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Optimising bench-level energy distribution based on drilling 
error measurements in the mining industry
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ABSTRACT
Drillhole location deviations can disrupt energy distribution within mining 
benches, leading to uneven fragmentation and reduced operational effi
ciency. This study presents an optimisation approach that compensates 
for drilling inaccuracies to achieve more uniform energy input. The 
method involves discretizing the bench into a block model to estimate 
localised energy distribution and constructing a mathematical model to 
minimise discrepancies between the planned and actual energy delivery. 
A Tabu Search algorithm is used to solve the model. Case studies demon
strated improvements in the objective function, ranging from 0.53%– 
1.54% overall, and 2.14%–3.94% within the zones most affected by 
deviation.
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1. Introduction

Rock fragmentation analysis is indispensable in the mining industry, leading to efficiency and 
productivity improvements. By examining the size distribution of blasted rock, this analysis 
profoundly affects the economic viability and operational effectiveness of mining operations. It is 
not solely about collecting data – it is a crucial strategy, guiding analysts through the complexities of 
rock fragmentation to drive operations towards success. Previous studies have revealed that 
improper blasting could lead to issues like backbreak [1,2], undesirable rock fragmentation [3,4], 
rockburst [5,6], flyrock [7,8], air overpressure [9,10], and blast-induced ground vibration [11–13]. 
The current study focuses on analysing rock fragmentation, recognising it as one of the most crucial 
challenges in drilling and blasting operations and its downstream implications. Various variables, 
including geological features [14,15] and blasting execution elements [16], exert influence on 
fragmentation outcomes, each playing a crucial role in shaping the size distribution of blasted 
rock, as demonstrated in numerous studies. In the area of geological features, Thornton et al. [17] 
introduced a stochastic modelling approach to assess how variables such as rock mass properties 
influence fragmentation outcomes during blasting. They leveraged these factors as statistical 
distributions and provided a representation of fragmentation. Kiliç et al. [18] examined the impact 
of rock mass properties on blasting efficiency, comparing intact rock characteristics with block 
fragmentation under similar blasting conditions. They found a strong correlation between block 
fragmentation and Brazilian tensile strength and internal friction angle, suggesting predictive 
potential for rock properties in estimating block fragmentation.

Blast pattern, as a blast execution element, determines the spatial distribution of explosives 
within the rock mass, influencing fragmentation, slope stability, and subsequent loading and 
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hauling processes. Gebretsadik et al. [19] employed machine learning algorithms for predicting 
rock fragmentation, focusing on several blast pattern parameters such as spacing and burden. 
Results emphasised the importance of optimising blasting operations for improved efficiency and 
cost-effectiveness. Lan et al. [20] analysed damage mechanisms during multi-long-hole blasting 
with large empty holes. They found that the empty hole configurations in the blast patterns could 
significantly impact the rock fragmentation. Ma et al. [21] explored decoupled charge structures in 
rock blasting, examining their effects on failure patterns and fragmentation size distribution. They 
discussed the influence of delay time, initiation mode, and coupling medium on rock breakage 
effectiveness. Saka et al. [22] studied the impact of short burden and spacing on blasting output in 
open-pit mines. They found that larger burden and spacing configurations led to increased 
productivity and safer operations. Blast timing is another blast execution element that significantly 
influences fragmentation outcomes, with several studies focusing on this aspect. Omidi [23] 
analysed the effect of timing on blast fragmentation, concentrating on bench blasting simulations. 
They demonstrated that shorter inter-hole delays produced coarse fragmentation with limited 
backbreak, whereas longer delays resulted in finer fragmentation with heightened damage to the 
block’s rear.

Blast size and shape are other critical blast execution elements, playing a crucial role in 
fragmentation outcomes. Longer blast patterns, preferably three to four times longer than wide, 
minimise blast boundaries, leading to better fragmentation. Multirow blasts offer advantages in 
productivity, though excessive rows may cause issues like inadequate fragmentation and ground 
vibrations [24]. Hosseini et al. [25] assessed the effect of different blast design parameters on blast 
operation outcomes, including the influence of blast shape. Their findings revealed that square 
blasts induced greater wave interference and resulted in higher peak particle velocity compared to 
rectangular shapes. Agrawal [26] evaluated the effects of delay timing and blast size on fragmenta
tion outcomes. Findings revealed that fewer rows yielded larger fragments, highlighting the 
importance of blast size. Also, the study demonstrated that higher delay per unit burden values 
enhanced fragmentation and muckpile profiles, crucial in stronger sandstone formations where 
shorter inter-row delays are vital for better fragmentation.

Explosive material selection is another crucial blast execution element impacting fragmentation 
outcomes. Different explosives possess varying properties, necessitating consideration alongside 
geometric factors. Esen et al. [27] examined how changing explosive type affects fragmentation. 
Tests with ANFO and BARANFO 50 in the same case study revealed that BARANFO 50 produced 
finer fragmentation, indicating the importance of considering explosive performance, not just 
purchase price, for optimal fragmentation outcomes. Dotto and Pourrahimian [28] revealed that 
stronger explosives led to extensive fractures in hard rocks, while weaker alternatives offered 
improved energy distribution. Paswan et al. [29] analysed different blasting methods and explosive 
setups to enhance fragmentation results in areas with prevalent discontinuities, underscoring the 
necessity of accounting for explosive properties to achieve optimal fragmentation.

Drilling practice is another vital blast execution element affecting the fragmentation outcomes. 
Percussive and rotary drilling methods cater to different rock types and hole sizes aid geological 
assessment for optimised fragmentation. Recently, modern technologies, such as laser scanning and 
virtual reality [30] are employed as monitoring tools for the acquisition of more accurate data, such 
as safety, rock mass properties, rotation speed, penetration rate, depth of the hole, percussive 
pressure, and rotation pressure [31,32]. One such technology is Measurement While Drilling 
(MWD), a method used to continuously monitor the drilling process. This method is employed 
to estimate rock strength [33], evaluate blasthole chargeability [34], and identify rock mass 
discontinuities [35]. Piyush et al. [36] investigated the effect of drilling practices on fragmentation 
outcomes, demonstrating how even minor deviations can significantly influence results. Their study 
integrated advanced MWD techniques with blasting operations, aiming to enhance blasting designs 
and outcomes through real-time geological data acquisition. Adebayo and Mutandwa [37] inves
tigated the impact of blast-hole deviations on fragment size and associated costs. Results indicated 
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a decrease in mean fragment size with increasing deviation, with ANFO explosives yielding larger 
fragments. Valencia et al. [38] introduced a novel method for blasthole monitoring in open-pit 
mines, employing aerial drone images and machine learning techniques. By processing photo
grammetry [39] representations of blast patterns, the approach achieved high accuracy in blasthole 
detection, validating its effectiveness in optimising drilling accuracy and blasting outcomes.

As many variables impact the fragmentation outcomes, some studies have focused on optimising 
these variables. Vokhmin et al. [40] underscored the need to optimise drilling-and-blasting pattern 
parameters in their case study to improve fragmentation outcomes and minimise blasting expenses. 
By aligning calculation parameters with observed fragmentation, the prediction of grain-size 
composition could be refined, enhancing both blasting effectiveness and cost-efficiency. Afum 
and Temeng [41] conducted a study to optimise drill and blast operations in a gold mine, with the 
goal of reducing costs and enhancing efficiency. Their research involved proposing and evaluating 
blast geometric parameters for three operational pits, analysing their potential effects on fragmen
tation, explosive energy utilisation, material volume blasted, and cost savings when compared to 
current parameters. Ninepence et al. [42] delved into blast optimisation strategies to enhance 
downstream processes. Their assessment of current drill and blast parameters unveiled suboptimal 
fragmentation. Utilizing the Kuz-Ram Model, they proposed two optimisation options, foreseeing 
potential cost savings of 35.37% and 30.6%. Zhao et al. [43] created a mathematical model aimed at 
optimising step drilling and blasting expenses in mines, thereby improving blasting quality and 
reducing production costs. By refining the Gray Wolf algorithm, the model optimises drilling and 
blasting parameters, resulting in enhanced blasting performance and greater production efficiency. 
This approach was successfully applied in a limestone mine, where it led to reduced stope produc
tion costs.

The rest of the paper is organised as follows: Section 2 outlines the scope, objectives, and 
contributions of the study. Section 3 details the proposed methodology, including the optimisation 
model. Section 4 describes the case studies utilised in the research. Section 5 presents the results of 
the calculations from the case studies. Section 6 discusses the study’ results, while Section 7 presents 
conclusions and key remarks.

2. Scope and objectives

In modern mining, achieving 100% precise drilling remains challenging despite the use of advanced 
GPS-equipped drill rigs. Various factors, such as poor setup, GPS inaccuracies, and operator 
inexperience, contribute to inevitable collaring deviations. Addressing these issues, the research 
team of the mining automation laboratory at the University of Nevada, Reno in collaboration with 
the Technical University of Delft have developed a comprehensive approach to minimise negative 
impacts of the inaccurate drilling patterns. Initially, Battulwar et al. [44] developed a practical 
methodology using unmanned aerial vehicles (UAVs) to create high-resolution three-dimensional 
models of the mine highwalls, providing a detailed visual foundation for further analysis. This 
method maintains aerial systems at a consistently close distance above the ground to capture high- 
resolution images. Building on this, Valencia et al. [38] employed these high-resolution images to 
automatically detect blasthole collar deviation errors from planned blast patterns using photo
grammetry and computer vision techniques. These efforts aimed to identify the accuracy of blast
hole placement and ensure that deviations could be practically detected.

The current study revolves around the utilisation of detected blasthole collar deviations in blast 
design. Specifically, this study proposes an optimal adjustment of the explosive charges based on the 
detected deviations to optimise the explosive energy distribution (EED), rather than uniformly 
charging the blastholes according to the original blast design patterns. By aligning the real EED with 
the designed configuration, this approach produces optimal fragmentation and enhances overall 
blast performance and efficiency. In the proposed approach, a sensitivity analysis is first performed 
using the Taguchi method to examine the impact of various blast design parameters on rock 

INTERNATIONAL JOURNAL OF MINING, RECLAMATION AND ENVIRONMENT 3



fragmentation, backbreak, and blast vibration. This analysis informs the development of an 
optimisation problem to determine the optimal amount of charge in the blastholes. Given the 
complexity of calculating the EED, metaheuristic techniques, such as Tabu Search and Genetic 
Algorithm, are employed to find near-optimal solutions. These methods can adjust explosive 
charges in real-time, ensuring that blasts with deviated blastholes more closely resemble the original 
plans. The proposed approach provides a practical and innovative solution to the persistent issue of 
blasthole collar deviation, contributing to improved safety, efficiency, and cost-effectiveness in 
mining operations.

3. Materials and methods

3.1. Model development and configuration

To accurately represent the EED around blastholes, the surrounding area corresponding to the rock 
mass of a bench is discretized into a block model. The EED throughout the blast area is then 
calculated for each block using Equation 1, which is based on the three-dimensional explosive 
energy flux developed by [45], and then integrated and rewritten to Equation 2 

where L1 and L2 are the lengths of the explosive column above and below the elevation point P. The 
densities of the explosive and rock are denoted by pe and Pr’ respectively, with the rock density for 
limestone assumed to be 2.65 g/cm3. The three-dimensional distances from P to the top and bottom 
of the column charge are indicated by r1 and r2, respectively. Furthermore, ℎ represents the 
horizontal distance between an arbitrary point P and the blasthole, while D denotes the drillhole 
diameter.

Evaluating the EED formula within the block model requires multiple iterations rather than 
a single assessment. To assess how different charge configurations affect the distribution of 
explosive energy, recalculations are necessary for various blasthole arrangements and charging 
instructions. Consequently, each block in the model will contain data corresponding to different 
blasthole setups, including planned, real, and optimised EED. The planned EED reflects the EED 
based on the intended coordinates of the drillholes and their corresponding charging instructions. 
Also, the EED calculated from the real drillhole configuration is defined as the real EED. In this 
situation, the drillholes’ coordinates deviate from the planned values, but the charging instructions 
remain unchanged. This represents the EED with no charge adjustments, reflecting the current state 
of blasting with deviated holes, without optimisation. In contrast, the optimised EED, which also 
uses deviated drillholes, involves adjusting the explosive charges to achieve a more favourable result. 
While the planned and real EED are computed only once for a given blast pattern, the optimised 
EED is recalculated multiple times throughout the optimisation process. For optimising charge 
adjustments, each blasthole is discretised based on the below guidelines:

● The coordinates of x, y, and z of the blastholes do not have to align with the block model’s 
discretisation grid; instead, these coordinates are used as provided in the data, allowing each 
hole to be discretised independently on its own grid.

● The given z-coordinate sets the upper boundary of the hole, while the drilled depth determines 
the lower boundary. These boundaries, along with the specified height of stemming, deter
mine the z-coordinates for the top and bottom of the explosive column.
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● Charge adjustments are made in discrete segments of a specified length, which dictates the 
range of possible adjustment options during optimisation.

● During optimisation, the coordinates for the bottom and top coordinates of the charge modify 
the height of the explosive column and the amount of explosives in each hole individually.

3.2. Control parameters

Block size, search radius for calculations around each blasthole, charge segment length, and the data 
subset used in optimisation are identified as control parameters for which appropriate settings must 
be determined. The choices for block size and search radius primarily involve a trade-off between 
accuracy and computational requirements. While this consideration also applies to the selection of 
a suitable charge segment length, the charging instructions’ level of detail must, above all, be 
practically achievable.

Significant discrepancies are observed in blocks near the blastholes as a result of comparing the 
block-to-block EED values for various drillhole and charging configurations. A block near the 
blastholes in the planned pattern may show extreme EED values, while its value drops significantly 
if the actual hole location is further away. To manage these unusually high values, only a subset of 
the EED data is considered by applying a percentile-based cap. Consequently, optimisation should 
primarily target areas receiving relatively low explosive energy.

3.3. Optimisation

In the developed optimisation program, the determined variables correspond to the z-coordinates 
for the bottom and top of the explosive columns, as indicated in expressions 3 and 4. These variables 
are initially set according to the z-coordinates for the charges in the actual EED drillhole config
uration. During optimisation, the decision variables are modified in increments corresponding to 
the length of a discrete charge segment. 

The proposed optimisation model seeks to closely align the EED of the actual drillhole locations 
with the values from the planned configuration. This is accomplished by minimising the absolute 
block-to-block differences between the optimised EED and the planned EED. The real EED serves 
as the initial solution, and it is retained in the block model to facilitate comparison with the 
optimised EED upon completion of the optimisation process. While the real EED and planned 
EED remain unchanged during the optimisation process, the optimal EED is updated with charge 
adjustments for several blastholes in each iteration. The EED for each block is calculated using data 
from the drillholes within a specified search radius. Although the z-coordinates for the bottom and 
top of the explosive columns are unchanged in the planned EED during optimisation process, the 
optimal EED is calculated using these variables. The objective function is defined by the following 
expression: 

where Np refers to all blocks j that fall within the lower pth percentile of EED values in the block 
model, and E is the calculated EED values, taking all drillhole information DH as input according to 
Equations 2 In this case, �Z is the arithmetic mean of the differences between the retrieved objective 
values.
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The optimisation model constraints are given by Constraints 6–10. Constraint 6 ensures that no 
charge adjustments exceed the boundaries of the blasthole. Due to physical limitations, the 
explosive column must not extend above the collar elevation. A similar constraint could be applied 
for the bottom of the hole, but in this paper, only adjustments to the top z-coordinate are 
considered for practicality reasons of explosive loading. Constraints 7 and 8 restrict charge adjust
ments to practical limits. Although significantly reducing the explosive column’s height could 
potentially improve the objective value in certain situations, the permissible adjustment is set to 
half the stemming height, both above and below the original z-coordinates of the explosive column. 

where callowance controls the maximum deviation allowed from the planned quantity of explo
sives, clim is a selected charge height limit constant, pe is the explosive density, D represents the 
drillhole diameter, lsegment denotes the charge segment length, and Z denotes z-coordinates at 
different positions within the blastholes.

Constraints 9 and 10 limit the total amount of explosives used in the blast. To keep it equal to the 
planned quantity, callowance must be set to zero. However, applying this constraint from the 
beginning of optimisation would render all individual charge adjustments infeasible. To facilitate 
progress and permit adjustments, a slight deviation from the planned total explosives quantity is 
allowed.

3.4. Genetic algorithm approach

The EED optimisation problem is addressed using a Genetic Algorithm (GA) that employs 
generational evolution with elitism. In this approach, candidate solutions are represented by 
alterations to blasthole charging instructions. These solutions are encoded as lists of the top and 
bottom z-coordinates of the explosive column, forming the chromosomes, with individual hole 
charging specifications acting as genes. Each generation comprises a population of several candidate 
solutions. The initial population consists of the original charging instructions, supplemented by 
copies of the initial solution with randomised adjustments. For each gene, a random choice is made 
between reducing, increasing by one charge segment length, or making no adjustment at all. 
Additionally, the fitness of each candidate solution is evaluated using the objective function. 
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Then, the best-performing solution is retained for the next generation. The remaining candidate 
solutions are generated through crossover and mutation of the current population’s solutions. 
Parent solutions are selected via tournament selection with three participants. Since each offspring 
requires two parents, (population ×2) − 2 tournaments are conducted every generation. In this case, 
the cutting point for single-point crossover is randomly selected, with each parent contributing 
opposite segments of the chromosome. Subsequently, each gene of the offspring chromosomes is 
exposed to a mutation probability, allowing for a random increment or decrement by one charge 
segment length. This process advances to a new generation, and the described procedure is repeated 
until a specified number of generations have elapsed without improvement in the best solution.

3.5. Tabu search approach

While the GA excels at identifying strong global solutions, Tabu Search (TS) is more effective for 
local searches, targeting the optimal solution within a limited range. The TS approach generates 
candidate solutions by exploring direct neighbours of the current solution, starting with the original 
charges as the initial setup. Thus, neighbouring solutions are generated by adjusting the explosive 
column of a single blasthole by one charge segment length, either increasing or decreasing the 
z-coordinate of the bottom or top of the charge column. This process is repeated for each blasthole, 
producing all potential neighbours of the current solution.

Unlike the GA, the TS approach does not require evaluating the EED formula for the entire block 
model throughout the optimisation process. As each candidate solution involves only a single 
charge adjustment relative to the current one, calculation time significantly cuts down by focusing 
on the modified blasthole. This aim is achieved by first computing the contribution of EED in the 
unchanged explosive column and then removing that value from the block model. Next, the EED 
from the adjusted charges is added. This process is repeated for all neighbouring solutions to 
evaluate the objective function and identify the optimal solution, which then updates the current 
solution. The current solution may not always be the best solution. If no neighbouring solutions 
improve the current one, the option with the least detrimental impact is selected. To avoid the 
algorithm from quickly reversing this adjustment in subsequent iterations, a Tabu tenure of 3 
iterations is implemented. This tenure helps prevent the algorithm from becoming prematurely 
trapped in a local optimum and promotes diversification. Practically, this approach involves 
exploring alternative solutions rather than reverting unfavourable adjustments. This includes 
making adjustments in the opposite direction in neighbouring holes to address newly introduced 
EED differences. Finally, the TS algorithm terminates upon detecting a repetitive loop among the 
‘current’ solutions, signalling that no further improvements are being made. At this point, the best 
identified solution is taken as the result of the optimisation process. If no loop is detected, the 
algorithm is stopped after 100 iterations without an improvement to the best solution, providing 
a secondary stopping criterion.

4. Case study

This study validates the proposed algorithm using two distinct datasets, including Dataset Nevada 1 
and Dataset Nevada 2. The first dataset, referred to as Nevada 1, comprises 243 drillholes arranged 
in a nearly square blast pattern, as illustrated in Figure 1. The average distance between these 
drillholes results in a spacing of 4.8 m and a burden of 4.27 m. Each drillhole has a diameter of 
0.125 m and a depth of 11.5 m, with the upper 4.3 m filled with stemming. The explosive used is 
standard ANFO with a density of 0.9 g/cm3. This dataset includes only the planned drillhole 
coordinates, with deviations introduced randomly.

The second dataset, referred to as Nevada 2, contains information about 407 drillholes in total. 
Because not all of these were actually drilled, a portion of these planned holes were removed, with 
292 remaining. Figures 2 and 3 depict a top-down view of the planned blast pattern and the real 
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drillhole locations, respectively. After conversion from imperial to metric units, a designed spacing 
of 5.18 m and burden of 4.57 m are obtained. The hole depth is 13.72 m, with drillhole diameter of 
0.200 m and a stemming height of 4.27 m. Based on accessory data, an explosive density of 0.9 g/cm3 

can be derived, which is assumed to be ANFO.
The real drillhole locations were logged by the drill rigs with two decimals precision. Although 

this does not take into account any GPS-related inaccuracies, for the purpose of this research it 
serves as good data to test the application of the EED optimisation system on a blast pattern 
containing real deviations. Figure 4 shows a histogram of the calculated deviations, which are also 
plotted on a precision map in Figure 5. The deviation of six holes exceeded three times the hole 
diameter. For a more detailed presentation of the lesser deviations, these have been excluded from 
the figures. A total of 26 holes are deviated by more than one hole diameter (0.200 m) and are thus 
considered inaccurately drilled [46]. Figure 6 indicates the 5 by 5 test pattern planned drillhole 
locations in this study. This test pattern is utilised as a small blast pattern to identify appropriate 
values for the critical control parameters.

5. Results

5.1. Control variables

To avoid lengthy computation times in early testing to determine appropriate values for the control 
parameters, a stepwise approach was taken in which scale and resemblance to real blasthole data is 
progressively increased (Figure 7). This procedure improves the understanding of the involved 
variables before applying the method at full scale. Ultimately, it aims to ensure more consistent 
performance with the selected optimisation settings and control parameters, while also validating 
findings from earlier stages.

Figure 1. The locations of the planned drillholes for dataset Nevada 1, with collars at an average z-coordinate of 960 m (x and 
y axes are in meters).
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5.2. Search radius

Selecting a proper search radius around blastholes is crucially dependent on how the explosive 
energy attenuates with distance. This attenuation is governed by the EED formula established by 
Kleine et al. [45] and the specific characteristics of the blast. The EED around a single blasthole is 
evaluated to find a suitable search radius. The test blastholes reviewed have characteristics that are 
consistent with those of the blastholes in the Nevada 1 and Nevada 2 datasets. In this case, the EED 
is computed for a 20 m ×20 m square block model centred around a blasthole, using a search radius 
(r) of 10 m. Figure 8 indicates a vertical cross-section of the EED surrounding a blasthole from 
Dataset Nevada 1, with the following specifications: diameter = 0.125 m, total hole depth = 11.5 m, 
stemming = 1.5 m, and ANFO explosive with a density of 0.9 g/cm3.

The EED values do not follow a normal distribution, making it impractical to determine the 
extent of statistically significant values using the three-sigma rule based on the mean and standard 
deviation. Alternatively, the EED values at different radii around the blasthole are compared to the 
peak values observed in close proximity. This comparison helps identify the radius at which 
explosive energy sufficiently diminishes, allowing values outside this range to be disregarded. 
Moreover, since the minimum distance to the explosive column is tremendously influenced by 
the block size, the magnitude of the peak EED values is also affected. Furthermore, the EED values 
at different radii are compared to those measured at a distance of 0.5 m, at the depths where the 
EED is maximum. For both datasets, the optimal search radius was found to be 5.0 m, as the EED at 
this distance drops to 0.71% (Nevada 1) and 0.65% (Nevada 2) of the value at 0.5 m.

Figure 2. The locations of the planned drillholes for dataset Nevada 2, with collars at an average z-coordinate of 1633.73 m (x and 
y axes are in meters).
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Figure 3. The locations of the real drillholes for dataset Nevada 2, with collars at an average z-coordinate of 1633.73 m (x and 
y axes are in meters).

Figure 4. Frequency distribution of drillhole deviations (X axis is based on meters).
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5.3. The 5 by 5 test pattern

To investigate the optimisation approach in a controlled and replicable environment, a 5 by 5 
test pattern was established, consisting of 25 drillholes, each with a diameter of 0.125 m, 
arranged in a square grid. This small-scale pattern was designed to serve as a representative 
subset of a full blast pattern, allowing for focused analysis and parameter calibration. The 
planned collar coordinates were spaced evenly (3 m) (Figure 6), and deviations were applied 
based on actual field data to simulate realistic inaccuracies. Among the 25 drillholes, 12 holes 
displayed deviations that exceeded one hole diameter (0.2 m), providing sufficient variability to 
test the optimisation method’s sensitivity and effectiveness. In this scenario, the holes expected 

Figure 5. Drilling precision map for ½, 1, 2, and 3 times hole diameter.

Figure 6. The 5 by 5 test pattern planned drillhole locations.
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to undergo explosive columns adjustments are easily identifiable, enabling a straightforward 
evaluation of optimisation performance. Specifically, bringing holes 1, 5, 7, 11, 13, 17, 19, and 
23 closer together requires reducing the charges in holes 6 and 18 to compensate for the 
increased explosive energy. On the contrary, charge reductions are expected in holes 8 and 16 
due to the enhanced spacing between holes 3, 7, 9, 11, 15, 17, and 21, which results in decreased 
explosive energy in the intervening areas.

The test pattern was especially useful in identifying appropriate values for critical optimisation 
parameters such as the EED cap percentile and block size. By isolating the optimisation process 
within this smaller array, we could monitor changes in the objective function (i.e. the total block-to- 
block EED difference) in response to different charge adjustment strategies. This controlled setup 
enabled a deeper understanding of the impact of individual deviations and the algorithm’s ability to 
compensate for them.

Figure 7. Detailed flowchart outlining the experimental design and objectives for each stage.

Figure 8. Vertical cross-section of the EED surrounding a blasthole in dataset Nevada 1.
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Furthermore, using a smaller pattern allowed us to perform multiple simulation iterations 
efficiently, adjusting input conditions and validating the stability of the optimisation outcomes. It 
also provided a framework to test scalability before applying the methodology to full-scale datasets, 
such as those from Nevada 1 and 2. The insights from this phase were foundational in tuning the 
optimisation approach for broader application.

5.4. Block size

Block size is a critical parameter in the optimisation process, as it determines the spatial resolution 
at which Explosive Energy Distribution (EED) values are compared between the planned and actual 
drillhole configurations. A finer block size enables a more detailed representation of EED, capturing 
localised deviations more precisely. However, this comes at the cost of significantly increased 
computational demand. On the other hand, coarser block sizes reduce computational load by 
simplifying the problem, but may fail to detect subtle yet important variations in energy placement.

Directly comparing EED statistics across different block sizes can be misleading, as finer blocks 
naturally tend to yield higher mean EED values due to increased spatial granularity. As a more 
reliable alternative, the absolute differences between the planned EED and a manually optimised 
EED (which accounts for expected charge adjustments) are compared against the differences 
between the planned and real EED. This approach better reflects the effectiveness of optimisation 
in improving energy distribution.

While the block model does not need to preserve identical EED statistics across various block 
sizes, it should support consistent and meaningful charge adjustments. To evaluate this, various 
block sizes were tested on the 5 by 5 test pattern to assess their impact on optimisation outcomes. 
Results indicated that smaller block sizes generally resulted in lower mean block-to-block EED 
differences, demonstrating improved fidelity in charge allocation. However, excessively small 
blocks led to considerable increases in computation time and risked overfitting to localised noise.

Figure 9 illustrates the impact of block size on the improvement in mean EED difference, based 
on a charge segment length of 0.3 m. To ensure that a block size accurately reflects the EED, 
improvements should closely align with those observed for the smallest block sizes across each EED 
cap percentile. Larger discrepancies can impact the effectiveness of charge adjustments and may 
lead to different optimisation outcomes. The block sizes of 1.0 m and 0.5 m appear to lack precision, 
as evidenced by substantial discrepancies when compared to graphs of smaller block sizes. However, 
the improvements computed for the block sizes of 0.2, 0.1, and 0.05 m are quite similar, differing by 
only 0.04–0.17% between subsequent block sizes. Therefore, it is anticipated that the optimisation 
model will generate similar charge adjustments across these smaller block sizes. Also, Figure 9 
illustrates that an EED cap percentile of 100%, meaning all data is used, does not yield a positive 
improvement in the objective value for this idealised test pattern. Therefore, these expected 
adjustments would never be recommended through optimisation unless a lower EED cap percentile 
is used. High EED values that produce disproportionately large differences between optimised and 
planned configurations must be limited using appropriate cap percentiles to ensure practical and 
effective charge adjustments.

5.5. Charge segment length

By investigating optimisation solutions for various EED cap percentiles and charge segment 
lengths, it becomes clear that charge reductions and charge increases do not lead to the 
same improvements to the objective value, even in the idealised 5 by 5 test patterns. This 
can lead to a bias in adjustments, as the total amount of explosives is not restricted to the 
quantity used in the planned configuration. Although the implementation of constraints 9 
and 10 could easily mitigate this problem here, it is crucial to reduce the effect of this bias 
as much as possible to prevent complications in full-scale optimisation. One effective 
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approach is to use a larger charge segment length, which reduces the sensitivity of 
optimisation to minor EED differences. When larger EED variations are needed to effect 
charge adjustments, the discrepancy between increases and reductions becomes less signifi
cant. With a charge segment length of 0.3 m, most optimisation solutions result in an equal 
number of charge decrements and increments. Naturally, a charge segment length of 
0.3 m also has improved practicality over a length of 0.1 or 0.2 m but maintains sufficient 
sensitivity to differences in EED.

5.6. EED cap percentile

In the 5 by 5 test pattern, the optimisation solutions revealed that the relationship between charge 
reductions and increases varies with the selected EED cap percentile. Although a charge segment 
length of 0.3 m effectively mitigates biases in this idealised scenario, its behaviour differs in non- 
idealised blast patterns. Optimisation of Dataset Nevada 1, with deviations randomly drawn from 
a uniform distribution ranging from − 0.5–0.5 m (0.37 m mean), reveals that charge reductions are 
favoured at high EED cap percentiles and charge increases at low values of this control parameter, as 
given in Table 1. After additional investigation, the EED cap percentile of 50% appears most 
effective at approximating a balance between charge reductions and increases.

5.7. Optimisation

Although both the GA and TS can reach the same optimal solutions, the computation times for GA 
are significantly longer. TS was expected to be favoured for optimisation of the 5 by 5 test cases 
because these generally involve a relatively small number of charge adjustments, benefiting the local 
search approach. However, as Figure 10 shows, GA does not outperform TS at any stage of 
optimisation for dataset Nevada 1 despite the fact that charge adjustments are recommended in 
80 out of the 243 blastholes in the optimal solution, in which the total amount of explosives used is 
limited using constraints 9 and 10.

Despite the substantial number of charge adjustments, the GA does not show any advantage over 
the TS, even in the initial generations. With a population size of 20 and a mutation probability of 

Figure 9. Comparison of improvements for different block sizes, for expected manual adjustments by 0.3 m.
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0.005, it required almost 12.4 h to achieve the first marginal improvement, approaching the total 
computation time required by TS. To address the time-consuming nature of identifying the final 
beneficial charge adjustments, the termination criterion was adjusted to end after ten consecutive 
iterations without improvement. Even with this change, the computation time for this setup was 
12.6 days, and the resulting solution was slightly inferior to that obtained with TS. The GA’s 
solutions appear too random to match the effectiveness of TS’s more heuristic approach. 
Therefore, using GA to generate a better initial solution for TS would only increase computation 
times, making TS alone a more efficient choice than any hybrid method.

5.8. Charge adjustment solutions

While 80 recommended charge adjustments for the Nevada 1 dataset is not necessarily excessive, 
a more detailed look into the functioning of the optimisation program can be provided by reducing 
the magnitude of the drillhole deviations to an average value of 0.19 m. This value was randomly 
selected from a uniform distribution ranging from − 0.25–0.25 m. This reduces the total number of 
charge adjustments to 20 (10 increases and 10 decreases). Though there was one exception in the 
previous case, no blasthole is adjusted more than once in the optimal solution, as shown in 
Figure 11

Table 1. Number of adjustments by charge segment length of 0.3 m for dataset Nevada 1.

EED Cap Percentile (%) Charge Reductions Charge Increases Balance

10 65 47 −18
20 67 144 +77
30 51 63 +12
40 38 41 +3
50 40 41 +1
60 43 39 −4
70 49 31 −18
80 54 26 −28
90 58 8 −50
100 557 1 −556

Figure 10. TS and GA optimisation path for Nevada 1 dataset (red dots indicate the best solution found).
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In this case, most adjustments are made independently, except for a cluster in the top-right 
corner of the blast. This suggests minimal interaction between individual adjustments, indicating 
that the influence of the tabu mechanism is restricted. Another observation reveals that most charge 
adjustments, especially reductions, occur in drillholes at the outer boundaries of the blast pattern. 
Additionally, the investigation shows that 2 out of the 10 charge reductions are located just one row 
inward, while the remaining 8 are found in the outermost holes. Blastholes at the boundaries have 
one ‘open’ side without neighbouring blastholes to balance small increases or decreases in EED, 
potentially leading to larger discrepancies and thus a higher need for charge adjustments compared 
to areas with more surrounding blastholes.

The solution obtained for dataset Nevada 2 features a total of 7 charge adjustments (Figure 12). 
Once again, many of these are found at the boundaries of the blast. Nevertheless, irregular drilling at 
the southern and western ends of the blast has resulted in numerous significantly deviated drillholes 
in these boundary areas, which often require adjustments. In this case, the magnitude of deviations 
appears to be the primary driver for charge adjustments, rather than merely the drillhole’s position 
at the edge of the blast pattern.

Analysis of drillholes with deviations of one diameter or more reveals that charge increases are 
applied to holes 6264, 6330, and 6184, while charge decreases are implemented in holes 6275, 6341, 
and 6342. It is clear that charge adjustments are not solely based on the degree of deviation; of the 26 
drillholes with deviations exceeding the threshold of one diameter (0.200 m), adjustments were 
made in only 6 cases. Moreover, large deviations alone do not guarantee that charge adjustments 
will be made, as adjustments are also influenced by the positions of nearby drillholes. Conversely, 
large deviations are not always necessary for charge adjustments. For example, the study indicates 
that 8 out of the 14 adjustments occur in drillholes with deviations of less than one drillhole 
diameter. A notable instance is the cluster of adjustments in the core of the blast pattern, where 
a single highly deviated drillhole prompts both charge increases and decreases in surrounding holes 
that are otherwise positioned relatively accurately. Figure 13 indicates how the charge adjustments 
recommended by optimisation alter the EED values throughout the block model. Comparing the 

Figure 11. Charge adjustment solution for Nevada 1 dataset with smaller deviations.
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preliminary and optimised states of the EED differences highlights both the negative and positive 
impacts of the optimisation process. The magnitude of the newly introduced differences (red) is 
generally larger than the reductions (blue), although they tend to cover smaller areas. In contrast, 
the reductions in EED differences often extend over larger areas. Despite the localised nature of the 
new differences, the extensive reductions in three-dimensional space usually result in overall 
improvements.

The achieved improvements in the objective value are listed in Table 2 for both the Nevada 1 and 
Nevada 2 datasets. It is crucial to note that the objective function is computed based on differences 
across the whole block model. Since charges in the majority of drillholes remain unchanged, 
a significant portion of the EED differences remains unresolved. As a result, focusing solely on 
the blocks impacted by the charge adjustments recommended by the optimisation model provides 
a more informative representation for this scenario.

6. Discussion

While drillhole deviation is recognised as a common issue in the mining industry, its 
potential impact on blast performance is frequently accepted as an unavoidable margin of 
error. Despite advances in positioning and automation technologies, completely eliminating 
this problem remains challenging. Adjusting other parameters within a blast pattern that 
includes deviated drillholes can help align blast performance more closely with the expecta
tions set by the original design. Given the ripple impact of fragmentation on subsequent 

Figure 12. Charge adjustment solution for Nevada 2 dataset.
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mining procedures, such adjustments can yield significant improvements in both efficiency 
and cost-effectiveness.

The decision to focus on minimising block-to-block EED value differences between the real and 
planned drillhole configurations has proven more challenges than initially anticipated. This choice 
stems from the limited understanding of EED behaviour in a blast and its subsequent impact on 
rock mass. While the EED formulation developed by Kleine et al. [45] offers a valuable estimate of 
the energy delivered at each point, the relationship between this energy and blast performance 
remains uncertain. Without a generalised method to correlate EED values with fragmentation 
predictions, a straightforward value-based approach proves inadequate. Consequently, the EED 
values from the real drillhole pattern can only be effectively assessed by comparing them with the 
planned EED values.

An unintended outcome of the block-to-block method is that drillhole deviations introduce 
differences in the blocks near the real and planned drillhole locations, even though the overall 
frequency distribution of EED values may remain unchanged. While the implementation of an 
EED cap addresses the largest differences, it can nevertheless impact the smaller values. For 
instance, if all drillholes were uniformly displaced by the same distance in the same direction, 
the total energy distribution across the blast should theoretically remain consistent, with the 
exception of changes at the designed boundaries. However, the block-by-block method will not 
permit the interchange of block values, leading to numerous discrepancies that must be 
minimised. While maintaining constant block values at the blast pattern boundaries is essential 
to achieve the intended rock fragmentation, the interchange of values further from the blast 
centre is less likely to affect overall blast performance significantly. Consequently, the current 
setup, which views these interchanges as detrimental to the objective, may underestimate the 
true improvements to the EED.

Figure 13. Differences between preliminary and optimized states of EED differences, 3.0 m below bench surface.

Table 2. Improvements achieved by optimisation.

Dataset Improvement in the affected blocks only (%) Improvement in the objective value (%)

Nevada 1 (large deviations) 2.31 1.54
Nevada 1 (small deviations) 2.14 0.53
Nevada 2 3.94 0.96
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When evaluating optimality, the significance of the chosen EED cap percentile cannot be 
overlooked. As the results indicate, varying this parameter – an inherent aspect of the block-to- 
block comparison approach – yields significantly different charge adjustment solutions. Although 
the EED cap percentile was selected to align the optimised explosives quantity with the planned 
quantity and reduce bias, assessing the true optimality of these solutions remains challenging. 
However, the consistent performance observed in the Dataset Nevada 1 and Dataset Nevada 2, 
regardless of the magnitude of drillhole deviations, supports the effectiveness of the chosen 
percentile. In all cases examined, the optimisation process behaved as predicted, and the 50% 
EED cap resulted in manageable changes in explosives quantities, demonstrating its appropriate
ness in avoiding excessive alterations.

In the majority of TS optimisation trials performed on the 5 by 5 pattern, it was observed that the 
choice of tabu tenure had a negligible effect on the final outcome. While there were a few 
exceptions, the final solutions were generally consistent across different tabu tenure settings. The 
primary difference observed was that a larger tabu tenure allowed the search to explore further from 
local optima, but it also increased the time required to meet the stopping criterion and determine 
a solution as optimal. To mitigate this issue, adjusting the stopping criterion could help reduce the 
optimisation duration. Nonetheless, the overall computation time, which can extend to several 
hours, remains a major drawback.

In addition to improving EED differences, charge adjustments can introduce new variations in 
nearby blocks. Although these adjustments clearly benefit the surrounding area, they can also 
significantly alter the energy received by blocks close to the explosive column. An alternative 
approach to compensating for changes in explosive energy distribution might involve varying the 
explosive density rather than the explosive column height. If the mine site offers different types of 
explosives, this could be a viable option. Such an approach would influence the entire length of the 
blasthole, not just the area around charge height adjustments. Additionally, adjusting explosive 
density could minimise the impact on the shallowest parts of the blast, potentially reducing the risk 
of flyrock compared to altering the explosive column and stemming height.

The charge adjustment solutions derived from Dataset Nevada 1 and Dataset Nevada 2 highlight 
that optimising explosive charges in a specific pattern cannot rely solely on the magnitude of 
drillhole deviations. Although significant charge adjustments are often observed in highly deviated 
holes, this is not always necessary; deviations in a single drillhole do not always necessitate a large 
adjustment to its explosive column height. The findings indicate that interactions among multiple 
slightly deviated neighbouring drillholes can produce substantial EED differences. Therefore, while 
it might be beneficial to initially focus on potential adjustments around highly deviated holes, as 
opposed to the current TS algorithm’s approach of evaluating all possible adjustments throughout 
the pattern, it is crucial not to overlook the influence of less deviated drillholes.

While the optimisation programme proves effective within the context of Nevada’s blasting 
practices, its transferability to other locations needs careful consideration of geological, environ
mental, and regulatory factors. Moreover, differences in local regulations, rock characteristics, and 
community sensitivities may mandate significant adjustments to the programme’s control para
meters to ensure safe and efficient blasting practices in diverse geographic settings.

7. Conclusions

The EED optimisation system developed in this study demonstrated that adjusting the length of 
explosive charges could effectively mitigate the impact of drillhole deviations. Applying this 
optimisation to real-world case studies with the developed model achieved improvements ranging 
from 0.53% to 1.54%, or 2.14% to 3.94% when excluding areas not affected by the suggested charge 
adjustments. The approach consistently created positive outcomes across two different blast 
patterns, regardless of design characteristics, and was effective for both random and real drillhole 
deviations. The study has also successfully met several additional objectives. By maintaining 
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a constant quantity of used explosives across the solutions, the model theoretically enables more 
efficient utilisation of explosive materials. Adjusting the explosive column height seems rationally 
feasible in the standard procedures. The modifications to the initial blasting plan are minimal, and 
the proposed minimum adjustment length of 0.3 metres should be enough for operators to 
implement effectively. The computation time required for optimisation model was a notable 
concern in this study. While the TS algorithm delivered optimal solutions significantly faster 
than the GA and was generally found to be more suitable, its runtime of several hours remains 
inconvenient. To advance this research, it is suggested to explore other techniques beyond the 
block-to-block comparison of EED values, as any changes in block values are automatically 
considered undesirable differences. Alternative optimisation objective functions may better capture 
the true benefits. Additionally, it is crucial to evaluate the safety implications of enhancing explosive 
column heights at the expense of stemming, particularly regarding the flyrock risk. For future 
research, we recommend expanding the methodology to incorporate additional field data from 
diverse geological and operational contexts. This includes collecting and utilising angle deviation 
measurements where available and considering more influential factors such as rock mass hetero
geneity, dynamic blast loading response, and explosive product characteristics. Applying the model 
across a broader set of blasts will also help assess its scalability and generalisability beyond the initial 
case studies.
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