hidden_dim 64 Number of units in the LSTM hidden
layer, affecting model capacity.

num_layers 2 Number of LSTM layers, allowing com-
plex pattern learning.

dropout 0.15 Dropout rate to prevent overfitting by
dropping units.

epochs 80 Number of training iterations over the
dataset.

lr 0.001 Learning rate for the optimizer, control-
ling step size.
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TabularLSTM Parameters

Table 27: TabularTransformer Parameters

Parameter Value Description

d_model 64 Dimensionality of the model’s embed-
dings, affecting capacity.

nhead 4 Number of attention heads in the trans-
former, enabling multi-perspective learn-
ing.

num_layers 2 Number of transformer layers, increasing
complexity.

dropout 0.1 Dropout rate to prevent overfitting by
dropping units.

epochs 80 Number of training iterations over the
dataset.

lr 0.001 Learning rate for the optimizer, control-
ling step size.

TabularTransformer Parameters
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