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ABSTRACT ARTICLE HISTORY
Drillhole location deviations can disrupt energy distribution within mining Received 5 August 2024
benches, leading to uneven fragmentation and reduced operational effi- Accepted 15 May 2025

ciency. This study presents an optimisation approach that compensates KEYWORDS

for drilling inaccuracies to achieve more uniform energy input. The Energy distribution
method involves discretizing the bench into a block model to estimate optimization; fragmentation;
localised energy distribution and constructing a mathematical model to drilling deviation analysis;
minimise discrepancies between the planned and actual energy delivery. metaheuristic optimization
A Tabu Search algorithm is used to solve the model. Case studies demon-

strated improvements in the objective function, ranging from 0.53%-

1.54% overall, and 2.14%-3.94% within the zones most affected by

deviation.

1. Introduction

Rock fragmentation analysis is indispensable in the mining industry, leading to efficiency and
productivity improvements. By examining the size distribution of blasted rock, this analysis
profoundly affects the economic viability and operational effectiveness of mining operations. It is
not solely about collecting data - it is a crucial strategy, guiding analysts through the complexities of
rock fragmentation to drive operations towards success. Previous studies have revealed that
improper blasting could lead to issues like backbreak [1,2], undesirable rock fragmentation [3,4],
rockburst [5,6], flyrock [7,8], air overpressure [9,10], and blast-induced ground vibration [11-13].
The current study focuses on analysing rock fragmentation, recognising it as one of the most crucial
challenges in drilling and blasting operations and its downstream implications. Various variables,
including geological features [14,15] and blasting execution elements [16], exert influence on
fragmentation outcomes, each playing a crucial role in shaping the size distribution of blasted
rock, as demonstrated in numerous studies. In the area of geological features, Thornton et al. [17]
introduced a stochastic modelling approach to assess how variables such as rock mass properties
influence fragmentation outcomes during blasting. They leveraged these factors as statistical
distributions and provided a representation of fragmentation. Kilic et al. [18] examined the impact
of rock mass properties on blasting efficiency, comparing intact rock characteristics with block
fragmentation under similar blasting conditions. They found a strong correlation between block
fragmentation and Brazilian tensile strength and internal friction angle, suggesting predictive
potential for rock properties in estimating block fragmentation.

Blast pattern, as a blast execution element, determines the spatial distribution of explosives
within the rock mass, influencing fragmentation, slope stability, and subsequent loading and
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hauling processes. Gebretsadik et al. [19] employed machine learning algorithms for predicting
rock fragmentation, focusing on several blast pattern parameters such as spacing and burden.
Results emphasised the importance of optimising blasting operations for improved efficiency and
cost-effectiveness. Lan et al. [20] analysed damage mechanisms during multi-long-hole blasting
with large empty holes. They found that the empty hole configurations in the blast patterns could
significantly impact the rock fragmentation. Ma et al. [21] explored decoupled charge structures in
rock blasting, examining their effects on failure patterns and fragmentation size distribution. They
discussed the influence of delay time, initiation mode, and coupling medium on rock breakage
effectiveness. Saka et al. [22] studied the impact of short burden and spacing on blasting output in
open-pit mines. They found that larger burden and spacing configurations led to increased
productivity and safer operations. Blast timing is another blast execution element that significantly
influences fragmentation outcomes, with several studies focusing on this aspect. Omidi [23]
analysed the effect of timing on blast fragmentation, concentrating on bench blasting simulations.
They demonstrated that shorter inter-hole delays produced coarse fragmentation with limited
backbreak, whereas longer delays resulted in finer fragmentation with heightened damage to the
block’s rear.

Blast size and shape are other critical blast execution elements, playing a crucial role in
fragmentation outcomes. Longer blast patterns, preferably three to four times longer than wide,
minimise blast boundaries, leading to better fragmentation. Multirow blasts offer advantages in
productivity, though excessive rows may cause issues like inadequate fragmentation and ground
vibrations [24]. Hosseini et al. [25] assessed the effect of different blast design parameters on blast
operation outcomes, including the influence of blast shape. Their findings revealed that square
blasts induced greater wave interference and resulted in higher peak particle velocity compared to
rectangular shapes. Agrawal [26] evaluated the effects of delay timing and blast size on fragmenta-
tion outcomes. Findings revealed that fewer rows yielded larger fragments, highlighting the
importance of blast size. Also, the study demonstrated that higher delay per unit burden values
enhanced fragmentation and muckpile profiles, crucial in stronger sandstone formations where
shorter inter-row delays are vital for better fragmentation.

Explosive material selection is another crucial blast execution element impacting fragmentation
outcomes. Different explosives possess varying properties, necessitating consideration alongside
geometric factors. Esen et al. [27] examined how changing explosive type affects fragmentation.
Tests with ANFO and BARANFO 50 in the same case study revealed that BARANFO 50 produced
finer fragmentation, indicating the importance of considering explosive performance, not just
purchase price, for optimal fragmentation outcomes. Dotto and Pourrahimian [28] revealed that
stronger explosives led to extensive fractures in hard rocks, while weaker alternatives offered
improved energy distribution. Paswan et al. [29] analysed different blasting methods and explosive
setups to enhance fragmentation results in areas with prevalent discontinuities, underscoring the
necessity of accounting for explosive properties to achieve optimal fragmentation.

Drilling practice is another vital blast execution element affecting the fragmentation outcomes.
Percussive and rotary drilling methods cater to different rock types and hole sizes aid geological
assessment for optimised fragmentation. Recently, modern technologies, such as laser scanning and
virtual reality [30] are employed as monitoring tools for the acquisition of more accurate data, such
as safety, rock mass properties, rotation speed, penetration rate, depth of the hole, percussive
pressure, and rotation pressure [31,32]. One such technology is Measurement While Drilling
(MWD), a method used to continuously monitor the drilling process. This method is employed
to estimate rock strength [33], evaluate blasthole chargeability [34], and identify rock mass
discontinuities [35]. Piyush et al. [36] investigated the effect of drilling practices on fragmentation
outcomes, demonstrating how even minor deviations can significantly influence results. Their study
integrated advanced MWD techniques with blasting operations, aiming to enhance blasting designs
and outcomes through real-time geological data acquisition. Adebayo and Mutandwa [37] inves-
tigated the impact of blast-hole deviations on fragment size and associated costs. Results indicated
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a decrease in mean fragment size with increasing deviation, with ANFO explosives yielding larger
fragments. Valencia et al. [38] introduced a novel method for blasthole monitoring in open-pit
mines, employing aerial drone images and machine learning techniques. By processing photo-
grammetry [39] representations of blast patterns, the approach achieved high accuracy in blasthole
detection, validating its effectiveness in optimising drilling accuracy and blasting outcomes.

As many variables impact the fragmentation outcomes, some studies have focused on optimising
these variables. Vokhmin et al. [40] underscored the need to optimise drilling-and-blasting pattern
parameters in their case study to improve fragmentation outcomes and minimise blasting expenses.
By aligning calculation parameters with observed fragmentation, the prediction of grain-size
composition could be refined, enhancing both blasting effectiveness and cost-efficiency. Afum
and Temeng [41] conducted a study to optimise drill and blast operations in a gold mine, with the
goal of reducing costs and enhancing efficiency. Their research involved proposing and evaluating
blast geometric parameters for three operational pits, analysing their potential effects on fragmen-
tation, explosive energy utilisation, material volume blasted, and cost savings when compared to
current parameters. Ninepence et al. [42] delved into blast optimisation strategies to enhance
downstream processes. Their assessment of current drill and blast parameters unveiled suboptimal
fragmentation. Utilizing the Kuz-Ram Model, they proposed two optimisation options, foreseeing
potential cost savings of 35.37% and 30.6%. Zhao et al. [43] created a mathematical model aimed at
optimising step drilling and blasting expenses in mines, thereby improving blasting quality and
reducing production costs. By refining the Gray Wolf algorithm, the model optimises drilling and
blasting parameters, resulting in enhanced blasting performance and greater production efficiency.
This approach was successfully applied in a limestone mine, where it led to reduced stope produc-
tion costs.

The rest of the paper is organised as follows: Section 2 outlines the scope, objectives, and
contributions of the study. Section 3 details the proposed methodology, including the optimisation
model. Section 4 describes the case studies utilised in the research. Section 5 presents the results of
the calculations from the case studies. Section 6 discusses the study’ results, while Section 7 presents
conclusions and key remarks.

2. Scope and objectives

In modern mining, achieving 100% precise drilling remains challenging despite the use of advanced
GPS-equipped drill rigs. Various factors, such as poor setup, GPS inaccuracies, and operator
inexperience, contribute to inevitable collaring deviations. Addressing these issues, the research
team of the mining automation laboratory at the University of Nevada, Reno in collaboration with
the Technical University of Delft have developed a comprehensive approach to minimise negative
impacts of the inaccurate drilling patterns. Initially, Battulwar et al. [44] developed a practical
methodology using unmanned aerial vehicles (UAVs) to create high-resolution three-dimensional
models of the mine highwalls, providing a detailed visual foundation for further analysis. This
method maintains aerial systems at a consistently close distance above the ground to capture high-
resolution images. Building on this, Valencia et al. [38] employed these high-resolution images to
automatically detect blasthole collar deviation errors from planned blast patterns using photo-
grammetry and computer vision techniques. These efforts aimed to identify the accuracy of blast-
hole placement and ensure that deviations could be practically detected.

The current study revolves around the utilisation of detected blasthole collar deviations in blast
design. Specifically, this study proposes an optimal adjustment of the explosive charges based on the
detected deviations to optimise the explosive energy distribution (EED), rather than uniformly
charging the blastholes according to the original blast design patterns. By aligning the real EED with
the designed configuration, this approach produces optimal fragmentation and enhances overall
blast performance and efficiency. In the proposed approach, a sensitivity analysis is first performed
using the Taguchi method to examine the impact of various blast design parameters on rock
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fragmentation, backbreak, and blast vibration. This analysis informs the development of an
optimisation problem to determine the optimal amount of charge in the blastholes. Given the
complexity of calculating the EED, metaheuristic techniques, such as Tabu Search and Genetic
Algorithm, are employed to find near-optimal solutions. These methods can adjust explosive
charges in real-time, ensuring that blasts with deviated blastholes more closely resemble the original
plans. The proposed approach provides a practical and innovative solution to the persistent issue of
blasthole collar deviation, contributing to improved safety, efficiency, and cost-effectiveness in
mining operations.

3. Materials and methods
3.1. Model development and configuration

To accurately represent the EED around blastholes, the surrounding area corresponding to the rock
mass of a bench is discretized into a block model. The EED throughout the blast area is then
calculated for each block using Equation 1, which is based on the three-dimensional explosive
energy flux developed by [45], and then integrated and rewritten to Equation 2

L, . . D\2
p_ [1000-p (%) il

B 4 2 (1
L pr . gﬂ(hz + 12>3
P:187.5-&‘D-i L, L @)
r h2 ] r

where L; and L, are the lengths of the explosive column above and below the elevation point P. The
densities of the explosive and rock are denoted by p. and P respectively, with the rock density for
limestone assumed to be 2.65 g/cm”. The three-dimensional distances from P to the top and bottom
of the column charge are indicated by r; and r,, respectively. Furthermore, / represents the
horizontal distance between an arbitrary point P and the blasthole, while D denotes the drillhole
diameter.

Evaluating the EED formula within the block model requires multiple iterations rather than
a single assessment. To assess how different charge configurations affect the distribution of
explosive energy, recalculations are necessary for various blasthole arrangements and charging
instructions. Consequently, each block in the model will contain data corresponding to different
blasthole setups, including planned, real, and optimised EED. The planned EED reflects the EED
based on the intended coordinates of the drillholes and their corresponding charging instructions.
Also, the EED calculated from the real drillhole configuration is defined as the real EED. In this
situation, the drillholes’ coordinates deviate from the planned values, but the charging instructions
remain unchanged. This represents the EED with no charge adjustments, reflecting the current state
of blasting with deviated holes, without optimisation. In contrast, the optimised EED, which also
uses deviated drillholes, involves adjusting the explosive charges to achieve a more favourable result.
While the planned and real EED are computed only once for a given blast pattern, the optimised
EED is recalculated multiple times throughout the optimisation process. For optimising charge
adjustments, each blasthole is discretised based on the below guidelines:

e The coordinates of x, y, and z of the blastholes do not have to align with the block model’s
discretisation grid; instead, these coordinates are used as provided in the data, allowing each
hole to be discretised independently on its own grid.

e The given z-coordinate sets the upper boundary of the hole, while the drilled depth determines
the lower boundary. These boundaries, along with the specified height of stemming, deter-
mine the z-coordinates for the top and bottom of the explosive column.
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e Charge adjustments are made in discrete segments of a specified length, which dictates the
range of possible adjustment options during optimisation.

e During optimisation, the coordinates for the bottom and top coordinates of the charge modify
the height of the explosive column and the amount of explosives in each hole individually.

3.2. Control parameters

Block size, search radius for calculations around each blasthole, charge segment length, and the data
subset used in optimisation are identified as control parameters for which appropriate settings must
be determined. The choices for block size and search radius primarily involve a trade-off between
accuracy and computational requirements. While this consideration also applies to the selection of
a suitable charge segment length, the charging instructions’ level of detail must, above all, be
practically achievable.

Significant discrepancies are observed in blocks near the blastholes as a result of comparing the
block-to-block EED values for various drillhole and charging configurations. A block near the
blastholes in the planned pattern may show extreme EED values, while its value drops significantly
if the actual hole location is further away. To manage these unusually high values, only a subset of
the EED data is considered by applying a percentile-based cap. Consequently, optimisation should
primarily target areas receiving relatively low explosive energy.

3.3. Optimisation

In the developed optimisation program, the determined variables correspond to the z-coordinates
for the bottom and top of the explosive columns, as indicated in expressions 3 and 4. These variables
are initially set according to the z-coordinates for the charges in the actual EED drillhole config-
uration. During optimisation, the decision variables are modified in increments corresponding to
the length of a discrete charge segment.

x®fori=1,2,...,n € DH 3)

xbotomfori = 1,2,...,n € DH (4)

The proposed optimisation model seeks to closely align the EED of the actual drillhole locations
with the values from the planned configuration. This is accomplished by minimising the absolute
block-to-block differences between the optimised EED and the planned EED. The real EED serves
as the initial solution, and it is retained in the block model to facilitate comparison with the
optimised EED upon completion of the optimisation process. While the real EED and planned
EED remain unchanged during the optimisation process, the optimal EED is updated with charge
adjustments for several blastholes in each iteration. The EED for each block is calculated using data
from the drillholes within a specified search radius. Although the z-coordinates for the bottom and
top of the explosive columns are unchanged in the planned EED during optimisation process, the
optimal EED is calculated using these variables. The objective function is defined by the following
expression:

DH NP Lo
minZ — Z Z ’Eflanned (DHfl(mned) _ E;ptzmzzed (DHireul, XED‘D, xl’bo[’tgm) ’ (5)
i=1 j=1
where N, refers to all blocks j that fall within the lower p" percentile of EED values in the block
model, and E is the calculiited EED values, taking all drillhole information DH as input according to
Equations 2 In this case, Z is the arithmetic mean of the differences between the retrieved objective
values.
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The optimisation model constraints are given by Constraints 6-10. Constraint 6 ensures that no
charge adjustments exceed the boundaries of the blasthole. Due to physical limitations, the
explosive column must not extend above the collar elevation. A similar constraint could be applied
for the bottom of the hole, but in this paper, only adjustments to the top z-coordinate are
considered for practicality reasons of explosive loading. Constraints 7 and 8 restrict charge adjust-
ments to practical limits. Although significantly reducing the explosive column’s height could
potentially improve the objective value in certain situations, the permissible adjustment is set to
half the stemming height, both above and below the original z-coordinates of the explosive column.

top top,real .
X" < Zgotesi = 1,2,...,n € DH (6)
top top,real top,real top,real .
Xi S Zcharges,i + (Zdrillhale,i - Zcharges,i /Chml - 17 27 RS DH (7)
top top,real top,real top,real e
Xi 2 Zchargegi - (Zdrillhole,i - Zchargegi /Cll'”l =1,2,...,ne€ DH ®)

= 1 % lanned b lanned
top bottom top,planne ottom,planne
E (x,' —X; ) X ﬂ(i Di> X Pei < § :(Zcharges,i ~ Zcharges,i + (C“”OW“"CE X lSEg’”e“[))
i=1

i=1
1 2
X T ED, X pe,i

i=1,2,....,n€ DH 9)

2 DH
E top bottom 1 ) top,planned bottom,planned
(‘xi - X ) X 7[(5 Dl) X Pe,i Z E (Zchurges,i - Zchurges,i - (Callowance X lsegment)
i i=1

1 2
X n(zD,-) X Pe.i

i=1,2,...,ne€ DH (10)

where callowance controls the maximum deviation allowed from the planned quantity of explo-
sives, ¢ is a selected charge height limit constant, pe is the explosive density, D represents the
drillhole diameter, Isegment denotes the charge segment length, and Z denotes z-coordinates at
different positions within the blastholes.

Constraints 9 and 10 limit the total amount of explosives used in the blast. To keep it equal to the
planned quantity, callowance must be set to zero. However, applying this constraint from the
beginning of optimisation would render all individual charge adjustments infeasible. To facilitate
progress and permit adjustments, a slight deviation from the planned total explosives quantity is
allowed.

3.4. Genetic algorithm approach

The EED optimisation problem is addressed using a Genetic Algorithm (GA) that employs
generational evolution with elitism. In this approach, candidate solutions are represented by
alterations to blasthole charging instructions. These solutions are encoded as lists of the top and
bottom z-coordinates of the explosive column, forming the chromosomes, with individual hole
charging specifications acting as genes. Each generation comprises a population of several candidate
solutions. The initial population consists of the original charging instructions, supplemented by
copies of the initial solution with randomised adjustments. For each gene, a random choice is made
between reducing, increasing by one charge segment length, or making no adjustment at all.
Additionally, the fitness of each candidate solution is evaluated using the objective function.
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Then, the best-performing solution is retained for the next generation. The remaining candidate
solutions are generated through crossover and mutation of the current population’s solutions.
Parent solutions are selected via tournament selection with three participants. Since each offspring
requires two parents, (population x2) — 2 tournaments are conducted every generation. In this case,
the cutting point for single-point crossover is randomly selected, with each parent contributing
opposite segments of the chromosome. Subsequently, each gene of the offspring chromosomes is
exposed to a mutation probability, allowing for a random increment or decrement by one charge
segment length. This process advances to a new generation, and the described procedure is repeated
until a specified number of generations have elapsed without improvement in the best solution.

3.5. Tabu search approach

While the GA excels at identifying strong global solutions, Tabu Search (TS) is more effective for
local searches, targeting the optimal solution within a limited range. The TS approach generates
candidate solutions by exploring direct neighbours of the current solution, starting with the original
charges as the initial setup. Thus, neighbouring solutions are generated by adjusting the explosive
column of a single blasthole by one charge segment length, either increasing or decreasing the
z-coordinate of the bottom or top of the charge column. This process is repeated for each blasthole,
producing all potential neighbours of the current solution.

Unlike the GA, the TS approach does not require evaluating the EED formula for the entire block
model throughout the optimisation process. As each candidate solution involves only a single
charge adjustment relative to the current one, calculation time significantly cuts down by focusing
on the modified blasthole. This aim is achieved by first computing the contribution of EED in the
unchanged explosive column and then removing that value from the block model. Next, the EED
from the adjusted charges is added. This process is repeated for all neighbouring solutions to
evaluate the objective function and identify the optimal solution, which then updates the current
solution. The current solution may not always be the best solution. If no neighbouring solutions
improve the current one, the option with the least detrimental impact is selected. To avoid the
algorithm from quickly reversing this adjustment in subsequent iterations, a Tabu tenure of 3
iterations is implemented. This tenure helps prevent the algorithm from becoming prematurely
trapped in a local optimum and promotes diversification. Practically, this approach involves
exploring alternative solutions rather than reverting unfavourable adjustments. This includes
making adjustments in the opposite direction in neighbouring holes to address newly introduced
EED differences. Finally, the TS algorithm terminates upon detecting a repetitive loop among the
‘current’ solutions, signalling that no further improvements are being made. At this point, the best
identified solution is taken as the result of the optimisation process. If no loop is detected, the
algorithm is stopped after 100 iterations without an improvement to the best solution, providing
a secondary stopping criterion.

4, Case study

This study validates the proposed algorithm using two distinct datasets, including Dataset Nevada 1
and Dataset Nevada 2. The first dataset, referred to as Nevada 1, comprises 243 drillholes arranged
in a nearly square blast pattern, as illustrated in Figure 1. The average distance between these
drillholes results in a spacing of 4.8 m and a burden of 4.27 m. Each drillhole has a diameter of
0.125 m and a depth of 11.5 m, with the upper 4.3 m filled with stemming. The explosive used is
standard ANFO with a density of 0.9 g/cm’. This dataset includes only the planned drillhole
coordinates, with deviations introduced randomly.

The second dataset, referred to as Nevada 2, contains information about 407 drillholes in total.
Because not all of these were actually drilled, a portion of these planned holes were removed, with
292 remaining. Figures 2 and 3 depict a top-down view of the planned blast pattern and the real
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Figure 1. The locations of the planned drillholes for dataset Nevada 1, with collars at an average z-coordinate of 960 m (x and
y axes are in meters).

drillhole locations, respectively. After conversion from imperial to metric units, a designed spacing
of 5.18 m and burden of 4.57 m are obtained. The hole depth is 13.72 m, with drillhole diameter of
0.200 m and a stemming height of 4.27 m. Based on accessory data, an explosive density of 0.9 g/cm’
can be derived, which is assumed to be ANFO.

The real drillhole locations were logged by the drill rigs with two decimals precision. Although
this does not take into account any GPS-related inaccuracies, for the purpose of this research it
serves as good data to test the application of the EED optimisation system on a blast pattern
containing real deviations. Figure 4 shows a histogram of the calculated deviations, which are also
plotted on a precision map in Figure 5. The deviation of six holes exceeded three times the hole
diameter. For a more detailed presentation of the lesser deviations, these have been excluded from
the figures. A total of 26 holes are deviated by more than one hole diameter (0.200 m) and are thus
considered inaccurately drilled [46]. Figure 6 indicates the 5 by 5 test pattern planned drillhole
locations in this study. This test pattern is utilised as a small blast pattern to identify appropriate
values for the critical control parameters.

5. Results
5.1. Control variables

To avoid lengthy computation times in early testing to determine appropriate values for the control
parameters, a stepwise approach was taken in which scale and resemblance to real blasthole data is
progressively increased (Figure 7). This procedure improves the understanding of the involved
variables before applying the method at full scale. Ultimately, it aims to ensure more consistent
performance with the selected optimisation settings and control parameters, while also validating
findings from earlier stages.
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Figure 2. The locations of the planned drillholes for dataset Nevada 2, with collars at an average z-coordinate of 1633.73 m (x and
y axes are in meters).

5.2. Search radius

Selecting a proper search radius around blastholes is crucially dependent on how the explosive
energy attenuates with distance. This attenuation is governed by the EED formula established by
Kleine et al. [45] and the specific characteristics of the blast. The EED around a single blasthole is
evaluated to find a suitable search radius. The test blastholes reviewed have characteristics that are
consistent with those of the blastholes in the Nevada 1 and Nevada 2 datasets. In this case, the EED
is computed for a 20 m x20 m square block model centred around a blasthole, using a search radius
(r) of 10 m. Figure 8 indicates a vertical cross-section of the EED surrounding a blasthole from
Dataset Nevada 1, with the following specifications: diameter = 0.125 m, total hole depth = 11.5 m,
stemming = 1.5 m, and ANFO explosive with a density of 0.9 g/cm’.

The EED values do not follow a normal distribution, making it impractical to determine the
extent of statistically significant values using the three-sigma rule based on the mean and standard
deviation. Alternatively, the EED values at different radii around the blasthole are compared to the
peak values observed in close proximity. This comparison helps identify the radius at which
explosive energy sufficiently diminishes, allowing values outside this range to be disregarded.
Moreover, since the minimum distance to the explosive column is tremendously influenced by
the block size, the magnitude of the peak EED values is also affected. Furthermore, the EED values
at different radii are compared to those measured at a distance of 0.5 m, at the depths where the
EED is maximum. For both datasets, the optimal search radius was found to be 5.0 m, as the EED at
this distance drops to 0.71% (Nevada 1) and 0.65% (Nevada 2) of the value at 0.5 m.
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Figure 6. The 5 by 5 test pattern planned drillhole locations.

5.3. The 5 by 5 test pattern

To investigate the optimisation approach in a controlled and replicable environment, a 5 by 5
test pattern was established, consisting of 25 drillholes, each with a diameter of 0.125 m,
arranged in a square grid. This small-scale pattern was designed to serve as a representative
subset of a full blast pattern, allowing for focused analysis and parameter calibration. The
planned collar coordinates were spaced evenly (3 m) (Figure 6), and deviations were applied
based on actual field data to simulate realistic inaccuracies. Among the 25 drillholes, 12 holes
displayed deviations that exceeded one hole diameter (0.2 m), providing sufficient variability to
test the optimisation method’s sensitivity and effectiveness. In this scenario, the holes expected
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Figure 8. Vertical cross-section of the EED surrounding a blasthole in dataset Nevada 1.

to undergo explosive columns adjustments are easily identifiable, enabling a straightforward
evaluation of optimisation performance. Specifically, bringing holes 1, 5, 7, 11, 13, 17, 19, and
23 closer together requires reducing the charges in holes 6 and 18 to compensate for the
increased explosive energy. On the contrary, charge reductions are expected in holes 8 and 16
due to the enhanced spacing between holes 3, 7, 9, 11, 15, 17, and 21, which results in decreased
explosive energy in the intervening areas.

The test pattern was especially useful in identifying appropriate values for critical optimisation
parameters such as the EED cap percentile and block size. By isolating the optimisation process
within this smaller array, we could monitor changes in the objective function (i.e. the total block-to-
block EED difference) in response to different charge adjustment strategies. This controlled setup
enabled a deeper understanding of the impact of individual deviations and the algorithm’s ability to
compensate for them.
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Furthermore, using a smaller pattern allowed us to perform multiple simulation iterations
efficiently, adjusting input conditions and validating the stability of the optimisation outcomes. It
also provided a framework to test scalability before applying the methodology to full-scale datasets,
such as those from Nevada 1 and 2. The insights from this phase were foundational in tuning the
optimisation approach for broader application.

5.4. Block size

Block size is a critical parameter in the optimisation process, as it determines the spatial resolution
at which Explosive Energy Distribution (EED) values are compared between the planned and actual
drillhole configurations. A finer block size enables a more detailed representation of EED, capturing
localised deviations more precisely. However, this comes at the cost of significantly increased
computational demand. On the other hand, coarser block sizes reduce computational load by
simplifying the problem, but may fail to detect subtle yet important variations in energy placement.

Directly comparing EED statistics across different block sizes can be misleading, as finer blocks
naturally tend to yield higher mean EED values due to increased spatial granularity. As a more
reliable alternative, the absolute differences between the planned EED and a manually optimised
EED (which accounts for expected charge adjustments) are compared against the differences
between the planned and real EED. This approach better reflects the effectiveness of optimisation
in improving energy distribution.

While the block model does not need to preserve identical EED statistics across various block
sizes, it should support consistent and meaningful charge adjustments. To evaluate this, various
block sizes were tested on the 5 by 5 test pattern to assess their impact on optimisation outcomes.
Results indicated that smaller block sizes generally resulted in lower mean block-to-block EED
differences, demonstrating improved fidelity in charge allocation. However, excessively small
blocks led to considerable increases in computation time and risked overfitting to localised noise.

Figure 9 illustrates the impact of block size on the improvement in mean EED difference, based
on a charge segment length of 0.3 m. To ensure that a block size accurately reflects the EED,
improvements should closely align with those observed for the smallest block sizes across each EED
cap percentile. Larger discrepancies can impact the effectiveness of charge adjustments and may
lead to different optimisation outcomes. The block sizes of 1.0 m and 0.5 m appear to lack precision,
as evidenced by substantial discrepancies when compared to graphs of smaller block sizes. However,
the improvements computed for the block sizes of 0.2, 0.1, and 0.05 m are quite similar, differing by
only 0.04-0.17% between subsequent block sizes. Therefore, it is anticipated that the optimisation
model will generate similar charge adjustments across these smaller block sizes. Also, Figure 9
illustrates that an EED cap percentile of 100%, meaning all data is used, does not yield a positive
improvement in the objective value for this idealised test pattern. Therefore, these expected
adjustments would never be recommended through optimisation unless a lower EED cap percentile
is used. High EED values that produce disproportionately large differences between optimised and
planned configurations must be limited using appropriate cap percentiles to ensure practical and
effective charge adjustments.

5.5. Charge segment length

By investigating optimisation solutions for various EED cap percentiles and charge segment
lengths, it becomes clear that charge reductions and charge increases do not lead to the
same improvements to the objective value, even in the idealised 5 by 5 test patterns. This
can lead to a bias in adjustments, as the total amount of explosives is not restricted to the
quantity used in the planned configuration. Although the implementation of constraints 9
and 10 could easily mitigate this problem here, it is crucial to reduce the effect of this bias
as much as possible to prevent complications in full-scale optimisation. One effective
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Figure 9. Comparison of improvements for different block sizes, for expected manual adjustments by 0.3 m.

approach is to use a larger charge segment length, which reduces the sensitivity of
optimisation to minor EED differences. When larger EED variations are needed to effect
charge adjustments, the discrepancy between increases and reductions becomes less signifi-
cant. With a charge segment length of 0.3 m, most optimisation solutions result in an equal
number of charge decrements and increments. Naturally, a charge segment length of
0.3 m also has improved practicality over a length of 0.1 or 0.2 m but maintains sufficient
sensitivity to differences in EED.

5.6. EED cap percentile

In the 5 by 5 test pattern, the optimisation solutions revealed that the relationship between charge
reductions and increases varies with the selected EED cap percentile. Although a charge segment
length of 0.3 m effectively mitigates biases in this idealised scenario, its behaviour differs in non-
idealised blast patterns. Optimisation of Dataset Nevada 1, with deviations randomly drawn from
a uniform distribution ranging from — 0.5-0.5 m (0.37 m mean), reveals that charge reductions are
favoured at high EED cap percentiles and charge increases at low values of this control parameter, as
given in Table 1. After additional investigation, the EED cap percentile of 50% appears most
effective at approximating a balance between charge reductions and increases.

5.7. Optimisation

Although both the GA and TS can reach the same optimal solutions, the computation times for GA
are significantly longer. TS was expected to be favoured for optimisation of the 5 by 5 test cases
because these generally involve a relatively small number of charge adjustments, benefiting the local
search approach. However, as Figure 10 shows, GA does not outperform TS at any stage of
optimisation for dataset Nevada 1 despite the fact that charge adjustments are recommended in
80 out of the 243 blastholes in the optimal solution, in which the total amount of explosives used is
limited using constraints 9 and 10.

Despite the substantial number of charge adjustments, the GA does not show any advantage over
the TS, even in the initial generations. With a population size of 20 and a mutation probability of
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Table 1. Number of adjustments by charge segment length of 0.3 m for dataset Nevada 1.

EED Cap Percentile (%) Charge Reductions Charge Increases Balance
10 65 47 -18
20 67 144 +77
30 51 63 +12
40 38 41 +3
50 40 41 +1
60 43 39 -4
70 49 31 -18
80 54 26 -28
90 58 8 =50
100 557 1 -556
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Figure 10. TS and GA optimisation path for Nevada 1 dataset (red dots indicate the best solution found).

0.005, it required almost 12.4 h to achieve the first marginal improvement, approaching the total
computation time required by TS. To address the time-consuming nature of identifying the final
beneficial charge adjustments, the termination criterion was adjusted to end after ten consecutive
iterations without improvement. Even with this change, the computation time for this setup was
12.6 days, and the resulting solution was slightly inferior to that obtained with TS. The GA’s
solutions appear too random to match the effectiveness of TS’s more heuristic approach.
Therefore, using GA to generate a better initial solution for TS would only increase computation
times, making TS alone a more efficient choice than any hybrid method.

5.8. Charge adjustment solutions

While 80 recommended charge adjustments for the Nevada 1 dataset is not necessarily excessive,
a more detailed look into the functioning of the optimisation program can be provided by reducing
the magnitude of the drillhole deviations to an average value of 0.19 m. This value was randomly
selected from a uniform distribution ranging from — 0.25-0.25 m. This reduces the total number of
charge adjustments to 20 (10 increases and 10 decreases). Though there was one exception in the
previous case, no blasthole is adjusted more than once in the optimal solution, as shown in
Figure 11



16 (&) S.KLERKX ET AL.

- o905
0.3535»’;’:3:3&%95,

0.09,
760 g%??ﬁggoo 6&%0 ° Planned drillhole location

°° () °°° @ No adjustments
740 6‘8&%00 1 charge reduction of 0.3 m
°° (o) @® >1 charge reduction of 0.3 m
720 ogo @ 1 charge increase of 0.3 m
© ® >1chargeincrease of 0.3 m
12'0 lziO 16'0 18'0 2(')0 2é0 2&0 260 2é0

x (m)

Figure 11. Charge adjustment solution for Nevada 1 dataset with smaller deviations.

In this case, most adjustments are made independently, except for a cluster in the top-right
corner of the blast. This suggests minimal interaction between individual adjustments, indicating
that the influence of the tabu mechanism is restricted. Another observation reveals that most charge
adjustments, especially reductions, occur in drillholes at the outer boundaries of the blast pattern.
Additionally, the investigation shows that 2 out of the 10 charge reductions are located just one row
inward, while the remaining 8 are found in the outermost holes. Blastholes at the boundaries have
one ‘open’ side without neighbouring blastholes to balance small increases or decreases in EED,
potentially leading to larger discrepancies and thus a higher need for charge adjustments compared
to areas with more surrounding blastholes.

The solution obtained for dataset Nevada 2 features a total of 7 charge adjustments (Figure 12).
Once again, many of these are found at the boundaries of the blast. Nevertheless, irregular drilling at
the southern and western ends of the blast has resulted in numerous significantly deviated drillholes
in these boundary areas, which often require adjustments. In this case, the magnitude of deviations
appears to be the primary driver for charge adjustments, rather than merely the drillhole’s position
at the edge of the blast pattern.

Analysis of drillholes with deviations of one diameter or more reveals that charge increases are
applied to holes 6264, 6330, and 6184, while charge decreases are implemented in holes 6275, 6341,
and 6342. Tt is clear that charge adjustments are not solely based on the degree of deviation; of the 26
drillholes with deviations exceeding the threshold of one diameter (0.200 ), adjustments were
made in only 6 cases. Moreover, large deviations alone do not guarantee that charge adjustments
will be made, as adjustments are also influenced by the positions of nearby drillholes. Conversely,
large deviations are not always necessary for charge adjustments. For example, the study indicates
that 8 out of the 14 adjustments occur in drillholes with deviations of less than one drillhole
diameter. A notable instance is the cluster of adjustments in the core of the blast pattern, where
a single highly deviated drillhole prompts both charge increases and decreases in surrounding holes
that are otherwise positioned relatively accurately. Figure 13 indicates how the charge adjustments
recommended by optimisation alter the EED values throughout the block model. Comparing the
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Figure 12. Charge adjustment solution for Nevada 2 dataset.

preliminary and optimised states of the EED differences highlights both the negative and positive
impacts of the optimisation process. The magnitude of the newly introduced differences (red) is
generally larger than the reductions (blue), although they tend to cover smaller areas. In contrast,
the reductions in EED differences often extend over larger areas. Despite the localised nature of the
new differences, the extensive reductions in three-dimensional space usually result in overall
improvements.

The achieved improvements in the objective value are listed in Table 2 for both the Nevada 1 and
Nevada 2 datasets. It is crucial to note that the objective function is computed based on differences
across the whole block model. Since charges in the majority of drillholes remain unchanged,
a significant portion of the EED differences remains unresolved. As a result, focusing solely on
the blocks impacted by the charge adjustments recommended by the optimisation model provides
a more informative representation for this scenario.

6. Discussion

While drillhole deviation is recognised as a common issue in the mining industry, its
potential impact on blast performance is frequently accepted as an unavoidable margin of
error. Despite advances in positioning and automation technologies, completely eliminating
this problem remains challenging. Adjusting other parameters within a blast pattern that
includes deviated drillholes can help align blast performance more closely with the expecta-
tions set by the original design. Given the ripple impact of fragmentation on subsequent
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Table 2. Improvements achieved by optimisation.

Dataset Improvement in the affected blocks only (%) Improvement in the objective value (%)

Nevada 1 (large deviations) 2.31 1.54
Nevada 1 (small deviations) 2.14 0.53
Nevada 2 3.94 0.96

mining procedures, such adjustments can yield significant improvements in both efficiency
and cost-effectiveness.

The decision to focus on minimising block-to-block EED value differences between the real and
planned drillhole configurations has proven more challenges than initially anticipated. This choice
stems from the limited understanding of EED behaviour in a blast and its subsequent impact on
rock mass. While the EED formulation developed by Kleine et al. [45] offers a valuable estimate of
the energy delivered at each point, the relationship between this energy and blast performance
remains uncertain. Without a generalised method to correlate EED values with fragmentation
predictions, a straightforward value-based approach proves inadequate. Consequently, the EED
values from the real drillhole pattern can only be effectively assessed by comparing them with the
planned EED values.

An unintended outcome of the block-to-block method is that drillhole deviations introduce
differences in the blocks near the real and planned drillhole locations, even though the overall
frequency distribution of EED values may remain unchanged. While the implementation of an
EED cap addresses the largest differences, it can nevertheless impact the smaller values. For
instance, if all drillholes were uniformly displaced by the same distance in the same direction,
the total energy distribution across the blast should theoretically remain consistent, with the
exception of changes at the designed boundaries. However, the block-by-block method will not
permit the interchange of block values, leading to numerous discrepancies that must be
minimised. While maintaining constant block values at the blast pattern boundaries is essential
to achieve the intended rock fragmentation, the interchange of values further from the blast
centre is less likely to affect overall blast performance significantly. Consequently, the current
setup, which views these interchanges as detrimental to the objective, may underestimate the
true improvements to the EED.
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When evaluating optimality, the significance of the chosen EED cap percentile cannot be
overlooked. As the results indicate, varying this parameter — an inherent aspect of the block-to-
block comparison approach - yields significantly different charge adjustment solutions. Although
the EED cap percentile was selected to align the optimised explosives quantity with the planned
quantity and reduce bias, assessing the true optimality of these solutions remains challenging.
However, the consistent performance observed in the Dataset Nevada 1 and Dataset Nevada 2,
regardless of the magnitude of drillhole deviations, supports the effectiveness of the chosen
percentile. In all cases examined, the optimisation process behaved as predicted, and the 50%
EED cap resulted in manageable changes in explosives quantities, demonstrating its appropriate-
ness in avoiding excessive alterations.

In the majority of TS optimisation trials performed on the 5 by 5 pattern, it was observed that the
choice of tabu tenure had a negligible effect on the final outcome. While there were a few
exceptions, the final solutions were generally consistent across different tabu tenure settings. The
primary difference observed was that a larger tabu tenure allowed the search to explore further from
local optima, but it also increased the time required to meet the stopping criterion and determine
a solution as optimal. To mitigate this issue, adjusting the stopping criterion could help reduce the
optimisation duration. Nonetheless, the overall computation time, which can extend to several
hours, remains a major drawback.

In addition to improving EED differences, charge adjustments can introduce new variations in
nearby blocks. Although these adjustments clearly benefit the surrounding area, they can also
significantly alter the energy received by blocks close to the explosive column. An alternative
approach to compensating for changes in explosive energy distribution might involve varying the
explosive density rather than the explosive column height. If the mine site offers different types of
explosives, this could be a viable option. Such an approach would influence the entire length of the
blasthole, not just the area around charge height adjustments. Additionally, adjusting explosive
density could minimise the impact on the shallowest parts of the blast, potentially reducing the risk
of flyrock compared to altering the explosive column and stemming height.

The charge adjustment solutions derived from Dataset Nevada 1 and Dataset Nevada 2 highlight
that optimising explosive charges in a specific pattern cannot rely solely on the magnitude of
drillhole deviations. Although significant charge adjustments are often observed in highly deviated
holes, this is not always necessary; deviations in a single drillhole do not always necessitate a large
adjustment to its explosive column height. The findings indicate that interactions among multiple
slightly deviated neighbouring drillholes can produce substantial EED differences. Therefore, while
it might be beneficial to initially focus on potential adjustments around highly deviated holes, as
opposed to the current TS algorithm’s approach of evaluating all possible adjustments throughout
the pattern, it is crucial not to overlook the influence of less deviated drillholes.

While the optimisation programme proves effective within the context of Nevada’s blasting
practices, its transferability to other locations needs careful consideration of geological, environ-
mental, and regulatory factors. Moreover, differences in local regulations, rock characteristics, and
community sensitivities may mandate significant adjustments to the programme’s control para-
meters to ensure safe and efficient blasting practices in diverse geographic settings.

7. Conclusions

The EED optimisation system developed in this study demonstrated that adjusting the length of
explosive charges could effectively mitigate the impact of drillhole deviations. Applying this
optimisation to real-world case studies with the developed model achieved improvements ranging
from 0.53% to 1.54%, or 2.14% to 3.94% when excluding areas not affected by the suggested charge
adjustments. The approach consistently created positive outcomes across two different blast
patterns, regardless of design characteristics, and was effective for both random and real drillhole
deviations. The study has also successfully met several additional objectives. By maintaining
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a constant quantity of used explosives across the solutions, the model theoretically enables more
efficient utilisation of explosive materials. Adjusting the explosive column height seems rationally
feasible in the standard procedures. The modifications to the initial blasting plan are minimal, and
the proposed minimum adjustment length of 0.3 metres should be enough for operators to
implement effectively. The computation time required for optimisation model was a notable
concern in this study. While the TS algorithm delivered optimal solutions significantly faster
than the GA and was generally found to be more suitable, its runtime of several hours remains
inconvenient. To advance this research, it is suggested to explore other techniques beyond the
block-to-block comparison of EED values, as any changes in block values are automatically
considered undesirable differences. Alternative optimisation objective functions may better capture
the true benefits. Additionally, it is crucial to evaluate the safety implications of enhancing explosive
column heights at the expense of stemming, particularly regarding the flyrock risk. For future
research, we recommend expanding the methodology to incorporate additional field data from
diverse geological and operational contexts. This includes collecting and utilising angle deviation
measurements where available and considering more influential factors such as rock mass hetero-
geneity, dynamic blast loading response, and explosive product characteristics. Applying the model
across a broader set of blasts will also help assess its scalability and generalisability beyond the initial
case studies.
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