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1

Chapter 1

Introduction

This thesis describes the development of a numerical method capable of modeling the
nonlinear propagation of ultrasound waves through a population of scatterers, con-
sidering various physical phenomena. It builds upon the existing Iterative Nonlinear
Contrast Soucre (INCS) method. [1,2] Based on a Neumann iterative scheme, the orig-
inal INCS method solves the Westervelt equation in a four-dimensional spatiotemporal
domain by iteratively updating the acoustic pressure with increasingly accurate field
corrections. The current extension of INCS accommodates scattering from large pop-
ulations of monodisperse contrast agents such as microbubbles (MBs), treating each
as an independent point scatterer. The scattering of these agents is obtained by solv-
ing the equation governing the oscillation of each MB. Physically, each iteration of
INCS adds an extra order of multiple scattering between the MBs. The method is
further extended to consider global medium and local nonlinearities, crucial in imag-
ing scenarios involving MBs. Subsequently, INCS is used to demonstrate the effect of
different wavefront shapes on the generation of nonlinear imaging artifacts below the
MB suspension, by reconstructing B-mode and contrast-enhanced images. Addition-
ally, the efficacy of monodisperse contrast agents is demonstrated in comparison to a
population of polydisperse scatterers. Lastly, the primary objective of this thesis is to
extend the INCS method by incorporating point emitters simulating proton sources.
These advancements combined hold promise for applications in diagnostic contrast-
enhanced ultrasound (CEUS) and therapeutic ultrasound. The long-term objective is
to devise personalized cancer treatment plans using contrast agents for unconventional
approaches like proton therapy.

1
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This introduction discusses the background and context of this thesis. In Section
1.1, we describe the history of medical ultrasound. The fundamentals of nonlinear
acoustics are discussed in Section 1.2 with a focus on contrast-enhanced ultrasound
imaging. An introduction to MBs, the most conventionally used contrast agents to
date, is discussed in Section 1.3. In Section 1.4, the usage of ultrasound for thera-
peutic applications is introduced. Next, we introduce the fundamental equations that
describe the nonlinear acoustic wave propagation and the applied numerical simula-
tion methods in Sec. 1.5 . Finally, an overview of the work presented in this thesis is
given in Section 1.6.

1.1 History of medical ultrasound

The history of medical ultrasound reflects a persistent pursuit of knowledge and inno-
vation in healthcare. Originating in the early 20th century, scientists explored sound
waves for diagnostic purposes [3]. In the 1920s and 1930s, ultrasound experiments laid
the foundation for a crucial diagnostic tool in modern medicine [4]. The breakthrough
moment arrived in the late 1940s with the development of conventional A-mode ul-
trasound machines [5]. This method involves transmitting an acoustic wave inside
the human body and receiving backscattered echoes along a line from structures with
different mass density and compressibility, such as tissue [6]. As technology advanced,
B-mode ultrasound emerged in the 1950s, employing these reflections to reconstruct
two-dimensional images of internal organs and revolutionizing noninvasive diagnos-
tics [7].

Echocardiography gained prominence in the second part of the 20th century, en-
abling detailed real-time visualization and assessment of the heart’s structure and
function [8]. Ultrasound technology continued to evolve, introducing color Doppler
in 1982 and 3D/4D ultrasound in the late 20th century, offering detailed anatomical
views and real-time imaging during medical procedures [9].

Today, ultrasound is integral in diverse applications, from prenatal care and
cardiac imaging to abdominal examinations and guiding minimally invasive proce-
dures [5]. In obstetrics, it monitors fetal development, assesses fetal health, and aids
in identifying potential complications during pregnancy. An example of a conven-
tional echography machine and a typical echography image of a fetus is depicted in
Figs. 1.1(a) and (b), respectively. Another application of ultrasound is lung imaging,
which provides a non-invasive means to examine pulmonary structures and assess con-
ditions such as pleural effusions, pneumonia, and pneumothorax [10]. The COVID-19
pandemic has underscored ultrasound’s utility in monitoring lung health and assess-
ing respiratory conditions. Notably, ongoing advancements include the exploration
of nonlinear imaging techniques [11] like harmonic imaging [12] and CEUS [13], en-
hancing diagnostic capabilities and expanding ultrasound’s utility in various medical
fields.



11.2. NONLINEAR ACOUSTICS 3

(a) (b)

Figure 1.1: (a) Picture of an echography machine. (b) Echography image of a 4
months old fetus.

1.2 Nonlinear acoustics

Nonlinear acoustic propagation represents a fundamental aspect of ultrasound physics
that explores how sound waves propagate at higher amplitudes or in non-ideal con-
ditions [14]. In linear acoustics, sound waves travel through tissues and other media
in a predictable, linear fashion, with their behavior primarily governed by factors like
wavelength and frequency. However, as acoustic intensity increases, nonlinear effects
become prominent. These nonlinearities include phenomena such as the generation
of harmonics (multiples of the fundamental frequency) [6]. Figure 1.2 compares the
waveform and frequency spectra of an acoustic pressure wave propagating through
a lossless homogeneous medium (water) in case of linear (solid line) and nonlinear
(dashed line) propagation. In the linear case, the normalized time signal does not
experience shape deformation and the energy in the frequency spectra remains con-
centrated in the fundamental component F0 during propagation, while this is not the
case when nonlinear propagation is considered. With nonlinear propagation, the pos-
itive high pressures tend to move faster and the negative low pressures tend to slow
down, resulting in a distortion of the wave shape. The distortion of this waveform can
result in the formation of shocks, heightened attenuation of the acoustic wave, and
subsequently increased heating of the medium, posing a challenge in application such
as aircraft noise, underwater acoustics, non-destruictive testing and medical ultra-
sound. In the frequency domain, this distortion manifests itself with the formation of
the harmonic components, which are multiples of the trasmitted frequency as shown
in Figure 1.2(b).

Harmonic imaging is a sophisticated ultrasound technique that harnesses the non-
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Figure 1.2: Normalized waveforms and frequency spectra for a plane wave propagating
through water in case of linear (solid line) and nonlinear (dashed line) propagation
(after shockwave).

linear behavior of tissues [12, 15] and contrast agents [13] to create clearer and more
detailed images. In harmonic imaging, the ultrasound system transmits a fundamen-
tal frequency, typically in the range of 1 to 10 MHz, into the body. As the sound waves
propagate and interact with tissues, nonlinear effects distort the waveform, resulting
in the production of harmonics that will be reflected by the inclusions of the medium.
These harmonic signals are then selectively detected and used to create ultrasound
images. Harmonic imaging has proven especially valuable in enhancing image quality,
reducing artifacts, and improving the visualization of anatomical structures, making it
a valuable tool in various clinical applications [16]. One well known imaging modality
is Tissue Harmonic Imaging [17,18].

Another advanced extension of harmonic imaging is Super Harmonic Imaging that
takes advantage of even higher-order harmonics produced during nonlinear acoustic
propagation [19–21]. By using ultrasound frequencies that are well above the funda-
mental frequency, Super Harmonic Imaging can provide exceptionally detailed images
with improved resolution and tissue differentiation. This technique is especially bene-
ficial in applications where precise visualization of small structures or lesions is crucial,
such as in cardiac imaging and breast ultrasound.

The introduction of contrast agents has revolutionized nonlinear medical ultra-
sound applications mainly in the field of nonlinear imaging. These contrast agents
are administered intravenously, and their behavior during ultrasound imaging in the
bloodstream greatly enhances the diagnostic capabilities of ultrasound. When ex-
posed to ultrasound, contrast agents also exhibit nonlinear behavior, leading to the
production of strong harmonic and subharmonic signals. This behavior is exploited
in applications such as CEUS, where contrast agents are used to enhance the visu-
alization of vascular structures, assess blood perfusion in organs, and detect focal
lesions, including tumors and liver lesions. Contrast agents have also found utility in
applications like assessing myocardial perfusion and cancer treatment using proton
therapy [22]. The most conventionally used contrast agents to date are MBs [23].
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(a)

(c)

(b)

(d)

Figure 1.3: (a) Schematic of a typical MB [25]. (b) A typical polydisperse concentra-
tion of MBs [26]. Contrast-enhanced ultrasound image of the abdomen after injection
of MBs at (c) t = 0 s and (d) t = 4 s. In the first image, the linear reflections from
tissue are removed and the MBs have not arrived yet. In the second image, the MBs
have filled the abdominal aorta and their branches, which are now visible due to their
nonlinear scattering.

1.3 Microbubbles as ultrasound contrast agents

Microbubbles, initially discovered by coincidence during an intravenous saline solu-
tion injection [4], have evolved into components of ultrasound contrast agents [24].
Administered through intravenous injection, these spherical MBs have a radius of 1
to 15 µm as illustrated in Fig. 1.3(a), akin in size to red blood cells, enabling them to
traverse even the smallest capillaries. Coated with phospholipid, denatured human
serum albumin, or polymer shells, these MBs effectively suppress surface tension and
impede rapid dissolution in the bloodstream. Their resonance frequency aligns with
the optimal imaging frequencies used in medical ultrasound, enhancing contrast by
reflecting acoustic waves more efficiently than surrounding tissue due to the large
difference in acoustic impedance (see Fig. 1.3(c) & (d)). Moreover, their small size
compared to the ultrasound wavelength causes radial oscillations in response to the
incident pressure field, generating spherically scattered sound waves [27]. Due to
their highly nonlinear resonance behavior, these MBs can produce harmonics, sub-
harmonics and even ultra-harmonics. While the behavior of a single bubble is well
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described by detailed physical models [24,28], comprehending the dynamics of a bub-
ble cloud (see Fig. 1.3(b)), particularly in the presence of multiple scattering, remains
a challenging task.

Bracco Imaging, GE Healthcare, and Lantheus Medical Imaging [23, 29] lead in
MB-based contrast agents, like SonoVue, Optison, and Definity. Typical concentra-
tions of these MB contrast agents injected into the human body vary depending on
the specific product and application. However, concentrations are often expressed in
terms of the number of MBs per milliliter, with ranges from 108 to 1010 ml−1 [29],
when diluted in the human blood volume of 5L upon intravenous injection. The
precise dosage and concentration are carefully determined based on the specific med-
ical imaging requirements and the patient’s characteristics, ensuring optimal contrast
enhancement and safety.

1.4 Proton therapy

Cancer remains a significant public health challenge, claiming 45,000 lives in the
Netherlands each year, which constitutes 30% of all deaths nationwide in 2016. Con-
ventional X-ray-based radiation therapy, crucial for half of all cancer patients, comes
with the drawback of collateral damage to healthy tissue due to the extensive space of
X-ray energy deposition. This collateral irradiation often leads to unwanted side ef-
fects and, in the long term, may even induce new cancers. A cutting-edge alternative
of cancer treatment, proton therapy, stands out for its precise and targeted approach
to irradiating tumors while minimizing damage to surrounding healthy tissues [30].

Proton therapy’s efficacy relies on the depositition of the majority of the energy
precisely at a defined depth within the tissue, known as the Bragg peak [31]. This
property allows tailoring the radiation dose to match the tumor’s size and depth while
sparing surrounding healthy tissues. Challenges arise in the accurate localization of
this peak due to tissue density variations and organ motion. Recent advancements
propose the use of nanodroplets [32], as a promising strategy to image the Bragg peak
localization and improve proton therapy effectiveness [33].

In this thesis, we consider the innovative concept that involves injecting MBs
into the patient’s bloodstream before proton therapy, and using ultrasound imaging
to visualize their distribution in real-time. By activating MBs within the tumor
area with focused ultrasound waves, detectable harmonic signals may be generated,
precisely correlating with the Bragg peak’s location. This offers real-time feedback
for continuous adjustments to proton therapy, ensuring precise alignment with the
tumor. Clinical trials are necessary to validate this promising synergy of proton
therapy and MB-enhanced ultrasound, transform precision oncology and offer more
effective and targeted cancer treatment options. The ultimate goal of ongoing research
is to measure the protoacoustic signal using a very sensitive optoacoustic sensor to
assist the precise localization of the Bragg peak, as depicted in Fig. 1.4.
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Figure 1.4: Proposed method for proton beam localization and dosimetry using med-
ical ultrasound contrast MBs and optical micromachined ultrasound sensors.

1.5 Modeling of nonlinear medical ultrasound

The fundamental equations governing acoustic wave propagation establish local rela-
tionships that adhere to the physics of the acoustic wave field [34]. These equations,
when combined with appropriate boundary conditions, formulate a comprehensive
system of equations solvable through numerical methods. Assuming a lossless, homo-
geneous, and source-free medium, the second-order nonlinear differential equation for
acoustic pressure is

c−2
0 ∂2

t p−∇2p =
β

ρ0c40
∂2
t p

2 + (∇2 + c−2
0 ∂2

t )L, (1.1)

in which t [s] is the time, and p(x, t) [Pa] is the acoustic pressure. The medium
is characterized by the small signal speed of sound c0 = 1/

√
ρ0κ0 [m/s], the mass

density ρ0 [kg/m3] and the compressibility κ0 [Pa−1]. The symbol ∂t is the time
derivative and ∇2 indicates the Laplace operator. β is the coefficient of nonlinearity
of the medium, and L is the Lagrangian density. The last two terms in Eq. (1.1) are
related to the generation of global and local medium nonlinearities, respectively. If
local nonlinearities are negligible, the Lagrangian density may be omitted, resulting
in the lossless Westervelt equation [35]

c−2
0 ∂2

t p−∇2p =
β

ρ0c40
∂2
t p

2. (1.2)

This equation forms the basis for simulating nonlinear ultrasound fields, espe-
cially in medical applications. Numerical simulation methods for solving these types
of equations fall into two main categories: forward wave methods and full wave meth-
ods [36, 37]. Forward wave methods initiate simulations with a prescribed pressure
distribution within the transducer plane, advancing the acoustic field unidirectionally,
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typically following the principal beam orientation [38–43]. This characteristic, seen
in methods like the KZK [44] method, results in limited accuracy when dealing with
wave fields propagating in various directions. In contrast, full wave methods, utilizing
Finite Difference [45–47] or Finite Element [48] methods, aim to solve fundamental
acoustic equations without bias toward a specific propagation direction. However, the
practical necessity of sampling 10 or more points per wavelength and period makes
the computational requirements for realistic domains rapidly prohibitive in terms of
grid point numbers. The INCS method effectively models nonlinear ultrasound fields
over large computational domains by avoiding a bias toward any specific propagation
direction and requiring only two points per wavelength [1, 2].

1.6 This thesis

In this thesis, the principles underlying the INCS method have been retained, and the
methodology has been extended to primarily accommodate all the physical phenom-
ena during ultrasound propagation through a large population of scatterers. Here we
give an overview of the subjects treated in this thesis.

Chapter 2 contains the extension of INCS with the incorporation of a population
of monodisperse point scatterers. These scatterers can be either linear or nonlinear
such as MBs. In this chapter it is assumed that the population consisted of only
monodisperse scatterers. Here, the significance is set upon multiple scattering phe-
nomena in a population of point scatterers. Finally, results are presented for each case
and the significance of the effect of multiple scattering is demonstrated by comparing
different concentrations.

In Chapter 3, we expand INCS to take into account the effect of local nonlin-
earities. To fully describe the nonlinear phenomena when acoustic waves propagate
through a population of MBs, we can not neglect the local nonlinear influence in the
interacting scattered waves. A simple case of two interacting plane waves is presented.
In parallel to the respective numerical results, a mathematically rigorous analysis is
presented for this interaction. Furthermore, a case related to a medical application
is presented, where the incident field is a focused beam generated by a phased array.
The main purpose of this chapter is to showcase the effect of local compared to global
nonlinearities.

Chapter 4 contains an example where we use all the aforementioned nonlinear
physical phenomena for imaging based on four distinct transmission scenarios. We
compare the results for an X-wave or two cross propagating plane waves, for a focused
wave, for a plane wave and for a diverging wave. We also incorporate a population
of highly nonlinear oscillating monodisperse MBs. Here, we show beamformed im-
ages obtained with the numerical results from INCS, and we compare the nonlinear
artifacts that emerge downstream the contrast agent inclusion. The primary goal is
to illustrate the potentials of INCS and the effectiveness of X-wave to suppress the
imaging artifacts due to its heightened specificity and sensitivity.
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Chapter 5 entails the extension of INCS with the introduction of polydisperse
inclusions of point scatterers. A comparison study is performed for three distinct
monodisperse populations: (i) below resonance, (ii) on resonance and (iii) above res-
onance and a polydisperse suspension, when excited by a 3D propagating finite plane
wave. Moreover, we demonstrate the difference between a monodisperse and a poly-
disperse population of MBs when used as contrast agents, excited by a transmitted
plane wave from a conventional medical ultrasound device.

InChapter 6, we construct a model specifically designed for computing the acous-
tic pressure that is generated by a single proton, covering nanometer and micrometer
scales. This model incorporates adiabatic and thermo-acoustic expansion and quan-
tifies the production of secondary electrons.

Chapter 7 expands the knowledge of Chapter 6 to a beam of protons. We use
the acoustic incident field emitted by a proton beam to excite a population of MBs.
Our goal is to combine protons with MBs to increase the chances for the Bragg peak
localization. In this chapter, INCS is extended with the introduction of a point source
population as the primary source term. In this way, it is easy to assimilate the in-
clusion of multiple protons and to illustrate how the effective pressure fields influence
a population of MBs. The aim of this study is to find an optimal configuration to
achieve coherence between the oscillations of the contrast agents.

Discussions on the overall content of the thesis as well as suggestions for further
development together with final conclusions are contained in Chapter 8.
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Chapter 2

Computation of ultrasound propagation in a
population of nonlinearly oscillating

microbubbles including multiple scattering

In contrast-enhanced echography, the simulation of nonlinear propagation of ultra-
sound through a population of oscillating microbubbles (MBs) imposes a computa-
tional challenge. Also, the numerical complexity increases because each scatterer has
individual properties. To address these problems, the Iterative Nonlinear Contrast
Source (INCS) method has been extended to include a large population of nonlinearly
responding MBs. The original INCS method solves the Westervelt equation in a 4D
spatiotemporal domain by generating increasingly accurate field corrections to itera-
tively update the acoustic pressure. The field corrections are computed by the convolu-
tion of a nonlinear contrast source with the Green’s function of the linear background
medium. Because the convolution integral allows a coarse discretization, INCS can
efficiently deal with large-scale problems. To include a population of MBs, these are
considered as individual contrast point sources with their own nonlinear response. The
field corrections are computed as before, but now in each iteration the temporal sig-
nature of each contrast point source is computed by solving the bubble’s Marmottant
equation. Physically, each iteration adds an order of multiple scattering. Here, the
performance of the extended INCS method and the significance of multiple scattering
is demonstrated through various results from different configurations.
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2.1 Introduction

For several decades, encapsulated MBs containing gas have been widely used in medi-
cal echography as the primary ultrasound contrast agents (UCA) [1]. These spherical
bubbles are injected intravenously and have a size comparable to a red blood cell,
which allows them to travel even in the smallest blood vessels. To avoid dissolution
in the blood, they are usually coated with a shell made from phospholipid, denatured
human serum albumin, or polymer. An important property is that they resonate in
the same frequency range as used for ultrasound imaging. Moreover, due to their large
difference in acoustic impedance with the surroundings and their highly nonlinear os-
cillatory behavior [2], MBs scatter sound efficiently in both their fundamental and
harmonic modes. Through multiple studies, the dynamics of a single bubble are well
understood. However, understanding the behavior of a bubble cloud is much more
challenging and is partly still unknown, especially when multiple scattering must be
taken into account.

Because of the significance in various marine settings, multiple studies were fo-
cused on the acoustic propagation of sound in bubbly liquids [3]. Justified by the small
gas volume fraction, an effective medium theory [4–7] was established. This implies
that the contribution of the interactions between the scatterers was considered unim-
portant. Initially, a set of averaged equations was constructed in a heuristic way [8],
which later was established by a more mathematically systematic approach [9]. Im-
provements were made for linear scatterers in small concentrations, retaining the
hypothesis of effective medium [10–12].

A study focusing on smaller bubbles in the regime of ultrasound frequencies [13],
however, showed that experimental results did not agree with effective medium theory.
Therefore, the acoustic response of populations with a high concentration of nonlinear
scatterers were investigated analytically [14, 15]. When second-order multiple scat-
tering is taken into account, attenuation at the resonance frequency is increased [16].
The significance of the latter was reinforced computationally by introducing nonlinear
monodisperse [17] and polydisperse [18, 19] MBs in a finite difference scheme. These
studies assumed a collective behavior of the bubbles, which prohibits them to have
an independent response due to having individual properties. Finally, a plethora of
groups directed their attention to simplified simulations of multiple bubble interac-
tions inside a 1D or 2D domain [20, 21]. One of the studies was able to successfully
model the nonlinear propagation of ultrasound through a uniform distribution of MBs,
but was limited to two dimensions due to computational cost [22].

In this article, we will employ the Iterative Nonlinear Contrast Source (INCS)
method [23,24] to tackle the challenge of numerically simulating the nonlinear response
of a 3D bubble population with significant multiple scattering. This method was
originally invented to accurately calculate the cumulative nonlinear effects suffered
by an acoustic pressure wave propagating in a fluid with nonlinear medium behavior.
The pressure wave originated from a source aperture with a pulsed excitation in a 3D
spatial domain. A significant advantage of this algorithm is the coarse discretization of
two points per shortest desired wavelength. This is achieved by applying the Filtered
Convolution (FC) approach [25], which implies that during the computations, the
spatial and temporal spectra are consistently cut off at the predetermined Nyquist



22

2.2. FUNDAMENTALS OF INCS 15

limit of the highest desired frequency. This also makes that INCS can reliably deal
with stronger nonlinearities causing relatively strong harmonic components. The
directional independence of the nonlinear operation is another benefit that is not
common to many other nonlinear computational codes. Furthermore, INCS can be
easily expanded to include attenuation and inhomogeneous medium parameters of all
kind, provided these can be cast in the form of a so-called contrast source [26–30]. This
also offers an opportunity for incorporating bubble inclusions. Added to its ability
to address large-scale problems, INCS seems a good basis to simulate the acoustic
response of MB populations with high accuracy and relatively low computational
cost.

This article will describe the extension of the INCS method to deal with a pop-
ulation of scatterers. The performance of the developed method will also be demon-
strated by showing the acoustic response of a population of MBs that oscillate in a
nonlinear way, as described by the Marmottant model [31]. The method computes
the scattered pressure from the cloud in an iterative way. Numerically, each iteration
brings the answer closer to the exact result. Physically, each iteration accounts for
an extra order of multiple scattering. To focus on the influence and behavior of the
MB cloud, it will be assumed that the embedding fluid is linear.

First, in Section 2.2 the fundamental theory behind the INCS method will be
described. In Section 2.3, the INCS method will be extended by the introduction of
point contrast sources representing point scatterers. The representation of a linearly
scattering sphere by a point scatterer is discussed, followed by the representation of
a nonlinear MB, and lastly the representation of an entire population of MBs. In
Section 2.4, the details of the numerical implementation of the method are described.
Next, in Section 2.5 the results from the numerical simulations for a monodisperse MB
population are presented and explained. Concluding remarks are given in Section. 2.6.

2.2 Fundamentals of INCS

2.2.1 Linear field

In a lossless, linear, isotropic and homogeneous acoustic background medium, the
pressure field generated by an external or primary source can be described by the
wave equation

c−2
0

∂2p(x, t)

∂t2
−∇2p(x, t) = Spr(x, t), (2.1)

where x [m] is the position vector of a point in three-dimensional Cartesian space, t
[s] is the time, and p(x, t) [Pa] is the acoustic pressure. The medium is characterized
by the small signal speed of sound c0 = 1/

√
ρ0κ0 [m/s], the mass density ρ0 [kg/m3]

and the compressibility κ0 [Pa−1]. The symbol ∇2 indicates the Laplace operator.
The right hand side of Eq. (2.2) is the primary source term

Spr(x, t) = ρ0
∂q(x, t)

∂t
−∇ · f(x, t), (2.2)

where q(x, t) [s−1] is the volume injection rate density and f(x, t) [N/m3] is the
volume force density of the external source. Sources with a plane aperture, such as a
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phased array transducer, can be represented either by a velocity or a pressure jump
condition in the transducer plane z = 0.

In INCS, and throughout this paper, the explicit solution for the pressure field
due to any source S(x, t) in the background medium is denoted as p(x, t) = G[S].
The symbol G indicates the linear operation defined by

G[S] = S(x, t) ∗x,t G(x, t)

=

∫
T

∫
X
S(x′, t′)G(x− x′, t− t′) dx′dt′. (2.3)

The symbol ∗x,t denotes a convolution in the spatiotemporal domain, where the inte-
gration takes place over the spatial domain X and over the temporal domain T of the
source S. The three-dimensional Green’s function of the lossless, linear, homogeneous
and isotropic background medium is denoted as G(x, t) and is given by

G(x, t) =
δ(t− ∥x∥ /c0)

4π ∥x∥
. (2.4)

Primary source Spr(x, t)

∗ G(x, t)

Linear field p(0)(x, t)

+

Total field p(j)(x, t)

Increment j

Trilinear interpolation

Marmottant solver

Filtered dirac function

∗ G(x, t)

Nonlinear field correction δp(j)(x, t)
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Figure 2.1: Schematic diagram for the INCS method with extension to deal with
MBs.
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In the numerator, δ is the Dirac delta distribution and ∥x∥ is the length of x. In
physical terms, the Green’s function is the acoustic pressure at field point x and time
t, emitted from a point source of unit impulse located at (x, y, z) = (0, 0, 0), acting at
t = 0 [32].

The linear acoustic pressure distribution due to the primary source, e.g. an emit-
ting transducer, in the background medium is indicated as p(0). With the notation
presented above, it is given by

p(0) = G[S(0)], (2.5)

where S(0) = Spr. The field p(0) is the initial field for the Neumann iterative scheme
that is used to compute the nonlinear field contribution.

2.2.2 Nonlinear field

In medical diagnostics, the propagation of the pressure wave is dependent on the
nonlinear behaviour of the medium. If the so-called local nonlinearities are neglected,
the remaining global nonlinearities can be accounted for by extending Eq. (2.1) to
the Westervelt equation [33]. In INCS, the lossless form of the Westervelt equation is
written as

c−2
0

∂2p

∂t2
−∇2p = Spr + Snl, (2.6)

where the nonlinear term is given by

Snl(p) =
β

ρ0c40

∂2p2

∂t2
, (2.7)

in which β is the coefficient of nonlinearity. The term in Eq. (2.7) is considered to
describe a nonlinear contrast source acting in the linear background medium. As
such, it provides the nonlinear contribution to the acoustic pressure field, which can
be expressed as δp = G[Snl(p)] with G being the same linear operator as in Eq. (2.3)
but with integrations running over the entire spatiotemporal support Xnl×Tnl of Snl.
Often, this is the entire computational domain. However, combining Eqs. (2.6) and
(2.7) yields an implicit solution because the total field p is not yet known. To obtain
an explicit solution, an iterative approach is employed in which a nonlinear correction
δp(j) is obtained from the previous approximation p(j−1) of the total field, according
to

S
(j)
nl = Snl(p

(j−1)), (2.8)

δp(j) = G[S(j)
nl ]

=

∫
Tnl

∫
Xnl

S
(j)
nl (x

′, t)G(x− x′, t− t′) dx′dt,

(2.9)

p(j) = p(0) + δp(j). (2.10)

To get a first estimate of the nonlinear correction, the initially computed linear pres-
sure field p(0) is used in the contrast source term. The resulting Neumann iterative
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scheme can thus be expressed as

p(0) = G[Spr], (2.11)

p(j) = p(0) + G[Snl(p
(j−1))], if j ≥ 1. (2.12)

Using the same methodology, INCS has been extended by the inclusion of other
contrast sources, e.g. representing attenuation and inhomonegeous medium properties
[26–30].

2.3 Inclusion of microbubbles

2.3.1 Contrast source term representing a point scatterer

In this section we will extend INCS to deal with a medium containing a large pop-
ulation of MBs. Because a MB is much smaller that the spatial grid step, we will
represent each bubble by a point scatterer. A point scatterer is an object with an
infinitely small volume, which is used to approximate the behavior of a scatterer that
is much smaller than the wavelength of the excitation field. The analytical description
of a contrast source representing a point scatterer located at point xsc and with a
time signature A(xsc, t) is

Ssc(x, t) = A(xsc, t)δ(x− xsc). (2.13)

As explained in a previous publication, [25] the INCS method applies spatial fil-
tering with an ideal low pass filter in all dimensions to avoid aliasing during numerical
computation. The spatially filtered version of the Dirac function is

δK(x,xsc) =

3∏
n=1

K

π
sinc [K(xn − xn,sc)] , (2.14)

where K = π/∆x is the angular spatial cutoff frequency that depends on the spatial
stepsize ∆x, and (x1, x2, x3) = (x, y, z) are the spatial coordinates.

A point scatterer can represent either a nonoscillating object that reflects the
incoming wave because of its contrasting medium properties, or a noncontrasting
object that radiates an outward wave because of its radial oscillation induced by the
incoming wave [32]. A MB shows contrast with its surroundings but also vibrates,
so the question might arise whether both effects should be separately accounted for.
To resolve this issue, in Sec. 2.3.2 we will first compare the off-resonance scattering
from a linearly responding MB without a shell, as obtained from both representations.
Next, we will explain how to describe a nonlinear MB and a distribution of MBs.

2.3.2 Nonoscillating contrasting sphere

As a possible model for a spherical MB, first we will consider the background medium
with a spherical inclusion with a fixed radius R0, a speed of sound c1, and a density
of mass ρ1. This sphere is insonified by a pressure wave with angular frequency ω.
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We assume that the radius of the sphere is much smaller than the wavelength of this
wave, i.e. R0 ≪ 2πc0/ω, so it is allowed to consider a plane incident wave as the
excitation wave. Let us suppose that in the absence of the sphere, this wave would
have a pressure amplitude p(xsc, ω) at the location of the center of the sphere. The
scattered pressure psc is most easily obtained in terms of spherical harmonics. To find
the dominant behavior of psc for small spheres and below resonance, we expand this
result into a power series of R0, and keep only the three terms that are of lowest order
in R0. These are the monopole term pmono

sc , the dipole in the intermediate field pdif,ifsc

and the dipole in the far field pdif,ffsc as derived from App. 2.A. These are derscribed
by the equations

pmono
sc =

ω2p(xsc, ω)V0

4πr

(
ρ0
ρ1c21

− 1

c20

)
exp(−ik0r), (2.15)

pdip,ifsc =
−iωp(xsc, ω)V0

4πr2
3(ρ1 − ρ0)

c0(ρ0 + 2ρ1)
cos(θ) exp(−ik0r), (2.16)

pdip,ffsc =
ω2p(xsc, ω)V0

4πr

3(ρ1 − ρ0)

c20(ρ0 + 2ρ1)
cos(θ) exp(−ik0r). (2.17)

where V0 = 4
3πR

3
0 is the volume of the sphere, r = ∥x− xsc∥, θ is the angle of

observation relative to the direction of the incident wave, and k0 = ω/c0 is the
wavenumber in the background medium. Because the term in Eq. (2.15) decays with
r−1 and is omnidirectional, it describes the field of a physical monopole. The other two
terms depend on cos(θ) and describe the field of a physical dipole, where Eq. (2.16)
represents the intermediate field that decays with r−2, and Eq. (2.17) represents the
far field that decays with r−1 [34]. In the context of ultrasound contrast agents, it
is opportune to consider an incident wave of 1 MHz propagating in a background
consisting of water and impinging on a gas-filled sphere with a radius of 1 µm. It
turns out that even on the surface of the sphere, the intermediate and far field dipole
terms are two and four orders of magnitude smaller, respectively, than the monopole
term. From this, we conclude that in this paper we may consider a spherical MB to
act solely as a monopole. In that case, the point scatterer that for r > R0 will cause
the same pressure as in Eq. (2.15) is

Ssc(x, ω) = ω2p(ω)V0ρ0

(
1

ρ1c21
− 1

ρ0c20

)
δ(x− xsc). (2.18)

The time domain equivalent of this equation is

Ssc(x, t) = −V0ρ0

(
1

ρ1c21
− 1

ρ0c20

)
∂2p(xsc, t)

∂t2
δ(x− xsc). (2.19)

For a fluid background medium with a gas filled sphere it turns out that ρ0c
2
0 ≫ ρ1c

2
1

and Eq. (2.19) may be approximated by

Ssc(x, t) = −V0
ρ0
ρ1c21

∂2p(xsc, t)

∂t2
δ(x− xsc). (2.20)
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2.3.3 Oscillating noncontrasting sphere

As a second model for a spherical MB, we will consider the background medium with
a noncontrasting, oscillating sphere with rest radius R0. The oscillations are induced
by an incident pressure wave. Again we assume that the radius of the sphere is much
smaller than the wavelengths present in the incident wave, so the external pressure
experienced by the sphere is approximately homogeneous and may be taken equal to
the incident pressure p(xsc, t) at the center of the sphere. As a consequence, we may
assume that the sphere will only show radial oscillations, i.e. its instantaneous shape
will be fully described by a dynamic radius R(t). The oscillating sphere therefore acts
as a monopole source of volume injection, which is consistent with the conclusion in
Sec. 2.3.2. The volume injection rate of the monopole source is Q = dV/dt, in which
V = 4

3πR
3(t). Integration of Eq. (2.2) over the volume V0 at rest of the sphere results

in a contrast source strength Ssc = ρ0dQ/dt = ρ0d
2V/dt2. The point scatterer that

for r > R will cause the same pressure as the oscillating sphere is

Ssc(x, t) = ρ0
d2V

dt2
δ(x− xsc). (2.21)

To find the relation between Eqs. (2.19) and (2.21) for linearly responding bubbles
below resonance, we consider the linearized equations of motion and continuity. Inside
the bubble, these may be written as

∇p+ ρ0
∂v

∂t
= (ρ0 − ρ1)

∂v

∂t
+ f , (2.22)

∇ · v + κ0
∂p

∂t
= (κ0 − κ1)

∂p

∂t
+ q. (2.23)

The terms at the right hand sides of these equations describe the sources of the
scattered field. When these are point sources, or may be considered as such, the right
hand sides of Eqs. (2.22) and (2.23) represent the dipole behavior and the monopole
behavior of the sphere, respectively [34]. For a nonoscillating contrasting sphere, the
density of volume force f and the density of volume injection rate q are zero, and
for an oscillating noncontrasting sphere, the mass density contrast ρ0 − ρ1 and the
compressibility contrast κ0 − κ1 are zero. To obtain the same monopole scattering
from a nonoscillating contrasting sphere and an oscillating noncontrasting sphere, we
must therefore have

(κ0 − κ1)
∂p

∂t
= q =

1

V0

dV

dt
, (2.24)

where p is the pressure inside the sphere, which in lowest order is equal to the incident
pressure p(xsc, t). Multiplication by V0ρ0, differentiation with respect to time, and
applying the relation κ = 1/(ρc2) for linear acoustics, yields

−V0 ρ0

(
1

ρ1c21
− 1

ρ0c20

)
∂2p

∂t2
= ρ0

d2Vsc

dt2
. (2.25)

The left hand side and right hand side of this equation are exactly the magnitude of
the scattering sources in Eqs. (2.19) and (2.21), respectively. From this, we conclude
that in the linear case, the oscillating noncontrasting sphere represents the physics
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of the bubble equally well as the nonoscillating contrasting sphere. In the following
parts of this paper, we extrapolate this to the nonlinear case by assuming that the
volume oscillations of a nonlinear bubble fully represent the intricate physics of the
interior and shell of that bubble.

2.3.4 Microbubble as a point scatterer

For practical ultrasound contrast bubbles, the above models are not accurate enough
because the presence of a shell and the effect of surface tension is missing. Moreover,
in medical applications bubbles are often used near resonance, and in the nonlinear
regime. To accurately represent a MB by a point scatterer, the applied model should
be based on the following assumptions: the surrounding liquid is infinite and behaves
in a Newtonian way, there is no mass or heat transfer between the medium and the gas
inside the bubble, the buoyancy and gravity effects can be neglected, the wavelength
of the exciting pressure field is much larger than the radius, so that the pressure has
a uniform distribution over the bubble shell, and the bubble shape remains spherical
through time [1]. This implies that the bubble acts as an oscillating noncontrasting
monopole source. Usually, the time-dependent bubble radius is obtained by solv-
ing some variant of the Rayleigh-Plesset equation. Therefore, it is most logical to
represent a MB by a contrast point source

Ssc(x, t) = ρ0
d2Vsc

dt2
δ(x− xsc). (2.26)

The scatterer’s volume depends on the bubble radius as a function of time, which in
our case we will calculate by solving the Marmottant equation [31]. This model is
most applicable to describe the oscillatory behavior of lipid-encapsulated MBs. We
emphasize that our method is not restricted to this specific model, which can be
replaced by any other model that suits another type of bubbles.

The Marmottant model relates the radius of a nonlinearly oscillating MB to the
acoustic pressure according to

ρ0

(
R̈R+

3

2
Ṙ2

)
=

(
P0 +

2σ(R0)

R0

)(
R0

R

)3γ
(
1− 3γṘ

c0

)

− P0 − p(xsc, t)− 4µ
Ṙ

R
− 2σ(R)

R
− 4κs

Ṙ

R2
, (2.27)

where the quantity P0 [Pa] is the ambient pressure, γ is the polytropic exponent
of the gas encapsulated in the bubble, p(xsc, t) [Pa] is the excitation pressure in
the surrounding liquid of the scatterer, µ [Pa. s] is the surrounding liquid dynamic
viscosity, κs [kg/s] is the shell viscosity and σ(R) [N/m] is the effective surface tension.
Based on the shell-buckling model of Marmottant, the latter variable is expressed as

σ(R) =


0, if R ≤ Rb,

χ
(

R2

R2
b
− 1
)
, if Rb < R < Rr,

σw, if R ≥ Rr,

(2.28)



22

22 2. MULTIPLE SCATTERING

where χ [N/m] is the shell elasticity, σw [N/m] is the surface tension of the gas-water
interface, Rb = R0/

√
σ(R0)/χ+ 1 is the buckling radius, and Rr = Rb

√
σw/χ+ 1 is

the rupture radius.
The solution of the Marmottant equation is the bubble radius as a function of

time. Equation (2.27) was solved using the Livermore Solver for Ordinary Differential
Equations (LSODE) from the ODEPACK library [35] implemented in Fortran. To
enhance performance and efficiency, the Marmottant model is normalized by ϱ∗ =
R/R0 − 1 and τ∗ = tf0, where f0 is the center frequency of the incident pressure
field. This results in Ṙ = R0f0 dϱ∗/dτ∗ and R̈ = R0 f2

0 d2ϱ∗/dτ
2
∗ . Based on this

normalization and to achieve good convergence, the absolute and relative tolerance
of the solver is set at 10−15.

2.3.5 Microbubble population as distribution of point scatter-
ers

For a population of N MBs, all corresponding point sources should be added, resulting
in the nonlinear contrast source term

Scs(x, t) = ρ0

N∑
i=1

d2V (i)(x
(i)
sc , t)

dt2
δ(x− x(i)

sc ). (2.29)

When the MBs are located in an otherwise linear, homogeneous, and lossless fluid
medium, the nonlinear wave equation for the acoustic pressure becomes

c−2
0

∂2p

∂t2
−∇2p = Spr + Scs. (2.30)

The solution of Eq. (2.30) can be obtained by the scheme in Eq. (2.12), provided we
replace the nonlinear contrast source Snl by Scs in Eq. (2.29).

The physical interpretation of the iterative process is explained in Fig. 2.2. For
j = 0, the solution of INCS in an arbitrary point x is the incident field p(0). This
is the field that would be generated by the primary source Spr in the backgrond
medium in the absence of MBs (Fig. 2.2a). For j = 1, the scattering of p(0) by

all MBs is computed and summed, resulting in the first-order field correction δp(1).
This correction is added to p(0) to form the first-order field estimate p(1), which thus
consists of the incident field plus the first-order scattering of all MBs (Fig. 2.2b). For
j = 2, the scattering of p(1) by all MBs is computed and summed, resulting in the
second-order field correction δp(2). This correction contains both the scattering of
p(0) and δp(1), i.e. the first and second-order scattering of all MBs. It is added to
p(0) to form the second-order field estimate p(2), which consists of the incident field
plus the scattering of all MBs up till order two (Fig. 2.2c). Continuing the iterative
scheme, each iteration accounts for a next order of multiple scattering (Fig. 2.2d).

After each iteration, we compare the field p(j) with the field p(j−1), using a relative
root mean square error (RRMSE). When this error has become negligible after several
iterations, we conclude that the highest order of scattering has become insignificant
and will no longer influence the final result. At this point, we assume that INCS has
sufficiently converged and we terminate the iterative process.



22

2.3. INCLUSION OF MICROBUBBLES 23

ze
ro
-o
rd
er

fi
el
d

x

p
(0

)

p
(0

)

p
(0

)

(a
)

ze
ro
-o
rd
er

fi
el
d

x

p
(0

)

p
(0

)

p
(0

)

fi
rs
t-
o
rd
er

fi
el
d

δp
(1

)

(b
)

ze
ro
-o
rd
er

fi
el
d

x

p
(0

)

p
(0

)

p
(0

)

fi
rs
t-
o
rd
er

fi
el
d

se
co
n
d
-o
rd
er

fi
el
d

δp
(1

)

δp
(2

)

(c
)

ze
ro
-o
rd
er

fi
el
d

x

p
(0

)

p
(0

)

p
(0

)

(j
-1
)t

h
-o
rd
er

fi
el
d

jt
h
-o
rd
er

fi
el
d

δp
(j

)

δp
(j

-1
)

(d
)

F
ig
u
re

2.
2:

(C
ol
or

on
li
n
e)

P
h
y
si
ca
l
in
te
rp
re
ta
ti
on

of
th
e
it
er
at
iv
e
p
ro
ce
d
u
re

fo
r
a
n
u
m
b
er

o
f
sc
a
tt
er
er
s
(c
ir
cl
es
)
a
n
d
a
n
o
b
se
rv
er

x
(t
ri
an

gl
e)
,
af
te
r
0
(a
),

1
(b
),

2
(c
)
an

d
n
(d
)
it
er
at
io
n
s.

T
h
e
b
la
ck

a
rr
ow

s
re
p
re
se
n
t
th
e
in
ci
d
en
t
fi
el
d
h
it
ti
n
g
th
e
sc
a
tt
te
re
rs
.

T
h
e
co
lo
re
d
ar
ro
w
s
sh
ow

th
e
fi
el
d
co
rr
ec
ti
on

s
d
u
e
to

m
u
lt
ip
le

sc
a
tt
er
in
g
o
rd
er
s.



22

24 2. MULTIPLE SCATTERING

2.4 Numerical implementation

2.4.1 Generation of the random bubble population

Our next step is to generate the positions x
(i)
sc in a 3D population of randomly located

bubbles. We have implemented two approaches for the positioning of N point scat-
terers in a rectangular bubble domain. In both cases, a minimum distance between
every two point scatterers is assumed to avoid the overlap of the physical bubbles.

The first approach is used to create a discrete uniform distribution of point scat-
terers over the rectangular bubble domain. This is achieved by dividing the bubble
domain in N identical, smaller cubes with a prescribed minimum mutual distance,
and randomly positioning one scatterer in each one of these smaller cubes.
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Figure 2.3: Uniform (a) and random (b) distribution of scatterers, shown in 3D view
(left) and in the x-direction (inset, right). The populations consist of 2×105 scatterers
concentrated in volume of 1 ml, having a minimum mutual distance of 50 µm. This
distance is taken exceedingly large here to show the difference between (a) and (b).
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The second approach is applied to obtain a fully random positioning of the point
scatterers, with the minimum mutual distance between scatterers as the only restric-
tion. To accomplish this, point scatterers are randomly positioned in the domain of
interest. The separation of each scatterer and its closest neighbors is then determined.
Those points who do not fulfill the distancing restriction, are removed from the cloud.

Realizations obtained by these two approaches are presented in Fig. 2.3. The
location of the point scatterers in the generated clouds is independent of the location
of the computational grid points. In this way, INCS can retain a coarse grid size
without ’discretizing’ the cloud of particles. This is particularly important for large
concentrations of particles.

2.4.2 Off-grid point scatterers

Due to the coarse discretization allowed by the INCS method, some scatterers will
unavoidably be placed between the gridpoints. This causes no problem because each
point scatterer is represented by its filtered version and by using Eq. (2.14), proper
weights are assigned to all grid points. Based on previous research [36], this method-
ology will provide an accurate solution.

For large bubble concentrations, this process may not be efficient. To improve the
computational efficiency and reduce the memory load for large concentrations, during
intermediate iterations only a limited number of neighboring grid points is used for
the filtered version of each point scatterer. In this way, the scattered pressure is
accurately computed in the region where it is strongest, i.e. around each scatterer. In
the final iteration, the filtered spatial Dirac function is again using all the grid points.
This corrects the errors made in the intermediate iterations. The described approach
significantly reduces the computation time, at a cost of a small intermediate error.
This reduction is most significant for higher concentrations. For example, we have
considered a spatiotemporal computational domain with Nt×Nx×Ny×Nz = 1299×
200×96×600 gridpoints, with a population of 106 point scatterers that are randomly
positioned in a volume of 1 ml. The computational job is distributed over 100 Central
Processing Units (CPUs). The time required per iteration for computing the contrast
source term in all gridpoints and only for a limited number of gridpoints around each
scatterer is 91 minutes and 10 minutes, respectively. The RRMSE between these
cases is only 0.1%.

2.4.3 Trilinear interpolation and avoiding self scattering

To calculate the pressure field at the off-grid location of a point scatterer, a trilinear
interpolation using the eight neighboring gridpoints is implemented. A particular
point of attention is to avoid that the pressure experienced by a point scatterer in
iteration j contains the pressure that is generated by the same scatterer in iteration
j − 1. To prevent this ’self scattering’, in iteration j − 1 the computed strength of
each contrast source is saved in a file. In iteration j, the point sources, represented
by the filtered Dirac function, are convoluted with the Green’s function to obtain the
pressure generated in iteration j − 1 by each point source at its eight neighboring
gridpoints. These pressure values are subtracted from the total computed pressure
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before computing the new pressure value at the location of the point source. This
correction is particularly significant for strong individual scatterers that don’t have
strong neighbors nearby.

2.5 Numerical results

For the numerical examples in Sec. 2.5.1 and Sec. 2.5.2, a computational domain of
X ×Y ×Z = 20 mm× 20 mm× 20 mm is used. The incident pressure field is a plane
wave being generated at z = 0 and propagating in the positive z-direction. A plane
wave is used to let all the scatterers experience the same incident pressure.
In Secs. 2.5.1, 2.5.2 and 2.5.3 , the temporal signature of the incident pressure is

s(t) = exp

[
−
(
t− Td

Tw/2

)2
]
sin[2πf0(t− Td)], (2.31)

where Tw = 3/f0 is the width and Td = 6/f0 is the delay of a Gaussian envelope with
a duration of 12/f0, where f0 = 1 MHz is the center frequency. The scatterers will
be embedded in water with a density of ρ = 1060 kg/m3 and a speed of sound of
c0 = 1482 m/s. In the considered situations, water has negligible losses and nonlinear
effects will be hardly noticeable. Therefore, we assume that the embedding medium
is lossless and linear. A sampling frequency of 18 MHz was used as the basis for the
discretization of the spatiotemporal domain.

2.5.1 Single versus multiple scattering: linear scatterers

In this subsection, we will present the difference between single and multiple scattering
in case of linear scatterers. The difference will be more visible for higher concentra-
tions. For this reason, a population of 1.6×106 linearly scattering spheres of 1 µm ra-
dius is placed in a subdomain −7.50 mm ≤ x ≤ 7.50 mm, −7.50 mm ≤ y ≤ 7.50 mm,
3.00 mm ≤ z ≤ 7.44 mm as indicated in Fig 2.3(b). This yields a concentration of
scatterers of 1.6×106 ml−1. It is assumed that the gas inside these scatterers is C4F10,
with a density ρ1 = 10 kg/m3 and a speed of sound c1 = 100 m/s. These spheres have
a sharp resonance frequency of 2.68 MHz. The maximum of the incident pressure is
P0 = 200 kPa. For first-order scattering, application of Eq. (2.37) with r = R then
yields a maximum reflected pressure of 32.4 kPa(0.16218*P0) on each individual scat-
terer’s surface. In Fig. 2.4(a), the total pressure field after j = 1 iterations, i.e. after
accounting for one order of scattering, is presented. An increased pressure, compared
to the incident wave, is visible in and behind the population of scatterers. This is due
to the constructive interference of the scattering in the direction of the propagation
of the plane wave, which is a consequence of Huygens’s principle. In Fig. 2.4(b),
the total pressure field for after j = 2 iterations, i.e. including two orders of scat-
tering, is presented. Compared to the first iteration, the total pressure field in and
behind the population is reduced and a lower pressure region starts to form behind
the population. Virtually no numerical changes occur after j = 8 iterations and this
result is presented in Fig. 2.4(c). The difference between the three pressure maps is
clearly visible. It can be seen that the contribution of the population is strongest in
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the first iteration. When more orders of multiple scattering are included, there is a
correction in the total pressure field. Furthermore, it can be seen that lower pressure
regions form on the sides and behind the population and become more distinct with
increasing multiple scattering orders.

A comparison of the time signatures of the total pressure at a point receiver located
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Figure 2.4: (Color online) Maximum of the total pressure field in the plane y = 0 mm
in case of 1.6×106 linear scatterers with 1 µm radius, when taking into account (a) 1,
(b) 2 and (c) 8 orders of scattering. The population of scatterers is inside the dotted
white square.
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Figure 2.5: (Color online) Comparison between the time signatures of the total pres-
sure pulse that is received by a point receiver located at the red cross in Fig. 2.4, for
a number of iterations.

in (0 mm, 0 mm, 10.3 mm) is presented in Fig. 2.5. Subtraction of p(0) from the other
signals would result in the scattered pressure for the respective iterations. Besides
a correction of the maximum pressure, a change in phase can be seen. It seems like
there is a decrease in the effective speed of sound due to the increasing scattering in
the population. This figure reinforces the significance of multiple scattering and the
need to take into account multiple orders in order to have a more accurate result.

To validate our method, we can also compare the above time signatures results
with predictions based on effective medium theory. In the current case, the conditions
justify the application of the original theory of Foldy [4]. According to this theory,
the effect of a monodisperse population of scatterers is represented by replacing the
wave number k0 in the scattering domain by a corrected wave number

k2 = k20 + 4πng, (2.32)

where n is the concentration of the scatterers and g is their individual scattering
strength. The shift in wavenumber corresponds to a shift in wave speed, and as a
consequence, in a time shift of the wave that has traversed the scattering domain.
In the case considered in this subsection, we have n = 1.6 × 1012 m−3 and g =
1.6218× 10−7 m (taking into account the correction for the reflected pressure at the
surface of each scatterer, a factor of 1.16218). This yields a wavespeed of 1363.5 m/s in
the scattering domain, while the speed in the medium without scatterers is 1482 m/s.
Since the scattering domain has a length of 4.4444 mm, the additional time delay
caused by the scattering domain, as predicted by the theory of Foldy, is ∆tFoldy =
0.2606 µs. We have also determined the time delay between the incident wave p(0) and
the wave with all significant orders of scattering p(8) in Fig. 2.5, by looking at the shift
in the zero crossings around 13 µs. This is found to be ∆tINCS = 0.2595 µs. Thus,

Table 2.1: Parameters of the Marmottant model of the applied MBs
κs [kg/s] σw [N/m] σR [N/m] γ χ [N/m] µ [Pa · s]
3× 10−8 0.072 0.036 1.07 0.4 2× 10−3
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the difference in time delay as predicted by the theory of Foldy and our method is
only 0.42%. Moreover, because in our case the wavenumber obtained from Eq. (2.32)
does not contain an imaginary part, the theory of Foldy predicts that the wave that
traverses the scattering domain does not attenuate. Fig. 2.5 shows that our scheme
corrects the larger amplitude of the earlier iterations, and that iteration p(8) indeed
has the same amplitude as the incident field p(0). From the above we conclude that
both for the time delay and the amplitude of the wave traveling through a scattering
domain, there is good agreement between our method and the effective medium theory
of Foldy.

2.5.2 Single versus multiple scattering: nonlinear microbub-
bles

Here, the same configuration as in Sec. 2.5.1 is used, but now we employ the Marmot-
tant model from Section 2.3.4 to demonstrate the difference between populations of
linear and nonlinear scatterers. The concentration of the population is 2 × 105ml−1

and the radius of the MBs is 2 µm. The parameters for the Marmottant model are
given in Table 2.1. These MBs also have a resonance frequency of 2.68 MHz.

In Fig. 2.6, the difference between j = 1 iteration (one order of scattering) and j =
14 iterations (14 orders of scattering) is shown. Compared to the population of linear
scatterers, the difference between the pressure maps for subsequent iterations is more
significant for the population of MBs. This is because the MBs are stronger scatterers
than the linear scatterers. Virtually no numerical changes now occur after j = 14
iterations. This shows that for the stronger nonlinear scatterers, more iterations
should be taken into account. As in Sec. 2.5.1, lower pressure regions also exist in the
MB case. Compared to the linear case, these regions are also wider, i.e. relatively
more scattering energy is concentrated in the regions behind the horizontal edges of
the population.

A comparison between the time signatures at the point receiver is presented in
Fig. 2.7(a). A strong negative pressure dip can be seen when only the first order scat-
tering is included. Besides a correction of the maximum pressure, a change in phase
is visible in the early part of the pulses. For later times, the signals from subsequent
iterations become incoherent due to the nonlinear multiple scattering contributions.
The frequency spectrum of the pulses is presented in Fig. 2.7(b). As expected, higher
harmonics caused by the nonlinear behavior of the MBs are visible. A significant ob-
servation is that for j = 1 there is a dip in the fundamental and the higher harmonics
are relatively strong, whereas for j = 14 orders, the fundamental is partly restored
and the higher harmonics have decreased. These results demonstrate that multiple
scattering inside a population of nonlinear scatterers plays an important role.

2.5.3 Harmonic imaging

In the previous subsection, we have shown the difference between a population of
linear and nonlinear scatterers when excited by a plane wave. In this subsection,
we will focus on a medical application and will demonstrate the generation of higher
harmonics when a population of bubbles is hit by an ultrasound beam. Here, a
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computational domain of X×Y ×Z = 22 mm×10 mm×60 mm is used. The incident
beam is generated by a phased array transducer of 40 elements with Hel × Wel =
10 mm× 0.45 mm, and a kerf with zero width. This corresponds to an aperture with
a width of Warr = 18 mm. The origin of the coordinate system is at the center of the
transducer aperture. The array has an azimuthal focus at (xf , zf ) = (0 mm, 35 mm)
and an elevation focus at zel = zf . In Fig. 2.8, a sketch of a the geometry of the phased
array is presented. The pressure pulse sent from each element of the transducer is
again given by Eq. (2.31). The maximum of the emitted pressure is P0 = 50 kPa at
the surface, and the pressure is the highest and equal to 191 kPa at the focus. In
Fig. 2.9(a) and (b), the incident beam is presented at the elevation plane x = 0 mm
and the azimuthal plane y = 0 mm.

A population of 105 monodisperse MBs of 2 µm radius are randomly placed in a
subdomain −5.30 mm ≤ x ≤ 5.20 mm, −2.55 mm ≤ y ≤ 2.46 mm, 25.5 mm ≤ z ≤
44.5 mm, as indicated in Fig 2.3. This means that the concentration of the MBs is
about 105 ml−1. The parameters for the Marmottant equation are the same as in
Table 2.1.

The results are depicted in Fig. 2.10(a)-(c). The plots are made for j = 25
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Figure 2.6: (Color online) Maximum of the total pressure field in the plane y = 0 mm
in case of 2×105 nonlinear MBs with 2 µm radius, when taking into account (a) 1, (b)
14 and orders of scattering. The MB population is inside the dotted white rectangle.
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Figure 2.7: (Color online) Comparison between the time signatures (a) and the fre-
quency spectrum (b) of the total pressure pulse that is received by a point receiver
located at the red cross, for a number of iterations.
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the incident field.
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Figure 2.9: (Color online) Maximum pressure of the incident beam generated by a
phased array. (a) In the elevation plane x = 0 mm, and (b) in the azimuthal plane
y = 0 mm.

iterations, after which virtually no changes occur. The beam profiles of the harmonics
are separated by using a 4th order Butterworth filter with cutoff frequencies indicated
in the title of the plots. Because the embedding medium is linear, the higher harmonics
are just caused by the MB population. In Fig. 2.10(a)-(c) it is clearly visible that the
2H and 3H beams both come into existence at the point where the incident beam hits
the bubble population. In the areas where the incident pressure is high, e.g in the
focal area of the incident beam, the MBs oscillate in a more nonlinear way, resulting in
higher harmonic pressures. There is 15 dB difference between the maximum pressure
in the fundamental and 2H, whereas the difference between 2H and 3H is only about
5 dB. The latter can be explained by the fact that each MB simultaneously generates
a number of higher harmonics. Since the MBs have a resonance frequency close to
3 MHz, both 2H and 3H will have about the same strength. These observations
demonstrate that the mechanism of generating higher harmonics is quite different
from the gradual growth of subsequent harmonics in case of medium nonlinearity.
The difference between medium nonlinearity and nonlinearity caused by MBs also
becomes manifest in the way the harmonics are generated by the iterative scheme.
Loosely speaking, in case of medium nonlinearity, each iteration adds a new harmonic
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Figure 2.10: (Color online) Spectral profiles at y = 0 mm for the beam generated by
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to the previous result [24], and the full spectrum is only obtained after a number of
iterations. In case of nonlinear MBs, even the first iteration yields the full scattering
spectrum of the bubbles, and each iteration corrects the previous result by adding a
new order of scattering. As shown in Fig. 2.10(c), the successive iterations don’t cause
large changes in the shape of the spectrum, but rather correct the overall amplitude.

Moreover, Fig. 2.10(d) depicts the axial profiles of the harmonic beams. Also, a
comparison with the incident pressure field is presented. The pressure of the harmon-
ics amplitude is lower than the pressure of the fundamental, as expected. In the area
where the harmonic beams exist, the fundamental beam is lower than the incident
beam, i.e. without MBs. This can be explained by the conversion of energy of the
fundamental into energy of the higher harmonics.

In Fig. 2.11(a) and (b), a comparison between the fields of the first four orders
of scattering are shown for two populations with concentrations of 105 ml−1 and
104 ml−1, respectively. For the higher concentration, the first three orders are of
comparable amplitude. The peak amplitude of the fourth order is about 10 dB lower.
On the other hand, for the lower concentration, the amplitude of the second scattering
order is about 30 dB lower than the first. The third and fourth scattering orders
are at least 40 dB lower than the first order. Thus, these scattering orders do not
significantly affect the final result. Finally, it is visible that the field of each scattering
order is shifted to the left compared to the result of the previous order. This reinforces
the fact that multiple scattering should be taken into account, especially for high
concentrations.

2.5.4 Convergence

As illustrated in Fig. 2.2, each iteration adds an order of multiple scattering to the
computed pressure field. This fact can be used to determine the dependence between
the highest significant order of multiple scattering and the concentration of the MB
population.

To determine the significance of an order of multiple scattering, we compare the
results from the current iteration (j) and the previous iteration (j−1). The difference
between these results over the spatial Xcd and temporal Tcd computational domain
can be expressed by the relative root mean square error (RRMSE), which is defined
as

RRMSE =

√√√√∫Xcd

∫
Tcd

[
p(j)(x, t)− p(j−1)(x, t)

]2
dt dx∫

Xcd

∫
Tcd

[
p(0)(x, t)

]2
dt dx

. (2.33)

After a number of iterations the error will stabilize at a negligibly small level. In
that case, we conclude that the addition of more scattering orders will not further
improve the solution and we have reached the insignifcant scattering orders. When
this point has been reached, we say that the iterative process has converged.

In Fig. 2.12, the RRMSE as a function of the number of iterations j is depicted for
several concentrations of the MB population. We observe that for higher concentra-
tions, the initial iterations have a higher RRMSE. This indicates that the variations
between the initial iterations increase with concentration. Moreover, we see that for
higher concentrations, more iterations are needed to reach convergence. This can be
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Figure 2.11: (Color online) Beam profiles in the azimuthal plane y = 0 mm as gener-
ated by the phased array in a MB concentration of 105 ml−1 (a) and 104 ml−1 (b).
The first, second, third and fourth scattering orders are depicted from top to bottom,
respectively. The MB population is inside the dotted white rectangle.

explained by the fact that more close-range interactions occur in higher concentra-
tions, making higher scattering orders more important.

2.6 Conclusions

A novel method of simulating the multiple scattering of a pulsed ultrasound wave by
a large 3D population of nonlinearly responding MBs was presented. The approach
is based on the Iterative Nonlinear Contrast Source method, which was extended to
include a large number of nonlinear contrast point sources. Each of these act as a
virtual volume injection source that generates the nonlinear scattering caused by an
individual MB. The volume of each MB follows from its radius, which depends in
a nonlinear way on the surrounding time dependent pressure, as described by the
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Figure 2.12: RRMSE as a function of iterations for various populations of MBs con-
centrated in a volume of 1 ml.

Marmottant model. Starting with the incident pressure from the primary transducer,
the pressure in the 4D spatiotemporal computational domain is successively updated
by using a Neumann iterative scheme.

Physically, each iteration adds an extra order of multiple scattering between the
MBs. Numerically, it takes several iterations before the difference between successive
iterations stabilizes at a small number. From this, it was deduced that the inclusion
of several orders of multiple scattering is necessary to accurately capture the behavior
of a population of MBs. It was also observed that higher orders of multiple scattering
become more important for increasing concentrations.

The developed method accounts for an accurate representation of the individual
nonlinear behavior of each MB, as well as their higher order nonlinear interactions,
and may therefore be used for detailed investigations into the behavior of realistic
MB populations.

Appendix 2.A Scattering by a small sphere

Here we will show the steps that lead to Eqs. (2.15)-(2.17) in the main text. First, we
shortly derive the exact scattering of a plane acoustical wave by a penetrable sphere
of arbitrary size; extensive derivations may be found in the literature [32]. The plane
wave has an angular frequency ω, and is traveling in the z-direction through a medium
with density of mass ρ0 and speed of sound c0. The sphere has a radius R, a mass
density ρ1, and a speed of sound c1. For simplicity, the origin of the coordinate
system is positioned at the center of the sphere. Using cartesian coordinates with
x = (x, y, z), the plane incident wave is

pinc(x, ω) = p0 exp(−ik0z), (2.34)

where p0 is the amplitude of the wave, and k0 = ω/c0 is the wavenumber in the
surrounding medium. To use the symmetry of the problem, we will turn to spherical
coordinates with r = (r, θ, ϕ), where r (radius) is the distance to the origin, θ (eleva-
tion) is the angle between the positive z-axis and the position vector, and ϕ (azimuth)
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is the angle between the positive x-axis and the projection of the position vector on
the xy-plane. In spherical coordinates, the incident wave becomes

pinc(r, ω) = p0

∞∑
n=0

an jn(k0r), (2.35)

in which
an = (2n+ 1)(−i)n Pn[cos(θ)]. (2.36)

In Eq. (2.35) and Eq. (2.36), Pn is the n-th order Legendre polynomial and jn is the
spherical Bessel function of the first kind and order n. In analogy with Eq. (2.35),
the wave psc that is scattered by the sphere and the wave ptr that is transmitted into
the sphere can be written as

psc(r, ω) = p0

∞∑
n=0

bn h
(2)
n (k0r), (2.37)

ptr(r, ω) = p0

∞∑
n=0

cn jn(k1r), (2.38)

Here, h
(2)
n is the spherical Bessel function of the third kind and order n. The reflec-

tion coefficients bn and the transmission coefficients cn follow from the continuity of
the pressure and the radial particle velocity at the boundary of the sphere, i.e. by
requiring for each n that p(r, ω) and ρ−1∂p(r, ω)/∂r are continuous at r = R. This
yields

bn = an
ρ0c0 jn(k0R) j′n(k1R)− ρ1c1 jn(k1R) j′n(k0R)

ρ1c1 jn(k1R)h
(2)′
n (k0R)− ρ0c0 h

(2)
n (k0R) j′n(k1R)

, (2.39)

cn = an
ρ1c1 jn(k0R)h

(2)′
n (k0R)− ρ1c1 h

(2)
n (k0R) j′n(k0R)

ρ1c1 jn(k1R)h
(2)′
n (k0R)− ρ0c0 h

(2)
n (k0R) j′n(k1R)

, (2.40)

where the prime indicates the derivative of a function. Combination of Eqs. (2.36),
(2.37), and (2.39) yields the exact pressure that is scattered by the sphere.

Next, we consider the scattering by a sphere that is much smaller than the wave-
length of the incident wave. In that case, it makes sense to represent the scattered
pressure by its Taylor series around R = 0. If the frequency of the incident wave is
much lower than the first resonance frequency of the sphere, it is sufficient to approx-
imate the scattered pressure by the lowest order terms of the Taylor series. These are
the terms of order R3 that are given in Eqs. (2.15)-(2.17), where p0 = p(xsc, ω) is the
incident pressure at the location of the sphere. The term in Eq. (2.16) decays with
r−2 and is negligible in the far field, which is dominated by the terms in Eqs. (2.15)
and (2.17) with decay r−1. The sum of these terms yields, after normalizing by
p0 exp(−ik0r)/4πr, the well-known expression for the angle-distribution function of
a nonrigid sphere in the long wavelength limit [32].

Φ(θ) =
k2R3

3

[
κ1 − κ0

κ0
+

3(ρ1 − ρ0)

2ρ1 + ρ0
cos(θ)

]
. (2.41)
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Chapter 3

Nonlinear interaction of two
cross-propagating plane waves

An ideal contrast-enhanced ultrasound image should display MB-induced nonlineari-
ties while avoiding wave propagation nonlinearities. One of the most successful ultra-
sound pulse sequences to disentangle these nonlinear effects relies on the transmission
of cross-propagating plane waves. However, theory describing the noncollinear non-
linear interaction of two finite plane waves has not been fully developed and a better
understanding of these effects would improve contrast-enhanced ultrasound imaging
further. Here, local nonlinear interactions at the intersection of two plane-waves are
investigated by extending the Westervelt equation with a term including the Lagrangian
density. The Iterative Nonlinear Contrast Source (INCS) method is employed to nu-
merically solve this full nonlinear wave equation for two 3D finite cross-propagating
pulsed plane waves. In addition, analytical expressions for the cross-propagation of
two infinite continuous plane waves are derived. Numerical results obtained with INCS
show good agreement with the analytical expressions. Overall, the generated results
show that the pressure associated with local nonlinear effects is two orders of magni-
tude lower than the pressure associated with global nonlinear effects. Local nonlinear
effects are therefore expected to be negligible in the context of single-shot ultrasound
imaging, but they may influence approaches that subtract pressure fields such as am-
plitude modulation or pulse inversion.
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3.1 Introduction

The combination of ultrasound echography with lipid-shelled MBs administered in
the blood stream has enabled quantitative imaging of tissue perfusion [1] and super-
resolution imaging of the microvasculature in humans [2]. Pulse sequences exploit the
nonlinear response of resonant MBs in an acoustic field to detect their presence in a
linearly scattering tissue environment [3]. In practice, pulse sequences are prone to
nonlinear wave propagation artifacts and tend to missclassify tissue as MB domain,
even at low acoustic pressure. Renaud et al. [4] and Maresca et al. [5] have shown that
an amplitude modulation (AM) sequence based on the noncollinear interaction of two
ultrasonic wavefronts can significantly reduce such artifacts. A schematic example
of the cross-propagation of two finite pulsed plane waves is depicted in Fig. 3.1.
To further improve the specificity of contrast-enhanced ultrasound imaging, a full
understanding of nonlinear effects occurring in tissue devoid of ultrasound contrast
agents is critical.

Previous studies [6–9] have shown that local nonlinear effects emerge from the non-
collinear interaction of plane waves. Similar observations were reported for paramet-
ric acoustic arrays [10]. To date, simulation tools for solving the Westervelt equation
capture global, i.e. cumulative, nonlinear effects but neglect local nonlinear inter-
actions. Local nonlinear effects manifest where the wave field does not resemble a
simple progressive plane wave and the potential energy density of the resulting wave
is not equal to its kinetic energy density, which happens at the intersection of two
cross propagating plane waves. We will therefore extend the INCS [11,12] method to
solve the full nonlinear wave equation accounting for both global and local nonlinear
effects. In the original INCS method, global nonlinear effects are accounted for by
considering the nonlinear term in the Westervelt equation as a contrast source that
acts in a linear background medium. Here, we will introduce an additional contrast
source term to account for local nonlinear effects, as explained in Fig. 3.2. INCS
computes the acoustic pressure due to a source with a pulsed excitation in a 4D spa-
tiotemporal domain. The directional independence of INCS makes it well adapted to
the computation of local nonlinearities generated by the noncollinear interaction of
cross-propagating plane waves.

In this article, we will explain how INCS is extended to include local nonlinear
medium effects. Initially, the velocity potential is computed from the already cal-
culated pressure field. Next, spatial interpolation is used to upsample the pressure
and the velocity potential before computing the potential and kinetic energy densi-
ties. These terms then are used to calculate the Lagrangian density. Subsequently,
the contrast source term representing the local nonlinear effects is obtained by tak-
ing the relevant spatial and temporal derivatives. Spatial filtering is then applied to
downsample the spatiotemporal contrast source to its initial grid size. After the con-
volution with the Green’s function of the linear background medium, the nonlinear
field correction to the incident pressure field is calculated. Iteration of this approach
provides an increasingly accurate solution to the nonlinear wave problem.

The manuscript is organized as follows: fundamentals of INCS are described in
Section 3.2 and cover the addition of a contrast source term accounting for local
nonlinear effects. Section 3.3 derives the analytical expressions for the interaction of
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Figure 3.2: (Color online) Schematic diagram for the INCS method with extension to
account for local nonlinear effects (red).

two infinite, continuous, cross-propagating plane waves. In Section 3.4, INCS results
for two 3D cross-propagating plane waves travelling at a 20◦ angle are presented and
compared with the analytical derivations. Results for the pressure fields generated by
a linear array with hyperbolic time delays are also reported. Conclusions are given in
Section 3.5.

3.2 Fundamentals of INCS

3.2.1 Linear field

The linear pressure field generated by an external source in a linear, homogeneous
acoustic medium is described by the wave equation

c−2
0

∂2p(x, t)

∂t
−∇2p(x, t) = Spr(x, t), (3.1)
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Here, x [m] is the Cartesian position vector, and t [s] is the time. The symbol p(x, t)
[Pa] indicates the acoustic pressure, c0 = 1/

√
ρ0κ0 [m/s] is the small signal sound

speed in the background medium, where ρ0 [kg·m−3] is the mass density and κ0

[Pa−1] is the compressibility. The Laplacian operator ∇2 generates the sum of the
second order spatial derivatives. The acoustic field is generated by the primary source
term

Spr(x, t) = ρ0∂tq(x, t)−∇ · f(x, t). (3.2)

which contains the volume injection rate density q(x, t) [s−1] and the volume force
density f(x, t) [N m−3]. Pressure jump conditions for the velocity or the pressure can
be used to represent a source with a plane aperture, e.g. a phased array transducer.

The field p due to a source S can then be obtained as

p(x, t) = G[S]

=

∫
T

∫
X
S(x′, t)G(x− x′, t− t′)x′dt′. (3.3)

In this equation, the Green’s function G(x, t) is the solution of Eq. (3.1) for a spa-
tiotemporal impulsive source, which is known analytically, and the convolution takes
place over the spatial domain X and over the temporal domain T of the source S.
The operator G denotes the convolution of the Green’s function with the source term,
providing the solution to the linear wave equation for this given source.

In particular, the acoustic pressure p(0) = G[Spr] is the linear field of the primary
source. This field will act as the zeroth order iteration for the Neumann iterative
scheme that will be used to solve the nonlinear problem.

3.2.2 Nonlinear field due to global nonlinear effects

In medical ultrasound, the nonlinear behaviour of the medium can have a significant
impact on the propagation of the acoustic signals. If we account for nonlinear terms up
to second order in the acoustic quantities and assume that the cumulative nonlinear
behavior dominates the local behavior [6, 7], then it is sufficient to extend Eq. (3.1)
to the Westervelt equation

c−2
0

∂2p

∂t2
−∇2p = Spr + Snl. (3.4)

The additional nonlinear term is given by

Snl(p) =
β

ρ0c40
∂2
t p

2, (3.5)

in which β is the coefficient of nonlinearity of the medium. In INCS, this term
acts as a contrast source term that accounts for the global nonlinear behavior of
the medium. A first order nonlinear correction δp(1) = G[Snl(p

(0))] to the acoustic
pressure field p(0) can be calculated by following the same approach as in Eq. (3.3),
where the integration now takes place over the spatial domain Xnl and the temporal
domain Tnl of the nonlinear contrast source. The result is the first-order corrected
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field p(1) = p(0) + δp(1). The correction procedure can be repeated by substituting
the corrected field in the nonlinear contrast source Snl(p) and computing an improved
nonlinear correction δp to the acoustic pressure field p(0). This leads to a Neumann
iterative scheme that is given by the following set of equations

p(0) = G[Spr], (3.6)

p(j) = p(0) + G[Snl(p
(j−1))], if j ≥ 1. (3.7)

Within this scheme, other contrast sources can be accommodated that represent atten-
uation [13–16], inhomonegeous medium properties [17], or a population of scatterers
such as nonlinear oscillating microbbubles [18].

3.2.3 Nonlinear field due to local nonlinear effects

We can extend Eq. (3.4) by introducing a contrast source term SL(x, t) that represents
local nonlinear effects. We then get

c−2
0

∂2p(x, t)

∂t
−∇2p(x, t) = Spr(x, t) + Snl(x, t) + SL(x, t), (3.8)

where SL(x, t) is described by [6]

SL(x, t) = (∇2 + c−2
0 ∂2

t )L(x, t). (3.9)

Here, L(x, t) is the Lagrangian density

L(x, t) = 1
2ρ0 ∥u(x, t)∥

2 − 1
2κ0p

2(x, t), (3.10)

where u(x, t) is the particle velocity. The Lagrangian density is the difference between
the kinetic energy density and the potential energy density of the acoustic wave. For
a plane wave, the Lagrangian density equals zero, but this is not the case for two
noncollinear interacting plane waves.

In the current framework, we need an expression that gives the particle velocity as
a function of pressure. This is achieved through the velocity potential ϕ(x, t), which
is defined as

u(x, t) = ∇ϕ(x, t). (3.11)

In first order, the relation between p(x, t) and ϕ(x, t) then becomes

p(x, t) = −ρ0
∂ϕ(x, t)

∂t
. (3.12)

In this equation, terms of order two and higher in the acoustic quantities are neglected.
This results in neglecting terms of order three and higher in p2(x, t) and thus in
L(x, t), which is allowed because the wave equation in Eq. (3.8) is only accurate up
till order two in the acoustic quantities. With Eqs. (3.11) and (3.12), Eq.(3.10) can
be rewritten as

L(x, t) = ρ0
2

{
∥∇ϕ(x, t)∥2 − c−2

0

[
∂ϕ(x, t)

∂t

]2}
. (3.13)
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Up till second order accuracy, this is identical to [6]

L(x, t) = ρ0
4

(
∇2 − c−2

0

∂2

∂t2

)
ϕ2(x, t). (3.14)

3.3 Analytical expressions

3.3.1 Pressure and velocity potential

For comparison and benchmarking purposes, here we will derive analytical expressions
for the Lagrangian density and the resulting contrast source for cross-propagating
plane waves. Specifically, we consider two infinite, steady-state, plane acoustic waves
that are propagating in a homogeneous medium. Each wave has an angular frequency
ω and propagates under an angle ±θ with the z-axis, respectively. The medium has a
wave speed c0, a density of mass ρ0 and a coefficient of nonlinearity β. Without loss
of generality, we consider the plane y = 0 and omit the variable y. In this case, the
total incident pressure p(x, z, t) may be written as

p = P0[sin(ωt− kxx− kzz) + sin(ωt+ kxx− kzz)], (3.15)

where
kx =

ω

c0
sin(θ) = k sin(θ), (3.16)

kz =
ω

c0
cos(θ) = k cos(θ). (3.17)

Using Eq. (3.12), we find

ϕ(x, z, t) =
P0

ρ0ω
[cos(ωt− kxx− kzz) + cos(ωt+ kxx− kzz)]. (3.18)

3.3.2 Lagrangian density

To compute the Lagrangian density, we first need to compute the square of the velocity
potential, which is

ϕ2 =
P 2
0

ρ20ω
2
[I0 + I1 + I2 + I3 + I4], (3.19)

where

I0 = 1 (3.20)

I1 = 1
2 cos(2ωt− 2kxx− 2kzz), (3.21)

I2 = 1
2 cos(2ωt+ 2kxx− 2kzz), (3.22)

I3 = cos(2ωt− 2kzz), (3.23)

I4 = cos(2kxx). (3.24)

In order to derive this expression from Eq. (3.18), we have used the trigonometric
identity

cos(a+ b) + cos(a− b) = 2 cos(a) cos(b). (3.25)
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When computing the Lagrangian density, we can beforehand discard some terms in
Eq. (3.19). Because I0 is a constant, it will not contribute to L. Furthermore, I1 and
I2 are a representation of plane waves, which also do not contribute to L. Therefore,
we can continue the derivation with the remaining terms, giving

L =
P 2
0

4ρ0ω2

(
∇2 − 1

c20

∂2

∂t2

)
(I3 + I4)

=
P 2
0

4ρ0ω2

(
∇2 − 1

c20

∂2

∂t2

)
[cos(2ωt− 2kzz) + cos(2kxx)]

=
P 2
0

ρ0c20
sin2(θ)[cos(2ωt− 2kzz)− cos(2kxx)], (3.26)

where we have used
ω2

c20
− k2z = k2x. (3.27)

3.3.3 Contrast source term for local nonlinear effects

Here, we derive the analytical expression for the contrast source in Eq. (3.9). The
first term equals

∇2L =− 4
P 2
0 ω

2

ρ0c40
sin2(θ) [cos2(θ) cos(2ωt− 2kzz)

− sin2(θ) cos(2kxx)], (3.28)

and the second term is

c−2
0

∂2L
∂t2

= −4
P 2
0 ω

2

ρ0c40
sin2(θ) cos(2ωt− 2kzz). (3.29)

By adding Eqs. (3.28) and (3.29), the source term for the local nonlinear effects is
obtained as

SL =− 8
P 2
0 ω

2

ρ0c40
sin2(θ) cos(2ωt− 2kzz)

+ 4
P 2
0 ω

2

ρ0c40
sin4(θ)[cos(2ωt− 2kzz) + cos(2kxx)],

(3.30)

where we have used
1 + cos2(a) = 2− sin2(a). (3.31)

3.3.4 Contrast source term for global nonlinear effects

To find the analytical expression for the contrast source in Eq. (3.5), we first compute
the square of the acoustic pressure, which is

p2 = P 2
0 [J0 + J1 + J2 + J3 + J4], (3.32)
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where

J0 = 1 (3.33)

J1 = − 1
2 cos(2ωt− 2kxx− 2kzz), (3.34)

J2 = − 1
2 cos(2ωt+ 2kxx− 2kzz), (3.35)

J3 = − cos(2ωt− 2kzz), (3.36)

J4 = cos(2kxx), (3.37)

in which we have used

− cos(a+ b) + cos(a− b) = 2 sin(a) sin(b). (3.38)

Because J0 is a constant, and J4 is independent of time, these terms will have no
contribution to Snl. Therefore, we can continue the derivation with the remaining
terms, giving

Snl =
βP 2

0

ρ0c40

∂2

∂t2
(J1 + J2 + J3)

=8
βP 2

0 ω
2

ρ0c40
cos2(kxx) cos(2ωt− 2kzz). (3.39)

3.4 Numerical results

3.4.1 Configuration

After the derivation of the analytical expressions, we can continue with the comparison
of the numerical outcomes obtained by INCS with the results derived in Sec. 3.3. In
the current section, we consider a computational domain of dimensions X × Y ×
Z = 6.4 mm × 5 mm × 10 mm. The medium considered in the analysis is water,
characterized by a density of mass of ρ = 1060 kg/m3, and a speed of sound c0 =
1482 m/s.

The incident beam has a center frequency f0 = 15 MHz and is produced by a
phased array transducer comprising of 64 elements, each with dimensions Hel×Wel =
5 mm×0.1 mm, and a kerf with zero width. This configuration results in an aperture
with a width of Wap = 6.4 mm. The selection of this particular size was done to shift
the natural focus of the aperture out of the computational domain, to obtain two
cross-propagating pressure fields that closely approximate plane waves. Additionally,
the origin of the coordinate system has been positioned at the center of the transducer
aperture. A sketch depicting the geometry of the phased array is presented in Fig. 3.3.

The time-varying pressure at the surface of the elements is given by the expression

p(t) = P0 exp

[
−
(
t− Td

Tw/2

)2
]
sin[2πf0(t− Td)], (3.40)

where we have chosen Tw = 10/f0, which represents the duration of the Gaussian
envelope, and Td = 10/f0 +∆n, which is the total time delay. The latter consists of
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Figure 3.3: Sketch of the geometry of the phased array that generates the incident
field.

a fixed delay for keeping p(t) ≈ 0 at t = 0, plus a delay per element for the beam
steering ∆n. The maximum surface pressure of the elements is P0 = 100 kPa.

For accurately solving the full nonlinear wave equation up to the second har-
monic, a sampling frequency of 96 MHz has been used to discretize the spatiotempo-
ral domain. To reduce the artifacts arising from the edges of the aperture, a Tukey
apodization with a cosine fraction of 0.7 has been applied.

3.4.2 Crossing beams

First we will show results for two cross-propagating beams with finite plane wave
fronts. To generate two plane waves that propagate under angles of −20◦ and 20◦,
respectively, a triangular time delay profile is applied as depicted in Fig. 3.4(a). The
incident beams in the azimuthal plane y = 0 mm and the elevational plane x = 0 mm
are shown in Figs. 3.4(b) and (c), respectively. In the azimuthal plane, the beams
show a constant lateral width. The emitted pulses are long enough to resemble a
steady-state wave. In this way, we can compare the results of INCS with the ones
from the analytical expressions. Moreover, the maximum pressure in the intersection
area is 181 kPa, which corresponds to a mechanical index of 0.047. Although we use a
low mechanical index, the values for local and global nonlinear effects will be scaling
similarly as they are both a function of the square of the pressure.

In Fig. 3.5(a) and (b), the respective magnitudes of the source terms for global
and local nonlinear effects are depicted. The magnitude of the source term for the
global nonlinear effects is higher at locations where the incident pressure in Fig. 3.4
is higher. This is because the considered source term depends on the square of the
total pressure, which is dominated by the incident pressure. On the other hand, the
source term for the local nonlinear effects is stronger at locations where in Fig. 3.4
two waves are crossing under an angle, i.e. at the intersection of the two main beams,
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Figure 3.5: (Color online) Maximum values of the nonlinear contrast source terms
in the azimuthal plane y = 0 mm for the beams generated by the phased array. (a)
Source term for global nonlinear effects. (b) Source term for local nonlinear effects.
(c) Detailed view of both source terms side by side.
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and also at the intersection of a main beam and its grating lobe. This is because at
these locations the kinetic energy density is not equal to the potential energy density.
In the regions where there is only a single plane wave, the value of the source term is
virtually zero. The source term for the local nonlinear effects is in general an order
of magnitude smaller than the source term for the global nonlinear effects. This is
also predicted by the analytical expressions of Sec. 3.3. Besides the difference in
amplitude, the spatial behavior of the source terms also differs, as demonstrated in
Fig. 3.5(c). In the left plot, a horizontal modulation of the source term for the global
nonlinear effects is depicted. This is due to the interference of the pressure waves of
both beams, which results in a horizontal modulation of the p2 term in the source
term, in agreement with Eq. (3.39). In the right plot, the horizontal modulation of
the source term for the local nonlinear effects is much weaker. This is because the
potential energy density depends on p2, while the kinetic energy density term depends
on v2. Since both terms spatially alternate in magnitude, the source term will show
less horizontal modulation, which agrees with Eq. (3.30). The scaling of the colorbars
for both plots are chosen to ease the comparison.

The temporal signatures of the analytical and numerical results for the contrast
source that represents the local nonlinear effects are presented in Fig. 3.6(a). The
results apply to the point (x, y, z) = (0 mm, 0 mm, 4.3 mm), which is the center of
intersection of the two plane waves. The depicted time interval spans 9 periods around
the center of the incident pressure pulse, to avoid transient effects from the beginning
and end of this pulse and to allow comparison with our steady-state analytical results.
There is excellent agreement between the analytical results and the numerical results
generated by INCS. In Fig. 3.6(b), a comparison between the numerically obtained
temporal signatures of the contrast source terms that represent the global and local
nonlinear effects is presented. The signatures are 180◦ out of phase, which agrees with
the fact that the first and dominant term in Eq. (3.30) has a minus sign while the
expression in Eq. (3.39) has not. The peak amplitude of the source term attributed

to local nonlinearities is 11.3 × 109 Pa/m
2
and the peak amplitude of the source

term attributed to global nonlinearities is 330 × 109 Pa/m
2
. This corresponds to an

amplitude rate of approximately 29.2. In the current case with θ = 20◦ and β = 3.21,
the same result is obtained upon comparing Eq. (3.39) with Eq. (3.30).

Figure 3.7 shows the pressures that are generated by the source terms in Fig. 3.5.
In panel (a), we see that the global nonlinear effects accumulate along each beam
because these effects cause progressive pressure waves. In contrast, we observe in
panel (b) that the local nonlinear effects emerge only at locations where the source
term is present, but these do not cause progressive pressure waves that propagate
into other regions. Although the source term for global nonlinear effects is about 30
times larger than that the source term for local nonlinear effects, the cumulative effect
makes that the pressure field of the former is about 500 times larger than the latter.
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Figure 3.6: (Color online) Time domain signatures of the contrast sources at the
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3.4.3 Focused beam

Next we will show the results for a focused phased array generating a single focused
beam, which is commonly utilized on conventional ultrasound machines for multiple
medical applications. The computational domain, geometry of the phased array, and
the transmitted pulse are identical to those in Sec. 3.4. The only difference is the time
delay profile, which is presented in Fig. 3.8(a). The time delays are chosen such that
the focus is at the same position as the center of the interaction zone of the crossing
beams.

Figure 3.8(b) displays the incident pressure field generated by the focused phased
array. Compared to the crossing beams in Fig. 3.4(a), the maximum amplitude is
roughly four times larger at the focus while the length of the focal area is considerably
smaller than the interaction zone. The pressure field due to global nonlinear effects
is presented in Fig. 3.8(c). The cumulative behavior of the global nonlinear effects
is evident. Figure 3.8(d) shows the pressure field due to local nonlinear effects. In
comparison to the global nonlinear effects, these effects are solely occurring near the
focus, i.e. where the waves emitted by the transducer in different directions, interfere
constructively. In the current case, the peak amplitude of the global nonlinear effects
is about 150 times larger than the peak amplitude of the local nonlinear effects. This
is in agreement with the previous findings for focused beams [19].

3.5 Conclusions

The Iterative Nonlinear Contrast Source (INCS) method has been extended with an
additional contrast source term to simulate local nonlinear effects that are not included
in the commonly employed Westervelt equation for nonlinear wave propagation. For
two plane waves propagating under an angle, it has been shown both analytically and
numerically that this contrast source is nonzero in the interaction zone of the waves.
Numerical results show that the pressure associated with local nonlinear effects does
not propagate, and indeed is a local phenomenon. This behavior sets local nonlinear
effects apart from global nonlinear effects, which cause harmonic pressure waves that
accumulate along the entire propagation path of a single plane wave. Moreover,
analytical and numerical results for two beams crossing under 20◦ in water show that
the pressure associated with nonlinear effects is about two orders of magnitude lower
than the pressure associated with global nonlinear effects. The same is observed for
a highly focused beam with f# = 1. Thus, it is expected that local nonlinear effects
will not have a significant influence on ultrasound imaging protocols based on single
pulse transmissions, but these may have an influence on protocols in which results
from multiple pulse transmissions are subtracted, like pulse inversion and amplitude
modulation.
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Chapter 4

Impact of transmitted wavefront shape on
nonlinear ultrasound imaging of

monodisperse microbubbles

The field of contrast-enhanced ultrasound (CEUS) combines nonlinear, resonant mi-
crobubbles (MBs) with dedicated pulse sequences to reveal the vascular function of
organs. Clinical ultrasound contrast agents consist of polydisperse MB suspensions
with diameters ranging from 0.5 to 10 µm and resonance frequencies ranging from 1
to 15 MHz. As a result, just a small fraction of MBs resonates at a given ultrasound
frequency. MB suspensions with narrow size distributions can be tuned for a specific
imaging frequency, boost CEUS sensitivity and enable deeper vascular imaging. How-
ever, their enhanced nonlinear behavior makes imaging susceptible to nonlinear wave
propagation artifacts. Here, we numerically investigate the impact of the acoustic
wavefront shape on the imaging of nonlinear, monodisperse MBs. Specifically, our
approach relies on an extension of the Iterative Nonlinear Contrast Source (INCS)
method that accounts for all nonlinear effects in CEUS. We demonstrate that super-
sonic x-shaped wavefronts referred to as x-waves can be used to generate ultrasound
images of monodisperse MBs without nonlinear wave propagation artifacts. On the
contrary, imaging based on focused, planar and diverging wavefronts leads to signifi-
cant nonlinear artifacts. Taken together, our results show that x-waves can harness the
full potential of monodisperse MBs by enabling their sensitive and specific detection
in a tissue context.
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4.1 Introduction

The combination of ultrasound imaging with intravenously administered echogenic
MBs has enabled significant advances such as microvascular imaging beyond the
diffraction limit [1]. MBs are nonlinear oscillators that scatter ultrasound efficiently
thanks to their high contrast in density and compressibility with blood plasma [2]
and their resonant behavior in the MHz range [3]. Ultrasound pulse sequences [4]
exploit nonlinear MB scattering to detect these vascular agents deep into tissues. A
drawback of established pulse sequences such as amplitude modulation (AM) imaging
is their susceptibility to cumulative nonlinear effects induced by wave propagation in
MB suspensions [5, 6]. Briefly, ultrasound waves propagating in a highly nonlinear
effective medium such as a resonant MB suspension experience amplitude-dependent
attenuation and amplitude-dependent speed of sound variations [7, 8]. As a result,
waves with different amplitudes get distorted differently through a MB suspension.
In the end, waves carry that nonlinear distortion deeper into the medium, beyond the
MB suspension, where they cause echoes that make AM imaging to misclassify tissue
as MBs.

In 2015, Renaud et al. [9] demonstrated that AM imaging based on the intersec-
tion of two diverging wavefronts could improve CEUS specificity. Maresca, Sawyer
et al. [10] further optimized this approach into a sequence called cross-amplitude
modulation (xAM) that relies on cross-propagating plane waves intersecting with a
constant angle. xAM presents fundamental advantages over previous AM implemen-
tations. First, the constant cross-propagation angle ensures a constant reduction of
cumulative nonlinear effects along the line where the wavefronts cross. Second, it
generates a non-diffractive beam pattern with a constant beam width [11, 12] that
improves the lateral resolution of ultrasound images.

This study numerically investigates the specificity of AM imaging of monodisperse
MBs, the most nonlinear ultrasound contrast agent to date [13], for implementations
using focused [4], planar [14], diverging [15] and x-shaped [10] ultrasonic wavefronts.
We use the Iterative Nonlinear Contrast Source (INCS) method [16, 17] to solve the
full nonlinear acoustic wave equation in an acoustic medium containing a suspen-
sion of resonant monodisperse MBs. INCS was extended to account for ultrasound
attenuation, medium inhomogeneities [18, 19], local medium nonlinearities [20] and
nonlinearities arising from the oscillatory behavior of resonant MBs surrounded by
tissue-mimicking linear scatterers [21]. Together, these capabilities allow us to simu-
late CEUS imaging modes such as AM and xAM.

The manuscript is organized as follows. Secs. 4.2.1 and 4.2.2 describe the INCS
method and its application to AM imaging. Sec. 4.2.3 describes the media used in the
simulations. Sec. 4.2.4 describes the beamforming process that has been implemented
to reconstruct ultrasound images. Sec. 4.3.1 presents the incident and residual acous-
tic pressure fields generated by AM pulses in a homogeneous nonlinear medium free of
ultrasound contrast agents. Sec. 4.3.2 presents the total and residual acoustic pressure
fields in a medium containing a monodisperse MB suspension. Sec. 4.3.3 describes
the origin of nonlinear wave propagation artifacts observed in AM imaging. Further-
more, Sec. 4.3.5 presents numerical AM images of monodisperse MBs generated with
x-shaped, focused, planar and diverging wavefronts. Finally, a brief analysis of the
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generated results is presented in Sec. 4.4, while concluding remarks of this study are
given in Sec. 4.5.

4.2 Methods

4.2.1 Extension of INCS to account for nonlinear effects in
CEUS

The linear incident pressure field resulting from an external source in a linear, lossless,
homogeneous and isotropic background medium can be mathematically described by
the wave equation

c−2
0 ∂2

t p−∇2p = Spr, (4.1)

where p [Pa] represents the acoustic pressure. The parameter c0 [m/s] denotes the
sound speed in the background medium. The operator ∇2 denotes the Laplacian and
∂2
t represents the second order time derivative. On the right-hand side of the equation,

the primary source term Spr is used to describe the action of the transducer. The
linear acoustic pressure distribution arising from the primary source in the background
medium can be explicitly found as

p(x, t) = G(x, t) ∗x,t Spr(x, t), (4.2)

where G(x, t) is the Green’s function of the background medium, and the operator ∗x,t
denotes convolution over the spatiotemporal domain of Spr. Because the background
medium is simple, G(x, t) is known analytically.

Realistic media are modeled by more complex wave equations that also account
for inhomogeneities, attenuation, nonlinear behavior, etc. Within the doctrine of the
INCS method, all terms in which the more complex wave equation deviates from the
simple background wave equation in Eq. (4.1) are shifted to the right hand side and
are considered as contrast sources. The result is

c−2
0 ∂2

t p−∇2p = Spr + Scs(p), (4.3)

where Scs(p) is the total of all contrast source terms that account for the inhomogene-
ity, attenuation, nonlinearity, and the like that are not exhibited by the background
medium. The acoustic pressure distribution arising from the primary source in a
realistic medium can be implicitly found as

p(x, t) = G(x, t) ∗x,t [Spr(x, t) + Scs(p)]. (4.4)

With the INCS method, an explicit solution is obtained in an iterative way, e.g. by
using the Neumann iterative scheme

p(0) = G(x, t) ∗x,t Spr(x, t), (4.5)

p(n) = G(x, t) ∗x,t [Spr(x, t) + Scs(p
(n−1))]

= p(0) +G(x, t) ∗x,t Scs(p
(n−1))], (n ≥ 1). (4.6)
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This general approach is used for the numerical simulations in this paper.
To simulate CEUS imaging, all nonlinear effects occurring during ultrasound wave

propagation in a nonlinear medium containing nonlinearly scattering MBs must be
taken into account. In addition, simulations should support scattering from tissue-
mimicking linear scatterers (LSs) that typically surround a MB suspension in biolog-
ical tissues. Based on these criteria, INCS was extended using extra contrast source
terms resulting in the new nonlinear wave equation

c−2
0

∂2p

∂t2
−∇2p = Spr + SMB(p) + SLS(p) (4.7)

+ Snl(p) + SL(p),

where SMBs is the contrast source term describing the scattering of the MBs in the
suspension [21], SLS is the contrast source term describing the scattering of the linear
scatterers in the LS suspension [21], Snl and SL are the terms describing global [21]
and local [20] medium nonlinearities, respectively. The sum of all the contrast source
terms yields the term Scs(p) in Eq. (4.3), which is then convolved with the 4D spa-
tiotemporal Green’s function of the linear background medium to compute a nonlinear
field correction. Based on the Neumann iterative scheme described in Eqs. (4.5) and
(4.6), INCS successively generates an increasingly accurate solution of Eq. (4.7), tak-
ing into account nonlinear effects and multiple scattering.

4.2.2 INCS implementation of AM pulse sequences

In this study, we simulate a 64-element (Ntr = 64), 15 MHz linear transducer array
emulating a L22-14vX probe (Verasonics, Kirkland, WA, USA). Transducer elements
have a height Hel = 1.4 mm, a width Wel = 0.08 mm, a pitch Ptr = 0.1 mm and the
total focal distance of the array, which includes a lens in elevation is zel = 8 mm. The
natural focus of the transducer array is (Ntr Ptr)

2/4λ = 103 mm in the azimuthal
plane and H2

el/4λ = 5 mm in the elevational plane, with λ being the wavelength.
All transmitted ultrasound waveforms used in this study are Gaussian-windowed sine
bursts defined as follows

s(t) = exp

[
−
(
t− Td

Tw/2

)2
]
sin[2πf0(t− Td)], (4.8)

where f0 = 15 MHz is the center frequency, Tw = 1.5/f0 = 0.1 µs is the width of the
Gaussian envelope and Td = 3/f0 = 0.2 µs is the temporal delay of the window. The
simulated medium is water, characterized by a density of mass ρ0 = 1060 kg/m3 and
a speed of sound c0 = 1482 m/s. The first AM sequence implemented in INCS is the
sequence with x-shaped wavefronts [10]. xAM pulse transmissions proceed as follows:
first, elements 1 to N/2 and elements N/2 + 1 to N of the array simultaneously
transmit two axisymmetric, tilted plane waves with wavefronts that make an angle
θ and -θ with respect to the array (see pulse 1, Fig. 4.1(a)). Second, only elements
1 to N/2 transmit a single tilted plane wave at an angle -θ with respect to the
array (see pulse 2, Fig. 4.1(a)). Third, only elements N/2 + 1 to N transmit a
single symmetric plane wave at an angle θ with respect to the array (see pulse 3,
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Fig. 4.1(a)). The two cross-propagating waves depicted as pulse 1 interfere in a small
zone around a virtual bisector that separates the two half-apertures. Particles of
the insonified medium that are positioned along the bisector experience an identical
pressure amplitude from pulses 2 and 3, but a double pressure amplitude from pulse
1 (x-wave transmission). Note that the overpressure at the plane waves’ intersection
depicted in pulse 1 propagates along the bisector with a supersonic phase velocity

cX = c0/ cos(θ). (4.9)

The second AM sequence implemented in INCS relies on focused ultrasound wave-
fronts as depicted in Fig. 4.1(b). Focused AM transmissions proceed as follows: first,
all elements of the array are activated following a parabolic delay law to generate a
high amplitude transmission (see pulse 1, Fig. 4.1(b)). Second, even transducer ele-
ments of the same aperture are activated using the same delay law to generate a half
amplitude transmission (see pulse 2, Fig. 4.1(b)). Third, odd transducer elements of
the same aperture are activated using the same delay law to generate a second half
amplitude transmission (see pulse 3, Fig. 4.1(b)). Here the focal distance is set to
zf = 5 mm. Note that in focused AM, acoustic wavefronts propagate at speed of
sound c0.

The third AM sequence implemented in INCS relies on planar ultrasound wave-
fronts as seen in Fig. 4.1(c). Plane wave transmissions are generated by transmitting
the same pulse with all elements of the transducer array. Here as well, the transmitted
acoustic pressure amplitude is modulated using either all, even or odd elements of the
array aperture (Fig. 4.1(c)). Transmitted plane waves propagate at speed of sound
c0 in the z direction.

The fourth AM sequence implemented in INCS relies on diverging acoustic wave-
front transmissions. A virtual point source located at (xf , zf) = (0,−3) mm is used
to generate the diverging delay law. Here as well, the transmitted acoustic pressure
amplitude is modulated using either all, even or odd elements of the array aperture
(Fig. 4.1(d)). Transmitted diverging waves also propagate at speed of sound c0.

4.2.3 Simulation of a monodisperse MB suspension

The dimensions of the computational domain are set to X × Y × Z = 6.4 mm ×
1.5 mm×10 mm as illustrated in Fig. 4.2. To accurately solve the full nonlinear wave
equation up to the second harmonic frequency (h = 2), we choose a Nyquist frequency
Fnyq equal to at least h + 1.5 = 3.5 times of the center ultrasound frequency. This
corresponds to a sampling frequency of Fs = 2 · Fnyq = 2 · 3.5 · 15 = 105 MHz as
a basis for discretizing the spatiotemporal domain. Furthermore, it is known that
we need at least j = h + 1 = 3 iterations for an accurate prediction of the second
harmonic [17]. To achieve a relative root mean square error of 10−6 between successive
iterations below, we take j = 5 iterations. Consequently, our simulations account for
MB interactions up to 4th order multiple scattering [21].

We consider a monodisperse MB suspension confined in a cylindrical volume po-
sitioned at the center of the simulation domain (x, y, z) = (0, 0, 5) mm, with a
radius of 1 mm in the xz plane and a length of 1.4 mm in the y dimension, as shown
in Fig. 4.2(a). This geometry is chosen to mimic MBs filling the lumen of a blood
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Figure 4.2: Wave propagation media simulated in INCS. (a) Computational domain
containing a monodisperse MB concentration equal to 5.7 ×106 ml−1 (blue) of 0.6
µm radius embedded in a water medium. (b) Second configuration incorporating
a tissue-mimicking scatterer concentration of 6.2 ×106 ml−1 (grey) surrounding the
monodisperse MB suspension.

vessel. A MB radius R = 0.6 µm, corresponding to a resonance frequency of 15 MHz
in the elastic oscillation regime, is selected to match the center frequency of the sim-
ulated transducer array. We use the Marmottant model [3] to emulate the nonlinear
behavior of each MB in the simulation domain. Simulated material properties of MBs
are provided in Table 4.1 [22].

A total of 25,000 monodisperse MBs are randomly distributed within the cylin-
drical volume, resulting in a MB concentration of 5.7 × 106 ml−1 and a gas volume
concentration of 5.15× 10−6, which follows injection protocols reported by MB man-
ufacturers (e.g. Fujifilm VisualSonics, Toronto, ON, Canada).

To reveal AM imaging artifacts due to nonlinear wave propagation, we also con-
sider a second domain with tissue mimicking linear scatterers (Fig. 4.2(b)). These
are located in a volume of L ×W ×H = 4 mm × 1.5 mm × 5 mm surrounding the
MB suspension. The linear scatterers have a spherical radius of 0.6 µm to match the
speckle pattern generated by monodisperse MBs. Their concentration is 6.2 × 106

Table 4.1: Material properties of a single simulated MB with R = 0.6 µm. κs [kg/s] is
the shell viscosity, σw [N/m] is the surface tension of water, σR [N/m] is the effective
surface tension, γ is the polytropic exponent of the gas encapsulated in the bubble,
χ [N/m] is the shell elasticity, µ [Pa·s] is the surrounding liquid dynamic viscosity
increased by a factor of 2 to account for thermal damping.

κs [kg/s] σw [N/m] σR [N/m] γ χ [N/m] µ [Pa · s]
2.4× 10−9 0.072 0.01 1.07 0.5 2× 10−3
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ml−1, and their volume concentration is 5.61× 10−6, which is approximately similar
to the MB suspension. The scattering coefficient of the linear scatterers [21] is set to
g = 6.57× 10−6 m to match the scattering level of monodisperse MBs.

4.2.4 Ultrasound image reconstruction

xAM and focused AM images are reconstructed line-by-line using 42 sliding sub-
apertures across the MB suspension. For each sub-aperture position, 3 pulses are
transmitted sequentially as illustrated in Figs. 4.1(a) and (b), leading to a total of
126 ultrasound transmissions per AM image. To acquire RF data corresponding to
each image line, instead of moving the transducer, we translate the position of the MB
suspension laterally with steps dx = 0.1 mm, which is the pitch of the imaging array.
The reconstructed image width ranges from x = −2.1 mm to x = 2.1 mm. Plane
wave and diverging wave AM images are reconstructed out of 3 pulse transmissions
only, as each insonification captures a wide 2D field of view (Fig. 4.1(c) and (d)).
B-mode images are reconstructed using the first pulse of each AM sequence.

xAM image reconstruction is performed along the bisector as illustrated in Fig. 4.3.
The transmit distance dTX and the transmit time of flight τTX to a scatterer Xs =
(xs,zs) are given by

dTX(θ, zs) = Dh tan (θ) + zs, (4.10)

τTX =
dTX

cX
, (4.11)

with Dh = NtrPtr/2 being the length of the half aperture. The receive distance dRX

and receive time of flight τRX are given by,

dRX(Xs) =

√
(xs − xi)

2
+ z2s , (4.12)

τRX =
dRX

c0
, (4.13)

A

Xs

Transmit Receive

µ
xsxi

cX
c0

z

x

�TX
zs

xs

c0

Xs

�RX
zs

xi

Figure 4.3: Transmit and receive geometry model used for xAM image reconstruction.
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with xi the i-th element position. Knowledge of transmit and receive time of flights en-
ables the reconstruction of one image line using a conventional delay-and-sum (DAS)
beamforming algorithm [23]. By repeating the process for each transmitting sub-
aperture position, a xAM image of the MB suspension is generated.

Focused AM image reconstruction is performed line-by-line as well using usual
transmit and receive time of flights. For plane wave and diverging wave image recon-
struction, we use the MUST [24] toolbox and a virtual point source formulation as
described by Perrot et al. [23].

4.3 Results

4.3.1 Acoustic pressure fields in the absence of microbubbles

To isolate nonlinear effects due to wave propagation, we first solve the full nonlinear
wave equation in a homogeneous nonlinear medium consisting of water that is free of
MBs.

Fig. 4.4 presents the simulated incident pressure fields generated by the first pulse
of each AM sequence, as well as the time delays and apodization functions used to
generate these beam patterns. To ensure a fair comparison of nonlinear effects, we
equated the average acoustic pressure delivered by the first pulse of each sequence on
the z axis between z = 4 mm and z = 6 mm (see Appendix 4.A).

We report in Fig. 4.4(a) the x-wave beam pattern simulated for an angle θ = 20◦.
All 64 elements are used in transmission and a Tukey window apodization, with
a parameter α = 0.3 representing the ratio of cosine-tapered section length to the
entire window length, is applied along the elements of each half aperture of the array
to mitigate the side lobe level and diffraction effects. The non-diffractive x-wave
beam pattern exhibits a constant beam width along the bisector. Beyond the x-wave
intersection zone, a noticeable acoustic pressure drop is observed along the bisector.

Fig. 4.4(b) displays the focused wave beam pattern generated with parabolic time
delays applied to a sub-aperture of 22 elements apodized with a Tukey window (α =
0.3). The beam focus is equal to z = 4.75 mm, corresponding to an f-number of 2.27.
Most of the focused beam energy is concentrated between z = 4 mm and z = 6 mm.
The focal length is shorter than the x-wave beam, whereas in the lateral direction,
the focused beam is noticeably wider that the x-wave beam.

Fig. 4.4(c) displays the plane wave beam pattern generated with all 64 elements
apodized with a Tukey window (α = 0.3). The plane wave beam focus is z = 5.25 mm
and the elevated amplitude around z = 5 mm is due to the focusing in elevation.

Fig. 4.4(d) displays the diverging beam pattern generated by inverting the time
delays used in Fig. 4.4(b). Here the total beam focus is equal to z = 4.65 mm, also
due to the focusing in elevation.

The primary objective of CEUS imaging is to suppress nonlinear effects arising
from wave propagation in the medium of interest, while retaining nonlinear effects
arising from ultrasound contrast agents administered in that medium. To investigate
the ability of AM sequences based on x-shaped, focused, planar and diverging wave-
fronts to suppress nonlinear wave propagation effects, we report the residual acoustic



4444

70 4. XAM, CROSS-PROPAGATING PLANE WAVES

-2
0

2

z [mm]

x
 [m

m
]

2 04681
0

z [mm]
2 04681
0

X
-w

a
v
e

0 1

Time delays 

[μs]

N
o
. o

f elem
en

ts
64

4
8

32
1
6

1

0
.50

(a)

(e)

F
ocu

sed
 w

av
e

0 1

N
o. of elem

en
ts

64
48

32
16

1

30x
10

-2

6

-2
0

2
x
 [m

m
]

(b
)

(f)

P
lan

e w
av

e

0 1

N
o. of elem

en
ts

64
48

32
16

1

0 1-1

-2
0

2
x
 [m

m
]

(c)

(g)

D
iv

ergin
g w

av
e

0 50

100

150

200

250

300

p [kPa]

0 1

N
o. of elem

en
ts

Apodization

64
48

32
16

1

0.5 1x
10

-1
0

-2
0

2
x
 [m

m
]

0 642 108

p [kPa]

1
2

(d
)

(h
)

Incident pressure fieldsResidual pressure fields

F
ig
u
re

4.4:
A
cou

stic
p
ressu

re
fi
eld

s
in

a
h
om

ogen
eou

s
n
on

lin
ea
r
w
a
ter

m
ed
iu
m
.
(T

o
p
row

)
d
elay

law
s
(b
lack

)
an

d
ap

o
d
ization

(o
ran

g
e)

u
sed

for
th
e
fi
rst

p
u
lse

tran
sm

ission
s.

(a)-(d
)
In
cid

en
t
p
ressu

re
fi
eld

s
g
en
era

ted
b
y
th
e
fi
rst

p
u
lse

tran
sm

ission
of

each
seq

u
en
ce

u
sin

g
x
-sh

a
p
ed
,
fo
cu
sed

,
p
lan

ar
an

d
d
iv
ergin

g
w
avefro

n
ts

resp
ectiv

ely.
(e)-(h

)
R
esid

u
a
l
A
M

p
ressu

re
fi
eld

s
for

th
e

x
A
M
,
fo
cu
sed

A
M
,
p
la
n
ar

A
M

an
d
d
iv
ergin

g
A
M

p
u
lse

seq
u
en
ces

resp
ectively.

x
A
M

tra
n
sm

issio
n
s
a
re

sim
u
lated

for
θ
=

20
◦.



4444

4.3. RESULTS 71

pressure fields after the AM operation (pulse 1 minus pulse 2 minus pulse 3) and
display them on scale in Figs. 4.4(e)-(h).

We observe that AM pulse sequences based on focused, planar and diverging
wavefronts suffer from effects arising from nonlinear wave propagation and local non-
collinear nonlinear interactions [20], even in the absence of MBs. The xAM residual
pressure field on the contrary is nearly free of nonlinear effects. Quantitatively, the
residual xAM pressure exhibits the lowest amplitude with a peak of 0.26 kPa (see
Appendix 4.B, Fig. 4.10(a)), followed by the residual focused AM pressure field with
a peak of 6 kPa, the plane wave residual AM pressure field with a peak of 11.9 kPa,
and the residual diverging AM pressure field with a peak of 12.3 kPa.

Qualitatively, for the xAM case (Fig. 4.10(a)), the highest residual pressure values
are observed along the bisector. However, we observe that below the plane wave
intersection zone the residual xAM pressure level drops significantly.

For the focused AM case (Fig. 4.4(f)), nonlinearities peak at the focus but extend
beyond the focus because of cumulative nonlinear wave propagation effects, following
the shape of the transmitted beam (Fig. 4.4(b)).

For the plane wave AM case (Fig. 4.4(g)) a gradual onset of nonlinearities is
observed as expected for cumulative nonlinear effects due to wave propagation [25].
Additionally, a higher amplitude is observed on the sides of the plane wave beam due
to the larger incident pressure in those regions.

For the diverging AM case (Fig. 4.4(h)), the behavior is similar to the plane wave
case and nonlinearities reach the highest peak amplitude compared to all the other
cases.

4.3.2 Acoustic pressure fields in the presence of monodisperse
MBs

Total acoustic pressure fields generated by the first pulse of each AM sequence in the
presence of a resonant monodisperse MB suspension are displayed in Figs. 4.5(a)-(d).
The x-wave pressure field (Fig. 4.5(a)) is attenuated below the MB suspension and
shows a peak acoustic pressure at (x, z) = (0, mm, 7 mm) of 166 kPa compared
to 216 kPa in water without MBs (Fig. 4.4(a)). Compared to the x-wave case, the
focused pressure field shows a more substantial level of attenuation below of the MB
suspension with peak acoustic pressure at (x, z) = (0, mm, 7 mm) mm (b) of 140
kPa compared to 205 kPa in water without MBs (Fig. 4.4(b)). Similarly, the planar
pressure field shows a peak pressure of 186 kPa compared to 272 kPa in water without
MBs (Fig. 4.4(c)) and the diverging pressure field shows a peak pressure of 168 kPa
compared to 243 kPa in water without MBs (Fig. 4.4(d)).

Residual AM pressure fields in the presence of a suspension of resonant monodis-
perse MBs are reported in Figs. 4.5(e)-(h). For the xAM case, a better view of the
spatial pattern of Fig. 4.5(e) is illustrated in Fig. 4.10(b) of Appendix 4.B. We ob-
serve that nonlinear effects accumulate along the direction of propagation of each
plane wave. However, along the bisector and below the MB suspension, nonlinear ef-
fects are suppressed. The residual xAM pressure field reaches a maximum of 15.2 kPA
within the MB suspension, as desired for a CEUS pulse sequence, and immediately
drops beyond the MB suspension. A 1.7 kPa peak pressure is measured at z = 6.3
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mm.

For the focused AM case (Fig. 4.5(f)), the amplitude of the residual pressure field
builds up inside the MB suspension along the z-axis and reaches a maximum of 51
kPa at z=5.7 mm, which is deeper than the transducer focus of 5.25 mm. Below the
MB suspension, the amplitude of the residual AM pressure field remains high and
reaches 47.7 kPa at z = 6.3 mm, which is 28 times higher than for the xAM case.

For the planar AM case (Fig. 4.5(g)), the amplitude of the residual pressure field
builds up along the z-axis and expands across the width of the plane wave beam profile.
We observe an increase of nonlinear effects within and below the MB suspension, which
is as wide as the MB cloud. Cumulative nonlinear effects are also observed besides of
the MB suspension, and are caused by nonlinear wave propagation alone. The planar
AM pressure field reaches a peak of 52 kPa within the MB suspension and 53.4 kPa
at z = 6.3 mm, which is 31 times higher than for the xAM case.

For the diverging AM case (Fig. 4.5(h)), we observe an increase of nonlinear effects
below the MB suspension that spans the full width of the MB suspension as well. The
AM pressure field peaks at 58.6 kPa within the MB suspension and 59.4 kPa at z = 6.3
mm, which is 35 times higher than for the xAM case.

4.3.3 Reason of reduction of nonlinear wave propagation arti-
facts by an x-shaped wavefront

To elucidate why cumulative nonlinear effects do not build up along the bisector in the
xAM case, in Fig. 4.6 we present the transmitted waveforms with a planar wavefront
and an x-shaped wavefront at a depth z = 7 mm, which is below the MB suspension.

Fig. 4.6(a) displays the three pulses of the planar AM sequence at a depth of 7
mm. Pulses reach z = 7 mm in 4.73 µs (including 0.1 µs delay), corresponding to a
wave velocity of 1482 m·s−1. The residual waveform derived from the AM operation
exhibits a non-zero pressure amplitude with a residual AM peak pressure of 50.6 kPa
compared to 162.2 kPa for the first pulse of the sequence. We observe that the sum
of the second and third pulses of the sequence (Fig. 4.6(a), dashed magenta line) does
not match the waveform of the double amplitude pulse 1 (Fig. 4.6a, continuous black
line).

In comparison, Fig. 4.6(b) shows that the three pulses of the xAM sequence prop-
agate to a depth of 7 mm in 4.45 µs (including 0.1 µs delay), corresponding to a
supersonic wave velocity of cX = 1577 m·s−1. The sum of the second and third
pulses of the xAM sequence overlaps nearly perfectly with the first pulse. The resid-
ual waveform derived from the xAM operation exhibits a quasi-zero residual pressure
amplitude of 1.7 kPa after the xAM operation compared to 152.1 kPa for the first
pulse.

4.3.4 Effect of the cross-propagation angle θ on the reduction
of the nonlinear artifact

Figs. 4.7(a) and (b) display the peak of the AM residual pressure as a function of depth
along the bisector, in the absence and presence of monodisperse MBs, respectively.
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Figure 4.6: Propagation of AM and xAM pulses to a depth of 7 mm. (a) Waveforms
retrieved with the AM pulse sequence. (b) Waveforms retrieved with the xAM pulse
sequence.

Figure 4.7(a) shows that higher angles θ are more effective at suppressing effects
arising from nonlinear wave propagation in the medium.

Figs. 4.7(a) and (b) display the peak of the AM residual pressure as a function
of depth along the bisector, in the absence and presence of monodisperse MBs, re-
spectively. Figure 4.7(a) shows that higher angles θ are more effective at suppressing
effects arising from nonlinear wave propagation in the medium.

Figure 4.7(b) shows that the presence of monodisperse MBs leads to a substantial
increase in the residual xAM peak pressure level within the boundaries of the MB
suspension, as desired for a CEUS imaging mode. However, we observe that angles
of θ = 0◦ and θ = 10◦ do not strongly suppress nonlinear effects below the MB
suspension. In contrast, an angle of θ = 20◦ strongly reduces the xAM pressure
amplitude beyond the boundary of the MB suspension.
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Figure 4.7: xAM peak residual pressure as a function of depth for increasing angles
θ. (a) Residual pressure profiles in the absence of MBs. (b) Residual pressure profiles
in the presence of monodisperse MBs. The boundaries of the MB suspension are
indicated with dashed vertical lines. Results are simulated for θ angles of 0◦, 10◦, and
20◦.

4.3.5 Impact of wavefront shape on AM imaging of monodis-
perse MBs

In this section, we use INCS to simulate ultrasound imaging of a monodisperse
MB suspension applying AM pulse sequences with four different wavefront shapes
(Fig. 4.1). The computational domain is shown in Fig. 4.2(b). Conventional single-
shot ultrasound images, also referred to as B-mode images, are reported in Figs. 4.8(a)-
(d). The backscattered amplitude arising from tissue-mimicking linear scatters and
resonant monodisperse MBs generates a similar echogenicity level, independent of
the acoustic wavefront shape. As such, B-mode images do not allow to disentangle
monodisperse MBs and tissue mimicking scatterers.

AM images generated with each wavefront shape are reported in Figs. 4.8(e)-(h).
The xAM sequence (Fig. 4.8(e)) generates a highly specific image of monodisperse
MBs. On the contrary, AM sequences based on focused, planar and diverging wave-
fronts (Figs. 4.8(f)-(h)) generate images of MBs that suffer from significant nonlinear
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wave propagation artifacts below the MB suspension. The level of nonlinear artifacts
is -30 dB for the xAM image, -9 dB for the focused AM image, -12 dB for the plane
wave AM image and -12 dB for the diverging AM image.

4.4 Discussion

We report a numerical investigation of CEUS imaging and demonstrate that AM imag-
ing based on x-shaped wavefronts enables specific and sensitive imaging of monodis-
perse MBs at a high ultrasound frequency. Our results reveal that the shape of trans-
mitted ultrasonic wavefronts plays a critical role in the specificity of AM ultrasound
imaging of monodisperse MBs. Widely used AM pulse sequence implementations
based on focused, planar and diverging wavefronts (Figs. 4.1(b)-(d)) are all subject to
significant nonlinear wave propagation artifacts appearing below monodisperse MB
suspensions (Figs. 4.8(f)-(h)).

The INCS method enables to disentangle different nonlinear effects involved in
CEUS. In the absence of MBs, a first observation is that AM pulse sequences for
all four wavefront shapes capture cumulative nonlinear effects caused by ultrasound
wave propagation, despite the low acoustic pressure transmitted in the medium, which
corresponds to a mechanical index of 0.074 in our study (Figs. 4.4(f)-(h)). A second
observation is that a resonant monodisperse MB suspension amplifies cumulative non-
linear wave propagation effects in the direction of wave propagation for all wavefront
shapes investigated (Figs. 4.5(e)-(h)). As a result, for the focused, planar and di-
verging wavefronts, the AM operation is compromised below the monodisperse MB
suspension as the involved pulses do not cancel each other anymore (Fig. 4.6(a)). This
amplitude-dependent nonlinear scattering effect leads to nonlinear wave propagation
artifacts in AM images of monodisperse MBs (Figs. 4.8(f)-(h)).

X-shaped wavefronts provide a solution to this problem. In the absence of MBs,
residual xAM pressure fields prevent cumulative nonlinear wave propagation effects
along the bisector, i.e. the imaging line, as seen in Fig. 4.4(e). In the presence of
monodisperse MBs, cumulative nonlinear effects are visible in the direction of propaga-
tion of each cross-propagating plane wave (see Fig. 4.10(b) of Appendix 4.B), however
nonlinear effects do not build up along the bisector. In xAM imaging, the segments
of each wavefront that contribute to the double amplitude can only co-propagate for
short periods of time. As a consequence, amplitude-dependent cumulative nonlinear
effects are minimized and higher angles θ lead to a higher suppression of these effects
(Fig. 4.7).

A limitation of our study is that we investigate AM ultrasound imaging of a per-
fectly monodisperse ultrasound contrast agent rather than an ultrasound contrast
agent with a narrow size distribution. However, nonlinear artifacts observed in our
study are therefore maximized and our study represents the worst-case test scenario
for xAM imaging. Another limitation is that we only investigate perfectly symmetric
geometries. In the future, it would be interesting to evaluate the effect of a scatter-
ing structure located in the path of one of the two cross-propagating plane waves.
Nevertheless, in vivo experiments prove that xAM imaging is also performing well in
non-symmetric soft biological tissue [26]. Another interesting pulse sequence to inves-
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tigate would be pulse inversion. It is acknowledged that pulse inversion sequences are
prone to artifacts [5] since they were initially developed to isolate second harmonic
generated by nonlinear wave propagation [27,28].

Our study also has implications for the field of ultrasound localization microscopy
[29]. Approaches that rely on AM sequences with focused, planar or diverging wave-
fronts [15] are likely to be subject to artifacts, especially when mapping the coronary
vasculature of the inferior myocardial wall which sits below the left ventricle chamber
filled with MBs.

4.5 Conclusions

We numerically investigated AM ultrasound imaging of monodisperse MBs for im-
plementations relying of x-shaped, focused, planar and diverging acoustic wavefronts.
We show that xAM ultrasound imaging can detect monodisperse MBs, the most non-
linear ultrasound contrast agent to date, with high sensitivity and specificity. All
other AM sequence implementations were prone to nonlinear wave propagation ar-
tifacts. This study paves the way for numerical investigations and optimization of
CEUS imaging.

Appendix 4.A Equalization of incident acoustic pres-
sure levels

In this paper we compare AM sequences for four different wavefront shapes. These are
obtained with varying numbers of active elements, different time delays and apodiza-
tion, which may result in substantial differences in the generated incident pressure
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Figure 4.9: Equalization of the average acoustic pressure transmitted by the first
pulse of each sequence. Transmission for (a) x-wave (triangles), (b) focused wave
(circles), (c) plane wave (xs) and (d) diverging wave (asterisks). The position of the
MB suspension is indicated by the dashed vertical lines.
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fields. To ensure a fair comparison of CEUS imaging results, it is necessary to deliver
the same average peak pressure within the MB suspension for all cases. Furthermore,
since image reconstruction for the x-wave and focused wave methods is performed
in a line-by-line format, it is critical to equalize the average peak pressure along the
bisector at the location of the MB suspension (x = 0, 4mm < z < 6mm). We have
chosen to deliver an average peak acoustic pressure of 285.5 kPa over this interval for
the first pulse of each AM pulse sequence. This corresponds to a mechanical index of
0.074. The resulting peak pressure as a function of depth along the bisector is given
in (Fig. 4.9) for each AM pulse sequence.

Appendix 4.B Residual xAM pressure in the ab-
sence and presence of MBs

To better visualize the residual xAM pressure fields reported in Figs. 4.4(e) and 4.5(e),
in Fig. 4.10 we show the same results using a smaller pressure range.
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medium without MBs and (b) a medium containing nonlinear monodisperse MBs.
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4444

80 BIBLIOGRAPHY

Bibliography

[1] C. Errico, J. Pierre, S. Pezet, Y. Desailly, Z. Lenkei, O. Couture and M. Tanter, “Ultrafast
ultrasound localization microscopy for deep super-resolution vascular imaging”, Nat. 527, 499–
502 (2015).

[2] B. Heiles, D. Terwiel, and D. Maresca, “The Advent of Biomolecular Ultrasound Imaging”,
Neurosc. 474, 122–133 (2021).

[3] P. Marmottant, S. van der Meer, M. Emmer, M. Versluis, N. de Jong, S. Hilgenfeldt, and
D. Lohse, “A model for large amplitude oscillations of coated bubbles accounting for buckling
and rupture”, J. Acoust. Soc. Am. 118, 6, 3499–3506 (2005).

[4] M. Averkiou, M. Bruce, J. Powers, P. Sheeran, and P. Burns, “Imaging methods for ultrasound
contrast agents”, Ultrasound Med. Biol. 46, 3, 498–517 (2020).

[5] M.-X. Tang, and R. Eckersley, “Nonlinear propagation of ultrasound through microbubble con-
trast agents and implications for imaging”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53, 12, 2406–2415 (2006).

[6] G. ten Kate, G. Renaud, A. Akkus, S. van den Oord, F. ten Cate, V. Shamdasani, R. Entrekin,
E. Sijbrands, N. de Jong, J. Bosch, A. Schinkel, and A.F. van der Steen, “Far-wall pseudoen-
hancement during contrast-enhanced ultrasound of the carotid arteries: clinical description
and in vitro reproduction”, Ultrasound Med. Biol. 38, 4, 593-600 (2012).

[7] M. Emmer, H.J. Vos, D.E. Goertz, A. van Wamel, M. Versluis, and N. de Jong, “Pressure-
Dependent Attenuationand Scattering of Phospholipid-Coated Microbubbles at Low Acoustic
Pressures”, Ultrasound Med. Biol. 35, 1, 102–111 (2009).

[8] A. J. Sojahrood, Q. Li, H. Haghi, R. Karshafian, T.M. Porter, and M.C.Kolios, “Probing the
pressure dependence of sound speed and attenuation in bubbly media: Experimental observa-
tions, a theoretical model and numerical calculations”, Ultrason. Sonoch. 95, 106319, (2023).

[9] G. Renaud, J. Bosch, A.F. van der Steen, and N. de Jong, “Increasing Specificity of Contrast-
Enhanced Ultrasound Imaging Using the Interaction of Quasi Counter-Propagating Wave-
fronts: A Proof of Concept”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62, 10, 1768–
1778 (2015).

[10] D. Maresca, D.P. Sawyer, G. Renaud, A. Lee-Gosselin, and M.G. Shapiro, “Nonlinear X-Wave
Ultrasound Imaging of Acoustic Biomolecules”, Phys. Rev. X 8, 041002 (2018).

[11] S. Nagai, and K. Iizuka, “A practical ultrasound axicon for non-destructive testing”, Ultrasonics
20, 6, 265–270 (1982).

[12] T. L. Szabo, “Diagnostic ultrasound imaging: Inside out”, Academic Press (2014).

[13] T. Segers, P. Kruizinga, M. Kok, G. Lajoinie, N. de jong, and M. Versluis, “Monodisperse
Versus Polydisperse Ultrasound Contrast Agents: Non-Linear Response, Sensitivity, and Deep
Tissue Imaging Potential”, Ultrasound Med. Biol. 44, 7, 1482–1492 (2018).

[14] C. Tremblay-Darveau, R. Williams, L. Milot, M. Bruce, and P. Burns, “Visualizing the Tumor
Microvasculature With a Nonlinear Plane-Wave Doppler Imaging Scheme Based on Amplitude
Modulation”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 2, 699–709 (2015).

[15] J. Yan, B. Huang, J. Tonko, M. Toulemonde, J. Hansen-Shearer, Q. Tan, K. Riemer, K. Nta-
giantas, R. Chowdhury, P. Lambiase, R. Senior, and M.-X. Tang, “Transthoracic super-
resolution ultrasound localisation microscopy of myocardial vasculature in patients”, arXiv
(2023).

[16] J. Huijssen, “Modeling of nonlinear medical diagnostic ultrasound”,Ph.D. Thesis, Delft Uni-
versity of Technology (2008)

[17] J. Huijssen, and M.D. Verweij, “An iterative method for the computation of nonlinear, wide-
angle, pulsed acoustic fields of medical diagnostic transducers”, J. Acoust. Soc. Am. 127, 1,
33–44 (2010).

https://doi.org/10.1038/nature16066
https://doi.org/10.1038/nature16066
https://doi.org/10.1016/j.neuroscience.2021.03.011
https://doi.org/10.1121/1.2109427
https://doi.org/10.1016/j.ultrasmedbio.2019.11.004
https://doi.org/10.1109/TUFFC.2006.189
https://doi.org/10.1109/TUFFC.2006.189
https://doi.org/10.1016/j.ultrasmedbio.2011.12.019
https://doi.org/10.1016/j.ultrasmedbio.2008.07.005
https://doi.org/10.1016/j.ultsonch.2023.106319
https://doi.org/10.1109/TUFFC.2015.007169
https://doi.org/10.1109/TUFFC.2015.007169
https://doi.org/10.1103/PhysRevX.8.041002
https://doi.org/10.1016/0041-624X(82)90047-6
https://doi.org/10.1016/0041-624X(82)90047-6
https://doi.org/10.1016/C2011-0-07261-7
https://doi.org/10.1016/j.ultrasmedbio.2018.03.019
https://doi.org/10.1109/TMI.2015.2491302
https://doi.org/10.48550/arXiv.2303.14003
https://doi.org/10.48550/arXiv.2303.14003
https://repository.tudelft.nl/islandora/object/uuid%3A3a01d973-d125-430f-82e2-fb83cc9239fb
https://repository.tudelft.nl/islandora/object/uuid%3A3a01d973-d125-430f-82e2-fb83cc9239fb
https://doi.org/10.1121/1.3268599
https://doi.org/10.1121/1.3268599


4444

BIBLIOGRAPHY 81

[18] L. Demi, “Modeling nonlinear propagation of ultrasound through inhomogeneous biomedical
media”, Ph.D. Thesis, Delft University of Technology (2013)

[19] L. Demi, K.W.A. van Dongen, and M.D. Verweij, “A contrast source method for nonlinear
acoustic wave fields in media with spatially inhomogeneous attenuation”, J. Acoust. Soc. Am.
129, 3, 1221–1230 (2011).

[20] A. Matalliotakis, D. Maresca, and M.D. Verweij, “Nonlinear interaction of two cross-
propagating plane waves”, arXiv (2023).

[21] A. Matalliotakis, and M.D. Verweij, “Computation of ultrasound propagation in a population
of nonlinearly oscillating microbubbles including multiple scattering”, J. Acoust. Soc. Am. 153,
4, 2209–2222 (2023).

[22] T. Segers, E. Gaud, M. Versluis, and P. Frinking, “High-precision acoustic measurements of
the nonlinear dilatational elasticity of phospholipid coated monodisperse microbubbles”, Soft
Matter 14, 9550–9561 (2018).

[23] V. Perrot, M. Polichetti, F. Varray, and D.Garcia, “So you think you can DAS? A viewpoint
on delay-and-sum beamforming”, Ultrasonics 111 , 106309, (2021).

[24] D.Garcia, “Make the most of MUST, an open-source MATLAB UltraSound Toolbox”, IEEE
Int. Ultrason. Symp., (2021).

[25] T. Lai, M. Bruce, and M. Averkiou, “Modeling of the Acoustic Field Produced by Diagnostic
Ultrasound Arrays in Plane and Diverging Wave Modes”, IEEE Trans. Ultrason. Ferroelectr.
Freq. Control 66, 7, 1158–1169 (2019).

[26] R. Hurt, M. Buss, M. Duan, K. Wong, M. You, D. Sawyer, M. Swift, P. Dutka, P. Barturen-
Larrea, D. Mittelstein, Z. Jin, M. Abedi, A. Farhadi, R. Deshpande, and M.G. Shapiro, “Ge-
nomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-
homing bacteria”, Nat. Biotech. 41, 919–931 (2023).

[27] M. Averkiou, “Tissue harmonic imaging”, IEEE Int. Ultrason. Symp., 1563–1572 (2000).

[28] C.-C. Shen, Y.-H. Chou, P.-C. Li, “Pulse inversion techniques in ultrasonic nonlinear imaging”,
J. Med. Ultrasound 13, 1, 3–17 (2005).

[29] B. Heiles, A. Chavignon, A. Bergel, V. Hingot, H. Serroune, D. Maresca, S. Pezet, M. Pernot,

M. Tanter, and O. Couture, “Volumetric Ultrasound Localization Microscopy of the Whole Rat

Brain Microvasculature”, IEEE Open Trans. Ultrason. Ferroelectr. Freq. Control 2, 261–282

(2022).

https://repository.tudelft.nl/islandora/object/uuid:01b3942b-ffaa-4a27-be64-ea00f292bf5f/datastream/OBJ/download
https://doi.org/10.1121/1.3543986
https://doi.org/10.1121/1.3543986
https://doi.org/10.48550/arXiv.2312.00445
https://doi.org/10.1121/10.0017770
https://doi.org/10.1121/10.0017770
https://doi.org/10.1039/C8SM00918J
https://doi.org/10.1039/C8SM00918J
https://doi.org/10.1016/j.ultras.2020.106309
https://doi.org/10.1109/IUS52206.2021.9593605
https://doi.org/10.1109/IUS52206.2021.9593605
https://doi.org/10.1109/TUFFC.2019.2908831
https://doi.org/10.1109/TUFFC.2019.2908831
https://doi.org/10.1038/s41587-022-01581-y
https://doi.org/10.1109/ULTSYM.2000.921622
https://doi.org/10.1016/S0929-6441(09)60073-4
https://doi.org/10.1109/OJUFFC.2022.3214185
https://doi.org/10.1109/OJUFFC.2022.3214185


4444

82



55555

A. Matalliotakis, and M.D. Verweij, Polydisperse versus monodisperse microbubbles: A

simulation study for contrast-enhanced ultrasound imaging, Ultr. Med. & Biol. (2024)

Chapter 5

Polydisperse versus monodisperse
microbubbles: A simulation study

Contrast-enhanced ultrasound (CEUS) presents distinct advantages in diagnostic echog-
raphy. Utilizing microbubbles (MBs) as conventional contrast agents enhances vascu-
lar visualization and organ perfusion, facilitating real-time, non-invasive procedures.
There is a shift towards replacing traditional polydisperse MBs with novel monodis-
perse formulations to optimize contrast enhancement and guarantee consistent be-
havior and reliable imaging outcomes. This study investigates contrast enhancement
by monodisperse MBs of different sizes, and their influence on nonlinear imaging
artifacts observed in traditional CEUS. To compare monodisperse and polydisperse
populations without excessive experimentation, numerical simulations are employed
for delivering precise, objective and expeditious results. The Iterative Nonlinear Con-
trast Source (INCS) method has previously demonstrated its efficacy in simulating
ultrasound propagation in large populations in which each bubble has individual prop-
erties and several orders of multiple scattering are significant. Therefore, this method
can realistically simulate both monodisperse and polydisperse MBs. Our findings in
CEUS imaging indicate that scattering from resonant monodisperse MBs is 11.8 dB
stronger than scattering from the polydisperse population. Furthermore, the amplitude
of nonlinear imaging artifacts downstream of the monodisperse population is 19.4 dB
stronger compared to polydisperse suspension. Investigating the impact of multiple
scattering on various populations, reveals that monodisperse MBs are more effective
contrast agents than polydisperse, especially when at resonance. Despite the strong
signal to noise ratio of monodisperse populations, the imaging artifacts due to nonlin-
ear wave propagation are also enhanced, resulting in more missclassification of tissue
as MBs.
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5.1 Introduction

Achieving superior deep tissue imaging of blood vessels with ultrasound remains a
challenge in medical diagnostics. Contrast-enhanced imaging, particularly using MBs,
has emerged as a promising solution [1, 2]. These gas-filled microspheres, stabilized
with a lipid or protein shell, enhance blood contrast for improved organ and lesion
visualization. MBs, characterized by small size, biocompatibility, and vascular naviga-
bility, resonate in the ultrasound frequency range (1-10 MHz). Their efficient sound
scattering in both fundamental and harmonic modes, driven by substantial acous-
tic impedance difference with surroundings and highly nonlinear oscillatory behav-
ior [3,4], enhances image quality. As ultrasound waves propagate through a resonant
MB suspension, they undergo nonlinear distortion due to nonlinear MB scattering
influenced by size, shell characteristics, ultrasound pressure and frequency [5–7]. Be-
cause of these properties, MBs are also efficient contrast agents in various applications
besides CEUS, such as ultrasound localization microscopy [8].

As a drawback, wave distortion extends beyond a MB suspension and this leads to
the misidentification of tissues as MBs, diminishing the specificity of CEUS imaging
[9]. Narrowing of the size distribution of the MB population might be a way to
provide improved acoustic scattering, reduce imaging artifacts and enhance scattering
homogeneity. Historically, polydisperse MBs with varying size distributions (typical
radii 0.5 to 15 µm) have been standard in ultrasound contrast imaging [10,11]. Recent
technological breakthroughs have introduced the possibility of using monodisperse, i.e.
uniformly sized, MBs [12]. Studies highlight the superiority of monodisperse MBs [13],
offering enhanced predictability, improved acoustic performance, and clearer imaging
signals [14,15]. Nevertheless, we think that it is important to shed more light on the
effect of monodisperse MBs as contrast agents for deep vessel imaging, especially on
the generation of clearer echoes and reducing imaging artifacts.

The use of computational tools is an efficient way to perform comprehensive in-
vestigations without performing extensive measurements. Initially, studies focused
on the collective behavior of bubbly media for marine applications [16, 17]. Effective
medium theory facilitated 1D computational studies for both monodisperse [18, 19]
and polydisperse [20,21] MB suspensions in medical ultrasound, including high inten-
sity focused ultrasound (HIFU) [22]. Previous models successfully captured nonlinear
ultrasound propagation through uniform MB distributions in two dimensions using
iterative schemes [23, 24]. Challenges arise when coupling the nonlinear dynamics
of multiple MBs in 3D realistic simulations, due to the complexity of the coupled
Rayleigh-Plesset equation [25]. Another difficulty shows up when the number of poly-
disperse MBs is small and the use of averaged quantities becomes questionable. Vari-
ous computational methods have been explored to understand the dynamics between
polydisperse and monodisperse MB populations. Among these, the Iterative Nonlin-
ear Contrast Source (INCS) method has demonstrated efficacy in simulating bubble
cloud behavior in a three-dimensional domain when excited either by a plane wave or
a focused beam. The method enables the generation and comparison of echoes pro-
duced by dense monodisperse MB populations, considering multiple scattering [26].
This is crucial for optimizing contrast-enhanced ultrasound (CEUS) applications and
reducing the need for excessive experimentation.
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The aim of this numerical study is to investigate the efficacy of monodisperse
and polydisperse populations when used as contrast agents for deep tissue imaging.
More precisely, this article discusses the extension of INCS method to simulate the
behaviour of a population of polydisperse scatterers. Furthermore, the effectiveness of
the extended INCS method is illustrated through simulating the multiple scattering
occurring inside a population of polydisperse MBs, each with individual properties
represented by its own Marmottant model [4]. INCS is based on an iterative scheme
for computing the scattered acoustic signals [27,28]. Numerically, the accuracy of the
final result is improved after each iteration. In a physical sense, each iteration adds
an extra order of multiple scattering corresponding to an additional path of wave
propagation.

First, in Section 5.2, the fundamental theory behind the INCS method is explained,
followed by its extension with the introduction of polydisperse point scatterers. In
Section 5.3, the configurations for the numerical experiments are discussed. Next, in
Section 5.4 the results from the numerical simulations for each different test case are
presented. Concluding remarks are given in Section. 5.5.

5.2 Inclusion of a polydisperse MB population

5.2.1 Linear Field

The linear pressure field generated by an external source in a linear, lossless, homo-
geneous acoustic background medium is described by the wave equation

c−2
0

∂2p(x, t)

∂t2
−∇2p(x, t) = Spr(x, t). (5.1)

Here, x [m] is the Cartesian position vector, and t [s] is the time. Furthermore, p(x, t)
[Pa] is the acoustic pressure, c0 = 1/

√
ρ0κ0 [m/s] is the small signal sound speed in

the background medium, where ρ0 [kg·m−3] is the mass density and κ0 [Pa−1] is the
compressibility. The symbol ∇2 indicates the Laplacian operator. The acoustic field
is generated by the primary source term Spr

Spr(x, t) = ρ0
∂q(x, t)

∂t
−∇ · f(x, t), (5.2)

where q(x, t) [s−1] is the volume density of volume injection rate and f(x, t) [N/m3]
is the volume density volume force of the external source. A source with a plane
aperture, e.g. a phased array transducer, can be represented by a pressure jump in
the particle velocity or the pressure. This can formally be described by a primary
source term with a Dirac delta function, [27] but in our numerical implementation
of INCS the source is modeled as a boundary condition at the location of the source
aperture.

5.2.2 Nonlinear field due to contrast agents

In medical ultrasound, nonlinearities arising from contrast media can have a significant
impact on the propagation of the acoustic signals. To incorporate any phenomena
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that affect the pressure field, it is possible to extend Eq. (5.1) with a contrast source
term Scs

c−2
0

∂2p

∂t2
−∇2p = Spr + Scs(p). (5.3)

With this approach, multiple contrast sources can be accommodated that represent
global nonlinear effects [27, 28], attenuation [29, 30], inhomogeneous medium proper-
ties [31], or local nonlinear effects [32]. In contrast-enhanced imaging, the nonlinear
oscillatory behavior of the MBs influences the pressure field. To include the contri-
bution of a population of N MBs, each will be described as a point scatterer and the
source term will be written as [26]

Scs(x, t) =

N∑
i=1

SMBi

= ρ0

N∑
i=1

d2V (i)(x
(i)
sc , t)

dt2
δ(x− x(i)

sc ), (5.4)

where V (i) [m3] is the volume of the ith MB, x
(i)
sc is the position vector of its center

and δ(x − x
(i)
sc ) = δ(x − x

(i)
sc ) δ(y − y

(i)
sc ) δ(z − z

(i)
sc ) [m−3] is the three-dimensional

Dirac delta distribution. Each scatterer’s volume depends on the bubble radius R as
a function of time, which in our case will be calculated by solving the Marmottant
equation [4, 26].

In the case of a population of monodisperse MBs, the equilibrium radius R0 is the
same for all the scatterers, whereas for a polydisperse distribution, each scatterer has

its own equilibrium radius R
(i)
0 .

5.3 Configurations used in the simulations

5.3.1 Simulation of pressure fields

Incident field and contrast domain

To study the influence of different populations of MBs on a propagating plane wave,
we will consider the computational domain and the domain for the contrast media
as depicted in Fig. 5.1(a). This configuration is used in Secs. 5.4.1 and 5.4.2 for the
INCS validation and the comparison between different populations, respectively. The
computational domain has dimensions X × Y × Z = 20 mm × 20 mm × 30 mm is
used. The scatterers are placed in a domain with dimensions X × Y ×Z = 15 mm×
15 mm×4.444 mm, resulting in a 1 ml volume. These configuration choices are made
to simplify the comparison between polydisperse and monodisperse populations.

The incident pressure field is a plane wave being generated at z = 0 and propagat-
ing in the positive z-direction. A plane wave is used to initially excite all the scatterers
by an incident wave that everywhere has the same pressure amplitude. The temporal
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Figure 5.1: Configurations used in the INCS simulations. (a) Computational domain
containing a suspension of 3.5 ×104 ml−1 (blue) monodisperse MB with 3.2 µm
equilibrium radius, embedded in water. (b) Computational domain incorporating
7 × 105 ml−1 tissue-mimicking linear scatterers (grey) surrounding a suspension of
5× 105 ml−1 monodisperse MBs with 1.4 µm equilibrium radius (blue).

signature of the incident pressure is

p(t) = P0 exp

[
−
(
t− Td

Tw/2

)2
]
sin[2πf0(t− Td)], (5.5)

where Tw = 3/f0 is the width and Td = 6/f0 is the delay of a Gaussian envelope
with a duration of 12/f0, where f0 = 1 MHz is the center frequency. Therefore,
this is a narrowband pulse. The peak pressure is P0 = 200 kPa. The scatterers will
be embedded in water with a density of ρ0 = 1060 kg/m3 and a speed of sound of
c0 = 1482 m/s. In the considered situations, water has negligible losses and nonlinear
effects will be hardly noticeable. Therefore, we assume that the embedding medium
is lossless and linear. A sampling frequency of 18 MHz was used as the basis for the
discretization of the spatiotemporal domain [26].

Configuration for validation

To validate INCS we compare our results by those following from effective medium
theory. The analytical expressions that describe the effective behavior of a popu-
lation of isotropic linear scatterers (LSs) are derived from Foldy [16, 17]. A similar
validation has been used in a previous publication for a monodisperse population of
scatterers [26], but here we will consider a polydisperse population. For the INCS



55555

88 5. POLYDISPERSE VS MONODISPERSE MICROBUBBLES

implementation, we assume that the contrast source term for each LS is given by

Ssc(x, t) = −f(R0)V0
ρ0
ρ1c21

∂2p(xsc, t)

∂t2
δ(x− xsc), (5.6)

where R0 is equilibrium radius, V0 is its initial volume, ρ1 is the density of mass
of the gas inside the LS, c1 is the speed of sound inside the LS and f(R0) is the
polydispersity coefficient given by

f(R0) =
A0

(R0/R0,ref)γ
. (5.7)

The constant A0 is used to adjust the scattering strength if necessary and γ is the
polydispersity scale parameter to control the scattering distribution of the population.

In the case of a plane wave excitation as in Eq. (5.5), the scattered pressure is
given by [26]

psc(x, ω) = f(R0)V0
ρ0
ρ1c21

ω2 p(ω)

4πr
e−ikr

= g(R0, ω)
p(ω)e−ikr

r
, (5.8)

where k = ω/c0 is the wavenumber, g(R0, ω) is the scattering strength of an individual
LS, and r is the distance from the scatterer. We follow this approach in order to match
the variables as defined previously in Foldy [16].

For the considered linear isotropic scatterers, we chose the scattering strength to
be a linear function of the (fictitious) radius of a scatterer, instead of its (fictitious)
volume. In this way we avoid the extreme dominance of the larger bubbles in the
polydisperse population. This is achieved by setting γ = 2 in Eq. (5.7). To assure
that INCS yields convergent results under the considered circumstances, we assume
A0 = 0.6 and R0,ref = 1 µm.

For the polydisperse populations considered in this paper, the density of the MBs
varies with the equilibrium radius R0 according to the gamma distribution

n(R0) =
N

V

1

bαΓ(α)
Rα−1

0 e−R0/b, (5.9)

where N is the total number of scatterers, and V is the volume in which the homoge-
neous population resides. Furthermore, α and b are the scale and shape parameters,
and Γ is the gamma function [33]. In this paper, we choose α = 2.24 and b = 1.23µm
to mimic the size distribution of Optison [13]. By employing this wide distribution,
we can compare the INCS results for a polydisperse population with those obtained
from the effective medium theory of isotropic scatterers [16]. Moreover, this distribu-
tion has a mean of µ̂ = αb = 2.76 µm, which is close to the radius of the bubbles that
will resonate at the excitation frequency. In this way, the polydisperse population will
contain considerable amounts of bubbles that are below resonance, close to resonance,
and above resonance.

In practice, the range of the equilibrium radius in a polydisperse population is
limited [11, 13]. In this paper, we consider bubbles with equilibrium radii between
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Figure 5.2: Graph depicting the continuous gamma distribution with α = 2.24 and
b = 1.23 µm (blue). For R0,min = 0.5 µm and R0,max = 15 µm, the area below the
curve yields a concentration of approximately ntot = 106 ml−1.

R0,min = 0.5 µm and R0,max = 15 µm, as depicted in Fig. 5.2. The total density of
the MBs considered is

ntot =

∫ R0,max

R0,min

n(R0) dR0. (5.10)

The discarded MBs account for 4% of the concentration and 0.9% of the gas volume
of the untruncated population.

Types of monodisperse and polydisperse suspensions

To make a comparison between the efficiency of a population of monodisperse and
polydisperse MBs, we take into account four distinct populations:

1. A monodisperse population of MBs with a equilibrium radius R0 = 4 µm and
a resonance frequency fres = 0.8 MHz (below the center excitation frequency);

2. A monodisperse population of MBs with a equilibrium radius R0 = 3.2 µm and
a resonance frequency fres = 1 MHz (at the center excitation frequency);

3. A monodisperse population of MBs with a equilibrium radius R0 = 1 µm and
a resonance frequency fres = 3.9 MHz (above the center excitation frequency);

4. A polydisperse population of MBs with a equilibrium radius between R0,min =
0.5 µm to R0,max = 15 µm, distributed as described in Section 5.3.1, corre-
sponding to a resonance frequency between fres = 0.3 MHz and 10 MHz (a
number of MBs will be near the resonance frequency, others will be above of
below resonance)

In our simulations, we use high driving pressures to activate the nonlinear os-
cillatory behaviour of the MBs and therefore the contribution of the shell stiffness
becomes unimportant. As a result, the resonance frequency of the MBs shifts to-
wards the resonance frequency of an uncoated bubble [2], which is different from the
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resonance frequency of a linearly oscillating MB with a shell. As explained in detail
in [34], we may therefore approximate the resonance frequency by the eigenfrequency

fres =
1

2πR0

√
1

ρ0

[
3γPamb + (3γ − 1)

2σw

R0

]
, (5.11)

where R0 is the equilibrium radius of the MB, γ = 1.07 is the polytropic exponent of
the gas encapsulated in the bubble, Pamb = 101.3 kPa is the static ambient pressure,
and σw = 0.072 N/m is the surface tension of the gas-water interface. The center
excitation frequency f0 = 1 MHz corresponds to a resonance frequency of an uncoated
MB of equilibrium radius R0 = 3.2 µm.

For solving the Marmottant equation [4], we further use the surrounding liquid
dynamic viscosity increased by a factor of 2 to account for thermal damping µ =
2 × 10−3 Pa · s, the effective surface tension σ(R) = 0.036 N/m, the shell elasticity
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Figure 5.3: (a) Temporal radial responses R(t) of MBs with rest radii of 1 µm (dashed
orange), 3.2 µm (black continuous), and 4 µm (dotted purple), when excited by a 3
cycle pulse with 200 kPa peak pressure and 1 MHz center frequency. (b) The frequency
spectra R̂(f) corresponding to the signals in (a).
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χ = 0.4 N/m [13, 14]. The surface dilatational viscosity of the shell is given by
κs = 1.5× 10−9 exp (8× 105R0) kg/s, which is an approximation to the data in Fig.
6(B) in [35]. Combined with the aforementioned, the oscillatory behavior and the
frequency spectrum of a single MB when excited with a driving pressure P0 = 200 kPa
and a center frequency f0 = 1 MHz is depicted in Fig. 5.3.

5.3.2 Simulation of CEUS imaging

To actually see the difference between monodisperse and polydisperse populations for
contrast-enhanced imaging, it is necessary to visualize the reconstructed beamformed
images from the scattered radio frequency (RF) data generated by a realistic config-
uration. To mimic tissue with an enclosed vessel, we distribute LSs surrounding a
cylindrical population of MB, as depicted in Fig. 5.1(b). We need to take into account
all the relevant phenomena that occur during the propagation of ultrasound through
the populations of scatterers inside the water background medium. Based on this,
the new nonlinear wave equation is given by

c−2
0 ∂2

t p−∇2p = Spr + SMBs(p) + SLSs(p) + Snl(p) + SL(p), (5.12)

where SMBs is the contrast source term for the MB population [26], SLSs is the contrast
source term for the LS population [26], Snl and SL are the terms for global [26] and
local medium nonlinearities [32], respectively. The description of each source term is
given in Appendix 5.A. Equation (5.12) is solved iteratively using a Neumann scheme,
as described in previous publications [26,36].

The incident pressure field is computed for a P4-1 probe (Verasonics, Washington,
USA). Transducer elements have a height ofHel = 16 mm, a width ofWel = 0.245 mm,
a pitch of Dtr = 0.295 mm. The emitted pressure field is approximately a plane wave
with a time signature as given by Eq. (5.5). The center frequency is f0 = 2.5 MHz and
the peak pressure at the transducer surface is P0 = 200 kPa, to activate the nonlinear
behavior of the monodisperse MBs. Next, the domain of the MB population is a
cylinder with center (x, y, z) = (0, 0, 22.5) mm, diameter of 5 mm and length of
10 mm, as illustrated in Fig. 5.1(b). This corresponds to a total volume of 0.2 ml.
The domain of LSs surrounding the MBs is a cube of X × Y ×Z = 8 mm× 10 mm×
12 mm, corresponding to a volume of 0.76 ml centered at (x, y, z) = (0, 0, 24)
mm, as depicted in Fig. 5.1(b). Furthermore, the background medium is water with
a coefficient of nonlinearity of β = 3.21 (see Eq. 5.18)).

To accurately solve the full nonlinear wave equation up to the second harmonic
frequency (h = 2) of the incident pressure pulse, we need to have a Nyquist frequency
of at least Fnyq = (h+1.5)f0 = 3.5f0. To also safely capture the higher harmonics of
the MB scattering, we used Fnyq = 5f0 = 12.5 MHz. Thus, the sampling frequency,
used for discretizing the spatiotemporal domain, is Fs = 2Fnyq = 25 MHz. Further-
more, we need at least j = h + 1 = 3 iterations for an accurate prediction of the
second harmonic [28]. We take j = 10 iterations to ensure that the relative root mean
square error between successive iterations is below 10−6. This also implies that our
simulations account for MB interactions up to ninth order multiple scattering [26].
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We compare CEUS imaging with two different MB populations:

5. A resonant monodisperse population of MBs with a equilibrium radius R0 =
1.4 µm and a resonance frequency fres = 2.5 MHz (at the center excitation
frequency);

6. A polydisperse population of MBs with a equilibrium radius between R0 =
0.5 µm and 15 µm, distributed as described in Section 5.3.1, and a resonance
frequency between fres = 0.3 MHz and 10 MHz.

Each LS has a scattering strength which can be computed through Eq. (5.17), for a
polydispersity coefficient f = 1.

For the beamforming process, we use the MUST [37] toolbox after employing
the amplitude modulation (AM) technique and a virtual point source formulation as
described by Garcia et. al. [38].

5.4 Numerical results

5.4.1 Comparison of INCS and effective medium theory

In this section, we assume that there areN = 106 MBs located in the V = 1 ml volume
indicated in Fig. 5.1(a). The suspension has a type 4 polydisperse distribution, as
described in Section 5.3.1. The total gas volume corresponds to 2.38× 10−4 ml. It is
assumed that the gas inside the bubbles is C4F10, with a density ρ1 = 10 kg/m3 and
a speed of sound c1 = 100 m/s. As we want to perform a simplified comparison with
effective medium theory, we do not take into account the resonance frequency and the
nonlinear behavior of the MBs. Instead, we assume that each bubble can be described
by its scattering behavior as describe in Eqs. (5.17) to (5.8). In other words, we are
only interested on the scattered signal of each point scatterer. The maximum of the
incident pressure P0 = 200 kPa will not affect the final result because we operate in
the linear regime.

According to Foldy’s theory [16, 17], the effect of a polydisperse population of
scatterers is represented by replacing the wave number k0 in the scattering domain
by a corrected wave number k according to

k2 = k20 + 4π

∫ R0,max

R0,min

g(R0, ω) n(R0) dR0, (5.13)

where g(R0, ω) [m] is derived from Eq. (5.8), and n(R0) is computed through Eq. (5.9).
The shift in wavenumber corresponds to a shift in wave speed, and as a consequence, in
a time shift of the wave that has traversed the scattering domain. In the case consid-
ered in this subsection, the integral amounts to 2.3×105 m−2. This yields a wavespeed
of 1375.5 m/s in the scattering domain, while the speed in the medium without scat-
terers is 1482 m/s. Since the scattering domain has a length of 4.4444 mm, the
additional time delay caused by the scattering domain, as predicted by the theory
of Foldy, is ∆tFoldy = 0.228 µs. We have also determined the time delay between
the incident wave p(0) and the wave with all significant orders of scattering p(8) from
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Figure 5.4: Comparison between the time signatures of the incident pressure pulse
(p(0), black continuous line), and the total pressure pulse after j = 1 (p(1), blue
dotted line) and j = 8 (p(8), magenta dashed line) iterations that is received by a
point receiver located on the z axis at z = 10.3 mm.

Fig. 5.4, by looking at the shift in the zero crossings around 13 µs. This is found to
be ∆tINCS = 0.232 µs. Thus, the difference in time delay as predicted by the theory
of Foldy and our method is only 1.75%.

Furthermore, since the wavenumber derived from Eq. (5.13) lacks an imaginary
component in our specific case, according to Foldy’s theory [16,17], the wave travers-
ing the scattering domain is not subject to attenuation. As illustrated in Fig. 5.4,
in our approach the later iterations correct the larger amplitudes observed in ear-
lier iterations, and iteration p(8) has the same amplitude as the incident field p(0).
This consistency in both time delay and wave amplitude across a scattering domain
indicates a good quantitative agreement between our method and Foldy’s effective
medium theory in case of a polydisperse distribution of scatterers.

5.4.2 Plane wave: monodisperse vs polydisperse populations

We continue with a comparison between four different populations of MBs, as men-
tioned in Sec. 5.3.1. To start, our reference is the type 2 monodisperse resonant popu-
lation, for which we use 35,000 MBs, resulting on a total gas volume of 4.8×10−6 ml.
To achieve a fair comparison, the total gas volume concentration of the MB suspen-
sion should be the same in all the cases [26]. Therefore, the type 1 monodisperse
population will contain 17,920 MBs, the type 3 monodisperse population will consist
of about 106 MBs (1146880) and the type 4 polydisperse population will count 20,000
MBs. The bubble populations are placed in the volume V = 1 ml as indicated in
Fig. 5.1(a).

Scattered pressure field: Full spectrum

The scattered pressure field in each case is depicted in Fig. 5.5. At first sight, the
scattered pressure generated from the resonant MBs (type 2, R0 = 3.2 µm) is the
strongest between all the cases with a peak pressure of +1.1 dB relative to the peak
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incident pressure P0. Next, the case below resonance (type 1, R0 = 4 µm) follows
with a relative peak amplitude of −1.13 dB. Although these MBs have a pressure de-
pendent resonance frequency that is still close to the excitation frequency, their peak
amplitude is significantly smaller than the resonant MBs. The third case with a rela-
tive peak amplitude of −1.45 dB is the one above resonance (type 3, R0 = 1 µm) and
the last one is the polydisperse distribution (type 4) with a peak pressure of −5.47 dB.
These results demonstrate that when the pressure dependent resonance frequency is
closer to the excitation frequency then the scattered pressure field is stronger, with
the scattering of the resonant contrast agents being the highest. Another observation
is that the beam profile is smoother if the bubbles are smaller. This is because more
MBs are necessary to achieve the same gas volume concentration, and the higher the
number of scatterers gives a smoother beam profile of the scattered field. Finally, as
the incident wave propagates through every MB population, it undergoes attenuation
and speed of sound variations, which are interrelated to a pressure dependent shift of
the resonance frequency of the MBs [7].

Scattered pressure field: Harmonics

In this section we look at the different harmonics of the excitation pulse that are
present in the scattered pressure field. These are obtained by decomposing the scat-
tered signal into specific frequency bands using an 4th order Butterworth filter. These
frequency bands are (i) the fundamental F0 [0.7, 1.3] MHz, (ii) the second harmonic
2H [1.7, 2.3] MHz and (iii) the third harmonic 3H [2.7, 3.3] MHz, where the intervals
define the cutoff frequencies of the applied filter.

Figure 5.6 shows the harmonic contributions of the scattered pressure field for
each of the considered populations. In the fundamental (F0) frequency band (top
row of Fig. 5.6), we observe that the strongest scattered field is generated by the
type 2 resonant MB suspension with a peak amplitude of −1.23 dB. The type 1
population with the below-resonance oscillating MBs has the second highest peak
pressure of −2.61 dB as the resonance frequency is closer to the excitation frequency,
in comparison to the other two remaining cases. A significant observation is that
the scattered field from the type 4 polydisperse population has a peak amplitude of
−7.1 dB and is stronger than the case of type 3 above-resonance MBs, which have a
peak pressure of −8.74 dB. This can be explained due to the presence of MBs with a
resonance frequency around 1 MHz in the polydisperse suspension.

In the second harmonic (2H) frequency band (middle row of Fig. 5.6), we observe
that the scattered field of the type 2 resonant MBs is still the highest of all the four
distinct cases. The peak amplitude in this case is −10.3 dB. The peak pressure of
the type 3 above-resonance oscillating MBs is −12.09 dB, which is larger than the
respective value of −15.82 dB of the type 1 population with the below-resonance
oscillating MBs. This is explained due to the fact that the resonance frequency of the
system of the former is closer to the 2H frequency band around 2 MHz. The type 4
polydisperse distribution shows the weakest peak pressure amplitude of −18.89 dB.
Compared to the monodisperse populations, hardly any constructive interferences
are observed below the polydisperse suspension, due to the varying phases of the
oscillations that result from the different sizes of the contrast bubbles.
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Figure 5.6: Peak of the scattered pressure at y = 0 mm for: (first column) a type 1
monodisperse distribution of MBs, (second column) a type 2 monodisperse distribu-
tion of MBs, (third column) a type 3 monodisperse distribution of MBs, and (fourth
column) a type 4 polydisperse distribution of MB. Each row corresponds to a specific
frequency band: (first row) fundamental F0 [0.7, 1.3] MHz, (second row) second har-
monic 2H [1.7, 2.3] MHz, and (third row) third harmonic 3H [2.7, 3.3] MHz. In all
four cases, the population is located inside the dashed white rectangle.
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Finally for the third harmonic (3H) frequency band (bottom row of Fig. 5.6),
the type 3 below resonance MBs exhibit the strongest scattered pressure field with
a peak amplitude of −17.49 dB, as their resonance frequency of 3.9 MHz is closer to
the 3H frequency band. Still, the type 2 resonant MBs scatter the second highest
pressure field with a peak amplitude of −18.49 dB. Inside the MB suspension, the
type 4 polydisperse MBs give a peak pressure of −22.66 dB. This is stronger than the
peak of the pressure field of the type 1 below-resonance oscillating MBs (−25.91 dB),
because the smaller MBs with a resonance frequency close to 3 MHz add to the
strong scattering of the larger MBs. Similar to 2H, the type 4 polydisperse MBs
hardly yield constructive interference below the suspension, as is the case for the
type 1, 2 and 3 monodisperse MBs. This observation predicts that the uniformity of
the size distribution of a population might have an impact on the nonlinear imaging
artifacts downstream the population. The cumulative scattered pressure field is the
addition of the signals emitted from all the MBs in the population taken into account
their individual position and therefore all the phase delays. A simplified expression is
to linearly project the behavior of a single MB to the behavior of a whole population
of MBs. Thus, the simulated pressure fields of the populations show similar behavior
with the projected response of the single MB in Fig. 5.3.

Total pressure field: Attenuation and speed of sound variations

To show the influence of the nonlinear MB behavior on a propagating pressure wave,
in Fig. 5.7 we show the temporal signatures and the respective frequency spectra after
traversing each type of MB population. From Fig. 5.7(a) it is clear that the type 2
monodisperse resonant population (black line) causes the most nonlinear distortion.
The distortion takes place mainly after the second cycle as the MBs need to get
a large oscillation amplitude before they demonstrate significant nonlinear behavior.
The influence of the nonlinear bubble oscillation on the propagation through each one
of the other three populations is much less visible in the time domain. By observing
the frequency spectra in Fig. 5.7(b), we can better see the effect of the nonlinear
bubble behavior. Similar as in Sec. 5.4.2, the type 2 population of monodisperse
oscillating MBs, shows a shift of energy from the fundamental to the second and higher
harmonics. Furthermore, the maximum spectral amplitude of the fundamental is
about equal for the other types of populations. The type 3 population of monodisperse
below resonance MBs shows a strong second harmonic, and the highest third harmonic
of all the populations, even higher than for the type 2 population.

To quantify attenuation and speed of sound changes in the fundamental frequency
band, we have subjected the temporal signatures in Fig. 5.7(a) to a Butterworth filter
of 8th order and a frequency pass band of [0.75, 1.25] MHz. The results are plotted
in Fig. 5.8. For the type 1 population of bubbles that are below resonance, there is
a decrease in peak pressure of 92.2 kPa relative to the incident field, and the speed
of sound has been increased to 1517 m/s. For the type 2 population with resonant
bubbles, the peak pressure undergoes a drop of 126.9 kPa, and the speed of sound
has been maintained at 1482 m/s. For the type 3 population of bubbles that are
above resonance, the peak pressure experiences a drop of 19.9 kPa, and the speed of
sound has decreased to 1458 m/s. Finally, for the type 4 polydisperse population,
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the decay in peak pressure is 44.8 kPa, and the speed of sound has been increased to
1497 m/s. We observe that the differences for the type 3 MBs are the smallest from
all the populations, because they present the strongest effect mainly on the second
harmonic. As in previous studies [7], the INCS simulations demonstrate that for MBs
with a resonance frequency below the excitation frequency there is an increase of the
wave speed, whereas for a resonance higher than the excitation frequency there is a
decrease of the wave speed. Finally, for the MBs with a resonance frequency equal
to the excitation frequency, the wave speed is equal to the speed of sound of the
background medium.
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Figure 5.7: (a) Temporal signature and (b) frequency spectrum of the total pressure
field, after propagation through each of the four distinct MB populations. The pres-
sure is obtained for a point receiver located on the z-axis at a depth of z = 10.3 mm.
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on the z-axis at a depth of z = 10.3 mm.
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Total pressure field: Convergence behavior

To quantify the numerical performance of our scheme, we analyzed the difference be-
tween the successive iterations using the Relative Root Mean Square Error (RRMSE)

RRMSE =

√√√√∫Xcd

∫
Tcd

[
p(j)(x, t)− p(j−1)(x, t)

]2
dt dx∫

Xcd

∫
Tcd

[
p(0)(x, t)

]2
dt dx

, (5.14)

where Xcd is the spatial computational domain, Tcd is the temporal computational
domain, j is the iteration number and p(j) is the total pressure obtained in the jth
iteration. The decay of the RRMSE is illustrated in Fig. 5.9 as a function of the
number of iterations. A first observation is that after a certain number of successive
iterations, the error tends to stabilize at a level of 10−5 or below. At this juncture,
it can be inferred that incorporating additional multiple scattering orders will not
yield further enhancements to the solution, indicating the attainment of insignificant
scattering orders. Upon reaching this stage, it is assumed that the iterative process
has converged to the lowest achievable error.

For the type 2 monodisperse resonant MBs, it turns out that the initial iterations
even show an RRMSE above 1. This indicates that the first multiple scattering
orders are highly significant. Moreover, for these MBs more iterations are needed to
reach convergence, and therefore more multiple-scattering orders should be included
to achieve an accurate result. A general observation is that the closer the resonance
frequency of the population is to the excitation frequency, the more iterations need
to be taken into account. This can be explained by the fact that stronger close-range
interactions occur in populations with resonant MBs due to the stronger scattering
strength, making higher scattering orders more important. By observing the case of
type 3 above-resonance monodisperse MBs, the RRMSE of the initial iterations is also
above 1. This is due to the larger number of scatterers that are used to achieve the
same gas volume concentration. This corresponds to higher number of bubble-bubble
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Figure 5.9: RRMSE as a function of the number of iterations j, for the considered
types of MB populations.
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interactions at short distances. Finally, the type 4 polydisperse MBs yield a faster
convergence (in the 13th iteration) than every other type of monodisperse suspension,
demonstrating the relative significance of multiple scattering for the monodisperse
populations.

5.4.3 CEUS imaging

Scattered pressure fields

In this section we compare the nonlinear scattering coming from suspensions of type 5
resonant monodisperse MBs and type 6 polydisperse MBs when these are surrounded
by linear scatterers, as illustrated in Fig. 5.1(b). To resemble an in vivo setting and
match the gas volume concentration, for the type 5 suspension, we use a concentration
of 5 × 105 ml−1 MBs with 1.4 µm equilibrium radius, corresponding to a total gas
volume of 5.8 × 10−6 ml. Furthermore, for the type 6, we use 3.1 × 104 ml−1 MBs,
corresponding to the same total gas volume. First, the total pressure fields in these
configurations are computed for three different excitations: field p1 is due to a double
amplitude excitation (full aperture), and the fields p2 and p3 result from two single
amplitude excitations (odd elements and even elements), respectively. After employ-
ing the AM procedure, the peak residual AM pressures are as shown in Fig. 5.10. For
the monodisperse case in Fig. 5.10(a), nonlinear effects accumulate in the suspension
and propagate in the area below the population. The peak AM residual pressure is
−3.7 dB relative to the pressure at the source surface P0. On the other hand, for
the polydisperse case in Fig. 5.10(b), the residual pressure field shows a relative peak
amplitude of −19.9 dB, which is 6.5 times smaller than the respective of the monodis-
perse suspension. Most MBs in the polydisperse suspension are less efficient scatterers
than the MBs in the resonant monodisperse population. More importantly, bubbles
with different sizes will cause nonlinear scattering with different phases, which makes
that the nonlinearities due to scattering do not propagate outside the MB domain.
These results indicate that in CEUS the nonlinear wave propagation artifacts will be
stronger for a resonant monodisperse population than a polydisperse population.

To demonstrate what this means for the AM imaging process, in Fig. 5.11 we
compare the time signatures of the double amplitude pulse p1, the sum p2 + p3 of the
two single amplitude pulses, and the AM residual p1 − (p2 + p3), for both the type 5
monodisperse and the type 6 polydisperse case. We depict the temporal signatures
for the center of the aperture of the linear array. In Fig. 5.11(a), the AM residual
of the monodisperse population is a strong signal with a peak pressure of 1.5 kPa,
compared to 2.11 kPa for the incident double excitation field. The sum of the two
single amplitude signals matches the waveform of the double amplitude signal only
for smaller time instants, which corresponds to the scattering of the LSs that are
present above the MB suspension. The AM residual signal is stronger for larger time
instants, which indicates the propagation of the nonlinear scattering of the MBs to
the LSs that are located below the MB suspension.

In contrast, Fig. 5.11(b) shows that for the polydisperse case, the peak pressure
of the AM residual corresponds to 0.35 kPa, which is 4.3 times smaller than the
respective value of the type 5 monodisperse population. Moreover, the sum of the
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single amplitude signals overlaps with the double amplitude signal, both for smaller
time instants (scattering from the LSs above the MB suspension) and for larger time
instants (scattering from the LSs below the MB suspension). This indicates that
the nonlinear scattering that propagates below the polydisperse MB suspension is
relatively small.
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Effect of size distribution on imaging artifacts

To assess the imaging effects of the nonlinear fields below each MB population, it is
necessary to generate the reconstructed B-mode (single-shot) images and the images
that are obtained after employing the AM procedure. The results are depicted in
Fig. 5.12. To achieve this, we placed 7× 105 ml−1 tissue-mimicking linear scatterers
(grey) surrounding the MB suspension.

Figures 5.12(a) and (b) depict the B-mode images for the configuration with a res-
onant monodisperse MB population and a polydisperse population, respectively. In
both cases the backscattering from tissue-mimicking LSs and the MBs is indistinguish-
able because the areas with LSs and MBs have a similar echogenicity, independent

Monodisperse

z
 [
m

m
]

22

20

18

24

26

28

30

B
-m

od
e

Polydisperse

0

-40

-30

-20

-10

D
y
n
am

ic
 r

an
ge

 

[d
B

 r
e 

m
ax

 t
ot

al
]

-4 -2 0 2 4
x [mm]

z
 [
m

m
]

22

20

18

24

26

28

30

0

-30

-10

-20

D
y
n
am

ic
 r

an
ge

 

[d
B

 r
e 

m
ax

 r
es

id
u
al

]

-4 -2 0 2 4
x [mm]

(a) (b)

(c) (d)

A
M

-m
o
d
e

Figure 5.12: B-mode and AM-mode images of the population of monodisperse MBs
and its surrounding region. B-mode (single-shot) ultrasound images acquired for a
region with (a) type 5 monodisperse resonant population and (b) type 6 polydisperse
MB population. AM ultrasound images acquired for the same regions of (c) monodis-
perse and (d) polydisperse MB populations. The position of the MB populations is
outlined by a dashed circle. The rest of the simulation domain is filled with tissue-
mimicking LSs.
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of the size distribution. This demonstrates that B-mode imaging does not allow to
disentangle nonlinear MB scattering from tissue mimicking scattering.

Figures 5.12(c) and (d), show the AM images for the configuration with a resonant
monodisperse MB population and a polydisperse population, respectively. Employing
the AM sequence for imaging a monodisperse MB population generates an image with
significant nonlinear artifacts below of the MB area, meaning that tissue scatterers
get misclassified as MBs. On the contrary, applying the AM sequence for imaging
the polydisperse population delivers an image with much higher specificity. The peak
amplitude in the image of the monodisperse area (0 dB) is stronger than in the
image of the polydisperse area (−11.8 dB). The peak value of the nonlinear artifact
level is −10.04 dB for the monodisperse population and −29.4 dB for the polydisperse
population. This is an indication that monodisperse MBs are more efficient scatterers
than polydisperse populations, especially in applications that require to enhance deep
tissue imaging. A drawback of CEUS with monodisperse MBs is that the generated
artifacts due to propagation of nonlinear scattering in the area below the MBs, is of
comparable magnitude and can lead to missclassification of tissue as contrast agents.

5.5 Conclusions

We simulated AM ultrasound imaging of both monodisperse and polydisperse MBs
using the INCS method, taking into account all the relevant physical phenomena oc-
curring during ultrasound propagation through a MB population. We highlighted the
significance of multiple scattering in monodisperse populations. Resonant monodis-
perse MBs are shown to be the most efficient scatterers, which corresponds to high
sensitivity for CEUS. This property is crucial for optimizing contrast enhancement,
guaranteeing consistent behavior and reliable imaging outcomes, especially compared
to using polydisperse contrast agents. The drawback of resonant monodisperse MBs
is the generation of imaging artifacts, which reduce the specificity of CEUS. This
research approach is useful for optimizing CEUS imaging by designing the size distri-
bution and parameters of a MB population through simulations.

Appendix 5.A Description of the source terms in
Eq. (5.12)

Primary source that generates the incident field

Spr(x, t) = ρ0
∂q(x, t)

∂t
−∇ · f(x, t), (5.15)

Contrast source representing the scattering of a population of nonlinear MBs

SMBs(x, t) = ρ0

N∑
i=1

d2V (i)(x
(i)
sc , t)

dt2
δ(x− x(i)

sc ), (5.16)



55555

106 BIBLIOGRAPHY

Contrast source representing the scattering of a population of linear scatterers

SLSs(x, t) = − ρ0
ρ1c21

M∑
m=1

V
(m)
0

∂2p(x
(m)
sc , t)

∂t2
δ(x− x(m)

sc ), (5.17)

Contrast source representing the nonlinear global effects of the embedding medium

Snl(x, t) =
β

ρ0c40

∂2p(x, t)2

∂t2
, (5.18)

Contrast source representing the local nonlinear effects of the embedding medium

SL(x, t) = (∇2 + c−2
0 ∂2

t )L(x, t), (5.19)

in which

L(x, t) = 1
2ρ0v

2(x, t)− 1
2κ0p

2(x, t), (5.20)

is the so-called Lagrangian density, with p(x, t) indicating the acoustic pressure and
v(x, t) indicating the particle velocity.
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Chapter 6

A spatial and temporal characterisation of
single proton acoustic waves in proton beam

cancer therapy

An in vivo range verification technology for proton beam cancer therapy, preferably in
real-time with submillimeter resolution, is desired to reduce the present uncertainty
in dose localization. Acoustical imaging technologies exploiting possible local inter-
actions between protons and MBs or nanodroplets might be an interesting option.
Unfortunately, a theoretical model characterizing the acoustical field generated by an
individual proton on nanometer and micrometer scales is still missing. In this work,
such a model is presented. The proton acoustic field is generated by the adiabatic ex-
pansion of a region that is locally heated by a passing proton. To model the proton heat
deposition, secondary electron production due to protons has been quantified using a
semi-empirical model based on Rutherford’s scattering theory, reproducing experimen-
tally obtained electronic stopping power values for protons in water within 10% over
the full energy range. The electrons transfer energy into heat via electron-phonon cou-
pling to atoms along the proton track. The resulting temperature increase is calculated
using an inelastic thermal spike model. Heat deposition is regarded as instantaneous,
stress confinement is ensured, and acoustical initial conditions are set. The resulting
thermoacoustic field in the nanometer and micrometer range from the single proton
track is computed by solving the thermoacoustic wave equation using k-space Green’s
functions, yielding the characteristic amplitudes and frequencies present in the acous-
tic signal generated by a single proton in an aqueous medium. Wavefield expansion
and asymptotic approximations are used to extend the spatial and temporal ranges of
the proton acoustic field.
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6.1 Introduction

Proton therapy is an alternative for conventional photon therapy in radiation oncol-
ogy. Proton beams have a theoretical advantage over photon beams by having a more
localised dose distribution characterised by a peak at the end of their range, the Bragg
peak, behind which no dose is present. Therefore, a more conformal therapeutic dose
can be applied to the tumour while sparing the surrounding healthy tissue. Realising
this advantage in the clinic relies on an accurate positioning of the Bragg peak within
the tumour volume, which is a challenging demand. In particular, range uncertainties
are characteristic of proton therapy. These are considered to be the greatest issue in
current clinical practice and have induced an urgent need for accurate in vivo range
verification techniques. [1, 2].

An envisaged way of improving dose deposition accuracy in proton therapy is to
measure the location of proton dose deposition within the anatomy of the patient,
preferably in real-time and with a sub-millimeter resolution. Monitoring the actual
delivered dose during or after the treatment provides the opportunity to either modify
the treatment or compensate in later stages in case of deviations from the original
treatment plan. Several methods for dosimetry in proton therapy are currently under
investigation at the clinical or experimental level [3, 4], including prompt gamma
imaging [5, 6], positron emission tomography [7, 8] and ionoacoustic imaging [9]. In
positron emission tomography and prompt gamma imaging, the correlation between
the emerging nuclear induced secondary radiation and the Coulomb-induced dose
deposition is not straightforward, so that a Bragg peak positioning accuracy better
than a few millimeters cannot be expected in clinical situations.

Ionoacoustic imaging employs acoustic pressure signals generated by thermoelas-
tic expansion of the area where protons rapidly deposit the majority of their energy
as heat [9]. The dimensions of the heated area determine the frequency content of the
emitted acoustic pressure wave. As such, the ionoacoustic signal is a result of com-
bined heat deposition of all protons delivered by the beam. Stopping of protons is a
stochastic process which makes that not all protons have the same range. While the
stopping range of an individual proton is several micrometers, the effective stopping
range for the proton beam, consisting of roughly a billion protons, is several millime-
ters. Consequently, ionoacoustic signals have frequencies in the order of kilohertz,
hampering desired submillimeter localisation resolution.

To approach the problem from another perspective, one may consider the heat
deposition of an individual proton. As this heat is deposited over a range of several
micrometers, an impacting proton generates a broadband acoustic pressure wave. We
will refer to this wave as the proton acoustic signal, in order to distinguish it from
the previously mentioned ionoacoustic signal. The higher frequency of this proton
acoustic signal will allow a higher localisation resolution than the ionoacoustic signal.
However, the proton acoustic pulses cannot be detected at the surface of the body
because their high frequency will give rise to high acoustic attenuation, and the pulses
that are simultaneously generated by all protons will largely cancel each other. In the
absence of these effects, the ionoacoustic signal would contain much higher frequencies
than mentioned above.

Clinical ionoacoustic signals typically have a peak pressure on the order of tens
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of mPa in the kHz band [10]. Averaging is necessary to detect these, as the state-of-
the-art medical transducers have a noise-equivalent pressure on the order of hundreds
of mPa [11, 12] . Thus, it is now clear that there is a challenge of measuring proton-
induced pressure pulses at the surface of the human body in a higher frequency
band, where the pressure content is even lower. To tackle this challenge, we assume
that ultrasound contrast agents (UCAs) consisting of micron-sized bubbles may be
useful [13]. These MBs can be injected in the blood flow of patients and act as acoustic
scatterers. If a single proton impacts in the vicinity of a MB, the proton acoustic wave
might drive the MB into oscillation at its resonance frequency, which is typically
on the order of a few megahertz. Moreover, monodisperse bubbles that are excited
simultaneously might oscillate synchronously at the same resonance frequency. In this
way, MBs might convert the broadband proton acoustic pulses into acoustic waves
with amplitudes and frequencies detectable outside the body and with frequencies
allowing submillimeter resolution. This idea was substantiated by experiments using
broadband photoacoustic pulses with center frequency in the hundreds of MHz band,
which drove MBs into oscillation at their natural frequency in the much lower MHz
range [14, 15]. A similar concept could be based on the vaporization of nanodroplets
by a proton beam, which has been recently observed in experiments [16].

Since MB oscillations are driven by the pressure difference in the gas-liquid inter-
face, the acoustic fields of single protons play a key role in the interaction with MBs
and nanodroplets. The temporal evolution of the signal is relevant in the nanome-
ter and micrometer distances, as this is the distance expected between the proton
stopping position and the closest MB. To numerically simulate these interactions,
models for the proton acoustic wave generation and the MB response to these waves
are necessary but have not yet been developed. Until now, the pressure generation in
proton beams has been described as a bulk phenomenon where in a certain region of
interest the thermoacoustic effect of all protons in the beam was considered, resulting
in the ionoacoustic signal. [17] has reviewed theoretical and experimental work on
the generation of acoustic waves through the interaction between ionizing radiation,
such as protons, and materials. It was proven that the ionoacoustic signal generated
by a proton beam fits with a theory based on the thermoacoustics of heating along
the tracks of the particles. However, the properties of the acoustic waves generated
by the individual protons are still obscured. To bridge this theoretical gap, we have
developed a framework that combines a single proton heat deposition model with
numerical wave simulation algorithms, such that acoustic waves generated by single
protons could be computed. Importantly, our model does not account for the possi-
bility of a proton stopping within the gas core of a MB, as this is considered a highly
unlikely event. An envisaged next step in this simulation study is to compute the
MB response to the computed single proton acoustic waves, but the modelling of this
physical process is out of the scope of this paper.

Localized heat deposition in a medium that is irradiated with swift ions has been
studied for a variety of applications including proton beam cancer therapy [18]. In
previous work, the inelastic thermal spike model has been used to study the temporal
temperature distribution along the track of an individual proton stopping in water.
The model that we will use inherently treats the proton heating process as a two step
process, firstly the absorption of proton energy by electrons, creating secondary elec-
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trons or delta rays, and secondly the heating of the molecules through electron-phonon
coupling. In an earlier study temperature spikes and pressure spikes in irradiated wa-
ter have been discussed [19], but here all the energy lost by the ions was assumed to be
immediately transferred to the molecules, thus neglecting the electronic component,
resulting in the prediction of much higher temperatures and consequently pressure
spikes.

We will use methods originating from the field of photoacoustics to predict the
acoustic field generated due to thermoelastic expansion following localised radia-
tion heating. The thermoacoustic wave equation will be solved in k -space using a
wavenumber integration algorithm, yielding the proton acoustic wave [20]. In addi-
tion, spatial and temporal wave extrapolation algorithms will be used to stretch the
computational limits on simulation ranges. In this way, the characteristic amplitudes
and frequency content of the proton acoustic wave were obtained, providing a theo-
retical basis for continuing research on the behaviour of ultrasound contrast agents
and nanodroplets in a proton beam.

6.2 Numerical methods

As described above, in interactions between protons and the medium they are travers-
ing, kinetic energy is converted to heat. As a result of this, a temperature distribu-
tion is induced along the proton track, which generates an acoustic wave through
local thermoelastic expansion of the medium. Models for the heating process and
acoustic wave generation are described in Sec. 6.2.1 and 6.2.2, respectively. All pre-
sented calculations have been performed for a proton in water, but the framework
can straightforwardly be extended to other media or ion species [18,21].

6.2.1 Proton heat deposition model

A proton traversing a medium mainly slows down by transferring kinetic energy
to electrons, creating a cascade of secondary electrons. These energetic secondary
electrons heat the medium when becoming thermalized and bound. This radiation
heating process can be modelled phenomenologically as a two-step process: (1) the
absorption of proton energy by electrons and (2) the heating of the atoms through
electron-phonon coupling [22]. Previously, for a proton in water this process was
mathematically described by an inelastic thermal spike model consisting of two cou-
pled equations of energy transfer [18], given by

Ce
∂Te

∂t
= ∇ · [Ke∇Te]− g[Te − T ] +D

ρC(T )
∂T

∂t
= ∇ · [K(T )∇T ] + g[Te − T ]

(6.1)

where Te(r⃗, t) and T (r⃗, t) denote temperature increases of the electronic and molecu-
lar subsystems resulting from proton impact. The symbols Ce, C(T ), Ke, and K(T )
denote the specific heats and thermal conductivities of the electronic and molecu-
lar subsystems [18, 23, 24]. The electron-phonon coupling constant g is linked to the
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electron-phonon mean free path λ by the relation g = Ke/λ
2 [18,24–26]. The symbol

D(r⃗, t) denotes the energy density, or dose, supplied by the incident proton to the
electronic subsystem and carried via the electron cascade over a distance r = |r⃗| from
the proton track [21, 24, 27], where r⃗ is the position vector in a three-dimensional
cylindrical domain with the longitudinal axis aligned with the proton track. Cylindri-
cal symmetry is imposed such that the quantities are independent of the azimuthal
coordinate. Equation 6.1 was solved numerically for the temperature distribution
T (r⃗, t) resulting from proton impact. An overview of the parameters in the inelastic
thermal spike model is displayed in Table 6.1.

6.2.2 Proton acoustic wave model

When a region of a fluid is heated, a sound wave will be generated through thermoe-
lastic expansion. The relation between the proton-induced temperature distribution
T (r⃗, t) and the resulting proton acoustic wave p(r⃗, t) is described by the thermoacous-
tic wave equation.

We consider a homogeneous, linear and lossless acoustic medium. In general,
the acoustic pressure p(r⃗, t) generated through thermoelastic expansion obeys the
following wave equation

∇2p(r⃗, t)− 1

v2s

∂2p(r⃗, t)

∂t2
= − βV

κv2s

∂2T (r⃗, t)

∂t2
(6.2)

with

p(r⃗, t = 0) = 0 and
∂p(r⃗, t)

∂t

∣∣∣∣
t=0

= 0 (6.3)

The symbol t denotes the time coordinate, and ∇2 indicates the Laplace operator.
T (r⃗, t) denotes the temperature, vs is the ambient speed of sound, βV is the volume
thermal expansivity and κ is the isothermal compressibility. Implicitly, it is assumed
that thermal conductivity during heat deposition can be neglected, which condition
holds for sufficiently short heating pulses and is known as thermal confinement [28].

Proton heat deposition occurs on a timescale much shorter than the characteristic
acoustic travel time of the resulting wave, thus may be regarded as instantaneous.
Therefore, it may be assumed that all heat energy has been deposited before the

Table 6.1: Parameters for the inelastic thermal spike model in water.

Symbol Condition Value Unit
C 273 - 373 K 4.2 J g−1 K−1

> 373 K 2.0 J g−1 K−1

Ce 1 J cm−3 K−1

K 6 · 10−3 J s−1 cm−1 K−1

Ke 2 J s−1 cm−1 K−1

λ 2 · 10−7 cm
ρ 1.0 g cm−3
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medium has expanded and its equilibrium mass density ρ has changed. This condi-
tion is known as stress confinement and holds if the heating pulse duration t0 satisfies
t0 < dc/vs with dc being the characteristic length of the temperature distribution.
The concept of stress confinement originates from the field of photoacoustics, where
short laser pulses are used as a heating source. In Sec. 6.3, it is proved that the
condition for stress confinement is satisfied for single proton acoustics. Under iso-
choric conditions, the change in density ∆ρ(r⃗, t0), just after the proton heating pulse,
is related to the change in temperature T (r⃗, t0) and change in pressure p(r⃗, t0) via
the thermodynamic equation ∆ρ(r⃗, t0) = ρκp(r⃗, t0) − ρβV T (r⃗, t0). Setting ∆ρ(r⃗, t0)
to zero, which is dictated by stress confinement, yields a relation for the acoustic
pressure at time t0

p0(r⃗) =
βV

κ
T (r⃗, t0) (6.4)

Equation 6.4 should be in agreement with the solution p(r⃗, t) of Eq. 6.2 at the time
instance t = t0. Intuitively it can be deduced that, whereas Eq. 6.2 included a
source term, in the case of instantaneous proton heating, the problem can be recast
as an initial value problem with no explicit source term but with a given pressure
distribution at the instant of the proton heating pulse p(r⃗, t0). This makes the two
initial conditions required for a unique solution explicit. Mathematically, the initial
value problem for the specific case of proton acoustics is then defined as

∇2p(r⃗, t)− 1

v2s

∂2p(r⃗, t)

∂t2
= 0 (6.5)

with

p(r⃗, t = t0) = p0(r⃗) and
∂p(r⃗, t)

∂t

∣∣∣∣
t=t0

= 0 (6.6)

The first condition in Eq. 6.6 defines the acoustic pressure distribution at a time t0
after proton impact, when the temperature increase has reached its maximum value.
The second initial condition is equivalent to zero particle velocity v⃗p(r⃗) everywhere
at t0, which can be safely assumed. Solving Eq. 6.5, using these initial conditions
and the acoustic parameters from table 6.2, yields the proton acoustic wave p(r⃗, t)
in water. Three algorithms were used for full spatiotemporal characterisation of the
proton acoustic field, which will be introduced in the following subsections. The
algorithm in subsec. 6.2.2 calculates the proton acoustic field in a three dimensional
Cartesian domain for a single time instant. As such, spatial characteristics of the
field can be visualised efficiently but studying dynamic behavior requires successive
evaluation of the algorithm for a series of time instants and therefore is, particularly for
large domains, computationally involving. With the applied algorithm the maximum
distance to the proton track |r⃗| and time t at which p(r⃗, t) can be evaluated is limited
by the amount of available computational memory. To tackle this, wave extrapolation
algorithm were used as a complement to the propagation algorithm. The algorithm
in subsec. 6.2.2 was used to efficiently calculate the proton acoustic wave for large
radial distances. The long time behaviour was approximated by using the temporal
wave extrapolation algorithm from subsec. 6.2.2.
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Wave propagation: field for single time instant

This scheme relies on the Green’s function in k-space for computing a pressure field
p(r⃗, t) from an arbitrary initial pressure distribution [20]. For the acoustic wave
following the proton-induced pressure distribution p0(r⃗

′), it provides an exact solution
that is given by

p(r⃗, t) =
1

(2π)3

∫ ∫
p0(r⃗

′) cos(vsk(t− t0))e
ik⃗·(r⃗−r⃗′)dk⃗dr⃗′ (6.7)

with r⃗′ a position vector given in Cartesian coordinates. Using the definition of the
Fourier transformation, Eq. 6.7 may be written as

p(r⃗, t) = F−1
x,y,z {cos(vsk(t− t0))Fx,y,z {p0(r⃗)}} (6.8)

where Fx,y,z and F−1
x,y,z denote the three-dimensional spatial Fourier and inverse

Fourier transformation, respectively. Numerical computation of the acoustic field
at any time t requires only two three-dimensional Fast Fourier Transformations and a
multiplication with the exact time propagator cos(vsk(t− t0)). Because the changes
of p(r⃗, t) over time are calculated using an exact propagator, it is not necessary to
calculate the field at intermediate times, as would be required with, for example, fi-
nite difference methods. Since the pressure is calculated on a grid of points, the grid
spacing must meet the usual Nyquist criterion to avoid aliasing in the spatial domain.

Spatial Wavefield Extrapolation

A scheme is introduced that may be used to extrapolate the pressure field p(rp, z, t)
recorded along a line parallel to the proton track at an arbitrary radial distance rp,
to larger radial distances r > rp. It exploits the cylindrical symmetry of the proton
acoustic problem, thereby reducing the number of spatial dimensions from three to
two. This makes the extrapolation algorithm suitable for swift computation of the
pressure field for micrometer radial distances. The algorithm is based on the Eq. [29]

p(r, z, t) = F−1
t,z

{
H

(1)
0 (µr)

H
(1)
0 (µrp)

Fz,t {p(rp, z, t)}

}
(6.9)

with H
(1)
0 denoting the zeroth order Hankel function of the first kind and µ defined

as

µ =

{
(ω

2

v2
s
− k2z)

1
2 , | ωvs | > kz

i(k2z − ω2

v2
s
)

1
2 , | ωvs | < kz

(6.10)

Table 6.2: Acoustic properties of water [33,34]

.

Symbol Value Unit
vs 1481 m s−1

βV 2 · 10−4 K−1

κ 5 · 10−11 cm s2 g−1
ρ 1 g cm−3
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For µr greater than about 2, using an asymptotic expansion of the Hankel function is
justified to accelerate numerical computations. The asymptotic expansion of Hankel
functions of the first kind is [30]

H(1)
ν (µrp) =

√
2

πµrp
ei(µrp−

νπ
2 −π

4 ) (6.11)

Combining equations 6.9 and 6.11 yields the following Eq. for accelerated wavefield
extrapolation

p(r, z, t) ≈ F−1
t,z

{√
rp
r
eiµ(r−rp)Fz,t {p(rp, z, t)}

}
(6.12)

For the scheme to yield accurate results, the grid spacing in the axial direction should
be sufficiently small compared to the typical wavelength λ of the acoustic signal
recorded at rp. Typically, ∆z should be less than λ/2, and much smaller than λ/2 for
increased accuracy. A smart interpolation method can be used to adjust the sampling
frequency of p(rp, z, t) [31].

Temporal Wavefield Extrapolation

A scheme is presented that may be used to extrapolate the solution p(r, z, tp) at a
sufficiently large time instant tp to later times t > tp. In doing so, the cylindrical
symmetry of the proton heat deposition and the temporal characteristics of the heat
deposition will be exploited. The algorithm enables obtaining of the low frequency
content of the proton acoustic wave, which is desirable given the typical megahertz
resonance frequency of ultrasound contrast agents. Given the symmetry of the pro-
ton acoustic problem, the thermoacoustic equation from Eq. 6.2 may be written in
cylindrical coordinates as

∇2p(r, z, t)− 1

v2s

∂2p(r, z, t)

∂t2
= − βV

κv2s

∂2T (r, z, t)

∂t2
(6.13)

The temporal characteristics of the heat deposition shown in Fig. 6.1 confirm the
statement made in Sec. 6.2.2 that the temperature rise is some orders of magnitudes
faster than typical acoustic time scales. Therefore, it is justifiable to approximate the
temporal behaviour of the temperature distribution by a step function, such that

T (r, z, t) ≈ T (r, z, t0)H(t− t0) (6.14)

withH(t−t0) representing the Heaviside step function. Next, combining equations
6.13 and 6.14 yields

∇2p(r, z, t)− 1

v2s

∂2p(r, z, t)

∂t2
= −βV T (r, z, t0)

κv2s

∂δ(t− t0)

∂t
(6.15)

Now, suppose we assume that the pressure at an arbitrary location behaves as if it
were generated by a uniform line source. In that case, the solution for the acoustic
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(a)

(b)

Figure 6.1: (Color online) Temperature increase as a function of time and radial
distance, in the axial plane of the Bragg peak (z = xx µm). The temperature peaks in
around 70 fs after proton impact, due to the swift energy deposition into the electronic
subsystem and subsequent electron-phonon interactions. Since heat diffusion in the
atomic subsystem occurs on considerably longer time scales, the temperature remains
approximately constant over a picosecond until finally relaxing to the ambient value
again.
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pressure field in Eq. 6.15 will behave as the time derivative of the cylindrical Green’s
function. The cylindrical Green’s function is given by

G(r, t) =
1

2π
√
t2 − r2/c2

H(t− r/c) (6.16)

Taking the time derivative yields

∂G(r, t)

∂t
=

δ(t− r/c)

2π
√

t2 − r2/c2
− tH(t− r/c)

2π[t2 − r2/c2]3/2
(6.17)

The asymptotic behaviour of the acoustic pressure field for long times is thus

p(r, z, t) ∼ − 1

t2
, for t → ∞ (6.18)

The corresponding asymptotic frequency behaviour can be found by obtaining the
frequency domain counterpart of the time derivative of the Green’s function, and
performing a low frequency approximation. The Fourier transform of Eq. 6.17 is

jωĜ(r, ω) =
ω

4
H

(1)
0 (ωr/c)

=
ω

4
[J0(ωr/c) + jY0(ωr/c)]

(6.19)

where J0 and Y0 represent the zeroth order Bessel functions of the first and second
kind, respectively. As the frequency approaches zero the Bessel functions can be
approximated as [32]

J0

(ωr
c

)
≈ 1−

(ωr
2c

)2
, for

(ωr
c

)
≪ 1 (6.20)

Y0

(ωr
c

)
≈ 2

π

[
log
(ωr
2c

)
+ γ
]
, for

(ωr
c

)
≪ 1 (6.21)

By plugging equations 6.20 and 6.21 into Eq. 6.19 and taking the modulus, it is found
that the low frequency behaviour of the pressure signal is characterised by

p(r, z, ω) ∼ ω

4

[[
1−

(ωr
2c

)2]2
+

4

π2

[
log
(ωr
2c

)
+ γ
]2] 1

2

,

for ω → 0

(6.22)

In deriving equations 6.18 and 6.22, the dependence of the initial temperature distri-
bution T (r, z, t0) on z has been implicitly neglected. In reality this is not the case,
as is illustrated in Fig. 6.2. It can be seen that the temperature distribution has a
dependency on the axial position, with a characteristic length scale in the order of a
micrometer. Positions close to the proton track, say for radial distances in the order
of a nanometer, thus see the distribution as if it were a uniform line source. The
validity of the assumption weakens for larger radial distances, however, it may be
expected that the derived asymptotic behaviour at least yields information about the
order of magnitude of the low frequency energy content of the proton acoustic wave.
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6.3 Results and discussion

6.3.1 Proton heat deposition

Solving the inelastic thermal spike model from Eq. 6.1 yields the temperature increase
distribution T (r⃗, t). In our case this distribution is cylindrically symmetric. First,
the transient characteristics of T (r⃗, t) are computed to determine the duration t0 of
the proton heating pulse. Figure 6.1 shows the temperature increase as functions of
time and radial distance to the proton track for a location in the axial plane of the
Bragg peak (z = -1.6 µm). It is found that proton heat deposition occurs within a
time t0 = 70 fs. From an acoustical perspective, the spatial temperature distribution
T (r⃗, t0) is of interest as it sets the acoustical initial conditions. A snapshot of the
spatial temperature distribution at t0 = 70 fs after proton impact is displayed in
Fig. 6.2.

6.3.2 Proton acoustic wave simulation

It can be derived from the temperature distribution in Fig. 6.2 that the characteristic
radial dimension of the heat heterogeneity dc is less than 10 nm. Considering the de-
rived heating pulse duration of t0 = 70 fs and a speed of sound in water vs = 1483m/s,
the condition t0 < dc

vs
for acoustic confinement is well-satisfied for the case of single

proton heating. Thus, Eq. 6.4 may be used to obtain the proton-induced acoustic
pressure distribution. Since the pressure field in this equation sets the acoustical ini-
tial conditions, it will be referred to as the initial pressure distribution, see Fig. 6.3.

Wave propagation: field for single time instant

In Fig. 6.4, snapshots of the acoustic field are shown for three time instants. These
are computed with a scheme based on Eq. 6.8. Note that the axial dimension is three
orders of magnitude larger than the lateral dimensions, such that relative axial wave
propagation is marginal over the simulated time scale.

The temporal behavior of the proton acoustic signal, recorded on a line at a radial
distance of 30 nm from the proton track, is shown in Fig. 6.5. The proton acoustic
signal in the axial plane of the Bragg peak consists of a bipolar spike with a center
frequency of 86.7 GHz. At 30 nm radial distance, the pressure in the Bragg peak has
dropped from 45.2 MPa to 3.1 MPa. The dropping of the peak pressure is attributed
to the geometrical spreading of the acoustic field, considering that attenuation was
not incorporated. The shape of the proton acoustic signal is similar to the signature
of the source term in Eq. 6.2. This signature is the double time derivative of the
almost stepwise increase of the temperature in Fig. 6.1, yielding the bipolar behavior
of the pressure pulse. Considering the absence of dispersion in the numerical scheme,
the shape of the simulated signal necessarily remains unchanged during propagation.
The red crosses in Fig. 6.5c indicate the center frequency of the signal recorded at
the corresponding axial position. Lower frequencies are observed for positions be-
fore the Bragg peak. This can be explained by the more widespread initial pressure
distribution at these locations, see Fig. 6.3a.
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(a)

(b)

Figure 6.3: (Color online) Initial pressure distribution induced by proton impact.
Due to the applicability of acoustic confinement, this pressure distribution is essen-
tially a scaled version of the temperature distribution at 70 fs after proton impact. A
peak pressure of 45.2 MPa was found in the Bragg peak, of which the axial location
is denoted by the red dashed line.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: (Color online) Snapshots of the propagating proton acoustic wave. The
images are made with 3.4 ps time intervals, equivalent to a snapshot for every 5 nm
of propagation distance. Note the cylindrical symmetry of the propagating wave and
the dropping of the peak pressure due to geometric spreading.
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(a)
(b)

(c)
(d)

Figure 6.5: (Color online) Temporal and spectral behaviour of the proton acoustic
signal, at a radial distance of 30 nm from the proton track. (a) Time signal. (b)
Time signal in the axial plane of the Bragg peak. Although hardly visible, at the
position of the red cross a negative pressure of approximately 25 kPa is present. (c)
Frequency spectrum of the time recording, normalised against the maximum of the
spectrum. The red crosses indicate the center frequency of the signal recorded at the
corresponding axial detector position. (d) Frequency spectrum in the axial plane of
the Bragg peak. Note that the low frequency part of the spectrum is highly influenced
by the truncation of the time domain signal, and therefore is not reliable.
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To study possible interactions with ultrasound contrast agents, in particular the
acoustic energy in the megahertz frequency bands is of interest. As such, it is desirable
to simulate the signal for time scales in the order of nanoseconds. Due to memory
limitations this was not possible with the current scheme using Eq. 6.8.

Spatial wavefield extrapolation

Figure 6.6 shows the local positive peak pressure for the last five micrometers of the
proton track. Peak values up to approximately 5 nm radial distance are set by the
initial pressure distribution. Hereafter, the values show a pressure fall-off according
to an inverse square root relationship with radial distance. For locations close to the
proton track, the energy spreading is essentially cylindrical. For cylindrical waves,
acoustic energy spreads inversely proportional with radial distance. Since acoustic
energy scales with the square of pressure, an inverse square root proportionality for
pressure could intuitively be expected.

The spatial wave extrapolation scheme using Eq. 6.12 was used to simulate the
proton acoustic wave for radial distances from 150 nm to 5 µm. Figure 6.7 shows the
local positive peak pressures for these radial distances, for the last five micrometers
of the proton track. The positive peak pressure decreases further, according to the
inverse square root relationship in Eq. 6.12, from 1.41 MPa to 0.24 MPa between 150
nm and 5 µm radial distance. Note that in Fig. 6.7 at a radial distance of 5 µm
a discrepancy, though small, arises with the inverse square root relationship. This
is presumably because of the nonuniform initial pressure distribution in the axial
direction, which makes that for very large radial distances the proton may be seen as
a point source rather than a cylindrical source.

Temporal wave extrapolation

The temporal wave extrapolation scheme was used to approximate the proton acoustic
wave for long times and to approximate its frequency spectrum in the low frequency
regime. In Fig. 6.8 the asymptotic behaviour from equations 6.18 and 6.22 has been
plotted and compared to the simulated data from Fig. 6.5. These analytical ex-
pressions were plotted by fitting the relation to a single simulation data point. The
agreement is good for short times and high frequencies, and therefore the analytical
expressions may be used to estimate the pressure for long times and for low frequen-
cies. In Fig. 6.8a it is shown that the time signal runs until 160 ps and is cut-off
afterwards. In creating the simulated frequency spectrum in Fig. 6.8b, this signal
was windowed before Fourier transformation, which unavoidably affects the low fre-
quency regime. The analytical approach taken to derive the asymptotic behaviour in
Fig. 6.8b does not suffer from such a procedure and is therefore considered to be a
better reflection of reality. The discrepancy between the simulation results and the
asymptotic behaviour in 6.8b is therefore a result of the sensitivity of the simulation to
windowing. According to the inverse quadratic behaviour with time, it is found that
the simulated negative pressure of -2.6 kPa after 160 picoseconds at a radial distance
of 30 nanometers from the Bragg peak will decay to -68 Pa after 1 nanosecond.
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(a)

(b)

Figure 6.6: (Color online) Local positive peak pressures for radial distances up to
150 nm. Peak values up to approximately 5 nm radial distance are set by the initial
pressure distribution. Hereafter, the values show a pressure fall-off according to an
inverse square root relationship with radial distance.
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(a)

(b)

Figure 6.7: (Color online) Local positive peak pressures for radial distances up to 5
µm. This figure is complementary to Fig. 6.6.
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(a)

(b)

Figure 6.8: (Color online) Asymptotic temporal and spectral behaviour of the proton
acoustic signal. The normalisation basis in (b) is the maximum of the spectrum. Note
that the discrepancy between the simulation results and the asymptotic behaviour in
(b) is a result of the sensitivity of the simulation result to windowing of the time
domain signal in (a), while the asymptotic behaviour does not suffer from this effect.
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6.4 Conclusions

A theoretical model for describing the acoustic field caused by a single proton has
been developed, laying a foundation for characterisation of possible acoustic interac-
tions between protons and ultrasound contrast agents or nanodroplets. The model
consists of a set of equations describing the heat deposition of a proton and schemes
to solve the thermoacoustic wave equation. The numerical simulations yielded the
shape, frequency content and amplitude of the proton acoustic wave on nanometer
and micrometer scales. It was found that the proton acoustic wave consists of a bipo-
lar spike with a center frequency of around 86.7 GHz. Positive peak pressures of 45.2
MPa were found in the single proton Bragg peak, falling off according to an inverse
square root relationship with radial distance to 0.24 MPa at 5 µm radial distance from
the Bragg peak. The temporal behaviour was simulated up to 160 ps and showed that
at 30 nm from the Bragg peak a negative pressure of -2.6 kPa was present at that
time. An analytical approximation illustrated that the the pressure falls off according
to an inverse square relationship with time.

All in all, this work has provided a full spatiotemporal characterisation of the
acoustic field of a single proton. As next steps, it would be interesting to use this model
for predicting how ultrasound contrast agents and nanodroplets would respond to the
combined acoustical field generated in a proton beam, where one has an abundant
amount of protons, each generating an acoustical field. Comparing these results
to recent observations of ultrasound contrast agents in a proton beam could yield
valuable insight in the physical processes happening at nanometer and micrometer
scales [13]. However, a theoretical gap currently still exists in describing the MB
response to submicrometer length acoustic pulses, which should first be filled to enable
further characterisation of the interaction between protons and ultrasound contrast
agents or nanodroplets.
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Chapter 7

Impact of a proton beam on a microbubble
population

An in vivo range verification technology for proton beam cancer therapy, preferably in
real-time with submillimeter resolution, is desired to reduce the present uncertainty
in dose localization. Acoustical imaging technologies exploiting possible local interac-
tions between protons and MBs might be an interesting option. Although there has
been research for the pressure field emission from a single proton, a theoretical model
characterizing the scattering of a MB population when excited by the acoustical field
generated from a beam of protons is still uknown. To deal with this challenge, we
extend the Iterative Nonlinear Contrast Source (INCS) method with the incorporation
of a cloud of protons as the primary source term that responsible for the incident
pressure field. We study the influence of the pressure field from a proton beam on
the scattering from a MB population by incorporating an extra contrast source term
in the wave equation. Multiple parameters and all the necessary assumptions that
affect the behavior of the total system are described. Overall, this work sheds light on
the simulation of the interactions between a proton beam and a population of MBs,
and can give insightful information to expand the horizons of therapeutic ultrasound,
mainly for the unconventional proton therapy.

131
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7.1 Introduction

Proton therapy offers an alternative to conventional photon therapy in radiation on-
cology. Proton beams provide a theoretical advantage over photon beams due to their
more localized dose distribution characterized by a peak at the end of their range,
known as the Bragg peak, beyond which no dose is present. This feature allows for
a more conformal therapeutic dose to be applied to the tumor while sparing sur-
rounding healthy tissue. However, realizing this advantage in clinical practice relies
on accurately positioning the Bragg peak within the tumor volume, which poses a
significant challenge. Range uncertainties, inherent to proton therapy, are considered
the primary issue in current clinical practice, necessitating accurate in vivo range
verification techniques [1, 2].

Improving dose deposition accuracy in proton therapy entails measuring the loca-
tion of proton dose deposition within the patient’s anatomy, preferably in real-time
and with sub-millimeter resolution. Monitoring the actual delivered dose during or
after treatment offers the opportunity to modify the treatment or compensate for
deviations from the original plan. Various methods for dosimetry in proton ther-
apy are under investigation [3, 4], including prompt gamma imaging [5, 6], positron
emission tomography [7, 8], and ionoacoustic imaging [9]. However, achieving Bragg
peak positioning accuracy better than a few millimeters in clinical situations remains
challenging due to the complex correlation between emerging secondary radiation and
Coulomb-induced dose deposition.

Clinical ionoacoustic signals typically exhibit a peak pressure in the range of tens
of mPa in the kHz band [10]. Averaging is necessary to detect these signals, as
state-of-the-art medical transducers have a noise-equivalent pressure on the order of
hundreds of mPa [11, 12]. Consequently, improving resolution by directly measuring
proton-induced pressure pulses at the body’s surface in a higher frequency band, where
pressure content is even lower, presents a significant challenge. One proposed solution
involves utilizing ultrasound contrast agents (UCAs) consisting of micron-sized bub-
bles [13]. These MBs, injected into the patient’s bloodstream, act as acoustic scatter-
ers. When a proton impacts near a MB, the resulting proton acoustic wave may drive
the MB into oscillation at its resonance frequency, typically in the megahertz range.
This concept has been substantiated by experiments using broadband photoacoustic
pulses, which drove MBs into oscillation at their natural frequency in the lower MHz
range [14, 15]. A similar concept could be based on the vaporization of nanodroplets
by a proton beam, which has been recently observed in experiments [16,17].

Microbubble oscillations, driven by pressure differences at the gas-liquid interface,
are influenced by the acoustic fields of proton beams. Previous research has developed
numerical models describing the spatiotemporal profiles of acoustic pressure waves
emitted from a single proton in submillimeter ranges [18]. However, understanding
how a beam of individual protons deposits energy into the medium remains unknown.
Until now, the pressure generation in proton beams has been described as a bulk
phenomenon where in a certain region of interest the thermoacoustic effect of all
protons in the beam was considered, resulting in the ionoacoustic signal. To simulate
interactions between protons and MBs, models for acoustic wave generation by a
cloud of protons and the response of the MB population are necessary but currently
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undeveloped.
This numerical study aims to explore the sychronous oscillations of a MB pop-

ulation, stimulated by the acoustic pressure fields from a cloud of individual pro-
tons. To achieve this, we employ the extended Iterative Nonlinear Contrast Source
(INCS) [19, 20] method that already accounts for the interactions within a MB pop-
ulation [21]. The behavior of each MB, characterized by its individual properties,
is modeled by solving its own Marmottant equation [22]. In this chapter, the INCS
method is extended to incorporate the proton cloud as the primary source term in the
full wave equation, causing the incident protoacoustic field. Each proton is assumed to
behave as a point emitter. Based on a Neumann iterative scheme, the INCS method
calculates the scattered acoustic signals, progressively enhancing accuracy with each
iteration until convergence is achieved. Each iteration introduces an additional order
of multiple scattering, corresponding to an extra path of wave propagation.

First, in Section 7.2, the fundamental theory behind the INCS method is explained
followed by its extension with the cloud of point sources. In Section 7.3, the configu-
ration for the numerical experiments is discussed, which is used for the validation of
INCS and the comparison between polydisperse and monodisperse populations when
excited by a plane wave. Next, in Section 7.4 the results from the numerical sim-
ulations for each different test case are presented. Concluding remarks are given in
Section. 7.5.

7.2 Extension of INCS with a cloud of protons

7.2.1 Linear Field

The linear pressure field generated by an external source in a linear, homogeneous
acoustic medium is described by the wave equation

c−2
0

∂2p(x, t)

∂t2
−∇2p(x, t) = Spr(x, t), (7.1)

Here, x [m] is the Cartesian position vector, and t [s] is the time. The symbol
p(x, t) [Pa] indicates the acoustic pressure, c0 = 1/

√
ρ0κ0 [m/s] is the small signal

sound speed in the background medium, where ρ0 [kg·m−3] is the mass density and
κ0 [Pa−1] is the compressibility. The Laplacian operator ∇2 generates the sum of
the second order spatial derivatives. The acoustic field is generated by the primary
source term Spr, which can also be described by a pressure jump condition for either
the velocity or the pressure. These jump conditions can be used to represent a source
with a plane aperture, e.g. a phased array transducer, via boundary conditions.

Here, we assume that each proton can be represented by a point emitter. There-
fore, to account for a cloud of point sources, the primary source term is given by

Spr(x, t) =

M∑
i=1

A(i)s(i)(t) δ(x− x(i)
p ), (7.2)
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where i is the integer index of the point source in the population, M is the number

of point sources, x
(i)
p is the position vector, A(i) is the pressure amplitude and s(i)(t)

is the temporal signature of the ith point source. The symbol δ indicates the Dirac
delta distribution. As every proton has the same properties, they all have the same
peak amplitude A and temporal signature s(t). In other words, all point sources act
at the same time and synchronously emit the same pulse.

7.2.2 Nonlinear field due to contrast agents

In medical ultrasound, nonlinearities arising from contrast media can have a significant
impact on the propagation of the acoustic signals. To incorporate any propagation
phenomena that affect the incident field, it is sufficient to extend Eq. (7.1) with a
contrast source term Scs, thus

c−2
0

∂2p

∂t2
−∇2p = Spr + Scs(p) (7.3)

Within this scheme, multiple contrast sources can be accommodated that represent
attenuation [20, 24], inhomonegeous medium properties [25], or the effect of local
nonlinearities. [26] In contrast-enhanced imaging, the nonlinear oscillatory behavior
of the MBs distorts the incident field. To include the contribution of a population of
MBs, each described as a point scatterer, the source term should be rewritten as [21]

Scs(x, t) = ρ0

N∑
i=1

d2V (i)(x
(i)
sc , t)

dt2
δ(x− x(i)

sc ), (7.4)

where V is the volume of each MB, xsc is the position vector of each point scatterer,
i is the integer index of the scatterer in the population, and N is the number of MBs.
Each scatterer’s volume depends on the bubble radius R as a function of time, which
in our case will be calculated by solving the Marmottant equation [22].

7.3 Configurations of the simulations

To construct the configurations, first we need to understand our research question.

How can we efficiently localize the Bragg peak with submillimeter resolution in real-
time with the introduction of contrast agents, such as MBs?

To answer this, we need to achieve :

• Uniform distribution of the generated pressure fields. To localize the Bragg
peak, it is necessary to detect the protoacoustic signal through multiple sen-
sors at different locations. To correlate these signals, they should have similar
temporal signatures and therefore a uniform distribution.

• Coherent signal assisted by the synchronous oscillations of the MBs
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• Enlongated temporal profile due to the oscillatory behavior of the MBs

• Energy concentration in the band around resonance frequency of the MBs

• Bandlimited and sensitive optoacoustic sensors

Next, we need to describe the parameters of the simulation that will make the detec-
tion of the broadband protoacoustic signal feasible.

7.3.1 Incident field

First, we describe the parameters for the generation of the incident field, as it pri-
marily excites of the MB population.

Statement 1: High frequencies, from hundreds of MHz to GHz, undergo signifi-
cant attenuation as the wave propagates further from the protons’ location, rendering
them insignificant for bubble excitation and signal detection by the optoacoustic sen-
sor.
Assumption 1: Therefore, it is assumed that the effect due to high frequencies is
negligible, and the bubbles are, on average, excited by a pulse in the lower MHz range.

As can be deduced from Deurvorst et al. [18], the temporal signature of a single
proton is a short broadband pulse of the form

s(t) = exp

[
−
(
t− 2.41Td

Tw/2

)2
]
sin[2πf0(t− Td)], (7.5)

where f0 = 1.5 MHz is the center frequency, Tw = 0.5/f0 is the width and Td = 5/f0
is the delay of a Gaussian envelope. The scatterers will be embedded in water with a
density of ρ = 1060 kg/m3 and a speed of sound of c0 = 1482 m/s. In the considered
situations, water has negligible losses and nonlinear effects will be hardly noticeable.
Therefore, we assume that the embedding medium is lossless and linear. A sampling
frequency of 15 MHz was used as the basis for the discretization of the spatiotemporal
domain. We run our simulations for j=10 iterations to ensure accurate results. [21]
These conditions are ideal and are used due to the restrictions for the generation of
the computational domain.

The configuration provides an idealized situation with a uniform distribution of
primary point sources, which will cause the incident field that it experienced by the
MB cloud. At least three different cubical primary source will be used, with sides: (i)
shorter than, (ii) equal to, (iii) longer than the wavelength of the excitation frequency.
The configurations for this scenario are depicted in Fig. 7.1.

To avoid resonance effects due to the size of the computational domain, Tukey
tapering is applied at the edges of the point source distribution, resulting in a smoother
incident pressure field. Increasing the size of the computational domain for the point
sources leads to greater distances between the points located at the edges of the cube,
resulting in a longer cumulative temporal signature. Conversely, stronger tapering
reduces these distances, shortening the cumulative temporal profile.
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Figure 7.1: Configurations used in the INCS simulations for the primary source.
Primary source domain containing a homogeneous suspension of 6.3 ×105 ml−1 point
sources, embedded in water for a cubical domain with a side of 0.5λ, 1λ, 2λ and 4λ.

7.3.2 Microbubble population

Computational domain

To choose the configuration for the contrast sources, we need to make some assump-
tions about the MBs:

Assumption 2: In the remaining frequency range, each MB can be considered as
a point scatterer.

Assumption 3: The oscillatory behavior of each MB is descibed through the Mar-
mottant model.

Assumption 4: The MBs are oscillating in the linear regime; hence, the results
can be scaled linearly.

Additionally, for a broadband excitation pulse, a portion of the energy aligns with
the resonance frequency of the MBs. An added advantage of a broadband pulse is
the ease with which the effects of MB scattering can be identified in the frequency
spectrum.

The next step is to describe the contrast domain with the MB population. The size
and shape of the scattered field generated by the MB population are expected to be
influenced by the size and shape of both the primary source domain and the contrast
domain. To understand the mehcanisms behind the MB-proton interaction, we will
use three different test cases of cubical contrast domains with sides: (i) smaller than,
(ii) equal to, and (iii) larger than the wavelength of the excitation frequency. These
configurations will allow us to test the importance of the contrast source domain size
relative to the primary source domain size. These contrast domains are depicted in
Fig. 7.2
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Figure 7.2: Configurations used in the INCS simulations for the contrast source.
Contrast domain containing a suspension of 6.3 ×105 ml−1 MBs, embedded in water
for a cubical domain with a side of 0.5λ, 1λ, 2λ and 4λ.

Due to Huygens principle, it is expected that the scattered pressure field will fa-
vor a specific direction of propagation, based on the relative location of the primary
and contrast source domain. To avoid this and achieve a uniform scattered field, we
assume:

Assumption 5: The domains of the contrast and primary sources should be con-
centric to avoid any preference in a specific direction of propagation.

Additionally, another significant parameter in this problem is the concentration of the
MB population. As the concentration increases, there are more point sources within
the same volume, which can generate smoother pressure patterns and yield more real-
istic results. Moreover, increasing the concentration renders multiple scattering more
significant, which can substantially alter the total pressure field. Additionally, since
INCS relies on a Neumann iterative scheme, utilizing a highly concentrated MB pop-
ulation may lead to numerical divergence issues. To solve these problems, we have to
limit the concentration so convergence is guaranteed. This limitation is specific to our
simulations, whereas in reality, we are not constrained by these numerical boundaries.
The reason for this is that in our simulations, the total pressure field is incrementally
corrected with each iteration, whereas in reality, the entire pressure field is generated
instantaneously.

Another restriction of our computational tool is the way the contrast agents ex-
perience the incident field. We assume :

Assumption 6: The number of protons that stop close to a MB is small compared
to the total population and it will on average not significantly affect the incident field
experienced by the MBs.
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Table 7.1: Parameters of the Marmottant model of the applied MBs
κs [kg/s] σw [N/m] σR [N/m] γ χ [N/m] µ [Pa · s]
1× 10−8 0.072 0.03 1.07 0.5 2× 10−3

Microbubble size and shell properties

Determining the optimal MB size is crucial as it significantly influences the generation
of the scattered pressure field. We can categorize MB sizes based on their resonance
frequency relative to the center frequency of the incident pulxe: (i) below, (ii) equal
to, and (iii) above the center frequency. This corresponds to phase differences be-
tween the scattered and incident fields of (i) 0◦, (ii) 90◦, and (iii) 180◦, respectively.
The response of the MB system is a function of the excitation frequency and the
resonance frequency of the MBs. Thus, these parameters will also have an effect on
the frequency spectrum of the total pressure field, leading to a peak or a dip close to
the resonance frequency of the MBs. To ensure synchronous oscillations of the MBs
and coherence between the incident and scattered fields, we assume:

Assumption 7: Coherence can be achieved if the resonance frequency of the MBs is
lower than the excitation frequency.

Concentrating the scattered energy at lower frequencies can also be advantageous
for designing sensitive optoacoustic sensors.

The resonance frequency of a single MB increases as its size decreases. [27, 28]
Therefore, to achieve a system with a low resonance frequency, it is more logical to
use larger MBs. However, the scattered pressure field is a function of the volume, and
using larger MBs can lead to numerical divergence at lower concentrations. To address
this computational challenge, we can artificially reduce the scattering strength of each
point scatterer by some factor, thereby reducing the cumulative scattered field by the
same factor.

Now that we have described the effect of MB size, the final parameters to study
are the shell properties. To achieve a longer temporal signature, it is crucial for the
MB oscillations to last longer. The parameter responsible for this phenomenon is
shell viscosity. Additionally, multiple scattering can extend the temporal signature of
the system. The stronger the multiple scattering, the more significant its impact on
the total pressure field.

Assumption 8: A low-viscosity shell of a MB will enlongate the temporal signa-
ture of the pressure field.

Assumption 9: Increasing concentration and thereby enhancing the significance of
multiple scattering can generate a longer signal, assisting in the localization of the
Bragg peak.
Based on these assumptions the properties of the MBs that we used for solving the
Marmottant equation [22] for an equilibrium radius R0 = 6 µm are given in Ta-
ble 7.1 [23]. These values correspond to a resonance frequency equal to 0.66 MHz.
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7.4 Numerical results

7.4.1 Incident Pressure Fields

In this section, we present the results from the numerical simulations using INCS.
Figure 7.3 illustrates the incident pressure fields generated by proton sources for
four different primary source domains. As expected, increasing the volume while
maintaining the same concentration results in a higher amplitude. This occurs because
larger volumes incorporate more point sources, that contributes to the incident field.
Moreover, larger volumes and more point sources lead to less uniform pressure fields
due to phase differences between various point sources. Moreover, although it is a
cubical domain, we observe a smooth pattern of the pressure fields due to the tukey
tappering that is applied.

Furthermore, we present the temporal profiles of the generated incident pressure
field in Fig. 7.4(a), with sensors placed along the (x, 0 mm, 2 mm) line. As the
volume increases, the amplitude and the temporal length of the cumulative pulse
also increase, mainly due to the larger number of point sources and larger distances,
respectively. To highlight the effect of the MBs on the incident field, we need to isolate
the frequency components around the resonance frequency of the MBs, which equals
to 0.66 MHz. [29] To achieve this, we apply a Butterworth filter of 4th order with
cutoff frequencies between 0.56 and 0.76 MHz. The resulting temporal signatures
within this frequency band are shown in Fig. 7.4(b). The length of the generated
signals is more distinct in these results.

7.4.2 Scattered Pressure Fields

In Fig. 7.5, we present the pressure fields generated by the MBs. As the volume of
the contrast source domain increases, the peak amplitude also increases, mirroring
the behavior observed for the incident pressure field. Generally, increasing both the
primary and contrast source domains results in higher peak amplitudes. This occurs
because larger primary source domains generate higher excitation pressures for the
MBs, leading to stronger oscillations and, consequently, stronger scattering. When
combined with more point scatterers, this results in a more robust scattered pressure
field.

A key observation from these results is that when the MB domain is smaller than
or equal to the primary source domain, the distribution is more uniform, and the
peak amplitude is higher. A notable example illustrating this observation is the case
with sides 2λ for both the primary and the contrast source domains (3,3). This can
be explained by the fact that for contrast source domains smaller or equal than the
primary source domain, all the MBs are excited at the same time, minimizing the
phase differences. On the other hand, if we observe the case with sides of 2λ for
the primary source domain and 4λ for the contrast source domain (2,4), the pressure
field favors some directions while there are also locations where we have destructive
interferences, rendering localization more difficult. This can be explained by the fact
that part of the MB population is excited simultaneously, while the rest is excited
later resulting in directional behavior. Additionally, as the waves propagate through
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(a)

(b)

Figure 7.4: Temporal profiles of the generated incident pressure field along the x axis
for z = 2 mm in for the same four computational domains. The presented results
contain (a) all the simulated frequency components and (b) frequencies between [0.56,
0.76] MHz after applying a Butterworth filter of 4th order around the resonance
frequency of the MBs (0.66 MHz).



7777777

142 7. PROTO-MICROBUBBLE INTERACTIONS

Scattered Pressure Field

z [mm]
420 6 8 10

z [mm]
420 6 8 10

z [mm]
420 6 8 10

z [mm]
420 6 8 10

-5
0

5

x
 [
m

m
]

-5
0

5

x
 [
m

m
]

-5
0

5

x
 [
m

m
]

-5
0

5

x
 [
m

m
]

-30

-60

-40

-50

p
 [
d
B

 r
e 

1 
P

a]

Increase contrast source domain size 
In

c
re

a
s
e
 p

ri
m

a
ry

 s
o
u
rc

e
 d

o
m

a
in

 s
iz

e
 

0.5λ 1λ 2λ 4λ

4λ
2λ

1λ
0
.5
λ

Figure 7.5: Beam profiles of the scattered pressure field for a combination of source
and scattering domain with sides of 0.5λ, 1λ, 2λ and 4λ. The proton sources are
located inside the orange dashed square and the MBs in the white dashed square.

the MB population, they attenuate and distort, resulting in different excitation fields
for MBs located outside the primary source domain boundaries.

In Fig. 7.6, we present the temporal profiles of the scattered pressure fields after
applying a Butterworth filter of 4th order with cutoff frequencies 0.56 and 0.76 MHz.
Similar patterns emerge as observed with the incident field: as the contrast source
domain size increases, mainly the peak amplitude rises, and secondary the pulse du-
ration extends with higher peaks. Similarly, if the both the primary and the contrast
source domain become larger (diagonal), there is a faster increase of the peak ampli-
tude and the pulse length due to higher number of point sources and scatterers, and
due to the extended boundaries of the volume.

7.4.3 Discussion

Comparing the results in Fig. 7.6 with the total pressure field depicted in Fig. 7.7
highlights the MBs’ impact. Unlike the scattered pressure fields, increasing the con-



7777777

7.4. NUMERICAL RESULTS 143

20

10

0

t 
[μ

s]

20

10

0

t 
[μ

s]

20

10

0

t 
[μ

s]

20

10

0

t 
[μ

s]

-5 0 5

x [mm]

-5 0 5

x [mm]

-5 0 5

x [mm]

-5 0 5

x [mm]

1.5

-1

-1.5

1

0

-0.5

0.5

p
 [
m

P
a]

Scattered Pressure Field, Temporal profiles, [0.56, 0.76] MHz

Increase contrast source domain size 

In
c
re

a
s
e
 p

ri
m

a
ry

 s
o
u
rc

e
 d

o
m

a
in

 s
iz

e
 

0.5λ 1λ 2λ 4λ

4
λ

2λ
1λ

0.
5λ

Figure 7.6: Temporal profiles of the generated scattered pressure field along the line
(x, 0, 2 mm) for the same four distinct test computational domains as in Fig. 7.5. The
presented results contain all the frequencies between [0.56, 0.76] MHz after applying
a Butterworth filter of 4th order around the resonance frequency of the MBs (0.66
MHz).



7777777

144 7. PROTO-MICROBUBBLE INTERACTIONS

20

10

0

t 
[μ

s]

20

10

0

t 
[μ

s]

20

10

0

t 
[μ

s]

20

10

0

t 
[μ

s]

-5 0 5

x [mm]

-5 0 5

x [mm]

-5 0 5

x [mm]

-5 0 5

x [mm]

2

-1

-2

1

0

p
 [
m

P
a]

Total Pressure Field, Temporal profiles, [0.56, 0.76] MHz

Increase contrast source domain size 

In
c
re

a
s
e
 p

ri
m

a
ry

 s
o
u
rc

e
 d

o
m

a
in

 s
iz

e
 

0.5λ 1λ 2λ 4λ

4λ
2λ

1λ
0.

5λ

Figure 7.7: Temporal profiles of the generated total pressure field along the line (x,
0, 2 mm) for the same four distinct test computaitional domains as in Fig. 7.5. The
presented results contain all the frequencies between [0.56, 0.76] MHz after applying
a Butterworth filter of 4th order around the resonance frequency of the MBs (0.66
MHz).



7777777

7.5. CONCLUSIONS 145

trast source domain size results in a smaller peak amplitude and shorter pulse in the
total pressure field. This is due to the destructive interference between the primary
and scattered field. Additionally, the distance from the edges of the contrast source
domain to the location at z = 2 mm varies in each case.

Finally, comparing the incident and total pressure fields reveals differences in
frequencies and pulse peaks, as illustrated in Figs. 7.8 and 7.9. These preliminary
results showcase the MBs’ ability to alter the transmitted field and potentially modify
the pulse to enhance Bragg peak localization. We also present the temporal signatures
and their respective frequency spectra for each configuration, recorded with a sensor
placed at (x, y, z) = (0 mm, 0 mm, 2 mm). In this test case, the scattered pressure
field is out of phase with the incident field due to the oscillatory behavior of the MBs
at the recording location, corresponding to a dip in the frequency spectrum at the
resonance frequency of the MBs. This effect becomes more pronounced as both the
primary and contrast source domain sizes increase.

Moreover, we observe that increasing the primary or contrast source domain size,
and consequently the number of point sources or scatterers, results in a longer total
signal. The frequency spectrum shifts from a smooth curve of a broadband pulse to
one resembling a narrowband pulse. Additionally, more peaks are observed, reflecting
the constructive and destructive interferences of the incident and scattered pressure
fields.

7.5 Conclusions

In this chapter, we have detailed the process of extending the INCS method by intro-
ducing a point source cloud representing impacting protons alongside a population
of MBs. These preliminary results demonstrate the temporal signatures of recorded
signals, both with and without MB contrast agents. We show how the length and
amplitude of the pulses are influenced and examine the effect on the frequency spec-
tra. Combined with interference between the incident and scattered signals, this can
significantly impact the recorded signals, enhancing the submillimeter localization of
the Bragg peak.
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(0 mm, 0 mm, 2 mm). Part (a) : Combinations of source domains with sides equal
to 0.5λ and 1λ.



7777777

7.5. CONCLUSIONS 147

Increase contrast source domain size 

In
c
re

a
s
e
 p

ri
m

a
ry

 s
o
u
rc

e
 d

o
m

a
in

 s
iz

e
 

2λ 4λ

4
λ

2
λ

1λ
0
.5
λ

-60 dB

-80 dB

-60 dB

-40 dB

-60 dB

-40 dB

-20 dB

Total Pressure Field

-20 mPa

0

0

-6 mPa

0

-1 mPa

0

-0.2 mPa

-60 dB

-80 dB

-60 dB

-40 dB

-60 dB

-40 dB

-20 dB

10 12 14

 [μs]

0 1 2 3

f [MHz]

10 12 14

t [μs]

0 1 2 3

f [MHz]

Figure 7.9: Qualitative results of the temporal signatures of the incident (dot-
ted red), scattered(dashed orange) and total (continuous blue) pressure fields at
(0 mm, 0 mm, 2 mm). Part (b) : Combinations of source domains with sides equal
to 2λ and 4λ.



7777777

148 BIBLIOGRAPHY

Bibliography

[1] Paganetti, H., ed. (2018). Proton Therapy Physics (CRC Press).

[2] Parodi, K., and Polf, J. C. (2018). “In vivo range verification in particle therapy” Medical
Physics 45(11).

[3] Knopf, A., and Lomax, A. (2013). “In-vivo proton range verification: a review” Physics in
Medicine and Biology 58(15), R131–R160.

[4] Parodi, K. (2020). “Latest developments in in-vivo imaging for proton therapy” The British
Journal of Radiology 93.
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Chapter 8

Conclusions and Discussion

8.1 Conclusions

We have presented a comprehensive numerical method to fully describe both the lin-
ear and nonlinear physical phenomena encountered during ultrasound propagation
through a population of oscillating MBs. This method is an extension of the existing
Iterative Nonlinear Contrast Source (INCS) method, originally devised to solve the
four-dimensional spatiotemporal Westervelt equation. Initially developed to compute
pulsed acoustic pressure fields in nonlinear, homogeneous, and lossless media, INCS
has been later expanded to incorporate spatially varying frequency power law atten-
uation, nonlinearity coefficients, and speed of sound. With its coarse discretization,
omnidirectionality and scalability, INCS emerges as an ideal framework for simulat-
ing the collective dynamics of MB populations under an external ultrasonic pressure
field in large-scale configurations. By extending INCS, we have provided the field of
medical ultrasound with an efficient and accurate computational tool that advance
diagnostic and therapeutic applications.

From the research presented in this thesis, the following conclusions may be drawn:

• We have shown that INCS can be extended by introducing a pressure-dependent
contrast source term for linear scatterers and nonlinear MBs. Each MB is rep-
resented as a point source. The strength of the point source is a function of
the volume acceleration of the MB, thus dependent on the time-varying radius,
which is computed by solving the extended Rayleigh Plesset equation for each
MB. This approach treats each MB independently, refraining from treating the
problem as an effective medium but rather as a many-body system. Further-
more, this methodology accounts for multiple scattering effects. Being based on
the Neumann iterative scheme, physically each iteration in INCS represents an
additional order of multiple scattering. Convergence of the method is ontained
when the inclusion of an extra order of multiple scattering yields a negligible im-
pact on the solution. Consequently, INCS is capable of disentangling scattering
orders and offering valuable insights into interactions within a MB population.
Notably, our findings highlight the critical role of multiple scattering, particu-
larly at higher concentrations.
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• Our research demonstrates the extension of INCS through the inclusion of a
contrast source term that represents local nonlinearities. Our results show the
local behavior of these nonlinearities in case of non-collinear wave interactions, in
contrast to global medium nonlinearities, which accumulate throughout depth.
Moreover, analytical descriptions allow for the prediction of the amplitude of
local nonlinearities, which in line with the generated computational results,
indicate their weak strength compared to global medium nonlinearities.

• We conducted a comprehensive comparative analysis, contrasting conventional
pulsing schemes with a novel imaging approach employing cross-propagating
plane waves, known as X-waves. To assess their impact on contrast-enhanced ul-
trasound, we propagated each wave through a population of nonlinear oscillating
monodisperse MB and compared the accumulation of the nonlinearities due to
wave propagation below this suspension. By employing amplitude modulation
techniques, our investigation highlights the superior sensitivity and specificity of
the supersonic X-shaped wavefronts over imaging techniques based on focused,
planar and diverging wavefronts. To visualize these findings, we reconstructed
beamformed images from our computational results. Distinguishing MBs from
tissue-mimicking scatterers proves challenging in B-mode images, while nonlin-
ear imaging artifacts are notably pronounced in focused, planar, and diverging
wave scenarios in the contrast-enhanced images. Conversely, X-waves exploit
the full potential of nonlinear scattering from monodisperse MBs without gen-
erating significant imaging artifacts. The outcomes of our study establish a
robust link between simulations and clinical applications in diagnostic medical
ultrasound, paving the way for further advancements in the field.

• We have shown the ability of INCS to incorporate populations of polydisperse
MBs. Through a comparative analysis employing plane wave excitation, our
findings reveal that resonant monodisperse MBs exhibit the highest degree of
nonlinear scattering. Conversely, polydisperse suspensions exhibit less construc-
tive interference and weaker scattering compared to monodisperse populations.
we successfully disentangled the harmonics that are present in the scattering
from each population, providing valuable insights into the collective dynamics of
MB populations. Additionally, we simulated an incident acoustic pressure field
generated by a phased array, conventionaly used in contrast-enhanced imaging.
While resonant monodisperse MBs prove to be robust and efficient scatterers,
they are susceptible to generating nonlinear imaging artifacts. In contrast, poly-
disperse MBs, characterized by their non- constructive scattering, produce less
imaging artifacts. However, their weaker scattering may pose challenges in de-
tection, particularly in applications such as deep tissue imaging.

• Finally, INCS was validated as a robust tool for simulating the acoustic pressure
generated by a therapeutic proton beam. We successfully modeled the incident
acoustic pressure fields produced by a cloud of point emitters representing im-
pacting protons, along with a population of monodisperse microbubbles (MBs).
To investigate the interaction between protons and MBs, simulations were con-
ducted for cubic domains with side lengths of 0.5λ, 1λ, 2λ, and 4λ. These
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preliminary results reveal the temporal characteristics of the recorded signals,
both with and without MB contrast agents. We demonstrate how the pulse
length and amplitude are affected, and we analyze the resulting impact on the
frequency spectra. Additionally, interference between incident and scattered
signals is shown to significantly influence the recorded signals, improving the
submillimeter localization of the Bragg peak. This framework serves as a foun-
dational study, aiming to advance the understanding of Bragg peak localization
using the most conventionally used ultrasound contrast agents.

8.2 Discussion

The work presented in this thesis can be used as a basis to further investigate limita-
tions, extensions and applications of the described numerical method.

Limitations :

• As described in Chapter 2, a limitation of our method is the restricted con-
vergence of the extended INCS method that deals with large populations of
scatterers. The convergence of the iterative scheme hinges on factors such as
gas volume concentration, scattering strength, and excitation frequency. More-
over, the accuracy of the acoustic pressure field improves incrementally with
each iteration through increasingly precise field corrections. Thus, for achieving
a highly accurate implicit solution, all field corrections are necessary. If the
Neumann scheme diverges, alternative iterative schemes can be explored, par-
ticularly those employing preconditioners to restrict large differences between in
the initial iterations. For instance, more advanced Conjugate Gradient schemes
may prove effective in handling strong contrasts while significantly enhancing
convergence rates.

• The memory usage poses a challenge when computations in large domains are
performed through CPU parallelization. In that case, a bottleneck arises in
the MPI Alltoall command within the current INCS implementation, used to
transpose the matrix that stores the spatiotemporal pressure field and used
to transition distribution from space=frequency (x− ω) space to wavenumber-
frequency (k − ω) space. With multiple nodes employment, communication
inefficiencies emerge, leading to increased total simulation time. This poses a
problem especially in the applications in which we want to receive the scattered
echoes at the transducer surface.

Extensions :

• Numerous enhancements can elevate the simulations, rendering them more com-
prehensive and applicable in clinical settings. One such improvement involves
integrating experimentally measured incident pressure fields as input for the
simulations. Furthermore, refining domain geometries to mirror complex human
organ physiology can enhance realism and applicability. While we succeeded in
incorporating multiple populations of scatterers, expansion to more intricate
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combinations is feasible. Moreover, elevating the assumption of non-moving
MBs (due to the short temporal framework) by implementing a two-way cou-
pling method can provide a solution. This approach involves feeding the total
acoustic pressure field into a solver for the 4D spatiotemporal Navier-Stokes
equation, which in turn offers fluid motion as output. Additionally, employing
more intricate equations to model MB oscillations, considering phenomena like
heat transfer or nonspherical oscillations, can enhance accuracy. Finally, us-
ing point populations can accurately describe an abstract primary source or an
abstract contrast scatterer.

• At a computational level, GPU parallelization becomes imperative to enhance
INCS capabilities for larger MB populations. Achieving convergence is pivotal,
where a significant bottleneck arises in dense populations due to the multipli-
cation of the temporal with the spatial signatures of each MB, implemented via
the library DGEMM of CBLAS, used for matrix multiplication.

Applications :

• An essential and intriguing aspect of advancing this research and fortifying
the connection between simulations and clinical practice involves comparing
the generated acoustic pressure fields of MB populations with corresponding
experimental data. These experiments could encompass measurements of scat-
tering amplitude, frequency content, variations in speed of sound, and pressure-
dependent attenuation within populations of both monodisperse and polydis-
perse MBs. Initially, the results obtained from in vitro experiments serve as
a crucial validation step for the extended INCS method, implemented in this
research framework, illustrating the differences between simulations and exper-
imental outcomes. Second, such experiments can highlight the importance of
multiple scattering and provide valuable insights into the collective dynamics of
scatterer populations.

• It would be interesting to implement a large-scale parametric study that aims
to obtain a nonlinearity parameter β for the Westervelt equation from the MB
parameters.

The full potential of the developed methods has not been exhaustively explored in
this thesis, as the primary focus of the research presented here was on extending the
original INCS method to model nonlinear propagation in MB populations. However,
the findings of this research underscore INCS as a valuable simulation tool for various
diagnostic and therapeutic scenarios. Indeed, INCS demonstrates efficacy in diag-
nostic applications like contrast-enhanced imaging, as well as in therapeutic settings
such as optimizing patient-specific treatment plans for proton therapy. Additionally,
its versatility extends to other medical ultrasound applications, including drug deliv-
ery with targeted MBs and ultrasound localization microscopy. In conclusion, INCS
emerges as a key facilitator in bridging the gap between simulation capabilities and
clinical applications, thus paving the way for advancements in medical ultrasound
technologies.



888888888

Summary

For over 50 years, medical ultrasound has been a pioneering force in healthcare, seam-
lessly blending diagnostic and therapeutic applications. In diagnostics, ultrasound re-
veals intricate internal structures based on the generation of acoustic pressure waves
in the human body and capturing reflections from tissue and body structures, en-
abling precise anomaly identification. Simultaneously, in therapy, ultrasound utilizes
its acoustic prowess for targeted interventions and submillimeter localization in un-
conventional cancer treatments like proton therapy. The field has shifted significantly
with the advent of nonlinear acoustics, exploring wave propagation phenomena. Con-
trast agents marked a revolutionary leap, enhancing the specificity, sensitivity, and
efficiency of diagnostic and therapeutic ultrasound. Microbubbles, as the most con-
ventionally used agents, exhibit strong nonlinear scattering under ultrasonic excita-
tion, making them suitable for CEUS applications.

While the three-dimensional oscillatory dynamics of a single MB are well-explored,
the collective behavior of a MB population remains unknown. To establish the com-
plete physical understanding of the nonlinear phenomena that occur during ultrasound
propagation through a cloud of MBs, a comprehensive multiparametric experimental
study is imperative. However, exploring every conceivable property combination for
a single MB and project it to a cloud of MBs in such detail would entail a highly ex-
pensive, time-consuming, and facility-restrictive procedure. This becomes especially
pronounced in cancer treatment applications, where time is of the essence.

To overcome these challenges, we employ an already-developed and dedicated nu-
merical algorithm called the Iterative Nonlinear Contrast Source (INCS) method. Due
to its coarse discretization of two points per wavelength or period, it proves to be the
most suitable among existing methods for handling large-scale simulations. Methods
based on Finite Differences (FD) or Finite Elements (FE) involve finer discretization,
resulting in memory-intensive simulations. An additional advantage of INCS, crucial
for simulating the scattering of three-dimensional spherical waves emitted from each
MB, is its omnidirectionality. In contrast, forward-wave methods that favor a specific
direction of propagation are unsuitable for these types of numerical experiments. A
final benefit of INCS is its easy expandability to include phenomena such as attenu-
ation, inhomogeneities, and more. The objective of this study is to extend INCS to
simulate the occurring nonlinear phenomena during ultrasound propagation through
a MB population for diagnostic and therapeutic applications.

Originally, INCS was developed to solve the four-dimensional spatiotemporal West-
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ervelt equation. Based on the Neumann iterative scheme, the acoustic pressure is
updated by generating increasingly accurate field corrections. These field corrections
are computed through the four-dimensional spatiotemporal convolution of the Green’s
function of the linear, homogeneous, lossless background medium with each contrast
source term added to the simple wave equation. This process can be implemented as
long as the contrast source term can be expressed directly or indirectly as a function
of the acoustic pressure.

In Chapter 2, INCS is extended to incorporate the scattering of a population of
monodisperse scatterers. Initially, we explain how to introduce linear and nonlinear
scatterers, with the contrast source term being a direct function of acoustic pressure.
Later, each MB is included as a contrast point scatterer with independent properties.
In this case, the temporal signature of the source term is a function of the volume
acceleration and therefore the radius of the MB. Assuming spherical oscillations, we
can acquire the radius as a function of time by solving the Marmottant equation
(indirectly related to acoustic pressure) of each MB in each iteration. Physically, each
iteration accounts for an order of multiple scattering. Numerical results demonstrate
that multiple scattering should be taken into account, especially for populations of
high concentration.

With the initial step towards our goal established, we conduct a rigorous analyt-
ical and numerical study to compare the impact of local and global medium nonlin-
earities in Chapter 3. Local nonlinearities are observed during noncollinear wave
interaction and therefore they might manifest themselves due to scattering inside a
MB population. INCS is extended with the source term due to local nonlinearities,
which is a function of the Lagrangian density, the difference between kinetic energy
density and potential energy density. A simple test case is studied where two finite
pulsed plane waves cross-propagate under an angle of 20◦ generating an x-shaped
wavefront. Numerical results reveal that local nonlinearities are a localized and in-
stantaneous phenomenon, weaker in amplitude than gradually accumulating global
medium nonlinearities. Consequently, the nonlinear contrast source term due to local
nonlinearities can be neglected, whereas the effect should be studied in the presence
of nonlinear oscillating MBs.

In Chapter 4, we showcase the inaugural application of CEUS imaging using
INCS for a monodisperse MB suspension. Our investigation delves into the impact
of four distinct wavefront shapes, including two cross-propagating plane waves (x-
waves), a focused beam, a diverging wave, and a finite pulsed plane wave, as they
propagate through monodisperse MBs. INCS is expanded to incorporate local and
global medium nonlinearities, MB scattering, and reflections from tissue-mimicking
linear scatterers surrounding the suspension, facilitating the reconstruction of CEUS
images. Focusing on monodisperse resonant MBs, recognized as the most nonlinear
conventionally used contrast agents, this study marks the first instance of employing
multiple populations and generating beamformed images using INCS, establishing a
direct link between simulations and future clinical studies. Our numerical findings
highlight that imaging with focused, planar, and diverging wavefronts induces non-
linear artifacts, potentially leading to the misclassification of tissue as ultrasound
contrast agents. Notably, x-waves enhance the sensitivity and specificity of ultra-
sound imaging for monodisperse MBs surrounded by tissue, without generating distal
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imaging artifacts due to nonlinear propagation.

After successful B-mode and CEUS image generation, Chapter 5 focuses on a
numerical comparison between monodisperse and polydisperse MB populations. Ex-
tending INCS to incorporate polydisperse MB clouds, where each scatterer varies in
size, we showcase its ability to disentangle harmonics of scattered waves when ex-
cited by a finite pulsed plane wave, providing insights into collective MB behavior.
Results indicate resonant monodisperse populations exhibit the strongest scattering
in the fundamental frequency, while off-resonance monodisperse populations display
the highest amplitude around their resonance frequency. Despite simulations offer-
ing valuable insights, connecting them with clinical applications like CEUS for deep
tissue imaging is crucial. Consequently, we present a comparative study between poly-
disperse and monodisperse populations when excited by a field from a conventional
ultrasound machine. While monodisperse populations enhance ultrasound sensitivity,
nonlinear imaging artifacts accumulate downstream of the MBs. In contrast, poly-
disperse suspensions, despite weaker scattering, exhibit a more favorable response
without significant artifact accumulation.

In Chapter 6, we address the need for real-time in vivo range verification in pro-
ton beam cancer therapy with submillimeter precision. Acoustic imaging technologies,
potentially leveraging local interactions between protons and MBs, offer an intriguing
avenue. Employing INCS for this purpose requires a missing theoretical model char-
acterizing the acoustic field from an individual proton. In this research framework, we
develop an acoustic imaging model for a single proton on nanometer and micrometer
scales, incorporating adiabatic expansion and quantifying secondary electron produc-
tion. Numerical simulations unveil spatiotemporal characteristics, revealing a bipolar
spike with a center frequency around 86.7 GHz. Positive peak pressures decrease
radially, reaching 0.24 MPa at 5 µm, with a -2.6 kPa negative pressure at 30 nm
from the Bragg peak. Utilizing wavefield expansion and asymptotic approximations
extends the spatial and temporal ranges of the proton acoustic field. Overall, this
work provides a comprehensive spatiotemporal characterization of the acoustic field
from a single proton.

After developing an acoustic model predicting pressure waves from a single pro-
ton’s heat deposition, a theoretical model for MB population scattering when excited
by a proton-generated acoustic field becomes crucial. In this way, we employ INCS
not only for diagnostic but also for therapeutic ultrasound. In Chapter 7, we demon-
strate the novel extension of INCS also to the primary source term which is responsible
for the generation of the incident pressure field. In this study, we examine the influ-
ence of the proton beam’s pressure field on MB population scattering by introducing
an extra contrast source term in the wave equation. The domain size and location
impact the overall system behavior, providing insights into the interaction between a
proton beam and a MB population.

This research highlights the effectiveness of INCS in addressing clinically signifi-
cant applications of medical ultrasound for both diagnostic and therapeutic purposes.
INCS proves adept at thoroughly elucidating the physics behind the nonlinear prop-
agation of medical ultrasound through populations of either monodisperse or poly-
disperse contrast agents, fostering an understanding of the mechanisms underlying
occurring acoustic phenomena. Additionally, INCS enables the exploration of differ-
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ences between conventionally used pulsing schemes in CEUS imaging, enhancing vas-
cular visualization through real-time and non-invasive procedures. Moreover, INCS
facilitates multiparametric studies for therapeutic ultrasound, providing a means to
streamline the cost and time associated with patient-specific treatment plans in can-
cer therapy. Ultimately, this study paves the way for advancing numerical tools to
establish a connection between simulations and clinical studies in medical ultrasound
applications.
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Samenvatting

Voor meer dan 50 jaar is medische echografie een baanbrekende kracht geweest in de
gezondheidszorg, naadloos integrerend met diagnostische en therapeutische toepassin-
gen. In de diagnostiek onthult echografie ingewikkelde interne structuren op basis
van de generatie van akoestische drukgolven in het menselijk lichaam en het vast-
leggen van reflecties van weefsels en lichaamsstructuren, waardoor nauwkeurige iden-
tificatie van afwijkingen mogelijk is. Tegelijkertijd gebruikt echografie in therapie zijn
akoestische kracht voor gerichte interventies en submillimeterlokalisatie bij onconven-
tionele kankerbehandelingen zoals protontherapie. Het vakgebied heeft aanzienlijke
verschuivingen ondergaan met de opkomst van niet-lineaire akoestiek, waarbij fenome-
nen in golfvoortplanting worden verkend. Contrastmiddelen markeerden een revolu-
tionaire sprong, waardoor de specificiteit, gevoeligheid en efficiëntie van diagnostische
en therapeutische echografie werden verbeterd. Microbellen, als de meest conven-
tioneel gebruikte middelen, vertonen sterke niet-lineaire verstrooiing onder ultrasone
excitatie, waardoor ze geschikt zijn voor CEUS-toepassingen.

Hoewel de driedimensionale oscillerende dynamiek van een enkele microbel goed
is onderzocht, blijft het collectieve gedrag van een populatie microbellen onbekend.
Om het volledige fysieke begrip van de niet-lineaire verschijnselen die optreden tijdens
de echografische voortplanting door een wolk van microbellen vast te stellen, is een
uitgebreide multiparametrische experimentele studie noodzakelijk. Het verkennen
van elke denkbare combinatie van eigenschappen voor een enkele microbel en dit
tot in detail projecteren op een wolk van microbellen zou echter een zeer kostbare,
tijdrovende en faciliteitsbeperkende procedure vereisen. Dit wordt vooral duidelijk
bij toepassingen in de behandeling van kanker, waar tijd van essentieel belang is.

Om deze uitdagingen te overwinnen, maken we gebruik van een reeds ontwikkeld
en toegewijd numeriek algoritme genaamd de Iterative Nonlinear Contrast Source
(INCS) methode. Vanwege de grove discretisatie van twee punten per golflengte of
periode blijkt dit de meest geschikte methode onder bestaande methoden voor het
behandelen van grootschalige simulaties. Methoden gebaseerd op Finite Differences
(FD) of Finite Element (FE) omvatten fijnere discretisatie, resulterend in geheugenin-
tensieve simulaties. Een extra voordeel van INCS, cruciaal voor het simuleren van de
verstrooiing van driedimensionale bolvormige golven uitgezonden door elke microbel,
is de omni-richtingsgevoeligheid ervan. In tegenstelling tot voorwaartse golfmethoden
die een specifieke voortplantingsrichting begunstigen, zijn ongeschikt voor dit soort
numerieke experimenten. Een laatste voordeel van INCS is de eenvoudige uitbrei-
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dbaarheid om fenomenen zoals demping, onhomogeniteiten en meer op te nemen.
Het doel van deze studie is om INCS uit te breiden om de optredende niet-lineaire
verschijnselen tijdens echografische voortplanting door een microbellenpopulatie voor
diagnostische en therapeutische toepassingen te simuleren.

Oorspronkelijk werd INCS ontwikkeld om de vierdimensionale spatiotemporale
Westervelt-vergelijking op te lossen. Gebaseerd op het Neumann-iteratie schema
wordt de akoestische druk bijgewerkt door steeds nauwkeurigere veldcorrecties te
genereren. Deze veldcorrecties worden berekend via de vierdimensionale spatiotem-
porale convolutie van de Green’s-functie van het lineaire, homogene, verliesloze achter-
grondmedium met elk contrastbronterm die aan de eenvoudige golfvergelijking is
toegevoegd. Dit proces kan worden gëımplementeerd zolang de contrastbronterm
direct of indirect als een functie van de akoestische druk kan worden uitgedrukt.

In Hoofdstuk 2 wordt INCS uitgebreid om de verstrooiing van een populatie
monodisperse verstrooiers op te nemen. Eerst leggen we uit hoe lineaire en niet-
lineaire verstrooiers kunnen worden gëıntroduceerd, waarbij de contrastbronterm een
directe functie is van de akoestische druk. Later wordt elke microbel opgenomen als
een contrastpuntverstrooier met onafhankelijke eigenschappen. In dit geval is de ti-
jdsignatuur van de bronterm een functie van de volumebeweging en dus de straal van
de microbel. Door uit te gaan van sferische oscillaties kunnen we de straal als functie
van de tijd verkrijgen door de Marmottant-vergelijking (indirect gerelateerd aan de
akoestische druk) van elke microbel in elke iteratie op te lossen. Fysisch gezien houdt
elke iteratie rekening met een orde van meervoudige verstrooiing. Numerieke resul-
taten tonen aan dat meervoudige verstrooiing in aanmerking moet worden genomen,
vooral voor populaties van hoge concentratie.

Met de initiele stap naar ons doel gevestigd, voeren we een grondige analytis-
che en numerieke studie uit om het verschil te vergelijken tussen lokale en globale
mediumniet-lineariteiten in Hoofdstuk 3. Lokale niet-lineariteiten worden
waargenomen tijdens niet-collineaire golfinteractie en kunnen zich dus manifesteren
door verstrooiing binnen een microbellenpopulatie. INCS wordt uitgebreid met de
bronterm als gevolg van lokale niet-lineariteiten, die een functie is van de Lagrangiaanse
dichtheid, het verschil tussen de dichtheid van kinetische energie en potentiele energie.
Er wordt een eenvoudig testgeval bestudeerd waarbij twee eindige gepulseerde vlakke
golven dwars gepropageerd worden onder een hoek van 20◦, wat resulteert in een
X-vormige golffront. Numerieke resultaten tonen aan dat lokale niet-lineariteiten
een gelokaliseerd en onmiddellijk fenomeen zijn, zwakker in amplitude dan gelei-
delijk opbouwende globale mediumniet-lineariteiten. Bijgevolg kan de niet-lineaire
contrastbronterm als gevolg van lokale niet-lineariteiten verwaarloosd worden, ter-
wijl het effect bestudeerd moet worden in aanwezigheid van niet-lineair oscillerende
microbellen.

In Hoofdstuk 4 laten we de inaugurale toepassing van CEUS-beeldvorming met
INCS zien voor een monodisperse microbellenoplossing. Onze studie onderzoekt de
impact van vier verschillende golfvormen, waaronder twee kruislings voortplantende
vlakke golven (X-golven), een gefocuste bundel, een divergerende golf en een eindige
gepulseerde vlakke golf, terwijl ze zich voortplanten door monodisperse microbellen.
INCS wordt uitgebreid om lokale en globale mediumniet-lineariteiten, microbellen-
verstrooiing en reflecties van weefselmimiciserende lineaire verstrooiers rondom de
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oplossing op te nemen, waardoor de reconstructie van CEUS-beelden mogelijk is. Met
de nadruk op resonante monodisperse microbellen, erkend als de meest niet-lineaire
conventioneel gebruikte contrastmiddelen, markeert deze studie het eerste geval van
het genereren van beeldgevormde beelden met INCS, waarbij een directe link wordt
gelegd tussen simulaties en toekomstige klinische studies. Onze numerieke bevindin-
gen benadrukken dat beeldvorming met gefocuste, vlakke en divergerende golfvor-
men niet-lineaire artefacten veroorzaakt, wat mogelijk leidt tot de misclassificatie van
weefsel als contrastmiddelen voor echografie. Opmerkelijk verbeteren X-golven de
gevoeligheid en specificiteit van echografie voor monodisperse microbellen omgeven
door weefsel, zonder distale artefacten te genereren door niet-lineaire voortplanting.

Na succesvolle B-mode en CEUS-beeldgeneratie richt Hoofdstuk 5 zich op een
numerieke vergelijking tussen monodisperse en polydisperse microbellenpopulaties.
Door INCS uit te breiden naar polydisperse microbellenwolken, waarbij elke ver-
strooier in grootte varieert, laten we zien dat het in staat is om harmonischen van ver-
strooide golven te ontwarren wanneer ze worden opgewekt door een eindige gepulseerde
vlakke golf, waardoor inzicht wordt verkregen in het collectieve gedrag van micro-
bellen. Resultaten geven aan dat resonante monodisperse populaties de sterkste ver-
strooiing vertonen in de fundamentele frequentie, terwijl monodisperse populaties
buiten resonantie de hoogste amplitude vertonen rond hun resonantiefrequentie. On-
danks dat simulaties waardevolle inzichten bieden, is het cruciaal om ze te verbinden
met klinische toepassingen zoals CEUS voor diepe weefselbeeldvorming. Bijgevolg
presenteren we een vergelijkende studie tussen polydisperse en monodisperse popu-
laties wanneer ze worden opgewekt door een veld van een conventionele echografiema-
chine. Terwijl monodisperse populaties de gevoeligheid van echografie verbeteren,
stapelen niet-lineaire beeldvormingsartefacten zich op stroomafwaarts van de micro-
bellen. In tegenstelling hiermee vertonen polydisperse suspensies, ondanks zwakkere
verstrooiing, een gunstiger respons zonder significante ophoping van artefacten.

In Hoofdstuk 6 gaan we in op de behoefte aan real-time in vivo bereiksverificatie
bij protonenbundelkankertherapie met submillimeternauwkeurigheid. Akoestische beeld-
vormingstechnologieen, die mogelijk gebruikmaken van lokale interacties tussen proto-
nen en microbellen, bieden een intrigerende mogelijkheid. Het gebruik van INCS hier-
voor vereist een ontbrekend theoretisch model dat de akoestische veldkarakteristieken
van een individuele proton karakteriseert. In dit onderzoekskader ontwikkelen we een
akoestisch beeldvormingsmodel voor een enkele proton op nanometer- en microme-
terschalen, waarbij adiabatische expansie wordt meegenomen en secundaire elektro-
nenproductie wordt gekwantificeerd. Numerieke simulaties onthullen spatiotemporale
kenmerken en tonen een bipolaire piek met een middenfrequentie rond 86,7 GHz. Posi-
tieve piekdrukken nemen radiaal af en bereiken 0,24 MPa op 5 µm, met een negatieve
druk van -2,6 kPa op 30 nm van de Bragg-piek. Het gebruik van golfveldexpansie
en asymptotische benaderingen breidt de ruimtelijke en temporele bereiken van het
protonakoestische veld uit. Over het algemeen biedt dit werk een uitgebreide spa-
tiotemporele karakterisering van het akoestische veld van een enkele proton.

Na het ontwikkelen van een akoestisch model dat drukgolven voorspelt uit de
warmteafgifte van een enkele proton, wordt een theoretisch model voor de verstrooi-
ing van een populatie microbellen wanneer deze wordt opgewekt door een proton-
genererend akoestisch veld cruciaal. Op deze manier gebruiken we INCS niet alleen
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voor diagnostische, maar ook voor therapeutische echografie. InHoofdstuk 7 demon-
streren we de nieuwe uitbreiding van INCS ook naar de primaire bronterm, die ver-
antwoordelijk is voor de generatie van het incidentele drukveld. Deze studie omvat
bijdragen van een wolk van puntzenders die een bundel protonen simuleren, waarbij
een lineair verband tussen het drukveld en de protonenconcentratie wordt onthuld tot
een specifieke drempel. De grootte en locatie van het domein bëınvloeden het algehele
systeemgedrag, wat inzichten biedt in de interactie tussen een protonenbundel en een
microbellenpopulatie.

Dit onderzoek benadrukt de effectiviteit van INCS bij het aanpakken van klinisch
relevante toepassingen van medische echografie voor zowel diagnostische als thera-
peutische doeleinden. INCS blijkt bekwaam te zijn in het grondig verduidelijken van
de natuurkunde achter de niet-lineaire voortplanting van medische echografie door
populaties van zowel monodisperse als polydisperse contrastmiddelen, waardoor be-
grip ontstaat van de mechanismen die ten grondslag liggen aan optredende akoestische
verschijnselen. Bovendien maakt INCS de verkenning van verschillen tussen conven-
tioneel gebruikte pulsing-schema’s in CEUS-beeldvorming mogelijk, waardoor vas-
culaire visualisatie wordt verbeterd door middel van realtime en niet-invasieve pro-
cedures. Bovendien vergemakkelijkt INCS multiparametrische studies voor thera-
peutische echografie, waardoor de kosten en tijd verbonden aan patiëntspecifieke be-
handelplannen in kankertherapie kunnen worden gestroomlijnd. Uiteindelijk effent
deze studie de weg voor de ontwikkeling van numerieke tools om een verbinding te
leggen tussen simulaties en klinische studies in toepassingen van medische echografie.
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1. Monodispersity enhances efficiency, while polydispersity enriches the popula-
tion’s dynamics. (this thesis).

2. Focusing on a problem from two directions enhances specificity and sensitivity
in understanding.

3. Parameter optimization is simpler when adjusting one variable at a time.

4. Reaching a local minimum presents an opportunity to find the global maximum.

5. Life becomes increasingly nonlinear with the addition of more exciting events.

6. Stability is achieved through iteratively converging dialogue in a multiparty
parliament.

7. Research skills are not necessary to climb the academic ladder.

8. The destruction of natural environment is the clearest footprint of a corrupted
government.

9. Time planning in academia is like waiting for a bus in Greece: slow and seem-
ingly endless.

10. Simulations are never truly noiseless.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotors Dr. ir. M. D. Verweij and Prof. dr. ir. N. de Jong.
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