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Data-driven stabilization of non-zero equilibrium for polynomial systems

Yixuan Liu and Meichen Guo

Abstract— Most existing work on direct data-driven stabiliza-
tion considers the equilibrium at the origin. When the desired
equilibrium is not the origin, existing data-driven approaches
often require performing coordinate transformation, or adding
integrator action to the controller. As an alternative, this work
addresses data-driven state feedback stabilization of any given
assignable equilibrium via dissipativity theory. We show that
for a polynomial system, if a data-driven stabilizer can be
designed to render the origin globally asymptotically stable,
then by modifying the stabilizer, we obtain a stabilizer for any
given assignable equilibrium.

I. INTRODUCTION

Direct data-driven control aims at synthesizing controllers
directly from data without explicitly identifying a sufficiently
accurate model. Indirect data-driven control approaches first
perform system identification and then control the identified
model. When the controlled system has complex dynamics,
identifying a sufficiently accurate model can be difficult and
time-consuming, and a direct data-driven control approach
is preferable. Direct nonlinear data-driven control has been
addressed using methods such as virtual reference feedback
tuning (VRFT) [1], iterative feedback tuning [2], intelligent
PID [3], [4]. More recently, Willems et al.’s fundamental
lemma [5] has been used to describe the response of dynam-
ical systems from input-output data and to design data-driven
controllers for linear and nonlinear systems, as can be found
in work such as [6]-[10].

For data-driven stabilization, almost all the existing work
considers a special equilibrium that is the origin. In real-life
applications, common problems such as set-point tracking
require the system to be stabilized at a non-zero equilibrium.
In the model-based setting, non-zero equilibrium stabilization
can be achieved by first performing coordinate transforma-
tion on the system model such that the non-zero equilibrium
is converted to the origin, and then designing stabilizers
for the converted system. We note that this approach often
requires redesigns of the controller for different equilibria. In
this paper, we aim at developing a data-driven state feedback
stabilizer that stabilizes any given assignable equilibrium
directly from data without performing coordinate transfor-
mation.

Related work. Based on Willems et al’s fundamen-
tal lemma [5], a data-driven closed-loop representation of
discrete-time linear time-invariant systems was developed in
[7] and used for data-driven stabilization of linear and non-
linear systems at the origin. For continuous-time polynomial
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systems, [10]-[12] wrote the systems into a linear-like form
and achieved data-driven stabilization at the origin using
Lyapunov’s method. For stabilizing non-zero equilibrium
directly using these existing methods, coordinate transfor-
mation is needed.

Dissipativity describes input-output properties of a dynam-
ical system and it has been widely used for the analysis
and control of single and interconnected nonlinear systems
[13]-[16]. Equilibrium-independent dissipativity (EID) is a
recent extension of the conventional dissipativity that does
not reference to an explicit equilibrium, which makes it
more advantageous in handling uncertain and interconnected
systems [17]. The authors of [18] and [19] derived neces-
sary and sufficient dissipativity-based conditions for state
feedback stabilization of any given equilibrium for linear
and nonlinear systems with known dynamics. Based on
the linear parameter-varying (LPV) framework and EID,
[20] proposed equilibrium-independent control of nonlinear
systems. Recent work has also explored the conventional dis-
sipativity properties in the data-driven setting. Using input-
output or input-state data, most of recent work has been
focused on data-driven verification of dissipativity, such as
[21]-[25]. Conventional-dissipativity-based data-driven con-
trol was proposed in [26] for linear systems and in [27] for
nonlinear systems. By adding an integrator, [28] and [29]
achieved data-driven set-point tracking.

Contributions. In this work, we study direct data-driven
state feedback stabilization of polynomial systems at non-
zero equilibria. Using EID with a quadratic supply rate, we
show that if a class of polynomial systems can be stabilized
at the origin by a data-driven state feedback controller,
then by modifying the controller, one can obtain a data-
driven stabilizer for any given assignable equilibrium. The
advantage of the proposed data-driven control approach is
that the coordinate transformation is not needed, and a
stabilizer can be obtained for any known equilibrium based
on the stabilizer for the origin without redesigning the control
gain. In addition, we show that if the polynomial system is
data-driven asymptotically stabilized at the origin, it is EID
with a specific fictitious output.

The rest of the paper is organized as follows. Section II
presents the problem formulation and preliminaries on data-
based closed-loop representation, dissipativity with quadratic
supply rates, and sum of squares (SOS) polynomials. The
connection between data-driven stabilization and dissipativ-
ity, as well as the data-driven stabilizer design for non-
zero equilibria, are presented in Section III. Simulation
results on Van der Pol oscillator are illustrated in Section
IV. Conclusion remarks and possible future work are given
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finally in Section V.

Notation. Throughout the paper, A > (=)0 denotes that
matrix A is positive (semi-)definite, and A < (=<)0 denotes
that matrix A is negative (semi-)definite. For a differentiable
function V : R™ — R, VV : R® — R" is its gradient. The
function V is strongly convex if (VV (z1)—VV (22)) T (21—
x3) > k(x1,22)||x1 — 22||3 for all x1,25 € R™ and some
function k(x1,x2) > 0 for all x1 # xs.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. Problem formulation

Consider an input-affine polynomial system
&= AZ(x)+ Bu (1)

where x € R" is the state, u € R™ is the input, and m < n.
A € R™N and B € R"*™ are unknown constant matrices,
and B has full-column rank, i.e., rank(B) = m. The function
Z : R® — RY is a dictionary of monomials in = having
degrees no smaller than 1. Therefore, it holds that Z(0) = 0,
and thus the origin (z,u) = (0,0) is an equilibrium of (1).
The dictionary Z(z) can be obtained by prior knowledge on
the dynamics, such as the physics of the system.

Denote (x,u.) € R™ X R™ as an equilibrium configura-
tion of (1), that is

0= AZ(z.) + Bu,. (2)
As B has full-column rank, when m = n, (1) is fully
actuated and for any equilibrium x, € R”, the associated
equilibrium input can be found as u, = —B 1AZ(z.).

When m < n, let B+ € R(*=")%" be such that B+B = 0
and rank(B*) = n — m. Then, similar to [17], we define
the set of assignable equilibrium points as

ifm=n

3)

g= %
" {z. e R*|BLAZ(z,) =0} ifm<n

and the associated unique equilibrium input for each z, € €
as U = ky(z.) = —(BTB)"'BT AZ(x.).

In this work, we consider the case where the exact
dynamics of (1) is not explicitly known. Instead, a dataset
DS = {(&(tr), x(tr), u(ty)), k =0,1,...,T —1} for some
integer 7" > 1 collected from one or multiple experiment(s)
is available for control design. The objective is to design a
data-driven state feedback control law that stabilizes (1) at
any given equilibrium point z € £ and u, = k,(z.).

Problem 1: Consider the system (1) with the set £ of
equilibrium points, and the dataset DS. Given any (., u.)
where z. € £ and u. = ky(z.), use the dataset DS to
design a state feedback control law v = F'(z, x.,u.), such
that the equilibrium x. is globally asymptotically stable for
the closed-loop system.

Remark 1 (Known equilibrium configuration): The equi-
librium configuration (z.,u.) is necessary for the proposed
data-driven approach, which can be obtained via experi-
ments. Nonetheless, it can be difficult to find the equilibrium
input u. when the system model is unknown. It is of our
interest to develop a data-driven control approach that is
independent of the equilibrium input u. in the future.

B. Data-based closed-loop representation of polynomial sys-
tems

The direct data-driven stabilizer design presented in this
work relies on the data-based closed-loop system represen-
tation of the polynomial system (1). Similar representations
have been used in work such as [7] and [10] for direct data-
driven control of linear and nonlinear polynomial systems.

Arrange the data in DS into the data matrices

Xo = [z(to) =(t1) z(tr-1)] € R™T (4a)
Xy = [#(to) #(t1) i(tr1)] € R (4b)
Uo = [u(to) u(t1) u(tr—1)] € R™T. (4o

Using the known vector Z(z), we can evaluate the value of
vector Z(z) during the experiment as

Zo = [Z(x(to)) Z(z(tr)) Z(x(tr-1))] € RN*T.
For the dynamics of system (1), the data matrices satisfy that
X1 =AZy+ BU,. 5)

Lemma 1 (Data-based closed-loop representation):
Consider the polynomial system (1) and the dataset DS.
For any matrices K and G such that

K| U

)= [zle ®
the closed-loop system under state feedback control law u =
K Z(z) can be written as

& =X1GZ(x). (7
Proof: The closed-loop representation results from the
equality that

A+BK =[B Al LKH] QB 4 [%ﬂ ¢ 2 xG.
This completes the proof. [ ]

We note that in the data-based closed-loop representation
(7), the system matrix only depends on the data matrix X
and the design variable G. We will characterize stabilizers
using the data-based system matrix.

Remark 2 (Noiseless data): In this work, we suppose that
the collected data does not contain measurement noise.
When the data is noisy, an uncertain data-based closed-
loop representation can be derived and robust data-driven
stabilizers can be designed, such as presented in [10]. The
robust data-driven stabilization of non-zero equilibrium is of
interest in our future work.

C. Dissipativity with quadratic supply rates

Dissipativity describes an input-output property of a sys-
tem. Consider the system
(8a)
(8b)

i = f(z)+ g(x)u,
y = h(z)

where y € RP is the output and the function i : R — RP
is sufficiently smooth. Suppose that f(0) = 0 and h(0) = 0,
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which implies that (z, te,y.) = (0,0,0) is an equilibrium
configuration of (8).
We focus on quadratic supply rates w : R™ x R? — R in

the form of
T
wen =) (& HE @

where () and R are symmetric matrices.

Following [18], we present the definition of strict QSR-
dissipativity.

Definition 1 (Strict QSR-dissipativity): The system (8) is
strictly QSR-dissipative with respect to the supply rate (9)
if there exists a continuous differentiable storage function
V :R™ — R such that V(x) > 0 Vz # 0, V(0) =0, and

V(z) + e(z) < w(u,y) (10)

for all admissible u € R™, where ¢(x) > 0 for 2 # 0 and
€(0) = 0.

The QSR-dissipativity refers to the equilibrium at the
origin. When the desired equilibrium is not at the origin,
simply shifting the storage function V' (z) does not work, and
a new storage function V., (z) depending on the equilibrium
x, is needed for the dissipativity analysis [17]. EID describes
the dissipativity of system (8) at any equilibrium z. € £. We
first define the unique equilibrium output y. with respect to
any z. € £ as

Ye = ky(aje) = h(xe)

Then, we can present the definition of EID.

Definition 2 (Strict EID [19]): The system (8) is strictly
EID with supply rate w : R™ x R? — R if, for every
equilibrium z. € &, there exists a continuously differentiable
storage function V,_ : R” — R such that V,,_(z) > 0 for all
T # Xe, Vg, (ze) =0 and

Vo (1) + €. () < w(u— e,y — ye) (11)

for all admissible v € R™, where ¢, (z) > 0 for z # x.
and €, (z.) =0, ue = ky(z¢), and ye = ky(x.).

In particular, we define the storage function V;,_(z) as

Ve () =V (x) = V(ze) — VV(2e) T (2 — ) (12)

where V'(x) is as defined in Definition 1 and is strongly
convex. By Bregman divergence properties [17, Lemma A.2],
V. (z) is also strongly convex and radially unbounded.

Remark 3 (Strict dissipativity): Definitions 1 and 2 intro-
duce strict dissipativity. If e(2) = 0 and €, (0) = 0, one will
get the definitions of QSR-dissipativity and EID as can be
found in work such as [13]-[15], [17]. As this work addresses
asymptotic stabilization of non-zero equilibrium, we will use
strict dissipativity in the subsequent analysis. Moreover, we
define the storage functions V'(x) and V,,_(z) to be radially
unbounded for deriving global stabilization results, as they
are also used as the Lyapunov candidate functions for the
stability analysis.

D. SOS polynomials and SOS dissipativity

In this work, we focus on the polynomial system in the
form of (1). To be able to derive computationally efficient
conditions for characterizing data-driven state feedback sta-
bilizers, we use the SOS technique, similar as our previous
work [11] and [10]. Moreover, by the SOS decomposition,
the relation of QSR-dissipativity and EID has been analyzed
in [19], which will also be useful in the subsequent sections.

First, we introduce the definition and some important
properties of SOS polynomial matrices.

Definition 3: (SOS polynomial matrix [30]) M : R" —
R?* is an SOS polynomial matrix if there exist
My, ..., My : R" — R7%7 such that

k
M(x) =Y M(x)" Mi(z) Vo €R". (13)

Some important f);éperties of SOS polynomial matrices
are summarized in the following lemma.

Lemma 2: (Properties of SOS polynomial matrices [30])
For a polynomial matrix M (x), consider the following
conditions

(i) M(zx) is SOS;
(i) M(z) > 0 for all z € R™;
(iii) the polynomial " M (x)y is SOS in the extended vari-
able [z yT}T where y € R™.
Then, (i) = (i) and (i) <= (iii).

When o = 1, M(z) is a scalar SOS polynomial. Now
recall the definitions of strict QSR-dissipativity and strict
EID. Using SOS polynomials to characterize the inequalities
in Definitions 1 and 2 gives the definitions of SOS strict QSR
dissipativity and SOS strict EID [19].

Definition 4 (SOS strict QSR-dissipativity): The system
(8) is SOS strictly QSR-dissipative with respect to the
supply rate (9) if there exists a continuous differentiable
storage function V' : R™ — R such that V(z) > 0 for all
x #0, V(0) =0, and

—V(z) — e(z) +w(u,y) is SOS (14)

for all admissible u € R™, where ¢(z) > 0 for  # 0 and
€(0) =0.

Definition 5 (SOS strict EID): The system (8) is SOS
strictly EID with supply rate w : R™ x RP — R if, for every
equilibrium z. € &, there exists a continuously differentiable
storage function V;, : R™ — R such that V,_(x) > 0 for all
T # Xe, Vi, (ze) =0 and

Ve () = €z, () + w(u — Ue, y — ye) is SOS (15)

for all admissible v € R™, where ¢,_(z) > 0 for z # x.
and €, (ze) =0, ue = ky(xe), and ye = ky(z.).

By Lemma 2, a system is strict QSR-dissipative (EID)
if it is SOS strict QSR-dissipative (EID), and the converse
does not hold. Using SOS polynomials, we also present the
definition of SOS asymptotically stable.

Definition 6 (SOS asymptotically stable): The closed-
loop system (8) is SOS asymptotically stable under the state
feedback u = F(z), if there exist functions V : R — R
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and 4 : R™ — R, such that V(z) > 0 for all z # 0,
V(0) =0, u(x) > 0 for all x # 0, u(0) = 0, and and the
time-derivative of V (x) satisfies that —V () — p(z) is SOS.

The following result from [19] reveals the connection
between SOS asymptotic stability and the SOS strict QSR-
dissipativity of a nonlinear system (8a).

Theorem 1: [19, Theorem 1] A dynamical system (8a)
is SOS asymptotically stable by state feedback if and only
if there exists an (fictitious) output variable (8b) such that
the system (8) is SOS strictly QSR-dissipative with R > 0
and A = 0, where A = SR™1S8T — Q. A stabilizing state
feedback is given by u = —R™1STh(x).

Remark 4 (SOS asymptotic stabilization and dissipativity):

A result similar to Theorem 1 was derived in [18], which
shows that the closed-loop (8a) is asymptotically stable
if and only if it is strict QSR-dissipative under the same
conditions. In this work, we use Theorem 1 with the SOS
definitions since it is essential for deriving the data-driven
stabilizers for non-zero equilibrium as shown in Corollary
1 in Section III-A.

III. DATA-DRIVEN STABILIZATION OF NON-ZERO
EQUILIBRIUM

In this section, we present the data-driven stabilizer design
for polynomial systems (1) at any given assignable non-zero
equilibrium. We first show that if the system (1) is made SOS
asymptotically stable at the origin using the dataset DS, then
it is SOS strictly QSR-dissipative with the matrices R > 0,
and @, S depending on data. Then, using SOS strictly QSR-
dissipativity and SOS strictly EID, we can modify the data-
driven stabilizer for the origin to obtain a stabilizer for any
given equilibrium z, € £.

A. Data-driven stabilization and dissipativity

In the following result, we show that if the closed-loop
system (1) is globally SOS asymptotically stable at the
origin, then it is SOS strictly QSR-dissipative with a fictitious
output.

Theorem 2: Consider the system (1) and the dataset DS.
If there exist matrix Y € RT*N, positive definite matrix
P € RV*N "and an SOS polynomial p(x) > 0 for all x # 0,
such that

ZoY = P, (16a)

7 Y
_8:CX1Y_Y X1 ox
then the feedback control law u = UpY P~1Z(z) renders
the origin globally SOS asymptotically stable. Moreover, the
system is SOS strictly QSR-dissipative with respect to the
fictitious output y = Z(x), the storage function V(x) =
Z(z)" P~1Z(x), and the supply rate (9) with R = 0,

Q=P Y U)Y) RU)YP 1S =—-P L UY)"R. (17)

Proof: Defining G = Y P~!, one can write (16a) into
ZyG = I. Then, by the designed controller and (16a), we use
Lemma 1 to obtain the data-based closed-loop representation,
T =X,YP ' Z(x).

— p(x) Iy is SOS, (16b)

The time-derivative of V(z) = Z(x) " P71 Z(x) is

-
V(z)=Z(z) Pt <8ZX1Y + yTx7 % > P1Z(2).

Ox Loz
It holds that
—V(z)—Z(x)"P - pu(x)Iy - P71 Z(2)

= Z(x)" P! (—gixly—
T TaZT -1
Y'X, o —p(x)In | P Z(x).

If (16b) is satisfied, by Lemma 2 ((i)—(iii)), —V (z) —
Z(z) TP~ p(x)Iy - P71 Z(x) is also an SOS polynomial.
As the SOS polynomial p(z) > 0 for all x # 0, the system
is SOS asymptotically stable.

Next, we apply Theorem 1 to prove the QSR-dissipativity
of the system. For R > 0, by letting ) and S satisfy (17),
we have that u = UgyY P~'Z(z) = —R~'S Ty, and

A=SR'ST Q=P YUY)"R-R™' - RU,)Y P!
— P YU)Y) " RU,YP! =0.

Therefore, by Theorem 1, the system is strictly QSR-
dissipative with the output y = Z(z) and the matrices @,
S, R > 0 given in (17). [ ]

For the polynomial system (8), one can prove that it is
SOS strictly QSR-dissipative if and only if it is SOS strictly
EID [19]. Therefore, Theorem 2 leads to the following result.

Corollary 1: Consider the system (1) and the dataset DS.
If there exist matrix Y € RT*N positive definite matrix
P € RV*N "and an SOS polynomial z(z) > 0 for all z # 0,
such that (16) hold, then the system is SOS strictly EID with
respect to the fictitious output y = Z(z), the storage function
Ve, (z) defined in (12), and the supply rate (9) with R >~ 0
and Q, S satisfying (17).

B. Data-driven stabilizer design for non-zero equilibrium

In the previous subsection, we have made the connection
between data-driven SOS asymptotic stability of the origin
with the SOS strict QSR-dissipativity and SOS strict EID.
In what follows, we present the data-driven stabilizer design
for any given equilibrium z, € £ and u. = k,(z.).

First, we show the result on global asymptotic non-zero
equilibrium stabilization via SOS strict EID.

Lemma 3: Consider polynomial system (1) that is SOS
strictly EID with respect to the fictitious output y = Z(x),
the storage function (12), and the quadratic supply rate w(u—
Ue, Y — Ye) in the form of (9). If there exists a matrix K €
R™*N such that

Q+2SK + K"RK <0, (18)
then the state feedback control law
uw=K(Z(x) — Z(xe)) + e (19)

where u. = ky(x.), renders any equilibrium z. € £ globally
asymptotically stable.
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Proof: Under the controller (19), one has that
u—ue = K(Z(x) — Z(x.)). (20)

As the system is SOS strictly EID, for each z. € &, the
storage function V,_(z) satisfies that

Voo () + €2, ()
< W —ve) Qy—ye) +2(y — ye) " S(u — ue)
+ (u— ue)TR(u — Ue)
= (Z(x) - Z(x.)) " (Q + 2SK + K" RK)(Z(x) — Z(x.))

where €, (r) > 0 when = # z. and €, (z.) = 0. By
condition (18), it holds that, for any x € R"

Vo, (z) < —€, () < 0. @1

As e, (x) > 0 forall x # x, V,(x) < 0 for all z # z,, and
thus the equilibrium z, is asymptotically stable. Recall that
the storage function V,_(x) is strictly convex and radially
unbounded, so the controller renders the equilibrium x.
globally asymptotically stable. [ ]

The following result shows the data-driven controller
design that globally asymptotically stabilizes any given equi-
librium z. € € and u, = k().

Theorem 3: Consider the polynomial system (1) and the
dataset DS. If there exist matrix Y, positive definite matrix
P ¢ RN¥*N_ and a SOS polynomial p(x) > 0 for all
x # 0 such that the conditions in (16) hold, then the state
feedback control law v = UpgY P~ (Z(z) — Z(.)) + ue
with u, = k,(z.) renders any equilibrium point z. € &
globally asymptotically stable.

Proof: By Corollary 1, if the conditions in (16)
are satisfied, the data-driven controller v = KZ(z) =
UpY P~1Z(x) renders the origin globally asymptotically
stable, and the system is SOS strictly EID with R > 0 and
(@ and S such that (17) holds. Moreover, one has that

Q+2SK+K'"RK =K'"RK —2K"RK + K" RK =0,

which satisfies (18). Then, by Lemma 3, the state feedback
control law u = UgY P~ (Z(z) — Z(x¢)) + ue with u, =
kyu(z.) renders any equilibrium point z. € £ asymptotically
stable. [ ]

Theorem 3 shows that, if a data-driven state feedback
control law can be designed to render the origin globally
asymptotically stable for (1), one can modify the control
law to obtain a new control law that renders any given
equilibrium point z. € & globally asymptotically stable.
The feature of this design approach is that the coordinate
transformation is not needed, and the control gain K does
not need to be redesigned for each equilibrium, as long as it
is designed for stabilizing the origin.

IV. AN EXAMPLE
This section illustrates the simulation results of stabilizing
a Van der Pol oscillator at any given assignable equilibrium
via data. Specifically, we collect data from the system

with the initial condition z(0) = [-0.1 O.I]T and the
control input u = sin(t) from ¢ = 0 to t = 10s. The data is
collected with the sampling period 0.5s and the length of the
data matrices is 1" = 10. It is known that the uncontrolled
Van der Pol oscillator exhibits the limit cycle behavior, as
shown in Fig. 1. The simulations are conducted in MATLAB
using SOSTOOLS with the semidefinite programming solver
MOSEK.

We write the unknown dynamics into the linear-like form
(1) by selecting Z(x) as
Z(CU): [xl ro T1X2 x% .CL‘% 33%.132 xll‘% les $§}T
which contains all monomials in x having degree from 1 to
3.

First, we stabilize the system at the origin. Applying
Theorem 2 by setting €(z) = 107 1%(22 +23) and minimizing
the trace of P to enforce a rapid convergence rate towards
the origin gives the state feedback control law as

up = — 1.414623 + 0.4075522 25 — 0.64193x, 22
— 1.418423 + 0.101612% + 0.2003521 79
+0.2617723 4 0.786812; — 10.482z5.

As illustrated in Fig 1, the control law wu; renders the origin
asymptotically stable.

—u=0

u=uy
———— = Uy
2| o Initial condition
+ Point (0, 0)
* Point (-1, 0)

Fig. 1. Open-loop trajectory of the Van der Pol oscillator and closed-loop
trajectories under the control laws w1 and us.

Next, we show the stabilization of the equilibrium at
z. = [-1 O]T. By applying Theorem 3, the controller us
stabilizing the system at the equilibrium point [—1 0]T is
designed as

Ug = U1 — 1.7294.

The blue curve in Fig. 1 shows that, under the designed
control law wuo, the trajectory of the closed—loop system
converges to the equilibrium at z, = [-1 0] . Fig. 2

g.:l - 9 illustrates the phase portrait of the closed-loop system under
dy = —x1 + (1 = a7)zs +u (22)  4,, which verifies the asymptotic stability of the equilibrium.
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Fig. 2. Phase portrait of the closed-loop system under the controller uo [14]
designed using Theorem 3.
[15]
V. CONCLUSIONS AND FUTURE WORKS
[16]
This work considered the data-driven state feedback sta-
bilization of any given assignable equilibrium for a class [17]
of polynomial systems. By writing the polynomial system
into a linear-like form, we derived a data-based closed- s
loop representation with a state feedback controller using [18]
finite input-state data. We proved that if a controller can
be designed based on the data-based closed-loop represen-  [19]
tation to globally SOS asymptotically stabilize the origin,
then the system is SOS strictly QSR-dissipative and EID.  [20]
Furthermore, given any admissible equilibrium configuration
(Ze,ue), modifying the designed controller for the origin [21]
can globally asymptotically stabilize any given assignable
equilibrium. The proposed approach does not require an -
explicit model of the system, the coordinate transformation, 221
or control gain redesign for stabilizing the non-zero equi-
librium. Future work will consider more general classes of ’
nonlinear dynamics, noisy measurements, as well as relaxing 23]
the restriction on the known equilibrium input ..
[24]
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