<]
TUDelft

Delft University of Technology

Accelerating Machine Learning Queries with Linear Algebra Query Processing

Sun, Wenbo; Katsifodimos, Asterios; Hai, Rihan

DOI
10.1145/3603719.3603726

Publication date
2023

Document Version
Final published version

Published in
Scientific and Statistical Database Management - 35th International Conference, SSDBM 2023 -
Proceedings

Citation (APA)

Sun, W., Katsifodimos, A., & Hai, R. (2023). Accelerating Machine Learning Queries with Linear Algebra
Query Processing. In R. Schuler, C. Kesselman, K. Chard, & A. Bugacov (Eds.), Scientific and Statistical
Database Management - 35th International Conference, SSDBM 2023 - Proceedings Article 13 (ACM
International Conference Proceeding Series). ACM. https://doi.org/10.1145/3603719.3603726

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/3603719.3603726
https://doi.org/10.1145/3603719.3603726

Accelerating Machine Learning Queries with Linear Algebra
Query Processing

Wenbo Sun
w.sun-2@tudelft.nl
Delft University of Technology
Delft, The Netherlands

ABSTRACT

The rapid growth of large-scale machine learning (ML) models
has led numerous commercial companies to utilize ML models for
generating predictive results to help business decision-making. As
two primary components in traditional predictive pipelines, data
processing, and model predictions often operate in separate execu-
tion environments, leading to redundant engineering and computa-
tions. Additionally, the diverging mathematical foundations of data
processing and machine learning hinder cross-optimizations by
combining these two components, thereby overlooking potential
opportunities to expedite predictive pipelines.

In this paper, we propose an operator fusing method based on
GPU-accelerated linear algebraic evaluation of relational queries.
Our method leverages linear algebra computation properties to
merge operators in machine learning predictions and data pro-
cessing, significantly accelerating predictive pipelines by up to
317x. We perform a complexity analysis to deliver quantitative in-
sights into the advantages of operator fusion, considering various
data and model dimensions. Furthermore, we extensively evaluate
matrix multiplication query processing utilizing the widely-used
Star Schema Benchmark. Through comprehensive evaluations, we
demonstrate the effectiveness and potential of our approach in
improving the efficiency of data processing and machine learning
workloads on modern hardware.

CCS CONCEPTS

« Information systems-Query optimization; « Information
systems-Join algorithms; « General and reference — Perfor-
mance;

KEYWORDS

database, query optimization, machine learning, operator fusion

ACM Reference Format:

Wenbo Sun, Asterios Katsifodimos, and Rihan Hai. 2023. Accelerating Ma-
chine Learning Queries with Linear Algebra Query Processing. In 35th
International Conference on Scientific and Statistical Database Management
(SSDBM 2023), July 10-12, 2023, Los Angeles, CA, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3603719.3603726

This work is licensed under a Creative Commons Attribution International
4.0 License.

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0746-9/23/07.
https://doi.org/10.1145/3603719.3603726

Asterios Katsifodimos
a katsifodimos@tudelft.nl
Delft University of Technology
Delft, The Netherlands

Rihan Hai
r.hai@tudelft.nl
Delft University of Technology
Delft, The Netherlands

1 INTRODUCTION

In recent years we are witnessing unprecedented growth in large-
scale ML applications fueled by rapid advancements in computa-
tional capabilities, sophisticated models, and the increasing avail-
ability of vast amounts of data. Enterprises are now utilizing pre-
dictive results to assist in business decision-making and product
design for customers. For instance, banks employ ML models for
credit scoring and fraud detection, while online retailers use cus-
tomers’ historical behavior to provide real-time recommendations.
In this thriving context, predictive ML applications call for efficient
computation to meet the growing demands for real-time ML pre-
dictions and the substantial data processing workload required by
ML models.

Pitfalls of separating data processing and ML predictions.
Plenty of research efforts and commercial products have provided
various solutions to accelerate data processing [3, 10] and ML pre-
dictions [4, 21] using modern hardware like Graphics Processing
Units (GPU). Thanks to massive parallelism and LA-friendly hard-
ware architectures, the throughput of data processing and model
predictive pipelines has significantly improved. However, the mix-
ture of relational operators in data processing pipelines and Linear
Algebraic operators in ML models introduces diverse data struc-
tures and software stacks. Specifically, data processing typically
involves tasks such as data transformation and aggregation, which
are traditionally solved with relational query engines. In contrast,
model prediction workloads involve vast linear algebraic opera-
tions. The distinct mathematical foundations of data processing
and model predictions often result in using separate software tools,
libraries, and hardware configurations, which can hinder overall
performance and efficiency. This separation can increase complexity,
higher development and maintenance costs, and potential performance
bottlenecks.

Mathematical gap of RA and LA. The different mathematical
foundations present challenges for cross-optimizations when merg-
ing relational and linear algebra. Relational operators primarily
process input data as sets of tuples, while LA computations operate
on ordered scalars, vectors, and matrices. The data transformation
and I/O cost between these two algebra systems result in signifi-
cant overhead. Additionally, the diverging algebra systems imply
different logical optimization strategies. Specifically, relational al-
gebra (RA), a specification of first-order logic, can utilize logical
reduction to decrease computational complexity. In contrast, LA
operators can often take advantage of the numerical information of
input matrices to reduce the size of intermediate results and overall
complexity. In short, the foundational differences between LA and RA
obstruct further optimization by combining these two systems at both
the logical and implementation levels.

https://doi.org/10.1145/3603719.3603726
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3603719.3603726
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603719.3603726&domain=pdf&date_stamp=2023-08-27

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

RA operators on top of LA with GPU acceleration. A unified
data representation and operators are desirable for ML practitioners.
A promising new approach to address the challenges associated
with the inconsistencies between LA and RA is to process relational
data queries using linear algebra operations, such as matrix-matrix
and matrix-vector multiplication. We term these queries Linear
Algebra Queries (LAQ). By reformulating RA operations as LA
operations, this approach can help bridge the gap between data pro-
cessing and ML domains. Matrix multiplication is a linear algebra
operation that can be efficiently parallelized and optimized using
modern hardware, such as GPUs, which are designed to handle
large-scale LA computations. By translating relational data queries
into matrix multiplication operations, this approach can take advan-
tage of the inherent parallelism and computational power of GPUs,
leading to significant improvements in efficiency and scalability for
both data processing and ML predictions.

Some operators (e.g., join, aggregation) have already been imple-
mented and evaluated in recent studies [1, 5, 11, 12, 24]. However,
these studies do not compare their performance with full-fledged
GPU databases, nor do they incorporate their methods into predic-
tive pipelines involving machine learning predictions. As a result,
the potential performance gains and practical implications of their
methods in the end-to-end data processing and ML predictive pipelines
remain unclear.

10°

EEE LAQ w/ fusing
LAQ w/o fusing

10?
2662 EN s 43.67x
X
10
10°

small linear op large linear op small decision tree large decision tree
large input small input large input small input
Experiments

317.77x

Speedup (Log-scale)

Figure 1: Speedups of our operator fusion method in four
experimental predictive pipelines. The baseline is cuDF with-
out operator fusion. The maximum attainable speedup is
317.77x.

In this work, we propose a new approach to optimize perfor-
mance of ML prediction following relational queries. The new ap-
proach leverages the unified representation in LAQ and fundamen-
tal properties of LA computations. The contributions of this work
can be summarized as follows:

e We integrate batch model predictions into LAQ through
operator fusion. By leveraging the computation properties of
LA (i.e., associativity), we push down linear operators in ML
models to dimension tables in a star schema [14] and merge
operators in LAQ and models before prediction. Our operator
fusion method achieves up to 317x speedups when evaluated
on synthetic star schemas, as shown in Figure 1, compared
to the separate execution of queries and predictions.

e We present a complexity analysis for operator fusion in the
context of star schema queries followed by model predictions.
This analysis provides quantitative insights into the benefits
that can be gained from operator fusion, given specific data
and model sizes.

Sun et al.

e We thoroughly evaluate LAQ using the widely-adopted SSB
data processing benchmark [19] and report the performance
comparison with cuDF [23] and HeavyDB [10], two pop-
ular GPU-accelerated data processing systems. Our evalu-
ation helps demonstrate the potential of LAQ in handling
traditional data query workloads and its effectiveness in the
context of end-to-end predictive pipelines.

This paper is organized as follows: Section 2 introduces primary
operators in LAQ. These building blocks are based on existing
works [8, 11]. Following that, Section 3 presents two examples to
demonstrate the usefulness of our approach in predictive pipelines,
which integrates linear operators in ML models into LAQ based on
computation properties of LA. In Section 4, we first evaluate the
performance of LAQ using the SSB dataset, and then we test the
efficiency of our operator fusion method with synthetic datasets
and models. In the final section, we provide insights into our re-
search findings through experiments and discuss potential research
directions derived from this study.

2 PRELIMINARIES: LINEAR ALGEBRA BASED
QUERY PROCESSING

This section introduces the approach of processing relational queries
with linear algebra (LAQ). As the preliminaries to our operator fu-
sion method in Section 3, we implement the LAQ based on existing
solutions. In particular, Section 2.1 and 2.2 elaborates selection and
projection operator proposed in our earlier work [8]. Section 2.3 -
2.5 introduces MMJoin, group-by aggregation and sorting operators
in TCUDB [11] and TQP [9].

For clarity, we refer to the input tables of an RA operator (e.g.,
projection, join) as source tables and the query results after execut-
ing the relational algebras as target tables. Before we perform LAQ,
all input tables are transformed into matrices for subsequent LA
operators.

Table 1: Important notations in Section 2 and 3

Notations Description
c #columns of a table

r #rows of a table

i #rows of the target table after joining

k #columns of the target table after joining
P #features of a decision tree

1 # output shape of models

v feature predicates of a decision tree

h values of leaves in a decision tree

M schema mapping matrix
I

L

F

H

T

R,

row mapping matrix

a simple linear operator

feature mapping matrix of decision tree
paths to leaves in a decision tree

target table after joining

S,B,C,D | tables

2.1 Projection

We can effectively address the projection operator using matrix
multiplication. Projection entails extracting multiple columns from
the source table and obtaining the target table. We compute projec-
tion through matrix multiplication by defining a column mapping
matrix M € {0,1}°*k [8], where c is the number of columns of the
source table and k denotes the number of projected columns. As a

Accelerating Machine Learning Queries with Linear Algebra Query Processing

preparation step, we add ID numbers to columns in the source and
target tables. We define M as follows:

1, if jt" column is the i*"* column after selection

ML 1= {O, otherwise

Within one matrix M, for each projected column, its location in the
target table after projection is represented by the vertical index i, while
its original location in the source table is denoted by the horizontal index
Jj. Non-zero values within the matrix M indicate column correspondences
between the source and target tables. As the source table has been converted
to a matrix, column projection can be evaluated by multiplying the source
table matrix and M. Figure 2 shows an example of the projection process:
given source table Patient(weight, height, age), the projection operator
Tveight,age (Patient) is transformed to the matrix multiplication of source
table matrix and column mapping matrix M. M indicates that the columns
with indexes of 0 and 2 of a source table are mapped to columns 0 and 1 of
the target table.

Source table matrix Target table matrix

Column 0 2 M 0
50 175 20 ol 1]o 50 20
90 180 40 . oo | = 90 40
70 170 60 2101 70 60

Figure 2: An example of projection as matrix multiplication.

2.2 Selection

The selection operator produces a subset of tuples based on specific con-
ditions, essentially filtering rows of the source table according to these
conditions. We use a binary vector with the same length as the number of
rows in the source table matrix to achieve the function of selection with
linear algebra. For each row, the corresponding entry in the selection vector
will be 1 if the row satisfies the selection condition and 0 otherwise. Multi-
plying the source table matrix with the selection vector (or its transpose,
depending on the orientation of the matrices) effectively filters out rows
that do not meet the selection criteria. The resulting matrix will contain
only the rows that satisfy the selection condition.

Improvement and implementation. However, this method may require
an additional pass of column scan to generate the filter vector in advance,
potentially making it less efficient than traditional relational selection. Thus,
in our implementation, the multiplication with the filter vector is achieved
using vectorized predicate ’AND’ and memory copy rather than floating-
point operations. In particular, if the input matrix has a row-dominated
layout in memory, we select target row-pointers according to the filter
vector and copy the selected rows to the target memory space. In our
implementation, we use an out-of-box mask_select operator provided by
CuPy [18].

2.3 MM-Join

The Matrix Multiplication Join (MM-Join) method takes advantage of matrix
multiplication to evaluate join operations, which can be particularly benefi-
cial when working with large datasets or when using hardware optimized
for matrix multiplication, such as GPUs. This section introduces the MM-
Join implementation in TCUDB [11]. Apart from the implementation details,
we discuss the computational complexity of the MM-Join and hash joins.
To ensure portability and compatibility with machine learning workloads,
we implement this algorithm using CuPy.

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

Algorithm 1: Matrix Multiplication Join

Input :R,S:input relations
Output: [: sparse matrix indicating maping rows in R and S
key_domain=union(keyg, keys) //CUDA reduce

[

[

key_len=len(key_domain)
key_dict = dict(zip(key_domain range(0, key_len))

w

rowsg = range(0, rr), rowss = range(0, rs)

-

5 columnsg = 0, valuesg = 1
columnss =0, valuess = 1
forie [0,rr) do
L columnsg[i] = key_dict[keyg[i]] //CUDA parallel
forie [0,rs) do
L columnss|i] = key_dict[keys[i]] /CUDA parallel

11 MATR = cuda_construct_CSR(rowsg, columnsg, valuesg)

a

® N

©

1

=)

12 MATs = cuda_construct_CSR(columnss, rowsg, valuess)
13 I = cuda_sparse_multiplication(MATg, MATs).to_COO()
14 return |

2.3.1 2-way join. We illustrate the process of MM-Join with the pseudo-
code in Algorithm 1, which has four steps. We explain Algorithm 1 with
the running example in Fig. 3.

1) Suppose R and S are two tables to be joined, we first calculate the
maximum key value in R and S to construct the common domain (Lines
1-3), resulting in {0,1,2,3,4,7};

2) Then we fill non-zero values and positions in sparse matrix format!
to get MATr and MATs (Lines 4-12), which are sparse matrices storing
relationships between keys and the common domain. The column indexes
of the matrices are identical to the keys’ positions in the common domain,
and the row indexes are the row numbers of keys in original relations;

3) We execute sparse matrix multiplication over MATR and transposed
MATs (Line 13);

4) The result I is a row matching matrix?, defined as follows.

i1 {1, if i'" row of R matches the j" rowof S
i,j]=

0, otherwise

The row-column pairs with non-zero values are matched rows in R and
S.

The high computational complexity and memory consumption have
hindered the application of MM-Joins in CPU-based databases. In Algorithm
1, transforming relations to matrices requires extra time and memory space
based on the number of tuples and distinct keys, which is infeasible for
relations with a large number of rows.

Approach analysis. The domain generation and retrieving process re-
quired by constructing sparse matrices involves a set union and two bi-
nary search in a sorted array, leading to a computational complexity as
O(n?logn). Moreover, even though the CSR format can reduce memory
usage, the computational complexity of sparse matrix multiplication (spMM)
can not be further reduced: the best-known complexity of spMM is O (n?)3
[26], which is higher than O((|R| + |S]|) * log(|R]|)) of a radix hash join
algorithm [2], where |R| and |S| represent the cardinalities of the two tables
participating the join.

Nevertheless, MM-Joins present an optimization opportunity that allows
for the integration of linear operators in ML models with join processing.

'We implement the sparse matrices in SciPy CSR: https://docs.scipy.org/doc/scipy/
reference/generated/scipy.sparse.csr_matrix.html.

“Implemented in SciPy COO format: https://docs.scipy.org/doc/scipy/reference/
generated/scipy.sparse.coo_matrix.html

3The complexity of spMM depends on matrix shapes and sparsity. Here we use an
approximate value to show the complexity gap between spMM and hash join.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

SELECT R key, R.val, S.val FROM R
JOIN S ON R.key=S.key

key | val / 0 key | val
0 1 ! 2 0
2
1 3 4 2 —
3
A I . 3|1
4|5 / 7 702
R 0 1
v
S
ol T2T3lal7 0(1]2(3|4(7
ol 2 1
K 4 1
3 1 3 1
4 1 7 1
01
\ I=MATRMAT"
2|4|3|7|0
0 1 0|11
1 P34 |1
8 1 materialize 4052
4 1

Figure 3: An illustration for evaluating equi-join with matrix
multiplication.

Conventionally, the results of relational queries need to be materialized
before being utilized in model predictions. However, due to the LA repre-
sentation of relational join processing, we can leverage LA optimization
techniques, such as multiplication re-ordering, to reduce computational
complexity and memory usage associated with redundant materialization.
This integration can potentially improve the overall efficiency of combining
relational operations with models.

2.3.2 Multi-way join. In principle, multi-way joins can be naturally ex-
tended from 2-way joins through iterative evaluation following a given
order. However, this naive implementation involves the materialization
of intermediate tables, overlooking potential optimization opportunities
hidden in the selectivity of join operators. In contrast, we can skip the ma-
terialization and use the matrix I to evaluate subsequent joins. For instance,
let’s assume a join order of Q, R, and S. The matching rows of Q and R are
stored in matrix Ipg. The rows that fail to match Q will not appear in the
final result. Therefore, we can directly use the matching row IDs of R to join
with S and generate the matching matrix Irs. This approach can enhance
the performance between R and S due to the potential low selectivity of
Q>R

2.3.3 Materialization. Now we use the row matching matrix I to preserve
the matching row IDs of intermediate join results. We could use the IDs to
generate a binary vector and treat the materialization as a selection using
the method described in Section 2.2.

However, this non-LA operation hinders further optimizations by inte-
grating ML models with joins. Alternatively, a materialized table can be
viewed as a result of the projection of transposed source tables. In this re-
gard, we need to construct the mapping matrix M using the result matrix I
from MM-Join. Consequently, we require two row sparse mapping matrices
for relations R and S, as follows:

Llij] 1, if j*" rowof Ris the it row of materialized table

= LJI=
0, otherwise

The COO format of I has three attributes: row indexes, column indexes,

and the number of non-zero values (nnz). The nnz is precisely the number
of rows in the materialized table, which implies that the row IDs of the

Sun et al.

SELECT SUM(R.val), S.val FROM R
JOIN S ON R.key=S.key GROUP BY S.val

key | val val
0 1 0
1 3 2
3 4 1
4 5 2
R 1
S
0[1[2][3[4]7 0[1[2(3]|4]|7
01 0 1
1 3 101 1
3 4 2 11
4 5
\—MATRMATST/
111]x _[9]1]2
o 1 0|0
1 —>|5(1
3 4 materialize| 5 | 2
4 5

Figure 4: An illustration for evaluating group-by-sum with
matrix multiplication.

materialized table can be represented as a vector m =< 0,1,2,...,nnz—1 >.
Consequently, we can construct two row mapping matrices Ig and Is by
aligning row indexes and column indexes with m, respectively.

2.4 Group-by Aggregation

In certain analytical queries, we may need to perform aggregation based on
specific values after a join operation. Employing a similar technique used
for join processing, we can also represent group-by operations concerning a
single attribute through matrix multiplication. However, we cannot directly
compute multi-aggregation following multi-way joins because it lacks the
capability to express value interaction among attributes. In this section, we
explain the single-column aggregation in TCUDB [11] and the multi-column
aggregation inspired by TQP [9].

2.4.1 Aggregation by a single column. Figure 4 demonstrates how to evalu-
ate single attribute aggregation using LA. The fundamental pattern is similar
to the MM-Join, but two sparse matrices require some adjustments. First,
MATR is no longer a binary matrix; the value column of R to be aggregated
is filled into the sparse matrix MATR.

As for table S, we begin by finding unique values as groups. MATg is
filled with values of 1, according to relationships between groups and the
key domain. In the example presented in Figure 4, values 0, 1, 2 are found as
groups. Then we find relationships between keys of S and the groups, which
are {2}— >0, {3,0}— > 1, {4,7}— > 2. After filling 1s according to the
relationships, relationships between keys in R to the group can be evaluated
by multiplying MATg and MATs” . Finally, to perform summation of values
in R, we introduce a reduction vector filled with values of 1, enabling the
materialization of the result.

2.4.2 Aggregation by multiple columns. Aggregation by multiple columns
cannot be directly integrated with MM-Join in the same way as single-
column aggregation. As shown in Figure 4, we require a matrix represent-
ing relationships between the key domain and groups. For single-column
aggregation, groups can be evaluated using a numerical unique function.
However, for multi-column aggregation, we must first join tables involved in
groups and then apply the unique function to tuples, which is not consistent
with other numerical operators.

To complete the queries for evaluation in our experiments, we adopt
an alternative solution proposed in [9], where unique tuples are identified
using a sort-unique procedure.

Accelerating Machine Learning Queries with Linear Algebra Query Processing

2.5 Sorting

Sorting cannot be directly represented in LA, but we can integrate sorting
into MM-Join if the sorting is performed on keys to be joined. The column
indices in matrices MATs and MATR correspond to the positions of keys
in the key domain. As a result, by sorting the key domain, we can obtain
MATR and MATs with sorted keys. This approach allows us to seamlessly
integrate the sorting operation into the MM-Join process.

Summary. This section discusses existing methods for evaluating relational
operators using LAQ and identifies their limitations. Some operators, such
as selection, projection, equi-join, and single-column aggregation, can be
equivalently represented by linear algebraic computations. However, multi-
column aggregation and sorting cannot be transformed into linear algebra
operations. To address these limitations, we implement alternative GPU-
compatible methods for these two operators, enabling LAQ to evaluate a
wider range of relational queries. This allows us to explore the theoretical
unification between data processing and downstream ML model predictions
on GPUs.

3 OPERATOR FUSION

On the basis of LAQ, in this section, we propose an operator fusion method
to merge operators in ML model predictions and LAQ for the speedup of
predictive pipelines. Specifically, given the fact that operators in LAQ and
ML predictions are uniformly represented as linear algebraic computations,
we can leverage the computation properties of LA, such as associativity
of matrix multiplication, to reduce computational complexity or the size
of intermediate results. Moreover, by utilizing the distributive property of
matrix multiplication, ML operators can be pushed down to source tables and
stored as matrices, subsequently decreasing the computational complexity
of real-time predictions.

In this section, based on the LA operators introduced in Section 2, we
analyze two operator fusion with two ML examples to illustrate the benefits:
fusing linear operators (Section 3.2), and decision trees (Section 3.3).

3.1 Scenario Description

Given a data warehouse containing a star schema with a central fact table
A and dimension tables B, C, and D, we consider the following scenario.
Fact table A stores transactional data, while dimension tables B, C, and D
contain contextual attributes associated with the facts in table A. A star
join operation is applied to join the fact table A with dimension tables B, C,
and D, leveraging their respective foreign key-primary key relationships.
The resulting dataset S from this star join operation integrates facts and
dimension attributes. Subsequent ML operators take dataset S as input to
produce matrices for further applications.

Operator Fusion. According to the design principles of star schema data
warehouses discussed in [14], fact tables tend to exhibit higher update
frequencies and larger data volumes compared to dimension tables. Conse-
quently, fusing downstream ML operators with relatively static dimension
tables allows for pre-fusing of partial results, thereby reducing the cost of
predictions. We term this approach operator fusion. In the following sections,
we leverage two models to demonstrate how operator fusion can accelerate
predictive pipelines.

3.2 Fusing Simple Linear Operators

Suppose the result of a star join T € R™*¥ is computed through MM-Join
according to keys in the fact table A. The evaluation can be presented
as T = [;BM; + LCM, + kDM;s, where I} € {0,1}>71 I, € {0,1}*"2,
Iz € {0,1}%73 and M, € {0,1}**. ¢ and k denote the number of columns
in dimension tables and selected features for linear operators respectively.

The result S is then multiplied by a linear operator L € R¥*/, resulting in
predictions as R¥¥!. For simplification, in the following analysis, we equally
separate features into each dimension table, which means ¢ = % According
to the s associativity of matrix multiplication, we can fuse L to dimension

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

tables using:
predictions = TL
= (IlBMl + LbCM; + I3DM3)L (1)
=L BM{L + I,CM,L + iDM3L

We follow the common assumption that dimension tables are less fre-
quently updated than the fact table, BM; L, CM;L and DM3L can be treated
as constants in a period. Therefore, we can pre-fuse them and only apply
row matching matrix I, when materialization.

3.2.1 Complexity analysis. We now perform a complexity analysis for
operator fusion in a predictive pipeline and compare it with non-fused
methods. As both fused and non-fused methods share the same domain
generation step, we will omit the complexity of domain generation in the
following analysis for comparison purposes. Additionally, matrix additions
have lower complexity order than matrix multiplications. Therefore, in the
complexity analysis for this section and Section 3.3, we omit the complexity
of matrix additions. Given the aforementioned dimensions of matrices, the
computational complexity without operator fusion is:

Cno—fusion = Cmmjoin + Cop
= cerj + ierj + ikl
J J
k2
= (lk+?);r]‘+lkl

If L is pushed down to dimension tables, we will get three pre-fused partial
values of the final result, BM;L € R""* CMyL € R"2*! and DML €
R"3*!_ The linear operator can be directly applied to these partial results.
Then we have the computation complexity as:

Cfusion =il Z rj
J

Now, we compare two complexity values:

2
Cnonffusion _ (ik + kT) Zj rj+ ikl
- iy r
kK2 k

—l+g+ﬁ

Cfusion (@)

Upon analyzing the information above, it becomes evident that the
speedup of operator fusion is correlated with the shape of the linear operator
and the cardinality of dimension tables. In practical predictive tasks, the
total number of rows of dimension tables is usually much larger than the

2
number of columns. Therefore, we can safely ignore the terms % and S
i i

In particular, % can be considered as the filtering effect of the linear operator.
For instance, a linear regression model can be viewed as a linear operator
with an output shape of 1. By pre-fusing the linear regression model with
dimension tables, the partial values to be composed after a join operation
are vectors instead of matrices. Consequently, the execution time of the
join-prediction operation can be significantly reduced. In Section 4.3, we
will examine the speedups of the fusion method concerning various input
settings.

3.3 Fusing Decision Trees

Tree models, such as decision trees, are popular among data scientists due
to their interpretability [22]. In this section, we elaborate on our opera-
tor fusion method with more complex decision tree models and explore
optimization opportunities using a matrix representation of decision tree
predictions. For clarity, our method is built on the linear algebraic repre-
sentation of decision trees proposed by Hummingbird [17] in Section 3.3.1.

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

F1>0.8
i
g ¥
)
D i
F4>0.3

@ e

& & B

rpsbap e afbe]

~|lo|lo|e|e

=3

o|o|o

=3

o|lo|o|o

o

Sun et al.

v
08041 02|03 |0.7 n..nn
X

0|0 |>

0|0 H
1.0 11|11
00 111111
00 h 0 (1 (1 [-1]-1
0 |1 o1 (|1f0f0
0|0 00 (|0 |1 [-1

Figure 5: Prediction with a decision tree with linear algebraic representation adapted from [17].

3.3.1 Matrix representation of Descion Trees. Hummingbird [17] introduces
a method to represent decision tree models using linear algebra operators.
The key idea is to transform the tree structure into a set of linear algebraic
operations and vectorized predicates, which can then be efficiently executed
on hardware optimized for such computations, like GPUs.

Suppose we have a batch of vectors S € Rk To represent a tree, we
need two binary matrices, F € {0, 1}*%P and H € {-1,0,1}/*!, as well as
two vectors, f € R? and h € RZ. Figure 5 illustrates how to use a sequence
of linear and predicate operators to perform a prediction for decision trees.
The final result is a binary encoding for the prediction label, which can be
subsequently retrieved through a lookup table.

Step 1. The binary matrix F is an orthogonal matrix that maps input vectors
to features. Some columns may not be in the selected features; thus, the
matrix serves as a feature selection operator. As the initial linear operator
of the decision tree, its orthogonality enables operator fusion because the
result of TF is a linear combination of the original columns in the input.
In practice, F can be integrated into the column mapping matrix M, (de-
scribed in Section 2.1), but we retain it in the rest of the implementation for
completeness.

Step 2. Vector v represents the values of nodes in the decision tree. The
order of this vector follows a pre-assigned rank. The output of operator
F undergoes a predicate *> v’, producing a binary vector. In practice, we
often apply predictions to a batch of vectors; as such, the output of this
step turns out to be a matrix. Notably, since the output of the last step is a
linear combination of the original input, each column can be independently
compared to the corresponding values in v. This means that the predicate
can be fused with dimension tables as well.

Step 3. Matrix H signifies the structure of decision trees. Each column
represents the path of a leaf node. Values in the column indicate the choices
of nodes on this path, where 1 means True, and -1 means False. For instance,
the path to L2 contains two nodes, F1 and F2, both of which choose the False
side. Consequently, the values of the corresponding nodes are -1. Notably,
H is a reduction operator. Fusing H with dimension tables is applicable but
only produces a local sum.

Step 4. Vector h is the column sum of matrix H. Before comparing with
h, the pre-fused matrices must be added to obtain a complete vector. The
result vector is compared with h, and a binary encoding denoting prediction
labels will be produced.

3.3.2 Fusing with dimension tables. As we discussed in last section, the
prediction results of the decision tree over T can be represented by:

step 3
D e N
step 1
—_—
predictions = ((TF >v)H) ==
_—

step 2
[——
step 4

Because vectors in F are orthogonal, the result of TF can be interpreted
as a linear combination of vectors in T. As a consequence, the predicate
operator "> v’ can be partially evaluated. In contrast, the predicate operator
’==h’ depends on the predecessor reduction operator H, which can not be
partially evaluated. Therefore, we can push down (TF > v)H to dimension
tables and evaluate the predicate equal operator by summing up partial
results. The process is expressed as follows:

predictions = ((TF > v)H) ==h
= (L ((BM;F > v)H)
+L((CMF > v)H)
+I3((DMsF > v)H)) ==
= (4T, + LT +LT;) ==h

3.3.3 Complexity Analysis. Similar to the complexity analysis for the linear
operator, we first present the complexity of non-fusion method:

Cnvn—fusion = Cmmjoin t+ Cr+ Cy + C + Gy
K ; T
= (?+lk);rj+lkp+lp+lpl+ll

With operator fusion presented in equation 3, we have three pre-fused
matrices whose dimensions are R"i*!. The complexity of remaining opera-
tions of decision tree’s result can be expressed by:

Crusion =1l) 1y +il
Jj

no—-fusion

C,
Then we compare the complexities through —=———=, which is:
‘fusion

(& +ik) 3 rj+ikp +ip+ipl
(i+1)%;r;

r; represents the number of rows in a dimension table, while p denotes the

number of features. For simplicity, we assume the number of features (p)

equals to length of input (k). Additionally, considering il >> 1, we remove

the constant term. Then, we have:

2
Cnon—fusion _ kz i + ik + ikl + 1
Cfusion il il il 2]- rj il 2}- rj 2}- rj)
kK Kk? K2 k k 1

IETTIED TSRS SR S

Due to the involvement of more linear operators in decision trees, ad-
ditional tail terms appear in Equation 4. When the number of rows in
dimension tables is smaller than the number of features, we can expect
that our approach facilitates a certain speedup through operator fusion. In
contrast, when the size of dimension tables is significantly larger than k,
the speedup is correlated with the first term % Similar to the discussion in
Section 3.3, the filtering effect of decision trees determines the benefit of
operator fusion. If a tree has only a small number of leaves, a significant
speedup can be expected. We will further substantiate this analysis with
experimental results in Section 4.3.

Accelerating Machine Learning Queries with Linear Algebra Query Processing

Our analysis above assumes that all matrices involved in the computation
are dense matrices. In our implementation, matrices I, M, and F are stored in
the CSR format and computed using a sparse matrix multiplication kernel.
This approach has lower computational complexity compared to naive
dense matrix multiplication, further enhancing the efficiency of the overall
computation process.

Summary. In this section, we proposed an operator fusion method to ac-
celerate predictive pipelines, building on the preliminaries introduced in
section 2. Within the context of data warehouses, we presented two predic-
tive pipelines that demonstrate how operator fusion accelerates them by
pre-fused partial results. Additionally, we compare the theoretical complex-
ity of fusion and non-fusion methods and identify a preliminary decision
boundary for determining when to apply operator fusion for speedup. In
Section 4.3, we will present the speedup of operator fusion in predictive
pipelines.

It is important to note that two examples in this section assume di-
mension tables are updated less frequently than the fact table, which is a
common design principle in traditional data warehouses. However, many
data architectures (e.g., data mesh [16], data fabric [7]) proposed in recent
years have gradually deviated from this principle. Further investigation
is needed to determine the applicability of the operator fusion method in
these scenarios.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of LAQ and examine the
performance enhancement achieved through operator fusion. In Section
4.2, we use the SSB [19] dataset to compare the performance of LAQ with
two GPU-accelerated relational query processing engines. Then, based
on LAQ, we assess the speedup of operator fusion through two models
introduced in Section 3.2 and 3.3. Before presenting the experimental results,
we first provide an overview of the experimental setup, encompassing the
implementations under evaluation, dataset characteristics, and hardware.

4.1 Experiment settings

Implementation. In this paper, we implement GPU-accelerated LAQ using
CuPy [18]. The implementation involves two-way join, multi-way join,
and bi-group aggregation, all of which are computed using CSR format
with CuSparse, which is a CUDA library for sparse matrix multiplication?.
Although multi-group aggregation can be theoretically calculated through
tensor multiplications, we opt to use the scatter_add operator due to the
absence of a suitable vendor library for sparse tensor multiplications.

Baselines. To assess the performance of our LAQ implementation, we com-
pare it with two other GPU-accelerated data processing libraries: HeavyDB
[10] and cuDF [23]. HeavyDB, formerly known as OmniSciDB, is a commer-
cial GPU data management system that supports a wide range of relational
queries on GPUs. It features a query optimizer and cache strategy to expe-
dite query execution. cuDF, on the other hand, is a GPU DataFrame library
that provides support for commonly used relational operators, such as selec-
tion, projection, join, and aggregations. Unlike HeavyDB, cuDF is a vanilla
query processor, similar to our LA query implementation, and serves as an
appropriate baseline for our study.

Workload. For the evaluation of operator fusion, we use star join queries on
a synthetic dataset characterized in Table 4, and the results are subsequently
utilized as input for linear operators.

Hardware. All the implementations in these experiments are executed on
an Nvidia A40 (48GB) GPU, eliminating the need to account for the commu-
nication cost between host memory and device memory. Each experiment
is conducted ten times, and we report the mean values and standard errors.

“4https://docs.nvidia.com/cuda/cusparse/index.html

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

4.1.1 Datasets. We use Star Schema Benchmark (SSB) [19] to investigate
the performance in real-world workloads. On the other hand, considering
the memory space required by linear operators in the operator fusion evalu-
ation, we generate a synthetic dataset with down-scaled cardinality of SSB
dataset. In the following parts, we introduce these two datasets and their
data characteristics.

Star Schema Benchmark. The SSB dataset is a widely-used benchmark
for evaluating the performance of data warehouse systems and database
management systems. It was developed as a simplified version of the TPC-H
benchmark, which is also designed for testing data warehouse systems. The
SSB dataset focuses on star schema query processing and comes with a
predefined set of queries that test various aspects of database performance,
such as join operations, aggregations, and filtering.

Table 2 provides a summary of the workloads and query groups, while
Table 3 displays the types and cardinality settings for each table in the SSB
dataset. Additionally, Figure 6 illustrates the selectivities of each query for
subsequent evaluations. The parameter sf represents the scale factor that
controls data sizes, and it will be used to denote the scale of data throughout
the rest of the paper.

Table 2: Summary for query groups in SSB

Queries Group 1 | Group 2 Group3 Group 4
ID of subqueries 11,12,13 | 21,22,23 31, 32,33 41, 42,43
Joins 1 3 3 4

. Group-by | Group-by | Group-by
Aggregations Sum Sum Sum Sum
Sorting No Yes Yes Yes

Table 3: Types and cardinalities of SSB tables. sf is a parame-
ter controlling data sizes.

Tables Type | Cardinality
lineorder | Fact sf 6,000,000
part Dim | 200,000 * floor (1 +log, sf)

supplier Dim sf 2,000
customer | Dim | sf * 30,000
date Dim 7 % 365
1072
2
=
8 105
n
107 I I
[- |
— N (3] — N (] bl o [} — N o
— — — N N o~ (3] o ™ < < <
Query ID

Figure 6: Selectivity of each query in SSB

Synthetic dataset. SSB queries are well-suited for evaluating operator
fusion, as our scenario setting aligns with the design principles of SSB.
Because allocating SSB dataset and models to be evaluated in the same
GPU causes out-of-memory error, we generate a synthetic dataset based
on down-scaled cardinalities of SSB tables for operator fusion experiments.
We introduce two groups of cardinality settings to test the performance
of operator fusion with varying numbers of input rows. The detailed table
design is shown in Table 4.

In addition to varying settings in Table 4, we also alter the size of models
to be fused in order to test the performance of operator fusion under different

https://docs.nvidia.com/cuda/cusparse/index.html

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

Table 4: Types and cardinalities of synthetic tables. sf is a
parameter controlling data sizes.

Tables Type | Cardinality setting 1 Cardinality setting 2
lineorder | Fact sf * 600,000 sf * 3,000

part Dim 20,000 * floor(1+1log,sf) | 2,000 * floor(1+log,sf)
supplier | Dim sf * 2,000 sf * 2,000

date Dim 7 * 365 7 * 365

Table 5: Parameters for linear operator and decision tree

Simple Linear Operator

Cardinality sf Iength of input (k) | length of output (I)
Setting 1 1,2,4,38,16 | 21471 QT
Setting 2 1,2 o[8..11] ST K]

Decision Tree
Cardinality sf length of input (k) | # features (p) | # leaves (I)
Setting 1 1,2,4,8,16 | 21471 Q] T4l
Setting 2 1,2 o[8..11] o311 oT6.11]

10° @ cuDF
s HeavyDB
m LAQ

Y

Scale Factor (sf)

Time (ms)

© ©
-

Figure 7: Average execution time under various scale factors.

computing workloads. To match the input shape k of models, we adjust
the number of columns accordingly. The parameters of linear operators are
demonstrated in Tables 5.

4.2 Performance Evaluation for LAQ

In this section, we evaluate the performance of LAQ using the SSB dataset on
GPUs and compare the results with two GPU-accelerated data processing
engines. First, we measure the average execution time with respect to
varying scale factors (sf), and then we examine LAQ’s performance on
different queries. To identify the most time-consuming operator, we provide
a performance breakdown and suggest an optimization opportunity for
future research.

Q1 : When does LAQ perform better than cuDF and HeavyDB w.r.t. varying
data sizes?

Observation. Figure 7 illustrates the average execution time of all queries
under different scale factors. HeavyDB presents similar average perfor-
mance with different sf but has significant standard errors. MM-Join ex-
hibits a significant advantage against the other two systems at small scale
factor.s As the scale factor increases, the performance of LAQ turns out to
be slower than HeavyDB and approaches cuDF.

Analysis. HeavyDB is a well-designed data management system with
dedicated caching mechanisms. When the evaluation executes repeatedly,
more data are cached in global memory, which leads to superior performance
at large sf. cuDF and LAQ are vanilla implementation join algorithms.
They can not obtain advantages through caching strategies during repeated
experiments. Another notable finding is that performance of LAQ degrades
faster than cuDF due to the high computational complexity of the spMM
kernel.

Sun et al.
N cuDF
N HeavyDB
LAQ
@
£
@
£
=
10t
4 N ® o4 o ® o o @ o o o
— - — o N N (3] o 3] < < <
Query ID

Figure 8: Average execution time of different queries when

sf=4.

BN cuDF
N HeavyDB
102 ™ LAQ
@
E
@
£
=
10t
-] o - N) b= N (v} - N o0
- — — 3 [3Y) N o™ ™ ™ < < <

Query ID

Figure 9: Average execution time of different queries when
sf = 16.

Qy : How do speedups of LAQ against cuDF and HeavyDB vary w.r.t different
queries?

Observation. Figure 8 and 9 show execution time with respect to different
queries under sf =4 and sf = 16. We can find out that all systems perform
faster in query group 1. LAQ exhibits noticeable speedups against the other
two systems in query group 1 when sf = 4. We can also observe that LAQ
becomes slower than cuDF in query 42 and 43 when sf = 16.

Figure 9 does not show the results of HeavyDB for query group 4 when
sf=16 due to out-of-memory error raised during evaluation.

Analysis. Matrix multiplication (MM), which is the most crucial operation
in LAQ, is known to effectively exploit GPU parallelism due to the inherent
nature of LA algorithms. However, this does not eliminate the computational
complexity disadvantage of MM. When processing large-scale data, this
increased complexity causes MM-Join to underperform compared to the
partitioned hash join in cuDF.

Moreover, we observed a positive correlation between the performance
of LAQ and the selectivity of the queries, as illustrated in Figure 6. Among
all results, the performance on query 33 is exceptional. Although query
33 has lower selectivity, both algorithms exhibit slower performance due
to an additional join operation. Interestingly, HeavyDB does not display
a correlation between performance and selectivity because of its cache
management. In query group 3, HeavyDB shows performance degradation,
which can be explained by the overhead of cache eviction due to increased
intermediate results generated by joins.

Qs : Which operator in a query needs more optimization?

Observation. In this experiment, we use query group 4 as an example
to present the breakdown performance of MM-Join. Figure 10 shows the
execution time of different operations in a query. Apparently, join operations
dominates the execution time. In Figure 11, we further investigate two
primary operations of joins. Domain generations take a similar portion of

Accelerating Machine Learning Queries with Linear Algebra Query Processing

102 EEE select

B join
HEEE agg

\S@@@@w@v@v@v@@@@@@ 2
NI Rk Ak
Scale Factor, Query ID

Time (ms)

Figure 10: Performance breakdown for queries w.r.t different
scale factors. We take query group 4 as an example.

s key domain
E matmul

»’L@\%Q’V@\%»‘D@\x\»\‘v\@\x\@\@
[NARSEUARNS N PP

10t

time(ms)

sf,step

Figure 11: Performance breakdown for MM-Join w.r.t differ-
ent scale factors. We take query group 4 as an example.

execution time within 4 join steps in query group 4, whereas join operations’
portion decreases as the selectivity decreases.

Analysis. In Section 2.3, we have learned that the computational complexity
of domain generation is O(n?logn), independent of selectivities. This
operation becomes particularly costly when selectivity is low. Nonetheless,
the domain consists of a union of tables, allowing us to cache the domain
for reuse. Caching proves advantageous when key updates are infrequent.
If updates to the cached domain are necessary, the complexity of searching
and inserting into a sorted array is O (n+log n), which is still more efficient
than rebuilding the domain from scratch. As a result, we can further enhance
performance by employing domain caching strategies.

4.3 Performance Evaluation for Operator
Fusion

In this section, we evaluate operator fusion with linear operators in Section
3.2 and 3.3 to demonstrate the performance improvement that operator
fusion brings to predictive pipelines. In addition to evaluating performance
with different s f, we also examine the impact of model shape. Specifically,
we vary the shape of models with different values of k and [to validate a
potential factor, % that may influence the speedup of operator fusion.

4.3.1 Simple Linear Operator. This example exhibits a scenario where the
output of join operations is fed to a linear operator producing a matrix.
We separately evaluate two conditions: input with large sf, where the
cardinality setting 1 is enabled, followed by a small linear operator, and
input with small sf (cardinality setting 2) connected to a relatively large
operator.

Q4 : How much speedup can operator fusion deliver in scenarios with cardi-
nality setting 1 followed by a simple linear operator?

Observation. In this experiment, we compare the execution time of a star
join with operator fusion to LA-after-join implementations. It is important
to note that HeavyDB is not included here, as it is slower by around 5 times
of cuDF. Figure 12 displays the average execution time under various scale
factors. The fusion method outperforms the other two implementations.

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

8 16

Figure 12: Average execution time of join with and w/o fusing
linear operators under different scale factors.

I cuDF w/o fusing
I LAQ w/ fusing
B LAQ wi/o fusing

11

Scale Factor

Time (ms)

B cuDF w/o fusing
E LAQ w/ fusing
B LAQ w/o fusing

o~ < © © o < @
< @ < S

Length of Output

@ 10%

Time (m:

Figure 13: Average execution time of predictive pipeline of
simple linear operator with and w/o operator fusion when
sf = 4. The experimental scenario is large input with small
model.

14

16

Length of Input
32
Speedup

64

128

8 16 32
Length of Output

Figure 14: Heatmap of speedup w.r.t lengths of input and
output when sf = 8.

In Figure 13, we hold all parameters constant except for the output shape
of the linear operator. Both cuDF and the non-fusion method do not ex-
hibit significant changes in execution time compared to the fusion method.
Although the fusion method still demonstrates speedups, these speedups
continue to decrease as the output shape grows larger.

Analysis. Through Equation 2, we understand that the speedup is negatively
correlated with output shape I and positively correlated with input width k.

2
Due to the large input size in this experiment, the lower order terms % and

> {‘r_ in the equation are neglectable. Consequently, in Figure 13, we observe
j i

that the speedup of the fusion method gradually decreases as [increases.
Additionally, we illustrate the speedup values concerning different k and
I, while maintaining sf = 8, in Figure 14. The highest speedup occurs at
the largest k and smallest /, whereas the lowest speedup is found along the

diagonal. This result validates our analysis derived from Equation 2.

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

!

Length of Output

10°
B cuDF w/o fusing
E LAQ w/ fusing
HeavyDB w/o fusing

LAQ w/o fusing
N v o 9

=
S

Time (ms)
=
3

256 [—
512 —

1024 M=
2048

Figure 15: Average execution time of predictive pipeline of
simple linear operator with and w/o operator fusion when
sf = 4. The experimental scenario is small input with large
model.

Qs : How much speedup can operator fusion deliver in scenarios with cardi-
nality setting 2 followed by a large linear operator?

Observation. In this experiment, we set the base cardinality to 1/1000 of
SSB and enlarge the output shape [up to 2!!. Due to the size reduction
of source tables, HeavyDB also exhibits comparable performance against
others. Comparing Figure 15 and 13, we can clearly observe much more sig-
nificant speedups of operator fusion in small dimension tables in cardinality
setting 2.

Analysis. As indicated by Equation 2, a reduction in input cardinality
corresponds to a smaller value for }}; r;, resulting in a larger speedup.
Furthermore, HeavyDB is slower than both LAQ with and without operator
fusion due to data structure conversions across different runtimes between
the database and ML systems. Thus, we can conclude that the fusion method
is more advantageous when processing linear queries with small dimension
tables.

Qg : How much time does the pre-fusion phase take?

175

I join and computation
150 W pre-fusing
50
0 — o~ < ©] @
— <
wn o
N

Length of Output

Time (ms)
B P
~ o N
(4] o (&)

16 [l

32l

64
128 [
256 [

1024

Figure 16: The execution time that pre-fusion stage and join-
computation stage take in prediction with linear operator
after joining.

Observation & Analysis. While the operator fusion method provides
considerable speedup, it is crucial to consider the cost of the pre-fusion step,
as shown in the underlined parts of 1. This is because dimension tables,
although updated less frequently than fact tables, are not static constants.
Moreover, the pre-fused tables may be larger than the original dimension
tables when the output shape exceeds the number of columns, resulting in
increased memory usage. Consequently, a quantitative trade-off between
fusion and non-fusion methods still calls for further study in practice.

Sun et al.

I cuDF w/o fusing
E LAQ w/ fusing
LAQ w/o fusing

10?
l XX
- ~ < E))
s

Scale Factor

Time (ms)

Figure 17: Average execution time of join with and w/o fusing
decision trees under different scale factors.

10°

it

@
8

N cuDF wio fusing
N LAQ w/ fusing
LAQ wio fusing

© o~
B =
& e}

Figure 18: Average execution time of predictive pipeline of
decision tree with and w/o operator fusion when sf = 4. The
experimental scenario is large input with small model.

Time (ms)

=
Number of Leaves

Figure 16 presents a stacked plot illustrating the relative proportion
between pre-fusion and subsequent multiplication with I.. Based on the
parameter settings in Q5, we observe that when the output shape [is less
than or equal to 512, the linear operation dominates the total execution
time. As a result, if memory constraints are present, we can prioritize query
completion without encountering out-of-memory errors, considering the
diminishing speedup with larger output shapes.

4.3.2 Decision Tree. In this experiment, we substitute the simple linear op-
erator with a more intricate decision tree model to explore the performance
advantages resulting from operator fusion. Following a similar experimental
approach for simple linear operators, we separately assess the performance
of two scenarios: cardinality setting 1 followed by a simple decision tree
and cardinality setting 2 followed by a relatively large model.

Q7 : How much speedup can operator fusion deliver in scenarios with cardi-
nality setting 1 followed by a simple decision tree?

Observation & Analysis. Figure 17-19 display the results for large input
scenarios. Figure 17 demonstrates that the average execution time of the
fusion method is significantly faster than the other two methods across all
scale factors. Notably, both cuDF and the non-fusion method fail to execute
due to out-of-memory errors, while the fusion method completes a larger
portion of evaluations. In Figure 18, we vary parameter ! while keeping
sf = 4. It is evident that LAQ with fusion outperforms other methods when
1 is low, but its performance deteriorates as increases.

The performance degradation can be explained using Equation 4. We
focus on % because the remaining terms can be disregarded with large
2 rj- As Lincreases, % decreases, leading to a reduced speedup compared
to the non-fusion method. In Figure 19, we examine the speedup concerning
different values of k and I. The highest speedup occurs at the largest k
and smallest /, which validates our complexity analysis that the speedup is

Accelerating Machine Learning Queries with Linear Algebra Query Processing

16

Number of Features
32

64

Number of Leaves

Figure 19: Heatmap of speedup w.r.t numbers of features and
leaves when sf = 8.

10°
Bl cuDF w/o fusing
HE | AQ w/ fusing
HeavyDB w/o fusing
h LAQ w/o fusing
2
Tg 10 B i
= A b
" 4
10t

©
N n

2048
4096 =
810, —

II I II o
N @ o~ <
3] N Ll N
— o

—

Number of Leaves

Figure 20: Average execution time of predictive pipeline of
decision tree with and w/o operator fusion when sf = 4. The
experimental scenario is small input with large model.

correlated with % Alarge k and small / suggest that the model functions as
a data compressor, indicating that the fusion method can be advantageous
when applying a narrow-down model to a large amount of data. From a
hardware perspective, a pre-fusion method with a filtering effect actually
reduces the size of input data, which further decreases memory usage and
memory I/O in subsequent computations. Therefore, the value of % can
serve as a potential indicator for determining whether pre-fusion should be
applied.

Qg : How much speedup can operator fusion deliver in scenarios with cardi-
nality setting 2 followed by a large decision tree?

Observation & Analysis. In scenarios where dimension tables with small
cardinality are processed using a large model, the operator fusion method
exhibits a more significant speedup compared to the other three methods,
as illustrated in Figure 20. When the input scale factor is reduced to 1%
of that in Q8, the residual terms in Equation 4 can no longer be ignored,
leading to a greater speedup. However, as the model size increases, the
cost of pre-operator fusion becomes more expensive relative to subsequent
computations, as shown in Figure 21. Considering that dimension tables are
not entirely static but updated according to changes in the dimension tables,
the actual benefits of the operator fusion method depend on the update
frequency of the dimension tables.

5 RELATED WORK

GPU relational data processing. GPU-accelerated query processing has
been extensively researched in recent decades. As GPU architectural design

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

175
B join and computation
150 mmm pre-fusing
125
£ 100
@
E 75
=
50
25
o mm == EE .
o <t © © ~N < =] © N
e & 8 8 F g & g g
— N < ©

Number of Leaves

Figure 21: The execution time that pre-fusing stage and join-
computation stage take in prediction with decision tree after
joining.

and memory bandwidth between hosts and GPUs have advanced, several
database management systems (DBMS) have incorporated GPU acceleration
to optimize their query processing capabilities. Notable examples of GPU-
based systems include Crystal, OmniSci (now known as HeavyDB) [10],
BlazingSQL [3], and PG-Strom. These systems take advantage of the parallel
processing capabilities of GPUs to perform operations such as filtering,
aggregation, and join processing at a significantly faster rate compared to
traditional CPU-based systems.

However, these works do not change the nature of relational data pro-
cessing. The theoretical and practical gap between relational data and linear
algebraic input for machine learning still hinders potential integration and
optimization opportunities.

Query processing using matrix multiplication. Matrix multiplication
has been widely adopted in graph query processing. Earlier research [1, 5]
proposed LA-based algorithms for computing an equi-join followed by a
duplicate-eliminating projection, which yields smaller intermediate results
and more efficient memory I/O than conventional relational operators. One
recent paper [12] proposed DIM3 to address several performance bottle-
necks in [5]. DIM3 introduces partial result caching and support for join-
aggregation operations. However, this line of research focuses primarily
on join operations rather than a general method of processing relational
queries with linear algebra (LAQ) discussed in our research.

TCUDB [11] is the first GPU query engine that primarily uses LAQ as its
query engine, which implements equi-join and single-column aggregation
using LAQ. The design principle of the join-aggregation operator in TCUDB
is similar to that of [1] and [5], but it is embedded within a query planner that
supports a wide range of SQL queries and analytic queries. In the TCUDB
paper, the authors evaluate its performance with graph query workloads,
but they do not provide insights into its performance into the cost of each
operator in LAQ. In contrast, our work extensively evaluates LAQ on a wide
range of data and reports detailed performance breakdown.

To support an integrated pipeline of data integration and ML model
training, in our previous work [8], we have defined matrix-based represen-
tations for mapping columns and rows between source and target tables.
With the logical representations, we identify the method to evaluate outer-
join, inner-join, left-join, and union in data integration tasks using linear
algebra operators. Building upon this foundation, in the current research,
we evaluate the extended LAQ using relational query benchmark datasets to
assess its performance in traditional data queries and predictive pipelines.

Cross-optimization of ML and relational data processing. Raven[20]
and LaraDB [13] implemented cross-optimization methods for batch pre-
diction tasks that follow relational data processing. The optimizer, built on
a unified intermediate representation, enables the exchange of information
between relational operators and ML models. However, in this research, the
relational and linear components must execute in separate runtimes, which
may involve potential data transformation and communication overhead. In

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

contrast, our method unifies the data processing and ML model prediction
in representation as well as runtime.

Hummingbird [15, 17] is a system capable of compiling a wide range
of traditional ML models into modern tensor-based runtimes designed
specifically for deep learning models. In addition to providing a unified
runtime, Hummingbird employs deep learning compilers to optimize the
overall efficiency of the ML pipeline.

However, despite the benefits of tensor representation, the operators in
Hummingbird do not implement joins and aggregations commonly found
in data integration and training data generation processes.

Inspired by Hummingbird, TQP [9] further extends tensor programs for
relational operations, including sort-merge join and hash join, enabling it
to handle the full TPC-H benchmark [25]. TQP leverages a widely-used
tensor computing runtime, to optimize and execute workflows containing
both relational data processing and model prediction on GPUs. Following
this research, TDP [6] expands capabilities to encode multi-modal data
processing. Nevertheless, the physical implementation of join and aggrega-
tion operators remains in the relational style rather than LA. This diversity
prevents the differentiability from being further pushed down to the source
data before joins and also misses optimization opportunities brought about
by LA rewriting. Our research implements joins and aggregations in linear
algebra and proposes an operator fusion method leveraging this unified
theoretical language, significantly accelerating predictive pipelines.

6 CONCLUSION AND FUTURE RESEARCH

In this paper, we present the operator fusion method to optimize the speed of
predictive pipelines consisting of data processing and ML model predictions.
By employing LAQ to represent data query processing, our approach can
merge operators in ML model predictions with data processing operators.
Furthermore, through the analysis of the complexity of operator fusion
and LAQ without operator fusion, we find that the length ratio of input
vector and output vector, described as % as discussed in Section 3, may
influence the speedup of our method in the context of the star schema. In
our evaluation, we use a widely-adopted data query benchmark, SSB, and a
synthetic dataset to test the performance of LAQ and operator fusion. Based
on the experimental results, we draw the following conclusions:

o LAQ outperforms cuDF, a standard GPU relational query processor,
in most evaluations except for query group 4 when sf is 16. The
inherent high computational complexity of domain construction
and matrix multiplication dominates the execution time, causing
performance degradation when data sizes increase. However, we
can expect performance improvement by caching key domains.

o In experiments for predictive pipelines in Section 4.3, operator fu-
sion exhibits significant speedups up to 317x compared to the LAQ
without operator fusion. Moreover, the experiment results confirm
the hypothesis that % in Equation 2 and 4 affect the speedup of
operator fusion through.

o The speedup of operator fusion also depends on the sizes of in-
put matrices. Fusing large models is costly, but it can be beneficial
when the update frequencies and cardinality of dimension tables
are low. We need to make trade-offs between operator fusion and
non-operator fusion based on update patterns and data sizes.

Future research. Based on the observations and analysis from the experi-
ments, we identify that LAQ and optimizations in integrated data processing
and ML pipelines call for further research.

Although we have preliminarily shown that fusing linear operators in
ML models with LAQ is beneficial, a detailed cost estimation that can assist
with automatic pipeline optimization is still missing. Furthermore, in the
context of thriving large-scale deep learning, more operator fusion rules
that can optimize deep learning operators are urgently needed. Last but not
least, exploring the optimization of training performance with similar linear
algebraic operator fusion techniques is also a valuable research direction.

Sun et al.

REFERENCES

[1] Rasmus Resen Amossen and Rasmus Pagh. 2009. Faster Join-Projects and Sparse
Matrix Multiplications. In ICDT 2009 (St. Petersburg, Russia). Association for
Computing Machinery, New York, NY, USA, 121-126. https://doi.org/10.1145/
1514894.1514909

[2] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M Tamer Ozsu. 2013. Main-
memory hash joins on multi-core CPUs: Tuning to the underlying hardware. In
ICDE 2013. 362-373.

[3] BlazingDB. 2020. BlazingSQL. https://github.com/BlazingDB/blazingsql.

[4] Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, et al. 2018. TVM:
An Automated End-to-End Optimizing Compiler for Deep Learning. In OSDI
2018. 578-594.

[5] Shaleen Deep, Xiao Hu, and Paraschos Koutris. 2020. Fast Join Project Query
Evaluation Using Matrix Multiplication. In SIGMOD 2020. 1213-1223.

[6] Apurva Gandhi, Yuki Asada, Victor Fu, Advitya Gemawat, Lihao Zhang, Rathijit
Sen, Carlo Curino, Jestiis Camacho-Rodriguez, and Matteo Interlandi. 2023. The
Tensor Data Platform: Towards an Al-centric Database System. In CIDR 2023.

[7] Ana-Maria Ghiran and Robert Andrei Buchmann. 2019. The Model-Driven En-
terprise Data Fabric: A Proposal Based on Conceptual Modelling and Knowledge
Graphs. In Knowledge Science, Engineering and Management, Christos Douligeris,
Dimitris Karagiannis, and Dimitris Apostolou (Eds.). Springer International Pub-
lishing, 572-583.

[8] Rihan Hai, Christos Koutras, Andra Ionescu, Ziyu Li, Wenbo Sun, van Schijndel
Jessie, Yan Kang, and Asterios Katsifodimos. 2023. Amalur: Data Integration
Meets Machine Learning. In ICDE 2023. To appear.

[9] DongHe, Supun C Nakandala, Dalitso Banda, Rathijit Sen, Karla Saur, Kwanghyun

Park, Carlo Curino, Jestis Camacho-Rodriguez, Konstantinos Karanasos, and

Matteo Interlandi. 2022. Query Processing on Tensor Computation Runtimes.

Proc. VLDB Endow. 15, 11, 2811-2825.

Heavy.ai. 2022. HeavyDB. https://github.com/heavyai/heavydb.

Yu-Ching Hu, Yuliang Li, and Hung-Wei Tseng. 2022. TCUDB: Accelerating

Database with Tensor Processors. In SIGMOD 2022. 1360-1374.

Zichun Huang and Shimin Chen. 2022. Density-Optimized Intersection-Free

Mapping and Matrix Multiplication for Join-Project Operations. VLDB Endowment

15, 10, 2244-2256.

Dylan Hutchison, Bill Howe, and Dan Suciu. 2017. LaraDB: A Minimalist Ker-

nel for Linear and Relational Algebra Computation. In Proceedings of the 4th

ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond

(BeyondMR’17).

Ralph Kimball and Margy Ross. 2013. The Data Warehouse Toolkit: The Definitive

Guide to Dimensional Modeling (3rd ed.). Wiley Publishing.

Dimitrios Koutsoukos, Supun Nakandala, Konstantinos Karanasos, Karla Saur,

Gustavo Alonso, and Matteo Interlandi. 2021. Tensors: An Abstraction for General

Data Processing. Proc. VLDB Endow. 14, 10 (2021), 1797-1804.

Inés Aratjo Machado, Carlos Costa, and Maribel Yasmina Santos. 2022. Data

Mesh: Concepts and Principles of a Paradigm Shift in Data Architectures. Procedia

Comput. Sci. 196 (2022), 263-271.

Supun Nakandala, Karla Saur, Gyeong-In Yu, Konstantinos Karanasos, Carlo

Curino, Markus Weimer, and Matteo Interlandi. 2020. A Tensor Compiler for

Unified Machine Learning Prediction Serving. In OSDI 2020. USENIX Association,

Article 51.

Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman Loomis.

2017. CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations. In

NIPS 2017 Workshop: LearningSys.

Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. 2009. The

Star Schema Benchmark and Augmented Fact Table Indexing. In Performance

Evaluation and Benchmarking: First TPC Technology Conference, TPCTC 2009.

Springer-Verlag, 237-252.

Kwanghyun Park, Karla Saur, Dalitso Banda, Rathijit Sen, Matteo Interlandi, and

Konstantinos Karanasos. 2022. End-to-End Optimization of Machine Learning

Prediction Queries. In SIGMOD 2022. 587-601.

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. In NeurIPS
2019, Vol. 32.

[22] Fotis Psallidas, Yiwen Zhu, Bojan Karlas, Jordan Henkel, et al. 2022. Data Science
Through the Looking Glass: Analysis of Millions of GitHub Notebooks and
ML.NET Pipelines. SIGMOD Rec. 51, 2 (2022), 30-37. https://doi.org/10.1145/
3552490.3552496

[23] Rapidsai. 2022. cuDF. https://github.com/rapidsai/cudf.

[24] Wenbo Sun, Asterios Katsifodimos, and Rihan Hai. 2023. An Empirical Perfor-
mance Comparison between Matrix Multiplication Join and Hash Join on GPUs.
In ICDE 2023 Workshop: HardBD & Active. To appear.

[25] Transaction Processing Performance Council. 2018. TPC Benchmark H. http:
//tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf.

[26] Raphael Yuster and Uri Zwick. 2005. Fast Sparse Matrix Multiplication. ACM
Trans. Algorithms 1, 1 (2005), 2-13. https://doi.org/10.1145/1077464.1077466

= =
=S

[12

(13

[14

[15

[16

-
=

[18

[19

[20

https://doi.org/10.1145/1514894.1514909
https://doi.org/10.1145/1514894.1514909
https://github.com/BlazingDB/blazingsql
https://github.com/heavyai/heavydb
https://doi.org/10.1145/3552490.3552496
https://doi.org/10.1145/3552490.3552496
https://github.com/rapidsai/cudf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
https://doi.org/10.1145/1077464.1077466

	Abstract
	1 Introduction
	2 Preliminaries: Linear algebra based query processing
	2.1 Projection
	2.2 Selection
	2.3 MM-Join
	2.4 Group-by Aggregation
	2.5 Sorting

	3 Operator Fusion
	3.1 Scenario Description
	3.2 Fusing Simple Linear Operators
	3.3 Fusing Decision Trees

	4 Experimental Evaluation
	4.1 Experiment settings
	4.2 Performance Evaluation for LAQ
	4.3 Performance Evaluation for Operator Fusion

	5 Related work
	6 Conclusion and Future Research
	References

