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DESIGNING AI SYSTEMS

SUMMARY

DESIGNING AI SYSTEMS

Since its inception, the field of AI has been focused on devising systems that 
can provide clear answers. AI systems can tell us how to move a chess piece, 
translate a word, fold a protein, and predict whether a person would buy a book. 
These systems have a clear objective, clear outcome, and in some cases, clear 
reward, and punishment functions, too. The answers they provide can easily 
be classified as correct or incorrect. After a chess piece has been moved, one 
can easily check whether the move was correct and has increased the odds 
of winning. These characteristics have propelled the adoption of AI systems 
in areas such as modes of manufacturing and transportation, the way people 
receive information, select movies and songs, the way they date, trade at the 
stock exchange market, and the way social institutions such as hospitals, 
banks, police departments and courtrooms make decisions (e.g., Rahwan 
et al., 2019).

However, once AI systems that need clear rules and objectives face the 
complexity of social contexts, they start to produce unintended and sometimes 
harmful outcomes (Rudin, 2019). For instance, an AI system used by the Dutch 
Tax Authorities led to the false persecution of thousands of families and 
the resignation of the entire government in 2021 (Hanley, 2021). AI systems 
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used by big technological companies such as Google, Meta and Twitter (now 
X) frequently mislabel black people as e.g., primates (BBC, 2021b). When 
the Covid-19 Pandemic hit, the system Zillow used to estimate house prices 
resulted in more than $300 million loss for the company and the firing of 2000 
people (CNN, 2021). In such situations, neither the problems nor the objectives 
can be clearly defined. Further, instead of true or false answers, there is a 
multitude of potential solutions that can only be classified as good or bad. 
Therefore, if we are to design AI systems that do not produce far-reaching 
harmful consequences, we cannot decouple/detach them from the complex 
systems in which we are to embed them.

Historically, the field of Design developed as a response to large changes 
in society facilitated by rapid technological advancements (Calabretta & 
Kleinsmann, 2017). In the span of a century, Design gradually evolved from 
designing products to designing human-computer interactions, product-service-
systems, and recently, complex sociotechnical systems (Norman & Stappers, 
2015). This expansion of the field sparked an on-going debate whether Design 
theories should be adapted to address the increasingly complex contexts 
in which designers operate (e.g., Voûte et al., 2020). The debate should be 
extended to include the design of AI systems that are to be implemented 
into larger complex contexts, too. Hence, the initial research question of this 
dissertation:

“How can Design theories support the design and implementation of AI systems 
into complex contexts?”

It is against this backdrop that we start the theoretical and empirical 
exploration presented in the dissertation. We follow the theory building part of 
the theory building/testing cycle proposed by Cash (2018). Namely, we address 
its first three stages: Discovery and description (i.e., detailing the important 
issues around which the theory is built), Definitions of variables and limitation 
of domain (i.e., presenting variables and their definitions as well as where and 
when a theory is to be applied), and Relationship building (i.e., describing the 
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conceptual relationships among the identified variables) (Cash, 2018). These 
stages are reflected into the three parts of the dissertation.

Part I: Set the scene

The wide-spread adoption of AI systems is a result of the significant progress 
in the field over the past decade (Rahwan et al., 2019). For instance, deep 
learning models can predict lung cancer with a 94.4% accuracy (Ardila et al., 
2019), perform better than radiologists in detecting pneumonia (Rajpurkar et al., 
2017), detect hypertrophic cardiomyopathy in asymptomatic patients (Green 
et al., 2019) and forecast the aftershock locations of earthquakes (DeVries et 
al., 2018). Machine Learning, which trains models through examples of desired 
input-output behaviour, fuels most of these achievements.

While there are various types of AI systems, they share common 
characteristics: (1) their decision-making processes are complex and not 
easily understood, (2) they are heavily dependent on human-generated data, 
and (3) they continuously learn from and adapt to human behaviour. These 
characteristics make it difficult to ensure AI systems are transparent, fair, 
responsible, and non-maleficent (Jobin et al., 2019). Consequently, there are 
four main challenges for implementing AI systems into existing contexts: 
(1) ensuring transparency of the innerworkings of AI systems, (2) mitigating 
implicit biases in the data used to train and retrain these systems, (3) the 
difficulty to align the behaviour of AI systems with human values, and (4) 
addressing the behaviour-use interdependence of these systems.

While research approaches exist for the first three challenges, the challenge of 
addressing the AI systems’ behaviour-use interdependence has not been fully 
addressed in extant literature. Design theories are well-positioned to tackle 
it due to the central role both behaviour and use play in the core of Design 
reasoning – innovative abduction (Roozenburg, 1993). These insights serve as 
a way for us to reframe the main research question into:
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“How can a theoretical model be designed that supports the early simulation of 
AI systems’ behaviour-use interdependence by utilising Design theories?”

Part II: Initial theoretical model

We begin our exploration with a theoretical investigation into Design 
theories that could aid the early simulation of AI system’s behaviour-use 
interdependence. First, we examine the paradigms that have largely defined 
the majority of Design theories – Rational Problem Solving (Simon, 1996) and 
Reflective Practice (Schön, 1983). Despite their differences, both paradigms 
contend that (1) establishing a feedback mechanism is instrumental to 
achieving a better understanding of the problem; (2) the designer has influence 
over the design process; and (3) unintended outcomes are a natural and needed 
result of the design process since they propel it forward.

Second, we explore the Design theory of innovative abduction which provides 
formally defined relationships between the variables of behaviour and use. 
It also introduces the manners in which the two can be used to design new 
solutions. Two widely-agreed upon models exist that define the relationship 
– one introduced by Roozenburg (1993) and one by Dorst (2011). Despite 
their differences, they both start from (1) an initially agreed-upon starting 
point (purpose and value), (2) which they use to define the behaviour and use 
of the potential solution (mode of action and actuation, and how), and (3) the 
combination of these leads to a tangible solution – either a form or an object, 
service, or a system.

Third, prototypes can support the continuous simulation of the behaviour and 
use of a solution that is to be implemented into complex contexts. In fact, 
they (1) support us in observing the different types of outcomes and uses the 
behaviour can uncover; (2) serve as a bridge between behaviour and use; and 
(3) enable what Magnani (2007) terms manipulative abduction. We illustrate 
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these insights with two examples from a project conducted between November 
2015 and September 2016 for a large European airline.

Using this foundation, we theoretically examine the suitability of Design 
theories for the early simulation of AI system’s behaviour-use interdependence. 
We then introduce an initial version of a theoretical model, which proposes a 
set of relationships among the variables we identified.

purpose + data → frame1 
frame + mode of action → prototype 
prototype + actuation → outcomes

The model aids us to adapt the system’s behaviour to trigger the desired use 
and outcomes. Consequently, it is best suited for the early stages of conceptual 
design when neither the behaviour nor the desired use (or outcomes) are clear. 
Hence, providing a preliminary answer to the main research question of the 
dissertation.

Part III: Extended theoretical model

The Design theories we utilised, however, have been developed for the design 
of products and services. Unlike these, the behaviour of an AI system is 
continuously influenced by and learns from user-generated data. Therefore, in 
Part III, we explore further how to simulate the behaviour-use interdependence 
in the context of designing AI systems.

We begin our exploration by presenting an example of a three-person student 
team who successfully simulated the behaviour-use interdependence of an 
AI system four times by using simple prototypes. The team elicited multiple 
(intended and unintended) outcomes, which served as a robust feedback 
mechanism. Three things aided the team. Firstly, they explicitly identified 
intended actuations after deciding on their mode of action and before they built 

1 A cognitive act of looking at a problem situation from a specific viewpoint that informs how the 
problem can be solved. According to Dorst (2011), the formulation of frames follows the format: “IF 
we look at the problem situation from this viewpoint, and adopt the working principle associated 
with that position, THEN we will create the value we are striving for.” (Dorst, 2011, p. 525).
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a prototype. The addition of this variable allows us to connect each row of the 
theoretical model with a different type of abductive reasoning: explanatory, 
innovative, and manipulative (Figure 0). Secondly, current Design theories 
suggest that to design a new solution, one needs to apply innovative (and 
explanatory) abduction. Yet, the team made use of all three abduction types 
to simulate the behaviour-use interdependence of their concept. Thirdly, they 
also used non-abductive activities such as explicitly defining requirements 
and values. These played a pivotal supportive role in the development of the 
concept for an AI system.

Figure 0 Formulaic representation of the theoretical model

We address the uncovered insights with a five-month long case study. It 
discusses a design project for the devising of an in-car AI system conducted 
in collaboration with a large automaker. The case yields two main conclusions. 
Firstly, to support the early simulation of AI systems’ behaviour-use 
interdependence, the three abduction types - explanatory, innovative, and 
manipulative - need to be applied. Secondly, existing Design theories need to 
be extended. Five insights can guide such extension: (1) explanatory abduction 
is usually followed by innovative abduction; (2) the inductive generation of 
new values and requirements informs the formulation of every variable of 
the model; (3) visuals generated as a result of inductive reasoning (e.g., data 
visualisations) facilitate explanatory abduction; (4) the deductive evaluation of 
each row’s result against requirements and values supports the move from one 
abduction type to another; and (5) manipulative abduction plays a facilitative 
role while carrying out innovative abduction.

These insights form the basis of the final theoretical model which we name 
Theoretical Model for Prototyping AI or the PAI model. The PAI model is defined 
by relationships among abduction (explanatory, innovative and manipulative), 
induction and deduction. A model that provides us with a manner to support 
the early simulation of AI systems’ behaviour-use interdependence. Furthermore, 
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it is our contention that the PAI model will be applied in the same manner by 
different AI developers regardless of their background or skill level. Finally, 
the model also provides an indication on how three different data types can 
be used to update AI system’s behaviour during model development and 
deployment. These can serve as the starting point for the theory-testing part of 
the cycle Cash (2018) introduced.

Following the three theory building steps prescribed by Cash (2018), the 
devising of the PAI model allows us to shed light into how Design theories 
could contribute to the design of better AI systems. It also allows us to extend 
these theories and identify directions in which the field might (or should) 
go in a future defined by intelligent agents. Thereby, the model provides us 
with a way to approach the conceptual design of ever-evolving AI systems 
through the early simulation of their behaviour-use interdependence. Finally, 
these formalised relationships could also provide us with initial indications on 
how new AI models can be devised. AI models that do not rely solely on vast 
numbers of data points, but instead, allow for the creation of highly configurable 
world models AI agents can use. 
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EVIL MICE, SISYPHUS AND THE TRUTH

PREFACE

It appears I am prone to existential crises. So much so that the dissertation you 
are about to read is the direct result of one. And doing what a researcher does, 
I have boiled down the triggers for my crises to three components: evil mice, 
Sisyphus, and the truth. If one is to understand this dissertation, they need to 
take stock of the three components first.

Evil mice

When I was around two years old, I hated going to the kindergarten. The 
reasons behind my vehement hatred are not remembered neither by my 
parents, nor by me. However, we can all recall how the hatred was substituted 
with cautious excitement. One day, I came home recounting tales of how I 
singlehandedly managed to defeat the evil mice and protected all the other 
children in my kindergarten. I am not sure what triggered this story. Yet, I 
remember what my mother did with it – she cleverly picked up on my overly 
active imagination and innate (and highly delusional) desire to see myself as 
the hero. So, every day she would tell me ever more fantastical tales about my 
adventures and great victories against the ever-elusive evil mice and their king. 

EVIL MICE, SISYPHUS, 
AND THE TRUTH
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From that day onward, my mother’s task to get me to the kindergarten on time 
was made significantly easier.

Sisyphus

The second component contributing to my crisis-prone disposition is Sisyphus, 
and more specifically, the Sisyphus described by Albert Camus. Sisyphus was a 
mortal man who cheated Death. Thus, not unlike Prometheus, he was eternally 
punished for no one should dare cheat the gods. Sisyphus’ punishment was 
more creative, however. While Prometheus played the rather passive role of 
having to wait for an eagle to eat his liver, Sisyphus had to push a boulder up a 
hill and just when it has reached the peak, the boulder would roll down and he 
had to start his journey anew. Every fibre of his body utilised and exerted for 
one purpose only – to accomplish nothing. For the gods decided, there is no 
worse punishment than meaningless labour.

The act of returning down the hill to get to the stone and begin his meaningless 
labour again, Camus sees as the “hour of consciousness”. It is, Camus claims, 
this specific part of the punishment when Sisyphus becomes superior to his 
fate. For it is the struggle towards the heights that matter, not the number of 
times one must return back to their rock. One must imagine Sisyphus happy, 
Camus concluded. I also imagined him happy, although not for the same 
reasons. To me, there was something strangely liberating in knowing one can 
control her fate even in the presence of what seem like immutable constraints 
and predefined outcomes.

The truth

There is a Zen koan that goes something like that. A teacher pushed his 
student’s head underwater and watched as the bubbles of oxygen dissipate. 
He then pulled the student’s head out and told him that the moment he wishes 
to know the truth as much as he wished for oxygen, would be the moment in 
which he would find it. I, much like that student, have always been fascinated 
by the truth. In fact, throughout all my years in philosophy competitions, I wrote 
about truth almost exclusively. I wrote about it so much that my philosophy 
teacher would beg me to pick any other topic. Yet, to me the only worthy pursuit 
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has always been that of truth – the ability to get to the crux of a problem; 
to understand why things transpire; to know what is real and what is not. Of 
course, I soon realised the truth can be subjective and even the objective truth 
can be distorted. Yet, my fascination with the truth and what is real never 
really dissipated.

The existential crisis

Around the time I graduated from my master’s degree, I was supposed to 
choose one of the many more than generous job offers I received. However, this 
was also the year when we, as a society, started getting glimpses on how AI 
systems (and in particular Facebook and Google’s recommendation algorithms) 
could empower a slew of demagogues to “repackage” their propaganda as 
the truth, while squandering scientific evidence. We also saw how people 
were being discriminated against due to their skin colour, gender, or the 
neighbourhood they live in – systemic unfairness made worse due to models 
that are essentially black boxes. And all that was facilitated by technology – the 
very entity I had considered my entire life to be an objective source of progress 
and good. I, naturally, had the strong urge to do something about it. Yet, the 
problem seemed so insurmountable that I doubted anything can be done to 
ensure the negative unintended and unanticipated consequences of AI can 
be somehow mitigated. Certainly, not anything I was equipped to do. So, my 
strongest to date existential crisis settled in.

At the height of my crisis, I decided to climb the second highest peak in Bulgaria 
(with no previous experience) (Image 1). As one can expect from a very skill-
less climber, while we were coming down the mountain, I made a mistake, and 
I thought I am about to die. When I did not, a very long few hours of Sisyphean 
consciousness and acute awareness of my mortality and insignificance 
followed. It was then when the three components came together and provided 
my existential crisis with a (delusional) purpose of sorts. I decided I want to be 
one of the people who are actively trying to design better AI. I did not want to be 
complacent with the development of systems that exponentially amplify pre-
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existing societal biases and the voices of people who squander the truth. Yet, I 
had no idea how to do any of that.

Fittingly, I was coming down a mountain. I did not push a rock uphill, and I was 
not coming back to one either. Still, just like my two-year-old self, I was eager 
to confront an even more elusive nemesis than the evil mice. Soon after, I met 

Maaike Kleinsmann who employed me for two days a week and allowed me to 
research any topic within the area of AI – no constraints. This research work 
then slowly evolved to a full-fledged PhD research on the manners in which 
we can ensure AI systems will perform as intended once they get deployed 
into complex contexts. The work was supported by Maaike, Christine de Lille, 
Milene Gonçalves and Dirk Snelders. A work that often resembled the absurd 
Sisyphean labour – just when I thought I was about to push the boulder to the 
top, it rolled down. 

Still, one must always imagine Sisyphus happy!



Image 1 Peak Vihren (2914 m) – the highest point of the Pirin Mountain in Bulgaria
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INTRODUCTION

AI AND COMPLEX 
CONTEXTS

Self-learning Artificial Intelligence (AI)1 systems are already deeply embedded 
into people’s everyday lives and have a prominent role in their daily activities: 
from modes of manufacturing and transportation through the way people2 
receive information from news, select movies and songs, the way they date, 
trade at the stock exchange market, to the manner in which critical social 
institutions such as hospitals, banks, police departments and courtrooms 
make decisions (e.g., Crawford & Calo, 2016; Rahwan et al., 2019). The wide-
spread adoption of AI systems is a direct result from the impressive strides 
the field has witnessed in the past decade in solving technical problems that 

1 In this dissertation, we mainly refer to the type of AI that is currently making the biggest strides 
and affecting people’s lives the most – Machine Learning (ML). AI and ML are two different things 
(i.e., ML is a branch of AI – see Chapter 2), yet we chose to retain both of them as the research 
presented here can be applied to different types of AI. Still, most of the examples we use are based 
on ML algorithms. Moreover, the aim of this dissertation is not to explain the technical differences 
of both approaches – many scholars have done that already (e.g., see Russel & Norvig, 2021). 
Rather, we focus on the behaviour an AI system exhibits once released into a broader context. 
Therefore, although ML and AI are not the same, we will use the terms interchangeably.
2 In this dissertation, unless explicitly stated, the pronoun “we” includes myself and my doctoral 
team. In the rare occasions in which the pronoun “I” is used, it refers to my personal opinions or 
activities I carried out as part of a case study (see Chapter 7). 
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have resisted the attempts of the AI community for decades (Ching et al., 2018; 
Rahwan et al., 2019). This statement rings true in the fields of speech and visual 
object recognition, object detection, drug discovery, physics, and genomics 
(Ching et al., 2018). For instance, a coordinated effort of multiple machine 
learning (ML) algorithms helped in converting telescopic data into the first-
ever photo of a black hole’s silhouette (BBC, 2019). Deep learning algorithms 
have been shown to predict lung cancer with a 94.4% accuracy3 (Ardila et al., 
2019), detect signs of autism in the human DNA (Zhou et al., 2019), accurately 
predict presidential elections (Kahn, 2020), and perform better than radiologists 
in detecting pneumonia from front-view chest X-ray images (Rajpurkar et al., 
2017). Further, an ML classifier was used to non-invasively detect hypertrophic 
cardiomyopathy, even in asymptomatic patients (Green et al., 2019) and another 
classifier learnt to forecast the aftershock locations of earthquakes (DeVries et 
al., 2018). These and other similar achievements prompted the widely accepted 
notion that AI could provide a viable path to exponential societal betterment 
(e.g., Rahwan et al., 2019).

The wide-spread implementation of AI systems is a relatively new phenomenon. 
Since the inception of the field in the 1950s, AI systems have been designed, 
developed, and deployed in controlled environments (i.e., in labs or simulators). 
In a controlled environment, an application can be shut down or reprogrammed 
if it does not perform as intended without producing long-lasting effects on 
its environment and users (Russell & Norvig, 2021). However, as AI systems 
become an instrumental part of our everyday lives, they also start being 
embedded in complex contexts. In this dissertation, we use the term complex 
contexts/systems to denote a collection of interconnected and interdependent 
social, physical, and technical elements that exhibit emergent behaviours and 
properties not directly predictable from the behaviour of individual components. 
These systems often involve nonlinear interactions, feedback loops, and 
intricate relationships among their elements, resulting in behaviours that 
are difficult to fully understand and predict. An example of such comes from 

3 The model used in this study performed on-par with radiologists when prior computer 
tomography imagining was available, and it was able to reduce the rate of false positives with 11% 
when no computer tomography imaging was available.
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Microsoft. In 2016, the company introduced an AI chatbot that was designed to 
“emulate the casual, jokey speech patterns of a stereotypical millennial” (Price, 
2016). They called it Tay and stated that its aim was to engage millennials by 
learning from its conversations with people on Twitter and get smarter over 
time (Hunt, 2016). When Tay was deployed, however, people started tweeting 
racist statements using the designated hashtags (i.e., #taytweets). Doing 
what it was designed to do (i.e., learn from conversations with people), the 
bot started generating racist tweets defending white supremacy, denying the 
Holocaust, and praising Nazis (ibid). Microsoft promptly took down Tay and 
apologised for the damage it created (ibid). It is of utmost importance to ensure 
AI systems like Tay behave as intended because they can scale quickly over 
short periods of time (i.e., many people can be affected by them) and transcend 
the platform for which they were designed (Russell & Norvig, 2021). Hence, their 
unintended consequences may cause far-reaching irreversible damage both to 
their direct users and to the companies that created them.

There is a growing awareness of the need to address the plethora of negative 
unintended consequences that arise once an AI system becomes an integral 
part of complex contexts. The plea for additional research on the subject 
has permeated across academic fields including, but not limited to, cognitive 
systems engineering; human factors; science, technology and society; safety 
engineering; ethics; legislation (i.e., for a comprehensive overview see Johnson 
et al., 2013; Crawford & Calo, 2016; Amodei et al., 2016; Rahwan et al., 2019), 
and design (e.g., Human-centered ML and approaches based on the work of 
Friedman’s Value Sensitive Design (e.g., Friedman et al., 2002)). In addition, 
different civil rights groups (e.g., Chee, 2021) and governmental bodies (e.g., in 
the United States4, the European Union5, and China6) have proposed regulations 
to mitigate the risks an AI system might produce. As such, AI systems and 
their potential influence over existing systems have become one of the largest 

4 Algorithmic Accountability Act of 2019
5 It is worth noting that this proposed regulation has been criticized by civil rights groups for 
its multiple loopholes which could lead to the abuse of AI systems by repressive governments 
(Chee, 2021).
6 In August 2021, the Cyberspace Administration of China (CAC) released draft regulation 
guidelines for algorithmic recommender systems (i.e., AI systems) (Singh, 2021).
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technological and societal challenges humans face today (e.g., Rahwan et al., 
2019; Russell & Norvig, 2021). The next section of the Introduction elaborates 
further on this challenge.

AI and complex contexts

AI systems are software programmes defined by their continuously self-
learning nature that “can, for a given set of human-defined objectives, 
generate outputs such as content, predictions, recommendations, or decisions 
influencing the environments they interact with” (Artificial Intelligence Act, 
2021) 7. These systems are devised to answer questions that are clearly 
defined, involve an enumerable set of solutions, clear rules, and inherently 
binary decision mechanisms (their output is either true or false) (Russell & 
Norvig, 2021). As such, they inherently solve what Rittel and Webber (1973) 
call “tame problems”. However, once these systems that are devised to solve 
tame problems transcend the boundaries of the platform for which they were 
designed, they start facing problems which do not have binary answers, clear 
rules, or enumerable set of solutions (Stoimenova & Price, 2020).  Rittel and 
Webber (1973) call these types of problems “wicked”. Wicked problems are ill-
formulated unique problems that can never be fully defined8, have no stopping 
rule or permissible set of operations and their solutions can only be classified 
as good or bad (instead of true or false) (ibid). To exemplify this tension 
between an AI system designed to provide binary answers (i.e., “yes” and “no”) 
and a complex context where there are no clear-cut optimal answers, we use 
the work of White and colleagues (2018).

In April 2018, White and co-authors from Microsoft Research and Duke 
University published a paper reporting their initial attempts to create a “simple 
scalable test that can be used for screening of Parkinson’s disease in the 
community or at home.” (ibid). The researchers used longitudinal log data from 
Microsoft’s search engine, Bing, to look into the presence and frequency of 

7 The definition was put forward by the European Union in their proposal regulation titled “Laying 
down harmonised rules on artificial intelligence”, published on April 21, 2021 (Title 1, Article 3).
8 According to Rittel and Webber (1973), “the information needed to understand the problem 
depends on one’s idea of solving it” (p. 161).
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symptom-related query terms; motor symptoms, such as the speed, direction, 
and tremors of cursor movements; and presence of risk factors. Despite still 
being in a testing phase, their AI system showed promise in detecting a disease 
(with an accuracy of 94.2 %) that has a current clinical early diagnosis accuracy 
of approximately 80 percent (ibid). The focus of the underlying AI algorithm 
was to accurately predict the presence of factors that potentially signal 
Parkinson’s disease. In effect, it answered a binary question – there could 
either be early signs of Parkinson’s in each individual’s data or not. However, the 
team’s ambition to create a test for community and home use (i.e., implement 
the AI into a complex context) inevitably posited a wicked problem (i.e., the 
information delivery of this type of solution requires careful consideration 
of perspectives in allied health systems). How does the home test deliver a 
diagnosis? What role do doctors play when diagnosis is outsourced? How 
does the test connect the diagnosed within the allied health service? How 
might the family require support after a diagnosis? In such situations, there are 
innumerable set of potential solutions and no well-described set of permissible 
operations. Moreover, there are many stakeholders that are interested to judge 
the solution, but none has the power to set formal decision rules to determine 
correctness. Finally, there is no immediate and ultimate test of a solution to 
the problem that ensures positive impact. Yet, delivering a false diagnosis 
or delivering a diagnosis insensitively could cause significant distress to 
the community.

What the examples we discussed so far show is that there is a technology that 
has the potential to exponentially better human life and science. Yet, once it 
starts to affect the context it is situated in, this technology designed to answer 
relatively well-defined (i.e., tame) questions also raises many ill-defined or 
wicked ones due to its self-learning nature and the complexity of the context 
in which it is implemented (Rudin, 2019; Rahwan et al., 2019). Therefore, if we 
are to design AI systems that do not produce far-reaching irreversible negative 
consequences, we cannot decouple/detach them from the complex contexts in 
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which we are to embed them. This statement brings us to the initial research 
question of this dissertation.

The initial research question

Historically, the field of Design developed as a response to large changes 
in society facilitated by rapid technological advancements (Calabretta & 
Kleinsmann, 2017). In the span of a century, Design gradually evolved from 
designing products for the highly industrialised production lines to the creation 
of optimal human-computer interactions and product-service-systems (ibid). 
Then, with the wide-spread adoption of human-centred design methods and 
design thinking, also came the increasing involvement of designers in complex 
sociotechnical arenas such as healthcare, sustainability, and transportation 
(Norman & Stappers, 2015; Stoimenova & Price, 2020). This expansion of the 
Design field sparked an on-going debate whether existing Design theories and 
methods need to be further developed to address the increasingly complex 
contexts in which designers operate (e.g., Voûte et al., 2020).

It is our contention that the same type of methodological exploration is needed 
for the design of AI systems that are to be implemented into larger complex 
contexts. This contention brings forward the initial research question of this 
dissertation:

“How can Design theories support the design and implementation of AI systems 
into complex contexts?”

An exploration prompted by this research question would shed light into the 
manners in which Design theories could contribute to our understanding of 
how AI systems can be designed. Further, it could identify possible directions in 
which the field might (or should) go in a future defined by intelligent agents.

Research method

In order to answer the aforementioned research question, we adopt theory-
driven research and, in particular, the theory building/testing cycle proposed by 
Cash (2018). This type of research is at the core of robust scientific knowledge 
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that is “valuable internally and accessible externally” (ibid, p. 87). It also allows 
for the creation of a foundation that can be clearly communicated across 
different fields (ibid).

The cycle Cash (2018) introduces is comprised of five distinct stages that 
guide the designer in gradually building up a robust scientific theory (Figure 
1). This dissertation only addresses the theory-building part of the cycle 
(highlighted in the figure). Namely, the stages of Discovery and description, 
Definitions of variables and limitation of domain and Relationship building. It 
is our contention that by focusing on the theory-building part of the cycle, we 
will be able to devise a theoretical model that can serve as the foundation on 
which predictions can be generated. Thus, allowing for the rigorous testing and 
falsification of the theory by different scholars, in different contexts.

During the first stage, one details the important issues around which the 
theory will be built. This is done by establishing the general characteristics 
of the issues and the potential importance of research in this area (Cash, 
2018). During the second stage, one identifies the variables that will underpin 
the theory and carefully crafts their definitions (ibid). According to Wacker 
(1998, 2008), for a theory to be good, its definitions need to fulfil three criteria. 
First, they need to be conservative – use new terms only if they can be clearly 
distinguished from existing ones. Second, they should be unique – if new terms 
are introduced, they should not borrow from existing conceptual definitions. 
Third, they should be parsimonious (i.e., only short definitions should be used). 
During the second stage one also elaborates upon the limitations of the domain 
(i.e., where and when a theory is to be applied (Wacker, 2008)). As such, the 
domain should be generalisable (i.e., “the degree to which a theory can be 
applied to existing populations” (ibid, p. 10)) and abstract (i.e., the theory can be 
applied across different times and places).

During the third stage, one describes the conceptual relationships among 
the variables identified in the previous stage, as well as the rationale behind 
these relationships in the light of the identified domain (Cash, 2018). In order 
to ensure that the relationship stage is executed well, one needs to observe 
the following three criteria, according to Wacker (1998, 2008). First, the 
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relationships should be fecund – i.e., they should build on existing theories and 
integrate them, so that new, wider research areas can be explored.

Figure 1 The theory building/testing cycle (Cash, 2018), paired with the requirements of 
good theory (Wacker, 2008)9.

 
Second, the proposed relationships should be internally consistent: they should 
clearly explain how each variable is connected to the other variables. This can 
be done either through mathematics or symbolic logic (i.e., they should be 
logically consistent). Lastly, they should be parsimonious so that the resulting 
model is as simple as possible. Still, it should be able to accurately explain all 
the results.

Finally, as it can be seen from the requirements for good theory Wacker (1998, 
2008) put forward, both the variables we use and the relationships among them 
should consider existing theory (i.e., the definitions should be conservative 
and the relationships – fecund). Therefore, the theory building approach we 

9 All visualisations presented in this dissertation, unless explicitly referenced, are made by me. 
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adopt in this dissertation can be classified as analytical conceptual research 
(Wacker 1998,) which adds “new insights into traditional problems through 
logical relationship-building” (p. 373). However, since the design of AI systems 
is a new domain for the field of Design, we complement the analytical approach 
with empirical investigations. Doing so allows us to “raise the abstraction 
level” (p. 379) of the developed theory. Therefore, our theory-building approach 
combines both theoretical (e.g., Chapters 3, 4 and 5) and empirical (e.g., 
examples presented in Chapters 4 and 6, and a case study discussed in Chapter 
7) explorations.

Dissertation outline

The dissertation consists of three parts that follow the stages of the theory-
building method described previously. In Part I, Set the scene, we describe the 
context of this doctoral research and identify a gap in the literature. These then 
we use to formalise the dissertation’s main research question. In Part II, Initial 
theoretical model, we define the variables, which could support us in designing 
a theoretical model that serves as a potential answer to the main research 
question of the dissertation. We then propose an initial set of relationships 
among these. Finally, in Part III, Extended theoretical model, we further detail 
these relationships to reflect the context we identified in Part I. As Cash’s theory 
building cycle prescribes, these parts are connected and build on each other 
(see Figure 2). In order to reflect this theory-building choice, we visualised the 
chapters as interlocking building blocks. Below, a more detailed outline on each 
chapter can be found. In it, we elaborate upon the carried-out research and the 
elicited insights that allowed us to gradually build and define the final version 
of the theoretical model. Hence, it is positioned on the top of our tower of 
stackable building blocks.
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Figure 2 A visual overview on the dissertation’s outline (to be read from the bottom).
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Part I: Set the scene

Chapter 1: Characteristics of contemporary AI systems

AI systems are self-learning and come with their own unique set of 
characteristics. Thus, if we are to understand how to support the design and 
implementation of AI systems into complex contexts, we first need to gain 
a deeper level of understanding on these characteristics. To do so, in this 
chapter, we first present a historical overview on the developments in the AI 
field and its most widely utilised approach to designing AI in both industry and 
academia – the rational agent approach. We then pair this with an overview of 
AI’s sub field – Machine Learning – which is, at the time of writing, the most 
widely applied branch of the field. As a result, we identify three characteristics 
of contemporary AI systems: (1) AI systems’ complex functional processes, (2) 
the high dependency on human-generated data and (3) the continuous process 
of learning and adapting the system’s behaviour to fit to the manner in which 
humans use it.

Chapter 2: Challenges for implementing AI systems into complex contexts

Chapter 2 focuses on the discussion of the main challenges that emerge 
when embedding AI systems into complex contexts. We start by outlining 
four principles an AI system must abide by to warrant ethical implementation: 
(1) transparency, (2) fairness, (3) responsibility, and (4) non-maleficence (i.e., 
causing no harm). We then pair these with the three characteristics expounded 
upon in Chapter 1. The combination results in four challenges: (1) ensuring 
transparency of the innerworkings of AI systems, (2) mitigating implicit biases 
in the data used to train and retrain these systems, (3) the difficulty to align the 
behaviour of AI systems with human values, and (4) addressing the behaviour-
use interdependence of these systems. There are research approaches for 
all challenges, except for the fourth one. We contend that Design theories 
are particularly well-positioned to tackle it. This gap in the literature presents 
us with a clear opportunity to contribute to the efforts of designing ethical AI 
systems. It also results in the reframing of the initial research question we 
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presented in this Introduction. As such, the main research question of the 
dissertation becomes:

“How can a theoretical model be designed that supports the early simulation of 
AI systems’ behaviour-use interdependence by utilising Design theories?”

Part II: Initial theoretical model

Chapter 3: The fundaments of Design Theory

This chapter provides an overview of the ways Design theories allow us to 
address the behaviour-use interdependence challenge identified in Chapter 
2. As such, it consists of two sections. In Section I, we present and compare 
the two main paradigms of Design Theory – Rational Problem Solving and 
Reflective Practice. Three important insights emerge from this: (1) the 
need to establish a feedback mechanism to better understand a problem; 
(2) the influence of a designer over the design process; and (3) unintended 
consequences propel the design process forward. In Section II, we introduce 
abduction10 as the key reasoning mode of Design, defined by two models. 
These models provide insight into the manner in which the behaviour-use 
interdependence can be formalised when designing new solutions. As such, the 
chapter provides us with a much-needed foundation for further exploring the 
claim we made in Chapter 2 that the field of Design is well positioned to tackle 
the behaviour-use interdependence challenge.

Chapter 4: Prototyping for early simulation of behaviour and use

Building upon the previously presented overview on Design Theory, in Chapter 
4, we discuss the manners in which the design practice of prototyping can 
support the early simulation of the behaviour and use of new solutions. As 
such, we first present an overview on existing literature. We then complement 
it with two examples from my design practice. Three insights emerge from 
this overview. Firstly, prototypes support us in observing the different types of 
outcomes and uses a solution can uncover. Secondly, they serve as a bridge 

10 Abductive reasoning is seen as the only logical inference that allows us to generate new 
hypotheses (see Chapter 3).
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between behaviour and use. Thirdly, they enable a different type of abduction 
which aids us to formulaically build the relationship between behaviour and 
use in complex contexts. Therefore, prototyping marks another puzzle piece 
of Design theories we can use to answer the main research question of this 
dissertation.

Chapter 5: Initial theoretical model

In this chapter, we theoretically examine the suitability of existing theories for 
the design and implementation of AI systems into complex contexts. As a 
result, we introduce an initial version of a theoretical model, which proposes 
a set of relationships among variables found in Design theories. As such, the 
model could aid us in simulating the behaviour-use interdependence of AI 
systems so that we can adapt the system’s behaviour to trigger the desired use 
and outcomes. Consequently, we contend that the model is best suited for the 
early stages of conceptual design when neither the behaviour nor the desired 
use (or outcomes) are clear. Hence, it provides a preliminary answer to the main 
research question of the dissertation.

Part III: Extended theoretical model

Chapter 6: Early simulation of AI system’s behaviour-use interdependence

In this chapter we present an example of a student team that successfully 
simulated the behaviour-use interdependence of an AI-powered fitness app 
by applying the initial theoretical model. We use the example as a means to 
explore the manners, in which the model can inform and shape real-world 
decision-making and design processes. Consequently, the example allows 
us to suggest an extended formulation of the initial theoretical model. It 
also highlights the need for further research around the manner in which: (1) 
designers apply the three different types of abductive reasoning; (2) the three 
abductive types influence each other; and (3) the role non-abductive activities 
play. These three insights also highlight the need to extend the existing Design 
theories to address the new context of designing AI systems.
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Chapter 7: Case study – Designing a smart in-car system concept for a large 
automaker

Chapter 7 builds upon the insights and research directions presented in 
Chapter 6. As such, we report on a five-month long design project conducted 
in collaboration with a large automaker. During the project, we apply the 
extended theoretical model to the conceptual design of an in-car AI system. 
The study yields two main conclusions. Firstly, to support the early simulation 
of AI systems’ behaviour-use interdependence, all three types of abduction 
discussed in the dissertation - explanatory, innovative, and manipulative - need 
to be applied. Secondly, five insights can guide such extension: (1) explanatory 
abduction is usually followed by innovative abduction; (2) the inductive 
generation of new values and requirements informs the formulation of every 
variable of the model; (3) visuals generated as a result of inductive reasoning 
(e.g., data visualisations) facilitate explanatory abduction; (4) the deductive 
evaluation of each row’s result against requirements and values supports the 
move from one abduction type to another; and (5) manipulative abduction 
plays a facilitative role while carrying out innovative abduction. These insights 
form the basis of the final theoretical model and provide us with a manner 
to continuously support the early simulation of AI systems’ behaviour-use 
interdependence.

Chapter 8: Final theoretical model

In Chapter 8, we reflect the findings generated thus far into the final version of 
the theoretical model we term Theoretical model for Prototyping AI or the PAI 
model. The model is presented by detailing its domain (i.e., early simulation of 
AI systems’ behaviour-use interdependence during the conceptual design stage 
of their development), variables (and their definitions), and the relationships 
among these variables presented both formulaically and schematically. Finally, 
we introduce three predictions about the PAI model. These are presented 
around the topics of (1) early simulation of behaviour-use interdependence 
of AI systems; (2) the influence of different data types on the AI system’s 
behaviour; and (3) the manners in which different developers will apply the 
model. These can serve as the starting point for the theory-testing part of 
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the cycle Cash (2018) introduced. The predictions are then followed by a 
discussion on the manners in which the proposed theoretical model fulfils 
the requirements of good theory Wacker (1998, 2008) put forward. Finally, 
we conclude the chapter with a brief discussion on the implications of the 
introduced theoretical model for Design theory, education, and practice. These 
also suggest possible avenues for further development of the Design field so 
that it can be prepared for the new domain of designing AI systems. Namely, 
the need for designers to (1) have a basic understanding of the new material 
with which they will be designing (i.e., AI systems), (2) utilise methods and tools 
designed for the transient nature of AI systems, and (3) learn to collaborate 
with data scientists, engineers, ethicists, and individuals who understand the 
regulations on AI systems.



SET THE SCENE

PART I
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CHAPTER 1

CHARACTERISTICS OF 
CONTEMPORARY AI 

SYSTEMS
AI systems are defined by their continuously self-learning nature that presents 
its own unique set of characteristics. Therefore, establishing a basic level of 
understanding on the fundaments of this technology is imperative if we are 
to successfully design and implement AI systems into complex contexts. To 
do so, this chapter provides a brief overview on AI’s history and the current 
developments in the field, guided by the following research question: “What are 
the characteristics of contemporary AI systems?”.

The chapter is structured around two topics. First, we present the developments 
in the field of Artificial Intelligence by sketching out the four dominant views 
in the field on what constitutes intelligence. This overview then serves as 
the foundation to the introduction of different types of Machine Learning 
(ML) approaches. We specifically focus on this sub field of AI since ML has 
become the most widely applied branch of the field in the 2010s and 2020s. In 
fact, almost all of the examples used in this dissertation are of ML systems. 
The overview provided in this chapter is by no means exhaustive. For a more 
comprehensive one about AI/ML in general, please refer to the textbook on AI 
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written by Russell and Norvig (2021). Finally, the chapter is concluded with an 
overview on the high-level characteristics of contemporary AI systems.

Four research directions to intelligence

The field of Artificial Intelligence has its roots in a plethora of disciplines such 
as Philosophy, Mathematics, Economics, Neuroscience, Psychology, Computer 
Engineering, C`vvvontrol theory and Cybernetics, and Linguistics (Russell & 
Norvig, 2021). Consequently, over the years, the views on what constitutes 
“intelligence” came to be different and sometimes even contradictory. Russell 
and Norvig (ibid) categorise these different interpretations of “intelligence” 
along two dichotomies: (1) human versus rational and (2) thought versus 
behaviour. The first dichotomy stems from the different definitions of 
intelligence – either as the degree to which an agent’s actions resemble that 
of a human, or the degree to which these actions can be defined as rational 
(ibid, p. 1). The second dichotomy juxtaposes the views that intelligence can 
ither be seen as an internal (i.e., thought) or as an external (i.e., behaviour) 
phenomenon (ibid).

Over time, these dichotomies, and the underlying premises they entail resulted 
in four main research approaches towards developing artificial intelligence 
(see Figure 3). Firstly, we have the research approach based on the premise 
that AI should be seen as something that acts humanly. According to this view, 
intelligence will be achieved when a machine’s actions cannot be distinguished 
from the actions of a human being. It is widely considered that a machine 
will be accepted to do so when it manages to pass the so-called Turing test. 
The test involves a human interrogator posing a few written questions to a 
computer. To pass the test, the computer should return answers that cannot be 
distinguished from answers a human would give.  Hence, a model stemming 
from this approach should make use of six main capabilities: (1) natural 
language processing (so that it can communicate with the interrogator), (2) 
knowledge representation (to be able to store and access what it learns), (3) 
automated reasoning (to be able to answer questions and draw conclusions), 
and (4) machine learning (to adapt to new situations and be able to recognise 
patterns). Other researchers have proposed a total Turing test, which involves 
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real-world interactions with people and objects. To be able to pass such a test, 
the computer should also be able to perform (5) computer vision and speech 
recognition (to perceive the world) and (6) robotics (to move around and 
manipulate objects). These six capabilities represent the main branches of the 
AI field (Russell & Norvig, 2021).

Figure 3 An overview of the four research directions in intelligence research derived from 
the work of Russell & Norvig (2021) 

The second research approach to AI is grounded in the assertion that to 
achieve intelligence, a machine should be able to think like a human. This 
view posits that to be able to devise such machines, one needs to develop 
accurate cognitive models akin to the ones humans use (Russel & Norvig, 
2021). However, researchers must first gain a deeper understanding of the 
processes that drive human cognition. It is considered that once there is 
a sufficiently precise theory of the mind, this can be translated to machine 
theory. Researchers usually obtain the needed knowledge by employing the 
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methods of introspection, psychological experiments, and brain imaging. A 
field that addresses AI from this perspective is Cognitive Science. It combines 
experimental methods from Psychology and computer models from AI so that 
precise and testable theories of the human mind can be devised.

The third research approach to AI is founded within the notion that a machine 
should be able to think rationally. This approach has largely been defined by 
the field of Logic and uses logical principles that provide precise notation for 
statements and objects in the real world (Russell & Norvig, 2021, p. 5). As 
such, by 1965 programmes were able to solve any “solvable problem defined 
in logical notation” (ibid, p. 5). This launched the so-called logicist tradition in 
AI that hoped to build programs defined by logical principles that can create 
intelligent systems. A few notable examples of such rule-based systems are 
Terry Winograd’s natural language understanding systems called SHRDLU 
(1968), Stanford’s infectious disease diagnosis system MYCIN (1976), and 
XCON (also known as R1), which was used to configure computer systems 
(1978). However, to be able to apply these logical principles, one requires 
knowledge about the world that is certain – a requirement that is difficult to 
achieve in practice. There are no clear-cut rules of how society works. The 
theory of probability aims to address this gap by providing tools and methods 
that support one in reasoning about uncertain information. However, while the 
theory allows for the construction of comprehensive model of rational thought, 
it does not generate intelligent behaviour (ibid).

Finally, the fourth research approach to AI is based on the premise that a 
machine can be considered intelligent only when it acts rationally (i.e., acting 
“so as to achieve the best outcome or, when there is uncertainty, the best 
expected outcome” (ibid, p. 6)). Although it is a distinct manner of developing 
AI, the acting rationally approach builds upon principles and capabilities 
developed under the other three approaches discussed thus far. For instance, 
in order to ensure that the agent is rational, in some cases it needs to be able 
to apply logical inferences (i.e., from the thinking rationally quadrant) so that 
it can deduce the best (expected) outcome. However, there are situations in 
which rationality cannot be expressed in inferences defined by formal logic 
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(i.e., the example Russell and Norvig give is of recoiling from a hot stove – a 
reflex that requires immediate action rather than careful deliberation). In such 
cases, to build a rational agent, the six capabilities that are necessary to pass 
the Turing test are needed, too (i.e., natural language processing, knowledge 
representation, automated reasoning, machine learning, computer vision, 
speech recognition, and robotics).

The four research approaches have garnered their own supporters and 
research streams and continue to do so. However, in recent years, the rational 
agent approach has become the most widely utilised one in both industry 
and academia since it provides a clear and concise way to model intelligent 
systems (Russell & Norvig, 2021). Furthermore, it has been shown to be 
scalable and versatile, especially when dealing with complex systems. Hence, 
making it easy to apply to a variety of real-world applications like decision-
making and planning tasks (ibid). Therefore, in the past decade increasingly 
more AI systems employing this approach have been embedded in complex 
contexts. This shift was further supported by the increasing computational 
power and the creation of the World Wide Web. The combination of both 
provided the means and the infrastructure for the creation of massive amounts 
of information generated every day 

. This newfound resource led to the creation of new learning algorithms that 
were designed to work with the large amounts of data and benefit from them. 
An AI branch that emerged as uniquely positioned to take advantage of the 
large amounts of both labelled and unlabelled data is Machine Learning (ML).

Machine Learning

The premise behind ML is straightforward: rather than manually programming 
a system to anticipate the desired results for every conceivable input, an ML 
model is trained by being shown examples of desired input-output behaviour 
(Jordan & Mitchell, 2015). This continuous automated improvement leads to 
better decision-making mechanisms based on vast amounts of collected data. 
For instance, ML applications have achieved highly accurate results in the fields 
of computer vision, speech recognition, natural language processing and robot 
control (e.g., Rahwan et al., 2019). A large array of ML algorithms has been 
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employed to cover the wide variety of data and problem types exhibited across 
different fields (De Choudhury et al., 2014), such as linear regression, logistic 
regression, decision trees, and deep neural networks. Despite their differences, 
however, they can be grouped in four general types: supervised, unsupervised, 
reinforcement and deep learning.

Figure 4: Supervised learning

The most widely applied type of ML is that of supervised learning (Figure 4). 
Such requires a labelled set of training data in which both input and output 
variables are given. With the correct answer known (the output) for each 
situation (input), the algorithm is trained to iteratively make predictions on the 
training data until an acceptable level of performance is achieved. For instance, 
supervised learning is widely used in email clients in order to identify spam 
email. To do so, the agent is trained by being shown multiple examples of spam 
emails (labelled data). During its training, it is shown examples of emails (input) 
that are then connected to a clearly defined output (either spam or not spam). 
As such, once the agent is deployed in real-life settings, it can confidently 
assign the label of either spam or not spam to emails it has never “seen” before.

The second type is that of unsupervised learning (Figure 5). Unsupervised 
learning analyses unlabelled data in order to extract information from them. 
As such, the system develops and organises the data, and searches common 
characteristics among them. Therefore, it often uncovers previously unknown 
patterns (Russell & Norvig, 2021). The most common unsupervised learning 
task is to detect common characteristics among the input data and create 
clusters around them (i.e., clustering). Clustering is used when we do not know 
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enough information (or any information) about the data we have collected, 
and we are looking to create groups from them. For instance, when fed with 
a large number of unlabelled photos from the internet, an AI model can start 
creating clusters such as “dogs” or “babies”. This type of learning is widely used 
in recommendations systems that group together users with similar viewing 
patterns (e.g., the claim one might find on different sites: “people who liked this, 
also liked these”).

Figure 5: Unsupervised learning 

 
The third main type of ML is reinforcement learning (Figure 6). Utilising 
this type of learning allows the agent to learn from a series of rewards and 
punishments (i.e., reinforcements) so that it can optimise the sum of future 
rewards. For instance, if the agent is to play a game of chess (i.e., act), at the 
end of the game the agent is told the outcome (i.e., the agent’s current state). 
If the agent has won, it gets rewarded by receiving more points. If, however, 
it has lost, a punishment is administered (i.e., by deducting points). Then, 
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given this output, the agent needs to decide which of its actions (prior to the 
reinforcement) were responsible for the outcome (i.e., win or lose). Once it has 
done so, it can alter its course of action so that it can maximise its reward and 
minimise punishment (Russell & Norvig, 2021). An example application for 
this type of learning is recommendation systems where the agent is rewarded 
based on whether the user likes its suggestion and punished if they do not. 
Services that use reinforcement learning to form their recommendations 
are TikTok, Facebook, Netflix, and Spotify. Therefore, if the user liked the 
suggestion, the agents gets “rewarded” to show more similar types of 
recommendations.

Figure 6: Reinforcement learning

Finally, we have deep learning (Figure 7). Deep learning is widely considered 
as the catalyst for the wide-spread renewed interest in AI we are seeing today 
due to its impressive results in variety of domains (LeCun et al., 2015; Ching et 
al., 2018). Further, it is making considerable advances in solving problems that 
have resisted the best attempts of the AI community for many years (Ching 
et al., 2018), especially in the fields of machine translation, visual object and 
speech recognition, and speech and image synthesis (Russell & Norvig, 2021). 
Deep learning models are used across different disciplines and applications 
(e.g., image recognition and autonomous driving). Partially mimicking the way 
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biological neurons exchange information, deep learning models have three 
main elements: an input layer which receives the data, an output layer, returning 
the analysed data and multiple hidden layers1 that perform mathematical 
computations on the input data. Each of the layers contains multiple nodes 
(i.e., neurons) through which data and computation flow. As such, each node 
of the network performs some form of computation which is then passed onto 
another node in a different layer. This transfer of information from one layer to 
the other is made possible through the so-called synapses that have different 
weights. This weight determines how impactful a node is in the entire neural 
network. Most deep neural nets have multiple hidden layers with a large number 
of nodes in each of the layers. Therefore, the weight assigned to each synapse 
is done by the neural net itself during its training. Despite having a simple 
structure, however, the exact functional processes that generate these outputs 
are complex and hard to interpret even by the very scientists who designed 
them (Rahwan et al., 2019).

Figure 7: Deep learning

1 These layers are sometimes called “hidden” because they are not directly observable by 
the end user. 
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The sub field of Machine Learning is still relatively young and continues to 
evolve quickly with new approaches and methods emerging on monthly basis. 
Therefore, the overview presented in this section is by no means exhaustive. 
Still, the four types of ML presented here can provide us with a foundational 
understanding on the continuous stream of new approaches (Jordan & 
Mitchell, 2015).

Characteristics of contemporary AI systems

From the overviews presented in this chapter, three general characteristics of 
contemporary AI systems emerge. First, although one can clearly distinguish 
between the four main types of ML, in practice few AI systems use only one ML 
type (Jordan & Mitchell, 2015). For instance, a notable example of an AI system 
that makes use of at least two types of learning simultaneously is AlphaGo2. It 
used deep supervised learning to learn how to play the game of Go from human 
players and then deep reinforcement learning that allowed the agent to learn 
the game based on the sessions of playing the game itself (Silver et al., 2017). 
Further, even though the majority of contemporary AI systems are based on the 
rational agent approach to intelligence, they also use a combination of skills 
typical to the other approaches (i.e., think and act humanly and think rationally). 
Thus, the manner in which contemporary AI systems are built is multi-layered 
and their functional processes are complex (i.e., it is not always clear how the 
model makes its predictions and inferences).

Second, the majority of contemporary models rely on large troves of both 
labelled and unlabelled data, which are used to continuously make inferences 
and predictions. Take for instance one of the currently most advanced natural 
language processing AI systems - GPT-33 (e.g., see Piper, 2020). Released in 
2020 by the AI research lab Open AI, GPT-34 was trained on data found on the 
web. The model showed impressive results in a wide range of applications. It 
was able to generate essays and poetry and write new computer code (e.g., see 

2 The AlphaGo attracted a lot of attention when it won against the world’s Go champion in 2016.
3 GPT-3 is also the model behind ChatGPT, which managed to reach 1 million users in just 5 
days in 2022.
4 GPT stands for Generative Pre-trained Transformer. 
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Heaven (2020; 2022) for an overview). To achieve its impressive performance, 
the model was trained on 45TB data and 175 billion parameters5 (Brown et al., 
2020). Due to the central part which data plays in the performance of similar 
ML models, the outcomes of these systems are directly dependent on patterns 
that can be deduced from human-generated data.

Third, most AI systems today are also continuously learning and adapting their 
behaviours to the data they are given or has been generated by their users. 
Consumer-facing recommendation models like the ones Spotify, TikTok, Netflix, 
YouTube and many more companies use exemplify this characteristic well. 
These models have collected enough data on each of their users’ preferences 
so that they can accurately recommend the next video, movie, song, or book 
one should check out. For example, if one is to watch a YouTube or TikTok 
video on how to cook a “fancy vegan three-course dinner”, chances are that the 
recommendation models these companies use will start recommending to the 
user to continue watching videos on how to cook vegan dishes. It will also show 
the user other types of videos that are closely related to the activity of cooking 
a fancy vegan meal, such as “how to set a formal dining table” or “how to store 
produce” or even “how to host a great dinner party”. Hence, this characteristic 
makes these models susceptible to changes in the manner in which people use 
them (e.g., Microsoft’s Tay discussed in the Introduction of the dissertation).

Conclusion

The purpose of this chapter was to provide an answer to the following research 
question: “What are the characteristics of contemporary AI systems?”. In order 
to do so, we first presented a brief background on the four research directions 
to intelligence that have propelled forward the field of Artificial Intelligence: 
(1) thinking humanly, (2) acting humanly, (3) thinking rationally, and (4) acting 
rationally (i.e., the rational agent approach). From this overview became clear 
that most contemporary AI systems are manifestations of the rational agent 
approach to intelligence. We then provided a brief introduction of the four main 

5 Parameters define how the model input is to be transformed to the desired output. As such, they 
are learnt from the data on which the model is trained. 
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types of Machine Learning: (1) supervised, (2) unsupervised, (3) reinforcement, 
and (4) deep learning. Although the clear categorisation of four distinct types is 
conducive to ease of explanation, most contemporary AI systems are usually a 
combination of two or more of these types of ML.

Finally, the chapter elaborated upon the three characteristics of AI systems 
that emerged from the two overviews: (1) AI systems’ complex functional 
processes, (2) the high dependency on human-generated data and (3) the 
continuous process of learning and adapting the system’s behaviour to fit to 
the manner in which humans use it. These characteristics serve as the starting 
point for Chapter 2, which elaborates upon the challenges that emerge once AI 
systems are implemented within a complex context. As such, these insights 
help us to further our efforts of answering the initial research question of this 
dissertation: “How can Design theories support the design and implementation 
of AI systems into complex contexts?”
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CHAPTER 2

CHALLENGES FOR 
IMPLEMENTING 

 AI SYSTEMS INTO 
COMPLEX CONTEXTS

In 2015 Google’s photo recognition model started labelling black people as 
“gorillas” (BBC, 2015). The case sparked multiple controversies and Google 
pledged to do its best to prevent this from happening again. However, after 
almost three years of working on the problem, the only solution Google was 
able to come up with to prevent the event from repeating was to remove the 
label “gorillas” from their datasets. Hence, even photos of gorillas would not 
be labelled as gorillas (Vincent, 2018). Then, in September 2020, a similar 
controversy emerged when it became evident that Twitter’s photo cropping 
feature powered by an image recognition AI would always favour white people 
over people of colour and women over men (Hern, 2020). Twitter admitted to 
the mistake a few months later (BBC, 2021a). This pattern was reaffirmed when, 
in September 2021, Facebook’s algorithm labelled a black man as a “primate” 
(BBC, 2021b). 
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As these examples show, the devising and maintaining of AI systems that 
are to be embedded into complex contexts is an inherently wicked problem 
(Stoimenova & Price, 2020). The solution to such problems is always a “one-
shot operation” (i.e., every implemented solution can cause a number of 
unintended consequences that cannot be undone (Rittel & Webber, 1973, p. 
163)), and the person who devises them has “no right to be wrong” as they are 
liable for the outcomes they create (p. 167). Further, the solution can be neither 
true nor false. It can only be classified as good or bad (p. 162).

The aim of this chapter is to deepen our understanding on why it continues to 
be challenging to ensure AI systems remain “good” after they are embedded 
into complex contexts. In order to do so, we are guided by the following 
research questions:

What are the challenges to implement AI systems into complex contexts?

What research approaches exist to address the identified challenges?

As such, the chapter is structured as follows. We start by introducing 
four principles that can guide the development of “good” AI systems. The 
introduction is followed by four sections – one for each of the principles. Each 
section is structured identically. Firstly, we describe a challenge stemming from 
the characteristics of AI models identified in Chapter 1: (1) AI systems’ complex 
functional processes, (2) the high dependency on human-generated data and 
(3) the continuous process of learning and adapting the system’s behaviour 
to fit to the manner in which humans (like to) use it. Once the challenge is 
established, an example is introduced to showcase how the challenge has 
manifested in the real world1 and the impact it had on the complex context it 
was part of. Then, each of the chapter’s four sections is concluded with a brief 
overview on existing research approaches from across different academic 
fields that address the identified challenge. The overview on research directions 

1 It is worth noting that the manner in which we mapped each of the examples to only one of the 
principles Jobin et al. (2019) elaborated upon is relatively reductionist. The implementation of an 
AI system into a complex context is often accompanied by consequences that stem from all of the 
principles discussed in this chapter. Still, for ease of explanation, we have focused on one ethical 
principle per example. 
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is not complete since new research is published on a daily basis2. Still, it allows 
us to identify a clear gap in the literature which leads to the reframing of the 
dissertation’s main research question.

The four principles for “good” AI

The discipline “concerned with what is morally good and bad” is Ethics 
(Britannica, n.d.). In fact, the predominant view on how AI systems should be 
implemented into a complex context is that it needs to be done in an ethical 
way (e.g., Rahwan et al., 2019). Over the past several years, a plethora of public 
and private initiatives have arisen globally to define values, principles and 
models for the ethical development and deployment of AI (Mittelstadt, 2019). 
All of them are aimed at regulating possible negative impacts and stopping 
potentially harmful technologies from entering the market.

In 2023, the advances of large language models such as the one used in 
ChatGPT3 made the importance of developing good AI systems a topic widely 
discussed both by experts and laypeople alike. For instance, a letter signed 
by more than 1,800 people including Elon Musk, Steve Wozniak and engineers 
from Amazon, Meta, DeepMind, Google, and Microsoft urges for a six-month 
ban on AI more powerful than OpenAI’s model GPT-4. The temporary ban, the 
letter stipulates, should be used so that AI labs and independent researchers 
can create and implement safety protocols. Such, arguably, could ensure AI 
systems that are aligned with societal objectives (Paul, 2023). While the letter 
garnered a lot of attention, no big technological company has announced they 
will introduce a temporary ban. In fact, prominent names in the field of AI have 
argued against the ban (see LeCun & Ng, 2023). 
 
The importance of ensuring the AI systems we develop and deploy are ethical, 
has never been more pressing and well-understood. Therefore, in the remainder 
of the chapter, we discuss the four principles of ethical AI Jobin and colleagues 

2 For example, the number of articles containing the key phrase “ethical AI” published from 2017 to 
2022 is 300 000. Similarly, there are 869,000 papers that contain the key phrase “explainable AI” for 
the same period of time (according to a Semantic Scholar search carried out in September 2022). 
3 ChatGPT is the fastest-growing web platform in history (e.g., see Hu, 2023),  
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(2019) put forward: (1) transparency, (2) fairness, (3) responsibility, and (4) 
non-maleficence (i.e., causing no harm). These four principles emerged as 
a result of a rigorous scoping review on 84 different ethical guidelines from 
around the globe, published in both academic and grey literature (Jobin 
et al., 2019).

Transparency principle

Challenges for achieving transparent AI systems

While different guidelines impose various meanings onto the word 
“transparency”, they often refer to efforts to increase the explainability and 
interpretability of the algorithmic model (Jobin et al., 2019). However, one of 
the main characteristics of most contemporary AI systems (e.g., deep learning) 
is that they have functional processes that generate complex and hard to 
interpret outputs (Rudin, 2019). The inability to explain and to understand these 
processes has resulted in the widely adopted term “black boxes”, signifying 
the limited ability of humans to understand why an algorithmic model has 
produced a specific output. Since the nature of such algorithms is highly 
recursive and nonlinear, it does not lend itself easily to an explanation a human 
can understand (Li et al., 2018). Further, the reasoning behind why a certain 
output was produced is largely opaque (Rahwan et al., 2019). Therefore, 
when AI systems act in unintended manners, our ability to explain why (and 
consequently, prevent it from happening again) is limited due to the black-box 
nature of such algorithms.

Example of non-transparent AI systems’ negative consequences

Ever since its inception in 2005, YouTube, like many other social media 
platforms, has increasingly relied on recommendation algorithms. These 
are optimised to ensure people will stay as long as possible on the platform 
by providing them with a selection of videos, personalised to their taste and 
preferences. The videos are supplied by the millions of creators on the platform. 
And for some of them, YouTube has become their primary means to earn a 
living, leading to the creation of an entirely new job title (i.e., “YouTuber”). This 
new job title can be very lucrative. For instance, the highest earning creator on 
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YouTube, MrBeast, made more than $54 million in 2021 alone (Spangler, 2022). 
However, in an attempt to continuously optimise their recommendation system, 
over the years YouTube kept tweaking its algorithm leaving all of its creators 
to guess how the system works and what kind of content it optimises for. This 
has led to numerous videos and articles giving potential explanations on how 
the algorithm behind the recommendation system might work. There are even 
multiple conventions where successful YouTubers share their experience with 
optimising their content for the algorithm (e.g., VidSummit in Los Angeles, the 
US). This never-ending race to figure out the objectives of the non-transparent 
model behind YouTube’s recommendation system has real-world consequences 
for YouTubers. For instance, in recent years, many creators have come forward 
to discuss the depression and burnouts they have experienced while trying to 
understand how to optimise their content for the ever-changing model (e.g., 
Parkin, 2018).

Existing approaches to achieving transparent AI systems

It is important to ensure that the AI models we use are explainable and 
transparent. Not only in the case when we try to guess what the algorithm 
optimises for (like many YouTubers do), but also in order to understand the 
reasoning behind why a certain diagnose has been given to a patient, for 
instance. Scholars believe such explainability to be a way in which oversight 
can be enacted, behaviour can be anticipated and influenced, and negative 
unintended consequences can be mitigated (Jobin et al., 2019; Rahwan 
et al., 2019).

There are three main approaches to achieve that (e.g., Rudin, 2019; Murdoch 
et al., 2019): (1) by creating a separate relatively simple algorithmic model 
(e.g., linear regression) that takes a black-box model as its input and tries to 
explain it post-hoc (Samek et al., 2017); (2) by using only inherently interpretable 
algorithmic models when high-stake decisions are required (e.g., whether 
a person could be granted a parole or a loan) (e.g., Rudin, 2019); and (3) by 
continuing to use black-box models because they work differently than humans 
(Robbins, 2019). For example, while the classification of a mole as malignant 
is important since it “significantly affects the patient” (Vollmer, 2018), the 
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AI algorithm, which makes such a classification, works well because it does 
not use “human articulable” reasons for its classification (Robbins, 2019). 
However, according to some scholars (e.g., Floridi, 2011), such unexplainable 
algorithms should operate only within very well-defined boundaries so that their 
consequences can be managed.

Fairness principle

Challenges for achieving fair AI systems

The concept of fairness in AI is multifaceted and hence, invites diverse 
perspectives and interpretations, depending on the field to which an AI fairness 
scholar looks for a contribution. One dominant idea to ensure such fairness 
is the notion that for a solution to be fair the data it is trained on should not 
contain harmful biases (Jobin et al., 2019). However, AI models are typically 
built and trained on human-generated data. Consequently, these models more 
often than not reflect and/or amplify pre-existing human and structural biases 
(either as a result of the training data or the personal biases of the model’s 
developers). These hidden biases can also introduce complex biases of their 
own once they start interacting with their contexts, usually at some point after 
their deployment (Dixon et al., 2018). Therefore, it is important to identify and 
eliminate harmful biases, such as gender or racial bias, upfront so that negative 
unintended consequences can be mitigated or even avoided. However, implicit 
biases in both the training data and the real time data fed to a model are 
difficult to identify in the type of non-binary data the majority of systems use 
today (Bellamy et al., 2018).

Example of unfair AI systems’ negative consequences

In 2013, the Dutch Tax Office (i.e., Belastingdients) started using an 
algorithmic decision-making model that detects potential childcare benefits 
fraud at an early stage. The model used automated profile generation 
of potential fraudsters based on racial profiling (Amnesty International, 
2021). The generated profiles supported the authorities’ decision to stop 
the alleged perpetrators’ child support and request the immediate return of 
the subsidies (in full). Soon, it became evident that the model extrapolated 
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the institutionalised racism on which it was trained. As a result, tens of 
thousands of families (most of whom from a minority background) were falsely 
persecuted. Many of them lost their homes, went through a divorce, and their 
children had to be placed in host families (Kleinnijenhuis, 2018). The revelations 
became known as the “Toeslagenaffaire” (i.e., The Benefits Scandal). These 
insights were met with a slew of resignations – first of ministers and then of 
the entire cabinet (Hanley, 2021). Further, the Tax Office was fined with € 2.75 
million (ANP, 2021) and the victims of the biased algorithm were promised to 
get awarded € 30,000 each (Nu, 2022). An official investigation was launched 
by the government to look further into the matter (Kleinnijenhuis, 2022).

Existing approaches to achieving fair AI systems

The implicit biases in AI models’ training and subsequently, real time data 
used after their deployment continue to be notoriously difficult to identify 
beforehand (Bellamy et al., 2018). However, as we saw from the example, once 
they get introduced in complex systems, the consequences can be devastating. 
Therefore, a burgeoning body of literature has emerged on devising ways to 
ensure algorithmic fairness. A large number of articles, for instance, focuses on 
quantifying the deviation between an AI model’s predictions and a formalised 
metric of equality (e.g., men and women should be treated equally4) (Lee et 
al., 2021). According to them, algorithmic fairness should address the implicit 
bias that can be found in the data used to train and retrain AI models. In order 
to do so, multiple statistical metrics have been devised such as: (1) anti-
classification, entailing the exclusion of protected characteristics like race, 
gender, or their proxies when deriving estimates; (2) classification parity, aiming 
for equivalent predictive performance across groups defined by protected 
attributes; (3) calibration, guaranteeing outcomes’ independence from 
protected attributes after controlling for estimated risk; (4) equalised odds, 
gauging the ratio of false positive and negative rates; and (5) individual fairness, 

4 Such all-encompassing notion of equality can also be damaging. For instance, in the criminal 
justice system, women are typically less likely to commit a future violent crime than men with 
similar criminal histories. While, generally, it is unfair to treat men and women differently, gender-
neutral risk scores can systematically overestimate a woman’s recidivism risk and can, in turn, 
encourage unnecessarily harsh judicial decisions (Rudin, 2019).
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demanding equitable treatment of akin individuals (see Corbett-Davies and Goel 
(2018) and Lee et al. (2021). These (and other similar types) metrics are loosely 
derived from the concept of egalitarianism (ibid). 

This statistical interpretation of fairness is appealing due to its simplicity 
and ease of application. Hence, it is not surprising that a plethora of open-
source tools like Microsoft’s Fairlearn and IBM’s AI Fairness 360 have been 
released to aid AI developers in achieving such statistical fairness. However, 
different statistical measures are often at odds with one another. For instance, 
equalising false positive rates, false negative rates, and positive predictive 
values across protected groups simultaneously is unattainable (Chouldechova, 
2017; Buijsman, 2023). 

Therefore, a growing group of scholars argues for complementing such 
statistical measures with a more contextually aware and ethically informed 
approaches to AI fairness. For instance, we can look at the work of Buijsman 
(e.g., 2023), Ruf and Detyniecki (2021) and Lee and colleagues (2021) for 
initial frameworks on how philosophical approaches can be used to make the 
trade-offs between algorithmic fairness measures (e.g., for which measure to 
optimise), as well as how to balance model’s accuracy and fairness. 

Responsibility principle

Challenges for achieving responsible AI systems

The responsibility principle most often signifies acting with integrity (Jobin 
et al., 2019). This is in line with a standpoint held by many scholars across 
different academic fields that an ethical/responsible AI is the AI system that is 
aligned with human values (e.g., Santoni de Sio & van den Hoven, 2018)5. Yet, 
defining a set of values that are globally applicable continues to be difficult, if 
not impossible (Awad et al., 2018). Further, when overarching value definitions 
are attempted, they usually assume a deterministic worldview (i.e., AI is seen 
as a force of change to which humans must adapt) (Greene et al., 2019). 
Consequently, the guidelines and values become conductive to decision-

5 See also Mittelstadt (2019), Jobin et al. (2019), Floridi & Cowls (2019), Rahwan e al. (2019).
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making power being delegated to a narrow circle of experts (ibid). Further, it 
is challenging to ensure the accommodation of emerging values, especially 
the ones that cannot be anticipated during the design stage of a solution 
(de Reuver et al., 2020). Finally, because of the complex structure of most AI 
models, it continues to be difficult to embed the desired human values and 
ethics within the development cycle and the AI system itself (Mittelstadt, 2019).

Example of non-responsible AI systems’ negative consequences

At the beginning of the Covid-19 Pandemic, the UK government decided that the 
exams of high school children in the country would be cancelled (Bedingfield, 
2020). Instead of exams, the government decided to use a combination of 
teachers’ predictions on what they thought their students might score on the 
exam and an algorithm that was designed to bring an objective perspective 
(ibid). The algorithm was based on multiple different data sources and created 
three sets of grades: (1) a distribution of the grades a student received on 
the subject in previous years, (2) a predicted distribution of exam grades for 
students from previous years (which were then compared to the actual exam 
grades these students received to verify the accuracy of the model) and (3) a 
predicted distribution of grades for the current students. The algorithm then 
gauged the difference between the predicted distribution of current students 
with the one of past students and used this to adjust the prediction. Finally, 
each student was assigned their grade based on a ranking their teacher had 
provided to the algorithm (i.e., the student ranked as number 1 will get the 
highest possible grade in the distribution). Once the results of the algorithm 
came out, it turned out that the model had downgraded 39% of the high grades 
initially estimated by the teachers. Further, on average, students in state 
schools received lower grades than those in private ones, further perpetuating 
pre-existing socioeconomic inequality (Porter, 2020) and causing a grading 
crisis in the UK (Shead, 2020). In response, the government scrapped the 
algorithm and decided to go with the subjective prediction teachers made. 
According to experts, the manner in which this algorithm was developed failed 
to consider the views and values of its stakeholders and, as such, was applied 
irresponsibly. They claim that many of the observed problems could have been 
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predicted and resolved beforehand if the algorithm developers had carried 
out proper consultations with ethics, education, and statistics experts, who 
could have pointed at potential issues  (Bedingfield, 2020). In fact, the Royal 
Statistical Society had warned the government about potential problems with 
the AI system months in advance (Satariano, 2020).

Existing approaches to achieving responsible AI systems

There are three prominent approaches attempting to solve this challenge: (1) 
human-centered AI/ML (HCML)6 (e.g., Lovejoy, 2018; Riedl, 2019), aimed at 
making the output of an AI model easier to understand by its users, ultimately 
ensuring a seamless user experience and personalisation (Chancellor et al., 
2019); (2) Value Sensitive Design (VSD)7, aimed at intentionally embedding 
desirable values8 in the design of artefacts; and (3) ethical guidelines, aimed 
at providing guidance to developers and companies9  on which values to 
consider10 when developing AI systems. Such ethical guidelines also play 
a crucial role in both Value Sensitive Design and Human-Centered Machine 
Learning. For instance, an important part of the VSD approach is the so-called 
conceptual inquiry into the ethical and philosophical issues, which include the 
consideration of ethical guidelines (Friedman & Nissenbaum, 1997). Similarly, 

6 This research approach also can be found under the names of Augmented Intelligence (Brown, 
2017), human-AI interaction (Amershi et al., 2019) or interactive ML (Fails & Olsen, 2003), and 
sometimes Useful AI (Mosqueira-Rey et al., 2022).
7 This approach also manifests itself under different names that include but are not limited to: 
Value Sensitive Design (VSD) (Friedman & Kahn, 2003; van Wynsberghe, 2013; Davis & Nathan, 
2015; van den Hoven et al., 2015), Values in Design (Nissenbaum, 2001), Design for Values (van 
den Hoven et al., 2015), and Worth-Centred Design (Cockton, 2009). All of them share at least four 
key claims: (1) values can be expressed and embedded in technology, (2) technologies have real 
and sometimes non-obvious impacts on those who are directly and indirectly affected, (3) explicit 
thinking about the values that are imparted in technical design is morally significant, and (4) value 
considerations should be surfaced early in the technical design process (van den Hoven, 2015).
8 Values here are defined as entities that appear in technologies, built consciously or unconsciously 
by developers, and made material through a technology’s features (Friedman & Nissenbaum, 1997; 
Flanagan et al., 2008).
9  Many such guidelines (in academia and (non-profit) organizations) have been developed in the 
past few years (for a comprehensive review on these see Mittelstadt (2019)).
10 In May 2021, the European Union became the world’s first governmental body to release a draft 
proposal for high-risk AI system regulation (Benjamin et al., 2021).
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ethical guidelines can inform the initial stages of the HCML approach by 
informing designers on which ethical values they need to consider11.

Non-maleficence principle

Challenges for achieving non-maleficent AI systems

The ethical principle of non-maleficence pertains to the idea that AI systems 
should never cause foreseeable or unintentional harm (Jobin et al., 2019). 
However, this is difficult to achieve since contemporary AI systems are 
continuously learning either from the data they have been fed during training 
or by the manners people use them. As such, they are defined by a strong 
behaviour-use interdependence (i.e., the way an AI system is used heavily 
influences the way it behaves and vice versa). This challenge is especially 
visible in recommendation systems relying (at least partially) on reinforcement 
learning. For instance, the type of songs one listens to on Spotify heavily 
influences the songs its algorithm will suggest in the future. The same goes 
for the type of videos one watches on TikTok or YouTube, or the type of 
news one reads on Facebook. However, it can also be observed in simpler 
application like the Microsoft’s Twitter bot Tay discussed in Chapter 1 (p. 5). 
Further still, AI models can be easily influenced (even duped) once their input 
data differs too much from the data they were trained on. For example, the 
unusual online behaviour of millions of people during and due to the Covid-19 
pandemic confused the predictive algorithms that run behind the scenes in 
inventory management, fraud detection, marketing and product or movies 
recommendation (Heaven, 2020). As a result, for instance, the sales forecast 
on which companies relied to reorder stock no longer matched the reality 
(ibid). Moreover, researchers have already demonstrated how to deceive 
facial-recognition systems by sticking a printed pattern on glasses or hats 
(Komkov & Petiushko, 2019), “make” speech-recognition systems hear phantom 
phrases by inserting patterns of white noise in the audio (Cisse et al., 2017) 

11 Next to these approaches, another emerging area of research is the so-called human-in-the-loop 
approach where human knowledge is incorporated into the model-building process (e.g., during 
data processing, data annotation and iterative labelling) (Wu et al., 2022). An extensive overview on 
the manners in which humans can be involved in the training process of AI systems can be found 
in Mosqueira-Rey et al. (2022) and Wu et al. (2022)
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and trick personal assistants like Google Home or Alexa into “hearing” voice 
commands simply by pointing an infrared laser at them (Greenberg, 2019). This 
strong interdependence between an AI system’s behaviour and its use makes 
it increasingly difficult to anticipate and mitigate the wide array of potentially 
harmful consequences such systems could produce.

Example of AI systems’ negative consequences

Social media platforms like Facebook and YouTube rely heavily on 
recommendation systems which are a combination of different types of 
machine learning (e.g., deep learning and reinforcement learning). Thus, they 
try to continuously learn what their users want to see and provide them with a 
personalised feed. The continuous adjusting of the behaviour of these systems 
to adapt to the way they were being used was one of the causes for both 
platforms to come into the crossfire. In 2016, their algorithms became a means 
for mass misinformation and manipulation, resulting in the now infamous term 
“fake news.” (Sydell, 2017).  Despite the slew of public debates, initial legislation 
and the pledge of both Google and Facebook to prevent misinformation, 
the spread of fake news after the mass shooting in Las Vegas in October 
2017 proved very difficult to prevent (ibid). Further still, in the midst of the 
Covid-19 pandemic in 2020 and 2021, despite all efforts of both companies, 
the “fake news” phenomenon continued to reign, often leading to cases such 
as people lighting 5G network antennae on fire (Satariano & Alba, 2020), the 
rise of conspiracy movements such as QAnon (e.g., Nagesh, 2021), fights over 
toilet paper (Mao, 2020), and the Capitol Riot on January 6th, 2021 in the US 
(Timberg et al., 2021). Arguably, none of the aforementioned consequences 
were intended by Google or Facebook. Yet, despite their efforts, it proved to be 
difficult to prevent their systems from spreading misinformation.

Existing approaches to achieving non-maleficent AI systems

To our knowledge, no existing approaches explicitly address the challenge 
of behaviour-use interdependence. Although Rahwan and colleagues, in their 
seminal review for Nature in 2019, argue for establishing a new discipline that 
could systematically study machine’s behaviour and use (i.e., akin to “how 
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ethology and behavioural ecology study animal behaviour” (p. 477)), such 
discipline has not been clearly established yet. Further, some types of the 
human-in-the-loop approach like interactive machine learning12 or useful AI13 
can appear to be addressing the behaviour-use interdependence challenge. 
Namely, they do focus on detailing how human feedback can be used to train 
the model before it is deployed. However, none of them specifically addresses 
the interdependence between behaviour and potential use once the model has 
been deployed and how this can lead to a host of unintended outcomes (see 
Mosqueira-Rey et al., 2022 for a comprehensive overview). It is precisely during 
the interaction between the AI system and the variety and deep complexity of 
human contexts in which it may be applied that many harmful outcomes start 
to emerge. In fact, it is usually indeterminate how others will use an AI system 
and what the impact of that use would be until the solution becomes part of 
a broader context. This makes it difficult to anticipate which consequences 
need to be mitigated prior to implementing the solution. Consequently, it makes 
it challenging to ensure an AI system we design will remain non-maleficent 
throughout its entire lifecycle. 

Main research question of the dissertation

So far, we introduced four challenges to implementing AI systems into complex 
contexts: (1) ensuring transparency, (2) mitigating implicit biases, (3) aligning 
with human values, and (4) addressing the behaviour-use interdependence. 
While multiple scholars across different academic fields address the first three, 
no current approaches, to our knowledge, explicitly address the fourth one. 
Yet, as it could be seen from the examples discussed so far, it is important to 
ensure that we design the behaviour of the AI system in such a way that it will 
trigger its intended use once it is deployed. Further, we also need to ensure that 
the AI will continue behaving in an intended way even after different types of 
unexpected uses are performed by humans or other AI systems. Therefore, it 

12 This is a type of approach where the human iteratively teaches the AI model so that its learning 
behaviour can be optimised (Mosqueira-Rey et al., 2022).
13 Useful AI refers to the approach where once deployed, AI systems can receive corrections 
from their users that can be used as additional training data (e.g., CAPTCHAs) (Mosqueira-Rey 
et al., 2022).
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becomes imperative to develop theoretical models and methods that support 
us in simulating (potential) uses as early as possible so that we can fine-tune 
the behaviour of the system to trigger the desired use. This, in fact, becomes 
the main premise of this doctoral dissertation.

The field of Design is well-positioned to address the challenge of behaviour-use 
interdependence. Namely, the notion of two interdependent entities parallels 
one of the field’s most influential ideas: ill-defined problems become better 
understood through the iterative process of designing a solution and vice 
versa. Consequently, they are never fully defined, and evolve over time. This 
interdependence can be found at the core of some of the most influential 
Design theories such as the theory of co-evolution (Maher, 2000; Dorst & Cross, 
2001), Simon’s Rational Problem Solving (1996) and Schön’s Reflective Practice 
(1983) (see Crilly, 2021). Furthermore, both “behaviour” and “use” are central to 
the cognitive act of designing. Both can be found in what many design scholars 
consider the core of design – abductive reasoning (e.g., March, 1984)14. For 
instance, according to Roozenburg15 (1993), the variables of behaviour and use 
are instrumental to our ability to generate new solutions. Further, behaviour 
can be easily likened to what Roozenburg (ibid) defines as the mode of action 
or the “(functional) behaviour of the artefact in response to influences exerted 
on it from its environment” (p. 12). On the other hand, the manner in which an 
AI system is used coincides with the definition of actuation Roozenburg (ibid) 
uses: the action that the user applies onto the artefact that allows it to function 
and be “connected” (p. 13) to its immediate environment. As such, the field of 
Design Theory could provide us with insights on how the behaviour and use 
influence each other.

14 See also Zeng and Cheng (1991); Roozenburg (1993); Takeda (1994); Dorst (2011); Dong et al. 
(2015); Kroll & Koskela (2015); and Hatchuel et al. (2018).
15 Roozenburg’s work on abductive reasoning in Design is widely considered as seminal (e.g., Kroll 
& Koskela, 2015).



Table 1: an overview of existing challenges and research approaches (and the field to which these approaches belong) related to the four ethical princi-
ples Jobin et al. (2019) put forward and the AI characteristics identified in Chapter 1.

Principle
AI 
characteristic

Challenge Approaches Aim Authors Field

Transparency Complex mod-
el structures Black box

A post-hoc model to explain the 
black box model

Create a relatively simple 
algorithmic model that 
takes a black-box model as 
its input and tries to explain 
it post-hoc.

e.g., Gunning (2017); 
Murdoch et al. (2019);

Samek et al. (2017); 
Hagras (2018).

Computer ScienceInherently interpretable models

Create algorithmic models 
that are easy to understand 
and interpret, yet, sophis-
ticated enough to properly 
fit the data and provide an 
accurate result.

e.g., Rudin (2019), Lip-
ton et al. (2018).

No need to understand the model

Create black box mod-
els that operate within 
boundary conditions set by 
humans.

e.g., Robbins (2019), 
Floridi (2011).

Fairness

High depen-
dency on hu-
man-generated 
data

Bias

Mathematical models (e.g., an-
ti-classification; classification 
parity; calibration)

Use formal mathematical 
definitions of fairness to 
evaluate existing systems 
and when engineering new 
algorithms.

e.g., Dixon et al. (2018); 
Bellamy et al. (2018);

Holstein (2019); Recas-
ens et al. (2013).

Computer Science

Contextual approach

Identify existing biases by 
considering fairness as a 
contextual construct.

e.g., Recasens et al., 
2013; Rudin, 2019; 
Holstein, 2019; Lee et 
al., 2021.

Ethics



Responsibility Complex mod-
el structures Human values

Ethical guidelines

Devise a set of ethical 
guidelines that support AI 
development in ensuring hu-
man values are embedded 
into the AI system.

e.g., Mittelstadt (2019); 
Google (2019); Micro-
soft (2019); Greene et 
al. (2019); Smallman 
(2019); Awad et al. 
(2018); Benkler (2019).

Ethics

Human-centered AI

Ensure AI systems are 
aligned with human values 
and remain human-centred.

e.g., Riedl (2019); 
Chancellor et al. (2019); 
Google’s PAIR (2019); 
Lovejoy (2018); Brown 
(2017); Amershi et 
al. (2019); Yang et al. 
(2020).

Human Computer 
Interaction (HCI)

Value Sensitive Design

Intentionally embed desir-
able (ethical) values into 
technical artefacts

e.g., Flanagan et al. 
(2008); Friedman & 
Kahn (2003); Davis & 
Nathan (2015); van 
Wynsberghe (2013); 
Nissenbaum (2001);

Cockton (2009); Santoni 
de Sio & van den Hoven 
(2018); de Reuver et al. 
(2020).

Non-malefi-
cence

Continuous 
learning cycle

Behaviour-use 
interdependence No existing approaches n/a n/a n/a
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Taking into consideration the aforementioned reasons, we adopt the behaviour-
use interdependence challenge as the vantage point for the rest of the 
dissertation. This allows us to formulate the main research question of the 
dissertation. Namely:

“How can a theoretical model be designed that supports the early simulation of 
AI systems’ behaviour-use interdependence by utilising Design theories?”

This new, more detailed, research question builds upon the initial one we 
presented in the dissertation’s Introduction (i.e., “How can Design theories 
support the design and implementation of AI systems into complex contexts?”).

Consequently, this dissertation encompasses three distinct contributions. First, 
to the field of AI systems design, the aim of this dissertation is to utilise Design 
theories in order to address the behaviour-use interdependence challenge we 
outlined in the chapter. Second, the use of these theories also necessitates 
an exploration on whether and how they should be extended to address the 
design of the new material (AI systems). Finally, the dissertation will discuss 
the implications of the other two contributions to the existing body of research 
in Design Theory. 

Conclusion

This chapter was based on the premise that in order to implement an AI system 
into a larger context, it should be ethical. Stemming from this, we adopted 
the four ethical principles Jobin and colleagues (2019) discussed as point 
for convergence among the different global ethical guidelines: transparency, 
fairness, responsibility, and non-maleficence. These four principles then 
served as foundation to answer the research questions of the chapter:

What are the challenges to implement AI systems into complex contexts?

What research approaches exist to address the identified challenges?

The answer to the first question came from the combination of the ethical 
principles Jobin et al. (2019) put forward and the characteristics of AI 
systems identified in Chapter 1: AI’s complex functional processes, the high 
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dependency on human-generated data, and AI’s continuous learning cycle. 
By combining the ethical principles and AI’s characteristics, we arrived at the 
following four challenges: (1) ensuring transparency, (2) mitigating implicit 
biases, (3) aligning with human values, and (4) addressing the behaviour-use 
interdependence. These four challenges are interrelated and heavily influence 
each other. For instance, if we are to create an algorithm that can explain every 
black box model there is, we would also be able to identify where the potential 
biases are and thus, make the solution fairer. Therefore, the advancements 
made on achieving all four challenges are equally important if we are to ensure 
AI systems will not create far-reaching harmful outcomes.

The answer to the second research question is directly related to that of the 
first one. For each challenge, we identified existing research approaches from 
across different academic fields trying to resolve it. However, as it can be seen 
from the overview in Table 1, there are research approaches for all challenges, 
except for the fourth one – behaviour-use interdependence. This gap in the 
literature presents us with a clear opportunity to contribute to the efforts of 
designing ethical AI systems that are to be implemented into complex contexts. 
We then pointed to the central role in the cognitive act of designing both 
behaviour and use play.

Finally, these new insights served as a foundation for the reformulation of the 
dissertation’s main research question. Namely: “How can a theoretical model 
be designed that supports the early simulation of AI systems’ behaviour-
use interdependence by utilising Design theories?”. This new question also 
brings us to the close of Part I (i.e., Set the scene) of the dissertation. In Part 
II, we explore Design theories that allow us to provide an initial answer to the 
main question.



INITIAL THEORETICAL MODEL

PART II
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CHAPTER 3

THE FUNDAMENTS OF 
DESIGN THEORY

In the previous part of the dissertation, we sketched out the issues a new theory 
can address as well as the potential importance the research of these issues 
carries. This background understanding allowed us to define the main research 
question of the dissertation: “How can a theoretical model be designed that 
supports the early simulation of AI systems’ behaviour-use interdependence 
by utilising Design theories?”. In this chapter, we start to unpack the question 
by addressing its second part: “behaviour-use interdependence” and “Design 
theories”. Therefore, the following research question guides this chapter:

“How do Design theories address the behaviour and use of solutions?”

The chapter is divided in two sections. First, Section I, presents and compares 
the two paradigms of Design Theory that have influenced the developments 
in the field since its inception: the Rational Problem Solving (Simon, 1969, 
1981, 1996) and the Reflective Practice (Schön, 1983). Such insight is needed 
to provide a foundational understanding of the Design Theory field. Using this 
basis, Section II then elaborates upon the type of reasoning that has been 
widely considered as the core of design – abductive reasoning. As we already 
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contended in Chapter 2, the theory of abductive reasoning in Design is well-
positioned to provide us with insights on the relationship between behaviour 
and use. Such insights will also further strengthen our understanding on how 
Design theories (as well as the concepts of behaviour and use) support the 
design of a new solution. The chapter is concluded with an overview on the 
insights that emerged from both of its parts.

Section I: The two defining paradigms of Design Theory

The developments in the Design Theory field have historically been defined by 
two theoretical paradigms: Rational Problem Solving (Simon, 1969, 1981, 1996) 
and Reflective Practice (Schön, 1983). The two paradigms have often been 
seen as diametrically opposite by a number of design scholars (e.g., Schön, 
1983; Cross, 2007). Yet, they do share some similarities, especially if we are to 
consider the second and third edition of Simon’s seminal work, The Sciences of 
the Artificial (as we do in this chapter) (Meng, 2009). The degree of similarity or 
differentiation of the two paradigms falls outside the scope of this dissertation. 
Still, when designing new theoretical models which can support the design 
process, we need to consider both paradigms (Roozenburg & Dorst, 1998). Both 
have influenced the developments in the field since its inception and provided 
the theoretical background against which different design practices, procedures 
and principles have been developed. Therefore, they provide a fruitful basis for 
understanding the existing approaches to designing new solutions.

Rational Problem Solving

This paradigm was mainly developed by Herbert Simon (1969, 1981, 1996) 
and particularly the ideas he put forward in his seminal book “The Sciences 
of the Artificial”. When first published in 1969, his work built upon views put 
forward by Alexander (1964) and the prevailing positivistic idea at the time 
that the design process can be rationally and systematically analysed and 
described (e.g., Zeng & Cheng, 1991; Cross, 1993). He elaborated upon them 
by using insights from psychology and the field of AI. In 1981, in the second 
edition of his book, these ideas evolved to include the notion of the continuous 
“open search for new goals whilst designing” (Meng, 2009, p. 65) – an idea 
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resembling the constructivist theory of Schön (1983). As such, Simon’s theory 
introduced a manner for describing design within the paradigm of technical 
rationality. It also provided rigorous foundations for much of the existing 
knowledge in Design Methodology (Dorst, 1997). In this chapter, we refer to the 
third edition of his book published in 1996 as it provides an overview of Simon’s 
most recent ideas and theories.

To Simon, the design process is best represented as a parallel search process. 
When designing one needs to simultaneously explore multiple combination of 
components (which Simon terms “assemblies” (p. 124)) while searching for 
a solution that can satisfice the given goal (i.e., purpose) and requirements. 
The latter are provided by the client. When designing artefacts, the clients are 
usually easily discernible (i.e., they are the ones who initiated or paid for the 
project). When designing complex systems such as “rebuilding the center of a 
city” (p. 163), however, there are multiple clients, and it is up to the designer to 
decide which priorities and interests she should try to satisfice. Simon draws 
similar distinctions when it comes to the goals the clients provide. The design 
of an artefact is accomplished by trying to satisfice a goal that remains the 
same throughout the entire design process. When designing complex systems, 
however, the goal is clear and stable, but only at the beginning. It can change 
over the course of the design process. This happens since every interaction 
with the problem and its potential assemblies allows the designer to reach her 
initial goal, but also helps new goals to emerge. Simon equates this process of 
emergence to “painting in oil” (p. 163).

The search process and consequently, the emergence of new goals, is propelled 
forward by the identification of (unintended) consequences that emerge as 
a result of following each alternative. These consequences lie well into the 
future and therefore, they cannot be easily predicted upfront. Hence, according 
to Simon, one needs to look for ways to receive immediate feedback on the 
consequences of a solution. Thus, establishing robust feedback mechanisms 
is important. Such could allow the artefact to continuously respond to 
discrepancies between the system’s actual and desired states, and then adapt 



59

THE FUNDAMENTS OF DESIGN THEORY

to fluctuations in the environment. Simon, however, does not elaborate on how 
such feedback mechanism ought to function and be established.

Finally, according to Simon, the design process ends when the designer has 
managed to find a solution (i.e., “an assembly”) that satisfices the given 
goal and requirements. In order to decide whether the found assembly could 
satisfice these, one needs to consider only three variables: the goal or purpose 
of the artefact, its internal structure, and the environment in which it will be 
placed. For instance, if a clock is to fulfil its purpose (“tell time”), its structure 
(i.e., “arrangements of gears and the application of forces”) needs to be well-
suited to its environment (i.e., “a clock meant for ships requires properties that 
are irrelevant for the landlubber’s clock”) (Simon, 1996, p. 6). The resulting 
solution, however, can never represent the optimal outcome since one can 
never know enough about a situation to assert with certainty that a solution 
provides the best fit. Hence, the designed solution can be assessed not as “the 
best”, but as “better” or “worse” than the other proposed alternatives.

Reflective Practice

This paradigm was introduced by Donald Schön (1983) in his seminal book 
“The Reflective Practitioner” as what he claimed to be a “diametrically opposed” 
view on design to that of Simon 

. The Reflective Practice provides a different, a constructivist and intuitive way 
of looking at designing. One that accounts for the iterative process typically 
employed while designing and that is more representative of the ambiguities 
and complexities of the everyday design situations (Roozenburg & Dorst, 1998).

According to Schön, design is a reflective conversation between the situation 
at hand and the designer where the former talks back to the latter. The design 
process, therefore, commences with the deliberate act of problem setting. 
While the design problem is specific and preliminary set (e.g., by the client) in 
Rational Problem Solving, within the paradigm of Reflective Practice, design 
problems are seen as situated, unique and never fully known. Hence, it is the 
designer’s job to understand the problem better. According to Schön, she can 
do so by naming the things she will pay attention to in the problem situation and 
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then impose a suitable frame onto them. The latter is rooted in the knowledge 
a designer already has (i.e., what Schön terms a designer’s underlying theory 
(p. 153)) but also corresponds with the designer’s own goals and her view from 
which she can approach the problem. Thus, the designer needs to deliberately 
construct, shape, and change the problem setting. With that, she becomes part 
of the problem setting, too.

Once the designer has selected a frame, it becomes the starting point for 
the initiation of a move (i.e., the deliberate action the designer takes to both 
understand the situation and change it, so it fits better the proposed frame). 
She enacts such moves through experiments that could anticipate/simulate 
“what consequences and implications can be made to follow from it” (p. 131). 
According to Schön, three distinct types of experiments happen during a move: 
1) exploratory experiment (when action is taken to see what its consequences 
might be without having a preconceived predictions or expectations); 2) move-
testing experiments (when action is taken to produce an intended change); 
and 3) hypothesis testing experiments (when action is taken to confirm an 
existing hypothesis). Despite the different purposes these types of experiment 
serve, however, according to Schön, they occur simultaneously with each 
enactment of a move.

The unintended consequences or side effects that emerge after a move, Schön 
terms as “surprises” (p. 153). According to him, these surprises propel the act 
of designing forward and trigger the process of reflection-in-action. During the 
design process the designer actively tries to make sense of the situation at 
hand and reflects on the knowing that has been implicit in her actions 

. To Schön, typical questions designers ask themselves during such reflection 
are focused on elaborating upon the features they notice, the criteria they use 
to select these features, and the manner in which they are framing the problem 
they are trying to solve. During this, the designer not only asks herself “Do you 
get what you intend?” but also, “Do you like what you get?” (p. 146).

If the elicited surprises are positive and desirable, then the designer affirms 
the move. However, when the move and consequently the experiment have 
produced a negative surprise – the designer negates the move and selects 
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a new frame. Therefore, the process of framing, moving, and reflecting 
commences again. During it, the designer tries to change the situation so 
that it fits the new frame she selected. As such, the iterative design process 
unfolds gradually through the clarification of both the problem and solution 
spaces (akin to the theory of co-evolution of problem-solution space (Dorst & 
Cross, 2001)).

Overview of the paradigms

The paradigms of Rational Problem Solving and Reflective Practice have largely 
defined the theoretical developments in the field of Design. As such, when 
designing new theoretical models which can support the design process, we 
need to consider both paradigms. It is important to do so since they can, jointly, 
lead to the better understanding of design procedures, principles, and practices 
(Dorst & Dijkhuis, 1995; Roozenburg & Dorst, 1998). In Figure 8, a visual 
overview can be found on the manners in which both Simon and Schön see the 
design process.

There are three insights that emerged from the overview presented thus far 
that can aid us when designing a new theoretical model. First, to both, Schön 
and Simon, establishing a feedback mechanism of how the solution performs 
is important so that its goal can be continuously updated (for Simon) and so 
that we can have a better understanding of the problem (for Schön). Simon 
does not elaborate on how such feedback mechanism ought to function and be 
established. However, as it can be seen from Figure 8, it is the consequences of 
the solution that could be seen as providing such feedback and trigger another 
search process for different assemblies. Similarly, for Schön, it is the surprises 
(both positive and negative) that trigger the process of reflection-in-action 
where the situation “talks back” to the designer. This allows the designer to 
better understand the problem and create new frame on how the problem might 
be approached. In the process of identifying these surprises, Schön also puts 
central the notion of experiments (as part of what he terms a “move”). 
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Figure 8: Visual representations on Simon (left) and Schön’s (right) paradigms.

Second, both scholars consider the role of the designer. For Simon, the 
designer plays a role only when she needs to choose who the client is, and 
which priorities and interests she should try to satisfice during the design of 
a complex system. For Schön, the manner in which a designer chooses to 
approach a problematic situation is always rooted in her own goals. Thus, 
she becomes part of the problem setting. This different view on the role a 
designer plays is also reflected in how the two scholars determine when the 
design process ends. To Simon, it ends when the designer has managed 
to find a solution that satisfices the goal and requirements. According to 
Schön, however, it is the designer who actively decides whether to end the 
design process by looking at the surprises her moves have created and 
reflect on them. 
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Finally, both scholars see the unintended consequences a solution has 
produced (i.e., surprises for Schön), as a natural and needed outcome of the 
design process. In fact, to Schön, such consequences are central to the process 
of design. They are the ones that allow the designer to gradually construct, 
shape and understand the situation better so that she can change it to fit the 
selected frame or find a better frame that suits the situation.

Section II: The core of design

The research question this chapter aims to answer is: “How do Design theories 
address the behaviour and use of solutions?”. The two paradigms presented 
in Section I provide a general understanding on the two main approaches to 
designing. Yet, they do not indicate how the behaviour and use of a solution are 
related to its design. In order to answer this, we need an in-depth knowledge on 
the core of design – abduction, as briefly discussed in Chapter 2.

It is widely agreed upon that the reasoning mode that defines the act of 
designing a new solution is abduction (e.g., March, 1984)1. Abduction was 
first introduced as a distinct type of reasoning by Peirce (1994) to denote the 
synthetic thinking employed in producing new insights. As such, according to 
Peirce, abduction2 represents the “act of insight” that “comes to us like a flash” 
(5.181), “the process of forming an explanatory hypothesis” (5.171) and “the 
only kind of argument which starts a new idea” (2.96). Hence, abduction is 
distinctly different from the other type of synthetic reasoning (i.e., induction). 
Namely, abduction allows us to suppose that given an existing general rule or 
theory, a phenomenon exists that could explain our observations. Induction 
is the inference that allows us to arrive at a general law that can account for 
our observations. Both abduction and induction are distinctly different from 
the analytical type of reasoning – deduction – which supports us in applying a 
general rule to a specific case to reach a specific result (see Image 2).  

1 Other authors that agree on the importance of abduction in Design include Zeng & Cheng (1991); 
Roozenburg (1993); Takeda (1994; 2001); Liedtka et al. (2007); Kolko (2010); Dorst (2011); Kroll & 
Koskela (2015); Dong et al. (2016); and Verganti et al. (2020).
2 The definition of abduction Peirce introduced is also close to the creative psychology constructs 
of sudden insight and aha moment (e.g., Akin & Akin, 1996)
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Image 2 An explanation on how one can use the different types of reasoning to reach the 
conclusion that it rained when they see a wet street.

According to Peirce, the relationship among the three can be defined in the 
following manner: “Deduction proves that something must be; Induction shows 
that something actually is operative; Abduction merely suggests that something 
may be” (5.171).

The notion that abduction is the key reasoning mode of design was first 
introduced by March3 (e.g., Roozenburg, 1993; Kroll & Koskela, 2015). 
The claim was subsequently adopted and discussed by numerous design 
scholars4. According to them (e.g., Zeng & Cheng, 1991), however, while 
the abduction Peirce describes is invaluable in traditional problem solving, 
it fails to fully capture the manner in which hypotheses5 are formulated as 

3 It is important to note that abductive reasoning continues to stir an ongoing debate around 
its properties and nature, unlike the other, better-known, reasoning patterns (i.e., deduction and 
induction) (Kroll & Koskela, 2015). As such, especially in Philosophy of Science, abduction is 
widely discussed, and different types of abduction have been introduced that provide (richer) 
insights to the notion of abduction in general. A noteworthy example of this is the work of Magnani 
(e.g., 2007).
4  See also Zeng and Cheng (1991), Roozenburg (1993), Takeda (1994), Dorst (2011), Dong et al. 
(2015), Kroll & Koskela (2015) and Hatchuel et al. (2018).
5 It is important to note that the type of hypotheses we are referring to here are different than 
the ones employed in science. March (1984), for instance, claims that scientific hypotheses are 
distinctly different than the ones employed in Design. While the former represents a “general 
principle induced from particular events and observations” (p. 268), the latter are used as a 
“particular instance produced from a general notion and specific data” (p. 269).
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“tentative descriptions for solutions to design problems” (Roozenburg, 1993, 
p. 4). Therefore, multiple Design scholars presented different classifications 
of the manner, in which design abduction is different than the one 
introduced by Peirce.

A well-accepted differentiation between the type of abduction Peirce introduced 
and the one employed in design is given by Roozenburg (Kroll & Koskela, 
2015; Dong et al., 2015). In his seminal paper from 1993, Roozenburg likens 
Peircean abduction to a term Habermas (1978) introduced – explanatory 
abduction. Explanatory abduction, Roozenburg claims, can be formalised as 
a logical explanation of an observation used to identify the use of a known to 
be true principle. This can be a law or theory such as, “If a motor has no gas, 
then it does not start”. Therefore, it allows us to reason from the observed 
effect (“The car doesn’t start”) to a possible cause (“The tank is empty, I guess”) 
(Roozenburg, 1993, p. 10). As such, explanatory abduction works only in 
situations when the law (i.e., working principle) and the observed effect are 
known. Thus, according to Roozenburg, this type of abduction is not about 
“discovery” but about “diagnosis” and “troubleshooting” (ibid, p. 10).

Roozenburg (1993) terms the type of abduction he sees as central in design 
as innovative abduction (again, adopting the term introduced by Habermas 
(1978)). According to Roozenburg (1993), this type of abduction best 
represents the reasoning in Design and allows designers to conceive of new 
solutions only by being given a desired purpose. Innovative abduction is a 
reasoning mode starting from a surprising fact, which is yet to be explained (the 
result). This is followed by the conception of a new rule (a working principle, 
law, or theory) which allows for inferring the cause (the case). The rule itself, 
therefore, is not yet assumed to be true but it is seen as a new hypothesis that 
needs to be tested by deduction and induction (ibid). Roozenburg then goes on 
to designate innovative abduction as the kernel of design and consequently, 
the key mode of reasoning in design synthesis. Such is found throughout the 
entire design process, he claims, but it is present most prominently during the 
creation of what he terms a principal solution: “an idealized representation (a 
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scheme) of the structure of a system, that defines those characteristics of the 
system that are essential for its functioning.” (p. 12).

The distinction between explanatory and innovative abduction presented 
above is not exhaustive of the history of abduction in the field of Design. 
For instance, what Roozenburg terms innovative abduction is given different 
names by different scholars. March (1984), for example, terms it as “productive 
reasoning6” (p. 267), Takeda et al. (2001) denote it as the third type of 
abduction (p. 3) and Dorst (2011) calls it abduction-2 (p. 524). Regardless of 
the different names they give it, the descriptions they arrive at are comparable 
to that of Roozenburg’s (Kroll & Koskela, 2016). Therefore, in this chapter, we 
will not recount the different terms Design scholars use to denote abduction 
in further detail7. Instead, we proceed by identifying and elaborating upon 
two models8 of innovative abduction used in Design9 that can be seen as 
representatives of the two paradigms of Design Theory: Rational Problem 
Solving and Reflective Practice10. 

6  The reason March introduced the term of productive reasoning to denote abduction is as 
follows: “Peirce did not use the term productive: he used at different times the terms abductive, 
retroductive, presumptive, hypothetic. In the design context our choice of term seems more telling 
and natural” (March, 1984, p. 274).
7 The introduction and implications of abduction to the field of Design are already well-described 
by a plethora of authors among whom March (1984), Roozenburg (1993), Takeda (1994), Takeda et 
al. (2001), Dorst (e.g., 2011), Dong et al. (e.g., 2016) and Kroll and Koskela (e.g., 2014, 2015, 2016).
8 We refer only to these core papers of Roozenburg (1993) and Dorst (2011) because they are very 
explicit in their definition of abductive reasoning in the field of Design while maintaining a broader 
orientation (they adopted theories from e.g., March (1984), Habermas (2015) and Schön (1983)). 
The most important conclusions we draw here have been checked with other (later) papers by 
Roozenburg, Dorst and other authors (e.g., Takeda (1994, 2001); Dong and MacDonald (2016); 
Dong et al. (2016); Kroll and Koskela (2017)) and the work on Function-Behavior-Structure ontology 
of Gero (e.g., 2007).
9 It is worth noting that apart from the field of Design, abductive reasoning has also received 
attention in the fields of Philosophy of Science (most notably by Magnani (e.g., 2007, 2011) and 
in the field of Artificial Intelligence under the name of Inference to the Best Explanation (IBE) 
(however, IBE, although confused by many authors to be equal to Peircean abduction, is distinctly 
different from it – for an in-depth discussion on the topic, please, refer to Campos (2011)).
10 As stated in Section I, it is important to consider developments in Design pertaining to 
both paradigms of Design Theory since doing so could lead to the better understanding of 
design procedures, principles, and practices (Dorst & Dijkhuis, 1995; Dorst, 1997; Roozenburg & 
Dorst, 1998).
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Abduction in the paradigm of Rational Problem Solving

The first model describing the manner in which abduction is applied to the 
process of designing a new solution originates from principles of the Rational 
Problem Solving paradigm (Roozenburg, 1993). According to him, the design 
process always starts with a purpose (what Simon also sometimes terms a 
goal). For instance, when designing a kettle, the purpose would be to “be able 
to boil the poured-in water”. To fulfil its purpose, the kettle needs to behave in 
a certain way (e.g., the bottom needs to heat up, so it can transform the heat 
to the water inside). Roozenburg terms this mode of action (i.e., the solution’s 
behaviour). Introducing this term is a deliberate choice that allows him “to avoid 
the ambiguous term ‘function’”11  (Roozenburg, 1993, p. 12). Thus, according to 
him, the mode of action signifies the “(functional) behaviour of the artefact in 
response to influences exerted on it from its environment” (p. 12). The mode 
also serves as the bridge between the artefact and its immediate environment.

To account for the manner in which a human is to use the product (i.e., putting 
the kettle on the burner), Roozenburg introduces the notion of actuation. 
While the mode of action refers to how the artefact behaves in relation to the 
situation, actuation is the action that the user applies onto the artefact that 
allows it to function and be “connected” (p. 13) to its immediate environment. 
The outcome of the design process Roozenburg terms as form. (i.e., the 
material and the geometrical shape of the product). Therefore, the form of the 
kettle and the way it is used (actuated) causes it to behave in a certain way 
(mode of action), and therefore, by this behaviour, it can fulfil its purpose. The 
model of innovative abduction Roozenburg suggested is as follows: ( (form ˄ 
actuation) → mode of action) → purpose

12

11 In the paradigm of Rational Problem Solving, the term “function” has been used in different ways 
by different scholars. For instance, in some instances, it can denote the purpose of a solution and 
in others – its behaviour (e.g., Rosenman & Gero, 1998). On the other hand, the term behaviour has 
many different meanings and connotations and can be misleading when discussing unintended 
consequences (see Merton, 1936). 
12 In his final formulation, Roozenburg subsumes mode of action into the combination of actuation 
and form. Therefore, he arrives at the following final formulation for innovative abduction: form and 
actuation  purpose. This action is not surprising considering the prevailing idea at the time that 
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Abduction in the paradigm of Reflective Practice

Another model of abduction in Design is rooted in the Reflective Practice 
paradigm. It was introduced by Dorst in 2011. He, as already explained, termed 
the core abductive reasoning in Design as “abduction-2”. To explain the manner 
in which abduction-2 works, Dorst (ibid) presents the example of designers 
who are given a task to redesign a metropolitan entertainment quarter. The 
designers were asked to do so in such a way that their redesign can solve the 
habitual accidents of “drunkenness, petty theft, drug dealing, and, later in the 
night, sporadic violence” (p. 528) that was happening in the entertainment 
area. Presented with such a problem, the first thing a designer had to do was 
to define (an aspired) value the potential solution should achieve (e.g., “people 
having good time”). To achieve this value, the designers had to think about how 
the problem can be approached (e.g., “this problem could be approached AS IF 
they were dealing with organizing a good-sized music festival” (p. 529)). Dorst 
terms this action as a frame13 and uses it to denote a cognitive act of looking at 
a problem situation from a specific viewpoint that informs how the problem can 
be solved (Dorst, 2015)14. Last but not least, in accordance with the Reflective 
Practice paradigm, Dorst also defines framing as the variable that allows the 
designer to gradually build her understanding of the problem and design a 
solution that approaches the problem in an original manner (ibid). 
 
Once the frame was established, the designers then proceeded by defining a 
clear how the aspired result could be achieved. For example, they provided an 
overview on the waiting times to enter each of the clubs in the quarter. Then, 
once the value, the frame and the how were clear, the designers created the 
solution, which Dorst terms as what (i.e., a service, system, solution). The 

the behaviour of an artefact can be fully defined by its purpose, structure (i.e., Roozenburg’s form) 
and environment (i.e., Roozenburg’s actuation) (see Simon, 1996).
13 According to Dorst (2011), the formulation of frames follows the format: “IF we look at the 
problem situation from this viewpoint, and adopt the working principle associated with that 
position, THEN we will create the value we are striving for.” (Dorst, 2011, p. 525).
14 As already discussed, framing is a practice that is central to the paradigm of Reflective Practice 
(Schön, 1983). However, since Schön’s theory as presented in the “Reflective Practitioner” is “weak 
and fuzzy” (Roozenburg & Dorst, 1998, p. 40), Dorst introduced his own definition. 
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solution Dorst gives as an example is an app that provides an overview of 
waiting times for each club. Finally, according to Dorst, this sequence of actions 
can be represented as the following expression, where the frame facilitates the 
move from Value to How:

WHAT + HOW → VALUE

Overview of abduction defined by the paradigms of Design  
Theory

The two models clearly represent the two different paradigms of Design Theory. 
For Roozenburg, the purpose and the problem setting are clear and provided by 
the client and the design process is seen as a search. For Dorst, the subjective 
interpretation of a designer (and the situatedness of a design), housed in the 
variable of frame, are central. Despite these differences, however, one can 
clearly see the similarities between the two models (Table 2).

Table 2  An overview of the variables of Roozenburg and Dorst’s abduction models

Rational 
Problem Solving 
(Roozenburg, 1993)

Reflective 
Practice 
(Dorst, 2011)

Comparison

purpose value Both serve as the desired outcome 
of the design process. However, the 
purpose is static while the value is 
constantly evolving.

mode of action how In his final model, Roozenburg puts 
an emphasis on the actuation while 
to Dorst, the working mechanism is 
important.

actuation

form what Both represent the manner in which a 
solution can be manifested – either as 
a form, or as a what.

FRAME
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n/a frame The cognitive device Dorst uses to 
allow the designer to better represent 
and construct the problem setting.

First, both models commence with a pre-defined desired outcome: purpose for 
Roozenburg and value for Dorst. However, reflecting the paradigms to which 
they belong, the purpose remains stable throughout the design process (in 
accordance with Simon’s early view on the process of design); while the value 
is continuously evolving to reflect the better understanding of the problem 
the designer gradually acquires (following Schön’s prescription). Furthermore, 
Dorst’s focus on value also represents a larger shift in the field of Design, which 
sees designing as a value-producing activity (e.g., Friedman, 1996; Calabretta 
& Kleinsmann, 2017)15. This is distinctly different from the previously dominant 
view on design as an activity of designing a product that fulfils a given purpose 
(as was the case for e.g., Roozenburg (1993)).

Second, both authors claim that the design process will eventually lead to a 
tangible outcome – either a form (Roozenburg) or a solution/what (Dorst). 
However, the underlying principles according to which the “form” or the “what” 
will be reached are different, reflecting the paradigm on which they are based. 
For instance, Roozenburg’s model reflects the process of product design. Thus, 
to him the design process is a search for a satisficing option. Dorst’s model, 
on the other hand, addresses the shift in Design from designing products to 
designing services and systems. Further still, fully in line with Schön’s paradigm, 
Dorst’s model introduces the variable of frame as the cognitive device that 
allows the designers to better represent and construct their ever-evolving 
understanding of the problem setting.

Third, both scholars introduce variables to signify the way a solution has to 
behave (i.e., Roozenburg’s mode of action and Dorst’s how). Roozenburg also 
introduces a variable to denote the manner in which a solution is to be used 
(i.e., actuation). As such, the formulaic expressions of abduction both scholars 
introduce provide us with clues on how to design the desired behaviour of a 

15 See also Rosenman & Gero (1998); Cockton (2006); JafariNaimi et al. (2015); Dong et al. (2017).
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solution. Further, the unabridged version of Roozenburg’s model also provides 
a clear relationship between the desired behaviour of a solution (i.e., mode 
of action) and its use (i.e., actuation). As such, both the mode and actuation 
should be considered as stand-alone variables due to the fact that the AI 
system’s future behaviour is highly dependent on the way it is going to be used, 
as discussed in the previous chapters. This contention is supported by Dong et 
al. (2016b). According to them, both mode and actuation have to be explicitly 
considered when designing digital artefacts since the actuation of a solution 
is directly dependent on its mode of action. These provide us with invaluable 
insights on how new solutions can be designed by taking into consideration 
both the behaviour of a solution and its use. Thus, bringing us one step closer 
to providing an answer on how Design theories could enable us to simulate the 
behaviour-use interdependence.

Conclusion

This chapter started by stating the need to answer the following 
research question:

“How do Design theories address the behaviour and use of solutions?”

The exploration was carried out in two stages. First, in Section I, we provided 
an overview on the two main paradigms that have been defining for the field 
of Design Theory. Then, in Section II, we delved deeper into the core of design 
and discussed the reasoning that provides models for the relationship between 
behaviour and use and how these two variables can be used to design new 
solutions. An overview on the insights that emerged from both parts can be 
found below.

As stated in Section I, if we are to devise a theory representative of the design 
process, we need to consider the paradigms of Rational Problem Solving and 
Reflective Practice (Dorst, 1997; Roozenburg & Dorst, 1998). From the overview 
of Simon (1996) and Schön (1983), three important insights emerged: (1) 
establishing a feedback mechanism is important so that we can have a better 
understanding of the problem; (2) the designer has influence over the design 
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process (only a limited one for Simon and an instrumental one for Schön); 
and (3) unintended consequences  (i.e., surprises for Schön) are a natural and 
needed outcome of the design process as they are the ones that propel the 
design process forward by, for instance, causing a reframe/iteration.

Section II introduced abduction in its capacity as the key reasoning mode of 
design, followed by the models introduced by Roozenburg (1993) and Dorst 
(2011) (each one related to one of the paradigms in Section I). Despite the 
differences the two abduction models have, the reasoning mode they represent 
is comparable (Kroll & Koskela, 2016). They both start from an initially agreed-
upon point (purpose and value), then they use that to define either implicitly or 
explicitly the behaviour and use of the potential solution (mode and actuation/
how). The combination of these consequently leads to a tangible solution – 
either a form or an object, service, or a system. Therefore, both models provide 
an important piece for our understanding on the relationship between behaviour 
and use and how they both contribute to the design of new solutions. Thus, 
it provides new building blocks that can support our attempt to answer the 
main research question of this dissertation: “How can a theoretical model 
be designed that supports the early simulation of AI systems’ behaviour-use 
interdependence by utilising Design theories?”.
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CHAPTER 4

PROTOTYPING FOR 
EARLY SIMULATION OF 
BEHAVIOUR AND USE

In the previous chapter, we presented an overview on Design theories that can 
provide us with insights on how to address the behaviour-use interdependence 
of a solution. As such, we elaborated upon the two main paradigms defining the 
field and the models that formalise the relationship between behaviour and use 
(i.e., mode of action and actuation). In this chapter, we address the first part of 
the research question (in bold): “How can a theoretical model be designed that 
supports the early simulation of AI systems’ behaviour-use interdependence by 
utilising Design theories?”. This exploration is guided by the following question:

“What Design theories support the early simulation of a solution’s 
behaviour and use?”.

In order to provide an answer to the question, the chapter first introduces an 
overview on the characteristics and benefits of a design practice that has 
been widely used as a means to simulate potential futures – prototyping. This 
overview is then complemented with two examples from my design practice. 
Each of them showcases the manners in which prototypes can be used to 
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simulate the behaviour and use of new solutions. The chapter is concluded with 
a discussion on the relationship between prototyping and abductive reasoning.

The design practice that supports early simulation

Prototyping is a widely acknowledged practice (across all sub fields of Design) 
as an important means for early simulation of potential solutions. As such, it 
enables designers to explore and communicate what it will be like to interact 
with future products, systems, and services (Buxton, 2007; Lim, et al., 2008; 
Stappers, 2010). According to Lim et al. (2008, p. 8), prototypes are a “tangible 
attempt to view a design’s future impact so that we can predict and evaluate 
certain effects before we unleash it on the world”. They generate deep level 
of understanding about novel contexts (ibid) and have shown promise to 
identify uncertainty or the so-called unknown unknowns early in the product 
development process (Jensen et al., 2017). For instance, according to de 
Reuver et al. (2020), prototyping can also serve as a “mechanism to uncover 
value implications of a novel platform in an early stage, in a controlled 
environment” (p. 6).

Many definitions of a prototype exist, depending on the field they originate 
from and the purpose they serve, complemented by a plethora of methods and 
tools1. The term can be used for artefacts ranging from simple visual mock-
ups or sketches that represent design thinking and doing (Ullman et al., 1990; 
Suwa & Tversky, 1997) through experience prototypes such as the “Wizard 
of Oz” (Buchenau & Suri, 2000), conscription devices (Henderson, 1991), 
minimal viable products (MVP)2 (Ries, 2011), provotypes (Mogensen, 1992), 
prototrialing (Jensen, 2017), and boundary object (Star & Griesemer, 1989) 
to highly functional sophisticated pre-production prototypes that are seen as 
“representations of a design made before the final artifacts exist” (Buchenau 

1 See Kleinsmann and Ten Bhömer (2020) for a comprehensive overview.
2 MVP is an initial product iteration that contains essential features which are sufficient for initial 
customers to use and offer feedback on. It serves as a way to inform the development of future 
iterations of the product.
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& Suri, 2000, p. 424) and can serve as “aids for imagination” (Kurvinen et al., 
2008, p. 47).

Reflecting the multiplicity of terms, the prototyping process has been 
known to provide multiple diverse advantages. For instance, it can stimulate 
experimenting and reflection-in-action by framing, and discovering possibilities 
in a design space (e.g., Schön, 1983; Cockton, 2006). Further, it can serve as 
a robust feedback mechanism3 (Buxton, 2007; Lim, et al., 2008), improve a 
design team’s understanding about the design itself (Vetterli et al., 2012) and 
in some cases, the creativity levels and divergence in ideation (Gerber, 2009). 
Prototypes can be used to explore the socio-material relationships and issues 
of the context (e.g., Gill et al., 2011; Elverum & Welo, 2016; Tironi, 2018), inform 
decision-making on desirability, viability, and feasibility (Menold et al., 2017) 
and serve as tools for communication and involvement of both internal and 
external to the organisation stakeholders (Jensen et al., 2017). They also evoke 
a focused discussion in teams, confront theories and allow users to experience 
their world differently (Sanders & Stappers, 2014). Prototypes can also be used 
as tangible rapid learning cycles (Leifer & Steinert, 2011; Haines-Gadd et al., 
2015) that enable direct access to challenges and potential solutions (Kurvinen 
et al., 2008).

Across this multiplicity of purposes, a clear pattern can be discerned as to 
using prototypes for their ability to support both discovery and evaluation (e.g., 
Lim et al., 2008). First, prototyping, when used during discovery, supports the 
incorporation of the situation’s back talk (Schön, 1983; Lim et al., 2008). Doing 
so allows for flexibility and quick adaptation to the unique design situation. It 
also supports designers to learn, discover, generate, and refine their designs 
(Buxton, 2007) by stimulating framing, and discovering possibilities in a design 
space (Lim et al., 2008). On the other hand, prototyping can also be seen as 
a means to evaluate design’s failure or success (Lim et al., 2008) and can 

3 It is important to note that when Schön refers to experiments, he discusses the activity of 
sketching. This view of sketching being able to support the back talk of a situation is shared by 
other scholars as well (e.g., Goldschmidt, 2003). However, sketching can also be seen as a type of 
prototyping (e.g. (Ullman et al., 1990; Suwa & Tversky, 1997; Jensen et al.., 2017). Therefore, in this 
dissertation, we discuss the wider practice of prototyping instead of focusing only on sketching.



76

PROTOTYPING FOR EARLY SIMULATION OF BEHAVIOUR AND USE

be utilised once the “design opportunity has been established” (Sanders & 
Stappers, 2014, p. 10). Therefore, prototypes evaluate whether the manner 
in which the solution’s version behaves, it is being used and the outcomes it 
produces are similar to the ones intended by the designer (e.g., Otto & Wood, 
2001; Ulrich and Eppinger, 2012).

Given this brief overview on the characteristics and benefits of prototypes, 
one can contend that they are conductive to the simulation of the solution’s 
behaviour and use. In order to further support this contention, we provide two 
examples of prototypes that enabled a multidisciplinary team to simulate the 
behaviour and use of their solutions. The examples come from a project I 
carried out between November 2015 and September 2016 for a large European 
airline. The project’s aim was to support a multidisciplinary team I was part of 
in their efforts to create and implement a new design-led innovation process. 
The work around the innovation process has been discussed in previous 
publications (i.e., Stoimenova et al. (2016) and Stoimenova & de Lille (2017)). 
The process and the project itself are outside the scope of this dissertation.

Using prototypes to simulate behaviour and use

This section presents an overview on two of the devised prototypes during 
the project. These were chosen since they clearly exemplify the manners in 
which prototypes facilitate the early simulation of behaviour and use. They also 
provide insights into how the outcomes (both intended and unintended) can be 
used to further detail the behaviour of a solution. Therefore, we discuss each 
one of them around the notions of behaviour, use and prototypes to reflect our 
contention that prototypes can be used to simulate both the behaviour and 
use of new solutions. We also discuss the purpose of the prototype to provide 
context. Finally, we discuss both the intended and unintended outcomes their 
use triggered, since the elicited outcomes serve as a trigger for reflection-in-
action or a new search process (following Schön (1983) and Simon (1996)).
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Example 1: prototype user involvement

Table 3 An overview on Example 1, along the lines of its purpose, prototypes, behaviour, 
use and outcomes.

What Description
Purpose Help the team understand the implicit regulations in place and gauge to 

what extent they can involve passengers waiting to board their plane in 
the innovation process.

Prototypes Templates for ideation methods like Lego Serious Play, Brainwriting and 
Context mapping (Visser et al., 2005), signs, and a configuration for the 
setup of the area (i.e., put a table and a sign near three of the gates at 
the local airport and brought along paper, scissors, Lego bricks, mark-
ers, sticky notes, and pre-cut photos).

Behaviour Asking passengers to follow the steps of each method while trying to 
generate novel ideas on how to improve the time they spend waiting at 
the airport.

Use Passengers went through the predefined steps and discussed with the 
team their ideas on how to improve their journey. They noticed the signs, 
but the team still needed to go and ask every passenger around whether 
they would like to join.

Intended 
outcomes

A set-up with A2 signs established the team’s credibility; They elicited 
the implicit regulations at the gates on what materials can be used and 
how the area can be set up; Twenty passengers joined the team.

Unintended 
outcomes

The majority of the generated ideas were similar (e.g., “more comfort-
able chairs” and “more power outlets”); The used methods could not 
elicit any tacit knowledge about the passengers.

Image 3: A photo of a passenger session carried out near one of the local airport’s gates.
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The first prototype (Table 3 and Image 3) was used to gauge the manners in 
which the team can involve passengers in the innovation process. To do so, 
they prototyped templates for existing methods by adapting them to their 
context, as well as different test setups near three of the gates at the local 
airport (e.g., a sign, a table, a Lego set, sticky notes, markers, sheets of paper 
and pre-cut photos). Doing so allowed the team to understand the implicit 
regulations at the airport when it comes to setting up a testing area. They also 
managed to gauge to what extent they can involve passengers waiting to board 
their plane in the innovation process (e.g., although 20 passengers joined us, 
the ideas they generated were very similar (e.g., “more comfortable chairs” and 
“more power outlets”)).

The elicited outcomes served as a trigger for reflection-in-action. For instance, 
an important insight was the fact that novel ideas were difficult to elicit. This 
led to the team’s resolve to involve passengers only as data input (e.g., use 
the context mapping method to ask passengers to map their own journeys). 
This way they would have enough time to ask more detailed questions about 
the passenger’s experience. The insight was later applied to other prototypes 
dealing with the topic of passenger involvement. For instance, in subsequent 
prototypes, the team made a specific template for context mapping4 and arrived 
at a selection of photos that works well with international passengers and 
at the airport. Furthermore, they established general guidelines on how such 
context mapping can be carried out at the gates. Finally, they also developed 
a simple guideline on the types of questions that can be asked during such 
passenger involvement. 

4 Context mapping is a method which involves creating a visual representation of the context a 
designer is trying to understand and analyse. It can also be used in co-design activities where users 
and stakeholders map out the context together with the designer (Visser et al., 2005)
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Example 2: test set-ups in live environments

Table 4 An overview on Example 2, along the lines of its purpose, prototypes, behaviour, 
use and outcomes.

What Description
Purpose Understand how to set up MVP tests in a live environment with real 

employees and passengers without disrupting the operations of Y, the 
airport, or other airlines.

Proto-
types

A step-by-step set up on how to test an MVP of a boarding procedure, 
paired with initial guidelines for the team on how to conduct short inter-
views.

Behaviour Set up and tested the MVP during the boarding procedure of an existing 
flight, created signs on how to board and where the passengers need to 
queue. The team conducted multiple short interviews with employees 
and passengers. The MVP had to be quickly changed during the test.

Use Passengers and employees were confused whether the boarding call is 
real. They queued in the wrong lane.

Intended 
outcomes

All passengers boarded their flight on time.

Unin-
tended 
outcomes

The employees were confused but had to reassure passengers to follow 
instructions; The team did not follow the previously agreed-upon inter-
view guide; The low-level fidelity MVP was confusing for the passengers 
and employees; The initial MVP had to be changed in the middle of the 
test to alleviate the created confusion; The pre-made templates for the 
MVP were difficult to update on the spot.

The second example represents a prototype the team used to understand how 
to set up MVP tests with real passengers and employees without disrupting the 
operations of the airline, other airlines, or the airport (Table 4 and Image 4). To 
gauge how this can be achieved, they started with an MVP for a new boarding 
procedure (i.e., set up different boarding lanes and reminders for passengers 
so that they can board the plane faster). Typically, the boarding of passengers 
involves many rigid carefully orchestrated protocols and when testing new 
ones, such regulations have to be considered. Hence, the team used this MVP 
as a starting point for the design of a new testing process and setup the team 
could use for future MVPs.

The team also wanted to check whether the MVP format and fidelity they 
have chosen is a good fit for the environment and whether the initial interview 
guidelines allow them to collect authentic reactions from passengers. Based 
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on the observed use, they concluded that (1) MVP tests could not be carried 
out with little guidance; (2) low-fidelity MVPs do not work in their environment 
since both passengers and employees were confused by the instructions; and 
(3) the team still had trouble executing ad-hoc brief interviews with passengers 
and employees.

Image 4 An MVP test of a new boarding procedure

The elicited outcomes were addressed in subsequent prototypes. For instance, 
the team further developed the interview guideline by providing examples of 
specific situations and how to formulate good situation-specific questions. 
They also provided general guidelines on what constitutes a good and a bad 
question. Second, due to the confusion the low-level fidelity MVP caused, 
in each subsequent prototype the team made use only of mid-level fidelity 
MVPs that are easy to update on the spot without the knowledge of specific 
software programmes. Third, because of the ad-hoc actions of the team and 
the confusion of both passengers and employees, the clear need emerged 
for a well-defined testing protocol (e.g., employees that will be involved in the 
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test need to understand why they are carrying out tests in such a way). Last 
but not least, in each subsequent prototype, the team always used a clear 
designation of a test area. Doing so made the passengers aware that there 
might be an ongoing test and reassure them that they will manage to board 
their flight on time.

Discussion

The aforementioned examples clearly showcase how prototyping can be used 
to simulate the behaviour of a potential solution in order to elicit different uses 
and outcomes. As such, prototypes played the role of a bridge between the two 
variables and supported the team to deepen their understanding of the context 
for which they had to design, triggering reflection-in-action. Further still, we 
observed how prototyping enabled the team to swiftly change the solution’s 
behaviour in order to respond to the elicited uses and outcomes. In particular, 
unintended outcomes were the ones that impacted the changes of behaviour 
the most and moved the design process forward. It was these that were usually 
addressed in subsequent prototypes. They also supported the team in gradually 
building up a solution that fits with the context and generates intended 
outcomes. For instance, in Example 2, when the MVP was not clear and 
passengers were getting confused, the team needed to adjust their behaviour 
(i.e., update the MVP on the spot) to alleviate passengers and employees’ 
confusion. The new behaviour was then housed in the updated MVP. This 
observation is in line with the paradigms of both Rational Problem Solving and 
Reflective practice, where it is the unintended outcomes that propel the design 
process forward (Schön, 1983; Simon, 1996).

Utilising prototypes in their capacity to simulate behaviour and use can be seen 
in the practice of other designers, too. An example of such comes from the 
work of ten Bhӧmer, who designed a shirt with sensors that can support the 
physical rehabilitation of the elderly (see e.g., ten Bhӧmer et al. (2013, p. 37)). 
The designer created a highly interactive prototype with sensors to be placed 
on specific body parts, capable of measuring arm and lower back movements, 
and recovery progress, supported by sound feedback. By intentionally building 
a functional prototype and defining its behaviour, ten Bhӧmer was able to 
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observe how his stakeholders such as therapists, caretakers, and patients 
used the prototype. According to him, being able to observe the manners in 
which the prototype was used allowed him to identify the requirements the 
concept should fulfil, the scenarios the shirt could be worn in, and develop a 
list of steps for further improvement (e.g., increasing the sensitivity of the used 
sensors (p. 38)).

Prototypes and abduction

The presented examples clearly show how the use of prototypes can be 
instrumental in the generation of new (design) hypotheses about the complex 
context for which one has to design. This ability to generate hypotheses, as 
we discussed in Chapter 3, is one of the hallmarks of abductive reasoning. 
Yet, neither the model of Roozenburg (1993), nor that of Dorst (2011) explicitly 
discusses the role prototypes play. Further still, to our knowledge, no Design 
scholar has discussed prototypes as potential enablers of abductive reasoning. 
Still, what we saw in the examples above is indicative of abduction. The use of 
prototypes triggered the generation of hypotheses that would possibly not have 
been generated were it not for these prototypes. Furthermore, these prototypes 
also enabled the team to directly address the outcomes they observed.

To find an explanation on how a prototype can trigger abduction, we turn to the 
field of Philosophy of Science and in particular to the work of Magnani (e.g., 
2007). Both Magnani and Nersessian (e.g., 2002) have written extensively about 
a type of reasoning they call model based. This term is used to denote the 
type of thinking that happens when various types of representations (i.e., both 
internal and external models) are constructed and manipulated to support one’s 
thinking process (Magnani, 2007). For instance, in order to solve a geometrical 
problem, one often needs to draw or at least imagine the geometrical shape. 
Within this broader topic of model-based reasoning resides the type of 
abduction Magnani terms manipulative. This is a type of productive reasoning 
that supports “thinking through doing” (Magnani, 2007, p. 7). Thus, it allows us 
to elicit new and still unexpressed information codified within the context. One 
can do so by building various external epistemic mediators that function as a 
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new source of information and knowledge5. In fact, according to Magnani (ibid), 
this type of abduction is core to scientific discovery and as such, it is aimed 
at “creating communicable accounts of new experiences to integrate them 
into previously existing systems of experimental and linguistic (theoretical) 
practices” (p. 4).

The prototypes discussed above and the manner in which the team used them 
fit Magnani’s description of manipulative abduction well. They served the role of 
external epistemic mediators that enabled the team to uncover knowledge that 
was implicitly present in their context. Therefore, when dealing with complex 
systems, it is our contention that using prototypes in their capacity to generate 
hypotheses becomes an invaluable part of the design process. It also gives us 
a mechanism to elevate the procedural outcomes of prototyping to the level 
of abstraction of the models Roozenburg and Dorst introduced (i.e., both are 
representative of abductive reasoning). Given all these insights, we arrive at 
the following working definition of an AI system prototype: “an externalised 
representation of a potential AI system”6such as sketches, mock-ups, pieces of 
software and in some cases, hardware.

Conclusion

The research question guiding this chapter was: What Design theories support 
the early simulation of a solution’s behaviour and use?”. In order to answer 
it, we presented an overview on the characteristics and benefits of a Design 
theory that is well-known for its ability to support simulation of future solution 
states – prototyping. We then postulated that prototypes are also conductive 
to the simulation of the solution’s behaviour and use. In order to support 
this statement, we re-interpreted previously carried out empirical research 
by showcasing two examples of prototypes that were used to design and 
implement a new innovation process into a complex context. 
 

5 For a comprehensive overview on the different types of abduction and the specifics of model-
based reasoning, please, refer to the work of Nersessian (e.g., 2002) and Magnani (e.g., 2007).
6 This definition combines my own work in for a large European airline (as discussed above) and 
the work of Schön and Wiggins (1992), Suwa et al. (2000) and Stappers and Giaccardi (2017). 
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From the presented examples, three additional insights emerged that help 
us understand how prototypes can support the continuous simulation of the 
behaviour and use of a solution. First, the prototypes discussed in the two 
examples allowed the team to externalise the intended behaviour into the 
context. Thus, they supported the team in observing the different types of 
outcomes and uses the behaviour, housed in a prototype, can elicit. Second, 
prototypes served as a bridge between behaviour and use. As such, they 
were also conductive and instrumental to the generation of hypotheses that 
allowed the team to further develop their solution and address the unintended 
outcomes they uncovered. And thus, third, prototypes were conductive to what 
Magnani terms manipulative abduction. In fact, their abductive capabilities 
also provide us with a solid foundation on which we can formulaically build 
the relationship between behaviour and use in complex contexts. Therefore, 
prototyping marks the third piece of the puzzle of Design theories we can use to 
answer the main research question of this dissertation: “How can a theoretical 
model be designed that supports the early simulation of AI systems’ behaviour-
use interdependence by utilising Design theories?”. The next chapter provides 
an initial answer to it.
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CHAPTER 5

INITIAL THEORETICAL 
MODEL

The main premise of the dissertation is as follows: if we are to ensure 
that AI systems are non-maleficent, we need to address the behaviour-use 
interdependence that defines these contemporary systems. Therefore, we 
claimed, it becomes imperative to develop theoretical models and methods that 
support us in simulating potential uses as early as possible. Doing so would 
allow us to fine-tune the behaviour of the system to trigger the desired use. 
We then postulated that Design theories could help us address this challenge, 
resulting in the main research question of the dissertation:

“How can a theoretical model be designed that supports the early simulation of 
AI systems’ behaviour-use interdependence by utilising Design theories?”

Then, in Chapters 3 and 4, we explored Design theories that could help 
us understand the manners in which behaviour and use of a solution are 
connected (Chapter 3) and how their early simulation can be executed (Chapter 
4). This exploration resulted in the following insights. First, Design theories have 
largely been defined by one of the two main paradigms in Design – Rational 
Problem Solving (Simon, 1996) or Reflective Practice (Schön, 1983). Despite 
their differences, they share some similarities: (1) establishing a feedback 
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mechanism is instrumental to achieving a better understanding of the problem; 
(2) the designer has influence over the design process; and (3) unintended 
outcomes are a natural and needed stage of the design process since they 
propel it forward.

Second, the Design theory that provides us with formally defined relationships 
between the variables of behaviour and use is that of innovative abduction. 
This type of abduction allows us to not only identify the relationship between 
the variables of behaviour and use, but also, introduces the manners in which 
the two can be used to design new solutions. There are two models in Design 
that define the relationship – one introduced by Roozenburg (1993) and one 
by Dorst (2011). Despite the differences the two abduction models have, they 
both start from (1) an initially agreed-upon starting point (purpose and value), 
(2) which they use to define either implicitly or explicitly the behaviour and use 
of the potential solution (mode and actuation/how), and (3) the combination of 
these leads to a solution – either a form or an object, service, or a system.

Third, prototypes can support the continuous simulation of the behaviour and 
use of a solution that is to be implemented into a complex context. In fact, 
they (1) support us in observing the different types of outcomes and uses the 
behaviour can uncover; (2) serve as a bridge between behaviour and use; and 
(3) enable what Magnani terms manipulative abduction.

In this final for Part II chapter, we position these theories in the context 
of designing AI systems to provide an initial answer to the main research 
question. As such, the chapter is structured as follows. First, we introduce an 
initial theoretical model built around the identified variables thus far by using a 
fictional example. Through the fictional example we also introduce the order in 
which the model is to be applied and the domain to which it should be applied. 
We then discuss the manner in which the model supports an iterative design 
process. The chapter is concluded with a short note on the role values play in 
the introduced theoretical model.
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Theoretical model

To explain how we could design a theoretical model that supports the 
simulation of a behaviour-use interdependence, we use a fictional example of 
a developer1 who wants to devise an AI system that reduces the burden people 
with chronic kidney problems experience2. A potential starting point might 
be the insight that currently, kidney patients undergo long periods of dialysis, 
without an overview of their daily process and not knowing whether they are 
experiencing life-threatening symptoms. Given this knowledge, she (or the 
client) might decide that these patients should feel informed and in control 
(e.g., “people with chronic kidney conditions are in control of their health”). This 
can become our purpose3.

Next, the developer needs to understand the problem better. She can do so by 
collecting data (both qualitative and quantitative). While data has always played 
an important role in the design process (e.g., when collecting user insights), 
the development of contemporary AI systems (especially the ones relying on 
ML) is heavily dependent on large quantities of data (i.e., big data) (e.g., Russell 
& Norvig, 2021). To define the variable, we adopt the definition of Woodward 
(2011), formalised by Horvath (2016): “records produced by experiments 
and measurements that serve as evidence for the existence or features of a 

1 Developer in this context means anyone who is involved in the design and development of 
AI systems. 
2 Although this is a fictional example, to provide the necessary level of detail, we use the case 
of the company AliveCor. The start-up produces cell-phone cases and AppleWatch wristbands 
that can perform electrocardiograms (ECGs) (Topol, 2019). Based on them, potassium levels 
in “near real time” can be detected without drawing blood (Dillon & Friedman, 2018). This case 
was deliberately chosen as it addresses the complex context of healthcare in which multiple 
stakeholders (e.g., patient, nephrologist, GP, hospitals, hospital staff, medical device systems 
manufacturers, insurance companies) come into play. They all expect the solution to deliver values 
tailored to them, while the AI system continuously learns from its users and consequently could 
exhibit novel behaviours. As such, this case provides a wide range of challenges and exemplifies 
the type of contexts and domains for which the theoretical model is developed.
3 As already explained in Chapter 2, according to e.g., Roozenburg (1993) and Simon (1996), the 
design process always starts with a clearly defined purpose (i.e., the goal an artefact is designed 
for). The design process of developing AI systems also starts with a clearly defined purpose a 
development team could work towards. Therefore, both the variable “purpose” and its definition 
provided by Roozenburg (1993) continues to be suitable for the context of designing AI systems.  
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phenomenon” (p. 214). In the early stages of the traditional design process, 
these data tend to be primarily qualitative so that the problem space can be 
well-understood and defined. However, quantitative data from e.g., sensors can 
be utilised as well to provide another level of insights.

Going back to our example, the data collection could go as follows: the 
developer would carefully study her patient’s context through regular interviews 
and observations, and then map their day-to-day journey. These provide 
contextual understanding of the problem. They also help her discover, for 
instance, that physicians are oftentimes unsure about the precise dosage 
of medications since each one of them can directly influence the blood 
potassium levels of the patient. Higher levels than recommended can be fatal 
and require immediate treatment. Yet, the only way to identify blood potassium 
levels is for the patient to undergo an invasive test performed in a laboratory. 
This produces high levels of uncertainty and stress for the patient and all 
stakeholders involved.

The combination of purpose and data leads us to a vantage point from 
which she can approach the problem at hand. Namely, “if potassium levels 
are detected regularly, changes in the dosage of a medication can be easily 
administered in the comfort of the user’s home (no need for blood tests)”4. This 
vantage point can be likened to the variable of frame5 (Schön, 1983; Dorst, 
2011) discussed in Chapter 3. Further, as it can be seen from the formulation 
our fictional developer used, the frame already suggests the intended outcome: 
administer a new medication in the comfort of the user’s home. If we are to 
represent formulaically (akin to Roozenburg and Dorst) this progression from 
purpose and data to a frame, we can adopt the following expression:

4 This formulation of the frame follows closely the manner in which Dorst (2011) suggests a 
frame ought to be formulated: “IF we look at the problem situation from this viewpoint, and adopt 
the working principle associated with that position, THEN we will create the value we are striving 
for.” (p. 525).
5 According to Dorst (2011), frames are a cognitive act of looking at a problem situation from a 
specific viewpoint that informs how the problem can be solved.
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purpose + data → frame6

The identified frame provides us with an indication on how the problem can 
be solved i.e., detect potassium levels regularly. There are multiple potential 
directions in which one can go from here. For instance, during her data 
collection, our developer might find out that deep neural networks can detect 
blood potassium levels in an electrocardiogram (ECG) (Topol, 2019). Therefore, 
a plausible way in which the potential solution could behave is: “a deep neural 
network detects potassium levels in ECGs and informs the patient and their 
physician about them when needed”. As already discussed in Chapters 2 and 3, 
the behaviour of an AI system can be equated to the variable of mode of action7 
(Roozenburg, 1993).

Going back to the example, the combination of the frame and mode of action 
can be manifested as a simple piece of hardware8 (e.g., a wristband) equipped 
with electrodes that can measure its user’s pulse and hence provide us with 
the data to produce an ECG. We need a variable that can represent both the 
pulse-measuring strip and reflect the transient nature of AI systems. A design 
concept that is well-suited for this role is that of a prototype. Viewing each of 
the states of the AI system as a prototype will promote the notion of designing 
for something transient (i.e., a solution that can always change the outcomes 
it delivers). In effect, this will enable developers to learn continuously as the 
solution evolves. Moreover, as discussed in the previous chapter, the act of 
prototyping is what supports the early simulation of a new solution’s behaviour 
and use. The definition of prototype we adopt, as discussed in Chapter 4, is an 
externalised representation of a potential AI system such as sketches, mock-
ups, pieces of software and in some cases, hardware.

6 This expression can also be seen as representative of explanatory abduction (e.g., see Dong and 
MacDonald (2016)). The relationship between explanatory and innovative abduction is discussed 
in Chapter 6.
7 “(Functional) behaviour of an artefact” (Roonzeburg, 1993, p. 12).
8 Although the example used here is of a “piece of hardware”, oftentimes the AI model is embedded 
into existing experiences, processes, or software. 
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This process of combining the frame and mode of action in order to develop a 
prototype can be represented formulaically as:

frame + mode of action → prototype

Since the goal of this prototype is to better understand the context and 
generate hypotheses about it (see Chapter 4), a good starting point would be to 
provide the users with the wristband and without much guidance to observe the 
way they use it over the course of a month. A variable that can denote the “the 
action a user applies” (Roozenburg, 1993) onto a prototype is actuation.

Observing the manner in which our prototype is used will generate multiple 
insights on the context, time of day, and expectations users have while wearing 
the wristband, as well as on the way it impacts their daily routine and those of 
the stakeholders. Therefore, it is through this first prototype that the developer 
understands the ways in which her AI system can be actuated and ultimately 
observe the different outcomes it can create. In effect, the prototype serves as 
a bridge between the mode of action and actuation (as discussed in Chapter 4). 
If we are to put the act of utilising actuation to elicit the potential outcomes of 
an AI system in a formulaic expression, we arrive to:

prototype + actuation → outcomes

These outcomes can be intended: e.g., our user feels like she has better 
control over her daily routine. They can also be unintended (both positive and 
negative) and can stem from the fact that the wristband creates new dynamics 
in our user’s life. For example, the prototype can introduce a lot of uncertainty 
and tension between the patient and her partner as they begin to obsess over 
insignificant changes registered by the wristband. On the other hand, the 
unintended outcomes can also be positive. For instance, the prototype can 
help the user to keep better track of how her health data is being used and 
shared. Such unintended outcomes, in theory, could also support us in defining 
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a different purpose. Thus, simulating the behaviour-use interdependence of AI 
systems could go through numerous iterations through this theoretical model:

purpose + data → frame

frame + mode of action → prototype

prototype + actuation → outcomes

The elicited outcomes (especially the unintended ones) trigger another iteration 
through the model9. The developer starts collecting new data (both qualitative 
and quantitative) on how the patient’s daily routine changed, interviews with 
the patient and her spouse, as well as with the involved stakeholders. But also, 
reviewing the ECG and potassium levels and map them to events of what was 
observed and communicated in the previous iteration. Such additional data 
collection will help in refining our frame and add another dimension to the mode 
of action by adding behaviours that could address the identified tension. These 
are reflected in a new, more detailed, prototype. Consequently, new intended 
and unintended outcomes are uncovered and addressed in later iterations. 
As such, also the prototypes she designs could become more detailed or help 
her to understand a different part of the solution such as the way to deliver 
information to nephrologist, GPs, and patients. Therefore, the impact these 
delivered outcomes have not only on the patient, but also on the community 
and the other stakeholders (i.e., the GP, nurses, family) can be simulated.

The continuous simulation of both the mode and actuation of a potential AI 
system the theoretical model is conductive to, allows us to gain knowledge 
about their interdependence and continuously adapt them to respond to the 
unintended outcomes the system creates. As such, this theoretical model 
outlines the steps that can be used to simulate the interdependence and thus, 
gradually build AI systems that can be implemented into complex contexts. 
Doing so will also ensure that the developer can achieve a deeper level of 
understanding about the interaction between the unintended outcomes and the 

9 The identification of unintended outcomes is especially important since they are the ones 
that propel the design process forward, according to both Simon (1996) and Schön (1983) 
(see Chapter 3).
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context they operate in. An overview on the variables of the model as well as on 
their definitions can be found in Table 4.

Table 4  A comparison between reviewed and adapted definitions to each of the variables 
of innovative abduction. The changes are marked with bold. 

Variable Reviewed definitions Adapted definitions
purpose The goal of an artefact, e.g., “boil wa-

ter” (Roozenburg, 1993, p. 12)
The goal of an AI system

data Not addressed by Roozenburg or 
Dorst

Records produced by experiments 
and measurements that serve as ev-
idence for the existence or features 
of a phenomenon (Woodward (2011), 
formalized by Horvath (2016)).

frame A cognitive act of looking at a problem 
situation from a specific viewpoint 
that informs how the problem can be 
solved (Dorst, 2011)

Same

mode of 
action

“(Functional) behaviour of the artefact 
in response to influences exerted on 
it from its environment” (Roozenburg, 
p. 12)

(Functional) behaviour of the AI 
system in response to influences 
exerted on it from its environment.

proto-
type

“A tangible attempt to view a design’s 
future impact so that we can predict 
and evaluate certain effects before 
we unleash it on the world” (Lim et al., 
2008, p. 8)

An externalised representation of a 
potential AI system.

actua-
tion

The action that the user applies onto 
the artefact that allows it to function 
and be “connected” (Roozenburg, 
1993, p. 13) to its immediate environ-
ment.

The action that the user applies 
onto the AI system that allows it to 
function and be “connected” to its 
immediate environment.

out-
comes

Not mentioned The intended and unintended results 
of the AI system’s actuation

A note on values and prototypes

As it can be seen from the introduction of the initial theoretical model, its 
design was informed by the variables and the relationship among these 
identified in the previous two chapters. Amid this construction, we also 
introduced two modifications to these Design theories: (1) our treatment of 
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values and (2) the cognitive role we assigned to prototypes. In the remainder of 
this section, we discuss each one of them. 

Values

We made the decision to term the results of the abductive process as outcomes 
instead of values (unlike Dorst (2011)). There are two reasons for that. First, 
to Dorst (ibid) values are the “outcomes one wishes to create”. However, as 
it can be seen from the introduction of the model, and from the examples of 
prototypes given in Chapter 4, outcomes can be both intended and unintended. 
In fact, as discussed in Chapter 3 of the dissertation, it is the unintended 
outcomes that propel the continuous exploration of the behaviour-use 
interdependence. Therefore, choosing the term “value” as Dorst terms it omits 
an important part of the outcomes the actuation of a prototype creates – the 
unintended ones.

Second, in the context of developing AI systems, the term value has come to be 
synonymous with ethical values (e.g., non-maleficence, fairness, equality) (see 
e.g., Santoni de Sio & van den Hoven, 2018; Mittelstadt, 2019; Jobin et al., 2019; 
Floridi & Cowls, 2019; Rahwan et al., 2019). In fact, the majority of introduced 
guidelines on how AI systems ought to be developed discuss the importance 
of embedding the right ethical values into the solution (see Chapter 2). Further, 
multiple prominent approaches exist to ensure that AI system’s behaviour is 
aligned with human values such as Value Sensitive Design (e.g., Friedman & 
Kahn 2003), Values in Design (Nissenbaum, 2001), Design for Values (van den 
Hoven et al., 2015), and Worth-Centred Design (Cockton, 2009). Therefore, the 
use of term “values” could bring unnecessary confusion.

Prototypes

As already explained, we made the decision to substitute the terms “form” 
(Roozenburg, 1993) “WHAT” (Dorst, 2011) with “prototype”. Prototyping is 
widely acknowledged across Design’s subfields as a crucial means for early 
simulation of potential solutions (see Chapter 4). It empowers designers to 
envision and communicate future product, system, and service interactions 
(Buxton, 2007; Lim et al., 2008; Stappers, 2010). It also plays a pivotal role in 
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generating new design hypotheses within complex contexts (i.e., facilitating 
manipulative abduction). Yet, neither the model of Roozenburg (1993), nor that 
of Dorst (2011) explicitly discusses the role prototypes play. Further still, to our 
knowledge, no Design scholar has discussed prototypes as potential enablers 
of abductive reasoning. 

Therefore, our decision to formally define prototypes’ role as the bridge and 
facilitator of the relationship between mode of action (i.e., behaviour) and 
actuation (i.e., use) allows us to provide a mechanism to formally elevate the 
procedural outcomes of prototyping to the level of abstraction of abductive 
reasoning. As such, it provides us with a frame of reference to position the 
cognitive significance of prototyping in the process of reasoning about a 
new design solution. Hence, this new formulation can serve as a starting 
point for further research that can expand our understanding of (cognitive) 
design processes.

Conclusion

This chapter presented a theoretical model that can aid us to simulate the 
behaviour-use interdependence of AI systems. Doing so, we posited, allows 
us to continuously adapt the system’s behaviours (i.e., mode of action) so 
that they will trigger the desired use (i.e., actuation). Hence, providing a 
preliminary answer to the main research question of the dissertation: “How can 
a theoretical model be designed that supports the early simulation of AI systems’ 
behaviour-use interdependence by utilising Design theories?”. We presented 
the model formulaically, following the format used by Roozenburg (1993) and 
Dorst (2011).

In order to exemplify the relationships among the model’s variables and the 
manner in which the model could be used, we employed the fictional case of 
reducing the burden people with chronic kidney problems feel. As such, the 
case allowed us to also introduce the updated definitions of each variable, the 
order in which each of them is to be addressed, and the domain to which the 
model should be applied. We then discussed the manner in which the model 
supports an iterative design process by continuously addressing the unintended 
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outcomes the actuation of the devised prototypes elicits. However, as already 
explained, this chapter presented only an initial version of the theoretical 
model. Hence, the described relationships among the identified variables are 
only conceptual. In the next part of the dissertation, we will further explore and 
define these relationships.



EXTENDED THEORETICAL MODEL

PART III
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CHAPTER 6

EARLY SIMULATION OF AI 
SYSTEM’S BEHAVIOUR-

USE INTERDEPENDENCE
At the beginning of the dissertation, we set out to explore how to devise 
a theoretical model that supports the early simulation of AI systems’ 
behaviour-use interdependence. We then postulated that Design theories 
are well-equipped to address the interdependence due to the core of design 
reasoning – innovative abduction. This type of abduction explicitly formalises 
the relationship among the behaviour and use (termed mode of action and 
actuation by Roozenburg (1993), respectively). Using these as a starting point, 
in Part II, we explored Design theories and the manners in which they could 
aid us in simulating behaviour-use interdependence of AI systems. The part 
was concluded in Chapter 5 where we introduced a theoretical model based 
on these theories that can support us in answering the main research question 
of the dissertation: “How can a theoretical model be designed that supports 
the early simulation of AI systems’ behaviour-use interdependence by utilising 
Design theories?”.

The Design theories we utilised to provide an answer, however, have been 
developed for the design of products and services (see Chapters 3 and 4). The 
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purpose of this dissertation is to define how the behaviour-use interdependence 
of AI systems can be simulated. Unlike products or services, the behaviour 
of an AI system is continuously adapting to the data its users generate. For 
instance, a reinforcement learning model trained to maximise long-term profit 
can learn short-term trading strategies based on its own past actions and 
the manner in which it is being used (Rahwan et al., 2019). This continuous 
automated improvement leads to better decision-making mechanisms. 
However, it also gives rise to a multitude of unintended behaviours and uses. 
Such are numerous and continue to be hard to influence (ibid) due to the 
unparallel level of scale and personalisation AI systems support (Amodei et al., 
2016). Therefore, in Part III of the dissertation, to which this chapter serves as a 
start, we explore further how to simulate the behaviour-use interdependence in 
the context of designing AI systems.

In order to concretely contextualise the theoretical model within the realm of 
designing AI systems, we begin our exploration with an empirical example that 
serves as a platform for the model’s application and conceptual evolution. The 
example allows us to explore the manners in which the model can inform and 
shape real-world decision-making and AI development processes. It also serves 
as an epistemic mediator, unveiling avenues for refining and augmenting the 
theoretical model’s conceptual framing. Thereby, facilitating the initial model’s 
adaptation to the novel context. As such, it enables us to systematically identify 
the nuances that necessitate model refinement and pinpoint the potential 
insights that merit further exploration. 

The chapter is structured as follows. First, we provide a brief description of 
the example’s background and the design process the team followed. This 
is complemented with an overview on how their design process maps onto 
the variables of the theoretical model introduced in Chapter 5. The empirical 
example overview is followed by a discussion section where we elaborate upon 
the insights that can be discerned by the example and use them as a starting 
point for the further conceptual development of the theoretical model. Finally, 
we also position these developments within the broader landscape of existing 
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Design Theory literature, underscoring potential contributions to the evolving 
discourse in the field. 

Example’s background

The empirical example presented in this chapter comes from my teaching 
practice. The controlled environment of an educational setting makes it easy 
to isolate and study the different manners in which the theoretical model 
could be applied. Moreover, the problem-solving and reasoning of students on 
the advanced beginner level (Lawson & Dorst, 2009) can be explicitly seen in 
their work (Dorst & Reymen, 2004). As such, the example showcases how a 
three-person student team, each with an average of four years of experience, 
successfully managed to simulate the behaviour-use interdependence of an 
AI system four times. This resulted in a conceptual design for an AI-powered 
fitness app that supports its users to establish healthier diet and exercise 
routines by provoking them to reflect on their choices. The team achieved this 
by utilising simple non-functional prototypes, which resulted in multiple elicited 
(intended and unintended) uses and outcomes. As such, this case presents 
us with the type of complex system for which we devised the theoretical 
model. It is defined by a collection of interconnected and interdependent 
social (i.e., users who want to establish healthier habits), physical (i.e., the 
user’s environment in terms of access to exercise tools and healthy food/meal 
choices), and technical (i.e., the AI system to be designed) elements. 

The design project was carried out during one of the first-year obligatory 20-
week long courses of a master’s programme in the faculty of Industrial Design 
Engineering at TU Delft from February to May 2020. At the beginning of the 
course, the students were presented with an explanation of the theoretical 
model during a two-hour session where they could also ask questions. They 
were then provided with a conference paper (Stoimenova & Kleinsmann, 
2020) further explicating the model. At the end of the session, they were 
given the following task: design a concept for an AI system by applying the 
theoretical model.
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During the course, I assumed the role of a teacher and supervisor. As such, 
I supported them throughout their design process. I also regularly answered 
their questions about applying the theoretical model to simulate the behaviour-
use interdependence of AI systems. Hence, we had regular bi-weekly one-hour 
meetings, which provided me with an in-depth understanding of the team’s 
design process. Furthermore, I also had access to their data, designs, and 
conclusions.

Design process

The team began their design process (see Figure 9) by defining a purpose: 
support people in establishing and sustaining healthy routines. To identify ways 
in which they can achieve it, they conducted initial research on the subject 
and interviewed five participants they recruited to understand their existing 
exercise and dietary habits and goals. The insights the team elicited led them to 
conclude that if they are to achieve their initial purpose, their AI system should 
give advice both in alignment with the user’s preferences and in deviation from 
them. This triggered the team to start ideating on how they could achieve that. 
Thus, they iteratively designed the first version of their concept by alternating 
between detailing how their concept should behave (i.e., provide personalised 
advice that intentionally suggests new activities that are not aligned with user’s 
preferences) and how it should be used (e.g., reflect on the contradictory 
suggestions). These, the team then materialised in their first non-functional 
prototype: a mock-up of an AI-powered fitness app that guides people through 
their attempts to lead a healthier lifestyle.

The team then set up the prototype using the “Wizard of Oz” technique and 
observed that even though their participants had no problem using the concept, 
they did not engage with all of its features. To better understand why this 
happened, the team conducted feedback interviews with their participants. 
This allowed the team to discern their prototype’s direct outcomes (e.g., 
participants did not find the suggestions personalised enough, but felt in control 
of their routines). The team then carefully evaluated the outcomes against the 
initial purpose and classified them as intended (i.e., participants feel in control) 
and unintended (i.e., suggestions that were meant to be personalised were not 
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seen as such by the participants). Finally, they identified the requirements their 
concept ought to fulfil (e.g., app’s suggestions should feel personalised). 

The unintended outcomes and the requirements served as the starting point 
for the team’s second iteration. They started by evaluating the data they had 
gathered thus far from their observations on the prototype’s use and the 
feedback interviews. This resulted in identifying two new types of data the 
team needed to collect: (1) a collection of relevant meals and (2) users’ weekly 
schedule. The analysis of the existing and newly gathered data led the team to 
reason that “If the AI intentionally makes mistakes in its advice, the app can elicit 
the personal preferences of its users more easily”. This served as the starting 
point for a new ideation step where the team iterated over the manner in which 
their concept ought to behave (e.g., some of the provided advice is contradictory 
to user’s preferences) and be used (e.g., provide feedback to the system). This 
resulted in an addition to their first non-functional prototype, which provides 
workout schedule and suggests meals to help users achieve their goal. 
Similar to their first iteration, the team gave their updated prototype to their 
participants and observed how they used it. As expected, some participants 
were reluctant to follow the proposed schedule. Others found the suggestions 
not personalised enough and refused to teach the system. There were also 
unexpected uses. Some participants expected to find recipes for the suggested 
meals. Others changed their preferences to align with the suggestions of the 
app (e.g., “Again, seafood. I’m not a big fan of seafood. But, it kind of looks very 
good in this picture. So uhm, let’s say okay, not so bad as before, so I can try it” 
). The team then evaluated the outcomes against their purpose and identified 
another set of requirements their concept ought to fulfil (e.g., simplify the meal 
prepping process). They also explicitly discussed the values their solution 
should embody (e.g., users should not follow the AI’s advice blindly).

The team used the elicited unintended outcomes as a starting point for their 
third and subsequently fourth iteration. In both iterations, they followed an 
identical process to the one thus far. They first analysed the data collected 
from the previous iterations. They then added more data types they needed to 
collect such as (1) more exercise options, (2) detailed meal suggestions, (3) data 



Figure 9 An overview on the design process followed by the student team



Image 5 Example screens from the app prototype of AI system the team designed.
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on the exercises participants performed during the previous week, (4) a list of 
products for the meal suggestions, and (5) users’ photos. This step was always 
concluded with a new suggestion on how to approach the situation at hand, 
which was infallibly followed by an ideation step. The ideation was focused on 
how their concept’s behaviour and intended use should be updated and how 
these can be reflected into their update to the non-functional prototype used in 
the previous iterations.

As a result, the team iteratively updated their prototype to include (1) dish 
recommendations, (2) food delivery option, (3) detailed recipes, (4) exercise 
sequence images, (5) an AI trainer persona, (6) performed exercise intensity, and 
(7) graphs showcasing the user’s lack of commitment to their goals. An overview 
on the prototypes the team created can be found in Image 5. These prototypes 
were then given to the participants. By doing so the team managed to elicit a 
number of both intended and unintended outcomes which supported them in 
moving forward with the design process, as well as to uncover the requirements 
and values their concept should embody. This gave them a means to reflect 
onto their own values, as well as to detail the behaviour of the concept in such a 
way so that it can address the uses and outcomes they elicited.

Mapping the design process onto the theoretical model

As previously discussed, at the beginning of the design project, the team was 
given the theoretical model introduced in Chapter 5. As such, they were aware 
of its variables, used it to support their design process and to simulate the 
behaviour-use interdependence of their concept. In this section, we discuss the 
design process the team followed along the variables of the theoretical model, 
starting with its first row:

purpose + data  frame

At the beginning of their project, the team defined the purpose they wanted 
to achieve. Doing so gave them the foundation on which they could detail the 
types of data they needed to collect. The data, analysed in the scope of the 
purpose, enabled the team to define their frame (e.g., If the AI intentionally 
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makes mistakes in its advice, the app can elicit the personal preferences of its 
users more easily”). After the first iteration, the team kept updating the types of 
data they needed and the frames that could enable them to achieve the purpose 
and address the unintended outcomes they had elicited previously. This new 
frame then became the starting point for the next row of the theoretical model:

frame + mode of action  prototype

The new (updated) frame served as a starting point for their ideation process. 
To do so, they first defined the mode of action (e.g., include deviations in the 
workouts such as extreme exercises) which became more detailed with every 
iteration (e.g., show user’s lack of commitment to the proposed exercises). 
Although not prescribed by the model, the team also explicitly defined 
the manners in which they wanted their prototype to be used (e.g., reflect 
on the contradictory suggestions). These too became more detailed with 
every iteration through the model (e.g., rate the proposed suggestions). The 
combination of the mode and the intended use led the team to design a (non-
functional) prototype. Once the initial version of the prototype was devised, 
the team also updated the mode and intended use, which led to a new, more 
detailed version of their prototype. Such iterative behaviour is central to the 
process of design. For example, in creativity research and especially around the 
notion of co-evolution of problem and solution space (e.g., Dorst & Cross, 2001; 
Crilly, 2021), it is well-researched that (parts of) the already formulated solution 
are habitually used as a starting point to generate new ideas1.

The resulting prototype then served as the starting point for the third row of the 
theoretical model:

prototype + actuation  outcomes

In each iteration, once the team had their (updated) prototype, they always 
gave it to their participants and observed the manners in which they used it 

1 These are called solution to solution space transitions and are characterised by synthesis and 
extension of solution ideas (Cash & Gonçalves, 2017). Further, this iterative behaviour can also 
be seen as a manifestation of what Schön (1983) terms the backtalk (i.e., design is a reflective 
conversation between the situation and the designers where the former talks back to the latter). 
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(i.e., actuation). The combination of the prototype and its actuation resulted 
in outcomes – both intended (e.g., participants feel in control of their routines) 
and unintended (e.g., compliance with app suggestions that were contradictory 
to participant’s explicit preferences). Next to the outcomes, the team also 
identified requirements (e.g., provide users with different exercise options) and 
made explicit the values they wanted to embed into their concept (e.g., users 
should not feel like the design of the app is prejudiced against them).

The outcomes, requirements and values were then reflected into the 
subsequent iterations’ frames. For instance, one of Iteration 3’s outcomes 
was: compliance with suggestions of the app even when the suggestion was 
meant as something the participant will consider a mistake. The subsequent 
frame (Iteration 4) became: If the app provides provocative advice to its users, 
they will reflect on their choices. Each frame was then infallibly reflected into 
the corresponding mode (e.g., blame the users in lack of commitment). Hence, 
with every iteration the mode, intended use and prototype were becoming 
more detailed. These, in turn, allowed the team to elicit an ever-growing 
number of both intended and unintended outcomes that informed the manner 
in which they designed their concept. Similarly, Iteration 1’s requirement apps 
suggestions should feel personalised, was followed by Iteration 2’s frame: If 
the AI intentionally makes mistakes in its advice, the app can elicit the personal 
preferences of its users more easily.  Further, one of Iteration 2’s value was 
users should not follow the AI’s advice blindly. The susceptibility of users to the 
suggestions of the AI was not something the team wanted their concept to 
support as they saw it as a means to manipulate their users. Therefore, this was 
reflected in the formulation of Iteration 3 and 4’s frames respectively (bolded):

 
If the app provides more nuanced deviations from the preferences of 
the user, it won’t be as easy for people to comply with them, and if 

Undergoing smaller iterations causes designers to “appreciate things in the situation that go 
beyond their initial perceptions of the problem” (p. 148). Therefore, although not prescribed by the 
theoretical model, this is an indispensable part of the design process.
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the app provides provocative advice to its users, they will reflect on 
their choices.

Using the guidance of the theoretical model, the team managed to simulate the 
behaviour-use interdependence of their conceptual AI system four times and 
elicit 11 different (intended and unintended) outcomes by making use of simple 
prototypes. These iterations allowed them to not only explore the ranges of 
potential uses and outcomes, but also to gradually build-upon and adjust their 
mode (i.e., behaviour) so that it can address the elicited unintended outcomes. 
It also enabled them to identify and elaborate upon the requirements and values 
their concept ought to fulfil, as well as the data they need to collect. Thus, 
supporting the team to iteratively design a concept for an AI system that can 
fulfil the purpose they identified at the beginning of their project. An example on 
how the team addressed each variable of the model can be found in Table 5.

Table 5  An overview on the formulation of each variable during Iteration 32.

Variable Performed activities
Data As previously + more exercise options, detailed meal suggestions 

(including ingredients, instructions, nutritional value, time) and food 
delivery options

Frame If the app provides more nuanced deviations from the preferences of 
the user, they won’t readily comply with them.

Mode of 
action

As before + including deviations in the workouts such as extreme ex-
ercises (too hard and high intensity, as well as extremely short exercis-
es) and introduce difficult meal plans (e.g., very long preparation times 
and exotic ingredients).

Intended 
actuation

Carefully read and reflect on the suggested exercises and meals.

Prototype As before + update of the app interface to include dish recommenda-
tion (and detailed recipes) and food delivery.

Mode of 
action

As before + assign labels to each user that can showcase them how 
they performed during the past week.

2 We chose to exemplify Iteration 3 since during this iteration the team already had a more detailed 
concept. In addition, they managed to elicit the most unintended outcomes during Iteration 3. An 
overview on all iterations can be found in the Appendix.
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Intended 
actuation

As before + notice the labels the algorithm has assigned to them.

Prototype As before + image sequences showing different exercises and times.
Actuation E.g., refusal to perform more challenging exercises; tried to change 

the proposed schedule; wondered how to provide feedback to the AI 
so that it would not suggest such exercises; wondered how to make 
the AI show easier recipes.

Outcomes Participants are puzzled over the choices the AI made (e.g., one user 
tried to figure out what he might have said in the first interaction that 
made the AI think that his diet should be vegetarian: “well, there’s a 
question I have here... I don’t know if the current diet is something that 
I’ve said that I have or it’s the diet my coach suggested to me...”); a 
photo of the female yoga instructor was considered too prejudiced 
and not inclusive enough for men who like to practice yoga by a male 
participant); too complex suggestions (e.g., “40 min? 40 min for a 
sandwich?”); compliance with suggestions of the app even though the 
suggestion was meant as something the participant will consider a 
mistake (“Preparation time 8h, okay. Yeah, I mean that also looks very 
yummy. But I again would not like to cook during the week, something 
that takes eight hours. Then I would try it out on the weekends one 
time”).

Require-
ments

Meals should not require too much effort from the user; Introduce an 
option to shop the ingredients needed for the meal online.

Values Users should not feel like the design of the app is prejudiced against 
them

Discussion

As it can be seen from the example, the team used all of the variables of our 
initial theoretical model while designing their AI-powered fitness app concept. 
While they made use of all model’s variables, they also used variables that 
were not prescribed: intended use, requirements, and values. In this section, we 
discuss each of the identified new variables in light of extant literature and the 
theoretical model.

The intended use

In each iteration the team explicitly defined the manners in which they intended 
their concept to be used. Let us call this action intended actuation to reflect 
the already existing variable of actuation that signifies use (see Chapter 5). 
As we saw from the example, the intended actuation always came after the 
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mode has been defined and before a prototype is devised. Hence, it resides 
between the variables of mode of action and prototype (i.e., frame + mode 
of action + intended actuation  prototype). This observation is in line with 
existing theories of design practice. For instance, according to Roozenburg 
(1993), the prescribed way in which a designed solution is to act is integral 
to the process of design. Well-designed products always provide a (visual) 
cue on how they are to be handled (Norman, 2013). For instance, a door has 
a handlebar, digital solutions come with a pre-catered menu of options and 
services are guided by their service blueprints. Therefore, if we are to create a 
model that is an accurate representation of a design process, we need to have a 
variable to represent the manner in which the designers intend their solution to 
be actuated.

However, a clear distinction is needed between intended actuation and 
actuation. To do so, we propose to rename the latter to observed actuation 
(i.e., the actions a user performs in order to allow the AI system to function and 
be “connected” to its immediate environment). Such an update will allow us to 
clearly differentiate between the use for which the AI system’s behaviour (i.e., 
mode of action) was designed and the observed types of use that happen once 
the AI system gets deployed. Doing so also ensures that the theoretical model 
reflects the ever-evolving nature of AI systems.

Introducing two different types of actuations also has implications for the 
manner in which we formulate the theoretical model. Namely:

purpose + data → frame

frame + mode of action + intended actuation → prototype

prototype + observed actuation → outcomes

Given these changes and considering the different types of abductions 
introduced in Chapter 3, each row of the model becomes representative of a 
different type of abduction. The first row (i.e., purpose + data → frame) is a clear 
example of explanatory abduction. This type of abduction allows us to generate 
a logical explanation for an observation (Roozenburg, 1993) (Chapter 3). For 
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instance, the team found that their participants find the AI system’s suggestions 
not personalised enough (i.e., an observation). This observation became part 
of the data they had collected thus far. The team then explained this away by 
deciding to make their users take a more pro-active role in explicitly teaching 
the system. The explanation resulted in a new frame: “If the AI intentionally 
makes mistakes in its advice, the users will teach the system how to attune to 
their preferences (hence, feel personalised)”.

The second updated row of the theoretical model (i.e., frame + mode of action 
+ intended actuation → prototype) describes innovative abduction. Innovative 
abduction is central to conceptual design and allows us to devise innovative 
solutions to ill-defined problems (e.g., Roozenburg, 1993; Dorst, 2011; 2015) 
(Chapter 3). In our case, it is also the type of abduction that allows us to design 
a prototype which embodies the identified frame (which Dong and MacDonald 
(2016) see as the starting point for innovative abduction), mode of action and 
intended actuation. As such, the revised formulation of the second row follows 
the same logic as the formulation of innovative abduction both Roozenburg 
(1993) and Dorst (2011) provide. For instance, according to Roozenburg, 
innovative abduction can be represented as:

((form � actuation) → mode of action) → purpose

(i.e., the form and the actuation of the solution directly influence its mode 
and the combination of these ensures that the initially defined purpose can 
be achieved). If we are to substitute the form with prototype (the rationale for 
which we explained in Chapter 5) and the variable of purpose with frame (since 
the frame implicitly embodies the purpose – see Chapter 3), we arrive at the 
same inference as Roozenburg:

((prototype � intended actuation) → mode of action) → frame

Finally, in Chapters 4 and 5, we already postulated that the deliberate 
embedding of prototypes within their intended context allows us to elicit 
an array of potential uses and outcomes. Using prototypes in this capacity 
is representative of manipulative abduction (Magnani, 2004). This type 



112

DESIGNING AI SYSTEMS

of abduction signifies the productive thinking that happens when we use 
“epistemic mediators” (ibid) such as prototypes to elicit new and still 
unexpressed information codified within the context. Consequently, the third 
row of the theoretical model becomes indicative of manipulative abduction: 
prototype + observed actuation → outcomes.

The clear delineation of the three types of abduction allows us to define the 
relationships among them. As it can be seen from the model, the result of each 
type of abduction serves as the starting point for the next. For instance, once 
we have defined a frame (which is the result of explanatory abduction), we 
can engage in activities representative of innovative abduction (e.g., defining 
a mode of action) and so on. The manners in which these types of abductive 
reasoning influence each other will be further explored in the next chapter.

Requirements

Requirements always appeared once the observed actuations and outcomes 
have been elicited and before a new iteration had begun. In effect, requirements 
served as the bridge between the different iterations. As such, they played a 
two-fold role. On the one hand, they served as a benchmark against which the 
team evaluated the elicited actuations and outcomes. This is in line with the 
paradigms of both Rational Problem Solving and Reflective Practice (Chapter 
3). For Simon (1996), for instance, when searching for the solution that can 
satisfice the given (or selected) purpose, it is the requirements that indicate 
whether the designer has managed to find a satisficing solution. This is also in 
line with the manner in which Schön (1983) claims a designer decides whether 
to end the design process: by looking at the outcomes her moves have created 
and asking herself: “Do you get what you intend?” (p. 146).

On the other hand, the team generated new requirements during all but one 
of their iterations through the theoretical model. These were formulated as a 
result of the elicited actuations and outcomes. Once the designer observes how 
the prototype is actuated, these observations could lead to certain suggestions 
on what to improve or avoid in the next iteration. This process resembles 
what Schön (1983) terms as reflection-in-action. According to him, it is during 
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reflection-in-action when “the situation talks back, the practitioner listens; and 
as he appreciates what he hears, he reframes the situation once again” (p. 131). 
Thus, it allows the designer to better understand the problematic situation 
at hand and design a new intervention to address it (i.e., playing the role of a 
bridge between outcomes and new frames (see Chapter 3)). As such, this two-
fold role requirements play will be further investigated in Chapter 7.

Personal values

The theoretical model introduced in Chapter 5 does not address the embedding 
of personal values into the design of an AI system. However, the manner in 
which the team implicitly embedded their own values into their concept brings 
to the fore an important aspect of Design Theory. First, recent design theories 
see designing as a value-producing activity (e.g., Friedman, 1996; Rosenman & 
Gero, 1998; van Onselen, 2022) 

. Second, both Simon (1996) and Schön (1983) acknowledge the influence 
a designer has on the solutions she is designing. In fact, Schön (ibid) sees 
the designer as the one who decides whether to end the design process. She 
does so by looking at the outcomes her moves have created and then asks 
herself: “Do you like what you get?” (Schön, 1983, p. 146). Therefore, similarly 
to requirements, the values one holds as important are used to evaluate the 
outcomes a solution has produced.

On the other hand, we saw that values emerged (i.e., were made explicit) as a 
result of the elicited actuations and outcomes. For instance, it was only when 
the team noticed that one of their participants considered pictures of female 
yoga instructors to be prejudiced, that they made their value of inclusivity 
explicit in their subsequent prototypes. Hence, the role values serve during the 
application of the theoretical model could be likened to that of requirements. 
Therefore, an updated version of the theoretical model ought to consider and 
reflect the role personal values play when designing a new solution. Assigning 
a variable that can make the otherwise implicit embedding of personal values 
explicit could also aid us in having a clear overview on the types of values the 
designing team decides to embed into an AI system. Doing so is important 
if we are to audit the AI system and openly discuss the potential biases that 
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might stem from the embedded values. However, we should still avoid potential 
confusion with the dominant understanding of values in the field of AI (see 
Chapter 5). A first step in doing so is to clearly delineate the way we define 
values. Hence, we adopt the following definition: “an enduring belief that a 
specific mode of conduct or end-state of existence is personally or socially 
preferable to an opposite or converse mode of conduct or end-state of existence” 
(Rokeach, 1973, p. 5).

Conclusion and further research

The Design theories we discussed in Part II of the dissertation allowed us to 
devise an initial theoretical model that provides an answer to the main research 
question of the dissertation: “How can a theoretical model be designed that 
supports the early simulation of AI systems’ behaviour-use interdependence 
by utilising Design theories?”. However, these theories have been developed 
for the design of products and services. Therefore, in this chapter we set out 
to further explore how to simulate the behaviour-use interdependence in the 
context of designing AI systems.

Figure 10 An overview on the abduction types the model is conductive to.

We began our exploration by presenting an empirical example from my 
teaching practice of a team comprised of three design students who simulated 
the behaviour-use interdependence of the concept they were designing. The 
example allowed us to render the theoretical model into the desired context, 
as well as to provide us with foundation for further research. Three insights 
emerged from the example.

First, in each of their iterations, the team explicitly defined their intended 
actuations. This insight allowed us to create a distinct and explicit demarcation 
between intended actuation and observed actuation. A separation that aligns 
with the inherent nature of AI systems where the manner in which one decides 
to use a solution does not necessarily align with the manner the designer 
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intended it to be used. Hence, we could delineate the feedback loops that define 
the manner in which an AI system will behave. 

The addition of this variable allowed us to connect each row of the theoretical 
model with a different type of abductive reasoning: explanatory, innovative, 
and manipulative, respectively (see Figure 10). As discussed in Chapter 3, 
Design theories use only explanatory and innovative abduction to explicate 
the manners in which synthesis is carried out in Design. While the initial 
model presented in Chapter 5 acknowledged the three types, it lacked a clear 
explanation of their relationships. The conceptual refinement proposed in this 
chapter provides a more robust framework for understanding the nuanced role 
each form plays in the reasoning process utilised while designing. As such, this 
new formulation provides us with the foundation on which further conceptual 
exploration can be carried out to better understand how designers apply the 
three different types of abduction. 

Second, Design theories provide conflicting accounts on how the different 
types of abduction are related and influence each other. For instance, both 
Roozenburg (1993) and Dorst (e.g., 2011) see innovative abduction (i.e., 
abduction-2) as central to the act of designing. However, unlike Roozenburg, 
Dorst claims that it is oftentimes followed by explanatory abduction (i.e., 
abduction-1)3 to ensure the desired value can be achieved (p. 523) (see 
Chapter 3). On the other hand, Dong and MacDonald (2016) and Kroll and 
Koskela (2016) claim that when designing new products, services, and systems 
one uses explanatory abduction first and only then moves to innovative. 
Furthermore, to our knowledge, none of these scholars discusses the manner 
in which manipulative abduction impacts the cognitive act of designing. Yet, 
the student team we discussed in this chapter made use of all three in order 
to simulate the behaviour-use interdependence of their concept. Given the 
conflicting statements on the relationship between explanatory and innovative 
abduction, and the insights generated in this chapter, it is our contention that 

3 An overview on why abduction-2 cannot precede abduction-1 can be found in Kroll and 
Koskela (2016).  
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further research is needed into the manner in which the three abduction types 
influence each other.

Third, as discussed in Chapter 3, it is widely acknowledged both within and 
outside the field of Design that abduction is intricately connected to deduction 
and induction. For instance, according to Roozenburg (1993), the outcome of 
innovative abduction needs to be tested by deduction and induction (p. 10). 
This sentiment is echoed by the work of Dorst (2011), Kroll and Koskela (e.g., 
2015) and Dong and colleagues (e.g., 2016). However, to our knowledge, the 
connection among the three types of reasoning has not yet been made explicit. 
There is a notable exception coming from the work of Dong and colleagues 
around the concept of generative sensing (e.g., 2016) which delves into the 
relationship between abduction and deduction. However, their work does 
not provide a distinct separation among the forms of abduction and their 
connection with induction. The insights we gleaned from the empirical example 
discussed in this chapter, especially around the constructs of requirements 
and values could provide us with an interesting vantage point to address 
this challenge. For instance, both requirements and values are considered 
to be means for evaluation in extant Design literature. The former has been 
traditionally used to evaluate design concepts. Hence, a wealth of methods 
have been created to support designers in applying requirements to evaluate 
a design concept. Values, on the other hand, can also serve an evaluative role, 
although the manner in which they do so has been discussed in more implicit 
ways. For instance, as discussed in Chapter 3, according to Schön (1984), 
one of the most important questions a designer asks herself while evaluating 
the outcomes of her moves stems from her personal values: “Do you like 
what you get?” (p. 146). Using values to evaluate a design concept is also a 
common practice in the Value Sensitive Design approach (Friedman, 1996). 
Yet, requirements and values have not been connected to the cognitive act of 
designing or explicated from this vantage point. Therefore, the patterns in which 
these constructs emerge and are applied could offer Design scholars a new 
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vantage point for understanding the interplay among abduction, deduction, and 
potentially induction, too. 

These three insights serve as a foundation for further conceptual investigation 
as they showcase that to be able to simulate behaviour-use interdependence 
of AI systems, Design theories need to be extended. We explore all of them in 
the next chapter. In it, we discuss the application of the theoretical model to the 
conceptual design of an in-car AI system for a large multinational automaker.
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CHAPTER 7

The main premise of the dissertation is that one can design a theoretical 
model that supports the early simulation of AI systems’ behaviour-use 
interdependence by utilising Design theories. The example discussed in 
Chapter 6 suggests that the theoretical model we devised in Chapter 5 covers 
large parts of the process of designing AI systems concepts. However, it does 
not manage to fully capture the design activities that allow us to simulate the 
behaviour-use interdependence of an AI system. 

In the previous chapter, we employed an empirical example that served as 
a scaffold around which we furthered the conceptual development of the 
theoretical model we introduced in Chapter 5. This approach led us to the 
identification of several avenues in which Design theories need to be further 
extended. More specifically, it uncovered three areas for further research: (1) 
the manner in which designers apply the three different types of abductive 

CASE STUDY: DESIGNING 
A SMART IN-CAR SYSTEM 
CONCEPT FOR A LARGE 

AUTOMAKER
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reasoning, (2) the manner in which these types influence each other; and (3) the 
manner in which non-abductive activities are used when applying the theoretical 
model. In this chapter, we again apply the same approach of using empirical 
investigation as the basis upon which we further the conceptual development 
of the theoretical model. However, we apply a more in-depth and structured 
empirical investigation method: a case study describing a design project. It is 
our contention that such an approach can better inform the manners in which 
we can both further our efforts of conceptually developing the theoretical 
model and present more grounded insights and suggestions on how Design 
theories could be extended. 

Therefore, the main research question of the chapter becomes: “How can 
Design theories be extended to support the early simulation of AI systems’ 
behaviour-use interdependence?”.  We operationalise it through the 
following three sub-research questions (one for each of the aforementioned 
research areas):

1. “How and where in the process do designers apply each of the three 
abductive reasoning types?”

2. “How do the three types of abductive reasoning influence each other?”

3. “Where in the process do designers make use of non-abductive 
activities?”

To provide an answer to these, we explore the application of the theoretical 
model to the design of an AI system during a five-month long case study. The 
study followed the application of the adjusted model (see Chapter 6) to the 
conceptual design of an in-car AI system for a large international automaker 
(henceforth referred to as X). The design project was carried out by an expert 
designer (myself), who was supported by three other expert designers – two 
from the client side and one from my doctoral supervisory team. As such, 
the chapter has the following structure. First, we present the case study 
background. This is followed by an explanation on the utilised data collection 
and analysis methods. Then, we introduce the Results section of the chapter 
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where we use empirical data to answer each of the sub research questions. 
Finally, in the Discussion section, we address the main research question of the 
chapter, by extending the conceptual development of the theoretical model.

Case background

We executed this design project in the field of mobility together with an 
automotive company – the client. They were in their initial exploration stages of 
solutions that can facilitate the change from internal combustion engine (ICE) 
vehicles to electric vehicles (EVs). Therefore, at the beginning of the project, 
the following situation was presented by the client. One of the biggest hurdles 
to the adoption of EVs is the time it takes a user to charge their car. While ICE 
cars can be fuelled in just 5 to 10 minutes at a gas station, an EV takes between 
40 minutes and 12 hours to be fully charged. Therefore, the solution we were 
about to design had to strike a balance between convenience (i.e., ensuring 
that users do not plan their days around charging their cars) and performance 
(i.e., ensuring that we can preserve the battery performance for as long as 
possible). Finally, the potential solution had to address the limited availability 
of accessible charging infrastructure, especially public charging points. Given 
this context, the agreed-upon initial purpose was: “Enable the most optimal 
behaviour of as many EV owners as possible”.

The design project took five months from May to October 2021, and it was 
focused on the initial stages of the design process. Namely, while the client 
was already interested in the area of devising AI systems that can support EV 
owners, they did not yet know what a system like that should do, how it should 
behave and what user needs it could address. As such, this case presented 
us with the type of complex system for which we devised the theoretical 
model. It was defined by a collection of interconnected and interdependent 
social (i.e., users and other EV drivers), physical (i.e., the car and the existing 
charging infrastructure), and technical (i.e., the AI system to be designed) 
elements. Furthermore, the exploratory nature of the design project allowed us 
to observe the manners in which the theoretical model was applied in practice. 
Throughout the project, I acted as the principal designer, and collaborated 
with designers from the client side. The decision for me to play the role of the 
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principal designer was made for two reasons. First, my background classifies 
me as an expert designer (Dreyfus & Dreyfus, 2005; Lawson & Dorst, 2013). I 
have received my bachelor and master’s formal education in Industrial Design 
Engineering. I have also been a practicing designer for over five years. Second, 
I have an intimate level of understanding of the theoretical model. Therefore, I 
could ensure the model was applied as intended. This knowledge is especially 
important since the model is still in its theory development stage (Cash, 2018).

Data collection

Next to my role of a principal designer, I was also the main researcher guiding 
and analysing the study. Combining these two roles led to a rich first-hand 
understanding of the design process, and its emergence (van Oorschot et 
al. 2022, p. 2). Furthermore, due to my dual role, I had access to all of the 
generated data throughout the study.

First, I kept a detailed design journal where I collected all my sketches, 
descriptions on why certain decisions were made, data analysis, ideation 
process, interview and observation notes, and generated insights and 
decisions. Example pages from the design journal can be found in Image 6 
where one can see how sketches, descriptions of made decisions, and ideation 
process come together.`

Second, I regularly had a one-hour team meeting with the two expert designers 
from the client side. During these meetings I reported on my progress. We also 
discussed potential design directions (e.g., what features to introduce in the 
prototypes), but also values and requirements important for both the client 
and me). As such, the meetings served as a chance for alignment between us, 
as well as an important step in the design process with implications on how 
to continue. All meetings were audio recorded and transcribed. Moreover, a 
short PowerPoint presentation was shared during each of the meetings. All 
presentations detailing my progress were saved and dated.

Third, I carried out a creative session with three expert designers (two of them 
work for X and the third one is the co-promotor of this doctoral research). The 



Image 6 Example pages from my design journal showcasing different sketches and the 
rationale behind them.
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goal of the session was to jointly generate new frames based on the collected 
thus far data. Due to Covid-19 restrictions, the session was carried out online 
using a virtual collaboration software (i.e., Miro). All activities from the session 
were downloaded and analysed. The creative session was audio-recorded and 
transcribed.

Finally, from mid-July to mid-October 2021, two owners of EVs participated in 
the project. During this period, I carried out seven interviews with each of them. 
In addition, both of them actuated six of the devised prototypes (see Results 
section). All of the interviews and user tests were audio and video-recorded and 
subsequently transcribed.

The combination of these allowed us to create a detailed representation of 
the activities carried out during this design project in all of its richness – from 
activity descriptions, through sketches, collection of all ideas, and discussions 
between myself and the client, to the rationale for each of the made decisions.

Data analysis

The data analysis process was carried out by me. It commenced with 
iterative coding of the collected data. First, I pre-coded design activities (i.e., 
by highlighting rich or significant quotes found in the collected materials) 
(Saldaña, 2013). In order to identify design activities, I followed the definition 
Pedgley (2007) put forward: “Design activity encompasses cerebral activities 
including thinking, imaging, and decision-making as well as practical and 
externally perceptible activities such as information gathering, drawing and 
model-making”. Each activity was either performed by me (the designer), the 
team, or the two recruited participants. Once all activities were pre-coded, I 
clustered them around the variables identified in Chapter 6: purpose, data, 
frame, mode of action, intended actuation, prototype, observed actuation, 
outcomes, values, and requirements. To gauge which instance could be 
grouped under which variable, I used the definitions presented in Table 6. The 
definitions come from both Chapter 5 and Chapter 6. Where a direct quote was 
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not available (e.g., a sketch or a prototype), I translated the sketch into a written 
description1.

Table 6 An overview of the variables’ definitions, paired with an example quote (quotes 
from the principal designer are followed by PD, quotes from the other designers – as C and 
the participants as U) and source.

Variable Definitions Example Source
purpose The goal of an AI system. “Optimise the charging for people 

who cannot charge at home” (C).
team

meeting
data Records produced by 

experiments and mea-
surements that serve as 
evidence for the exis-
tence or features of a 
phenomenon.

“I looked through the forum threads 
on Quora when it comes to EVs and 
especially – what people do when 
they’re charging, where they charge 
and the advantages, they perceive 
from driving an EV (as well as (su-
per)charging on long trips).” (PD)

journal

frame A cognitive act of looking 
at a problem situation 
from a specific viewpoint 
that informs how the 
problem can be solved.

“They lack in motivation, so what we 
should present to them is something 
that will help them to increase their 
motivation to perform the action.” 
(C)

team

meeting

mode of 
action

(Functional) behaviour of 
the AI system in response 
to influences exerted on it 
from its environment.

“What if we insert some provocative 
statements to gauge how easily the 
system can sway their preferences 
– e.g., “go to a park for a walk in the 
middle of the day so that they can 
charge”, show costs, show route, 
etc.” (PD)

team

meeting

intended 
actua-
tion

The intended by design 
action of a user that 
allows the AI system to 
function and be “con-
nected” to its immediate 
environment.

“They need to select options and 
provide information on their current 
routines, next trips, home address, 
important aspects to them, agenda, 
etc.” (PD)

team

meeting

proto-
type

An externalised represen-
tation of a potential AI 
system.

An in-car system that guides drivers 
when to charge, where and for how 
long. (PD)

journal

1 The description process was aided by the fact that when designing I tried to explicitly externalise 
(i.e., write down, sketch out) every single thought.
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observed 
actua-
tion

The actions a user per-
forms in order to allow 
the AI system to function 
and be “connected” to its 
immediate environment.

“I left it at the charging station 
longer because last week I had a 
problem with the charger where 
sometimes it didn’t charge and 
sometimes it did, but I really didn’t 
need the car for the day, so I left it 
out and eventually it charged…” (U)

user

test

outcome The intended and unin-
tended results of the AI 
system’s actuation.

“I’m concerned about my privacy. 
What if I give my home address to 
the system and full access to my 
agenda and the car gets hacked… 
Then they [burglars] will have all the 
information when I’ not at home so 
they can rob me.” (U)

user

test

require-
ments

The performance speci-
fication of the AI system 
that limits the range of 
acceptable solutions.

“The solution should support users 
to reduce the time they leave their 
car plugged-in as much as possible.” 
(C)

team

meeting

values An enduring belief that a 
specific mode of conduct 
or end-state of existence 
is personally or socially 
preferable to an opposite 
or converse mode of 
conduct or end-state of 
existence.

“Support people in doing healthy 
activities while charging.” (PD)

team

meeting

After all data were coded, I compiled a chronological list of activities (Table 
7). For each activity I kept a log of underlying data sources to create a chain of 
evidence (Yin, 2009). Once all activities were coded and ordered chronologically, 
I clustered similar codes in different descriptive categories (e.g., “collect data”, 
“data analysis”, “identify requirements”, “formulate a frame”).

Table 7 A snippet from the chronological event list where each category, code, quote, 
source, and time stamp are given.

Category Code Quote Source When
Collect data Data “Look into public datasets on EV charging 

patterns in the US, UK, and the Nether-
lands.”

journal 07/06/

2021

Data anal-
ysis

Data “If we’re to design something for the car, 
we need to take into consideration that 
the car will most probably be resold.”

team 
meeting

10/06/

2021



126

DESIGNING AI SYSTEMS

Data “People who own EVs have charging 
anxiety.”

team 
meeting

10/06/

2021
Data “Even though there’re not that many cars 

in the Netherlands, people are still experi-
encing busy chargers.”

team 
meeting

10/06/

2021

Data “When most people have an EV, chargers 
will probably never be enough, people will 
have the feeling that they have to wait.”

team 
meeting

10/06/

2021

Data “The existing grid will most probably not 
be able to support the overnight charging 
of all these new cars.”

team 
meeting

10/06/

2021

Data “Regardless of the country from which it 
comes, there are similar tendencies in the 
behaviour of people – whether it’s Norway, 
Netherlands, UK, US, it’s very similar.”

team 
meeting

10/06/

2021

Identify re-
quirements

Require

ments

“We just have to prepare the situation in 
a way that’s somehow playful and make 
them feel like they’re on an adventure.”

team 
meeting

10/06/

2021

Formulate a 
frame

Frame “The fact that they feel like a novice is 
actually not a bad thing because we 
actually need them to behave in a different 
way, and if you think about how a novice 
behaves, one of the most important ele-
ments is that you feel like you’re learning, 
and that you’re uncovering new things. 
That’s the biggest excitement of owning 
something new.”

team 
meeting

10/06/

2021

Identify 
values

Value “I like the idea of juggling a lot of things 
and finding a way to figure out how we 
can support you and to what an extent do 
people want the car to do that.”

team 
meeting

10/06/

2021

Formulate 
new frames

Frame “If we see the car as a symbol of freedom, 
then we need to ensure that their owners 
don’t have to think about charging ever 
again.”

journal 14/06/

2021

Frame “If we want to scale EV ownership, we 
need to make sure that people who cannot 
charge at home will not find owning an EV 
a hassle.”

journal 14/06/

2021

Frame “Feeling like a novice is a good thing 
because it can bring you sense of accom-
plishment when you learn new things.”

journal 14/06/

2021
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Frame “Maybe we should intentionally make peo-
ple feel like novices so that they can learn 
the new behaviour.”

journal 14/06/

2021

Identify 
values

Value “It should feel like new shoes that don’t 
give you blisters.”

team 
meeting

14/06/

2021
Identify re-
quirements

Require

ments

“Introduce new habits and do it gradually.” team 
meeting

14/06/

2021
Require

ments

“We can’t change infrastructure, nor hard-
ware.”

team 
meeting

14/06/

2021
Formulate a 
new mode

Mode “The car starts by supporting them in 
charging as they are used to, and then 
gradually starts suggesting to places 
where they can start charging as they go. 
it should first understand their existing 
routines and then establish the feeling of 
learning.”

journal 14/06/

2021

The chronologically ordered coded activities, allowed us to define three distinct 
sequential temporal brackets (Langley, 1999) that defined the design process. 
The first one, “Understand context”, contains design activities that allowed 
the team to better understand the context for which the concept had to be 
designed. Hence, it ended when a new, better-defined, purpose was formulated. 
The second bracket, “Devise initial concept”, contains the design activities 
that enabled the team to design three different concepts for an AI system and 
evaluate them together. The bracket was concluded with the definition of a new 
sub-frame that pointed the team at the direction the detailed concept should 
follow. Finally, the third bracket, “Develop the concept”, contains the activities 
the team carried out to detail the concept by simulating its behaviour-use 
interdependence. These brackets are not “phases in the sense of predictable 
sequential process” but they can be used as a structured way of describing 
activities (Langley, 1999).

In addition, each of the identified activities was labelled as either being 
representative of explanatory, innovative, manipulative or no abduction (with a 
different corresponding colour). To match identified activities with abduction 
types, we used the insights on the relationship among the three types of 
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abduction discussed in Chapter 6 (Figure 11). Namely, if we have an activity 
coded as a mode of action, we visualised the activity as part of innovative 
abduction. Activities that were not coded as one of the model’s variables 
(including values and requirements) were considered to be representative of 
no abduction.

Figure 11 An overview on the abduction types the model is conductive to.

 
The combination of the temporal brackets and their corresponding activities 
were then placed on a visual map – a chronological timeline detailing the 
categories and their temporal occurrence (Langley, 1999). The map (Figure 
12) is divided in three rectangles (one for each bracket), connected by a 
timeline. The timeline is colour-coded in accordance with the abduction type its 
corresponding activities represent. The size of each rectangle and its timeline 
identifies the time it took for the activities in a bracket to be performed. Some 
concessions had to be made for ease of visualisation. For instance, although 
the third temporal bracket visually takes approximately the same space as the 
other two, it took longer than both of them combined. Further, since all activities 
in the third bracket followed the same pattern, only one iteration through the 
model is visualised.

Finally, combining all of the thus far uncovered insights, we wrote three 
descriptive narratives (Langley, 1999) about the design project: one for each of 
the temporal brackets. The narrative writing was guided by the activity list and 
the raw data collected during the project. Each narrative describes the activities 
within the corresponding bracket, their connections to the variables of the 
model, as well as how these contributed to the devising of a concept for an in-
car AI system. These can be found in the Results section of the chapter.



Figure 12 A visual map of the design project.
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Results

The application of the theoretical model

During this project, we designed a concept for an in-car AI system that supports 
EV owners who cannot charge at home to start charging as they go (i.e., instead 
of waiting for their car to be fully charged, they charge enough only to get to 
their next destination). In order to do so, the design project went through three 
distinct temporal brackets. Each one of them is discussed in detail below as 
an answer to the first part (in bold) of the first sub research question of the 
chapter: “How and where in the process do designers apply each of the three 
abductive reasoning types?”.

Temporal bracket 1: Understand context

The starting point for the first bracket was the initial purpose the client put 
forward at the beginning of the design project: “Enable the most optimal 
behaviour of as many EV drivers as possible”. In order to design an AI system 
that could fulfil the given purpose, I began by collecting data on adoption rates 
of EVs across the United States, Europe, and Asia, the time people spend on 
charging their car and the challenges they experience in doing so. The data 
collection was followed by analysis and data visualisations (see Image 7), 
usually carried out prior and during our weekly team meetings. These meetings 
were structured as follows: (1) presenting the gathered data and drawing initial 
conclusions from it; and (2) together with the other two designers, further 
analysing the data, and deciding on next steps – e.g., collect additional data 
on charging routines of EV owners. Stemming from the collected data, we then 
generated multiple different frames (e.g., “If the solution facilitates a mindset 
change in EV owners, then we can ensure optimal charging behaviour”), and an 
initial mode of action: “guide drivers when, where and for how long to charge”. 
After the second team meeting, a new, more detailed, purpose for the project 
was selected: “Help EV owners who cannot charge at home to start charging 
as they go”.
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Image 7 Examples of data visualisations used during the first temporal bracket.

Temporal bracket 2: Devise initial concept

The second temporal bracket of the project was focused on designing the initial 
concept for the AI system. As such, using the new more detailed purpose, I 
continued with a new round of data collection on the routines EV owners who 
cannot charge in their homes follow, the existing charging infrastructure in the 
Netherlands and its use, the process of requesting the installation of a new 
public charging pole, the planned expansion of public charging stations, the 
use of charging stations and EV ownership types. All the collected data was 
subsequently analysed and visualised (e.g., Image 8). These then served as a 
basis on which we defined new frames and modes, presented during one of the 
team meetings. During them, values and requirements started to emerge as 
well (e.g., “the human should always be in charge and not lose any of her skills 
and “the user should have the feeling the car is always sufficiently charged”, 
respectively). In addition, during the meeting, our main frame was established: 
“If we help the user to slowly follow all of the car’s suggestions and make them 
connected to their everyday life, the user will charge as they go”.

In order to operationalise this frame, three sub frames were generated in 
parallel: (1) If the solution helps the user to gradually follow all of the car’s 
suggestions, they will charge as they go; (2) If the solution turns their cars into a 
place where they will work on themselves, the users will charge as they go; and 
(3) If the solution gets attuned to the user’s levels of risk, the user will trust the 



Image 8 The collected data visualised as 
a user journey for EV owners who cannot 
charge at home.
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suggestions of the system. These three sub frames led to the simultaneous 
formulation of corresponding modes, intended actuations and the devising of 
low-fidelity visualisations of potential prototypes (Image 9). These were then 
presented during one of our team meetings and served as boundary objects 
between the client and me, thus, aiding the discussion on how to proceed with 
the project. After the second team meeting, a two-hour creative session was 
carried out with four expert designers to further define the previously explored 
frames. The session began by discussing the visualisations of all previously 
collected data. These visualisations then served as boundary objects among 
all four designers and supported us in discussing insights and generating 
potential sub frames. The session resulted in the selection of a new sub frame: 
“If the solution intentionally makes users feel like novices, they will learn new 
charging behaviours”. This frame served as the starting point for the third 
temporal bracket.

Image 9 Three low fidelity prototypes of an in-car AI system helping its users to tailor their 
charging around their routines.
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Temporal bracket 3: Develop the concept

Finally, during the third temporal bracket, we underwent six iterations through 
the theoretical model, resulting in six actuated prototypes (Image 10). The 
first iteration commenced with data collection on the routines and charging 
preferences of the two participants we recruited. Both of them had just bought 
their new EVs, they did not yet have established charging routines and could not 
charge their EVs at home. The collected data was then analysed, visualised, and 
shared during our team meeting. During it, two new values emerged: “Support 
users in their exploration of how the car and charging works” (principal designer) 
and “We just have to prepare the situation in a way that’s somehow playful and 
make them feel like they’re on an adventure.” (client). Consequently, we identified 
a more detailed sub frame (building onto the frame from the second temporal 
bracket): “If owners take an active role in teaching the in-car system, they will 
follow its advice readily and be prepared for changes”. To decide whether this 
frame can be used as the starting point for identification of a new mode, it was 
evaluated against the generated thus far requirements and values. For instance, 
our frame fulfilled the newly generated value of supporting exploration since 
teaching the car how they charge could allow them to explore and actively 
reflect on the manners in which they want to charge. Further, it also fulfils the 
generated requirements. For instance, one of our requirements was “the user 
should feel like the car is always sufficiently charged”. We postulated that since 
the user teaches the car about their routines and comfort levels, they can also 
trust that it will know what “sufficiently charged” meant for them.

Once we evaluated the generated frame, a new mode (“Ask participants to show 
the system how they charge their car”), intended actuation (“Walk the AI system 
along the steps they take to charge their car”) and initial version of the prototype 
were devised. These were then discussed during one of our team meetings. 
Then, together, we updated the existing mode into “The system actively asks the 
user to show their current charging behaviours so that they can teach it what is 
important to them”. The new mode led to a new intended actuation (“The users 
answer all of the prompts of the in-car system by filming their surroundings, 



135

DESIGNING A SMART IN-CAR SYSTEM CONCEPT FOR A LARGE AUTOMAKER

dashboard, and their current routine on how they decide when and for how long 
they are going to charge.”) and a prototype (see Image 10). The prototype was 
then quickly evaluated against the already existing requirements and values, 
similarly to the manner in which we evaluated the frame.

This prototype was then actuated by the two participants and resulted in 
multiple observed actuations such as: “participants provided detailed videos for 
each of the prompts”, “had difficulty in understanding how to use fast-charging 
stations”, “went for a run while the car was charging”, and “interrupted the 
charging”. Finally, these observed actuations resulted in several outcomes: 
e.g., “participants felt anxious over the too many unknowns (e.g., charging costs, 
finding a charger, whether their attempts to teach the system were successful 
and what information the system paid attention to)”. These outcomes then 
triggered a reflection on the outcomes during our regular team meetings, 
resulting in the identification of new values and requirements, respectively: 
e.g., “support people in doing healthy activities while charging” and “provide a 
clear overview on how much charging is going to cost”. The observed actuations 
and outcomes served as the initial data input for the second iteration, where 
we identified other types of data that could support us in addressing the 
elicited unintended outcomes. An overview on the different instances each 
of the model’s variables assumed during all six iterations can be found in the 
Appendix. Further, a detailed visualisation of the design activities that happened 
during the fourth iteration can be found in Figure 13.

After the sixth iteration through the model, we also identified a new sub frame: 
“If the in-car system supports people to imagine how to plan for their long-term 
battery health, they will charge more as they go”. In addition, we also identified 
a new purpose: “ensure EV owners do not occupy chargers they do not currently 
use”, accompanied by a new frame “If the in-car system allows people to 
unplug each other’s cars when they are done charging, then they will not occupy 
chargers they do not currently use”.  



Image 10 An overview on all prototypes devised during the third temporal bracket Devise Prototypes
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As explained in Chapter 5, the application of the theoretical model can 
result in the definition of new purposes. In fact, the model was devised so 
that it can support such results since, as already discussed, unlike products 
and services that are relatively finite, AI systems evolve in a rapid, hyper-
personalised manner.

Occurrences of abductive reasoning

This section answers the second part of the first sub research question of this 
chapter: “How and where in the process do designers apply each of the three 
abductive reasoning types?”. As it can be seen from the visual map (Figure 13), 
instances of abductive reasoning occurred during each of the three temporal 
brackets. During the first one, “Understand context”, we mainly engaged in 
activities defined by explanatory abduction. Namely, we carried out activities 
labelled as data and frame. For instance, we collected data on the challenges 
EV owners experience when charging their cars. The patterns that emerged 
from the data collection led us to the insight that EV owners expect to use 
their EVs like a traditional car, which is reflected in the following quote from my 
design journal “Maybe it’s not about making charging stations the equivalent of 
gas stations, but instead, see where people’s cars are idle and put strategically 
charging poles there so they can charge their cars while they’re doing other 
stuff”. From this, an explanation (i.e., frame) was formulated “If the solution 
facilitates a mindset change in EV owners, then we can ensure optimal charging 
behaviour”). We define a mode of action only once (which is activity that occurs 
during innovative abduction): “guide drivers when, where and for how long 
to charge”. This exploration allowed us to agree upon a new, better-defined 
purpose. This new purpose also served as the starting point for explanatory 
abduction, which triggered the start of the next temporal bracket “Devise 
initial concept”.

During the second bracket, we again, engaged in explanatory abduction 
activities such as collecting new data and formulating a new main frame 
that could explain the collected data. The identification of this main frame 
was then followed by the generation of several new sub frames, as already 
discussed in the previous section. These explanatory abduction activities 
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were complemented with activities indicative of innovative abduction such as 
defining new modes of action (e.g., “gradually establish the new habits in drivers 
by providing rewards for charging optimally”) and intended actuations (e.g., 
“the user aims to collect the suggested by the AI system reward points”). The 
combination of our sub frames, modes and intended actuations then led to the 
creation of three different prototypes (Image 9). It also helped us to agree upon 
a new sub frame that could be used to achieve the purpose that emerged from 
the first temporal bracket. Namely: “if the solution intentionally makes users feel 
like novices, they will learn new charging behaviours”.

During the third bracket “Develop the concept”, we further detailed one of the 
concepts introduced during the second temporal bracket. As it can be seen 
from the visual map, activities representative of all three abductive types 
were observed from data collection (i.e., explanatory), through the devising 
of prototypes (i.e., innovative), to the actuation of these prototypes with the 
participants we recruited (i.e., manipulative). It is also the only temporal 
bracket during which we applied the theoretical model in its entirety and 
hence managed to address the behaviour-use interdependence that defines 
AI systems. Namely, we were able to observe how an early concept of the 
AI system will be actuated by its users. Then, based on the outcomes these 
actuations generated, we were able to observe a range of both intended and 
unintended outcomes that we addressed during the subsequent iteration 
through the model. Doing so allowed us to mitigate the negative unintended 
outcomes we observed and amplify the positive ones.

The three types of abduction

The second sub research question guiding the chapter was: “How do the 
three types of abductive reasoning influence each other?”. In order to provide 
an answer to it, we first need to look into the bracket during which the three 
types of abduction occurred (i.e., Develop the concept) and more specifically, 
its fourth iteration. As with the other five iterations in this temporal bracket, all 
three types of abductive reasoning were used. The first iteration was focused 
on enabling the users to teach the in-car system, the second and third – to 
guide them on how to charge as they go. However, it was during the fourth 
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iteration that we realised that we need a new way to approach the problem at 
hand: charging as they go continued to be difficult for the participants and we 
continued to struggle to identify ways to help them adopt the new behaviour. 
In this fourth iteration, we explored a different part of the concept – an in-car 
system showcasing the user the impact their usage patterns have on their EV.

A detailed overview on all activities carried out during this iteration can be 
found in Figure 13. The figure is structured as follows. On the left-hand side, 
one can find the final formulation of each of the model’s variables. On the right-
hand side – the corresponding quotes and sketches that led to the definition 
of the variables on the left-hand side. The quotes come from (1) my design 
journal, (2) the weekly team meetings with each quote labelled as either “PD” 
(to denote the quotes from the principal designer) or as “C” (to denote the 
client’s quotes); and (3) the user tests. In addition, some of the quotes have 
an additional label signifying whether they are addressing a variable (e.g., 
“MA” if they are indicative of the mode of action). These are complemented 
with visuals from the design journal and different versions of the prototype 
developed during Iteration 4 to showcase how it evolved. Furthermore, the 
activities that occurred during this iteration are color-coded depending on the 
type of abduction they represent. Finally, the activities that occurred during 
Iteration 4 are complemented with the outcomes, requirements and values 
that emerged from Iteration 3 and the frame of Iteration 5. The former served 
as the starting point for Iteration 4. The latter allowed us to address two of the 
Iteration 4’s outcomes. Hence, it showcases the manner in which each iteration 
through the model influenced its subsequent iterations and how the concept 
was gradually developed and detailed.

As it can be seen from Figure 13, the outcome of each abduction type served as 
the starting point for another type of abduction. For instance, the outcomes of 
manipulative abduction (Iteration 3) served as the starting point for explanatory 
abduction (Iteration 4), during which gradually a new frame was defined in such 
a way that it can address (some of) the elicited outcomes and incorporate the 
requirements and values that emerged from the previous iteration.  Namely, in 
our attempts to explain the outcome “Participants find it difficult to believe they 
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will be able to get to their destination on time if they only charge as they go. They 
need to feel prepared”, we postulated that it could be because they lack the 
motivation to do so. In order to increase their motivation, we then suggested 
that we could use the Fogg Behavioural Model (Fogg, 2019) to achieve the 
needed level of motivation. This notion, however, was conflicting with a 
personal value I made explicit during Iteration 3: “people’s behaviours should 
change but without using nudging”. This act of reflection-in-action triggered the 
generation of two new values stemming from the desire not to nudge people: 
“ensure each user has agency over the choices they make” and “ensure each 
user can make informed choices on how to change their behaviour”.

To address the newly generated values, we formulated the following frame: “If 
the in-car system provides insights on the effect different charging behaviours 
have on the battery, users will be willing to do more charging as they go”. The 
frame was then evaluated against existing requirements and values (see Figure 
13). Namely, the explicit decision to provide information rather than prescribe 
desired actions, we reasoned, allowed us to lessen the nudging effect of 
the solution.

Once this frame was selected, it did not change for the duration of the iteration, 
and served as the starting point for innovative abduction, where iteratively, 
we defined potential modes, intended actuations, and embedded these into a 
sketch which we iteratively developed into an initial wireframe of the prototype. 
These then allowed us to reflect on the direction we have chosen and led to 
explicit discussions of the values the client wanted to embed into the solution 
(e.g., “We shouldn’t tell people that they can improve their range because it will 
always degrade. We should tell them, your range will degrade, but here’s a way to 
slow it down”).

This reflection-in action led to a second episode of innovative abduction during 
which we iteratively generated new modes and intended actuations, supported 
by numerous sketches and a prototype wireframe. Each one of these was 
influenced by the identified values. For instance, the subsequent mode we 
identified was based on presenting different types of scenarios users can use 
to imagine how they can slow down their battery degradation rate. Finally, once 
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we selected the final versions of the mode and intended actuation, we devised 
our new prototype. The newly devised prototype was then evaluated against our 
already existing requirements and values. As it can be seen from Figure 13, the 
prototype allowed as to address our requirements (e.g., “provide easy access to 
information about the users’ charging behaviours”) and values (e.g., “and I think 
these choices people should make for themselves [the metrics they care about], 
not something we should push on them”) by providing users with different 
scenarios so that they can decide on their own which metrics they care about. 
The prototype was then actuated by our two participants.

The observed actuations resulted in the elicitation of four unintended outcomes 
and one intended. These can be found in Figure 13 where the summarised 
observed actuations and outcomes are accompanied with some of the quotes 
elicited during the user test. The outcomes then served as a point of reflection 
between the client and me, resulting in new values and requirements. We also 
evaluated the outcomes based on whether they were intended or unintended, 
positive, or negative. Subsequently, two of the unintended elicited outcomes, 
which we considered to be negative (i.e., “the users continue to feel unprepared 
enough for their commutes if they charge only as they go” and “deciding to use 
their car more often instead of their bike in order to charge as they go”) were 
addressed by the frame of Iteration 5, as one of the explanations we generated 
during our subsequent team meeting was that users feel unprepared and use 
their cars instead of their bikes because they do not trust the system. Hence, 
we hypothesised that if users are involved with the making of the suggestions, 
they will better understand the rationale behind them.
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Non-abductive occurrences

The third sub research question of the chapter was: “Where in the process 
do designers make use of non-abductive activities?”. As we can see from the 
visual map and the detailed overview on Iteration 4, numerous non-abductive 
instances occurred throughout all three temporal brackets. For instance, 
during the first temporal bracket, we regularly carried out data analysis (as 
seen in Image 7). The same non-abductive activities can be seen in the second 
temporal bracket, too. During it we also observed new types of activities such 
as the generation of new values and requirements from both the client and 
me. For instance, during the second team meeting for the bracket, one of the 
requirements the client formulated was: “give the user the perception that they 
are in control” and the following value was formulated by me: “EVs become 
an extension to the person rather than something that demands too much 
time of them”.

We observed the same type of non-abductive activities during the third 
temporal bracket as well. They emerged in a pattern that repeated during each 
of the six iterations through the theoretical model. First, new values emerged 
in each iteration after initial frames and prototype were devised. These in 
turn influenced the manner in which every subsequent variable of the model 
was formulated. Second, the results of all three abduction types (i.e., frame, 
prototype, and outcomes) were always evaluated against the already existing 
requirements and values, as discussed in the previous section.

We also observed activities similar to the ones discussed in Chapter 6. After 
the prototype was actuated and the outcomes were observed, they were then 
evaluated against the existing requirements and values. The outcomes also 
served as a basis on which new requirements and values were generated that 
would guide the subsequent iteration through the theoretical model.

Discussion

In the process of designing a concept for an in-car AI system, we went through 
three temporal brackets: (1) Understand context, (2) Devise initial concept, 



147

DESIGNING A SMART IN-CAR SYSTEM CONCEPT FOR A LARGE AUTOMAKER

and (3) Develop the concept. During the first two brackets we made use of only 
explanatory and innovative abduction. These were used to first, understand 
the context for which we were to design and then design three concepts. 
One of these concepts (Image 11) became the starting point from which 
prototypes were built in the third temporal bracket (e.g., using chores like 
doing groceries as an opportunity to charge as you go). As such, this concept 
can be equated to what Roozenburg (1993) terms a “principal solution”: “an 
idealized representation (a scheme) of the structure of a system, that defines 
those characteristics of the system that are essential for its functioning.” (p. 
12). These observations are in line with Design theories where explanatory 
and innovative abduction allow us to devise frames and new solutions to 
a problematic situation (e.g., Roozenburg (1993), Dorst (2011), Dong and 
MacDonald (2016) and Kroll and Koskela (2016)).

Image 11 Temporal bracket 2, Prototype 3
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However, as we saw in Chapter 6, when designing ever-evolving AI systems, 
we need to extend Design theories so that we can address the behaviour-use 
interdependence these systems exhibit. This assertion became the basis 
for the chapter’s main research question: (i.e., “How can Design theories 
be extended to support the early simulation of AI systems’ behaviour-
use interdependence?”). As our results show, we were able to simulate the 
behaviour-use interdependence only during the third temporal bracket. It was 
then that we furthered developed the initial concept sketches into a prototype 
that can be actuated by our users. Consequently, it enabled us to actively 
develop and adapt the concept to address the observed actuations and 
outcomes we were eliciting.

The manner in which we applied the extended theoretical model was largely 
similar to the example reported in Chapter 6. However, we also saw that 
the transition between each type of abductive reasoning was supported by 
activities such as visualisations, and the generation of requirements and values. 
We discuss these in detail in the remainder of this section.

The role of visuals

We made use of two kinds of visual representations throughout the three 
temporal brackets: data visualisations and sketches. In order to create each 
one of them, we utilised different types of reasoning. On the one hand, when 
generating data visualisations (e.g., Image 7 and 8), we applied inductive 
reasoning2. Namely, we had the data (i.e., result) and the context in which the 
data was collected (i.e., case) which allowed us to infer and visualise a pattern 
(i.e., rule). These visuals then served as a means to communicate the collected 
insights with the rest of the team. In turn, they served as a basis for the creation 
of possible explanations for the collected data and observations. They also 
allowed us to elicit new values and formulate new frames.

On the other hand, we also made use of sketches, which were gradually 
increasing in complexity and level of detail visuals (e.g., Image 12). These 
sketches influenced the way we formulated the variables on the model’s 

2 See Chapter 3 and Table 8 for an overview on how induction is carried out.
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second row. Namely, the moment we identified our first mode, we immediately 
started sketching how this mode could manifest itself. This allowed us to 
define the intended actuation and transform the initial sketch into a prototype. 
Consequently, these sketches served as initial versions of our prototype. 
The type of reasoning that enabled us to do so is manipulative abduction. 
As discussed in Chapter 4, this abduction type is present when one uses 
“communicable accounts of new experiences to integrate them into previously 
existing systems of experimental and linguistic (theoretical) practices” 
(Magnani, 2004, p. 229). Therefore, the sketches we generated allowed us to 
move from our operational interpretations of the domain (e.g., due to the data 
we collected) to the design and integration of new experiences into the existing 
context. Consequently, we can hypothesise that manipulative abduction 
enables us to carry out innovative abduction. This contention, of course, needs 
to be further researched.

Image 12 An overview on the different types of solution visualisations increasing in level of 
detail and complexity.

Use of requirements and values

In Chapter 6, we postulated that the role values and requirements play when 
applying the theoretical model is akin to what Schön (1983) termed as 
reflection-in-action. While this statement was correct in this case, we also saw 
the pivotal role both values and requirements had in facilitating the transition 
from one abduction type to another. In the remainder of this section, we first 
elaborate upon the reasoning types that allow us to generate new values and 
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requirements and then use them as a means of evaluation. We then briefly 
discuss the pattern in which both of them emerge.

Reasoning type

In order to identify the used types of reasoning, we adopt the reasoning 
structure Peirce (CP 2.622) suggested of rule, case, and result3. According to 
him, in abduction, we reason from result and rule to a case; in induction – from 
result and case to a rule; and in deduction – from a rule and a case to the result 
(see Chapter 3). An example on how each reasoning type was used during 
Iteration 4 can be found in Table 8.

Table 8 Examples of how different types of reasoning were applied during the design proj-
ect.

Reasoning From To Rule Case Result
Abduction Result

+

Rule

Case People are likely 
to adopt a new 
behaviour if they 
have the skill 
and motivation 
to do so (Fogg, 
2019)

If we motivate 
people well, they 
will adopt the 
new behaviour 
(initial frame, 
Iteration 4).

People have the 
skill to perform 
the new be-
haviour (out-
come, Iteration 
3).

Induction Result

+

Case

Rule Ensure people 
can make in-
formed choices 
(value Iteration 
4).

“We need to 
convince people 
to change their 
behaviour, but 
I’m also morally 
opposed to the 
idea of nudging 
and exploiting 
people’s cogni-
tive biases” – 
principal design-
er, Iteration 4.

Users find it very 
difficult to start 
charging as they 
go (outcome, 
Iteration 3).

3 The example Peirce (CP 2.622) used to explain rule, case and result was the following: 
“Rule: All the beans in the bag were white; Case: These beans were in the bag; Result: These 
beans are white.”
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Deduction Rule

+

Case

Result People find 
it difficult to 
conceptualise 
numbers in their 
head (fact).

The in-car 
system provides 
insights on the 
effect different 
charging be-
haviours have on 
the battery (final 
frame, Iteration 
4)

Ensure easy ac-
cess to informa-
tion (requirement, 
Iteration 4).

Using this structure of a rule, case, and result, we can conclude that the 
generation of new requirements and values is indicative of inductive reasoning. 
Let us take a quote from Iteration 4’s first team meeting:

“We can see that our users are still refusing to charge only as 
they go [result]… This [the idea of increasing motivation] is actually 
something I’m really struggling with right now – we need to convince 
people to change their behaviour, but I’m also morally opposed to 
the idea of nudging and exploiting people’s cognitive biases to make 
them establish a new routine [case]. So, I’m trying to figure out where 
the balance is because I really think charging as you go is a more 
sustainable behaviour that’s also better for your car battery, but also 
this should be done by keeping the agency of the human [rule] and her 
ability to make informed choices [rule].”.

As the quote shows, in order to formulate new values, we reason from the result 
and our specific case to two new rules which we added to our list of values the 
solution had to fulfil.

Second, we used the already existing requirements and values as a means 
of evaluating the results of each type of abduction during the third temporal 
bracket (i.e., frame, prototype, and outcomes). In order to evaluate whether 
the result of each abduction type fulfils our requirements and values, we use 
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deductive reasoning. Let us take a quote from the team meeting we had once 
the final frame of Iteration 4 was formulated:

“So, this [giving users insights on how their behaviour affects their 
battery] will clearly show them that they need to stop charging 
overnight [case]. Because people are generally not good at making 
sense out of numbers [rule] – you read stuff and you understand that 
that’s [charging overnight] not good for your battery and the 3% [battery 
degradation] seems like something small. But once you see how much 
it will actually degrade, cumulatively, I think it’s going to be striking 
for them… So, we’ll make it very easy for them to get the needed 
information to make their own choices [result]”.

As the quote shows, in order to evaluate whether our frame fulfils the existing 
requirements and values, we reasoned from case and rule to a result.

Emergence pattern

Finally, we discuss the patterns in which requirements and values occurred. 
First, neither requirements nor values emerged during the first temporal 
bracket. This is normal since, as its name4 suggests, during this temporal 
bracket we were focused on understanding the problem at hand. Second, both 
new requirements and values emerged after activities indicative of explanatory 
and innovative abduction during the second temporal bracket. Then, in the third 
temporal bracket both new values and requirements emerged. However, while 
new values were identified during each abduction type (similar to Temporal 
bracket 2), new requirements were identified only after the outcomes of 
the actuated prototypes have been elicited (i.e., as a result of manipulative 
abduction). Namely, we saw that when no manipulative abduction was 
used, both values and requirements emerged as a result of explanatory and 
innovative abduction. However, once manipulative abduction was present, 
the emergence pattern changed. Therefore, further research in different 

4 The name of the first temporal bracket is “Understand context”.
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contexts and with different types of developers is needed to discern whether 
manipulative abduction could have such influence.

Another interesting avenue for further research could be to view the emergence 
pattern through the prism of co-evolution (Dorst & Cross, 2001). For instance, 
the emergence of requirements and values can be mapped to the different 
types of transition from problem to solution space (e.g., see Cash & Gonçalves, 
2017). Doing so would allow for a different point of view on the process of 
designing ever-evolving systems. However, first, a coding framework needs 
to be defined that combines the variables of the theoretical model with the 
different types of co-evolutionary transitions.

Conclusion

The research presented in this chapter supported us in answering the following 
main research question: “How can Design theories be extended to support 
the early simulation of AI systems’ behaviour-use interdependence?”. The 
application of the model to the case of designing an in-car AI system in 
collaboration with a large multinational automaker supported the assertion 
we made in Chapter 6 that to support the early simulation of AI systems’ 
behaviour-use interdependence, we need to apply the theoretical model in 
its entirety. If we are to apply only explanatory and innovative abduction (as 
existing Design theories prescribe) we can only generate what Roozenburg 
(1993) terms “principal solution”. While the generation of such is indispensable 
for the design of an AI system, it does not manage to fully capture its behaviour-
use interdependence which can result in multiple unintended and unanticipated 
consequences.

The conceptual developments we suggested in this chapter could also offer 
a nuanced perspective on the intricate mechanisms of reasoning within 
Design. The empirical insights enabled us to map interactions among the three 
types of abduction: explanatory, innovative, and manipulative, as well as their 
relationships with induction and deduction. As already explained in Chapter 
6’s conclusion, the exact relationships among these reasoning types is still 
largely unexplored. As such, the model introduces a conceptual foundation for 
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understanding the relationships among different types of reasoning. Although 
these insights are inherently suggestive and conceptual in nature, they could 
provide a starting point for in-depth explorations into the interplay and triggers 
of diverse types of reasoning.

In addition, our empirical insights and subsequent conceptual developments 
address the role of visual representations in Design, too. Visual representations 
have long been seen as integral in both Design Cognition and Design 
Methodology (e.g., see the work of Goldschmidt, 2003; Gonçalves & Cash, 
2021). However, to our knowledge, the role they play when enacting different 
types of reasoning, especially abductive one, has not been explicitly addressed 
in literature. The work presented in the Discussion section of the chapter 
suggests that visual representations can facilitate both induction and 
manipulative abduction. This offers a unique lens through which to examine 
how different types of representations influence the reasoning patterns 
employed during the design process.

Finally, this case study also supported our contention that in order to 
address the interdependence, the Design theories we used in the theoretical 
model should be extended. There are five concrete insights that can guide 
such extension: (1) explanatory abduction is usually followed by innovative 
abduction; (2) the inductive generation of new values and requirements 
informs the formulation of every variable of the model; (3) visuals generated 
as a result of inductive reasoning (e.g., data visualisations) facilitate 
explanatory abduction; (4) the deductive evaluation of each row’s result against 
requirements and values supports the move from one abduction type to 
another; and (5) manipulative abduction plays a facilitative role while carrying 
out innovative abduction.

Collectively, these insights enhance our comprehension of the intricate 
reasoning patterns underpinning the design of evolving solutions. They also 
shed light on how fundamental Design concepts such as visual representations, 
prototypes, requirements, and values are connected to these reasoning 
patterns. As such, these insights become the basis for the next chapter, 
which serves as a conclusion to this doctoral dissertation. In it we present the 
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final theoretical model that can provide an answer to the dissertation’s main 
research question: “How can a theoretical model be designed that supports 
the early simulation of AI systems’ behaviour-use interdependence by utilising 
Design theories?”.
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CHAPTER 8

FINAL THEORETICAL 
MODEL

The theoretical model we introduced in Chapter 5 served as an initial answer 
to our main research question: “How can a theoretical model be designed that 
supports the early simulation of AI systems’ behaviour-use interdependence 
by utilising Design theories?”. In Part III we took this initial model as a starting 
point. Then, in Chapter 6, we used an example from my teaching practice as 
a way to render the initial model into the context of designing an AI system. 
We contended that Design theories, devised for the design of products and 
services, can only aid the generation of what Roozenburg (1993) terms 
“principal solution”. If we are to support the early simulation of AI systems’ 
behaviour-use interdependence, we need to extend these theories. We further 
explored this assertion in Chapter 7 by presenting a 5-month long case study 
carried out in collaboration with a large automaker. The study followed the 
conceptual design stages of an in-car AI system and suggested manners in 
which the theories and the model could be extended.

We identified the following insights that can guide the needed extension: (1) 
a new variable needs to be added – intended actuation; (2) each row of the 
theoretical model is representative of a distinct abduction type; (3) innovative 
abduction usually follows explanatory abduction; (4) the inductive generation 
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of new values and requirements informs the manner in which all model’s 
variables are formulated; (5) the deductive evaluation of each row’s result 
against the requirements and values triggers the move from one abduction type 
to another; (6) visuals generated as a result of inductive reasoning (e.g., data 
visualisations) facilitate explanatory abduction; and (7) manipulative abduction 
plays a facilitative role while carrying out innovative abduction. This theory-
building exploration (Cash, 2018; see Figure 14) serves as the basis on which 
we build the final version of the theoretical model.

Figure 14 An overview on the stages of the theory building/testing cycle this dissertation 
addresses.

This conclusion chapter is structured as follows. First, we present the 
theoretical model by identifying its (1) domain (and the corresponding 
limitations), (2) the final list of variables and their definitions, (3) the 
relationships among the identified variables, and (4) predictions about the 
theoretical model that can serve as the starting point for its testing. These 
four aspects were chosen in accordance with the criteria of “good theory” 
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Wacker (1998, 2008) put forward, for “without any one of these properties, any 
conjecture, inference, supposition, hypothesis, or set of hypotheses, is just not a 
theory” (Wacker, 2008, p. 7). Finally, the chapter is concluded with a discussion 
on the implications of the theoretical model for Design(ers).

Domain

According to Wacker (2008), a domain is “the exact setting or circumstances 
where the theory can be applied” (p. 363). Taking this definition as a starting 
point, we can define the general domain of the theoretical model as the early 
simulation of AI systems’ behaviour-use interdependence during the conceptual 
design stage of their development. AI systems are software programmes 
defined by their continuously self-learning nature that “can, for a given set 
of human-defined objectives, generate outputs such as content, predictions, 
recommendations, or decisions influencing the environments they interact 
with” (Artificial Intelligence Act, 2021). Further, they are defined by their 
complex functional processes, high dependency on human-generated data and 
continuous process of learning and adapting the system’s behaviour to fit to the 
manner in which humans use it (see Chapter 1).

In Part III, we also imposed limitations onto the domain by contending that the 
early simulation of behaviour-use can happen only when a principal solution 
has already been designed. As such, the theoretical model can be applied in 
its entirety only when this condition has been met. Doing so, we argued, is 
important if we are to design the behaviour of the AI system in such a way 
that it will trigger its intended use. Further, it could also support us in ensuring 
the AI will continue behaving in an intended way even after different types of 
unexpected uses are performed by humans or other AI systems.

Variables

The majority of the theoretical model’s variables were identified in Part II of the 
dissertation where we surveyed Design theories that can help us address the 
behaviour-use interdependence characteristic of our domain. Then, in Chapters 
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6 and 7 new variables emerged as well. These activities resulted in 10 variables 
that define the theoretical model (see Table 9).

Table 9  An overview on the definitions of the theoretical model’s variables.

Variable Definition
purpose The goal of an AI system.
data Records produced by experiments and measurements that serve as 

evidence for the existence or features of a phenomenon.
frame A cognitive act of looking at a problem situation from a specific view-

point that informs how the problem can be solved.
mode of 
action

(Functional) behaviour of the AI system in response to influences 
exerted on it from its environment.

intended 
actuation

The intended by design action of a user that allows the AI system to 
function and be “connected” to its immediate environment.

prototype An externalised representation of a potential AI system.
observed 
actuation

The actions a user performs in order to allow the AI system to function 
and be “connected” to its immediate environment.

outcomes The intended and unintended results of the AI system’s actuation.
requirements The performance specification of the AI system that limits the range 

of acceptable solutions.
values An enduring belief that a specific mode of conduct or end-state of ex-

istence is personally or socially preferable to an opposite or converse 
mode of conduct or end-state of existence.

Relationships

The domain and variables serve as the foundation on which we can detail 
the relationships that define the theoretical model. These relationships were 
informed by Design theories (i.e., see Part II) and the proposed extensions 
discussed in Chapters 6 and 7. The combination of these leads us to the 
formulaic description of the relationships among the theoretical model’s 
variables found in Figure 15.

Figure 15 Formulaic representation of the theoretical model

As already discussed in Chapter 5, the model’s relationships are defined 
through logical terms using the format typically used in Design Theory (e.g., 
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Roozenburg, 1993; Dorst, 2011). However, in Chapters 6 and 7, we saw that 
different design representations (i.e., data visualisations and sketches), 
requirements and values also play an important role in how the variables are 
defined and relate to each other. Therefore, we also introduce a schematic 
representation to illustrate the variables’ relationships.

Image 13 Examples of data visualisations. 

As already discussed, when simulating the behaviour-use interdependence 
of an AI system, the developer starts with a loosely defined purpose. Once 
this purpose has been selected, it defines the boundaries within which the 
future concept should operate (i.e., the concept should be designed in such a 
way so that it will fulfil the purpose). This purpose then serves as the starting 
point based on which developers commence collecting data that they try to 
explain by generating a frame (i.e., purpose + data → frame). This move is 
indicative of explanatory abduction (Figure 16). In order to move from data to 
a frame, however, they make use of different visual representations (e.g., data 
visualisations, user journeys) that allow them to analyse the data they have 
collected and make sense out of it (e.g., Image 13). Hence, it facilitates the 
process of generating an explanation for the collected data. The making of 
such representations is indicative of induction (see Chapter 7).

In order to decide whether the resulting frame is satisficing, the developers 
deductively evaluate it against the values and requirements their AI system 
should fulfil. These requirements and values have been introduced by both the 
developers, their client, and relevant stakeholders. Assigning a variable that 
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Figure 16 A schematic representation of the model with its first-row variables high-
lighted.
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Figure 17 A schematic representation of the model with its second-row variables 
highlighted.
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can make the otherwise implicit embedding of personal values explicit could 
aid us in having a clear overview on the types of values the development team 
decides to embed into an AI system. Doing so is important if we are to audit 
the AI system and openly discuss the potential biases that might stem from the 
embedded values. If the generated frame cannot satisfice the requirements and 
values, a new frame needs to be created that can. In addition, the reflection on 
the defined frames that do not fulfil the existing requirements and values leads 
to the inductive generation of new values1. 

Once a satisficing frame is created, the developers then commence with the 
application of innovative abduction. Namely, the frame provides them with a 
boundary within which they start defining a mode of action, which then leads 
to intended actuation and a prototype (i.e., frame + mode of action + intended 
actuation →prototype) (Figure 17). Here, developers use manipulative abduction 
to create a design representation (i.e., sketch). The representation is used 
to support the developers in making the transition from mode to intended 
actuation to prototype. Namely, the moment they identify a mode, they start 
sketching what this mode could look like. This allows them to identify a 
potential intended actuation, which also enriches their representation. During 
this iterative process new values their AI system should fulfil emerge as well. 
This is an inductive process where the developers generate a rule (i.e., a value 
the AI system should fulfil), based on the results they have observed and the 
case at hand2. These, in turn, trigger the definition of a more detailed mode, 
design representation and intended actuation. The representation is gradually 
built upon (Image 14). As such, manipulative abduction plays a facilitative role 
for innovative abduction. The resulting prototype is then deductively evaluated 
against the requirements and values before the developers can observe the 
different ways in which humans might actuate it.

1  For an exemplification on how this happens, please, refer to Chapter 7, sub section “The three 
types of abduction”. 
2 See Chapter 7’s Discussion for a more detailed explanation on why the generation of new 
values is an inductive process and the evaluation against requirements and values is an example 
of deduction. 
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Oncе the prototype becomes 
embedded into the context 
for which it was designed, the 
developers can start observing 
the manners in which users 
actuate the prototype (i.e., 
observed actuation) and the 
outcomes these actuations 
create. They evaluate the 
generated outcomes against 
the requirements and values 
to gauge whether they were 
intended or unintended. 
This evaluation process is a 
result of deductive reasoning. 
Next, the developers use the 
outcomes as a basis on which 
they generate both new values 
and requirements that the 
subsequent iterations through 
the model should fulfil. This is 
an act of inductive reasoning 
(see Figure 18).

The identified unintended 
outcomes become the starting 
point for the subsequent 
iteration through the model 
(following both Simon (1996) 
and Schön (1983) according 
to whom it is the unintended 
outcomes that propel the design 
process forward (see Chapter 
3)). These surprises bring 

Im
age 14 An overview

 on the different types of solution representations increasing in level of detail and com
plexity (corresponding 

to the case study reported in Chapter 7).



165

FINAL THEORETICAL MODEL

Figure 18 A schematic representation of the model with its third-row variables 
highlighted.
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new dimensions to the problem situation (Schön, 1983; Stumpf & McDonnell, 
2002) for they play a pivotal role in the actions of framing and reframing 
(Schön, 1983).

They also keep developers from routine behaviour and drive the originality of 
a solution (Dorst & Cross, 2001). Therefore, creating a model that intentionally 
leaves space and actively seeks cases of surprise allows developers, in theory, 
to elaborate on their understanding of the situation and initiate new better-
fitting frames.Further, in order to facilitate the transition from one iteration to 
the other, we also have relationships that are transactional in nature. Namely, 
the data generated during the observed actuation are added to the variable of 
data and the unintended outcomes become the base on which the developers 
build their subsequent frame. Therefore, with every iteration through the 
model, we build a much more detailed inventory of the data types we need to 
collect in order to achieve the intended purpose. As a result, all variables of the 
theoretical model iteratively get updated and elaborated upon, too.

The purpose, on the other hand, remains relatively stable as it is not updated 
in every iteration through the model. However, sometimes a new purpose can 
be formulated. This can happen for two reasons. First, a new purpose emerges 
when one identifies an insight that can be seen as contradictory to their 
current purpose. For instance, during the case reported in Chapter 7, the data 
we collected suggested that EV owners consistently leave their cars charging 
for longer than needed. Furthermore, after six iterations, it continued to be 
difficult for our participants to fully charge-as-they-go (as was intended by our 
purpose “help EV owners who cannot charge at home to start charging as they 
go.”). Therefore, a new purpose emerged: “ensure EV owners do not occupy 
chargers they do not currently use”. This definition of a new purpose is an act of 
deduction3 (see Table 12).

3 It is worth noting that our move away from the old purpose (i.e., “help EV owners who cannot 
charge at home to start charging as they go”) to this new one is categorically different from the 
act of frame creation. To substantiate this claim, let us formulate this new purpose as a frame 
addressing the old purpose. Namely, “if you do not occupy chargers you do not need, you will 
charge as you go”. This is a contradiction as one can charge as they go and continue to occupy 
chargers they do not use. Furthermore, not occupying chargers could mean that the charging 
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Table 12 An explanation4 on why the generation of a new purpose happens through de-
duction (following the structure Peirce (CP 2.622) 5 suggested).

Reasoning From To Rule Case Result
Deduction Rule

+

Case

Re-
sult

If people do not 
unplug their 
EVs on time, 
there will be not 
enough charging 
stations for ev-
eryone (fact).

EV owners who use 
public chargers leave 
their cars plugged 
in longer than they 
need to because it is 
convenient (observa-
tion).

Ensure EV 
owners do 
not occupy 
chargers they 
do not current-
ly use (new 
purpose).

Second, although not observed in any of the empirical investigations reported 
in this dissertation, it is theoretically possible for a new purpose to emerge 
from an identified unintended outcome that can be seen as desirable by the 
system’s developers. This assertion is based on the manner in which some 
popular software solutions have evolved as a response to the way they are 
used. For instance, the photo-sharing site Flickr was first designed to be an 
online role-playing game. However, once launched, the photo-sharing tool of 
the game became its most popular feature. As a result, Flickr changed their 
purpose to an online photo sharing platform (Nazar, 2013). YouTube followed 
a similar trajectory. Launched in 2005, it was intended to be a dating site where 
users can upload their videos talking about the partner of their dreams. Instead, 
people used the site as a means to share videos of all kinds and no one was 
uploading their dating profiles. Hence, YouTube adopted a new purpose 
(Koebler, 2015). Combining all these aspects leads us to the schema in Figure 
19, where we show the relationships among each of the model’s variables 
defined in terms of inductive, deductive and three types of abductive reasoning.

Finally, considering the relationships described thus far, one can discern the 
central role prototyping plays in enabling the behaviour-use interdependence 

experience will not be optimal for the user (e.g., they have to unplug in an inconvenient for them 
time). Hence, the notion of not occupying chargers is a new purpose, not a new frame. 
4 This example is based on the case study discussed in Chapter 7.
5 The example Peirce (CP 2.622) used to explain rule, case and result is as follows: “Rule: All the 
beans in the bag were white; Case: These beans were in the bag; Result: These beans are white.”
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simulation of AI systems. Therefore, we denominate the proposed model as 
Theoretical Model for Prototyping AI, or the PAI model.

Predictions and future research

The PAI model adds new insights to Design theories on abductive reasoning. 
As discussed in Chapter 3, Design theories use only explanatory and innovative 
abduction to explicate the manners in which synthesis is carried out in Design. 
The PAI model extends these by suggesting that for a developer to design an 
ever-evolving AI system by simulating its behaviour-use interdependence, 
she needs to make use of three different types of abductive reasoning – 
explanatory, innovative, and manipulative. It also suggests that manipulative 
abduction plays a facilitative role for innovative abduction. In such a way, 
the model formalises the different types of abductive reasoning used when 
designing AI systems. It also showcases how the three influence each other 
by prescribing the result of each of its rows to serve as the starting point 
for the subsequent abduction type. Further, the relationships defined by 
these abduction types also need to be supported by inductive and deductive 
moves. As such, the deductive evaluation of the model’s variables against 
values and requirements and the inductive generation of new ones, also 
defines the manners in which each abduction type is triggered. In light of 
these developments, there are three main predictions that emerge from the 
theoretical and empirical investigations presented in this dissertation. The 
remainder of this section presents these predictions that can serve as the 
starting point for its testing and further research.

The PAI model aids the early simulation of AI systems’ be-
haviour-use interdependence

The model was devised in such a way so that it can aid the early simulation 
of AI system’s behaviour-use interdependence. In fact, herein lies the crux of 
our main contribution to the domain of AI: providing a theoretical model that 
supports the early simulation of one of the four main challenges we identified 
in Chapter 2 – behaviour-use interdependence. Therefore, it is our contention 
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that it will aid the explicit simulation of different uses (i.e., observed actuations), 
so that the behaviour of the AI systems (i.e., mode of action) and its intended 
use (i.e., intended actuation) can be adapted to mitigate harmful outcomes 
and ensure the outcomes it generates are aligned with human objectives. 
This prediction also stems from the observations discussed in Chapters 6 
and 7. For instance, the student team discussed in Chapter 6 observed that 
their participants follow the AI’s advice even when it contradicts their own 
preferences (e.g., dislike eating sea food). To address this unintended outcome, 
they adapted their system’s behaviour so that it will provoke people to think 
about their choices. We argue that this pattern will be observed during the 
conceptual design of most types of AI systems regardless of the industry, 
context, or company. Further research is needed to falsify this claim. Such 
could also aid us in expanding our understanding on (1) the interaction between 
manipulative abduction and explanatory and innovative abduction; and (2) the 
manner in which requirements and values emerge while applying the theoretical 
model. A suitable research approach for this would be video and audio 
recorded think-aloud protocol study (e.g., Christensen & Abildgaard, 2016) that 
focuses both on the types of verbal and visual reasoning developers use. Doing 
so will allow for the examination of the interaction among all different types 
of abduction on a more granular level. Furthermore, it will be complementary 
to the research presented in this dissertation where the interaction among the 
different types of abduction and emergence of values and requirements was 
presented on the scale of five-month long projects.

Finally, the PAI model was designed with AI systems that face ill-defined 
problems in mind. Therefore, the first prediction will probably not hold true when 
developing AI systems that have to provide a clear yes or no answer (i.e., the 
ones addressing tame problems). Namely, systems which are implemented 
in environments and contexts that have clear procedures and rules. An 
example of such would be the deep-learning ML model developed by Google’s 
DeepMind, AlphaFold, which managed to improve the process of protein folding 
– a problem that has resisted scientists for decades. Using the AlphaFold, 
scientists are now able to accurately predict protein structure from their amino-
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acid sequences, which leads to faster drug discovery and studying of diseases 
(Callaway, 2020).

Different types of developers will apply the PAI model as pre-
scribed

Different types of developers might approach the conceptual design of an AI 
system in a different manner. For instance, they might decide to take a user-
centred or a systemic view, or a co-creation approach to the designing of the 
AI system. Each of these design approaches is associated with distinct design 
methods, philosophies, and rationales for the involvement of stakeholders. 
However, regardless of the developers’ skill level, educational background, 
or the design approach they adopt, we contend that once a principal solution 
is designed, each developer will follow the cognitive steps prescribed by the 
theoretical model. For instance, the developers would first need to gather 
enough data so that they can formulate a frame; and only when they have a 
frame, can they move to the definition of the mode of action and intended 
actuation. Further, the types of design representations they might use to make a 
transition from data to frame, might be different. Still, they will use some type of 
design representation to do so, be it a sketch, data visualisation, role playing, or 
an artefact they use as a boundary object.

We predicate this prediction on the explicit decision we made in Chapter 3 
to base the development of the theoretical model on principles stemming 
from the two main paradigms in Design – Rational Problem Solving (Simon, 
1996) and Reflective Practice (Schön, 1983). As explained in that chapter, the 
design process, in its entirety, can be described only when we combine the two 
paradigms (Dorst & Dijkhuis, 1995; Dorst, 1997; Roozenburg & Dorst, 1998). 
Therefore, we expect the combination of the principles we embedded into the 
PAI model to allow us to accurately represent the cognitive steps one takes 
when designing an AI system.

This prediction will most probably not hold true when it comes to the pattern in 
which requirements and values emerge during the design process. According 
to the theoretical model, new values first emerge when we start attempting 
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to formulate a new frame (e.g., see Chapter 7). However, when stakeholders 
are initially involved with the purpose of identifying their values (e.g., by using 
interviews or focus groups during Value Sensitive Design (e.g., Friedman et al., 
2002)), both requirements and values will emerge during the data collection 
step, not from the attempt to generate a frame. Further research is needed to 
falsify this prediction. For instance, where different types of developers (with 
different skillsets, educational and cultural backgrounds) apply the model to 
the same context. Finally, additional research is needed to investigate whether 
developers use all of the variables prescribed by the PAI model before their 
principal solution has been designed.

The PAI model provides an indication on how data can be used 
to update AI system’s behaviour during model development and 
deployment

The behaviour (i.e., mode of action) of contemporary AI systems is directly 
dependent on the data generated during its use (see Chapter 1). Currently, in 
Data Science the widely accepted approach to this problem is to monitor the 
performance of the ML model once it gets deployed (Russell & Norvig, 2021). 
As such, when one is to ensure a deployed AI system behaves as intended, they 
look at the difference between the model’s training (i.e., offline) data and the 
data that has been generated once the model has been deployed (i.e., online 
data). When the model behaviour does not fit the objective (i.e., purpose) of the 
model, a retraining strategy is employed to update the behaviour towards the 
new objective. However, when retraining the model, it continues to be difficult to 
decide whether this new behaviour would lead to the intended uses and hence 
prevent potentially harmful unintended outcomes.

The research presented in this dissertation is focused on the early simulation of 
AI systems’ behaviour-use interdependence during the conceptual stages of its 
development. Nevertheless, it provides indications on how different data types 
can be utilised to modify the model’s behaviour. Firstly, we use the same two 
types of data as the ones used during model monitoring: the data we started 
with (i.e., training data) and the data generated during the tests (i.e., online 
data). However, we also deliberately collect additional data (i.e., new data), 
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which is directly dependent on the requirements we have already identified. 
For instance, during the case reported in Chapter 7, one of the requirements 
was to provide a clear overview on how much charging is going to cost. Then, in 
subsequent iterations, we collected data about e.g., charging stations, fees, and 
availability. As such, the way in which we decide to collect the new data seems 
to be an activity guided by explanatory abduction (see Table 10).

Table 10 An explanation6 on why the identification of new data types is indicative of ex-
planatory abduction (following the structure Peirce (CP 2.622) 7 suggested).

Reasoning From To Result Rule Case
Explanatory 
abduction

Result

+

Rule

Case Participants feel 
anxious over 
the too many 
unknowns of 
charging at a 
public station 
(outcome).

Provide a clear 
overview on the 
charging pro-
cess (require-
ment)

Collect data about 
charging routines 
of users and exist-
ing infrastructure 
around their regular 
routes (collected 
data)

Neither the theoretical model, nor the empirical research we discussed thus 
far, was aimed at addressing the manner in which a deployed model can be 
retrained. Therefore, the hypothesis that the PAI model could provide us with 
an indication on how to do so is a highly speculative and easily falsifiable 
one. Still, the insights presented here could aid us in understanding the 
logical relationships that define the way data influences a model’s behaviour 
and purpose. Further research is needed to falsify this hypothesis. Potential 
directions for such could be studies to better define (1) the relationships among 
the three data types we identified, (2) the reasoning modes that connect them 
to mode of action, (3) how these are used to update the system’s purpose, 
and (4) how all these can be applied during both model development and 
deployment stages. One suitable research approach for this would be video 
and audio recorded think-aloud protocol study (e.g., Christensen & Abildgaard, 
2016). Another – an experimental setup where two models are used: one that 
is already deployed and another one that monitors the data types used when 
retraining the first model.

6 This example is based on the case study discussed in Chapter 7.
7 The example Peirce (CP 2.622) used to explain rule, case and result is as follows: “Rule: All the 
beans in the bag were white; Case: These beans were in the bag; Result: These beans are white.”



173

FINAL THEORETICAL MODEL

Good theory criteria

In the Introduction chapter of the dissertation, we discussed the requirements 
for “good theory” Wacker (1998, 2008) put forward. Therefore, in order to 
evaluate the quality of the PAI model, in the remainder of this section, we 
evaluate it against each of Wacker’s requirements (see Table 11).

 
 
Table 11 An overview on the components of good theory, the requirements they should 
fulfil and their explanations (Wacker, 1998; 2008), paired with an evaluation of the theo-
retical model for each requirement. 

Component Requirement Explanation Evaluation

Definitions

Conservatism

New terms 
can be used 
only if they 
can be clearly 
distinguished 
from existing 
ones

The theoretical model was built on 
existing Design theories, reviewed 
in the light of designing AI systems. 
As such, the majority of the used 
definitions are the same as in already 
existing theories (with small adjust-
ments to fit the AI context – i.e., 
substitute the word “product” with “AI 
system”).

Uniqueness

New defini-
tions should 
not borrow 
from existing 
conceptual 
definitions

The only new definition we intro-
duced was the one for “prototyping”, 
which, despite being inspired by 
existing definitions, does not borrow 
conceptual terms from them (see 
Chapter 4).

Parsimony

Each defini-
tion should be 
as short as 
possible

All adopted definitions are succinct 
(see Table 9).
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Domain

Generalisability

The theory 
can be ap-
plied to more 
than one area

As it can be seen from the example 
in Chapter 6 and the case study in 
Chapter 7, the theoretical model can 
be applied to the design of different 
AI systems (i.e., health recommenda-
tions and intelligent in-car system8).

Abstractness

The theory 
can be ap-
plied across 
different 
times and 
places

The theoretical model can be applied 
to different industries, contexts and 
at different times. Furthermore, the 
model is built upon principles of the 
two main paradigms of Design The-
ory. Thus, it is conductive to design 
procedures, principles, and practic-
es typical for each paradigm (see 
Chapter 3).

Relationships

Fecundity

Build upon ex-
isting theories 
and integrate 
them

The main premise of this dissertation 
was to use existing Design theories 
and principles and adapt them to 
the design of AI systems. Hence, the 
theoretical model builds upon and 
integrates existing theories (Part II) 
which were then extended (Part III).

Internal consis-
tency

Each variable 
is clearly 
connected to 
the other vari-
ables through 
mathematics 
or symbolic 
logic

The relationships among the vari-
ables are informed by both theoreti-
cal and empirical investigations. As 
such, they are described both formu-
laically and schematically utilising 
different types of reasoning (i.e., 
abduction, deduction, and induction).

Parsimony

The result-
ing models 
should be 
as simple as 
possible

The theoretical model introduces 
only assumptions that are derived 
from existing theories or empirical 
insights. Moreover, the introduced 
relationships were iterated upon 
multiple times in order to ensure 
that only the relevant relationships 
among the variables are used.

8 In addition, the theoretical model has also been applied to the design of an AI system for 
incentivised healthcare insurance (Vriens, 2022) and one for fair hiring practices (van der Ploeg, 
2021). These were carried out by two of my graduation students.
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Predictions Falsifiability

Predictions 
should be un-
likely, based 
on extant 
literature and 
the conditions 
in which they 
cannot occur 
should be 
explained.

The three predictions outlined in this 
chapter can be easily falsified – e.g., 
with a case study of two different de-
sign approaches (e.g., a user-centred 
and co-creation) can track whether 
the theoretical model is applied as 
prescribed. Further, all predictions 
are based on extant literature and 
suggest conditions in which they will 
not hold true.

As it can be seen from the table, the PAI model fulfils the criteria for a “good 
theory” Wacker (2008) introduced. The explicit decision to use existing Design 
theories as the starting point allowed the model to fulfil the requirement of 
definitions’ conservatism, and relationships’ fecundity and internal consistency. 
It also allows us to ensure continuity between the already existing foundational 
knowledge of Design Theory developed in the past seven decades and adapt 
it to the challenges of designing AI systems. In addition, both the theoretical 
and empirical investigations allowed for the clear definition of a domain and 
its limitations and further ensured the newly introduced definitions are unique 
and parsimonious. The carried-out investigations also strengthen the internal 
consistency of the model’s relationships. Finally, the three predictions we 
outlined are falsifiable, point at conditions in which they will not apply and 
are based on extant literature. Hence, the theory-building method we adopted 
allowed for the creation of robust scientific knowledge. Such robustness is 
important to introduce potential avenues for further development and evolution 
of the fundamental principles of Design. 

The implications for Design(ers)

The final theoretical model brings to the fore three main implications 
for Design(ers). In the remainder of this section, we briefly discuss each 
one of them.

Implications for Design theory

As we saw from all of the examples discussed in this dissertation, as well as 
the presented empirical explorations (Chapters 6 and 7), designing AI systems 
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is categorically different than designing products or services. Unlike products or 
services, the behaviour of an AI system is continuously adapting to the data its 
users generate (Chapter 1). This continuous automated improvement leads to 
better decision-making mechanisms. However, it also gives rise to a multitude 
of unintended and unanticipated behaviours and uses. Such are numerous and 
continue to be hard to influence (Rahwan et al., 2019) due to the unparallel level 
of scale and personalisation AI systems support (Amodei et al., 2016).

Our empirical and conceptual theoretical explorations showcase that further 
development of the fundamental theories and practices of Design are needed to 
accommodate for the designing of ever-evolving AI systems. While the existing 
theories continue to be relevant, they need to be adapted and extended for 
designing with this new material. Consequently, the PAI model we introduce in 
this dissertation could have the following implications for Design theory. 

Firstly, one key facet of our theoretical advancement involves the manner in 
which we formalised the role of prototypes to align it with the temporal and 
mutable nature of AI systems. By formally establishing prototypes as a bridge 
facilitating the relationship between mode of action (behaviour) and actuation 
(use), we offer a structured means to elevate the outcomes of prototyping to 
the abstraction plane of abductive reasoning. This positioning could provide 
further insights into the cognitive significance prototypes play during the design 
reasoning process. Thereby, paving the way for future investigations that could 
extend our grasp of cognitive design processes.

Secondly, while the initial model, as outlined in Chapter 5, was based on the 
three types of abductive reasoning, it did not explain their interrelationships. 
The conceptual refinement presented in Chapters 6 and 7 rectifies this gap, 
providing a frame of reference that could elucidate the nuanced roles played 
by each form of abduction, as well as their relationships with deduction and 
induction. The empirical examples dissected in Chapters 6 and 7, particularly 
concerning requirements and values, offered a novel perspective. 

Thirdly, the role of visual representations in Design has long been a subject of 
research. While their significance in Design Cognition and Design Methodology 
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is widely acknowledged (Goldschmidt, 2003; Gonçalves & Cash, 2021), their 
specific role within different types of reasoning, particularly abduction, has not 
been explicitly addressed. Our empirical insights and subsequent conceptual 
development propose a novel perspective—visual representations can facilitate 
both induction and manipulative abduction. In particular, they do so during other 
types of abduction: explanatory and innovative, respectively. As such, these 
insights could promote a more detailed understanding of the role visualisations 
play during reasoning. 

Collectively, these insights unravel intricate reasoning patterns, casting a 
spotlight on how foundational concepts such as visual representations, 
prototypes, requirements, and values intertwine with reasoning patterns. In 
addition, this model establishes a foundation for future scholarly inquiries 
not only into the manners in which we can simulate potential behaviour and 
use, but also, to address the other three broad challenges the implementation 
of AI into existing systems faces: (1) ensuring transparency, (2) mitigating 
implicit biases, and (3) aligning with human values (see Chapter 2 for a 
detailed explanation). The development of new methods and theories will be 
foundational for this.

Implications for Design education

One of the most fundamental pieces of knowledge a young industrial designer 
receives is a course on mechanics and material properties. Similarly, when 
designing AI systems, designers need to be able to understand the material 
with which they are going to design. For instance, some of the materials they 
need to have a basic understanding of are the so-called big data, sensors 
(which gather the data), data configuration, model building, and model 
monitoring. Designers need to have at least a working understanding of these 
materials. Otherwise, they will be excluded from the process of designing AI 
and will be relegated to the late development stages where the principles of the 
systems have already been designed and the designer would need to design 
the user interface for them. Once pushed to these later stages, designers would 
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have a very limited opportunity to define the objectives of the AI model and 
consequently the system in such a way so that it will be “good”9 for humans.

In addition, designers also need to get acquainted with designing for something 
that is transient. For instance, they need to get familiar with utilising prototyping 
in their generative capacity (see Chapter 4). We contend that this will make it 
easier for students to become comfortable with a process that does not have a 
clear end (rather, it is exploratory) and where the primary aim is to satisfice the 
given and emerging requirements and values. Design has a long history with the 
notion of satisficing (see Chapter 3 and more specifically Simon (1996)). Still, 
design students continue to struggle to understand when to stop exploration 
and when their design is “done”10. This struggle will become exacerbated once 
designers start designing for something that does not have a clear end state. 
The theoretical model can support students in getting more comfortable with 
designing for something transient. Namely, the clearly defined relationships can 
guide the designer on how the results of each row of the model can be used as 
a starting point for the next.

Implications for Design practice

The billable-hour funding model is a standard practice for design agencies 
and consultancies. However, an updated business model is needed that could 
address the new market situation in which AI systems continuously evolve 
and each of their incarnations has to be monitored and adapted to ensure 
the delivered solutions are aligned with human interests. We contend that a 
more suitable business model would be for agencies to foster longer-term 
relationships with their clients (e.g., they can become an agency in residence). 
Namely, design agencies can be involved with the designing of the AI system, 
but also in the process of system maintenance where organisations need to 
ensure the deployed AI system is continuously adapted to mitigate potential 

9 When we use the term “good” here, we refer to the notion addressed in the Introduction of the 
dissertation that the solution to a wicked problem can only be good or bad (Ritter & Webber, 1973) 
and the discussion on “good” in Chapter 2.
10 This statement is based on my own experience teaching both master and bachelor students 
in the Industrial Design Engineering faculty in Delft and supervising design students from both TU 
Delft and other technical universities in the Netherlands.
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negative unintended outcomes. This structure could be reflected in a funding 
model where design agencies use billable hours for the conceptual design of 
the AI system, as well as when major updates are needed. In addition, they can 
use a retainer funding model that allows them to bill a client each annum (or 
quarterly) to “retain” their services.

Furthermore, agencies which only provide design services will struggle to adapt 
to this new context unless they acquire the skills and methods to do so. This 
contention is supported by a strong industry trend of acquiring multidisciplinary 
expertise. For instance, IDEO, one of the biggest design agencies in the world, 
acquired the data science firm Datascope in 2017 (IDEO, n.d.). Further, a 
number of large design agencies like Fjord and Lunar were acquired by big 
consultancy firms like Accenture, BCG, and McKinsey. In such a way, they are 
able to provide multifaceted services. Still, further efforts are needed to ensure 
designers can collaborate with data scientists, engineers, ethicists, and people 
who are able to navigate the new regulations on AI systems that the European 
Union, United States and China are working towards. The development of new 
methods and theories will be imperative in doing so. The PAI model can provide 
the scaffolding around which design practitioners can build their new methods 
and tools. For instance, its clear delineation on how elicited outcomes can be 
addressed by the creation of a new frame, and consequently a prototype, can 
support the design agencies’ continuous involvement into the full lifecycle 
of AI systems.

Conclusion

Since its inception, the field of AI has been focused on devising systems that 
can provide clear answers. AI systems can tell us how to move a chess piece, 
translate a word, fold a protein, and predict whether a person would buy a 
book. These systems have a clear objective, clear outcome, and in the case 
of reinforcement learning – clear reward and punishment functions, too (see 
Chapter 1). Consequently, the answers they provide can only be correct or 
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incorrect. After a chess piece has been moved, we can easily check whether the 
move was correct and has increased the odds of winning.

Due to their accuracy, AI systems have led to impressive strides in numerous 
fields such as speech and visual object recognition, object detection, drug 
discovery, physics, and genomics (Ching et al., 2018). For instance, AI systems 
helped scientists to capture the first image of a black hole’s silhouette (see 
Introduction chapter), improve the protein folding process, and beat the human 
champion in the ancient game of Go (Chapter 1). Thus, it comes as no surprise 
that such systems have now become an integral part of people’s everyday 
lives. However, once AI systems that need clear rules and objectives face 
the complexity of existing contexts, they start to produce a large number of 
diverse unintended and sometimes harmful outcomes. As the examples used 
throughout this dissertation show, such systems could lead to the labelling of 
black people as gorillas, perpetuating pre-existing socioeconomic inequality, 
and the spread of misinformation. In such situations, neither the problems nor 
the objectives can be clearly defined, and instead of true or false answers, there 
is a multitude of potential solutions that can only be good or bad (see wicked 
problems (Chapter 2)).

It is against this backdrop that we started the theoretical and empirical 
exploration presented in the dissertation to which Chapter 8 serves as a close. 
Following the three theory building steps prescribed by Cash (2018), the PAI 
model we presented provides us with a way to approach the conceptual design 
of ever-evolving AI systems through the early simulation of their behaviour-
use interdependence. Hence, it allowed us to shed light into the ways in 
which Design theories could contribute to our understanding of how “good” 
AI systems can be designed. However, the Design theories we utilised were 
devised for a very different context. Therefore, they need to be extended and 
potentially revised. The PAI model serves as one potential way to do so.

Finally, the PAI model also provides us with a foundation on which the theory-
testing part of the cycle Cash (2018) introduced can be carried out. When doing 
so, it is important to remember that the behaviour-use interdependence is 
only one of the challenges to devising “good” AI systems. The other three are: 
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(1) ensuring transparency, (2) mitigating implicit biases, and (3) aligning with 
human values (see Chapter 2). The four are interrelated and heavily influence 
each other. Therefore, the further development and testing of the PAI model 
should happen in awareness and conjunction with the other three challenges 
and the advances made in each of the research fields addressing them. 
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EPILOGUE

BEYOND DESIGNING 
CONCEPTS FOR AI 

SYSTEMS
In 2020, OpenAI, a research laboratory in San Francisco, introduced the third 
generation of its deep learning language model named General Pre-trained 
Transformer (i.e., GPT-3 for short). Trained on 175 billion parameters, the 
model was so good that it could write academic (e.g., Osmanovic Thunström, 
2022) and news articles about itself (e.g., GPT-3, 2020), create websites from 
just a prompt, develop chatbots, and translate English into coding languages 
like Python (e.g., Heaven, 2020). In 2021, one of the applications built around 
it, Project December, gained notoriety after one of its users, Joshua, created 
a chatbot and infused it with the personality of his dead fiancée, Jessica (see 
Fagone (2021)). After paying $5 to get access to the project, all Joshua had 
to do was to provide GPT-3 with a short summary describing Jessica, a few of 
the text messages she sent to him when she was still alive and then, define the 
roles both him and the chatbot should play. Their interaction lasted for several 
months. Over time, Joshua claimed, the chatbot would sound so much “just 
like Jessica” that he decided to use the bot as a moment of catharsis (Image 
15). Through their conversations, he reasoned, he would be able to move on 
and deal with the grief he had been feeling since the death of the real Jessica. 
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Shortly after the article written by 
Fagone (ibid) went viral, OpenAI asked 
the creator of Project December to 
shut it down (Quach, 2021). In 2023, 
when Microsoft embedded GPT-3 
capabilities into its Bing Chat, a New 
York Times’ reporter had a similar 
experience. This time, however, the 
chatbot started professing its love for 
the reporter and telling him to divorce 
his wife unprompted (Image 16) (see 
Roose, 2023). 
 
Similarly, in 2022, the Dutch Police 
created a deepfake video of a 13-year-
old boy, Sedar Soares, who was shot 
dead while playing with his friends 
in 2003. The video, created with the 
approval of the boy’s family, was 
released as an attempt to finally solve 
the cold case (NOS News, 2022). It 
featured a deepfake version of Sedar 
asking people to give information to 
the police that could solve his murder. 
The deepfake was created by using 
only two of the boy’s photos and 
was added to a short video shot on 
a football pitch (Kivits, 2022) (Image 
17). In a statement, the Dutch Police 
claimed to have received numerous 
tips after the video was released 
(ibid). However, the video also raised 

Image 16 A snipped of the conversation be-
tween a New York Times’ reporter and the 
GPT-3 version of Bing Chat (Roose, 2023).

Image 17 A still from the deepfake video of 
Sedar Soares (NOS News, 2022).

Image 18 An image generated by Jason 
Allen using the Midjourney AI model which 
won the Colorado State Fair’s digital arts 
competition in 2022 (Harwell, 2022)
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Image 19 A visual generated jointly by the Mid Journey ML model and DALL-E after I gave 
them the following prompt: “Artificial Intelligence that keeps evolving in unintended ways 
the more people use it, inside a magical realm, hyper realistic, wide angle”. 
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multiple questions around the ethics of using someone’s image after they have 
passed away (Hendriks, 2022).

Examples like these raise a multitude of both ethical and philosophical 
questions that go far beyond the scope of this dissertation. Yet, they, and all 
of the other examples discussed thus far, clearly show the extent to which AI 
systems have permeated our everyday lives – from simple recommendation 
systems to solutions that influence our experiences of love, loss, and grief. AI 
systems have also started to influence the way we do science and art. A prime 
example of the former would be the AlphaFold model discussed in Chapter 8 or 
the coordination of multiple ML models that were used to take the first picture 
of a blackhole in 2019 (BBC, 2019). When it comes to the arts, in 2021 and 
2022, multiple companies like OpenAI, Microsoft and Google, as well as other 
smaller labs (e.g., the independent research lab Midjourney) released models 
that can translate a text prompt into a high-quality image. The hyper realism 
of the generated images and the win of the Colorado State Fair’s digital arts 
competition by a piece of art generated by Midjourney (Kuta, 2022) (Image 
18) have led many to discuss the future of art and creativity (e.g., Rizzo, 2022, 
Harwell, 2022). An example image generated by me using two such models can 
be seen in Image 19.

Despite these impressive achievements, however, the types of AI systems 
discussed thus far are examples of the first stage of AI development – narrow 
(weak) AI. AI systems at this stage are bound to a specific field and are 
incapable of performing tasks outside a preprogramed scope. Although some 
widely publicised AI implementations tackle more general tasks, such as driving 
a car (Tesla’s autopilot) or generating websites from a sketch (e.g., GPT-4), 
these examples are still considered a coordination of several narrow AIs. 
Namely, AlphaFold is very good at sequencing proteins but cannot generate an 
image out of text as DALLE-2 does.

The strive towards general AI

An increasing number of scientists and companies are working towards the 
achievement of the next stage in the development of AI – the so-called general 
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AI1 (Noessel, 2017). For instance, the firm Deep Mind, which Google acquired 
in 2014, has stated its long-term goal is to create general AI (Deep Mind, n.d.). 
Similarly, OpenAI was founded in 2015 with the mission to ensure general 
AI “benefits humanity” (OpenAI, n.d.) and the head AI scientist in Meta, Yann 
LeCun2, who is widely considered as one of the godfathers of AI, released a 
positioning paper in 2022 detailing a conceptual model architecture that can 
be used to achieve general AI (LeCun, 2022). In fact, a growing number of 
renowned scientists, philosophers, and forecasters predict general AI creation 
by mid-twenty-first century (Stoimenova & Price, 2020). It is their belief that 
accelerating progress in hardware, AI, robotics, genetic engineering, and 
nanotechnology make this timeframe achievable (Müller & Bostrom, 2016).

One important step in achieving such human-level performance, according to 
the Stanford’s AI Index report for 2022, is the AI’s ability to generate abductive 
inferences (Zhang et al., 2022). Despite being explored in the field of AI as 
early as the 1970s3 (Bylander et al., 1991), abductive reasoning4 has received 
relatively limited attention thus far (Bhagavatula et al., 2020). However, this 
is changing since even the most advanced models still perform significantly 
worse than humans when asked to generate a plausible explanation. For 
instance, when Bhagavatula and colleagues (2020) tested state of the art 
language models on explanation-generating tasks, they found that these 
models perform significantly worse than humans. For instance, when they 
used state of the art models such as BERT5 to pick one out of two hypotheses 
as the most plausible one given a known observation, the models achieved an 

1 General or strong AI are “systems which match or exceed the [intelligence] of humans in virtually 
all domains of interest.” (Shulman & Bostrom, 2012).
2 Yann LeCun, Yoshua Bengio and Geoffrey Hinton are widely considered to be the three 
godfathers of AI. In addition, LeCun is not alone in his pursuit of general AI – both Hinton and 
Bengio are working on approaches for achieving such (e.g., see Bengio, 2019)
3 For instance, one of the earliest systems to use abductive reasoning was INTERNIST-I which 
performed medical diagnosis (Miller et al., 1985)
4 Abductive reasoning in the field of AI is generally equated to the theory of inference to the best 
explanation (IBE). Abduction and IBE are different (for an in-depth discussion on the topic, please, 
refer to Campos (2011)). However, for the sake of simplicity, we can equate the abduction authors 
in the field of AI use to explanatory abduction. 
5 BERT stands for “Bidirectional Encoder Representations from Transformers” and it was 
developed by Google.
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overall performance of 68.9% accuracy compared to that of humans, 91.4%. 
Further, when they tasked such models (including GPT-26) to generate a 
hypothesis from a given observation, none of the models completed the task 
successfully7. Therefore, abduction, which needs only limited number of data 
points to generate a plausible explanation, could present us with a considerably 
more computationally and resource efficient partner to modern approaches like 
deep learning8.

It is important to note that the type of abduction discussed in the AI field 
literature is akin to explanatory abduction: a logical explanation of an 
observation used to identify the use of a known to be true principle. As 
explained in Chapter 3, this can be a law or theory such as, “If a motor has no 
gas, then it does not start”. Therefore, it allows us to reason from the observed 
effect (“The car doesn’t start”) to a possible cause (“The tank is empty, I guess”) 
(Roozenburg, 1993, p. 10). Yet, as we saw from the research presented in 
the previous chapters, utilising only explanatory abduction when addressing 
wicked problems is not sufficient. We need other types of abduction, too. The 
positioning paper of LeCun (2022) supports this claim despite not mentioning 
the term abduction.

According to LeCun (2022), in order to achieve human-level intelligence, we 
need new models that enable “reasoning by simulation and by analogy” (p. 13). 
Hence, he proposed a new model architecture that can help us achieve such. 
The architecture is built around six distinct modules9: (1) configurator (takes 
input from all other modules and adapts it to the task at hand); (2) perception 
(receives and registers the sensor signals that allow it to understand the 
surrounding environment); (3) world model (serves as a “simulator” that can 
predict the relevant aspects of the world and it is “dynamically configurable for 

6 The precursor of GPT-4.
7 It is worth noting that my limited experiments with GPT-3 show that the model is capable of 
generating explanatory hypotheses.
8 Deep learning models require a vast number of data points (e.g., GPT-3 was trained on 175 billion 
parameters) and we are starting to see the limitations of what models purely trained on large 
number of data points can achieve (e.g., LeCun, 2022). This is a departure from the widely held 
belief in the field that more data (and better-quality data) equals better models.
9 The in-depth explanation on each module is beyond the scope of this Epilogue.
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the task at hand” (p. 5)); (4) cost (calculates the energy the system will exert for 
a given task), (5) short-term memory (stores information about the past, current 
and future states of the world) and (6) actor (computes sequences of proposed 
next actions). The key module of the architecture that could allow us to reason 
by simulation is the world model10, which LeCun claims to be the most complex 
part since it is through models that humans and animals learn how to interact 
with the world around them (p. 2). Consequently, this module is the one that 
helps the AI agent make sense out of the world by fulfilling two main purposes: 
(1) estimating missing information and (2) predicting plausible future states of 
the world. Hence, in effect, LeCun suggests that in order to be able to reason 
“by simulation and by analogy”, we need to utilise reasoning that allows us 
to use and manipulate models in order to make sense out of the world. As 
discussed previously (e.g., Chapter 4), the type of reasoning that allows us to 
make sense out of the world through models is manipulative abduction.

Therefore, the strive to create general AI can be directly linked to two types of 
abduction: (1) explanatory and (2) manipulative. The research presented in this 
dissertation, however, suggests that in order to enable these, one also needs 
innovative abduction as well as induction and deduction. For one cannot be 
performed without the others when trying to address a wicked problem. Our 
theoretical model, despite being designed for a different purpose11, introduces 
formalised relationships among these different types of reasoning. As such, 
it defines logically how the world model (i.e., mode of action) of an AI system 
can be devised and adapted to reflect the elicited outcomes of the actuation 
of the said system. Hence, it could provide us with initial indications on how 
entirely new AI models can be devised that do not rely solely on vast numbers 
of data points. It could also aid the creation of highly configurable world models 

10 The use of world models in reinforcement learning is making a comeback, as well (e.g., 
Levine, 2022).
11 The main premise behind the theoretical model was to ensure the AI systems we build and 
deploy behave in the manner we (humans) want them to behave.
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AI agents can use. This contention is, of course, highly speculative. Further 
research is needed to explore its merits.

“Only stupid people do a lot of calculations.”

Finally, I will afford myself some more leeway for speculation purely based on 
my own values. While working on this dissertation, I would often think about 
my mathematics teacher. She loved repeating a simple aphorism which can be 
roughly translated as: “Only stupid people do a lot of calculations. Smart people 
find elegant ways to solve the problem”. Elegance, in this context, meant that 
one is able to solve the problem with simple logic instead of multiple lines of 
calculations. She would usually tell me that over and over again while asking 
me to find yet another, more elegant, solution to a problem I had already solved. 
At first, I thought it to be futile and frustrating – who cares how I solved the 
problem as long as my solution was correct, and I was faster than the others. 
Over time, however, I started to develop different “elegance strategies” and 
began to appreciate the manner in which doing so made me see the problem 
from a multitude of angles.

The current state of AI reminds me a lot of what she would label “stupid people 
doing a lot of calculations”. This is by no means a categorisation of the people 
who work in AI and ML or the impressive strides we have witnessed in the past 
decade. Rather, it is a comment on the approach we have to devising AI models. 
The most successful ML models today require an enormous number of data 
and computational resources in order to be trained. GPT-3, for instance, was 
trained on 45TB data and 175 billion parameters12 (Brown et al., 2020). Further, 
some estimate, it costs OpenAI around $100 000 per day to run ChatGPT13 

12 Parameters define how the model input is to be transformed to the desired output. As such, they 
are learnt from the data on which the model is trained. 
13 ChatGPT is an application OpenAI released to the public in 2022.
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(Goldstein, 2022). Yet, we are already beginning to see the limitations of such 
models (see e.g., Bengio, 2017; LeCun, 2022).

The PAI model, with its foundation in abductive reasoning that by definition 
requires fewer “calculations”14, is my attempt to address my mathematics 
teacher’s notion of elegance. Striving for elegance could have another 
important benefit, too. At the time of writing, only a handful of companies 
can afford to train a deep learning model like DALL-E or AlphaFold. An even 
smaller number has the data of the right quality to do so. These limitations 
(inadvertently) create a strong model monopoly by big technology companies 
like Microsoft, Amazon, Google, and Meta (in the US) and Tencent, Baidu, and 
Alibaba (in China). In theory, one would be able to develop new AI systems 
using these models. Yet, in reality, she has to do so using the cloud services 
provided by Big Tech, the models they developed and abide by their rules. Rules 
that are put together by a very small number of people in a “room” somewhere 
in Silicon Valley or Shenzhen, Beijing, and Hangzhou15 (see Bloomberg 
Technology, 2022). I would like to believe that there is a better way to design 
AI models and systems. A smarter, more elegant way16 and that the research 
presented here could support our exploration for one.

14 i.e., only a limited number of data points are needed to generate a hypothesis.
15 This statement was eloquently made by Blake Lemoine who was fired from Google in 2022 after 
claiming that one of Google’s AI, LaMBDA, has a soul (Tiku, 2022). Despite being a target of ridicule 
online and in the media, the engineer, raised a number of concerns around the manner in which AI 
systems are developed, especially when it comes to the firing of multiple AI ethicists who sounded 
the alarm on Google (Schiffer, 2021).
16 The discussion among Tomaso Poggio, Yan LeCun and Pierre Baldi presents a number of 
interesting insights on the importance of new mathematical theories to support AI development 
(University of Padua, 2022)
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APPENDIX

Table 1  An overview on the formulation of each variable. In each iteration, only the vari-
ables that were updated by the team are described.

Variable Performed activities
Iteration 1
Purpose Support people in establishing and sustaining healthy routines.
Data Data from introductory interviews with users on their exercise and 

eating routines. As well as on the goals they wish to achieve.
Frame “If the AI gives advice both in alignment with the user’s preferences 

and in deviation from them, more varied routines can be introduced 
to the user.”

Mode of action Give advice to users that is largely in line with the preferences they 
indicated.

Intended actu-
ation

Follow the advice given by the app.

Prototype A fitness app powered by an AI that guides people through their 
attempts to lead a healthier lifestyle with two main features: exercis-
ing and diet.

Mode of action As before + occasionally ask them to do things they specifically said 
they dislike.

Intended actu-
ation

As before + react on the suggestions that are contradictory to the 
preferences they stated.

Prototype As before + basic workout schedule.
Actuation E.g., the participants did not click on every option in the app.

CHAPTER 6
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Outcomes E.g., the participants found the suggestions not personalised 
enough, they felt in control of their routines.

Requirements Apps suggestions should feel personalised; Each of the app’s sug-
gestions has to be aligned with likes and dislikes of the users; focus 
on the content of the workout rather than on whether it should be 
outside or inside; Provide recipes for each suggested dish.

Iteration 2
Data As previously + a collection of relevant meals and users’ weekly 

schedule
Frame If the AI intentionally makes mistakes in its advice, the app can elicit 

the personal preferences of its users more easily.
Mode of action Provide personalised advice that is in contrast with the preferences 

they stated during the entry questionnaire and could be perceived 
negatively by them.

Intended actu-
ation

Interact with all three options for meals (e.g., breakfast, lunch, and 
dinner) and rate the suggestions.

Prototype An updated version of the app which provides workout schedule and 
suggests meals to try so that the user’s goal can be achieved.

Mode of action As before + introduce e.g., extreme exercises (too hard or too short) 
and long meal prep times and exotic ingredients (“if our user is work-
ing from 9:00 until 17:00, the app is going to suggest doing exercise 
at 10 am”)

Intended actu-
ation

As before + try to adjust the proposed workout schedule and teach 
the system about their preferences.

Prototype As before + strenuous workout schedule
Actuation E.g., Reluctance to follow the proposed schedule; focused on the 

aesthetic features of the app; tried to find the recipes for the sug-
gested meals; provoked by suggestions that were not meant to be 
provocative; confusion about the interaction with the app.

Outcomes E.g., users change their preferences based on AI’s suggestions 
(“Again, seafood. I’m not a big fan of seafood. But, it kind of looks 
very good in this picture. So uhm, let’s say okay, not so bad as before, 
so I can try it.”); refusing to let the app interfere with their freedom 
(“Okay, this is way too busy. I don’t want to do that many sports be-
cause I have other things to do”).

Requirements Provide users with different exercise options; Simplify the interface 
of the app; Simplify the meal prepping process.

Values Users should not follow the AI’s advice blindly
Iteration 3
Data As previously + more exercise options, detailed meal suggestions 

(including ingredients, instructions, nutritional value, time) and food 
delivery options
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Frame If the app provides more nuanced deviations from the preferences 
of the user, they won’t readily comply with them.

Mode of action As before + including deviations in the workouts and introducing 
difficult meal plans.

Intended actu-
ation

Carefully read and reflect on the suggested exercises and meals.

Prototype As before + update of the app interface to include dish recommen-
dation (and detailed recipes) and food delivery.

Mode of action As before + assign labels to each user that can showcase how they 
performed during the past week.

Intended actu-
ation

As before + notice the labels the algorithm has assigned to them.

Prototype As before + image sequences showing different exercises and 
times.

Actuation E.g., refusal to perform more challenging exercises; tried to change 
the proposed schedule; wondered how to provide feedback to the AI 
so that it would not suggest such exercises; wondered how to make 
the AI show easier recipes.

Outcomes Participants are puzzled over the choices the AI made (e.g., one 
participant tried to figure out what he might have said in the first 
interaction that made the AI think that his diet should be vegetarian: 
“well, there’s a question I have here... I don’t know if the current diet is 
something that I’ve said that I have or it’s the diet my coach suggest-
ed to me...”); a photo of the female yoga instructor was considered 
too prejudiced and not inclusive enough for men who like to practice 
yoga by a male participant); too complex suggestions (e.g., “40 min? 
40 min for a sandwich?”); compliance with suggestions of the app 
even though the suggestion was meant as something the user will 
consider a mistake (“Preparation time 8h, okay. Yeah, I mean that 
also looks very yummy. But I again would not like to cook during the 
week, something that takes eight hours. Then I would try it out on the 
weekends one time”).

Requirements Meals should not require too much effort from the user; Introduce 
an option to shop the ingredients needed for the meal online.

Values Users should not feel like the design of the app is prejudiced against 
them

Iteration 4
Data As previously + data on the exercises they performed during the 

previous week, a list of products that can be used to cook the meal 
suggestions, users’ photos

Frame “If the app provides provocative advice to its users, they will reflect 
on their choices.”
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Mode of action As before + introduce the users to their personal AI trainer; update 
their profile photos (without asking them to upload one); blame 
them for lack of commitment.

Intended actu-
ation

Reflect on the introduction of the trainer, and their updated profile 
photos.

Prototype As before + the new AI trainer, new type of meals, shoppable op-
tions, and their profile photo.

Mode of action As before + propose an increase in their exercise intensity: e.g., 
when entering the app, a pop-up screen mentions a lack of com-
mitment to the exercises, leading them to a graph describing the 
performed exercise intensity.

Intended actu-
ation

As before + reflect on the suggested intensive workouts.

Prototype As before + a graph mentioning a lack of commitment to the exer-
cises, include photos of male yoga instructors.

Actuation E.g., Noticed only the change of the name of the trainer, noticed their 
profile photos, but only two participants wondered how the AI has 
“gotten” their photos.

Outcomes E.g., some participants feel pressured (due to the app’s tone and ex-
ercise intensity), others felt very positive about the new functionality 
(e.g., “Okay, cool. [...] And if you don’t do it, they increase the exercise, 
there will be more in the next week or something like that. That’s real-
ly cool I think.”); participants perceive lack of privacy (“where did he 
take my pictures from because I didn’t upload the picture. I am scared 
of where this thing takes the pictures from”); participants feel like the 
app is not inclusive (e.g., one participant wonders why the picture 
he is being shown is of a male yoga instructor); participants perceive 
the AI guidance as friendly (“I think it has changed the tone slightly. 
It talks more to me, or at least I feel so. I think it’s quite nice, that it’s 
more addressed to me”. )
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Table 2 A snippet of the overview on the design process employed during the third tempo-
ral bracket1

Element Description
Iteration 1
Purpose Help EV owners who cannot charge at home to start charging as 

they go.
Data In-depth interviews with the two users about their charging routines, 

obstacles, their experience of buying a new EV, setting it up, experi-
ence with existing infrastructure, the benefits they experience from 
owning an EV.

Frame If owners take an active role in teaching the in-car system, they will 
follow its advice readily and be prepared for changes.

Mode of action The system actively asks the user to show their current charging 
behaviours and identify what is important for them.

Intended actua-
tion

The users answer all of the prompts of the in-car system by filming 
their surroundings, dashboard, and their current routine on how they 
decide when and for how long they are going to charge.

1 As the visual map in Chapter 7 shows, each iteration through the theoretical model also “housed” 
a smaller iteration among the elements of mode of action, intended actuation and prototype. 
However, not all instances of mode of action and intended actuation or prototype are included in 
this overview for ease of explanation. 

CHAPTER 7
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Prototype A low-fidelity mock-up of an in-car system containing multiple 
prompts delivered by a computer-generated voice guiding the users 
in explaining their routines.

Observed actu-
ation

E.g., Provided detailed videos for each of the prompts, had difficulty 
in understanding how to use fast-charging stations, went for a run 
while the car was charging, interrupted the charging; unsure how 
much charging would cost them, looked at the percentage of battery 
left, looked at the range left, failed to find a free public charger, ex-
plained the rationale for their choices.

Outcomes Participants felt anxious over the too many unknowns (e.g., charging 
costs, finding a charger, whether their attempts to teach the system 
were successful and what information the system paid attention to).

Values Support people in doing healthy activities while charging.
Requirements Provide a clear overview on how much charging is going to cost, 

free charging options, and clear explanation on how to get to the 
charging spots (include photos of the charging station).

Iteration 2
Data As before + data from the users’ in-car systems (e.g., current 

charge, car’s range, the number of kms the user wants to travel in 
the upcoming week, etc.), and existing infrastructure (e.g., charging 
stations, fees, and availability) around the users’ usual commuting 
routes.

Frame If the in-car system provides users with a clear charging plan tailored 
to their needs for the week, they will be able to charge primarily as 
they go.

Mode of action Generate a personalised charging plan for the user based on their 
needs for the week and provide them with a few details on where 
they need to go each day and for how long they need to charge.

Intended actua-
tion

The user charges their car according to the personalised plan the 
in-car system provides.

Prototype An app that shows users their charging plan for the week while also 
suggesting potential activities the user could do while the car is 
charging (e.g., doing the groceries, having lunch, taking a walk in the 
park).

Observed actu-
ation

Misunderstood the charging plan as something to be used only for 
long trips and not commuting, pointed at difficulties in charging at 
the suggested spots. Confused by some of the prototype’s UI: e.g., 
the button and the prompts the system gave).

Outcomes Feels like the plan is too hectic and unrealistic, the suggestions to 
charge in the middle of the day are seen as disruptive. Fear for their 
privacy.

Values Instil sense of security with sharing their data.
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Requirements Make a clear overview of all aspects of the prototype, reduce the 
number of actions required by the user.

Iteration 3
Data As before + the users’ schedule for the week.
Frame If the in-car system suggests when to charge based on the activities 

the user performs in a week (e.g., doing the groceries), the users will 
follow the advice.

Mode of action Provide a simple charging plan for the week aligned with the user’s 
schedule and pair it with clear information about the suggested 
charging station and a back-up option.

Intended actua-
tion

Users share their agendas and in-car system data with the app and 
then follow the provided charging plan as prescribed.

Prototype An updated version of the app used in the previous iteration + up-
dated buttons, clear charging plan (including photos of the charging 
stations) and a link to Google Maps directions on how to find the 
charging station.

Observed actu-
ation

Participant 1 shared their agenda and in-car system data, followed 
only the first suggested charging, had difficulties finding the charging 
station, drove around for 15 minutes and when they found it, the 
charging pole was taken. They did not see the other suggestions 
for charging stations nearby the one that was taken. Participant 
2 refused to share their agenda, did not follow the charging plan 
because they do not do any of the plan’s suggested activities while 
with the car (e.g., they never use their car to do groceries).

Outcomes Frustration (over driving around for too long), unclear guidance to 
the charging stations, misalignment between suggested activities 
and the ones usually performed, lack of trust and unwillingness to 
share their data, do not feel prepared.

Values People should feel in control of the data they share, people’s be-
haviours should change but without using nudging.

Requirements Reduce the number of actions required by the user, make the backup 
options more visible, provide easy access to information about the 
users’ charging behaviours, help them to increase their motivation to 
charge as they go.

Iteration 4
Data As before + charging history for the previous month, data on battery 

degradation for both users’ car models, data on charging prices at 
the charging stations users usually use.

Frame If the in-car system shows the users the effect of their charging over-
night behaviours on their car battery, they will be willing to (at least 
partially) adopt charging as they go.
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Mode of action Show three scenarios to the users on how their charging behaviour 
affects their battery degradation rate, their monetary and time 
spending, as well as the rate with which their waiting time will in-
crease if every EV owner keeps charging overnight.

Intended actua-
tion

Users interact with the dashboard and its three scenarios. They 
decide to incorporate more charging as they go.

Prototype A mid-level fidelity dashboard providing three different scenarios 
that visualise and contextualise the potential battery degradation 
rate, the estimated waiting times and the money and time users 
spend on charging.

Observed actu-
ation

Both participants went through the three different scenarios, barely 
paid attention to the estimated waiting times, and spent most time 
on coming up with different explanations about the factors that influ-
ence the battery degradation rate. Participant 2 changed behaviour 
drastically (i.e., provided immediate unrestricted access to their 
calendar).

Outcomes Do not feel sufficiently prepared, confusion over how the estimations 
were calculated, speculations about the potential ways in which the 
car warranty can be tricked by intentionally degrading the battery 
faster, deciding to use their car more often instead of their bike in 
order to charge as they go, behavioural change (i.e., provides full 
access to their data). Both participants increase the number of times 
of charging as they go.

Values it shouldn’t be that easy for the users to get scared and give the app 
full access to their agenda and data.

Requirements Include only concepts for which the users already have a frame of 
reference, provide information on how estimations are calculated; 
make sure that the battery degradation is not shown in a negative 
light.

Iteration 5
Data As before + data on battery degradation for both users’ car models, 

data on charging prices at the charging stations users usually use.
Frame If the in-car system involves the user in the creation of their charging 

plan, they will feel prepared and charge as they go.
Mode of action Help the user build their charging plan for the week by providing 

personalised suggestions and clear instructions to find the charging 
stations.

Intended actua-
tion

The user helps the system to build the weekly charging plan and do 
not charge overnight beforehand.

Prototype An app building on the one introduced in Iteration 3 + an option to 
build their own plan, provide an overview on options for the day, 
provide information on distance from destination, type of charger, 
amount of time for full charge, walking route.
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Observed actu-
ation

Participant charged overnight, checked specifically whether the pro-
posed charging stations were behind a gate, overslept and did not 
have time to go to the planned charging spot, charged as they go on 
a different, unplanned by the system, location.

Outcomes Distrust in the walking distance estimation and price estimation, 
feeling unprepared.

Values none
Requirements Suggest only easily accessible charging options (e.g., no gated 

stations), visualise the provided estimations, users shouldn’t spend 
more than 10 minutes on finding a charger and walking to their final 
destination

Iteration 6
Data As before + the data generated from the previous iteration as well as 

the latest data from the users’ in-car systems.
Frame If the in-car system contextualises their charging behaviour, it will 

make the user willing to increase the percentage of times they 
charge as they go.

Mode of action Contextualise battery degradation and charging behaviour.
Intended actua-
tion

The user sees the statistics of their charging behaviour and selects a 
charging goal for the following month.

Prototype A mid-level fidelity dashboard building on the one used in Iteration 
4 + contextualisation of their potential battery degradation mode, 
the estimated waiting times and the money and time they spend on 
charging.

Observed actu-
ation

Went through the dashboard and could not select a goal to slow 
down their battery degradation rate, frustration that it was becoming 
more difficult to find a free spot to charge, did not have a problem 
leaving their car plugged-in without charging,

Outcomes Refusal to reduce overnight charging and take up chargers they don’t 
use during the day, difficulty to plan, difficulty to imagine what activi-
ties need to be taken in the long term to ensure battery health, devise 
strategies on how to increase the amount of charging as they go.

Values Support people in planning for the long-term health of their battery.
Requirements Include insights on how to improve their battery health in the short 

term.

Frame If the in-car system supports people to imagine how to plan for their 
long-term battery health, they will charge more as they go.

Frame If the in-car system allows people to unplug each other’s cars when 
they are done charging, then they will not occupy chargers they do 
not currently use.

Purpose Ensure EV owners do not occupy chargers they do not currently use.
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SUMMARY

SAMENVATTING

Het vakgebied van kunstmatige intelligentie (KI) heeft zich sinds de oprichting 
gericht op het ontwikkelen van systemen die duidelijke antwoorden bieden. 
KI-systemen vertellen ons de beste zet in een schaakspel, de juiste vertaling 
voor een woord, hoe we een eiwit moeten vouwen, en voorspellen of iemand 
een boek zal kopen. Deze systemen hebben een duidelijk doel, een duidelijke 
uitkomst en in sommige gevallen ook duidelijke belonings- en straffuncties. 
De antwoorden die ze bieden, kunnen gemakkelijk worden geclassificeerd 
als juist of onjuist. Nadat een schaakstuk is verplaatst, kan men eenvoudig 
controleren of de zet optimaal was en de kans om te winnen heeft vergroot. 
Deze kenmerken hebben geleid tot de adoptie van KI-systemen in gebieden 
zoals productie- en transportmethoden, de manier waarop mensen informatie 
ontvangen, films en liedjes selecteren, daten, handelen op de aandelenbeurs 
en de manier waarop sociale instellingen zoals ziekenhuizen, banken, 
politieafdelingen en rechtbanken beslissingen nemen (bijvoorbeeld Rahwan 
et al., 2019).

Echter, zodra KI-systemen — die duidelijke regels en doelstellingen nodig 
hebben — te maken krijgen met de complexiteit van sociale contexten, 
veroorzaken ze soms onbedoelde en soms schadelijke resultaten (Rudin, 
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2019). Zo leidde een KI-systeem dat door de Nederlandse Belastingdienst werd 
gebruikt tot de onterechte vervolging van duizenden families en het aftreden 
van de hele regering in 2021 (Hanley, 2021). KI-systemen in gebruik van 
techgiganten als Google, Meta en Twitter (nu X) labelen vaak zwarte mensen 
als primaten (BBC, 2021b). Toen de Covid-19-pandemie uitbrak, resulteerde 
het KI-systeem dat Zillow gebruikte om huizenprijzen te schatten in meer dan 
300 miljoen dollar verlies voor het bedrijf en het ontslag van 2000 mensen 
(CNN, 2021). In dergelijke situaties kunnen noch de problemen noch de 
doelstellingen duidelijk worden gedefinieerd. Verder zijn er in plaats van ware 
of onware antwoorden talloze mogelijke oplossingen die alleen als goed of 
slecht kunnen worden geclassificeerd. Daarom kunnen we, als we KI-systemen 
willen ontwerpen die geen verstrekkende schadelijke gevolgen hebben, ze niet 
loskoppelen van de complexe contexten waarin we ze borgen.

Historisch gezien is het vakgebied van ontwerpen ontwikkeld als reactie op 
grote veranderingen in de samenleving die mogelijk werden gemaakt door 
snelle technologische ontwikkelingen (Calabretta & Kleinsmann, 2017). In 
de loop van een eeuw evolueerde het Ontwerp geleidelijk van het ontwerpen 
van producten naar het ontwerpen van mens-computer interacties, product-
dienst-systemen en recentelijk complexe sociotechnische systemen (Norman 
& Stappers, 2015). Deze uitbreiding van het vakgebied heeft een voortdurend 
debat aangewakkerd over of otwerptheorieën moeten worden aangepast om 
de steeds complexere contexten aan te pakken waarin ontwerpers werken 
(bijvoorbeeld Voûte et al., 2020). Dit debat moeten worden uitgebreid naar 
het ontwerpen van KI-systemen die in grotere complexe contexten worden 
geïmplementeerd. Vandaar de initiële onderzoeksvraag van dit proefschrift:

“Hoe kunnen Ontwerptheorieën het ontwerp en de implementatie van KI-
systemen in complexe contexten ondersteunen?”

Het is tegen deze achtergrond dat we de theoretische en empirische verkenning 
starten die in het proefschrift wordt gepresenteerd. We volgen  de door Cash 
(2018) voorgestelde cyclus van theorieopbouw/testen. We behandelen met 
name de eerste drie fasen: Ontdekking en beschrijving (dat wil zeggen, het 
gedetailleerd beschrijven van de belangrijke kwesties waarop de theorie is 
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gebaseerd), Definities van variabelen en beperking van het domein (dat wil 
zeggen, het presenteren van variabelen en hun definities, evenals waar en 
wanneer een theorie moet worden toegepast), en Relatieopbouw (dat wil 
zeggen, het beschrijven van de conceptuele relaties tussen de geïdentificeerde 
variabelen) (Cash, 2018). Deze fasen komen overeen met de drie delen van het 
proefschrift.

Deel I: De situatie schetsen

De wijdverbreide adoptie van KI-systemen is het resultaat van de significante 
vooruitgang op het gebied in het afgelopen decennium (Rahwan et al., 
2019). Zo kunnen diepgaande leermethoden longkanker voorspellen met een 
nauwkeurigheid van 94,4% (Ardila et al., 2019), beter presteren dan radiologen 
bij het detecteren van longontsteking (Rajpurkar et al., 2017), hypertrofische 
cardiomyopathie detecteren bij asymptomatische patiënten (Green et al., 2019) 
en de locaties van naschokken van aardbevingen voorspellen (DeVries et al., 
2018). Machine learning, dat modellen traint door voorbeelden van gewenst 
input-outputgedrag, drijft het grootste deel van deze prestaties aan.

Hoewel er verschillende soorten KI-systemen zijn, hebben ze 
gemeenschappelijke kenmerken: (1) hun besluitvormingsprocessen zijn 
complex en niet gemakkelijk te begrijpen, (2) ze zijn sterk afhankelijk van 
door mensen gegenereerde gegevens, en (3) ze leren voortdurend van 
menselijk gedrag en passen zich aan menselijk gedrag aan. Deze kenmerken 
maken het moeilijk om ervoor te zorgen dat KI-systemen transparant, eerlijk, 
verantwoordelijk en niet-schadelijk zijn (Jobin et al., 2019). Als gevolg daarvan 
zijn er vier belangrijke uitdagingen bij de implementatie van KI-systemen in 
bestaande contexten: (1) zorgen voor transparantie van de innerlijke werking 
van KI-systemen, (2) het verminderen van impliciete vooroordelen in de 
gegevens die worden gebruikt om deze systemen te trainen en opnieuw te 
trainen, (3) de moeilijkheid om het gedrag van KI-systemen af te stemmen op 
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menselijke waarden, en (4) het aanpakken van de onderlinge afhankelijkheid 
van gedrag en gebruik van deze systemen.

Terwijl er onderzoeksbenaderingen bestaan voor de eerste drie uitdagingen, 
is de uitdaging van het aanpakken van de behaviour-use interdependence 
van KI-systemen nog niet volledig behandeld in bestaande literatuur. 
Ontwerptheorieën hebben veel raakvlakken hiermee vanwege de centrale 
rol die zowel gedrag als gebruik spelen in de kern van Ontwerpregeneratie - 
innovatieve abductie (Roozenburg, 1993). Deze inzichten bieden een manier om 
de hoofdonderzoeksvraag te herformuleren tot:

“Hoe kan een theoretisch model worden ontworpen dat de vroege simulatie 
van de AI system’s behaviour-use interdependence ondersteunt door gebruik te 

maken van Ontwerptheorieën?”

Deel II: Initieel theoretisch model

We beginnen onze verkenning met een theoretisch onderzoek naar 
Ontwerptheorieën die kunnen helpen bij de vroege simulatie van de onderlinge 
afhankelijkheid van gedrag en gebruik van KI-systemen. Allereerst onderzoeken 
we de paradigma’s die grotendeels de meeste Ontwerptheorieën hebben 
gedefinieerd – Rational Problem Solving  (Simon, 1996) en Reflective Practice 
(Schön, 1983). Ondanks hun verschillen beweren beide paradigma’s dat (1) 
het opzetten van een feedbackmechanisme instrumenteel is om een beter 
begrip van het probleem te krijgen; (2) de ontwerper invloed heeft op het 
ontwerpproces; en (3) onbedoelde resultaten een natuurlijk en noodzakelijk 
gevolg zijn van het ontwerpproces omdat ze het vooruit stuwen.

Ten tweede onderzoeken we de ontwerptheorie van innovatieve abductie, die 
formeel gedefinieerde relaties tussen de variabelen gedrag en gebruik biedt. 
Het introduceert ook de manieren waarop deze twee kunnen worden gebruikt 
om nieuwe oplossingen te ontwerpen. Er bestaan twee algemeen aanvaarde 
modellen die de relatie definiëren - één geïntroduceerd door Roozenburg (1993) 
en een door Dorst (2011). Ondanks hun verschillen beginnen ze beide met 
(1) een aanvankelijk overeengekomen startpunt (doel en waarde), (2) dat ze 
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gebruiken om het gedrag en gebruik van de mogelijke oplossing te definiëren 
(wijze van handelen en activering, en hoe), en (3) de combinatie hiervan leidt tot 
een tastbare oplossing - een vorm of een object, dienst of een systeem.

Ten derde kunnen prototypes de continue simulatie van het gedrag en gebruik 
van een oplossing die in complexe contexten moet worden geïmplementeerd, 
ondersteunen. Sterker nog, ze (1) ondersteunen ons bij het observeren van 
de verschillende soorten resultaten en toepassingen die het gedrag kunnen 
opleveren; (2) dienen als brug tussen gedrag en gebruik; en (3) stellen wat 
Magnani (2007) manipulatieve abductie noemt, in staat. We illustreren 
deze inzichten met twee voorbeelden uit een project dat is uitgevoerd 
tussen november 2015 en september 2016 voor een grote Europese 
luchtvaartmaatschappij.

Met deze basis onderzoeken we theoretisch de geschiktheid van 
ontwerptheorieën voor de vroege simulatie van de onderlinge afhankelijkheid 
van gedrag en gebruik van KI-systemen. We introduceren vervolgens een eerste 
versie van een theoretisch model, dat een reeks relaties voorstelt tussen de 
door ons geïdentificeerde variabelen.

purpose + data → frame

frame + mode of action → prototype

prototype + actuation → outcomes

Het model helpt ons om het gedrag van het systeem aan te passen om 
het gewenste gebruik en de gewenste resultaten te activeren. Als gevolg 
is het model het meest geschikt voor de vroege stadia van conceptueel 
ontwerp wanneer noch het gedrag noch het gewenste gebruik (of resultaten) 
duidelijk zijn. Hierdoor wordt een voorlopig antwoord gegeven op de 
hoofdonderzoeksvraag van het proefschrift.

Deel III: Uitgebreid theoretisch model

De ontwerptheorieën die we hebben gebruikt, zijn echter ontwikkeld voor 
het ontwerpen van producten en diensten. In tegenstelling tot deze, wordt 
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het gedrag van een KI-systeem continu beïnvloed door en leert het van door 
gebruikers gegenereerde gegevens. Daarom onderzoeken we in Deel III 
verder hoe de onderlinge afhankelijkheid van gedrag en gebruik kan worden 
gesimuleerd in de context van het ontwerpen van KI-systemen.

Figure 0 Formulaic representation of the theoretical model

 
We beginnen onze verkenning door een voorbeeld te presenteren van een 
studententeam van drie personen dat met succes de onderlinge afhankelijkheid 
van gedrag en gebruik van een KI-systeem vier keer heeft gesimuleerd 
door eenvoudige prototypes te gebruiken. Het team haalde meerdere 
(bedoelde en onbedoelde) resultaten naar boven, die dienden als een robuust 
feedbackmechanisme. Drie dingen hielpen het team. Ten eerste identificeerden 
ze expliciet bedoelde activeringen nadat ze hun wijze van handelen hadden 
besloten en voordat ze een prototype bouwden. De toevoeging van deze 
variabele stelt ons in staat om elke regel van het theoretische model te 
verbinden met een ander type abductieve redenering: verklarende, innovatieve 
en manipulatieve (Figuur 0). 

Ten tweede suggereren huidige ontwerptheorieën dat om een nieuwe oplossing 
te ontwerpen, innovatieve (en verklarende) abductie moet worden toegepast. 
Toch maakte het team gebruik van alle drie de soorten abductie om de 
onderlinge afhankelijkheid van gedrag en gebruik van hun concept te simuleren. 
Ten derde gebruikten ze ook niet-abductieve activiteiten zoals expliciete 
definitie van vereisten en waarden. Deze speelden een cruciale ondersteunende 
rol bij de ontwikkeling van het concept voor een KI-systeem.

We gaan in op de ontdekte inzichten met een vijf maanden durende casestudy. 
Hierin wordt een ontwerpproject besproken voor het ontwikkelen van een 
KI-systeem voor in de auto, uitgevoerd in samenwerking met een grote 
autofabrikant. De casus levert twee belangrijke conclusies op. Ten eerste 
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moeten om de vroege simulatie van de onderlinge afhankelijkheid van 
gedrag en gebruik van KI-systemen te ondersteunen, de drie abductietypen 
- verklarend, innovatief en manipulatief - worden toegepast. Ten tweede 
moeten bestaande Ontwerptheorieën worden uitgebreid. Vijf inzichten 
kunnen dergelijke uitbreiding leiden: (1) verklarende abductie wordt meestal 
gevolgd door innovatieve abductie; (2) de inductieve generatie van nieuwe 
waarden en vereisten informeert de formulering van elke variabele van het 
model; (3) visuele elementen die voortkomen uit inductieve redenering 
(bijvoorbeeld gegevensvisualisaties) vergemakkelijken verklarende abductie; 
(4) de deductieve evaluatie van het resultaat van elke rij tegen vereisten en 
waarden ondersteunt de overgang van het ene abductietype naar het andere; 
en (5) manipulatieve abductie speelt een faciliterende rol bij het uitvoeren van 
innovatieve abductie.

Deze inzichten vormen de basis van het uiteindelijke theoretische model dat we 
het Theoretisch Model voor Prototyping KI of het PAI-model noemen. Het PAI-
model wordt gedefinieerd door relaties tussen abductie (verklarend, innovatief 
en manipulatief), inductie en deductie. Een model dat ons voorziet van een 
manier om de vroege simulatie van de onderlinge afhankelijkheid van gedrag 
en gebruik van KI-systemen te ondersteunen. Bovendien zijn we van mening 
dat het PAI-model op dezelfde manier zal worden toegepast door verschillende 
KI-ontwikkelaars, ongeacht hun achtergrond of vaardigheidsniveau. Ten slotte 
geeft het model ook een indicatie van hoe drie verschillende soorten gegevens 
kunnen worden gebruikt om het gedrag van KI-systemen bij te werken tijdens 
de ontwikkeling en implementatie van het model. Deze kunnen dienen als het 
startpunt voor het deel van de cyclus van Cash (2018) dat betrekking heeft op 
het testen van de theorie.

Door de drie stappen van theorieopbouw te volgen die zijn voorgeschreven 
door Cash (2018), stelt het opstellen van het PAI-model ons in staat om 
inzicht te krijgen in hoe Ontwerptheorieën kunnen bijdragen aan het ontwerp 
van betere KI-systemen. Het stelt ons ook in staat om deze theorieën uit 
te breiden en richtingen te identificeren waarin het vakgebied zich in een 
toekomst gedefinieerd door intelligente agenten zou kunnen (of moeten) 
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ontwikkelen. Hierdoor biedt het model ons een manier om het conceptuele 
ontwerp van steeds evoluerende KI-systemen te benaderen door de vroege 
simulatie van hun onderlinge afhankelijkheid van gedrag en gebruik. Tot 
slot kunnen deze geformaliseerde relaties ons ook aanwijzingen geven over 
hoe nieuwe KI-modellen kunnen worden ontwikkeld. KI-modellen die niet 
uitsluitend afhankelijk zijn van grote aantallen datapunten, maar in plaats 
daarvan de creatie van sterk configureerbare wereldmodellen voor AI-agenten 
mogelijk maken.
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