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Combining the Thick Level Set method with plasticity
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Abstract

The Thick Level Set (TLS) method has been proposed as a new approach
to the modeling of damage growth in solids. The fronts of damaged zones
are implicitly represented as a level set of an auxiliary field whose evolu-
tion is accomplished by the level set method. The TLS model contains a
characteristic length to obtain a non-local description that prevents spuri-
ous localization in the strain field. The update of the damage is indirectly
performed by integrating local values of energy release rate over this char-
acteristic length. This model offers an automatic transition from damage
to fracture, and deals with merging and branching cracks as well as crack
initiation in an easy and robust manner. In this paper, the TLS is applied to
simulate the formation of cusps in a polymer matrix loaded in shear. Realis-
tic simulation of this process requires the damage model to be combined with
plasticity in order to capture the behavior of the material prior to failure.
To accommodate for plasticity, several changes to the TLS framework are
introduced. A strength-based criterion for initiation of damage based on the
ultimate yield surface of such plasticity model is proposed. A mapping oper-
ator for transferring history is included if the integration scheme in element
changes. Furthermore, a new loading scheme is devised that does not rely
on secant unloading. Numerical experiments demonstrate the accuracy and
effectiveness of the proposed model to handle simulation of crack growth in
a medium with hardening plasticity.
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1. Introduction

The Thick Level Set (TLS) method to model damage in solids was origi-
nally proposed by Moës et al. [1, 2]. In the TLS, the location of the front of
a damaged zone is implicitly represented as the zero level set of an auxiliary
field and its evolution is handled with the level set method [3, 4]. Unlike
conventional continuum damage models, in which the damage variable is a
direct function of the local strain field, the TLS considers a band of damage
with a predefined characteristic length where the damage variable depends
on the level set value whose evolution is dictated by the non-local strain field.
Macro-cracks, i.e. regions with damage equal to one, appear as a consequence
of the front evolution. As the damage evolution is separated from compu-
tation of displacement [2, 5], the TLS is a robust method which can handle
multiple branching and merging cracks without convergence problems.

Since the first paper on the TLS [1], improvements on its implementation
have been proposed [2, 6] and more recently an extension was presented,
where the main idea is to couple cohesive zone models with the TLS to
capture crack opening [7]. In other publications, the TLS has been compared
with alternative approaches, such as phase-field [8] and cohesive zone [9]
models.

One application where the robustness of the TLS is particularly relevant is
the simulation of cusp formation, which involves many merging cracks. Cusp
formation is a process that accompanies mode II delamination crack growth
and it is understood to be one of the causes of the difference in fracture energy
between mode I and mode II crack growth [10, 11, 12]. This process starts
with an array of inclined cracks which are perpendicular to the direction
of maximum principal stress. As these cracks evolve, S-shaped cracks are
formed, which eventually merge, leading to a single crack on a higher level
of observation. Appropriate theoretical and computational tools that can
predict this process on the microscale may lead to a better understanding
of the mechanisms behind the observed variability in fracture energy, which
may in turn allow for devising physics-based criteria [10, 11].

When loaded in shear, polymers behave plastically prior to failure. There-
fore, plasticity cannot be ignored in simulation of cusp formation. However,
adding plasticity to the TLS is not a straightforward task, because the cur-
rent solution procedure [2, 5] depends on the assumption of secant unloading
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behavior.
This work seeks to simulate the cusp formation process more realistically.

For this purpose, the TLS method in the version by Van der Meer and Sluys
[5] is extended with a plasticity formulation. To represent the plastic behavior
of polymers, the pressure-dependent plasticity model by Melro et al. [13] is
implemented in the TLS framework. A plasticity-related criterion for damage
initiation is introduced and a new loading scheme is devised that does not
rely on secant unloading.

The paper is structured as follows. Section 2 is devoted to the formulation
of the proposed model, presenting the plasticity model, recalling some fun-
damentals of the TLS damage model and detailing the main features added
to the framework from Van der Meer et al. [5]. Several numerical examples
including plasticity are presented in Section 3 and used to assess the accuracy
of the proposed model to deal with cusp formation. Finally, conclusions are
presented in Section 4.

2. Model formulation

2.1. Separation between damage and plasticity

In this section, the main features of the proposed model are outlined.
The quasi-static problems that are assessed in this work are based on the
framework of small displacements and additive decomposition of the total
strain ε into an elastic (or reversible) part εe and a plastic (or permanent)
part εp:

ε = εe + εp (1)

The equilibrium equation and the relation between the total strain ε and the
displacement field u in a body Ω without body force read, respectively:

∇ · σ = 0 and ε =
1

2

(
∇u +∇uT

)
(2)

in which σ is the stress tensor.
The starting point of the proposed model is a separation between damage

and plasticity. The free energy is defined under the hypothesis of decoupling
between elasticity-damage and plasticity and it is assumed that plasticity
only evolves in the intact material and not in regions where the damage is
activated. Thus, the specific free energy ψ is assumed to be split up into
elastic-damage ψed and plastic ψp contributions according to:
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ψ(εe, d, εp
eq) = ψed(εe, d) + ψp(εp

eq) (3)

where εp
eq and d are the internal variables, signifying the equivalent plastic

strain and the damage, respectively.
For instance, assuming an elastic-damage potential that accounts for

isotropic stiffness degradation gives:

ψed(εe, d) =
1

2
(1− d) εe : De : εe (4)

where De is the elasticity tensor from Hooke’s law. The stress-strain relation
is obtained by differentiating the potential as:

σ =
∂ψed

∂εe
= (1− d) De : εe (5)

The local energy release rate Y is defined as:

Y = −∂ψ
ed

∂d
=

1

2
εe : De : εe (6)

Along with the loading/unloading conditions in Kuhn-Tucker form for time-
independent models, Y is used to described the the damage evolution:

(Y − Yc) ≤ 0, ḋ ≥ 0, ḋ(Y − Yc) = 0 (7)

in which Yc is the material resistance to damage growth.
Using the effective stress concept, Eq. (5) can alternatively be expressed

as:

σ = (1− d) σ̂ (8)

where σ̂ is the effective stress defined as:

σ̂ = De : εe = De : (ε− εp) (9)

In order to guarantee the admissibility of stresses, the yield criterion
f(σ̂, εp

eq) ≤ 0 must be satisfied. The plastic strain rate is written as the
product of the plastic multiplier γ̇ and the direction of plastic flow n [14]:

ε̇p = γ̇ n (10)
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The evolution of plastic multiplier γ̇ is such that the Kuhn-Tucker conditions
are satisfied:

f ≤ 0, γ̇ ≥ 0, γ̇f = 0 (11)

The plasticity model is completed with an evolution law for the equivalent
plastic strain, which is defined as a function of the equivalent plastic strain
rate ε̇p

eq.
By design of the TLS, uncoupling damage from plasticity in terms of evo-

lution of the internal variables can be achieved in a straightforward manner,
since the level set field φ separates the domain Ω into an undamaged zone
and a damaged one. In this case, the evolution of plasticity can only occur
in zones where the level set function φ ≤ 0, whereas the TLS handles the
damage evolution law in the region with φ > 0 by taking the permanent
strain contribution into account via Eq. (9). Therefore, the damage front
decides where and when the plasticity is evaluated.

2.2. Plasticity model

In this section, the equations presented in Section 2.1 for a general plas-
ticity model are particularized to the pressure-dependent plasticity model for
polymers by Melro et al. [13] as adapted by Van der Meer [15]. The back-
ward Euler scheme is considered to discretize all rate quantities for plasticity.
Because plasticity is only updated where d = 0 and σ = σ̂, the hat symbol
on the effective stress tensor is dropped.

A paraboloidal yield surface is considered:

f(σ, εp
eq) = 6J2 + 2I1(σc − σt)− 2σcσt (12)

with
σc = σc(ε

p
eq) and σt = σt(ε

p
eq) (13)

where J2 is the second invariant of the deviatoric stress tensor, I1 is the first
invariant of the stress tensor, and σc and σt are the uniaxial compressive and
tensile yield stresses, respectively. The pressure dependency comes from the
term 2I1(σc − σt). For the case of σc = σt, the yield surface is equivalent to
the classic Von Mises criterion. Both σc and σt are defined as a function of
εp

eq to match measured hardening curves.
If the material is loaded at the yield stress, plastic flow takes place. Using

a non-associative flow rule, the plastic strain increment (cf. Eq. (10)) is given
by:
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∆εp = ∆γ

(
3S +

2

9
αI1I

)
(14)

where S is the deviatoric stress tensor, I is the identity matrix, and α is
the parameter that controls the plastic volumetric flow and depends on the
plastic Poisson’s ratio νp:

α =
9

2

1− 2νp
1 + νp

(15)

The increment of the equivalent plastic strain εp
eq is defined as:

∆εp
eq =

√
k∆εp : ∆εp (16)

in which k = 1/(1 + 2ν2
p).

In order to check for admissibility of stress state and determine the in-
crement of the plastic multiplier ∆γ such that the constraints in Eq. (11)
are satisfied, an iterative elastic predictor/return mapping algorithm is used.
Details on the return mapping algorithm and the consistent tangent matrix
can be found in [15].

2.3. Thick Level Set method

In the TLS, the front of one or more damaged zones is implicitly repre-
sented as the isocontour (or level set) of an auxiliary field and its evolution
is accomplished by the level set method [3, 4]. The advantage of the level
set method is that one can deal with geometric features (e.g. merging and
branching) involving surfaces or curves on a discretized domain, without hav-
ing to explicitly mesh boundaries of these objects. The location of the front
Γ0 is tracked as the zero level set (or iso-zero) of a single auxiliary field φ(x)
(see Fig. 1).

If φ is a smooth well-behaved function, the definition of φ on a discretized
domain at a given point x is determined by interpolating the values of φ from
nodes to x. A convenient choice for definition of φ is the signed distance
function [3, 4], which is mathematically equivalent to:

|∇φ| = 1 on Ω (17)

By definition, this choice for φ guarantees that the absolute value of φ at a
given point is the shortest distance to the front from that point.
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φ

x

y

Γ0 : φ = 0

x

y

Figure 1: The level set method: the front Γ0 is implicitly located as the zero level set of
φ.

2.3.1. Damage definition

As it has been mentioned, the level set φ = 0 separates the domain Ω into
an undamaged zone and a damaged one, and φ is known at every point. In
the TLS, the damage variable d is chosen to depend only on φ. As depicted
in Fig. 2, d is assumed to change from zero to one as φ goes from zero to the
critical length lc. Mathematically, the damage variable is expressed by:

d(φ) =


0, φ ≤ 0

q(φ), 0 < φ ≤ lc

1, φ > lc

(18)

where q is a function that has the properties of q(0) = 0, q(lc) = 1 and q′ ≥ 0.
An arc-tangent formula is used for q(φ):

q(φ) = c2 arctan

(
c1

(
φ

lc
− c3

))
+ c4 (19)

Following Bernard et al. [2] and Van der Meer and Sluys [5], all computations
are performed with c1 = 10 and c3 = 0.5, which lead to a point symmetric
profile as schematically represented in Fig. 2. The other constants c2 and c4

are determined to satisfy the conditions q(lc) = 1 and q(0) = 0, respectively:

c2 = (arctan (c1 (1− c3))− arctan (−c1c3))−1 (20)
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Undamaged zone

Fully degraded zone

Transition zone

Γc : φ = lc

Γ0 : φ = 0
lc

lc

lc

l

d

φ

1

0

Figure 2: The TLS makes use of a single level set function to describe multiple zones. As
illustrated on the right, the damage variable d is a function of level set φ.

c4 = −c2 arctan (−c1c3) (21)

The position of the macro-cracks is located in the zone at a distance
larger than lc behind the front where d = 1. This region is easily identified
due to the fact that φ is a distance function. To accommodate localized
deformations, the elements crossed by the iso-lc of the level set field need
some particular enrichment in order to introduce a discontinuity in strain
and provide strain-free localization at crack lips, as explained in [2].

2.3.2. Free energy: asymmetric behavior in tension/compression

The free energy expression in Eq. (4) leads to material laws that present
the same behavior in tension and compression, which can be applicable to
failure analysis in tension dominated cases. However, if the damaged zone
experiences compression, the energy release rate Y in Eq. (6) would still
be nonzero, which may result in unphysical compressive cracks. For simu-
lation of cases subjected to shear load conditions, this formulation leads to
unrealistic ’X-shaped’ cracks as reported by Van der Meer and Sluys [5].

Therefore, the free energy density expression from [2, 5] that accounts for
stiffness recovery under compression is used in this paper:

ψed(εe, d) = µ(1− αid)(εe
i )

2 +
λ

2
(1− αvd)tr(εe)2 (22)

where λ and µ are the Lamé’s elastic constants, εe
i the eigenvalues of the

elastic strain tensor, and the αi and αv parameters relate the activation of
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damage to the principal strain εe
i and the volumetric strain εv = tr(εe),

respectively. Each of these constants assumes the value of 1 or 0 depend-
ing on the sign of the associated strain quantity in such way that if one of
the principal strains or the volumetric strain becomes negative, the stiffness
degradation is canceled for the corresponding term:

αi =

{
1, εe

i > 0

0, εe
i < 0

and αv =

{
1, tr(εe) > 0

0, tr(εe) < 0
(23)

By the definitions in Eqs. (5) and (6), the stress-strain relation and the
driving force for damage growth can be rewritten as follows:

σi =
∂ψed

∂εe
= 2µ(1− αid)εe

i + λ(1− αvd)tr(εe) (24)

and

Y = −∂ψ
ed

∂d
= −µαi(εe

i )
2 − λ

2
αvtr(ε

e)2 (25)

One can observe, the damage has no effect on the material in compression:
the undamaged stiffness is recovered and Y becomes zero, which means dam-
age does not grow.

2.3.3. Non-local evolution law

In the TLS approach, the non-locality is evident when the front moves
[2]. Because the updating of the signed distance function, all points sharing
the same curvilinear coordinate s1 are affected as the front at (0, s) moves
(see Fig. 3). Therefore, the amount of energy per unit length that will be
dissipated as the front moves a unit distance reads:

g(s) =

∫ l

0

d′(φ)Y (φ, s)

(
1− φ

ρ(s)

)
dφ (26)

where d′(φ) = q′(φ) is the spatial derivative of damage with respect to φ, l
is the size of the damaged zone l ∈ (0, lc] (see Fig. 2) and ρ is the curvature
of iso-zero.

1A curvilinear system of coordinates (φ, s) using the change of variable dΩ =(
1− φ

ρ(s)

)
dφds is introduced for derivation, following Moës et al. [1]. In the imple-

mentation, the curvilinear coordinate system does not need to be defined.
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δφ(s)

A

s

P

φ

Γ0

Γc

Figure 3: Curvilinear coordinate system (φ, s). Point P is affected as point A on the front
experiences a front advance.

Now, the loading/unloading condition in Eq. (7) can be rewritten in terms
of non-local energy release rate g(s) and gc(s). However, for nucleation, that
is, in the limit case that l tends to 0, g(s) vanishes. Hence, in order to be
able to capture nucleation and smaller damaged zones, the averaged value of
Y across the damaged band is introduced as proposed by Bernard et al. [2].
For any position along the front, the averaged value Ȳ is defined as the value
that satisfies:

∫ l

0

d′(φ)Y (φ, s)

(
1− φ

ρ(s)

)
dφ =

∫ l

0

d′(φ)Ȳ (s)

(
1− φ

ρ(s)

)
dφ (27)

The averaged configuration force Ȳ , which tends to Y as l tends to zero, is
thus a weighted average of Y . Finally, the front velocity vn is defined as a
function of Ȳ and Ȳc, the weighted average of Yc (see Subsection 2.3.4).

In order to compute the averaged configurational force along the front
and avoid direct computation of the term depending on the curvature ρ, Eq.
(27) is discretized as a field on the damaged domain Ωd with Ȳ as unknown.
Following Bernard et al. [2], the constraint that Ȳ must be constant along the
level set gradient, i.e. ∇Ȳ · ∇φ = 0, is enforced with Lagrange multipliers. A
discretized approximation of Ȳ is introduced in combination with Galerkin’s
method leading to the following system of equations:[

K L
L 0

]{
Ȳ
l

}
=

{
fY

0

}
(28)
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in which Ȳ and l are vectors with Ȳ and Lagrange multiplier degrees of free-
dom, respectively. The matrices and the right-hand side vector are defined
as:

Kij =

∫
Ωd

d′NiNj +
κh2

lc

∂Ni

∂xk

∂Nj

∂xk
dΩ (29)

Lij =

∫
Ωd

lc

(
∂Ni

∂xk

∂φ

∂xk

)(
∂Nj

∂xk

∂φ

∂xk

)
dΩ (30)

fY
i =

∫
Ωd

Nid
′Y dΩ (31)

where Ni and Nj are the shape functions associated with nodes i and j, κ is
a stabilization parameter, h is the characteristic size of the smallest element,
and Y is the configurational force which depends on the current elastic strain
field evaluated through Eq. (25). If the damage resistance Yc is not constant
over the domain, a similar system of equations, with a different right hand
side where Yc is used instead of Y , is solved to compute Ȳc.

2.3.4. Front movement

To update the damage distribution, the advance of the level set field
should be related to the configurational force Ȳ and material resistance
against damage growth Ȳc. The change in the level set field is related to
the normal velocity of the front as:

∂φ

∂t
+ vn|∇φ| = 0 (32)

In absence of physical time in quasi-static simulations, the TLS does not
directly work with velocities but with a front increment. In this case, vn∆t
is regarded as the front increment. Using forward Euler time discretization
and the property of |∇φ| = 1, the update of the level set field is performed
as:

φ← φ+ vn∆t (33)

where ∆t is the time increment size.
In the previous version of the TLS [1, 2, 5], the loading scheme was based

on a unit load analysis in each time step, computing a critical load scale
factor under the assumption of secant unloading. This loading scheme is not
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applicable when permanent strain due to plasticity is considered. Therefore,
the framework of TLS must be adapted. Here, the following relation for the
normal velocity is used, given by [16, 17]:

vn =
1

η

〈
Ȳ

Ȳc
− 1

〉
+

(34)

where η is a parameter that can be interpreted as viscous resistance against
crack growth. In the limit of η → 0, the Kuhn-Tucker conditions for quasi-
static crack growth with Ȳ − Ȳc ≤ 0 are approached. Brackets are used
to denote the positivity condition, which reflects the irreversibility of crack
growth.

In order to ensure stability of the explicit level set update, the Courant-
Friedrichs-Lewy condition is applied [4]:

∆t <
h

max{vn}
(35)

where h is the characteristic size of the smallest element and max{vn} is the
largest value of vn over the entire domain. Here, this conditions is rewritten
in a more conservative form according to [4, 16]:

∆t = min

{
∆t0, αn

h

max{vn}

}
(36)

in which ∆t0 is the default and maximum time increment and αn is a constant
defined as 0 < αn < 1.

The level set update with Eq. (33) requires the velocity to be known
throughout the domain. However, Eq. (34) is only calculated along the
front. The velocity computed at the nodes of elements that contain the front
is propagated through the domain by solving:

∇φ · ∇vn = 0 (37)

This is done with a fast marching method [3, 4, 16]. When the level set field
φn in the previous time step n, which is a signed distance function, moves
vn∆t units forward in the normal direction, the updated level set field φn+1

obtained by Eq. (33) remains a signed distance function. This arises from
the fact that the gradient of Eq. (33) leads to ∇φn+1 = ∇φn, since vn∆t is
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spatially constant in φ direction, i.e. ∇φ(vn∆t) = 0. Thus, if φn is initially
a signed distance function, it will stay a signed distance function [3, 4].

However, in the discretized model, the level set field may drift away
from being an accurate representation of signed distance. Thus, another
fast marching method needs to be applied periodically in order to keep φ as
signed distance function [16]. Since it is a relatively cheap procedure, this
reinitialization is performed every time step.

2.3.5. Initiation

To deal with damage activation for the proposed model, the criterion
Y ≥ Yc must be satisfied at undamaged point. Note that this criterion is
purely local, which is consistent with Eq. (27), since Ȳ and Ȳc tend to Y
and Yc as l tends to zero. When this criterion is met at any point, a circle
with radius φ0 < lc is inserted around that point and the signed distance
function is reinitialized accordingly. The size of this nucleus from then on
increases according to the same framework as introduced in Subsections 2.3.3
and 2.3.4.

Following the proposed model in [5], the resistance Yc is made into a
function of the size of the damaged zone in order to handle initiation and
propagation with separate material parameters. In this approach, Yc changes
from an initial strength-based value for initiation Y 0

c to a fracture energy-
based value for crack growth Y G

c , as the size of the damaged zone changes
from zero to a circle with radius lc. The intermediate values of Yc are inter-
polated between the two bounds in the space of log(Yc):

log(Yc) = log(Y 0
c ) +

φ̄

φ̄max

(
log(Y G

c )− log(Y 0
c )
)

(38)

where φ̄ is a measure for the size of a damaged zone over a closed dam-
aged subdomain defined as the average of φ over the subdomain and φ̄max

represents the size for which the damaged zone is considered a crack. In
Fig. 4, three stages are schematically sketched as φ̄ varies from φ̄ = 0, for a
very small circle with radius φ0, to φ̄ = φ̄max, for a circle with radius lc, to
φ̄ = lc/2, for a long straight damaged zone with width 2lc.

The averaged value φ̄ is computed in each time step in a similar way
as Ȳ in Eq. (28) by substituting level set values φ and unknowns φ̄ for Y
and Ȳ , respectively, and omitting the weight factor d′ from left-hand side
matrix and right-hand side vector. Variation of φ̄ in the normal direction is
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log(Yc)

log(Y G
c )

log(Y 0
c )

φ̄max lc/2

φ̄

Figure 4: Interpolation of Yc between Y 0
c and Y Gc (adapted from [5]).

again eliminated with Lagrange multipliers, while variation in the curvilinear
direction is eliminated by considering a high value for κ [5].

In contrast to what was proposed in [5], in which Y 0
c was set to a constant

value equal to the free energy in the case where the uniaxial stress equals the
tensile strength, Y 0

c is here bounded by the following surface based on Eq.
(12):

f 0 =
3Ĵ2

fcft
+
Î1 (fc − ft)

fcft
− 1 = 0 (39)

with fc and ft being the compressive and the tensile strengths which are set
equal to the ultimate yield stress values of the material. The two invariants Ĵ2

and Î1 are determined using the effective stress. The motivation to use such
surface for Y 0

c comes from the fact that Y 0
c as a function of a single parameter

ft may prohibit initiation for certain stress states when a plasticity model
with perfectly plastic tail is used. For the particular case where a uniaxial
tensile strength equals ft, a constant Y 0

c would be defined as (see Eq. (25)):

Y 0
c (ft) =

f 2
t

2E

(
1 + 2ν − 2ν2

1 + ν

)
(40)

where E is the Young’s modulus and ν is the Poisson’s ratio. Note that the
term depending on ν in the expression above is a correction factor which was
missing in the previous TLS model (cf. [5], where Y 0

c = f 2
t /2E). This factor

is needed because under uniaxial tension not all α’s in Eq. (22) evaluate to
1.

Fig. 5 illustrates the problem of using the constant Y 0
c (ft) from Eq.

(40) as initiation criterion in presence of plasticity with a given ultimate
yield surface f 0 that bounds the admissible stress states. It can be observed
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that, if the ultimate uniaxial tensile yield stress is used for ft in Y 0
c (ft), no

initiation under pure shear is possible. The damage cannot be activated since
the plasticity bounds the stress states.

Pure shear

f0

Y = Y 0
c (ft)

σ1

σ2

Figure 5: Envelopes in principal stress space illustrating the inability of the criterion
Y = Y 0

c (ft), related to the single parameter ft, to deal with damage initiation under pure
shear.

This illustrates that, in presence of plasticity, more control is needed over
the initiation envelope. Here, a relation is devised between Y 0

c and the stress
orientation so that the failure envelope coincides with the final yield surface
given by f 0. The relation for Y 0

c is for 2D plane stress state derived as a
function of the angle θ, defined in principal stress space as θ = arctan(σ2/σ1).
The idea is that for a given stress vector σ(σ1,σ2), Y 0

c is given as Y 0
c (σ0

c ), with
the critical stress vector σ0

c (σ
0
c1, σ

0
c2) on f 0 obtained by scaling σ through:

σ0
c =

r

|σ|
σ (41)

where r corresponds to the norm |σ0
c |, as illustrated in Fig. 6. To evaluate

r as a function of σ, the length of the ’radius’ r is parametrically written as
an ellipse with a single parameter θ.

The parametric equation for r as a standard form of an ellipse can be
deduced from the fact that Eq. (39) under plane stress assumption can be
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Figure 6: Definition of the length of r (left) and resulting Y 0
c as a function of θ.

rewritten in principal stress space as:

f 0 = Aσ2
1 +Bσ1σ2 + Cσ2

2 +Dσ1 + Eσ2 + F = 0 (42)

with A = C = 1
fcft

, B = − 1
fcft

, D = E = (fc−ft)
fcft

and F = −1. The

discriminant of the equation above, which is defined as ∆ = B2 − 4AC, is
always negative, which implies that Eq. (42) represents an ellipse [18, 19].
In this case, Eq. (42) can be written as the standard expression for an ellipse
centered at (xc,yc) and rotated through an angle β (see Fig. 6):

x2

a2
+
y2

b2
= 1 (43)

where

x = (σ1 − xc) cos β + (σ2 − yc) sin β

y = − (σ1 − xc) sin β + (σ2 − yc) cos β
(44)

in which xc, yc, β, and the axes of the ellipse a and b are expressed as a
function of the constants A, B, C, D, E and F [18, 19]. For this particular
case, one can show that β = 45◦ and xc = yc = D/B. Substitution of the
relations σ1 = r cos θ and σ2 = r sin θ into Eq. (44) and Eq. (43) leads to a
quadratic equation, which is solved for r, where the positive root is chosen.
Note that such approach can also directly be performed in principal strain
space by expressing Ĵ2 and Î1 as a function of principal strains and Lamé’s
elastic constants which could allow for generalization to 3D.
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The remaining parameter Y G
c is computed from the fracture energy Gc

and lc by considering the following relation [2]:

Gc = 2AY G
c lc (45)

with A the area under the curve d. For the point symmetric damage profile,
A = 0.5.

2.4. Mapping operators

In the TLS, integration points, from one load increment to another, are
dynamically allocated for elements that are cut by iso-0 and iso-lc, in order to
improve the accuracy of numerical integration. This is not an issue for elastic
materials if one uses a total stress-strain formulation. On the other hand,
in the case of crack propagation in elastic-plastic materials, history terms
influence the local response. These history terms are stored at integration
points. When the integration scheme changes, transfer of history terms from
’old’ to ’new’ integration points is needed. In this study, the inverse distance
weighted interpolation [20] and the superconvergent patch recovery (SPR)
[21, 22, 23] techniques for transferring plasticity terms between old and new
integration schemes are compared. For the elasto-plastic model, the plastic
strain tensor εp and the equivalent plastic strain εp

eq are the history variables
that need to be transferred.

2.4.1. Inverse distance weighted interpolation

Let sold
i be an old history term at an old integration point i. With inverse

distance-based interpolation, the new history term snew
j at a new integration

point j is given by:

snew
j =

∑nold

i=1 s
old
i (1/lij)∑nold

i=1 (1/lij)
(46)

where nold is the number of old integration points in an element and lij is
the distance between an old integration point i and a new integration point
j inside the same element (see Fig. 7). If a new integration point coincides
with an old one, the old history is kept.

2.4.2. Superconvergent patch recovery

The SPR technique is carried out in two steps. Firstly, a history term sNk
at a node k within an element patch (see Fig. 8) is estimated by:
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Figure 7: Inverse distance weighted interpolation: sub-triangulation.

sNk = Pa (47)

where P contains the appropriate terms of a complete polynomial expansion
of order p and a is a set of unknown coefficients. For two dimensions and
quadratic expansion, for instance:

P(x, y) =
[
1 x y x2 xy y2

]
(48)

and
a =

[
a1 a2 a3 a4 a5 a6

]T
(49)

The coefficients in a are determined via the least square method fitting from
the integration points within the element patch, which results in:

a = A−1b (50)

where

A =

np∑
i=1

P(xi, yi)
TP(xi, yi) (51)

and

b =

np∑
i=1

P(xi, yi)
Tsold

i (52)

with np and (xi, yi) being the total number and coordinates of integration
points in the element patch, respectively. Secondly, the new history terms
at a new integration point j are obtained by shape function interpolation,
which has the same order p as P:
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snew
j = NsN (53)

It must be emphasized that Eq. (50) is evaluated for each history term using
the same matrix solution. Besides, only a single evaluation of A is necessary
per patch. Once a is determined, the recovery nodal values sN are simply
computed by inserting the appropriate coordinates into Eq. (47). In Fig.
8, for instance, the nodes for linear and quadratic triangular elements that
are considered for recovery are shown. For internal element nodes (p ≥ 2),
which cannot be an assembly node, the history terms will be considered from
several patches and they are therefore averaged as suggested in [21, 22, 23].
For nodes at boundaries and nodes that give rise to a patch with a single
element, such nodes cannot be an assembly node and they are recovered as
an internal element node [21, 22].

node sN
k

int. points

assembly node

3 node elements 6 node elements

Figure 8: Triangular element patches for linear and quadratic finite elements: • nodal
values determined by recovery procedure (Eq. (47)).

2.4.3. Verification: 1D problem

A 1D model is developed (see Fig. 9) to assess the performance of both
operators for plasticity quantities and answer the question which the most
suitable for the TLS with a moving front and frozen history behind the front.
In this simulation, a uniform mesh of linear truss elements with two nodes,
uniform cross-section area and two integration point are used. When an el-
ement is cut by the front, two more integration points are added to that
element. An elementary constitutive model for linear isotropic hardening
plasticity is used as presented in [24] and shown in Fig. 9. The expres-
sions needed to implement the elastic predictor/return mapping algorithm
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and tangent modulus D for this model can also be found in a closed-form
analytical manner in [24].

The bar is constantly loaded with rate u̇0 = ∆u0/∆t0 = 0.01 mm s−1.
Young’s modulus, hardening modulus, length and cross-section area are, re-
spectively, E = 200 GPa, K = 5 GPa, L = 1.5 m and A = 100 mm2. When
the uniaxial stress reaches immediately around the yield stress σy = 250 MPa,
the front l starts to move from left to right side. From this stress level, the
front moves continuously with a constant velocity vn = 0.02 mm s−1 from
l = 0.55 m to l = 1 m. In line with the proposed TLS framework, the plas-
ticity is not allowed to increase behind the front.

φ = l − x

l

u̇ σ

σy

E
E

D = EK
E+K

L ε

φinteg. points

Figure 9: 1D problem for assessing the performance of mapping operators. The level set
value φ at coordinate x is related to the position of the front l.

A reference response is also computed with a mesh of 500 elements. For
this response, each finite element has 100 integration points and the inte-
gration scheme does not change. In Fig. 10, a comparison between results
obtained with the two operators and the reference response is shown in terms
of a load-displacement curve, obtained with a mesh with three elements for
both operators, along with a convergence study. For the convergence study,
the areas under load-displacement graphs are used and their relative differ-
ences are computed between the two operators and the reference response.
It is clear particularly for coarse meshes that the SPR technique performs
better than inverse distance-based interpolation as reported in both graphs
in Fig. 10. Therefore, for sake of robustness and accuracy, the SPR technique
is used for all the numerical examples presented in this paper.
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Figure 10: Typical load-displacement graph and convergence study for 1D problem.

2.5. Algorithm

In Box 1, the global algorithm solution, where the problem is solved in
a staggered fashion [2, 5], is schematically summarized. Every time step
consists of three main parts. Firstly, damage initiation is evaluated, φ is
reinitialized in order to guarantee the properties of a signed distance func-
tion and φ̄ is computed. Secondly, with a given damage distribution, the
displacements, and consequently strains and stresses are computed accord-
ing to a standard finite element analysis for elasto-plastic constitutive models
in conjunction with the concept of effective stress. The plastic state is only
updated for integration points in undamaged zones. Finally, the displace-
ments, permanent strains and φ̄ are used to compute the configurational
force Ȳ and the material resistance Ȳc. In this part, the velocities are first
computed at nodes of elements that contain the front and subsequently ex-
tended by a fast marching method. Before going to the next time step, the
time increment size is adjusted based on the stability condition if necessary.

The update of prescribed displacement for the following time step is per-
formed according to the same adaptive time step size:

u← u+ ∆u0 ∆t

∆t0
(54)

This allows to capture sharp load drops. If Ȳ becomes very high, ∆t will
become very small, which results in a restraint on the increase in prescribed
displacement during unstable damage growth.
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For each time step:

1. Damage distribution:

(a) Add new front φ0 for nucleation if Y ≥ Yc is met
(b) Reinitialize φ on the whole domain with fast marching method (op-

tionally only every n steps)
(c) Assemble and solve linear system similar to Eq. (28) for φ̄

2. Finite element analysis:

(a) Update of prescribed displacements (Eq. (54))
(b) Compute displacements, strains and stresses. Plastic state is only eval-

uated for integration points in undamaged zone

3. Grow fronts:

(a) Compute configurational force Ȳ and material resistance Ȳc (Eqs. (28)
and (38))

(b) For nodes on fronts, compute normal velocity vn (Eq. (34))
(c) Extend normal velocity over the entire domain: solving ∇φ · ∇vn = 0

(Eq. (37)) with fast marching method
(d) Adjust new time increment size ∆t (Eq. (36))
(e) Update level set field: φ← φ+ vn∆t (Eq. (33))

Box 1: Global algorithm for single time step.

3. Results and discussion

The numerical examples in this section are performed with κ = 1 for
Ȳ (Eq. (28)) and κ = 1 · 104 for φ̄. For nucleation, the size of a new
damage nucleus is set to φ0 = 0.1lc. Furthermore, the constant αn in Eq.
(36) is set to αn = 0.5, φ̄max = lc/3 [5] and the default displacement rate is
u̇0 = ∆u0/∆t0 = 0.005 mm s−1. The obtained results are quantitatively and
qualitatively compared with those available in the literature. Unstructured
meshes of triangles generated with Gmsh [25] are used.

3.1. V-notched bar

In this section, the plane strain response of a V-notched specimen in
tension is investigated. The aim of this example is to demonstrate the ability
of the proposed model to deal with ductile fracture by means of comparisons
against experimental data by Li et al. [26] and numerical results by Miehe et
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al. [27]. Boundary conditions and geometry of the V-notched specimen are
demonstrated in Fig. 11. The model properties are listed in Table 1.

u̇10

14 R0.25 4

40

finer mesh

Figure 11: V-notched bar: boundary conditions and geometry and associated dimensions
(in mm).

Names Values

Young’s modulus (E) 68.9 GPa
Poisson’s ratio (ν) 0.33
Hardening law σy(ε

p
eq) = 700(0.03 + εp

eq)0.12 MPa
Ultimate stress (ft, fc) 600 MPa
Fracture energy (Gc) 18 N/mm
Plastic Poisson’s ratio (νp) 0.5

Table 1: Model parameters for V-notched bar (Al-6061) [26, 27, 28].

In this example, second order elements are used to avoid volumetric lock-
ing with the classic Von Mises model. However, linear elements are used for
the discretization of the level set field φ and the normal velocity vn because
it simplifies the fast marching algorithms.

The geometry of the problem leads to a non-uniform stress state near
to the notches. A region around the notches with refined mesh is defined
(see Fig. 11) where the effective element size h = 0.05 mm. The value of
h = 0.05 mm was determined by carrying out a convergence study in terms
of the peak load. In this simulation, the crack growth resistance parameter
and, critical length are, respectively, η = 25 s mm−1 and lc = 0.4 mm. The
value of η is determined as fitting parameter. The influence of lc and η on
the response ater choosing lc based on the model geometry and the mesh size
is addressed later.
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In Fig. 12, the load-displacement graphs from Li et al. [26], Miehe et al.
[27] and the TLS are drawn together. The results verify the accuracy of the
proposed model. The evolution of the damage front is illustrated in Fig. 13.

0 0.1 0.2 0.3 0.4 0.50

1

2

3

4

Displacement [mm]

Lo
ad

[k
N

]

Li et al. [26]
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Figure 12: Load-displacement graphs for V-notched bar.

(a) (b) (c) (d)

Figure 13: Evolution of the damage front on V-notched bar at different loading stages:
(a) ≈ 3.6 kN, (b) ≈ 3.5 kN, (c) ≈ 2.0 kN and (d) final failure.

To investigate the influence of lc on the global response, simulations have
been performed with different values of lc between 0.3 mm and 0.6 mm with
a fixed value of η = 25 s mm−1 and a fixed mesh. Load-displacement curves
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from these simulations are shown in Fig. 14. Unlike what was shown in [1, 2],
where the global response in terms of load-displacement curves and energy
dissipations did not change considerably when varying lc, for the TLS with
linear elastic materials in a quasi-static context, a delayed-failure response
for decreasing lc is observed in the presence of plasticity. This is due to the
fact that for small values of lc, the stress state around the crack tip is higher
than the stress state for larger values of lc, which in turn leads to more plastic
strain.
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Figure 14: Influence of lc on the global response. Increasing values of lc are indicated by
the arrow.

To illustrate the effect of the resistance parameter on the post-critical
range after damage initialization, the same simulation with lc = 0.4 mm is
repeated with values of η = 15 s mm−1, η = 20 s mm−1, η = 25 s mm−1 and
η = 30 s mm−1. The results are compared in terms of load-displacement
curves in Fig. 15. It can be observed that η influences the shape of the
post-critical response. As expected, delayed failure behavior is obtained by
increasing the value of η. The value of η = 25 s mm−1, which gave the good
fit in Fig. 12, is clearly in the regime where there is significant influence of η
on the response. This means that the actual fracture energy in the simulation
is rate-dependent and higher than the Gc from Table 1.
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Figure 15: Influence of η on peak response. Increasing values of η are indicated by the
arrow.

In order to assess the performance of both mapping operators in a more
realistic simulation, once again, a convergence study is carried out. In Fig.
16, the peak load obtained with inverse distance-based interpolation and
SPR technique are compared with the result obtained by a reference model
in which SPR and h = 0.015 mm are used. The same trend is observed
that has been presented for the 1D model, in which both operators converge
toward the same response with mesh refinement and that the results with
SPR are generally more accurate. It is also observed that the mesh with
h = 0.05 mm, which was used in Fig. 12, is suitable since the difference in
terms of peak load is negligible.

3.2. Rail shear test

This numerical example is inspired by rail shear test for mode II failure
following Van der Meer and Sluys [5]. The case consists of a sandwich with
stiff faces and a weak core (see Fig. 17). The faces are loaded in opposite
direction so that the core is sheared. This setup mimics the delamination
process in composites, where the stiff faces represent the plies or fibers and
the core represents the resin-rich region around the interface.

In addition, three different cross-sections are considered as depicted in
Fig. 18. These variations in cross-section are identical to those of the speci-
mens that have been tested by Rogers [10] to produce cusp-like features on
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Figure 16: V-notched bar: convergence study for the inverse distance-based operator in
terms of peak load.
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Figure 17: Rail shear test: boundary conditions and geometry and associated dimensions
(in mm).

Polyvinylchloride (PVC) foam material. The curvature and width of profiles
mimic respectively the influence of fibers radius and the inter-fiber spacing
in composites. In the 2D model, the geometry of the cross-section is modeled
by varying the model thickness as a function of position.

Young’s modulus, Poisson’s ratio and fracture energy of the core material
are, respectively, E = 3760 MPa, ν = 0.3 and Gc = 0.9 N/mm. For plasticity,
a plastic Poisson’s ratio of 0.39 is used and the fundamental hardening curves
are given in Fig. 19 [13, 15]. For the face material, the properties are
E = 200 GPa, ν = 0.3 and Gc = 9 N/mm. The typical element size h is
0.14 mm throughout the core and the critical length lc is equal to 0.6 mm.
The distance between a new damage circle and existing damage is set to be
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Figure 18: Rail shear test: cross-section profiles (dimensions in mm).

at least 3 mm [5]. The resistance parameter is η = 1 s mm−1. Linear elements
are used for the discretization of all fields.

When the crack reaches the interface between face and core, sliding de-
formations lead to one of the principal strains in this zone become negative,
in this case the asymmetric constitutive law (Eq. (22)) leads to stiffness re-
covery and stress transfer across the crack, which is undesired here. In order
to guarantee traction-free sliding deformation in this zone, the interphase
constitutive law introduced in [5] is applied (see Figs. 17 and 18). This con-
stitutive law makes use of a vector n normal to the interface and accounts
only for stiffness recovery on the strain component along this vector.

First, the difference in response between the proposed model and the
earlier TLS model without plasticity for this shear test setup is illustrated
by means of load-displacement curves in Fig. 20. Only the round cross-
section is considered in this comparison. The difference between the two
frameworks in the pre-peak behavior is caused by the added plasticity, while
the absence of oscillations in the post-peak behavior is related to the new
definition of velocity from Eq. (34).

The framework in [1, 2, 5] is based on a unit load analysis in each time
step, which assumes a secant unloading behavior, and allows able to capture
snap-backs. The oscillations that are observed in the post-peak response in
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Figure 19: Input hardening curves for plasticity model.

Fig. 20 are related to numerical noise in the maximum value for Ȳ that is
used to compute the load scale factor such that the scaled maximum value
for the configurational force is exactly equal to the material resistance Ȳc.
This algorithm based on a unit load analysis and a load scale factor is only
applicable to mechanical problems with proportional loading and secant un-
loading.

Introduction of plasticity in the mechanical problem requires that the
computation of displacements is performed at the actual load level. In this
sense, the criterion that the configurational force should not exceed the ma-
terial resistance at any point should be determined iteratively or relaxed by
introducing a viscous parameter between front velocity and configurational
force, as proposed in this paper, following [16]. The absence of oscillations is
a positive side-effect of this change in loading scheme.
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Figure 20: Load-displacement response for current and proposed TLS frameworks in the
rail shear test.

The evolution of damage and the equivalent plastic strain distributions
for the round cross-section are shown in Fig. 21. It can be observed that
damage initiation takes place around the onset of perfect plasticity, first with
a single damage spot near the left edge of the soft material and soon after
in a series of spaced damage nuclei. As the load increases, all damage nuclei
grow to a certain size, until enough energy is available to let a number of
inclined cracks grow from these nuclei as the load drops. It is interesting
to note that two of the damage spots do not evolve into an inclined crack,
which indicates that the numerical spacing does not completely govern the
final crack pattern. The same observation was also made in [5] for linear
elastic materials. Eventually, the load drops to zero as the inclined cracks
coalesce to form a single crack. It can be observed that much of the crack
growth takes place in the steep final drop of the load-displacement graph.
The adaptive time step according to Eq. (36) ensures that time increments
and consequently displacement increments are very small in this phase.
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Figure 21: Rail shear test: damage and equivalent plastic strain distributions for the round
configuration. The red bullets correspond to some time steps when the time increment
size was reduced. 31



Figures 22 and 23 show the load-displacement curves and final damage
distribution obtained with three different cross-sections. It is observed that
the change in profile shape has a considerable influence on the fracture mor-
phologies and equilibrium curves. For the round configuration, the number of
randomly spaced inclined cracks along the specimen length, which eventually
coalesced to form cusps, is larger than for the square and flat configurations.
Rogers [10] reported the same trend from experimental observations on PVC
foam specimens under similar shear loading conditions. The initial stiffness of
the flat specimen is higher than that of the round and square configurations,
because of the flexibility that is introduced by side grooving.

0 0.2 0.4 0.6 0.80

10

20

30

Displacement [mm]

Lo
ad

[k
N

]

Round
Square

Flat

Figure 22: Load-displacements curves for round, square and flat configurations.
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(a) Round
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Figure 23: Rail shear test: final crack distribution for (a) round, (b) square and (c) flat
configurations.

4. Conclusion

In this paper, the TLS method for non-local damage modeling has been
extended to include plasticity: the elasto-plastic constitutive model for epoxy
resin by Melro et al. [13] has been combined with the TLS damage formu-
lation, and a new loading scheme to take into account permanent strain has
been proposed.

In addition, due to plasticity that bounds stress states, a new criterion
for damage nucleation has been developed in order to relate crack initiation
under different stress states to a given failure surface. Since the change in the
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integration scheme for those elements that are cut by iso-0 and iso-lc curves,
the SPR technique was found to be accurate for transfer of history.

The influence of lc and η on the global response has been investigated
and found to be of similar nature. For a given value of lc, the optimal value
of η has been determined through fitting. In practice, the values from which
lc can be chosen is limited. An upper bound is given by the geometry of the
problem at hand, in which the width of the damage band has to be relatively
smaller than the geometrical dimensions of the problem. A lower bound for
lc relies on the computational cost, because elements have to be several times
smaller than lc.

The TLS was validated from a good agreement with experimental and
numerical results for ductile fracture in a V-notched bar in tension.

The proposed model was successfully applied to the simulation of shear
failure including cusp formation. By varying the profile geometry of the core,
different load-displacement graphs and fracture morphologies were produced.
Cusp development comparable to that in composites was more pronounced
in curved-profile configuration, which is in agreement with experimental ob-
servations.
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