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Figure 1: Reconstruction of a variety of 3D models with different properties or artifacts, namely synthetic holes (1), sharp and subtle features
(2,3), noise (4), outliers (5), genus> 0 (6) and challenging real-world scans (7). All results (except the last) used GLOBAL BALLMERGE. It
can be used parameter-free (1,2,3,6) or manually adjusted to handle noise and outliers (4 and 5) via a single easily tunable parameter. The
last example (7) uses LOCAL BALLMERGE, a variant carefully designed for challenging real-world scans (rendered with textures).

Abstract

We introduce a Delaunay-based algorithm for reconstructing the underlying surface of a given set of unstructured points in
3D. The implementation is very simple, and it is designed to work in a parameter-free manner. The solution builds upon the
fact that in the continuous case, a closed surface separates the set of maximal empty balls (medial balls) into an interior and
exterior. Based on discrete input samples, our reconstructed surface consists of the interface between Voronoi balls, which
approximate the interior and exterior medial balls. An initial set of Voronoi balls is iteratively processed, merging Voronoi-ball
pairs if they fulfil an overlapping error criterion. Our complete open-source reconstruction pipeline performs up to two quick
linear-time passes on the Delaunay complex to output the surface, making it an order of magnitude faster than the state of the
art while being competitive in memory usage and often superior in quality. We propose two variants (local and global), which
are carefully designed to target two different reconstruction scenarios for watertight surfaces from accurate or noisy samples,
as well as real-world scanned data sets, exhibiting noise, outliers, and large areas of missing data. The results of the global
variant are, by definition, watertight, suitable for numerical analysis and various applications (e.g., 3D printing). Compared
to classical Delaunay-based reconstruction techniques, our method is highly stable and robust to noise and outliers, evidenced
via various experiments, including on real-world data with challenges such as scan shadows, outliers, and noise, even without
additional preprocessing.

1. Introduction tiple shapes can explain the same point sets - especially in the pres-

) ) ) ) ence of outliers, noise, missing parts, or density variations.
Reconstructing high-quality 3D meshes from unstructured point

sets is a classic problem in Computer Graphics and Computational Our contribution is to introduce an intuitive geometric criterion
Geometry with applications in many domains, such as CAD, med- to reconstruct a piece-wise linear approximation of a sampled sur-
ical imaging, or visualization. Yet, the problem is ill-posed as mul- face. Although our method does not provide topological guarantees
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on the reconstruction other than watertightness, it achieves com-
petitive quality to state-of-the-art methods in practice, as shown
via various challenging examples (Fig. 1). Further, our solution is
easy to implement, uses less memory, and is an order of magnitude
faster than competing work, which makes it very practical. We pro-
pose two variants to address closed and open surfaces, respectively,
since they pose differing challenges: Global Ballmerge which can
be made automatic, guarantees a watertight surface and robustness
regarding sampling density, outliers, and a reasonable noise level,
and is thus ideally suited to reconstruct entire scans (closed surfaces
that can contain holes). Moreover, it’s extremely easy to implement
(around 100 lines of code using the CGAL library). The second
variant, called Local Ballmerge, reconstructs non-watertight sur-
faces well with the default parameter value, which is easily tunable
to handle imperfections and handles even scans from various sen-
sor types with strong noise and missing parts, so it targets open
surfaces from scans of, e.g., outdoor scenes.

2. Related Work

Our algorithm supports curve and surface reconstruction. Here, we
briefly review both, focusing on 3D reconstruction.

2D reconstruction targets a piece-wise linear approximation of a
curve from a set of sample points. Although generalizing to 3D,
the classic i-SHAPES [EKS83] assumes that the input is uniformly
sampled according to maximum curvature, which can lead to dense
sampling requirements. [3-skeletons [KR85] employ a Delaunay
Triangulation (DT) but exclude an edge [pg] if the diameter of two
adjacent Voronoi balls exceeds B|| pg||. Our criterion is related but
uses intersecting ratios, which are less restrictive in terms of radii
differences and extend to 3D.

CRUST [ABEO98] uses a new sampling model (e-sampling) link-
ing the sample quality to the local feature size [Rup93], through
a parameter €. The upper € bound of initially 0.252 was later im-
proved to 1/3 [DK99]. Further, it was shown that the curve’s piece-
wise approximation is a subset of the Delaunay triangulation. This
motivated many Delaunay filtering algorithms, often targeting spe-
cific cases, e.g., open curves [DMROO] and sharp corners [DWO1].

Handling sparse point sets [OMWI16] was enabled via p-
sampling. Similarly, outliers were addressed [PPT*19]. Addition-
ally, non-feature specific reconstruction [PM16], as well as self-
intersections and noise [PMM18] were covered, while optimal
transport [dGCAD11] was shown to handle noise and outliers. Yet,
most of these algorithms, including other classical ones [Att98],
cannot be easily extended to 3D.

3D reconstruction via o-shapes [EM92] relies on the Delaunay
complex (often called triangulation) of a uniformly-sampled point
set P to contain a subset (subcomplex) well approximating the un-
derlying 2-manifold of P. A faster computation is enabled via Ball-
pivoting [BMR*99], where the surface is reconstructed by growing
a seed by adding additional triangles. Local tangent-plane projec-
tion [Boi84], while handling local topological inconsistencies be-
tween tangent planes to correctly approximate the DT, is a pop-
ular acceleration that inspired others [GKS00; DFKMO08; FR02;
AGJ02; K6s01]. Attene et al. [ASO0] extend the reconstruction to

objects with genus> 0. The solution, like Chaine et al. [Cha03],
uses the Gabriel graph but neither orders the former by a criterion,
nor requires the result to be a manifold triangulation. These ap-
proaches suffer from artifacts in under-sampled regions.

CRUST [ACDLO00] was the first method relating surface re-
construction to an e-sampling. It filters the DT but produces
slivers and fails in under-sampled regions. There are exten-
sions to handle noisy samples and under-sampling at the cost
of many unnecessary triangles, POWERCRUST [ACKOI1], or
by removing some points [DGO04], simplifications for homeo-
morphic reconstruction with € < 0.06 [ACDLO00], solutions for
surfaces with boundaries, COCONE [DGO1], or including hole-
filling strategies, TIGHTCOCONE [DGO3]. Finally, involving
graph cut [KSO04] improves reconstruction quality but requires
post-processing to handle commonplace density-varying sam-
ples. Other methods use, e.g., the flow complex [Ede03] and
WRAP [RS07], graph cuts [PBO1; HK06; LPK09], witness com-
plexes [GO08],SCALESPACE [DMSLI11], compute the restricted
Voronoi diagram [BL17], are based on a voxel structure [LLZ21],
or compute an initial surface and sculpt from it [OMWI13;
WWX*22] but are not used much in practice.

Recent surveys cover fitting/prior-specific methods [BTS*14]
and deep-learning approaches [YLL*20], which are outside the
scope of this paper. POINTS2SURF [EGO*20] trains on local
patches for detail and a down-sampled point cloud for global ori-
entation simultaneously. Its quality exceeds SCREENED POISSON
reconstruction [KBHO06], which is widely used and computes an
implicit function from a point cloud with oriented normals. The
local-learning approach POINTTRINET [SO20] achieves higher
geometrical but lower topological precision compared to Ball-
pivoting [BMR*99]. POINT2MESH [HMGC20] uses Poisson re-
construction and iterative subdivisions to optimize the distance to
the point cloud. It completes missing parts and handles scan ar-
tifacts well, but is slow and maintains the initial genus. DMNET
[ZYT23] applies a graph neural network with local graph itera-
tions for reconstruction. Our method is much simpler while result-
ing in competitive results and requiring no point-set preprocessing.
Lastly, while our approach relates to Delaunay triangulation, we
cannot provide topological guarantees on the reconstruction, but
show that it is fast and performs well on many challenging cases.

3. Background and Definitions

Our method handles 2D-curve and 3D-surface reconstruction, us-
ing a unified observation on medial balls. To ease understanding,
we focus on the 3D case but illustrate mostly 2D configurations.

Continuous surface Let C be a surface embedded in 3D. A medial
ball of C is a ball whose interior contains no point of C yet is not in-
cluded in any other such empty ball. The union of these ball centres
is called the medial axis of C. For C being a closed surface, its me-
dial axis is defined by balls inside C (interior medial balls) and balls
outside of C (exterior medial balls). Interior and exterior balls only
intersect at a point on C, and, indeed, C is the locus of intersections
between interior and exterior medial balls. We will build upon this
well-known characteristic observation to propose an intuitive yet
robust reconstruction method in the discrete setting.

© 2024 Eurographics - The European Association
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Figure 2: Top: The interior (red) and exterior (green) medial balls of a point set with decreasing point density from Lt.r. Bottom: Corre-

sponding 8-merged components on Delaunay triangulation.

Sampled surface When the surface C is represented by discrete
sample points P, the maximal balls empty of sample points P are
referred to as Voronoi balls. These correspond to circumcircles of
Delaunay triangles in 2D or circumspheres of Delaunay tetrahe-
dra in 3D, see [Del*34] for instance. P approximates C, and the
Voronoi balls (interior/exterior with respect to C) intersect along
the boundary (Fig. 2) with a ratio inversely related to the sampling
density. Amenta et al. show in Lemma 15 and 16 [ACKO1] that in-
side and outside balls cannot intersect each other deeply, giving an
explicit angle condition but it is valid only for a weak e-sampling
and based on the radius of the smaller ball. Therefore, based on
the intersection between both the adjacent Voronoi balls, we design
a criterion to decide for all triangles in 3D (edges in 2D) whether
they are likely to belong to the approximated surface (curve), inde-
pendent of any sampling condition.

4. Our Method

In the following, we will first provide the necessary definitions be-
fore introducing our algorithm. Our solution will be covered in
its global variant (for closed surfaces) before introducing the local
variant (for open surfaces).

4.1. Intersection ratio definition (2D and 3D)

We define the intersection ratio of two adjacent Voronoi balls By
and B; of radius ry and r| respectively, and the circumcenters’
distance d as which represents the maximum ratio one ball inter-
sects the other on the line segment between the two circumcenters

(Fig. 3).

It is easy to see that the ratio ir only depends on the overlap ratio
with the radius of the smaller Voronoi ball. We show that 0 < ir <2
(Fig. 4). Without loss of generality, let ry < 7, ri =ry/ro and d =
d/ry. Since ri > 1, we have:

As the interior of By is empty, it cannot contain By entirely

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

(which contains sample points on its boundary). Thus d > r; — ry,
which transforms into d’ > | — 1. Inserting into the definition of ir
yields ir < 2. Further, as two adjacent Voronoi balls have to over-
lap, d < rq + rg. This transforms into d < ri + 1, and inserted into
ir’s definition yields ir > 0, so ir € [0..2].

(a) Intersection ratio ir:fraction of r (b) Growing ball By decreases ir

Figure 3: The intersection ratio definition and properties illus-
trated in 2D. Left: Voronoi balls By, B share two samples as ver-
tices of an edge. The intersection ratio ir is the sum of the radii
ro + r| minus the distance d between the ball centers, as ratio of
the smaller radius. Right: If the right ball grows, the distance d
increases, and the arc’s curvature between the shared samples de-
creases, thus reducing overlap and in turn, ir.

Figure 4: Overlap examples: ir = 1 (left), 0.5 (center), 0.1 (right).

BallMerge Intersection Criterion For a given d-dimensional
point set P (d = 2 or 3), our algorithm first computes the Delaunay
complex, denoted by DTp. The pairs of adjacent Voronoi balls rep-
resent the circumspheres of two d-dimensional Delaunay simplices
sharing a (d — 1)-dimensional simplex. The Voronoi balls represent
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Figure 5: Automatic parameter tuning procedure: Starting from a seed tetrahedron (8 = 2), we iteratively decrease the & threshold value
until there is a sudden decrease in the vertex count of G(3) (here, d=1.64) and returns the G(d) from the previous iteration (here, 8=1.65).

the circumcircles/circumspheres of two triangles/tetrahedra sharing
an edge/triangle in 2D/3D.

Our key idea is that if the intersection ratio between two adjacent
Voronoi balls is small, they likely correspond to a pair of interior
and exterior balls sharing a thin overlapping region along the un-
derlying curve/surface (Fig. 2 top-right). More formally, given a
threshold §, an edge/triangle in 2D/3D is said to belong to a set
BM () if its two corresponding adjacent Voronoi balls have an in-
tersection ratio less than 8. By definition, BM(3) is a subcomplex
of DTp. It is easy to see that BM(0) is empty, while BM(§), for
any 8 > 2, contains all the edges/triangles of DTp in 2D/3D. This
simple intuitive criterion forms the basis of our approach and is
powerful enough to handle common artifacts in practice, such as
outliers, noise, missing data, and downsampling (see Sec. 5.3).

4.2. Global algorithm

Just filtering Delaunay simplices based on the intersection-ratio
thresholding does not guarantee a watertight surface. Here, we in-
troduce a global merging procedure to ensure this property.

Merging procedure Given a threshold 8, we define an equivalence
relation between Delaunay triangles/tetrahedra in 2D/3D. Two De-
launay simplices are called 8-merged either if their corresponding
Voronoi balls are adjacent with an intersection ratio > & or if there
exists another Delaunay simplex, which is 8-merged with both of
them. The Delaunay complex is hereby decomposed into equiv-
alence classes of simplices (8-merged components - as shown in
Fig. 2). We define the 3-reconstructed shape as the largest 3-merged
component of Delaunay simplices. Its boundary yields the recon-
structed curve/surface.

Algorithmically, the same procedure as a classical connected
component computation can be used. We start visiting 8-merged
simplices from an arbitrary seed simplex (the procedure is order-
independent) and tag them with the current component label until
no more d-merged simplices remain. Then we restart with any yet
unvisited simplex until all have been visited, and output the sim-
plices with the most frequent label. The reconstructed surface is
then computed from the boundary of this output, as detailed below.
The overall merging procedure is also detailed in Algorithm 1.

Boundary extraction & definition Let G(J) be the set of edges
(triangles) in DTp on the boundary of the largest 8-merged compo-
nent of Delaunay triangles (tetrahedra) in 2D (3D). G(§) is by def-
inition, a closed curve (a watertight surface) since it bounds a solid
- even if it is not necessarily manifold. It is referred to as the recon-
structed curve (surface) of our GLOBAL BALLMERGE method.

Algorithm 1 Merge

1: procedure MERGE(P,d)

2 DTp <+ Delaunay_Triangulation(P)

3 Group < 0, Mergedgoup < ¢

4 for each d-Simplex X; € DTp in Rd,d =2,3do
5: if X;.visited = false then

6: Group <— Group+1

7 0« {Xi}

8 while 0 # {} do

9: Xj < Q.last
10: 0+ 0\X;
11: Mergedgroup < Mergedgroup UX;
12: Xj.visited < true
13: Xj.group < Group
14: for each X; € DTp\ X;,X; NX; # {} do
15: ifir(Xj,Xk) > § then
16: Q0+ O+X;
17: return the largest among Merged (.. Group}

RMSE errors for various & values
@ 172_Pierrot @ 672_BU 350_Buddha @ 670_FE_Final @ 424_lIsidore_horse
0.005

0.004

0.003 \'\\\

0.002

0.001 %

0.000
14 1.5 1.6 1.7

RMSE (w.r.to BB Diagonal)

S values

Figure 6: RMSE for varied 3 values on representative models.

Automatic parameter converging Identifying a good value for &
turns out to be quite straightforward (and corresponds in most of
our experiments to a range from 1.65 to 1.85). Starting from the
maximal value 2, we iteratively decrease & until G(J) has a sud-
den vertex-count decrease. This means that a large amount of in-
terior/exterior medial balls became 8-merged, meaning that part of
the reconstructed surface collapsed. Consequently, our algorithm
returns the G(8) from the previous iteration as the optimal result.
Fig. 5 shows intermediate results decrementing G(3) by 0.01 per it-
eration, while Fig. 6 shows the significant vertex-count change for
several examples.

© 2024 Eurographics - The European Association
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Figure 7: L.t.r.: Global view with colored Voronoi balls, closeup
(blue), reconstruction - global (pink)/local (orange).

4.3. Local algorithm

Although our GLOBAL BALLMERGE algorithm is well suited for
reconstructing watertight surfaces, many real-world scans represent
non-watertight models due to extensive missing data and open sur-
faces. For example, a set of points representing a shape with open
curves and junctions as in Fig. 7. Though our method could suc-
cessfully partition the Voronoi balls based on the intersection ratio,
we did not get the expected result using GLOBAL BALLMERGE.
Therefore, in this local variant of the BALLMERGE algorithm,
for any two adjacent d-simplices, which are not §-mergeable, the
shared (d — 1)-simplex is retained. As expected and also observed
in our experiments, outliers and open surfaces result in very large
simplices. Thus, we consider elements d-mergeable only if the
longest edge of the simplex is smaller than 1lp (n is a scaling fac-
tor, B is the length of the bounding box diagonal) to remove large
simplices (typical for open meshes).

In practice, the threshold n = 200 was observed to perform well
and can be adjusted if needed (Fig. 8 shows the effect of varying
M). A value of § = 1.85 has shown to work well in general and is
specified for results if adjusted. The overall procedure is given in
Algorithm 2.

Algorithm 2 LoCAL BALLMERGE

1: procedure LOCAL BALLMERGE(P,3,1)

2 DTp = Delaunay_Triangulation(P)

3 T+0

4 for each k-Simplex X; € DTp in Rd,d =2,3do
5: fOl’eaChXjEDTP\X[,XJ'QX[#{} do

6 if maxlength(F) < BBDiagLen /1 then
7 if ir(X;,X;) < 6 then

8 T+ T+(X;NX;)

9

5. Results and Discussion

Here, we show the performance of both our GLOBAL and Lo-
CAL BALLMERGE reconstruction algorithms on different real-
world datasets, and present various results with detailed analysis
and quantitative as well as qualitative evaluations of challenging
1nputs.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

5.1. Comparison 2D Reconstruction
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Figure 9: 2D case: Input, CRUST, NN-CRUST, CC-CRUST,
HNN-CRUST, CRAWL, PEEL, GLOBAL BALLMERGE merged
components, result applied to: Uniform/non-uniform sampling,
missing data, outliers, and noise.

We compare the global variant of our algorithm in 2D to var-
ious state-of-the-art reconstruction algorithms, using a recent
benchmark [OPP*21]. Fig. 9 shows results with different in-
put types (uniformly sampled, non-uniformly sampled, missing
points, points with outliers, and noisy points) and methods (ours,
CRUST [ABE98], NN-CRUST [DK99], HNN-CRUST [OMW16],
CRAWL [PM16], and PEEL [PMM18]). The competing methods
have all been designed to reconstruct curves from non-uniformly
spaced samples. As can be seen, all algorithms performed well
under dense (uniform and non-uniform) sampling. For incomplete
point sets (missing parts), HNN-CRUST fails to generate edges.
Adding outliers and noise causes all competing methods to fail.

Figure 10: 2D point set with outliers and Voronoi balls.

BALLMERGE handles outliers gracefully, as the surrounding
Voronoi balls will have larger intersection ratios than those at the
surface (Fig. 10). In the same way, our algorithm handles noise
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Figure 8: Effect of n (8 = 1.8); Lt.r.: 1 = 5,50, 100, 150,200,250,300 (mesh EPFL Geometric Computing Laboratory).
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Figure 11: Result of our algorithm on down-sampling. L.t.r.: 100%, 80%, 60%, 40%, 20%, 10%, 5%, 1%, 0.05% of points are retained using
ReMesh simplification. Models taken from [HWW?*22] (originally from ThingilOk [ZJ16]) and aim @ shape.

well. Even if the samples seem to shrink the shape, our solution
captures the underlying object best and outputs a watertight bound-

ary (Fig. 9).

Our algorithm produces generally equal or better results due to
our robust merge criterion.

5.2. Comparison 3D reconstruction

We also compare 3D reconstruction against state-of-the-art
techniques: Delaunay triangulation-based algorithms (POWER-
CRUST, TIGHTCOCONE, CONNECT3D, and SCALESPACE), im-
plicit reconstruction algorithm (SCREENEDPOISSON), and recent
learning-based algorithms (POINTTRINET and POINTS2SURF).
SCREENED POISSON needs normal information, which we de-
rived via the default solution in MeshLab. Most methods, as also
GLOBAL BALLMERGE, enforce a watertight surface, which can
be limiting for non-orientable surfaces. In contrast, SCALE SPACE
and LOCAL BALLMERGE differ in this respect. For completeness,
we will also compare them using a benchmark that includes diverse
open surfaces (a category that our method is not designed for).

For the quantitative evaluation, a real watertight VRIP (DRAGON
from aim@shape) and a real open surface scan (CAR from KSR42
dataset), as well as point sets with several artifacts (representa-
tive of real-world scans) were chosen: an object with hole and
missing points due to occlusion (HAND simulated via the Blensor
tool [GKUP11]), varying downsampling levels (downsampling
performed with the ReMesh tool [AF06], see Fig. 11), outliers

NA

= Power Crust
= Tight Cocone
== Connect3D

= Scale Space
~ Point2Surf
= PointTriNet
= Local BallMerge
= Global Balllerge

RMSE Error
(Visualized in 1/10gp 003 scale)
°
8
8

Input point cloud

Figure 12: RMSE (w.r.t. bounding box diagonal) for various algo-
rithms, artifacts and levels.

(DRAGON with 10%, 20% and 30% of outliers [RLG*20]), and
noise (Blensor on FERTILITY). We report the Hausdorff distance
to the ground truth (clean models). Our variants, for watertight and
open surfaces, exhibit superior or on-par performance compared
to other methods (Fig. 5.2). Further, our methods are not input-
specific, while some algorithms failed to generate an output (due to
input assumptions that did not hold).

While our method is robust to noise, especially for open scans
(Fig. 13), and identifies the shape well, the smoothing property of
SCREENED POISSON leads to a comparatively lower error with in-
creasing noise. Yet, the results, in this case, show an over smoothing

© 2024 Eurographics - The European Association
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Figure 13: Comparison on open-surface scan [CZMKI16]. L.t.r.. POWERCRUST, TIGHTCOCONE (long triangles pruned), CONNECT3D
(no generated result), SCREENEDPOISSON, SCALESPACE, POINT2SURF, POINTTRINET, Ours: GLOBAL BALLMERGE (long triangles

pruned), LOCAL BALLMERGE (8 = 1.95, 1 = 200).

(a) SCREENED POISSON RMSE (b) BALLMERGE RMSE

Figure 14: Hausdorff distance to reference at sampled points
(error: green to red). SCREENED POISSON handles smooth re-
gions well, but affects sharp features (max=0.007, mean=0.00015,
RMSE=0.000239), better handled by our method (max=0.01,
mean=0.000012, RMSE=0.000152).

%%

3D point cloud

S

PoweRrC RUSI

SCREENEDPOISSON CALESPACE

POINTTRINET POINT2SURF BALLMERGE

Figure 15: Details of DRAGON versus state of the art.

of sharp features (Fig. 14). Our algorithm has a much more constant
error distribution and is more robust to outliers than the other meth-
ods. It also handles incomplete scans, where SCREENED POISSON
performs poorly. Figs. 15 and 16 show more examples of our gener-
ally superior results. One may note extra erroneous (POWERCRUST
and CONNECT3D) or missing triangles (POINT2SURF and POINT-
TRINET) in the results of the competing methods.

Fig. 17 and Fig. 18 show runtime and memory-usage compar-

© 2024 Eurographics - The European Association
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)
]

3D point cloud PoweRCRUST TiIGHTCOCONE

CoNNEecT3D SCREENEDPOISSON SCALESPACE

.

POINT2SURF POINTTRINET BALLMERGE

Figure 16: Zoomed-in details of visual comparison with the state-
of-the-art for a synthetically scanned object (using Blensor) with
occlusions and holes. We used 8 = 1.87 for GLOBAL BALLMERGE
and default parameters for all other methods.

isons. Our parametric version takes comparatively little time (mag-
nitudes faster than most) and memory, even with increasing input
size, showing that it is lightweight (Table 1).

Finally, Fig. 19 shows our comparison with classical Delaunay-
based algorithms - POWERCRUST [ACKO1], BPA [BMR*99],
CocoNE [DGO03], TiGHTCOCONE [DGO03], ROBUSTCOCONE
[DG04], SINGULARCOCONE [DW13], and ADVANCINGFRONT
[CDO04]. Please note that we used the default parameter settings
for all the algorithms. As it can be seen, our results are better or on
par with other methods.

5.3. Reconstruction Robustness

We illustrate the robustness of our method via multiple experi-
ments. Besides discussing particular data types, we also report per-
formance on recent reconstruction benchmarks.
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Figure 17: Runtime on models with varying density.
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Figure 18: Memory usage on models with varying density.

Fig. 20 gathers automatically-generated results obtained by the
parameter-free GLOBAL BALLMERGE for several point clouds.
Our method successfully captured various challenging features,
guarantees watertightness by definition, and can address downsam-
pling artifacts very well (Fig. 11).

Noise and outliers are well handled by our BALLMERGE criterion
(which is shared by both variants), even if the methods themselves
are not specially tuned for this purpose.

Figure 21: Results of GLOBAL BALLMERGE with from l.t.r.: 10%,
20%, and 30% outliers - 8= 1.75,1.7,1.68 respectively (RMS error
w.r.t bbox diagonal: 0.000567, 0.000554, and 0.000793).

Point clouds with outliers are common due to scanning artifacts.
As explained, our method successfully withstands a high level of

outliers (Fig. 21, data from [RLG*20]). It produces a low recon-
struction error, increasing only slowly with more outliers.

Figure 22: Effect of synthetic noise on ReMesh [AF06]. L.t.r.:
GLOBAL BALLMERGE for a noise amplitude (ReMesh, related to
BBall radius) of 0, 100, and 1000 and LOCAL BALLMERGE (not
watertight, 8 = 1.8, 1 = 50) for 1000.

Noisy point clouds Noise is another common artifact of 3D scan-
ning, e.g., due to sensor limitations. Fig. 22 shows that our algo-
rithm robustly identifies the shapes from very noisy point clouds,
produced with the ReMesh tool (noise amplitudes of 0, 100, and
1000 of the bounding ball radius). The band around the boundary
contains relatively small Voronoi balls compared to the interior/ex-
terior balls. It therefore acts as an isolation barrier between both sets
(Fig. 23). However, for high noise levels, the reconstructed shape
shrinks slightly when using the GLOBAL method, while the LOCAL
variant is much more robust.

Figure 23: 2D case: noisy point set with Voronoi balls.

Open Surfaces To illustrate the practical usefulness of BallMerge
with respect to other related works, we evaluated our local algo-
rithm on a benchmark [HWW#*22] that contains many open sur-
faces. Results shown in Fig. 24 compared to corresponding bench-
marks provided in Table 5 of [HWW#22] confirm that our algo-
rithms generally perform as good as the state-of-the-art techniques
while being an order of magnitude faster. In short, the Normal Con-
sistency Score (NCS) measures normal correctness, Chamfer Dis-
tance (CD)/F-score is an average/worst surface error metric, and
Neural Feature Similarity (NFS) compares two shapes in the deep
feature. As visible in Fig. 24, our LOCAL BALLMERGE shows
mostly on-par or superior performance compared to related meth-
ods. Especially for clean models, our method outperforms the oth-
ers.

We also successfully generate watertight meshes from the real-
world point-cloud scans from aim@shape (Fig. 20). However,
scans representing an unoriented manifold (no triangulation can
close its boundaries), GLOBAL BALLMERGE will fail because it re-
lies on orienting the Delaunay triangles. Fig. 25 shows an example

© 2024 Eurographics - The European Association
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Figure 19: Comparison with classical Delaunay-based reconstruction techniques. L.t.r.: reconstruction results using POWERCRUST, BPA,
CoCONE, TIGHTCOCONE, ROBUSTCOCONE, SINGULARCOCONE, ADVANCINGFRONT, GLOBAL BALLMERGE.

where even long-triangle removal from the GLOBAL BALLMERGE
result is unsatisfactory because tetrahedra are merged through large
holes on both exterior and interior (thus not capturing the boundary
triangles). For outdoor scans, this is common, as the scanner cap-
tures the ground, which is not a watertight model. It is addressed
by LOCAL BALLMERGE, and Fig. 26 shows its results on various
3D scans. Similarly, Fig. 27 shows that our efficient reconstruction
can produce good meshes even from large datasets.

Figure 27: Top: Reconstructed MODULE (photogrammetry, 58M
points) plus zoom. Bottom: Reconstructed LIVINGROOM (RGB-D
camera, IM points) plus zoom (both § = 1.85,m = 200).

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

. Time (in seconds)
Input (# of points) DT Merge | Write #nm (#Faces)
Dragon (437k) 1.3169 | 0.5299 | 0.5922 79 (437k)
Hand (84k) 0.3196 | 0.9704 | 0.1034 3 (168k)
Outlier 10% (140k) 0.4497 | 0.146 | 0.8865 516 (257k)
Outlier 20% (140k) 0.3975 | 0.1599 | 0.9645 693 (236k)
Outlier 30% (140k) 0.4195 | 0.1675 | 0.9856 796 (213k)
Noise0.0005 (131k) 0.4094 | 0.1474 | 0.2234 0 (261k)
Noise0.001 (131k) 0.4321 | 0.1434 | 0.2587 0 (260k)
Noise0.005 (131k) 0.394 | 0.1688 | 0.1814 31 (164k)
Open Surface™ (1259k) 3.43 * 4.195 -
Livingroom™ (1152k) 2.95 * 5.37 -
Retz" (49784k) 164.10 #* 191.62 -
Module™ (58318k) 188.86 * 423.45 -

Table 1: Runtime. We used LOCAL BALLMERGE on scans
(marked with ), else GLOBAL BALLMERGE. Infersection ratios
are computed, while the file is written, where the writing time de-
pends on the triangle count. (#nm) counts the non-manifold ver-
tices. Large datasets (marked with +), were measured on a similar
machine with more memory.

5.4. Runtime Performance

Our algorithm is lightweight and requires only a little computation
in terms of input size. It performs two quick linear-time passes on
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Figure 20: Automatically-generated Watertight triangulations via GLOBAL BALLMERGE for point clouds (up to 3609k points) from
aim@shape and Stanford ([TL94],[ CL96]) with challenging features (e.g., corners, ridges, and close surface sheets).

the Delaunay complex (global), or just a single pass (local). Hence,
it is dominated by its O(NlogN) construction time expected for
surface samples, although we observed almost linear time perfor-
mance in practice. Table 1 shows the run time of our algorithm
(written in C++ using CGAL libraries [PY20; Yvi20; JPT20a;
JPT20b]) on an 8-core 3.70GHz PC with 32GB memory. We evalu-
ated the Delaunay computation, Ball Merging (global variant), and
writing of the largest component to a file. Merging takes signifi-
cantly less time than the other steps, even for large datasets, show-
ing almost linear behavior in relation to the number of points. No-
tably, our algorithm runs a magnitude faster than the next fastest
competitor (see Fig. 17).

5.5. Limitations

GLOBAL BALLMERGE handles sparse point clouds well, is ro-
bust to outliers and noise (outperforms most competitors for prac-
tical cases), and it targets watertight models, not unorientable sur-
faces. The latter is handled by LOCAL BALLMERGE. Yet, our ap-
proach is not well-suited for the reconstruction of artificial mod-
els with sharp ridges (such as FANDISK), very close surface sheets
(an extremely down-sampled BUNNY lacks ears), or extremely
high outliers, a limitation shared with most related reconstruction
methods (Fig. 28). An interesting future extension could be the
use of protecting balls along sharp features [CDR10]. Also, un-
like LOCAL BALLMERGE, which can reconstruct multiple compo-
nents (as shown in Fig.29), GLOBAL BALLMERGE can only re-

construct a single watertight surface. Finally, though our GLOBAL
BALLMERGE algorithm guarantees a watertight surface, a few
faces might not be manifold (Table 1), which can be easily cor-
rected by adopting an inflating step [OM13].

Y

Figure 28: Limit cases (Lt.r): Sharp edges on artificial object,
under-sampled regions (bunny ears) not reconstructed (down-
sampled to 1%), and extreme outlier levels (40%).

00 $ & 'O
QU@ | o v X%

Figure 29: Multi-component LOCAL BALLMERGE results (& =
1.85, m = 100), Models from [HWW?*22] (originally [ZJ16]).
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Figure 24: Evaluation of LOCAL BALLMERGE on benchmark [HWW?*22], where we expect to have minimum CD and maximum F-score,
NCS and NFS. As can be seen, our results on perfect scans outperform other methods and give comparable results in the remaining cases.
Please note that we used a fixed m| for each class for pruning unnecessary triangles, which sometimes resulted in redundant triangles, altering
the scores from user-adjusted parameters for n and 8.

Figure 25: LIVINGROOM detail, L.t.r: Output of GLOBAL BALLMERGE, it’s Cut view, Result of GLOBAL BALLMERGE after removing
long triangles, (d) Result of LOCAL BALLMERGE (8 = 1.85,1 = 200).

Figure 26: Meshes generated via LOCAL BALLMERGE (with default & = 1.85 and | = 200) of real-world point clouds (up to 1378k points)
from the KSR42_dataset [BL20] and the Statue Model Repository (OEPFL Geometric Computing Laboratory).
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6. Conclusion & Future Work

BALLMERGE is a simple and intuitive point-cloud reconstruction
algorithm with two variants. It handles real-world outdoor scans
well and outperforms existing reconstruction methods in many
cases, as shown in various examples. Our simple criterion makes
it a magnitude faster than competing methods, while using less
memory and delivering competitive reconstruction quality. Experi-
ments show that it works well on under-sampled point clouds and
those infected with noise and outliers, which is essential for real-
world scans. Moreover, GLOBAL BALLMERGE guarantees water-
tight results, which is crucial for many applications. As the DT con-
struction dominates runtime, parallel GPU or multi-CPU execution
could accelerate our method further. The fact that BALLMERGE
fills holes robustly and with fair triangulations also makes it attrac-
tive for mesh repairs, such as hole-filling or transforming triangle
soups into watertight models. Finally, given the high quality of our
reconstruction, linking the BALLMERGE criterion and sampling-
condition-based topological guarantees is interesting future work.
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