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Abstract

In order to ensure that autonomous driving vehicles can make appropriate driving
decisions based on the surrounding situation, motion prediction algorithms are used to
generate the driving decision output, which will then be used for guiding the trajectory
of the vehicle. In general, the output of the motion prediction algorithm is a series that
contains the predicted information for the future movement of the vehicle. A tradi-
tional approach is using a physics-based model to generate the acceleration prediction
series. However, such an approach requires lots of mathematical computation but is
only capable to be effective in specific driving scenarios.

To solve that kind of issue, we proposed a data-driven approach by running four
different kinds of machine learning models to generate the prediction output series.
The results show that the auto-regressive (AR) model has the best prediction perfor-
mance compared with traditional physics-based models, with a 14.32% improvement
on average for the ADE (average displacement error) evaluation metric and 5.93%
improvement on average for the FDE (final displacement error) evaluation metric.
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Chapter 1

Introduction

This chapter introduces some background information and challenges in this graduation
research project. In addition, the chapter defines the problem statement of the project, and
provides the outline of this thesis.

1.1 Context and motivation

Driving safety is becoming increasingly important as driving-related traffic accidents
have been rising gradually in recent years. According to the CDC’s data [4], in 2019, more
than 36,000 people in the United States died because of vehicle crashes, which means
that more than 100 people died due to vehicle crashes every day. Driving distractions
such as texting or using a cell phone while driving are the primary reason behind those
driving accidents. There are various kinds of solutions to reduce traffic accidents. For
example, using more traffic signs or setting more traffic lights could significantly reduce
the number of traffic accidents. In addition, having official policies or enforcement to
prohibit negative driving habits is also a feasible method. However, those approaches do
not manage to ultimately reduce travel accidents caused by driver’s slow response or human
error. Therefore, it is necessary to figure out an alternative solution to ensure that traffic
accidents are reduced further.

Autonomous driving technology has been regarded as a reasonable way to reduce traf-
fic accidents. According to a study by consulting firm McKinsey&Co [[13]], by interviewing
many industry representatives, a self-driving car could cut down 95% of driving accidents
in the U.S. and prevent up to $190 billion in damages and health costs annually and save
thousands of lives. With the increasing market need for autonomous driving, more and
more high-tech companies have started to invest in independent driving research and de-
velopment. In 2018, SoftBank Vision Fund began to invest $1.35 billion when Cruise vehi-
cles were ready for commercial deployment [6]. On the other hand, exploiting autonomous
driving technology will make people more productive because people do not have to pay
attention to traffic conditions and pedestrians. Therefore, people could use their commute
time to do their work or even have some rest. Based on the discussion above, we can see
that developing autonomous driving is necessary.

Autonomous driving is a system that combines several components to make a deci-
sion whenever the vehicle is driving, facing obstacles, or involved in various situations.
The autonomous driving system generally contains three main steps: perception, deci-
sion, and control . Perception means collecting data from vehicle sensors and processing
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it so the vehicle can understand its surrounding environment. The primary approaches
to collect data from the environment include Radar, LiDAR, and cameras [2]. Among
these three approaches, cameras could provide enough information because objects such
as roads, pedestrians, and surrounding vehicles captured by cameras would contain differ-
ent kinds of colors. Therefore, autonomous driving cars could use these different colors as
labels. Typically autonomous driving vehicles would combine all these three approaches
for perception. The decision is the core component of the autonomous driving system. One
approach that could be used in the decision step is to construct a machine learning-based
model that would fit the sensor data for position or motion planning. The output of the de-
cision step would be the vehicle position distribution or the acceleration distribution, which
represents the future movement of the autonomous driving car. The final step is control.
A control system of good quality is also essential to ensure the vehicle can drive smoothly
based on the model prediction. For this thesis project, we will concentrate more on devel-
oping a machine learning model in the autonomous driving decision step to generate the
simulated displacement distribution of the vehicle.

1.2 Problem statement

Currently, autonomous driving systems mainly use physics-based modeling approaches
to predict the trajectory of a vehicle based on the surrounding situation of the vehicle, such
as the distance to the intersection and the velocity of the leading vehicle. However, it is
difficult to create physics-based models due to the high complexity of autonomous driving.
As aresult, such models are created to represent a rough approximation that abstracts away
a lot of the complexity exhibited by car behavior. In this thesis, we aim to use data-driven
approaches to create general models that are: 1. easily generated using the driving data
collected from cars on the road, and 2. capable to capture the highly complex car behavior
exhibited in real-world scenarios.

Therefore, the research questions for this thesis can be defined as follows:

1. Can we use data-driven modeling methods to capture the complexity of autonomous
driving tasks?

2. Which data-driven models are most suitable for autonomous driving?
3. What are the limitations of using these models in practice?

To answer these research questions, we need to use multiple machine learning models
to predict the future motion path of the vehicle, which is often regarded as a time series
prediction problem or, to make it clear, a multi-variate-multi-step time series prediction
problem. Given an input series containing multiple features, which represent the surround-
ing situation of the vehicle, such as the distance to the intersection and the velocity of the
leading vehicle, the model output will be the velocity distribution or the acceleration dis-
tribution for the future 4 seconds interval. Based on the output from the model, we need to
convert the model distribution output into the vehicle coordinate position by feeding that
model output to a MATLAB simulation framework developed by the Spanish National Re-
search Council (CSIC) and Polytechnic University of Madrid (UPM) to generate the final
result: actual vehicle position prediction. We divide the model output distribution for the
future 4 seconds into four parts, with each part representing 1-second distribution.

2



1.3. Outline

1.3 Outline

The thesis contains five chapters in total. Chapter [I] briefly introduces autonomous
driving technology, related technology trends, and an overview of the thesis topic. Chapter
reviews the principle of the technologies and models implemented during the course of
this thesis. Chapter [3|presents the details of the modeling framework from our partners, the
Spanish National Research Council (CSIC) and Polytechnic University of Madrid (UPM).
In Chapter [} the thesis provides the information related to the experiments performed in
this thesis, such as the experiment setting, the feature selection, and the implementation
approach for the data processing. Chapter [5| presents the experiment results and discusses
the implications of these experiments. Finally, Chapter [ ends with the conclusions and
also describes future work.






Chapter 2

Preliminaries

This chapter gives a description of the ideas used for our machine learning-based
model.

2.1 Time series prediction

A time series is a sequence that contains data sorted in time order. Mathematically,

a time series X () =< xii),xg),xgi),xy),...,x(Ti) > is a fully observed sequence of measure-

ments in time where x(Ti) represents the observed measurement at timestamp 7 and the (1)
represents a specific feature. From the definition of time series data, we can deduce that
the multivariate time series X =< X, X® x0) x> meansa sequence X whose
data contains several features and each feature contains a single variate time series data
X0 =< xgi),xg),xgi),xg), ...,x(Ti) >. Time series data always reflects the time-domain re-
lationship among continuous-time data. Therefore, it is important to ensure that the time

series data points are sorted in time (i.e., are consecutive in the time horizon).

A time series prediction problem takes the time series data as its input, where the time
series data is either multivariate or contains only one variable. The approach of generating
prediction output would be different in multi-timestamp sequence prediction.

The first approach at first predicts the output x(Ti)Jr] , and then predicts the next output

xg)ﬂ using the new time series input < xgl),xgl),xgl),xgl),...,xg)ﬂ > until the prediction
sequence length is satisfied. One drawback of this approach is that it would generate an
accumulated error when predicting the output since every time it will only generate one
prediction in the next timestamp. Therefore, as the prediction output length increases, the
prediction data error will become larger and larger. Moreover, this approach could not
generate a long series within a short time. If, for example, the model needs to use 1 second
to generate data prediction at one timestamp, then it would take 40 seconds to generate a
prediction distribution that only represents a 4 seconds time interval. These disadvantages
give the possibility of trying the second approach.

The second approach directly generates the whole prediction series at one timestamp
based on the input series. This approach would save more time in generating the prediction

series. Given the time series data X () =< xgi),xg),xgi),xy), ...,xg) >, the second approach

will let the model to directly generate the output < x% 1,x(Ti)Jrz,x(Ti)Jr3,x(Ti)H, ...,x(Ti)H >. Us-

ing this approach, the model will save more computational time while generating the out-

5
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put. Furthermore, the model could learn all the information in the output series during the
training procedure.

2.2 Autoregressive component

The autoregressive component [20] or an autoregressive model is a structure that is
mainly used to represent the random process and predict the future state by using the pre-
vious state value as the input. A common expression of such a random process is shown in
Formula

Vi =Bo+PBryi—1+& (2.1)

This formula represents a random progress model whose future state depends on only
the previous state at  — 1 time stamp. 3, means the model’s parameters, and € means the
white noise. If we want to use the previous state at both r — 1 and ¢ — 2 time stamp, the
formula would be changed into Formula[2.2]

yi = Bo+PBryi—1+Poyi 2 +& (2.2)
These formulas show that the autoregressive component is used to compute the linear rela-
tion between the previous and current states.
2.3 Recurrent neural network

A recurrent neural network (RNN) [[15] is a machine learning network that has the
ability to model sequential process data by using its internal memory component and a
feedback scheme. Therefore, the recurrent neural network is often used for time series
prediction or natural language processing tasks.

2.3.1 Traditional RNN

Figure 2.1: Basic structure of traditional RNNs [/1]]

A simple structure of traditional RNNs is shown in Figure This is the most basic
type of RNN neural network structure. We can see that, in the RNN structure, the network
contains several hidden states. Each hidden state represents the state in the corresponding

6
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time stamp. In every time stamp, the RNN neural network would compute an output at
this time stamp and a hidden state vector which would be sent to the next hidden state
component.

Figure |2.2| shows a more detailed structure of the RNN hidden state component. The
input of that component would be the hidden state vector from the previous hidden state
component and the data at the corresponding time stamp. Formula[2.3] and [2.5]explain
the feed-forward procedure and the mathematical between input and output within the RNN
hidden state component. In Formula W and U are the parameters of the hidden state
component.

a(’) — b_|_Wh(l—1) + Ux(t) (23)
R = tanh(a") (2.4)
0(1) — C—i—Vh(t) (25)

Figure 2.2: Detailed structure of RNN [17]

However, Figure[2.2]also shows the drawback of the traditional RNN. First of all, RNN
only has the tanh function, and the structure is too simple. Therefore, traditional RNN could
only be able to process short-term dependencies problems. What’s more, RNN would also
cause gradient vanishing issues. In addition, RNN structure does not have any kinds of
cell states to memorize the information, which makes traditional RNN could only depend
on the linear computation of the previous hidden state and the data input. These are the
reasons to design a better RNN-class model to solve these issues.

2.3.2 Long Short-Term Memory Network

Long Short-Term Memory Network (LSTM) [7] is a variant of the traditional recurrent
neural network. Compared with traditional RNN, LSTM has a cell state which can enable
LSTM to memorize both long-term and short-term information. That is the reason Figure

7
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illustrates the structure of the LSTM model. LSTM has both hidden state and cell

ht
A
o Q] - o
N F% B
hes {0} {o {tanh“o}
| | | i - b

Figure 2.3: Basic structure of LSTM (23]

state, which would be used for computing the output. Besides the tanh function in the
traditional RNN, LSTM also uses several gates to store the information and compute the
output. These gates are the input gate, forget gate, and output gate. Formula to
express the computation procedure of these three gates. In these formulas, () is the forget
gate, i") is input gate, o*) is the output gate, c*) is the cell state, 2(*) is the hidden state, o,
is the sigmoid function, and G, is the tanh function. The weight and bias in these formulas
will not change based on time. Therefore we can use the same weight and bias to compute
the output at each timestamp.

FO = 0o (Wysx® 4 Uph=) b)) (2.6)
i) = Go(W;xx®) + Uy hU=Y +by) 2.7
o) = 6, (W, xx) + Uy kY 4 b,) (2.8)
(V) =0 (We x4+ Ueh"=1 + b, 2.9)
) = £ 4 =1 40 (C(I))/ (2.10)
K — o) & cc(c(’)) (2.11)

2.3.3 Gated Recurrent Unit

Gated Recurrent Unit (GRU) model [5] is another variant of the RNN model. The dif-
ference between the LSTM and GRU is that the GRU model does not have the cell state,

8
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h®

A1)

X—D

r® Z® f—»

&

X ’

Figure 2.4: Basic structure of GRU [14]

which means the GRU model Figure[2.4] shows the basic structure of the GRU model. For-
mula [2.12] to Formula [2.15]represents the mathematical principle behind the GRU model.
In Formula 2.T4] the ® means the Hadamard product for the matrices.

2 = oW, xx" + U A=) 4 b)) (2.12)
H0 = G(W,wx® 1+ U, h0D 4 by) (2.13)

= 0p(Wy s X' + Uy % (r, ©hV) + by) (2.14)
B0 = 0 o p0 4 (1—zD)y@ntD (2.15)

2.4 Convolutional neural network

The convolutional neural network (CNN) [[12]] is a machine learning network that is
often used for image classification and processing because of its ability for feature extrac-
tion. In this thesis work, we mainly used CNN to capture the sequential information in the
time series data and obtain a better computational performance. Figure[2.5]shows the most
basic structure of the CNN.

From the figure above, we can see that CNN is mainly divided into five parts: input
layer, convolution layer, activation function, pooling layer, and fully connected (FC) layer.
The convolutional layer is responsible for feature extraction of the input feature vector;
the pooling layer realizes the dimensionality reduction processing of the data; finally, the
classification is realized through the fully connected layer.
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Convolutional . Convolutional
Pooling layer
layer layer

Input

Softmax Classifier

Fully

connected (
layer

— Pooling layer

Figure 2.5: Basic structure of CNN [22]

2.4.1 Convolutional layer

The convolutional layer is the most important part of the entire convolutional neural
network. Generally speaking, the convolution operation used in image recognition is a two-
dimensional convolution operation. That is, a discrete two-dimensional filter (also called a
convolution kernel) is convolved with a two-dimensional image. The convolution operation
is simply the operation of multiplying and adding the sliding window and the corresponding
position on the image. This multiply-add operation is also commonly referred to as an inner
product. The convolution operation is mainly used in the field of image processing, and the
image features extracted by different convolution kernels in the convolution operation are
also different. In general, convolutional layers have the following two characteristics:

Local perception

When performing local perception, the ’convolution kernel” is the most critical ele-
ment, and it is a tool for local perception. Each neuron is only connected to a region of the
input neuron, which is called the receptive field. In image convolution operations, neurons
are locally connected in the spatial dimension, but fully connected in depth. For the two-
dimensional image itself, the local pixel correlation is also strong. This local connection
ensures that the learned filter can have the strongest response to the local input features. The
idea of local connections is also inspired by the structure of the visual system in biology,
and neurons in the visual cortex receive information locally. For example, a 32x32x3 RGB

10



2.4. Convolutional neural network

image becomes a 28x28x1 feature map after a layer of 5x5x3 convolution, then the input
layer has a total of 32x32x3=3072 There are 3072 neurons, and the first hidden layer will
have 28x28=784 neurons. These 784 neurons are only partially connected to the neurons
of the original input layer.

Shared weights and biases

Suppose there are & hidden layer neurons, each connected to a w x w window, so there
will be A *w *w parameters. This brings two problems: (1) each layer will have a large
number of parameters; (2) using pixel values as input features is essentially no different
from traditional neural networks and do not focus on some input pixels focus on. There-
fore, people began to choose to use the weight-sharing operation to avoid this problem. No
matter how large the image size is, a fixed-size convolution kernel can be selected. The
largest convolution kernel in LeNet is only 5*5*1, while in AlexNet, The largest convolu-
tion kernel is just 11*11*3. The convolution operation ensures that each pixel has a weight
coefficient, but these coefficients are shared by the entire image, which greatly reduces the
number of parameters in the convolution kernel. In addition, the convolution operation
takes advantage of the local correlation in the image space, which is one of the biggest dif-
ferences between CNN and traditional neural networks or machine learning, the automatic
extraction of features.

2.4.2 Pooling layer

20 | 30
.
12 1201301 0 / 112 | 37
8 |12 | 2 0
34 70|37 4
112 |100| 25 | 12 13| 8
)
79 | 20

Figure 2.6: Max pooling and average pooling

The main purpose of the pooling layer is to compress the image. The earliest is to
model the human visual system for dimensionality reduction (downsampling), and use a
higher level of abstraction to represent image features. Figure [2.6|shows the two operations
of pooling and the difference in the output produced by each operation. Pooling layers
are sandwiched between consecutive convolutional layers and are used to compress the
amount of data and parameters and reduce overfitting. Generally speaking, the pooling
operation is divided into maximum pooling and average pooling: for maximum pooling,
during forwarding propagation, the maximum value of the image area is selected as the
pooled value of this area. During backpropagation, the gradient is propagated through the

11
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position of the maximum value, and the gradients at other positions are 0; for average
pooling, during forwarding propagation, the average value of the image area is calculated
as the pooled value of this area. During backpropagation, the gradients are averaged and
distributed to each position.

2.4.3 Fully connected layer

At the end of the convolution, one or more fully connected layers are placed that contain
activation functions (e.g., Relu or Sigmoid) that can be used to reshape the size to a vector
suitable for the input classifier. For example, if the final convolutional layer outputs a
3x3x128 matrix, but the network only predicts 10 distinct classes, it needs to be reshaped
into a 1x1152 vector and gradually reduced in size before feeding it to a classifier (e.g.
Softmax classifier) . The fully connected layer will also learn its own function like a typical
deep neural network.

2.5 Attention scheme

Attention scheme is an approach that could focus more on some of the input part and
ignore other parts. Since the ability to capture the dependencies of the time series, the
attention scheme could be able to learn the relation between the data in the time series. To
simplify, the attention scheme could help the model to pay more attention to a different
piece of the input sequence in order to compute the representation of the sequence. The
output of the attention scheme would be a weighted sum for all the input values, based on
the different weights assigned to each value [21].

2.5.1 Self-attention scheme

Self-attention scheme is the original attention scheme that is widely used in natural
language processing technology.  Self-attention scheme contains three main steps. The
first step is to compute the dot products between the current input and all the other inputs.
Figure shows the mathematical pipeline of computing the dot product. Each input
sequence will compute the dot product with all the other input sequences and generate a
list of results from X! X, to X! Xy where X! represents the transpose matrix of the current
input sequence. After that step, it will use the Softmax function to normalize that dot
product value. Formula [2.16 shows the mathematical details of the softmax function.

eXp Z;

6(Z)i = — i
CXh ez

(2.16)

The third step is computing the context vector output. In the formula, we can see that
every vector normalized by the Softmax function will be multiplied by each input sequence.

T
A,‘ = Z ajjX;j (217)
j=1

However, the self-attention scheme did not have any kinds of parameters, which means
it is not quite useful for learning a model. That is a motivation to design the trainable
self-attention scheme, which is called a scaled dot product.
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Figure 2.7: Dot product operation in self-attention scheme
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Figure 2.8: Softmax and context vector computation operation in self-attention scheme
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We firstly add three weight matrices that can be updated during the training procedure.
Those three matrices are W?, W*, and W". Then we use those three matrices to multiply
each input word or the input data. Therefore, each input data will have three multiplication
values which are query, key, and value.

Figure shows the basic form of scaled dot product. It will take the query, key,
and value as the input and compute the matrix multiplication between the value and the
Softmax result of the query and key. Formula[2.18]is the mathematical principle behind the
scaled dot product.

f

‘ MatMul ‘

!

Softmax

i

Mask(opt.)

)

Scale

MatMul

Figure 2.9: Basic form of scaled dot product [21]]

Attention(Q,K,V) = softmax(Q—KT)V (2.18)
o Vi '

Based on the description above, we can understand how scaled dot product works by using
Figure[2.10]as an example. For computing, the attention value for x;, the scaled dot product
uses the query of x; as the uniform query value and uses that value to do the multiplication
with the key and value of the corresponding input from x; to xr.

2.5.2 Multi-head attention scheme

Multi-head attention scheme uses several self-attention modules in parallel to compute
the attention value for the input. In general, multi-head attention uses the scaled dot prod-
uct as the module. After generating several self-attention values, the multi-head attention
scheme will use concatenation and linear transformation to make sure the final output satis-
fies the expected dimensions. Figure [2.11shows the basic form of the multi-head attention
scheme.
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Figure 2.10: The principle of scaled dot product when computing attention value for a
sequence
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Figure 2.11: Basic form of multi-head attention scheme
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Figure 2.12: Basic structure of dual self-attention network (DSANet) [8]

2.6 Position-wise feed-forward network

Feed-forward network (FFN) is the simplest network in the Artificial intelligence field,
which contains two linear computations with a ReL.U function. The formula shows the

mathematical function of FFN.

FFN(x) = max(0,xW; + b1 )Wa + by

@

.19)

The parameters for the FFN function are shared in different input positions but different

for each layer.
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2.7 Dual self-attention network for multivariate time series
forecasting

Dual self-attention network (DSANet) [8] combines several components: convolution
layer, self-attention module, and the autoregressive (AR) model. The self-attention module
has self-attention layers connected with a position-wise feed-forward layer which has been
discussed in Section [2.5 and [2.6] Figure [2.12] shows the basic structure of the DSANet.
From that figure, we can see that the idea of the self-attention module originated from
the Transformer model, which stacks N times for the same module for learning the de-
pendencies in different time series. From Section [2.2] we can see that the classical Auto-
regressive model has linear computation, which can be regarded as the linear component
of the DSANet model. That is also the reason for adding the AR model to solve the non-
linearity drawback of the convolution layer and self-attention layer. For generating the
output, DSANet used the dense layer, which combines the output from two convolutional
layers and the self-attention layers and generates the output O;. Finally, the network added
O, with the output from the AR network to generate the final output series. We can change
the output length by adjusting the output length of the dense layer so that the model can
satisfy the output length requirement in this thesis work.
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Chapter 3

Interactive awareness framework for
roundabout route prediction

This chapter provides a principle description of the route prediction framework. AU-
TOPIA Group developed the interactive awareness framework, sponsored by the Polytech-
nic University of Madrid and the Spain National Research Council (CSIC).

3.1 Interaction awareness

When driving into a roundabout, before obtaining the planned route for the ego vehi-
cle, interaction awareness is needed to ensure the decision and planning for the ego vehicle
are correct and safe for the surrounding. In real-world driving, autonomous driving should
face various kinds of surrounding scenarios. These surrounding scenarios include differ-
ent kinds of participants, which will be surrounding vehicles, pedestrians, or other things
appearing on the road during the driving. A good route planning approach should not be
affected by these restrictions and produce a safe route that will also not be conflicted with
other surrounding participants. Therefore, it is necessary to estimate the intention of the
other drivers or the traffic participants. Based on that estimation, the ego vehicle could
make a better decision and plan the route for the next time horizon. That is called inter-
action awareness. Figure [3.1] shows the primary pipeline for interaction awareness. From
that figure, we can see that the whole Interaction awareness procedure contains three main
steps: Find/reuse corridors, find interactions and compute intentions. The detailed descrip-
tions for these three phases are given as follows.

Compute

Find/reuse corridors Find interactions .
Intentions

Figure 3.1: Interaction awareness procedure pipeline
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3. INTERACTIVE AWARENESS FRAMEWORK FOR ROUNDABOUT ROUTE PREDICTION

Figure 3.2: A scenario where the corridor will be removed

3.1.1 Finding corridors

The goal of finding/reusing corridors is to obtain all of the navigable corridors for the
vehicle in the scene. For obtaining the current position of the ego vehicle, an efficient map
for autonomous driving field called Lanelets [[10] can be used. After obtaining the vehicle’s
current Lanelets, a graph search algorithm is implemented to generate the lanelets-sequence
for each surrounding corridor. The next thing is to check whether each corridor should be
expanded or deleted. When the vehicle is about to reach the end of the corridor for the
current time horizon, an expansion execution to the corridor is necessary. To solve this task,
a reasonable way is to compute the occupancy probability of each surrounding corridor by
using a tool for Set-based Prediction of Traffic Participants (SPOT). Then an expansion
execution for each corridor whose occupancy probability is above specific criteria. On the
other hand, the corridor can also be deleted or removed if the angle between the centerline
of the corridor and the vehicle measured orientation is larger than a criteria. Figure [3.2]
illustrates a case when the corridor will be deleted. From that figure, we can see that the
measured orientation has a significant difference from the centerline of the corridor. Based
on the layout of the road, a grid is developed for each of the surrounding cars’ corridors.
Finally, the grid is constructed using this knowledge and the assumed route for the ego
vehicle.
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3.1. Interaction awareness

Figure 3.3: A scenario where the corridor has a dependency [19]

3.1.2 Find interactions

The aim of finding interaction is to discover the relationships between each traffic par-
ticipant and the map elements. Three different kinds of interactions could be found: the
corridor dependencies, the distance to the intersections, and the lateral relation.

The aim of finding the corridor dependencies (CD) is to check whether a collision
could happen between the different traffic participants. To solve that, we can simply check
whether the centerline of the corridor or the road are pairwise intersected, which could
result in a collision between traffic participants. Figure shows a specific scenario where
the two corridors are intersected on the centerline and the corresponding collision point for
these two corridors. From that figure, we can see that a pair of corridors is dependent. One
is the corridor from the red vehicle, and the other is the corridor from the blue vehicle. The
vehicle that firstly arrived at the initial points would lead to a dependency on the vehicle
which arrived at the initial point later. Based on the initial points, the possible collision
point will be grouped and sorted by considering the distance to the initial points. Then the
collision point that is farthest from the initial points will be the dependency of the corridor.

The second kind of interaction would be the distance to the intersections (DI). It is
reasonable to use Lanelets [[10] identity of the current corridor to check which intersection
the current corridor is crossing. To compute the distance to the intersection, first, we need
to find the entrance to the center points of another corridor. After finding the entrance,
the distance to the intersection is easy to compute by measuring the distance between the
entrance and the projected position of the vehicle.

The third kind of interaction is lateral interaction (LI). To compute the lateral interac-
tion, we need to obtain the previous intention (;,_;) and the current expectation (E;). These
two variables will be further discussed in the Section Then there will be a random
value. If that random value is smaller than the probability value in the Table [3.1] then the
LI is equal to 1. Otherwise, the LI will be equal to the probability value.
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I, E, probability
0 0 0.1
0 1 0.5
1 0 0.5
1 1 0.9

Table 3.1: Lateral Intention computation [18]]

Figure 3.4: Bayesian network [[18]]

3.1.3 Compute intentions

In order to estimate the intention of the vehicle, the Dynamic Bayesian Network (DBN) [[18]]
is implemented. DBN is a network that combines the original bayesian network with the
particle filter algorithm in order to compute the intention estimation, which CSIC and UPM
develop. Figure|3.4|shows the original bayesian network that was initiated in each vehicle.

In Figure [3.4] several important variables could be further discussed.

E] represents the expected behavior of the vehicle n at the t timestamp. It is divided
into two parts. One is the longitudinal part and the other is the lateral part. The longitudinal
part is often used to determine whether the vehicle should proceed to the road or stop at
the intersection. The lateral part computes the probability of making a lane change. I
represents the intention of the vehicle n at the t timestamp. It also contains two parts. The
lateral part of I/ represents the corridor that the current vehicle wants to follow. Qf means
the vehicle’s position and speed, which is computed in each instant. Z!' represents the
actual measurement of the vehicle extracted from the autonomous driving vehicle sensor.

Based on the variables in Figure Formula [3.1][19] produces a mathematical princi-
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ple for modeling the driving scenario for the autonomous driving vehicle.
T
P(Eo.r Io.7,Q0:7,Zo) = P(Eo. 1o, Q0,Z0) * [ |
t=1
N

:l[P(Et |I[_]Qt_])* (31)

n
P(L | I B )
P(Q | 2 1)

P(Z/|)]

In Formula[3.1] the Ey.7 represents the expected behavior from 0 timestamp to t times-
tamp. Similar with Eg.7, Ip.r means the corridors the current vehicle wants to follow from 0
timestamp to t timestamp, and Q.7 means the vehicle position and speed from O timestamp
to t timestamp, and Zy.7 represents the actual measurement of the vehicle from O timestamp
to t timestamp.

However, it is not possible to compute the vehicle intention by only using Formula
because only the measurement of the autonomous driving vehicle could be directly
extracted. To solve that problem, the particle filter algorithm is necessary to obtain E},
IT', QF based on the measurement of the vehicle Z'. Each particle represents the current
status of the autonomous driving vehicle, which includes all of the information about the
corridors and interactions. Algorithm|[I][19] shows the basic principle of the particle filter
pipeline for computing the vehicle intention.

Algorithm 1 Particle filter
Input: Corridor dependency, Distance to Intersection, Lateral Relation
Output: Lateral Intention
initialize particles
while True do
compute lateral expectation
compute lateral intention
compute longitudinal expectation
compute longitudinal intention
update pose and velocity
end while

From Algorithm [I] the particle filter contains several computation steps. The main step
related to generating the vehicle position will be updating position and velocity. Therefore,
in this thesis, we will focus more on the description of that step.

Update the vehicle position

The interactive awareness framework divided the final position P’ into two equal sub-
part P| and Pj. P} represents the displacement over the centerline of the corridor, and P} is
the free displacement of the particle. To compute P!, the projection of the current position
of the vehicle is required. Formula[3.2][19]] shows the mathematical principle for obtaining
that position.

P pil TayY;

proj pr0j+ [ sl ] (32)
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In Formula P;m ; represents the vehicle projected position. v~ ! is the vehicle velocity,
and the s/ represents the segment length. Using Formula we can obtain Pj by using
Formula [3.3] In Formula[3.3][19]l, pv represents the vector connected between two center
points near P}. cp is the matrix variable with 2 x n dimension that represents the coordinate

of the center point.

pv
[lpvl]

Pl =cp(;, P, )+ (V" At mod sl)

proj (3.3)

where mod represents the modulo computation and the cp(:,PI’,m j) means a matrix which
using the projected position vector to replace one column of the original matrix cp.
We can use Formula to compute P} and the final position will be computing by

computing the average of P and P} using Formula [19].

t—1
R?:PF4+VF4AIKZ%§&] (3.4)
Pt Pt
P 1‘; 2\ rand (3.5

where rand represents the random value.

Update the vehicle velocity

The framework uses the basic physic function in Formula [3.6to compute the velocity.
ay is the sample value from the initial acceleration distribution generated from the machine
learning model implemented in this thesis. Based on the obtained velocity, the vehicle
position could be updated and finally visualized in the experiment result.

Vo=V aAr (3.6)
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Chapter 4

Methodology

In this chapter, a description about the implementation approach will be given.

4.1 Dataset and data processing

The dataset that is fit for training the network can be obtained from the publicly avail-
able dataset openDD [3]. openDD contains public traffic data from the traffic partici-
pants present at the scenes. The frequency of capturing each data point is 100HZ. Each
data includes pose, velocity, acceleration, size of each participant vehicle and the frames
where each data belongs to. However, only the velocity and acceleration features could
be retrieved from that dataset as useful features. Therefore, it is necessary to do a data
pre-processing for obtaining curvature of the path and the other features which are also
beneficial for model training. To solve that problem, CISC and Polytechnic University of
Madrid (UPM) has cooperated to retrieve the curvature of the path and the distance to in-
tersection by implementing a data pre-processing framework which models a roundabout
environment for automated driving on Matlab. Figure [.1] shows an example simulation
environment that developed by CSIC and UPM. After binary tagging each frame as con-
taining or not these participants, the intervals are grouped, and the parameters are obtained
for each vehicle at each instant by modeling a roundabout environment for automated driv-
ing. Table[.T|shows the features that are obtained after that modeling. In order to use these
data for the purpose of thesis work, some of the data have been down-sampled and filtered
to remove undesired participants vehicle, such as static vehicles, pedestrians, motorcycles,
and large trucks. Therefore, the data between the data files are not consecutive with each
other.

Parameters

Velocity time series
Curvature of the path
Distance to next intersection in the path
Distance to the next (leading) vehicle in path
Velocity of the next vehicle in the path

Table 4.1: Obtained parameters after modeling
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Figure 4.1: Example of possible corridors for a vehicle in a roundabout

The first thing before training the model is doing data preprocessing based on the
dataset. For the time series prediction problem, a key point is to make sure the data in
each series should be consecutive. What’s more, it would be better to ensure the data-label
are out of order. However, since the down-sampling process, each file is not contiguous
in data. The whole dataset contains multiple participant vehicles, which also leads to the
difficulties of creating data-label pair for training. For solving that problem, a reasonable
approach will be, first of all, scanning through the whole dataset to search which data-label
pair is from which participant vehicle, which means to create a key-value pair in which
the key means the ID of the participant vehicle, and the value will be the all the data-label
pairs that belongs to that participant vehicle. A HashMap or a dictionary data structure
will handle that. Then, for ensuring the out-of-order properties, it will be simpler by only
mixing the order of the participant vehicle’s ID in the key-value pair. When creating the
data-label pair, we used a number of features and each input data sequence has a length of
40, which means every data input contains information about several features in the past
4 seconds. Table [4.2] shows the features that we are currently using in our model. From
that table, feature 4 to feature 15 are all the curvature of the path. That is because we di-
vide the roundabout path into six parts, and each part has a pair of path curvature which
contains a positive curvature and a negative curvature. The output sequence represents the
distribution about the future 4 seconds acceleration. In our thesis work, we divided that
distribution into 4 part, each part represents only 1 second acceleration distribution. We re-
gard each distribution as a Gaussian distribution. Therefore, each part of that acceleration
distribution will have a corresponding u and &, and in total the model would produce four
parts of u and G to represent the whole 4 seconds acceleration distribution.
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Input Feature

Vehicle acceleration or vehicle velocity
Distance to the next intersection in the path
Distance to the next (leading) vehicle in path
Velocity of the next vehicle in the path
Curvature of the path (contains 6 sub-variables)
Distance to the interaction (corridor dependency)
Velocity of the vehicle that leads to a corridor dependency
Priority of the interaction

Table 4.2: Input Feature

4.2 Evaluation matrix

We used four different kinds of evaluation matrix to evaluate and compare our model’s
performance, which are Mean square error, mean absolute error, average displacement
error and final displacement error. The detailed mathematical formula will be explained in
the following subsections.

4.2.1 Mean square error

For training the model, mean square error is used to update the network parameter in
every training epoch. MSE is an evaluation matrix which measure the difference between
the prediction series and the label series by computing the average of the square error of
the each data in the predicted series and the corresponding data in the label series. Formula
[.1|shows the basic mathematical computation function of MSE.

| LA
MSE =+ (5 =) 4.1)
i=1

where ¥ represents the i-th predicted value at timestamp t, and y' represents the actual label
value at timestamp

4.2.2 Root mean square error

Root mean square error (RMSE) is a reasonable evaluation metric for comparing model’s
performance. In many case, RMSE would be more useful to capture the large error. The
mathematical function of RMSE is quite similar to that of MSE, which means RMSE could
be computed by adding root to MSE result. Formulad.2]shows the function of RMSE.

4.2)

4.2.3 Mean absolute error

Mean absolute error (MAE) is also an evaluation metric which compute the average
error between the predicted series and label series. Although MAE is not able to give

ISame as Formula
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penalty to the large error, it still have the ability to describe the magnitude of the errors
in the prediction series without considering the sign [9]. Formula@] is the mathematical
function of MAE.

| R
MAE =+ } |5, =] (4.3)
i=1

4.2.4 Average displacement error

Average displacement error(ADE) is widely using in self-driving field for measuring
the quality of the motion prediction by comparing the ground truth displacement with the
predicted displacement. Formula|4.4|shows the formula for ADE.

1 L — —
ADE =+ ; V@ )2 4 (57— )2 4.4)

where ¥ and j' represents predicted coordinate of the i-th trajectory point. x' and y’ repre-
sents the ground truth coordinate of the i-th trajectory point.
4.2.5 Final displacement error

Final displacement error(FDE) is another common evaluation metric which measures
the difference between the last predicted point and last ground truth trajectory point.

FDE = /(7 —xT)2 4 (57 —yT? “5)

where #7 and j7 represents predicted coordinate of the final trajectory point. x' and y'
represents the ground truth coordinate of the final trajectory point.

4.3 Comparison approach

We will conduct our experiment in four different kinds of models: Autoregressive,
LSTM, GRU, DSANet. For comparing model’s performance, several experiments has been
established and implemented. First of all, since we need to convert the model output into
the actual coordinate position of the vehicle, the model output could be velocity distribution
or the acceleration distribution in the future 4 second. Therefore, we conduct an experiment
for investigating the prediction performance of different features of model output.

Besides that, as discussed in the Section [2.1] the approach of generating the output
will also be different. Therefore, the effect to the model performance using different kinds
of output approach is also needed to be considered. Therefore, we compared the effect
of performance between two different kinds of out approach: direct generating 40 output
series(every input length=40, every output length=40) and iterating generating 40 output
series(every input length=40, every output length=1). To test the model, as discussed in
the Section 2.1} it will have a timing performance issue when using iterating generating 40
output series approach. Therefore, we first use 5 groups of input and output data of each
vehicle to test both the prediction and timing performance of those two different kinds of
output approach and then use total test dataset to test the model which using the output
approach with better prediction and timing performance.
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For comparing the result, we also used the different kinds of approach for processing
the data before training the model. The data will be either using the global nomarlization
approach or adding the batch nomarlization layer in the model. To compare the model
performance, we used five evaluation matrices which has been discussed in the Section

42

For the ADE and FDE, we used the evaluation framework from CSIC and Polytechnic
University of Madrid, which will compute the result on the MATLAB platform. For eval-
uating on the MATLAB, we firstly use 8 groups of data which belongs to one simulation
situation as the input to the model and generate corresponding output. We call this step as
partial simulation. Each group of input data is from a specific vehicle. That means that
in total we have data for 8 vehicles. After generating the outputs, we feed that output into
MATLAB simulation environment and obtain the ADE and FDE evaluation result.

For further testing the generalization ability of our machine learning models, CSIC
and Polytechnic University of Madrid tested all of our 4 models on MATLAB simulation
framework using the whole four driving situation they currently have and make a com-
parison between our 4 models and their physics-based Dynamic Bayesian Network that
mentioned in Section We call this step as entire simulation. For entire simulation,
they use multiple 40 length inputs and generate a long output series. For this testing, they
still compute ADE and FDE score to measure the performance.

The other three evaluation metrics: MSE, RMSE, and MAE will be computed in the Py-
torch environment. Table[.3|and[4.4]show the models, the corresponding hyper-parameters
of the models and the experiments that we conducted in this thesis.

Models optimizer learning rate (Ir) Ir scheduler
Autoregressive
LSTM . .
GRU Adam 0.005 Cosine Annealing
DSANet

Table 4.3: Experiment model and the training configuration

Experiment output approach output feature
. acceleration
directly 40 .
sliding window:40 velocity
data normalization: batchNorm . . accleration
iteratively 40 .
velocity
. acceleration
directly 40 .
sliding window:40 velocity
data normalization: globalNorm . . accleration
iteratively 40 .
velocity

Table 4.4: Experiment design for investigativng the timing peformance of different pro-
ducing output approaches
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4.4 Implementation details

For down-sampling the scenario where the vehicle is facing the intersections or pas-
sengers, the data have been divided into 2000 files. Each file represent a scenario which
reflect the surrounding environment of the autonomous driving vehicle. In total, the dataset
contains around 800,000 entries which includes the velocity, acceleration and other motion
information of the 130 vehicles. To train the model, we use the 80% of the overall dataset
as the training set, and then choose 10% of the training set and the validation set. The rest
of the dataset are used for testing the model.

We used Python 3.7 embedded in Anaconda library to implement the data processing
and the model. For generating the dataset, the pytorch dataloader is used which takes the
For training the model, the Pytorch-lightning library has been used. Pytorch-lightning [[11]]
provides an interface for the Pytorch deep learning framework, which enables the devel-
opment of deep learning experiment to be more efficient and easier. The main api of the
Pytorch-lightning that will be often used when developing the model is called Lightning-
Module that define a full deep learning system which could include either an individual
model or a sets of models. LightningModule includes all the collections of the methods
that will be used for training the models, which is the sub-class of nn.Module. Those col-
lections are training loop, validation loop, test loop, the optimizer and the learning rate
schedulers configuration, and then the computational graph of the model definition. The
advantage of pytorch-lightning is that user does not need to consider how to feed the in-
put in each epoch or setting the model to evaluate state or enabling the gradients. The
pytorch-lightning trainer could handle all of these things automatically. Therefore, user
could save more time on the development phase and pay more attention to the machine
learning research.

We also test generalization ability of our model and make a comparison with the tradi-
tional physics-based model on the MATLAB. For testing the model generalization ability,
CSIC and UPM chose four different kinds of driving simulation situations. Since we can-
not see the code of the simulation environment of CSIC and UPM, we could only use the
ONNX file as the media so that we can use that file format as the input to the MATLAB
simulation environment. ONNX is a file format which represents the machine learning
models. It helps the developers to easily import models from different training platform
and enable the cross-platform development and testing. To do that, first of all, we need to
use Pytorch-lightning platform to load the trained model from our local file system. And
then export the ONNX file using ONNX package. Finally we can import our machine
learning on the MATLAB by calling the command in MATLAB.

From the Section [2.2] we can see that the auto-regressive component is a basic linear
computation. Therefore, for implementing the AR model, we can simply using the linear
function in Pytorch library to represent the whole computational procedure. By changing
the output dimension of the linear function, we can let the model either directly generate
40 output or iteratively generate 40 output.

For the LSTM model, the key is setting the hidden state and cell state. It is necessary to set
those two variable to zero tensor for initializing the state of the model. The two different
kinds of output approach could be adjusted by setting the different dimension of the linear
function after receiving the output from LSTM model.

The implementation for the GRU model is quite similar to the LSTM. In the Section [2.3.3]
we have discussed that GRU model does not have the cell state, which means the trainable
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parameter will be less than LSTM. For initializing the state of the model, we can simply
set the hidden state to zero tensor.

For the DSANet model, the implementation is more complex than those three kinds of
model above. In Section DSANet has a self-attention module which contains the
multi-head attention scheme and the position-wise feed forward. The core principle behind
the multi-head attention scheme is the scaled-dot-product function which related to the
batch matrix-matrix product. From the Section [2.6] we can see that the position-wise feed
forward network contains a ReLu function for choosing the maximal value between the xW;
and 0, where the xW) is a convolution computation. The network uses another convolution
computation for generating the output after the receiving the output from ReLu function.
After implementing the self-attention module, the DSANet will stack that module for N
times.

4.5 Experiment setup

In this thesis, all of the model will be training on the remote GPU in the server in TU
Delft QCE department. Table {.5] shows the main hardware configuration in that server.
For training the model, the Anaconda virtual development environment has been install

GPU Name cores Memory CPU speed
RTX 2080Ti 12 128GB 2.4GHz

Table 4.5: Hardware Configuration

in the server which contains the Python 3.9.7 Interpreter with the Pytorch 1.11.0 version.
The Pytorch-lightning interface 1.6.5 version is also used on the top of Pytorch framework.
After the training procedure, the ADE and FDE evaluation metric will be computed in
the R2021b version MATLAB platform. Table shows all of the software configuration
information.

Software Version

Pytorch(GPU version) 1.11.0
Pytorch-lightning 1.7.2

MATLAB R2021a
CUDA 10.2
cuDnn 10.2

Table 4.6: Software Configuration

31






Chapter 5

Experimental results

This chapter gives an overview of the project’s contributions. After this overview, this
chapter will present multiple experiments and corresponding results and give some discus-
sions according to the results.

5.1 Project contributions

In this thesis, TU Delft QCE department provides hardware support for all model train-
ing. In addition, this thesis project cooperates with the Spain National Research Council
and the Polytechnic University of Madrid. The ADE and FDE evaluation matrix will be
computed using the MATLAB simulation framework from CSIC and UPM.

5.2 Impacts of different prediction approaches for timing and
prediction performance

We used five input groups for each car from the test set to predict the output and mea-
sured the computational time of the model used for producing the prediction. Table [5.1]
shows the experiment result of all of the models when using two different kinds of predic-
tion approache

Models MSE RMSE MAE
AR(batchNorm) 0.3987 0.5651 0.4734
AR(globalNorm) 0.5840 0.6860 0.5743

LSTM(batchNorm) 0.4026 0.5668 0.4704
LSTM(globalNorm) 0.3768 0.5474 0.4553
GRU(batchNorm) 0.4122 0.5630 0.4821
GRU(globalNorm) 0.3720 0.5443 0.4531
DSANet(batchNorm) 0.3288 0.5271 0.4333

DSANet(globalNorm) 0.3635 0.5412 0.4470

Table 5.1: Result for directly 40 output approach (output feature: Acceleration)

Al the MSE, RMSE, and MAE results represent the average value for all 126 vehicles, same as Table

PAB3AEABIET
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5. EXPERIMENTAL RESULTS

Models MSE RMSE MAE
AR(batchNorm) 86973.57 282.6038 88.7438
AR(globalNorm) 2.1026 1.4018 0.9571
LSTM(batchNorm) 47119.74 206.1511 68.9448
LSTM(globalNorm) 2.0050 1.3673 0.9369
GRU(batchNorm) 26435.1 158.1275 58.9137
GRU(globalNorm) 0.5646 0.5974 0.5104
DSANet(batchNorm) 53012.36 225.3845 92.9970
DSANet(globalNorm) 0.3635 0.5412 0.4470

Table 5.2: Result for iterative 40 output approach (output feature: Acceleration)

Models MSE RMSE MAE
AR(batchNorm) 1.9718 1.1627 1.0091
AR(globalNorm) 1.1864 0.9045 0.7389
LSTM(batchNorm) 3.6697 1.6926 1.4895
LSTM(globalNorm) 3.1624 1.6199 1.3554
GRU(batchNorm) 29144 1.4751 1.3056
GRU(globalNorm) 1.8807 1.1916 1.0216
DSANet(batchNorm) 0.8059 0.8487 0.6944
DS ANet(globalNorm) 1.7140 1.1486 0.9550

Table 5.3: Result for direct 40 output approach (output feature: Velocity)

Models MSE RMSE MAE
AR(batchNorm) 89883.9 288.0995 91.7547
AR(globalNorm) 1.6391 1.2511 0.8910

LSTM(batchNorm) 25061.99 150.2193 48.48
LSTM(globalNorm) 1.0988 0.9855 0.6330
GRU(batchNorm) 80268.2400 272.3700 87.4539
GRU(globalNorm) 2.6113 1.5825 0.9949
DSANet(batchNorm) 4.2%108 7994.053 2752.061
DSANet(globalNorm) 3.8438 1.9171 1.3349

Table 5.4: Result for iterative 40 output approach (output feature: Velocity)

5.2.1 Timing performance

Another important aspect that needs to be considered is the total time used to produce
the prediction series. If the model needs to generate the prediction in the future 4 seconds
time horizon, the total time used to generate the prediction series should not exceed 4 sec-
onds. The reason is that the autonomous driving vehicle needs to use the prediction series
from the output to produce the future vehicle path. In our experiment, the average time
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5.3. Experiment results on the whole test dataset

of generating prediction series when using the iterative output approach is 5-10 seconds,
which is quite time-consuming compared with the direct output approach.

5.2.2 Discussion

From the experiment results in Section we can see that the average loss of the di-
rect output approach is lower than the average loss of the iterative output approach. When
using the iterative output approach, whose each input length is 40 and label length is 1, all
models have a considerable loss when adding the batch normalization layer in front of the
model structure. That is also a reason to avoid using the iterative output approach. Besides
that, as discussed in the previous chapter, the iterative output approach could cause an ac-
cumulative loss because the model has to do iteration for N times to get the whole N length
output series. Table [5.1] and Table [5.2] set a good example to explain that phenomenon
.From those two tables, we can find that all models have a relatively lower loss value when
using the direct output approach compared with the case when all models use the iterative
output approach. Therefore, we can conclude that the direct output approach has a better
prediction and timing performance. Considering the timing performance issue, in the next
experiment, which uses all of the test datas et, this thesis will only conduct the comparison
experiment with all of the models using the direct output approach.

5.3 Experiment results on the whole test dataset

5.3.1 Results for acceleration output

Table [5.5] shows the experiment results of all the models which use direct generating
40 acceleration output approach. Table [5.6]indicates the results for MATLAB simulation
results for 8 vehicles (groups) datzﬂ

Models MSE RMSE MAE
AR(batchNorm) 0.4462 0.5960 0.4997
AR(globalNorm) 0.4668 0.6091 0.6590
LSTM(batchNorm) 0.4696 0.5993 0.5167
LSTM(globalNorm) 0.4140 0.5631 0.4822
GRU(batchNorm) 0.4607 0.5944 0.5107
GRU(globalNorm) 0.4122 0.5630 0.4821
DSANet(batchNorm) 0.3589 0.5258 0.4530

DSANet(globalNorm) 0.3754 0.5316 0.4562

Table 5.5: Evaluation metrics result for 40 acceleration series output

From Table [5.5] we can see that, generally, when using the global normalization data
processing method before training the model, the model has a better training effect with
lower MSE, RMSE and MAE loss. However, when adding batch normalization into the
DSANet network, the performance has a slight improvement compared with the case when
DSANet with the global normalization method and all the other models. In Table[5.6] when

’In Table all of the ADE and FDE results represents the average value for all the 8 vehicles. Same to

Table @]
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Models ADE FDE

AR(batchNorm) 1.6476 4.8591
AR(globalNorm) 1.6146 47749
LSTM(batchNorm) 1.6478 4.8569
LSTM(globalNorm) 1.5506 4.0614
GRU(batchNorm) 1.6480 4.8581
GRU(globalNorm) 1.5455 4.6452
DSANet(batchNorm) 1.2201 3.5391
DSANet(globalNorm) 1.6176 4.6603

Table 5.6: MATLAB partial simulation result based on the acceleration output series

using the 8 groups of data to test the model, the DSANet has a best performance when
adding a batch normalization layer, which means the batch normalization layer helps the
DSANet model to improve the generalization ability in some extent. Therefore, we can see
that DSANet with batchNorm layer has the best performance for MATLAB to predict the
vehicle’s future path and relatively positive acceleration prediction accuracy when testing
in one driving simulation situation.

5.3.2 Acceleration series prediction effect

For visualizing the prediction effect, we also use #33 vehicle as an example to present
the acceleration prediction curve of all these 4 models. Figure [5.1] shows the prediction
visualization.

5.3.3 Vehicle trajectory prediction result in MATLAB for partial simulation

We also evaluated our model on the Matlab simulation platform from the Polytechnic
University of Madrid to measure the performance of the simulated vehicle on the virtual
road. Since the DSANet with batch normalization layer has a best acceleration prediction
performance, we use Figure [5.2] to present the loss between the simulated vehicle path
based on the model prediction and the actual vehicle position label when using the DSANet
model with batch normalization layer and the case when direct generating 40 acceleration
series output.

5.3.4 Results for velocity output

Table[5.7]shows the experiment results of all the models which using directly generating
40 velocity series output approach.

From Table we can see that MSE, RMSE, and MAE for all of the models has a
significant increase when using velocity serves as the label for model training. What’s
more, the ADE and FDE values in Table [5.8]also has an increase compared the values in
Table[5.6] The possible reason is that we use MSE as the model’s loss function to minimize
the loss value in each epoch. From Formula [4.1]in Chapter @ we can see that MSE will
focus more on the outliers, which means MSE will give a larger weight to the value with
a higher difference to the label. Therefore, the models will update their parameters to
minimize the outliers loss. However, that will cause a decrease in the model’s performance,
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5.3. Experiment results on the whole test dataset

Models MSE RMSE MAE
AR(batchNorm) 2.4549 1.3159 1.1344
AR(globalNorm) 2.0172 1.1991 1.0063
LSTM(batchNorm) 6.4188 2.2084 1.9736
LSTM(globalNorm) 3.1624 1.620 1.3554
GRU (batchNorm) 3.6345 1.6658 1.4726
GRU(globalNorm) 2.2801 1.3228 1.1393
DSANet(batchNorm) 4.3838 1.8463 1.5652
DSANet(globalNorm) 2.1503 1.2923 1.0763

Table 5.7: Evaluation metrics result for 40 velocity series output

Models ADE FDE

AR(batchNorm) 1.5489 4.3884
AR(globalNorm) 1.8467 5.3800
LSTM(batchNorm) 2.3485 6.7520
LSTM(globalNorm) 1.9900 5.7455
GRU(batchNorm) 2.3299 6.4604
GRU(globalNorm) 2.2230 6.4787
DSANet(batchNorm) 2.5564 7.7609

DSANet(globalNorm) 2.4556 7.0782

Table 5.8: MATLAB partial simulation result based on the velocity output series

which means the model could not learn the general knowledge from the data but focus more
on the data with higher loss.

When comparing the Table [5.6] and Table we can see that all of the models has a
better ADE and FDE loss value when using the acceleration feature as the output feature.
As discussed in Chapter |3} the vehicle path will be transferred based on the acceleration
series. Suppose the model’s prediction is velocity series. In that case, MATLAB frame-
work will have to first transfer the velocity prediction series into the acceleration series by
computing the formula acceleration = vel‘;ic”) and use that computed acceleration series to
predict the vehicle path. That will also cause the accumulative error since the error will
have during the procedure of transferring the velocity series into the acceleration series.

From the prediction result in Table [5.8] we can see that AR model has the best train-
ing simulation evaluation score (ADE and FDE). We can also see that the attention-based
model DSANet has a better prediction performance than the RNN-class models, LSTM
and GRU. A possible reason is that LSTM and GRU model’s generalization ability is worse
than DSANet. From the introduction of the DSANet model structure in Chapter[2] we can
see that the DSANet has an attention scheme that is stacked for N times. An attention
scheme can grasp complex information in a long sentence. Whereas the LSTM and GRU
models only have fix number of memory gates, which cannot adapt to the case when the
input contains more complex and implicit information such as the motion change in the
input sequence of the vehicle in this thesis. That is why RNN-class models do not have a
better effect than DSANet.
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5.3.5 Velocity series prediction effect

Figure [5.3]shows the velocity prediction curve of all these 4 models. Like acceleration
series visualization, we also use #33 as the example to present the velocity prediction effect.

5.3.6 Vehicle trajectory prediction result in MATLAB for partial simulation

Since the AR with batch normalization data processing method has a best velocity pre-
diction performance in one driving situation, we use Figure[5.4]to present the loss between
the simulated vehicle path based on the model prediction and the actual vehicle position
label when using the AR model with batch normalization layer and the case when direct
generating 40 velocity series output.

5.3.7 Model generalization ability test

We also use MATLAB platform to test our model in 4 different kinds of simulated
driving situation to see generalization ability by taking the ONNX file of all our machine
learning models as the input and make a comparison between the machine learning model
and the traiditional physics-based model. Table shows the experiment results. From
the Table[5.9] we can see the AR model with global normalization produces a good perfor-
mance when predicting acceleration series, which is better than the physics-based model.
The possible reason is that the most of the data for the vehicle in our dataset have similar
trends. When capturing the data, most of the vehicle are doing similar driving movement:
1. Accelerating speed 2.Uniform speed 3. Decelerating speed. When using global nor-
malization data processing approach, it can contains the global information which can be
beneficial for models to learn the global knowledges. In addition, as discussed in the Chap-
ter[2] AR model has a combination of the linear computation, which means the AR model
has the ability to use linear regression function for learning similar trends for the data.

Figure [5.5] and [5.6] show the simulation visualization when using MATLAB. Unfor-
tunately, due to the incompatibility between the MATLAB and the Pytoch platform, we
cannot successfully import the GRU model to run the simulation test. For each figure,
there are three sub-figures. The first sub-figure represents the computational time for each
model to generate the output. The second sub-figure visualizes the ADE evaluation result
during the whole simulation time interval. The third sub-figure presents the FDE evalua-
tion result during the whole simulation time interval. For all of these three sub-figures, the
x-axis represents the iteration of the vehicle. An iteration represents 0.1 second simulation.
Therefore, if there are 300 iterations in one simulation situation, the total simulation time
for that simulation situation will be 30 seconds. For the second sub-figure and third sub-
figure, the y-axis represents the ADE and FDE value. Because the unit of ADE and FDE
is distance, we use distance as the unit at y-axis.

According to the experiment data from Table to Table we can see that the
velocity results, in overall, do not have a better result. Therefore, in this section, we will
not run the simulation situation for the model that generates velocity output.
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5.3. Experiment results on the whole test dataset

Simulation situation Models ADE FDE
AR (batchNorm) 1.76 4.01

AR (globalNorm) 1.18 2.72

Situation 1 LSTM (batchNorm) 1.77 4.02
LSTM (globalNorm) 1.77 4.02

DSANet (batchNorm) 1.73 3.75

DSANet (globalNorm) 1.69 3.95

Physics-based model 1.43 3.22

AR (batchNorm) 2.37 5.81

AR (globalNorm) 1.67 4.54

Situation 2 LSTM (batchNorm) 2.38 5.82
LSTM (globalNorm) 2.36 5.78

DSANet (batchNorm) 2.28 5.35

DSANet (globalNorm) 2.35 5.80

Physics-based model 1.92 4.83

AR (batchNorm) 1.81 4.24

AR (globalNorm) 1.57 3.88

Situation 3 LSTM (batchNorm) 1.81 4.25
LSTM (globalNorm) 1.82 4.27

DSANet (batchNorm) 1.81 4.09

DSANet (globalNorm) 1.81 4.24

Physics-based model 1.58 3.73

AR (batchNorm) 2.01 4.96

AR (globalNorm) 1.41 3.54

Situation 4 LSTM (batchNorm) 2.01 4.97
LSTM (globalNorm) 1.99 4.88

DSANet (batchNorm) 1.91 4.76

DSANet (globalNorm) 1.98 4.96

Physics-based model 1.91 5.05

Table 5.9: ADE and FDE results of MATLAB entire simulation for all four driving situa-
tions for models generating acceleration series output
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(c) Situation 3 (d) Situation 4

Figure 5.5: Entire simulation result on MATLAB simulation framework for all four driv-
ing situations with the machine learning models using batch normalization approach and
generating acceleration output

(c) Situation 3 (d) Situation 4

Figure 5.6: Entire simulation result on MATLAB simulation framework for all four driv-
ing situations with the machine learning models using global normalization approach and
generating acceleration output
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Chapter 6

Conclusion and future work

This chapter gives the overall conclusion related to the thesis based on the experimental
results in Chapter[5] Besides that, the future improvements for the thesis work will also be
discussed the this chapter.

6.1 Conclusion

In this thesis, we used a data-driven modeling approach to capture the complexity of au-
tonomous driving tasks. Our experiments show that machine learning models can indeed
learn driving patterns from the dataset and use that knowledge to create an autonomous
driving model, which means that machine learning models are capable to capture the com-
plexity of autonomous driving tasks.

From the experiment results in Chapter [5] we can see that, overall, AR models have
the best prediction performance when using the global normalization data processing ap-
proach. AR has a best generalization ability in all four driving situations and can slightly
be improved compared with the Physics-based baseline model. According to Table the
AR model has the best ADE and FDE result in simulation 1, simulation 2, and simulation
4 where it has the following ADE values in the four simulation situations: 1.18, 1.67, 1.57,
1.41. Although the AR model does not have the best FDE result in the third simulation
situation, it does not cause a significant decrease compared with the value in the physics-
based model. Although DSANet also has a good ADE and FDE score when testing on one
driving situation, from the prediction visualization result in Figure [5.1](g) and (h), we can
see the prediction curve of DSANet contains a lot of noise. Although we have 800,000 data
points overall, most of the data has a similar trend. Therefore, a possible reason behind this
phenomenon is the over-fitting issue when training the DSANet model.

Although machine learning models have several advantages compared with the tradi-
tional physics-based model, neural network based models also have limitations. In many
cases, when the models are not performing very well, it is very hard to identify the causes
of this limited performance because neural network based models are considered as a black
box. In addition, the computational time of the machine learning model still needs to be
considered. From Figure[5.5)and Figure[5.6] although the AR model has a good prediction
performance, overall, its time latency is the highest compared with all the other models.
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Simulation Situation Models ADE FDE
Situation 1 AR (globalNorm) 1.18 2.72

. Physics-based model 1.43 3.22

o AR (globalNorm) 1.67 4.54
Situation 2 Physics-based model 1.92 4.83

. . AR (globalNorm) 1.57 3.88
Situation 3 Physics-based model 158 3.73
o AR (globalNorm) 1.41 3.54
Situation 4 Physics-based model 1.91 5.05

Table 6.1: ADE and FDE results comparison between AR and physics-based model for all
four driving situations

6.2 Future work

Motion prediction and decision-making control techniques require high accuracy to en-
sure the safety of the autonomous driving vehicle. However, the results of machine learning
models are only accurate in the context of the data used to train the model, which means that
the decisions taken by the model may sometimes not be fit to the actual situation or the cur-
rent road environment. An alternative approach is to use reinforcement learning models to
learn the data in an interactive way. The reason is that autonomous driving vehicles require
to actively capture surrounding data and interact with the road and other road participants
and make decision in real-time [|16]]. The reinforcement learning model could learn the data
from the current driving environment and make predictions according to the current state
of the road environment, which makes the prediction output more accurate with respect to
the current driving environment and improve the prediction accuracy to some extent. In the
future, it is recommended to conduct the experiment for the reinforcement learning model
using the same dataset and compare the results with other models used in this thesis.

What is more, the current machine learning models require to be generalized to more
driving scenarios, which would result in improving the robustness of the model further.
Since we down-sampled the data when the autonomous vehicle is decelerating, the current
dataset only contains the data when the vehicle does not have pedestrian or intersection
ahead. Therefore, it is recommended to investigate whether the model performance and
the generalization ability could be further improved by adding the deceleration data into
the current dataset.
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