Super-resolution to ennance low-resolution
thermal faclal expression Images for
thermal facial emaotion recognition

by

Sabrina Wirjopawiro

to obtain the degree of Master of Science
in Computer Science
at the Delft University of Technology,
to be defended publicly on Friday March 19, 2021 at 03:00 PM.

Student number: 4747119
Project duration: April 1, 2020 — March 19, 2021

Thesis committee:  Prof. dr. Pablo Cesar, TU Delft, CWI, supervisor
Prof. dr. ir. Alessandro Bozzon, TU Delft
Dr. Abdallah EI Ali, CWI, supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft


http://repository.tudelft.nl/




Abstract

Facial emotion recognition from thermal images has gained more attention in recent years. Thermal
cameras capture the heat emitted by objects and therefore thermal images are not sensitive to illumina-
tion changes. Furthermore, changes in temperature can indicate emotions and it is harder for humans
to fake emotions in front of a thermal camera. However, a limitation is that, thermal cameras that cap-
ture high-resolution images are expensive, and cheaper thermal cameras often capture images with a
low-resolution and/or contaminated with noise and blur. Besides, low-resolution thermal images can
also arise when images are captured from a far distance or from moving persons. When using these
low-resolution thermal images for facial emotion recognition this can negatively influence the emotion
classification accuracy.

To tackle the problem of low-resolution thermal facial expression images, super-resolution can be
used. In this exploratory work, we propose the Thermal Face Super-Resolution Network (TFSRNet)
and the Thermal Face Super-Resolution Generative Adversarial Network (TFSRGAN) to recover high-
resolution thermal facial expression images from low-resolution thermal facial expression images, with
the goal to use the super-resolved images for thermal facial emotion recognition. The architecture TF-
SRNet is optimized to minimize the mean squared error (MSE), which results in images with a high
peak signal-to-noise ratio (PSNR). However, these images often contain an unsatisfying perceptual
quality. To generate high-resolution images with a high perceptual quality we propose TFSRGAN.
Both architectures use facial prior knowledge, such as facial landmark heatmaps and parsing maps,
to enhance low-resolution thermal facial expression images. To emphasize the most important parts
of each facial expression and to suppress irrelevant facial parts, we integrate the Convolutional Block
Attention Module (CBAM) in both super-resolution architectures. The proposed super-resolution ar-
chitectures are used to enhance low-resolution thermal facial expression images, which are obtained
with three different degradation models, namely bi-cubic down-sampling (Bl) on scale x2, x3 and x4,
blurring followed by bi-cubic down-sampling (BD) on scale x3 and bi-cubic down-sampling followed by
adding noise (DN) on scale x3.

With an ablation study, the effectiveness of using facial prior knowledge and the attention mech-
anism CBAM for thermal super-resolution is shown. When using facial prior knowledge and the at-
tention mechanism CBAM, the image quality of the super-resolved images improves. Furthermore,
experiments show that images enhanced by TFSRNet outperform bi-cubic interpolated images, for
degradation models Bl x4, BD x3 and DN x3. Using these super-resolved images for thermal facial
emotion recognition also leads to an increase of the emotion classification accuracy. In addition, im-
ages enhanced by TFSRGAN outperform bi-cubic interpolated images for degradation model DN x3.
Although, this an exploratory work containing limitations, the experiments show the effectiveness of
using facial prior knowledge and the attention mechanism CBAM for thermal facial expression super-
resolution. In addition, thermal face super-resolution shows promising results for thermal facial emotion
recognition where future work can build upon.
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Introduction

Emotions play an important role in communication between humans. Understanding each other’s emo-
tions and being able to react on them, deeply enhances human interaction [107]. Emotions can be
expressed in various ways, verbally or non-verbally. Non-verbal expressions consist of facial expres-
sions, hand gestures, body movements and tone of voice. Of these expressions, facial expressions
are regarded as one of the most important to identify human emotions [63]. Over the past decades,
automatic facial emotion recognition has become a popular topic of research, since it can be used for
a wide range of applications such as human-computer interaction (HCI) systems [11] [32], driver sys-
tems [65] [102], education [97], surveillance systems [1] and entertainment [15]. The usage of these
systems is rapidly growing and they are becoming more important in our daily lives [72]. In order to
achieve effective human-computer interaction, computers need to be able to interact in a natural way
with the user. As emotions play an important role in the interaction, it is crucial for computers to recog-
nize human emotions. Once computers can recognize human emotions they can provide appropriate
feedback and customized interactions.

For the automatic classification of emotions a distinction can be made between two types of emotion
models: categorical models and dimensional models. In categorical models, emotions are classified in
discrete classes [23]. Often used discrete emotion classes are the six basic emotions: anger, disgust,
fear, happiness, sadness and surprise, defined by Ekman et al. [16]. In dimensional models, emotions
are related to each other and defined in a continuous space [23]. An often used model is the circumplex
of affect introduced by Russell [79], which has two-dimensions: valence and arousal. The valence
dimension shows how positive or negative the emotion is and the arousal dimension shows how excited
or calm the emotion is. In this thesis, the categorical model is used for the classification of emotions,
since the thermal datasets that are available contain labels for the categorical model.

In the past decades, various studies have been done on automatic facial emotion recognition. These
studies can be divided into two groups of approaches: conventional approaches and deep learning
based approaches. Conventional approaches are based on features that are handcrafted and consist
of three main steps as shown in Figure 1.1. In the first step, the facial images are pre-processed.
This pre-processing includes, among others, the normalization of the images and the detection of the
face or facial components. In the second step, hand-crafted features, such as Histograms of Oriented
Gradients (HOG) and Local Binary Patterns from Three Orthogonal Planes (LBP-TOP), are extracted
from the detected face or facial components. Finally, the extracted features are classified into one
of the categorical emotion classes. For the classification of the emotions several classifiers can be
used such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN) or Random Forest (RF).
Deep learning based approaches are based on features that are generated by Deep Neural Networks
(DNNs). There exist several types of DNNs, among which Convolutional Neural Networks (CNNs) are
the most popular. Since CNNs are able to learn features directly from input images, instead of using
handcrafted features, they have achieved excellent performance in several computer vision tasks [2]
[44] [85]. Figure 1.2 shows an example of a CNN architecture for facial emotion recognition. First, the
network takes images with facial expressions as input. Then, the network learns features from these
input images by performing convolutional operations. Finally, the learned features are used for the
emotion classification.
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Figure 1.1: Steps of conventional facial emotion recognition approaches. The facial expression images are from the VIS-TH

®
2,

Input images

Anger
Disgust
Fear

Happiness
Sadness

Suprise

Pooling
Convolution

Pooling
Convolution Fully connected layers

Figure 1.2: Example of a CNN. The facial expression images are from the VIS-TH dataset [61].

Currently, most research on facial emotion recognition is performed on RGB images or videos [43]
[68]. A limitation of RGB images and videos is that they are sensitive to illumination conditions. In en-
vironments with bad light conditions or in completely dark environments, the facial emotion recognition
accuracy is not that good [68]. To deal with this problem, several studies proposed thermal images
for facial emotion recognition. Examples of thermal facial expression images are presented in Figure
1.3. Thermal images, also called long wave infrared (LWIR) images, capture the heat emitted by ob-
jects. They are independent of light sources and therefore not sensitive to illumination conditions [43].
Besides that thermal images are invariant to illumination conditions, they have also other advantages.
Jiang et al. [35] have shown in their research that the temperature of the face changes when the facial
expression changes. Therefore, thermal images could be helpful in deriving emotions from facial ex-
pressions. Furthermore, since humans cannot hide or fake their facial temperature, it is much harder
to fake an emotion in thermal images than in RGB images and therefore it is harder to fool a system.

A limitation of the use of thermal images is that high-resolution thermal cameras are expensive,
while cheaper thermal cameras capture low-resolution images contaminated with noise, blur and low-
resolutions [78]. Furthermore, low-resolution thermal images can also arise when the images are cap-
tured from a far distance [25] or from moving persons [24], for example by security cameras. Using
these thermal low-resolution images for practical applications, such as thermal facial emotion recogni-
tion, can lead to a reduction of the classification accuracy and to less useful applications [109]. There-
fore, automatic thermal facial emotion recognition is still a challenging task.

To tackle the problem of low-resolution thermal facial expression images, single image super-
resolution can be used. Single image super-resolution’ is the process of recovering a high-resolution
image from a low-resolution image. In this thesis we will design two thermal super-resolution architec-
tures to enhance low-resolution thermal facial expression images with the aim to use the super-resolved
thermal facial expression images for thermal facial emotion recognition. In the remaining part of this
chapter, the current thermal super-resolution techniques are discussed followed by the research ques-
tions and the contributions.

"In rest of this thesis, we refer to as super-resolution
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Figure 1.3: Examples of thermal facial expression images from the Thermal Face dataset [43].

1.1. Thermal super-resolution

In contrast to the many super-resolution methods developed to enhance low-resolution RGB images,
there are only a few super-resolution methods developed to enhance low-resolution thermal images.
The first thermal super-resolution method is proposed by Choi et al. [10]. Inspired by the deep learn-
ing super-resolution methods for RGB images, they proposed a CNN for the enhancement of thermal
images, called the Thermal Enhancement Network (TEN). Due to the limited amount of large thermal
datasets, they investigated if datasets of different domains could be used for the training of TEN. They
considered images from two different domains, namely gray-scale images (from the RGB domain) and
mid-wavelength infrared (MWIR) images. Their research shows that images from other domains, such
as the RGB domain, can help to enhance low-resolution thermal images. Lee et al. [48] proposed a
Thermal Image Enhancement CNN (TIECNN) based on residual learning. In this network, images from
different RGB domains (gray, lightness, intensity and brightness) and thermal domains are considered
for training. The results show that the brightness domain in combination with residual learning resulted
in the best super-resolved thermal images. Kuang et al. [45] proposed an Image Enhancement Con-
ditional Generative Adversarial Network (IE-CGAN) to enhance low-resolution infrared images. This
network is trained on RGB images and is able to enhance infrared images with good visual results.
Rivadeneira et al. [77] proposed a deep CNN with a residual network and dense connections to en-
hance low-resolution thermal images. The proposed network is trained on RGB images and on thermal
images. From their experiments they conclude that the super-resolved images are better when the net-
work is trained on thermal images instead of RGB images.

The thermal super-resolution networks discussed above are used to enhance thermal low-resolution
generic images. For the specific domain of thermal face super-resolution only little research is done.
Guei et al. [21] proposed a Deep Convolutional Generative Adversarial Network (DCGAN) for super-
resolution infrared faces, called DeepSIRF. Their goal was to recover high-resolution images (64 x
64 pixels) from low-resolution images (16 x 16 pixels). The network that they proposed is trained and
tested on three different datasets. The first one is the Terravic Facial IR database [64], which is a thermal
LWIR dataset containing 22784 images with different head poses in different conditions. The second
one is the CBSR CASIA NIR Face dataset [51], this is a near-infrared (NIR) dataset containing 3940
images. This dataset contains among other images in different illumination conditions, with different
facial expressions. The last one is the CASIA NIR-VIS 2.0 dataset [52], which contains RGB and NIR
images. Guei et al. only used the NIR images in their research. The dataset contains 12487 images,
with among others different poses, light conditions and facial expressions. The DeepSIRF architecture
is developed in such a way that it can learn from a small amount of data. The results show that the
DeepSIRF architecture is able to enhance low-resolution thermal images.

DeepSIRF deals with thermal facial (expression) images, but it does not use facial prior knowl-
edge to enhance the low-resolution thermal facial (expression) images. In this exploratory thesis, we
design two architectures that use facial prior knowledge and an attention mechanism, to enhance low-
resolution thermal facial expression images. The first architecture, called TFSRNet, is an adapted
version of the Face Super-Resolution Network (FSRNet) [9]. FSRNet uses facial priors such as fa-
cial landmark heatmaps and parsing maps to enhance low-resolution RGB facial images. To focus on
the most important parts of the facial expressions and to suppress irrelevant facial parts, we propose
to integrate a Convolutional Block Attention Module (CBAM) [95] in TFSRNet. TFSRNet is optimized
to minimize for the mean squared error (MSE). Architectures optimized for MSE, have a high image
quality in terms of the peak signal-to-noise ratio (PSNR), which is the most used evaluation metric
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in super-resolution. Although, MSE-based super-resolution approaches achieve a high PSNR, it is
known that the generated images lack a high perceptual quality. Therefore, this first proposed thermal
super-resolution architecture will be compared with a second architecture that we will design, called
TFSRGAN, which is a Generative Adversarial Network (GAN) based architecture. GANs have shown
great results in the field of super-resolution, as they can recover high-resolution images from low-
resolution images with a high perceptual quality [46]. Our GAN-based architecture uses TFSRNet as
generator. To show the effectiveness of the two proposed approaches, both architectures will be used
to enhance different types of low-resolution thermal facial expression images. To simulate real-world
low-resolution images three different types of degradation models (down-sampling with bi-cubic inter-
polation (BI), blurring and down-sampling (BD), down-sampling and adding noise (DN)) will be used
to obtain low-resolution images. Furthermore, we will provide an ablation study to explain the effects
of our proposed networks and we will provide empirical findings to show which of the proposed super-
resolution approaches is the most suitable to enhance low-resolution thermal facial expression images
for the task of facial emotion recognition. Table 1.1 presents an overview of the existing thermal face
super-resolution methods compared to our proposed thermal super-resolution methods.

Table 1.1: Overview of the thermal face super-resolution approaches

Architecture Characteristics

- Does not use facial prior knowledge
DeepSIRF [21] - L1-loss and adversarial loss
- Designed to enhance low-resolution near infrared (NIR) and thermal facial (expression) images

- Based on FSRNet [9]
- Uses facial landmark heatmaps, parsing maps and CBAM

TFSRNet
© - MSE loss
- Designed to enhance low-resolution thermal facial expression images
- Based on SRGAN [46] and FSRGAN [9]
TESRGAN - Uses facial landmark heatmaps, parsing maps and CBAM

- Perceptual loss and adversarial loss
- Designed to enhance low-resolution thermal facial expression images

1.2. Research questions

The aim of this thesis is to recover high-resolution thermal facial expression images from low-resolution
thermal facial expression images and to use the super-resolved images for facial emotion recognition.
The corresponding research question is formulated as follows:

How can we use super-resolution to enhance low-resolution thermal facial expression images
for thermal facial emotion recognition?

To answer this research question, we will investigate the following sub-questions:

1. Does the use of facial priors (facial landmark heatmaps and/or parsing maps) and the attention
mechanism CBAM for thermal super-resolution lead to an improvement in image quality of the
super-resolved images?

2. Do the different types of low-resolution images enhanced by TFSRNet and TFSRGAN have a
better image quality than those enhanced by bi-cubic interpolation?

3. Which of the two proposed thermal super-resolution approaches, TFSRNet or TFSRGAN, is the
most suitable to enhance low-resolution thermal images for the task of thermal facial emotion
recognition?
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1.3. Contributions
Based on the research question stated above, the following contributions are made:

Contribution 1. Design two thermal facial expression super-resolution architectures, that use facial
priors (facial landmark heatmaps and/or parsing maps) and the Convolutional Block Attention Module
(CBAM). In addition, perform an ablation study to explain the effects of using facial priors and the
attention mechanism CBAM on the image quality of the super-resolved images.

The first architecture that we propose is the Thermal Face Super-Resolution Network (TFSRNet),
which is an adapted version of FSRNet [9]. We adapt FSRNet by integrating the Convolutional Block
Attention Module (CBAM) [95] as an attention mechanism. More specific, CBAM will be integrated in
FSRNet by replacing one or two residual blocks with residual blocks with CBAM. Through explorative
experiments we will search for the best place in FSRNet to integrate CBAM. CBAM is included to focus
on the most important parts of the face for each facial expression and to suppress less important facial
parts. FSRNet is optimized to minimize the mean squared error (MSE). Images optimized for MSE
have a high peak signal-to-noise ratio (PSNR), but they are over-smoothed and lack high-frequency
details resulting in a low perceptual quality. Therefore we propose a second approach, the Thermal
Face Super-Resolution Generative Adversarial Network (TFSRGAN), which is a GAN-based approach.
GANSs have shown to be very successful for super-resolution tasks [46] and can generate photo-realistic
images with high perceptual quality. TFSRGAN is optimized for a loss that consists of, among others, a
perceptual loss and an adversarial loss, which help to generate images with high perceptual quality. To
train the two proposed architectures, a large amount of data is needed to prevent the architectures from
overfitting. However, there are only a few thermal facial expression datasets available, which contain
a small amount of data. Inspired by the idea of Choi et al. [10] who have shown that RGB images
can be useful for thermal super-resolution, the two proposed architectures are first pre-trained on the
large-scale RGB dataset CelebAMask-HQ [47] and then fine-tuned on the smaller thermal datasets
Thermal Face [43] and VIS-TH [61]. With an ablation study we showed that using facial priors, such
as facial landmark heatmaps and/or parsing maps, and the attention mechanism CBAM, improves the
image quality of the thermal super-resolved images in terms of PSNR and SSIM.

Contribution 2. Provide empirical findings to show the effectiveness of TFSRNet and TFSRGAN
on super-resolving different types of low-resolution thermal images.

Real-world low-resolution images can be contaminated with four types of degradations, such as
blur, low-resolution, artifacts and noise [49]. Often they are contaminated with more than one of these
degradations. To simulate real-world low-resolution images several degradation models have been de-
veloped [53] [104]. In this thesis, three degradation models are used to obtain low-resolution images.
The three degradation models are bi-cubic down-sampling (BI) (scale x2, x3, x4), blurring and bi-cubic
down-sampling (BD) (scale x3), down-sampling and adding noise (DN) (scale x3). For the evaluation
of the super-resolved thermal images we use the two most used evaluation metrics in super-resolution,
namely the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM). For the Thermal Face
dataset, we showed that for large degradation models, such as Bl x4, BD x3 and DN x3, TFSRNet out-
performs bi-cubic interpolation in terms of PSNR and SSIM. For degradation model Bl x3, TFSRNet
outperforms bi-cubic interpolation in terms of SSIM but not in terms of PSNR. For degradation model Bl
x2, bi-cubic interpolation outperforms TFSRNet. Furthermore, we showed that TFSRGAN outperforms
bi-cubic interpolation only for low-resolution images from DN x3. For the VIS-TH dataset, TFSRNet and
TFSRGAN outperform bi-cubic interpolation in terms of PSNR and SSIM only for degradation model
DN x3.

Contribution 3. Provide empirical findings to show which of the two proposed thermal super-
resolution architectures is the most suitable to enhance low-resolution thermal images for facial emotion
recognition.

The thermal images enhanced by TFSRNet and TFSRGAN are used for facial emotion recognition.
Based on the Thermal Face dataset, we have shown that for large degradation models, such as Bl x4,
BD x3 and DN x3, the images enhanced by TFSRNet achieve a higher emotion classification accuracy
than bi-cubic interpolated images and images enhanced by TFSRGAN. For small degradation models,
such as Bl x2 and Bl x3, bi-cubic interpolated images achieve a higher emotion classification than
images enhanced by TFSRNet or TFSRGAN.
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1.4. Thesis outline

The outline of the thesis is as follows. In Chapter 2, background information on Deep Neural Networks
(DNNs) is provided. Furthermore, it presents an overview of related work on super-resolution and facial
emotion recognition. In Chapter 3, the selected datasets and their pre-processing steps are discussed.
In addition, the degradation models and the architectures are presented. In Chapter 4, an overview
and an analysis of the results are presented. Finally, in Chapter 5, we discuss what we have learned
during this thesis and the limitations of this work. Furthermore, we give suggestions for future work.
Finally, we summarize our findings.



Background and Related Work

In this thesis we design two thermal face super-resolution architectures, TFSRNet and TFSRGAN, to
enhance low-resolution thermal facial expression images for thermal facial emotion recognition. Our
thermal super-resolution architectures use facial prior knowledge, such as facial landmark heatmaps
and parsing maps, to enhance low-resolution thermal facial expression images. In addition, we inte-
grate the Convolutional Block Attention Module (CBAM) in TFSRNet and TFSRGAN, to focus on the
most important parts of each facial expression and to suppress other irrelevant parts.

In this chapter, an overview of the current studies, related to thermal (face) super-resolution and
thermal facial emotion recognition, is presented. Since most of these studies are based on deep learn-
ing, this chapter begins with providing some background information on deep learning in Section 2.1.
Then, in Section 2.2, an overview is given of super-resolution methods used to enhance low-resolution
generic RGB images. This is followed by an overview of super-resolution methods used to enhance
low-resolution face RGB images, in Section 2.3. Finally, in Section 2.4, the current thermal datasets
and thermal facial emotion recognition methods are presented.

2.1. Deep learning

Deep learning is a part of machine learning that uses Deep Neural Networks (DNNs) to extract features
from raw input data to get multiple levels of representations of the input data [87]. Since DNNs are able
to learn useful representations from data, they have achieved excellent performance in many tasks [27]
[44] [56]. For each task, different types of neural networks can be used. The neural networks used in
this thesis are based on Convolutional Neural Networks (CNNs) and Generative Adversarial Networks
(GANs). In the next sections, first DNNs are discussed, followed by a discussion of the two specific
types of neural networks, CNNs and GANs.

2.1.1. Deep Neural Networks (DNNs)

Neural Networks (NNs) consist of several layers, such as an input layer, one or more hidden layers
and an output layer. NNs that are used in deep learning contain more than one hidden layer and are
defined as Deep Neural Networks (DNNs) [87]. Figure 2.1 shows an example of a NN with one hidden
layer. Each layer in a NN consists of several components, called neurons. The neurons receive input
values which have been multiplied by a weight. Each neuron adds up the weighted input values and
can add some bias. The sum of the weighted values and the bias is passed through an activation
function, which leads to a final output value. This process can be described by the following formula:

Yj =f(zwijxi + b) (2.1)
i=1

where w;; is the weight, x; the input, y; the output, b the bias and f the activation function. Activation
functions are used to convert the sum of the weighted input value(s) to an output value. Activation
functions that typically are applied in DNNs, are non-linear activation functions. Due to these non-
linear activation functions a network is able to learn more complex relationships between the input and

7
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Figure 2.1: Example of a neural network. The network consists of an input layer with three neurons, one hidden layer with four
neurons and an output layer with two neurons.

output data. Figure 2.2 shows some non-linear activation functions’. Among these, the most popular
non-linear activation function is the rectified linear unit (ReLU).

D

(a) Sigmoid: y =

eX_e—X

(b) Tanh: y = (c) ReLU: y = max(0,x) (d) LeakyReLU: y = max(ax, x)

1
1+e™% eXye—X

Figure 2.2: Activation functions.

Training of DNNs

During the training phase of a DNN, the weights of the network are learned. The aim is to find the
weights that minimize the average loss. There are several ways of learning, such as supervised learn-
ing, unsupervised learning and semi-supervised learning. In this thesis we use supervised learning,
which means that the input data is labeled. Thus, for each input value the corresponding output value
is known.

The training of a DNN, in a supervised way, proceeds in several steps. First, the weights of the
network are once initialized with random values. Then, in the forward propagation step, the training
inputs are passed through the network and an output is calculated. Next, a loss function calculates
the loss between the output generated by the network and the desired output. The loss defines how
similar the generated output is to the desired output. The lower the loss, the more similar the generated
output is to the real output. After computing the loss, backward propagation is performed. In the back
propagation step, the gradient of the loss function with respect to the weights is calculated. Based on
the gradients and a learning rate, the weights of the network are adjusted.

2.1.2. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a special type of Neural Networks (NNs). They are used
for a wide range of applications, such as image classification [44], object detection [19][76] and face
recognition [83]. CNNs consist of three types of layers namely convolutional layers, pooling layers and

"For LeakyReLU a is a small constant, here a = 0.2
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fully connected layers. By stacking those layers a CNN is created. Below, we will discuss the different
types of layers of a CNN.

Convolutional layer

A convolutional layer is used to extract local features from input images. The parameters of a convolu-
tional layer exists of a set of learnable kernels, also known as filters. The spatial size (width and height)
of each kernel is often small. The depth of each kernel equal to the depth of the input. Each kernel
is shifted over the input and at each point the dot product between the kernel values and the input
values is calculated. When shifting the kernel over the input, a feature map is created, which stores the
output values of each dot product. For each kernel, one feature map is created and the created feature
maps are stacked in the depth. By choosing the number of kernels, the depth of the output can be
determined. The distance that the kernel shifts over the input can be determined with the stride. When
the stride is 1, the kernel shifts one pixel. If the stride is larger than 1, the spatial size of the output will
be smaller than the spatial size of the input. This can be seen in Figure 2.3, that shows an example
of a convolutional layer with stride 2. To determine the spatial size of the output, zero-padding can be
used. When using zero-padding, zeros are pad around the borders of the input. The output volume
of a convolutional layer can thus be determined by three hyperparameters, namely depth, stride and
zero-padding.

f1{o|o0 00
oTz] [z]o]1{1] [o olz] [tlol2[2| [0T2
1|-1[ |of1|1]1 1[-1]-pof-1pr1
Kernel 11-1]10]1 Output Kernel 1T 2lo 1 Output
Input Input
1[-1ToJo 1[-1]o]o
o[1] [+]{o]-1]1 0]-2 of1}friof-1]1 0][-2
12| [of2lz]2]| 1 12| [olxlzlz| [1]2
Kernel "[1.]-1/0 (1| Output Kernet——{1-1]0 | 1| Output
Ihput _I‘nput ]

Figure 2.3: Example of a convolutional operation. The input image has size 4x4x1, the kernel has size 2x2x1 and the stride is
2. The convolutional operation results in an output (feature map) of size 2x2.

Pooling layer

A pooling layer is often applied after a convolutional layer. This layer is used to reduce the spatial size of
a feature map. There are two types of pooling that are used most often, namely maximum (max) pooling
and average pooling. Figure 2.4a shows an example of max pooling. For max pooling, the maximum
value is taken of the region that is overlapped by the kernel. Figure 2.4b shows an example of average
pooling. For average pooling, the average of the values is taken of the region that is overlapped by the
kernel.

Fully connected layer

Fully connected layers are often used as the last layers of a CNN. In fully connected layers, all the
neurons of one layer are connected to all the neurons in the following layer. The layers are used to
collect the information of the previous layers and to perform a classification.
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(a) Example of max pooling (b) Example of average pooling

Figure 2.4: Examples of two pooling operations with input image of size 4x4x1, kernel 2x2x1 and stride 2.

2.1.3. Generative Adversarial Networks (GANSs)

Generative Adversarial Networks (GANs) are introduced by Goodfellow et al. [20]. GANs consist of
two Neural Networks (NNs), namely a generator network and a discriminator network. The aim of the
generator is to generate samples similar to the samples that come from the distribution of the training
data. The aim of the discriminator is to distinguish the real samples from the fake samples.

Figure 2.5 shows the architecture of a GAN. The generator G takes as input a random noise vector z
from distribution p, and maps it to the data distribution p,, which is trained to be similar to the distribution
of the training data p,4¢4- Discriminator D takes as input the real and generated samples x and classifies
them into one of the two classes, real or fake. D is trained to maximize probability of the correct
classification of the real and the fake labels, while at the same time G is trained to minimize log(1 —
D(G(2))). Therefore, the training of the two networks can be described as a minimax game:

mGin max V(D,G) = Exepyprato[logD ()] + E,_p, ) [log(1 — D(G(2)))] (2.2)

At the beginning of training, the data samples generated by G are poor and D can distinguish the real
and fake samples with high confidence, which leads to the saturation of log(1 — D(G(z))). Therefore,
in practice, G is trained to maximize logD (G (z)) instead of minimizing log(1 — D(G(2))).

Samplex
from Puata
X
Discriminator D —» é ilfffrael?é
Noise factor zZ Samplex ’
from P, from Pg
Z —» Generator G X

Figure 2.5: Architecture of a GAN.

2.2. Image super-resolution
2.2.1. Problem definition

Image super-resolution is the process of generating a high-resolution image from a low-resolution im-
age. A low-resolution image Iz can be defined as follows:

Ig = D(Iyg, 6) (2.3)
where D denotes a degradation model, Iz the high-resolution image and & the parameters of the

degradation model (e.g. down-scaling factor, noise, etc.). In real world, the degradation model is
unknown. To simulate low-resolution images, researchers have generated several degradation models
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[53] [101] [104]. Given a low-resolution image I, image super-resolution aims to generate a high-
resolution image Isz, which is an approximation of the ground truth high-resolution image I,z. This
process can be described as follows:

Isg = F(I1g, 0) (2.4)

where F is a super-resolution model and 6 the parameters of the super-resolution model. When training
a super-resolution model, the objective function can be described as:

6 = arg min L(Isg, I z) (2.5)
0

where L(Isg, I; ) denotes the loss function between the super-resolved image Iz and the ground truth
high-resolution image IyR. In super-resolution, the most commonly used loss function is the mean
squared error (MSE) loss. We will discuss current super-resolution models in Section 2.2.3. But first,
we discuss evaluation metrics for the image quality in Section 2.2.2.

2.2.2. Image quality assessment

In image super-resolution, the quality of the images can be evaluated based on quantitative evaluation
and based on qualitative evaluation. Quantitative evaluation is the evaluation of the images based on
mathematical methods. Quantitative evaluation is the evaluation of the images based on the perception
of humans. For this evaluation, humans are asked to assess the quality of the images. In this section,
we discuss the most commonly used evaluation metrics for super-resolution.

Peak signal-to-noise ratio (PSNR)

The peak signal-to-noise ratio (PSNR) is a quantitative evaluation metric. It represents the ratio be-
tween the maximum power of a signal and the maximum power of distorting noise. In the case of
super-resolution, it represents the ratio between the ground truth high-resolution image x and the super-
resolved image y. The PSNR can be calculated with the following formula:

2

PSNR =10- loglom

(2.6)
where, MSE = %Zizl(x(i) —y(i))? 2.7)

where L is the maximum pixel value (in our case 255) and N the number of pixels in an image. The
higher the PSNR, the better the image quality. The PSNR calculates the difference between two images
on pixel-level. Since it only focuses on the difference between a pair of pixels instead of the human
visual perception, it often gives a poor representation of the image quality in real world scenarios, where
the perceptual quality is more important. However, PSNR is still the most used evaluation metric for
super-resolution.

Structural similarity (SSIM)

The structural similarity (SSIM) [94] is also an quantitative evaluation metric. It measures the structural
similarity between images. The structural similarity is measured based on three independent compo-
nents, namely contrast, luminance and structure. A detailed description of the computation of SSIM
can be found in the work of Wang et al. [94]. In the case of super-resolution, SSIM represents the
structural similarity between the ground truth high-resolution x and the super-resolved image y. The
SSIM is defined by a value in the range of 0 to 1. The higher the SSIM, the better the image quality.
Since the human visual system (HVS) is able to extract structural information from images, SSIM metric
is a better approximation of the perceptual quality and is commonly used for super-resolution.

2.2.3. Image super-resolution architectures

Various super-resolution methods have been proposed to enhance generic RGB images. Earlier meth-
ods can be divided in prediction-based methods [30], edge-based methods [33], statistical methods
[84], patch-based (or example-based) methods [73] and sparse representation methods [34]. Re-
cently, methods based on deep learning achieved the state-of-the-art performance. In this section
we will discuss a selection of super-resolution methods developed to enhance low-resolution generic
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RGB images and that have been an inspiration for our proposed networks. The methods that will be
discussed are deep learning methods based on Convolutional Neural Networks (CNNs), Generative
Adversarial Networks (GANs) and attention mechanisms.

Dong et al. [13] are the first who proposed a Convolutional Neural Network (CNN) for image super-
resolution, named Super-Resolution Convolutional Neural Network (SRCNN). SRCNN consists of three
layers and learns an end-to-end mapping from a low-resolution image to a high-resolution image. Be-
fore the low-resolution image is given as input to the network, it is up-scaled to the same size as the
high-resolution image with bi-cubic interpolation. The network is used to enhance low-resolution im-
ages with up-scaling factor x2, x3 or x4. For each factor a different network is trained. The network is
tested on five different datasets and evaluated with the commonly used evaluation metrics peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) [93]. Table 2.1 present an overview of the results
of SRCNN and the other methods that will be discussed in this section.

A limitation of SRCNN is that it has high computational costs. To speed up SRCNN, Dong et al. [14]
proposed a new architecture, called Fast Super-Resolution Convolutional Neural Network (FSRCNN).
In this network three things are changed to speed up SRCNN. First, FSRCNN contains a deconvolution
layer at the end of the network to up-sample the low-resolution image. In SRCNN the up-sampling was
performed using bi-cubic interpolation as pre-processing step. Second, FSRCNN contains three steps
(shrinking, mapping, expanding) instead of one non-linear mapping step as in SRCNN. In this way the
input features are first shrinked, then mapped and then expanded. Third, in FSRCNN more mapping
layers are used, but smaller filter sizes. The results show that FSRCNN is 40 times faster and achieves
better results.

To further improve the performance of SRCNN, one can increase the depth of the network. However,
this has two disadvantages. First, increasing the depth of the network can lead to overfitting. Second,
it introduces more parameters causing that the model needs more storage space. In order to increase
the depth of the super-resolution network without introducing a large amount of parameters, Kim et al.
[41] proposed a Deeply Recursive Convolutional Network (DRCN) for image super-resolution. In this
network, the same convolutional layer is repeated multiple times, which causes that more recursions
are executed while the number of parameters stays the same. However, training a deep recursive
network is very hard due to exploding or vanishing gradients. To deal with this problem, all recursions
in DRCN are supervised. Furthermore, DRCN contains a skip-connection from the input to the recon-
struction layer, such that the exact low-resolution input image can be used for the recovering of the
high-resolution output image. Kim et al. also proposed another deep network, namely a Very Deep
Convolutional Network for Super-Resolution (VDSR) [42]. The architecture consists of a repetition of
convolutional and nonlinear layers. An issue that can arise when training deep networks, is that they do
not converge in a reasonable amount of time. To solve this issue, VDSR uses high learning rates and
global residual learning. Since the low-resolution image and the high-resolution images are highly cor-
related, learning only the residual (difference between the low-resolution image and the high-resolution
image) can lead to faster convergence. Furthermore, gradient clipping is introduced to solve the van-
ishing/exploding gradients problems that can occur when high learning rates are used. Although, the
very deep networks achieve good performance, they still require a large amount of parameters. There-
fore, Tai et al. [88] proposed a Deep Recursive Residual Network (DRRN) for image super-resolution,
that contains 2x less parameters than VDSR and 6x less parameters than DRCN and still achieve bet-
ter performance. The DRRN introduces besides global residual learning also local residual learning.
When a network becomes deeper it could be that details of the images disappear after many layers.
The local residual learning ensures that image details remain in the deeper layers. Furthermore, they
suggest recursive learning of residual units.

A large amount of the super-resolution methods focuses on minimizing the mean squared er-
ror (MSE). Although, this leads to recovered images with a high PSNR, the images are often over-
smoothed and do not contain high-frequency details and thus have a poor perceptual quality. To re-
cover high-resolution images with high-perceptual quality from low-resolution images, Ledig et al. [46]
presented a Generative Adversarial Network for Super-Resolution (SRGAN). This network consist of a
generator and a discriminator. The generator generates a high-resolution image from a low resolution
image and the discriminator is trained to distinguish between the recovered high-resolution images and
the real high-resolution images. SRGAN is optimized for a new perceptual loss, which consist of a con-
tent loss and an adversarial loss. Instead of using the MSE-based content loss, a loss is introduced that
is calculated on the feature maps of the VGG network [85]. The architecture of the generator, named
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SRResNet, is based on a deep Residual Network (ResNet) [26]. Lim et al. [54] proposed an Enhanced
Deep Residual Network for image Super-Resolution (EDSR). This network optimizes the SRResNet
architecture by removing the batch normalization (BN) layers. Batch normalization normalizes the in-
put of each layer and therefore the range flexibility disappears. Removing the BN layer also leads to
less GPU usage. Furthermore, Lim et al. designed a single network to enhance images with different
up-scaling factors. Sajjadi et al. [80] proposed an architecture to generate images with high perceptual
quality, called Enhancenet. This fully convolutional neural network uses a perceptual loss that focus on
creating realistic textures. To further improve the perceptual quality of super-resolution images, Wang
et al. [92] proposed an Enhanced version of SRGAN (ESRGAN). In this enhanced version three key
components of SRGAN are improved. First, all the BN layers are removed from the residual blocks.
Furthermore, the basic blocks of the network architecture are replaced with Residual-in-Residual Dense
Blocks (RRDB). Second, instead of using the original discriminator, a relativistic discriminator is used.
This relativistic discriminator predicts the probability that a real image is relatively more realistic than a
fake one instead of predicting if an images is real or super-resolved. Third, a more effective perceptual
loss is introduced. The qualitative results of ESRGAN and the results of other selected methods are
shown in Figure 2.6.

Zhang et al. [103] proposed a very deep Residual Channel Attention Network (RCAN) for image
super-resolution. They introduced a residual in residual (RIR) architecture to create a very deep net-
work. The RIR architecture consists of multiple residual groups and a long skip connection. Each
residual group consists of residual blocks and a short skip connection. Due to the several skip connec-
tions in the network, low-frequency information can be bypassed and the network can focus on learning
high-frequency information. Furthermore, they introduce a channel attention (CA) mechanism, to focus
on the most important channels. Zhang et al. [105] proposed a very deep Residual Non-local Attention
Network (RNAN). This network consists of residual local and non-local attention blocks. These blocks
consists of trunk branches and mask branches. The trunk branches are used to extract hierarchical
features and the local and non-local mask branches are used to re-scale these extracted features. An-
other attention network for super-resolution is proposed by Dai et al. [58]. This Second-order Attention
Network (SAN) for image super-resolution focus on the correlation between features in the layers. In
order to do this a second-order channel attention (SOCA) mechanism is introduced.

s
0
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Figure 2.6: Qualitative results from [92].

2.3. Face super-resolution

A specific domain in super-resolution is face super-resolution, also known as face hallucination. In this
domain, only face images are used instead of generic images. The face images contain face specific
prior knowledge, which can help to better enhance low-resolution face images. Face super-resolution
has already been used for several face-related tasks in real-world scenarios, such as face attribute
recognition [55], face alignment [8], and face recognition [7]. Recently, deep learning has been applied
for face super-resolution tasks and has achieved good results. In this section, first the state-of-the-art
networks for RGB face super-resolution are discussed. Followed by a discussion of the RGB Face
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Super-Resolution Network FSRNet and the Face Super-Resolution Generative Adversarial Network
FSRGAN [9], on which our proposed architectures are based.

Zhu et al. [108] proposed a deep Cascaded Bi-Network (CBN) for face super-resolution. The
cascaded framework is used to alternately improve two steps: dense correspondence field estimation
and face hallucination. The facial spatial information is described by a dense correspondence field. In
each iteration, the estimation of the dense correspondence field becomes more accurate because of the
improved resolution of the face image and the more accurate estimation of the dense correspondence
field helps to enhance the face image. Another face hallucination method is proposed by Song et
al. [86]. Their proposed method consist of two stages. In the first stage, the low-resolution image
is divided in five facial components: eyes, nose, mouth, eye browns and a remaining part. For each
facial component a different CNN is trained to learn a high-resolution facial component from a low-
resolution facial component. In the second stage, fine facial structures are learned from high-resolution
images and are used to better enhance the facial component. Finally, the components are brought back
together, which results in a final enhanced facial image.

Yu et al. [98] proposed a multi-task architecture for face super-resolution. The architecture consist
of two parts. One part is a Multi-Task Up-Sampling Network (MTUN), which consists two branches:
an up-sampling branch and a facial component heatmap estimation branch. A low-resolution face im-
age is first up-sampled by the up-sampling branch. Then the up-sampled feature maps are given to
the component heatmap estimation branch, which estimates facial component heatmaps. The esti-
mated facial component heatmaps and the feature maps of the up-sampled image are concatenated
and used to recover a high-resolution face image. The other part of the multi-task architecture is a
discriminative network, which is trained to distinguish between real and super-resolved face images.
The discriminative network helps to enhance facial images with a better perceptual quality.

Kim et al. [40] proposed a progressive face super-resolution network. The network consist of
a generator and a discriminator, that are progressively trained. The network takes as input a low-
resolution facial image and in several steps this image is recovered in a high-resolution facial image.
Furthermore, a facial attention loss is presented, which is calculated at each step to better enhance
facial components. Kalarot et al. [38] introduced a Component Attention Guided Face super-resolution
network, named CAGFace. The network consists of a component network and two super-resolution
stages. First, the component network is used to divide the face image in three components: hair, skin
and remaining components (eyes, eyebrows, mouth, nose, ears). From these components, attention
maps are generated. The original low-resolution images and attention maps are stacked and given
as input to the super-resolution stages, where the low-resolution face image is enhanced to a high-
resolution face image.

Ma et al. [60] introduced a Deep lIterative Collaboration (DIC) between two recurrent networks for
face super-resolution. One recurrent network focuses on the recovery of high-resolution face images
and the other recurrent network focuses on the estimation of facial landmarks. In each step, the last
outputs of each network are give as input to the other network. In this way, the two networks work
together to achieve better performance. Furthermore, Ma et al. design a new attentive fusion module
to integrate the landmark information instead of the concatenation operation.

Wang et al. [89] proposed a parsing map guided multi-scale attention network for face hallucination.
This network consist of two networks. The first is ParsingNet, which is designed to learn the prior
knowledge (e.g. a parsing map) of face images. The second network, uses the parsing map and the
low-resolution face image to recover a high-resolution face image.

2.3.1. FSRNet and FSRGAN

The foundation of our proposed architectures is the Face Super-Resolution Network (FSRNet) pro-
posed by Chen et al. [9]. FSRNet uses facial prior information, such as facial landmark heatmaps
and parsing maps, to generate high-resolution facial images from low-resolution facial images. The
network architecture of FSRNet is presented in Figure 2.7. It consists of a coarse super-resolution
network and a fine super-resolution network. The fine super-resolution again consists of three parts:
a fine SR encoder, a prior estimation network and a fine SR decoder. Below, each component of the
architecture is discussed in more detail.
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Coarse super-resolution network

Before a low-resolution image is given as input to FSRNet, it is first up-sampled with bi-cubic inter-
polation such that is has the same resolution as the high-resolution image. Then, the coarse super-
resolution image takes as input the up-sampled bi-cubic interpolated low-resolution image. The task
of the coarse super-resolution network is to coarse recover an image. The idea behind this, is that it
might be easier to estimate facial priors from a coarse high-resolution image than from a low-resolution
image. From Figure 2.7 it can be seen that the coarse super-resolution begins with a convolutional
layer with a kernel size of 3x3. This layer is followed by a batch normalization (BN) layer and a ReLU
activation function. This is followed by three residual blocks [26]. Finally, another convolutional layer
with kernel size 3x3 is used to recover the coarse image. This coarse recovered image is given as
input to both the fine super-resolution encoder and the prior estimation network.

Fine super-resolution network

Fine super-resolution encoder

The task of the fine super-resolution encoder is to extract features from the coarse recovered face im-
age. The fine super-resolution encoder begins with a convolutional layer with a kernel size of 3x3 and
stride 2. This convolutional layer down-samples the feature maps, such that it matches with the size of
the estimated prior features. The convolutional layer is followed by BN and a ReLU activation function.
Then 12 residual blocks [26] are used to extract features. Finally, the residual blocks are followed by a
convolutional layer with kernel size 3x3, BN and a RelLU activation function.

Prior estimation network

The task of the prior estimation network is to estimate facial priors, such as facial landmark heatmaps
and parsing maps, from the coarse recovered image. The prior estimation network begins with a con-
volutional layer with kernel size 7x7. Followed by BN and ReLu. Then it is followed by three residual
blocks, where the pre-processing for the HourGlass (HG) structure [66] takes place. Then the HG
structure is used to estimate the facial priors, e.g. the facial landmarks heatmaps and parsing maps,
from the face image.

Fine super-resolution decoder

The feature maps from the fine super-resolution encoder are concatenated with the estimated facial
priors (facial landmark heatmaps and parsing maps) from the prior estimation network and given as
input to the fine super-resolution decoder. The task of the super-resolution decoder is to use this in-
formation to recover a final high-resolution face image. The super-resolution decoder begins with a
3x3 convolutional layer, which is used to reduce the amount of feature maps to 64. This is followed
by a deconvolutional layer, BN and a ReLU activation function. The deconvolutional layer is used to
up-sample the feature maps to the same size as the high-resolution image. Then three residual blocks
are used to decode the features. Finally, a convolutional layer with a kernel of 3x3 is used to recover
the final high-resolution image.

The objective function of FSRNet can be defined as:
1 N
£6(®) = o > (ally” -y I +Iy - yOII2 + g6 - pOII) (2.8)
i=1

where, given the training set {x®, y(“, b(i)}’i"zl, N is the number of training images, y(” the ground-truth
high-resolution image of the low-resolution image x® and p* the ground truth prior information. Fur-
thermore, O denotes the parameter set, @ an g the weights of the coarse and prior loss respectively
and y(®, y® and p(® denote the recovered coarse super-resolution image, the high-resolution image
and the estimated prior information of the i-th image, respectively.

Besides FSRNet, Chen et al. also proposed the Face Super-resolution Generative Adversarial Network
(FSRGAN), to recover high-resolution face images with a high perceptual quality. FSRGAN consists
of two architectures, a generator and a discriminator. The generator has the same architecture as
FSRNet (see Figure 2.7). The aim of the generator is to generate super-resolved face images similar
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Figure 2.8: The discriminator architecture of FSRGAN, reproduced from [9] with images from the CelebAMask-HQ dataset [47]. Where 'k4n64s2’ means that the kernel size k is 4x4, the
number of feature maps n is 64 and the stride s is 2. The constant used in LeakyReLU is 0.2.
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to the true high-resolution face images, to fool the discriminator. The discriminator uses a PatchGAN
structure [31], to predict if each patch is real or fake. The discriminator architecture of FSRGAN is
presented in Figure 2.8.

The objective function of FSRGAN is defined as follows:

arg mFin mgtx[.,:(@) +ycLc(F, C) +vpLp (2.9)

where L¢ is the adversarial loss, Lp the perceptual loss and y¢ and yp the weights of the adversarial
loss and the perceptual loss, respectively.
The adversarial loss C is defined as:

Lc(F, C) = E[logC(y,x)] + E[log(1 — C(F(x),x))] (2.10)
where C is the probability that the input is real and E is the expectation of the probability distribution.

The perceptual loss uses high-level feature maps of the pre-trained VGG-16 network [85] to determine
perceptual important characteristics and is defined as:

Le =[l¢(y) — oWMII? (2.11)

where ¢ denoted the pre-trained VGG model which maps the images y and y to the feature space.

2.4. Thermal facial emotion recognition

Super-resolution can also be used to enhance computer vision tasks [75] [80]. In this thesis we enhance
low-resolution thermal facial expression images with the aim to improve facial emotion recognition.
Thermal super-resolution can be used as pre-processing step to improve the image quality of facial
expression images. In this section, an overview of the current thermal facial expression datasets is
presented and the current thermal facial expression methods are discussed.

Table 2.2 presents an overview of the thermal facial expression datasets. For each dataset we list
the number of subjects, the number of expressions in the dataset, the resolution of the thermal images,
the wave band of the thermal camera and if they have corresponding RGB images. It can be seen
that only a few thermal facial expression datasets have been developed. From these datasets, NIST
Equinox and IRIS are not available anymore.

For facial emotion recognition from thermal facial expression images, only little work is done. Wang
et al. [91] proposed to use the deep Boltzmann machine to learn features for emotion recognition from
thermal facial images. The region of the face is selected based on the Otsu threshold algorithm [69]
and normalized. The facial images are used to train the deep Boltzmann machine with two layers. The
results show an accuracy of 62.9%. Furthermore, if unlabeled data from other databases is added
during training, the accuracy increases to 68.2 %.

Kopaczka et al. [43] created a new dataset containing thermal videos of 215 subjects. From these
videos, 236 frames of 84 subjects are selected and manually annotated for facial emotion recogni-
tion. To evaluate the dataset, the manually annotated images are used for facial emotion recognition.
Several methods are used to extract features from the thermal images, such as coordinates of the
manually annotated landmarks, pixel intensities, HOG, LBP and dense scale-invariant features (SIFT).
For the classification of the extracted features several classifiers are used, such as linear SVM, KNN,
Binary Decision Tree (BDT), LDA, naive Bayes (NB) and RF. The highest average accuracy of 75.5%
is achieved using the dense SIFT feature extractor in combination with SVM.

Shreyas Kamath et al. [59] proposed a deep CNN for thermal facial expression recognition, called
TERNet. Furthermore, they proposed a transfer learning approach to overcome several problems, such
as limited amount of thermal facial expression data etc. First, TERNet is initialized with the weights of
the VGG-Face model [85]. Then the network is fine-tuned on the thermal facial images from Tufts
dataset [71]. The network is trained to classify images in four classes, neutral, smile, suprise and
sleepy. The results show a recognition accuracy of 96.2%.
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Table 2.2: Description of degradation models used to obtain low-resolution images. - means that the values are unknown.

Dataset Subjects Nr. of expressions Resolution thermal images Wave band RGB
NIST Equinox? 600 3 - 8-12 um, 3-5 um -
IRIS2 30 3 - 7-14 um Yes
USTC-NVIE [90] 215 6 320 x 240 8-14 um Yes
KTFE Database [68] 26 7 - 8-14 um Yes
VIS-TH [61] 50 4 160 x 120 7.5-13.5 um Yes
Thermal Face [43] 90 8 1024 x 768 7.5-14 um No
Tufts Face Database [71] 113 5 336 x 256 7.5-13.5 Yes

2The link to the dataset is not available anymore. The information about this dataset is obtained from [90].



Datasets and Architectures

The aim of this thesis is to recover high-resolution thermal facial expression images from low-resolution
thermal facial expression images and to use the super-resolved thermal facial expression images for
facial emotion recognition. To achieve this goal, we follow the pipeline that is shown in Figure 3.1. First,
in Section 3.1, the selected datasets and the pre-processing steps are discussed. Then, in Section 3.2,
the three degradation models are discussed that are used to generate low-resolution images. In Section
3.3, the two proposed thermal super-resolution architectures are presented, which are used to recover
high-resolution images from low-resolution images. Finally, in Section 3.4, the evaluation metrics, used
to evaluate the quality of the super-resolved images, are introduced.

[ , ) ] I ,  — = PSNRandSSIM
— N —_— b —_— N
»  —

Facial emotion

HR images 96 x 96 HR images LR images SR images recognition
. . 3.3 Super-resolution 3.4 Image quality
3.1 Datasets and pre-processing steps 3.2 Degradation models architectures assessment

Figure 3.1: Pipeline of the approach, with images of the VIS-TH dataset [61].

3.1. Datasets

Currently, there are only a few thermal facial expression datasets available (see Section 2.4). Moreover,
these datasets only contain a small amount of data. Training a Deep Neural Network (DNN) on a small
dataset is difficult, since the network can easily overfit. To solve this problem, we will use transfer
learning. Transfer learning uses knowledge learned from one domain (the source domain) and transfers
it to another domain (the target domain) [70]. In our case, the thermal super-resolution architectures
are first trained on the large RGB face dataset CelebAMask-HQ [47] (the source domain). Then, the
architectures are fine-tuned on the two smaller thermal facial expression datasets Thermal Face [43]
and VIS-TH [61] (the target domain). From the thermal datasets, the datasets NIST Equinox, IRIS and
USTC-NVIE were not available. Furthermore, for Tufts Face Database the RGB images and thermal
images could not be aligned and therefore it was impossible to obtain facial landmark heatmaps and
parsing maps. From the thermal datasets that were left, Thermal Face and VIS-TH were the most
suitable. In the next sections, each dataset and their pre-processing steps are discussed in more
detail.

21
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Figure 3.2: Example images of the CelebAMask-HQ dataset [47].

Figure 3.3: Example images of the Thermal Face dataset [43].

Figure 3.4: Example images of the VIS-TH dataset [61].

3.1.1. Datasets

CelebAMask-HQ dataset

The CelebAMask-HQ dataset is a large-scale RGB face dataset that contains 30000 high-resolution
face images and manually annotated masks. We have selected this dataset, because it is a large-scale
dataset with high-resolution face images and it contains manually annotated masks, which can be used
to generate parsing maps. Furthermore, we have chosen a RGB dataset instead of a thermal face
dataset, since there are currently no large-scale thermal face dataset available and previous research
have shown that RGB images could help to improve low-resolution thermal images [10] [48].

The CelebAMask-HQ dataset is based on the CelebA-HQ dataset [39], which is again based on the
CelebA dataset [57]. The CelebA dataset is a large-scale RGB into-the-wild face dataset and contains
more than 200000 face images of celebrities. Since this is an into-the-wild face dataset, the images
have different resolutions and some images contain faces of multiple people. The CelebA-HQ dataset is
a selection of the CelebA dataset, which ensures that the face images have a high-quality and that face
are centered. The final CelebA-HQ dataset consist of 30000 centered face images with a resolution
of 1024 x 1024. The CelebAMask-HQ dataset contains the same 30000 images as the CelebA-HQ
dataset only the resolution of the images is resized to 512 x 512 using bi-cubic interpolation. Figure
3.2 shows example images of the CelebAMask-HQ dataset. In addition, each face image contains a
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manually annotated mask with a resolution of 512 x 512. The manually annotated masks consist of 19
different classes, among others skin, nose, eyes, eyebrows, ears, mouth, lip and hair.

Thermal Face dataset

The fully annotated high-resolution thermal face dataset (called the Thermal Face dataset in this the-
sis) is created by Kopaczka et al. [43]. This dataset contains 2500 high-resolution face images and
manually annotated landmarks. We selected this dataset, because it contains high-resolution thermal
face images and because it contains manually annotated landmarks, which can be used to generate
facial landmark heatmaps. The 2500 thermal images are collected from 90 subjects. Each subject was
asked to sit in front of a camera which was placed at a distance of 90 cm from the subject. Furthermore,
the subjects were placed in front of a neutral background to minimize the variation. The thermal images
are captured with an Infratec HD820 high-resolution thermal infrared camera and have a resolution of
1024 x 768 pixels. The thermal images are captured in four different sequences, in which the subjects
were given different tasks to execute. In this thesis the thermal images from only one of the sequences
are used, namely the one in which the subjects had the task to show seven emotions (happiness,
sadness, anger, fear, surprise, disgust and contempt). Per emotion, three facial expression images
per subject are selected and manually annotated with the 68-landmark set. Figure 3.3 shows example
images of the Thermal Face dataset.

VIS-TH dataset

The visible and thermal paired face dataset (VIS-TH) [61] is a dataset that contains RGB facial ex-
pression images with their corresponding thermal facial expression images. We have selected this
dataset, since it contains thermal images on which the proposed thermal super-resolution architec-
tures can be trained and evaluated. In addition, it contains corresponding RGB images, from which
we can obtain facial landmarks and parsing maps. Furthermore, it was the largest thermal dataset that
was still available. The VIS-TH dataset contains 2100 images (1050 RGB and 1050 thermal) from 50
subjects (male and female) with different ages and ethnicity. The subjects were asked to sit on a chair
in front of a camera, which was placed at a distance of 1.5 meter and 1 meter above the ground. The
images were captured in a controlled environment with an average temperature of 25°C. The images
were captured with the FLIR Duo R camera, which captures RGB images with a resolution of 1920
x 1080 and thermal infrared images, in a wavelength of 7.5 - 13.5um with a resolution of 160 x 120.
For each subject, images are collected with different illumination conditions, head poses, occlusions
and facial expressions (neutral, happy, angry, sad, surprised, blinking, yawning). Figure 3.4 shows a
selection of the thermal images of the VIS-TH dataset.

3.1.2. Pre-processing steps
An overview of the pre-processing steps for the face images is presented in Figure 3.5. Below, the
details of these steps will be discussed for each dataset.

4. Generate facial

3. Resize the images to a landmarks heatmaps and
resolution of 96 x 96 parsing maps corresponding

to the images

2. Coarsely crop the
| images according to their |—»
face region

1. Convert the images to
gray-scale images

Figure 3.5: Pipeline of the pre-processing steps.

CelebAMask-HQ dataset
First, the RGB images are transformed into gray-scale images. For this, the Image module from the
Python Image Library (PIL) is used, which uses the following formula for the transformation:

Gray =0.299-R +0.587 -G + 0.114- B (3.1)

Then, the images should be coarsely cropped according to their face region. However, during the
creation of the CelebA-HQ dataset from the CelebA dataset, the images are cropped based on their
facial landmark annotations and therefore they already contain the face region. This means that the
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(a) A selection of the facial landmark heatmaps.

(b) Parsing maps, obtained with masks of the CelebAMask-HQ dataset [47].

Figure 3.6: Example images of facial prior knowledge.

images of the CelebAMask-HQ dataset also already contain the face region and therefore they are not
cropped further. Next, the gray-scale face images are resized to a resolution of 96 x 96 and these
images are regarded as the ground truth high-resolution images. Finally, the ground truth facial priors,
e.g. the facial landmark heatmaps and the facial parsing maps, are obtained. The facial landmark
heatmaps are created from the 68 facial landmark set. Since the CelebAMask-HQ dataset does not
contain facial landmark annotations, we use OpenFace [3] [4] [99] to obtain 68 facial landmarks. To
create the facial landmark heatmaps, each landmark is presented by a Gaussian kernel. This results in
68 facial landmark heatmaps. A selection of the facial landmark heatmaps is presented in Figure 3.6a.
The CelebAMask-HQ dataset contains manually annotated masks, which are used to create parsing
maps. In this thesis, global parsing maps are used instead of local parsing maps since it has been
shown by Chen et al. [9] that global parsing maps are more useful. By combining several annotated
masks, three global parsing maps are created. An example of a created global parsing maps for one
of the subjects is shown in Figure 3.6b. Finally, the images that do not contain facial parsing maps or
facial landmark heatmaps are removed from the dataset. This results in a dataset with 29505 images.

Thermal Face dataset

The Thermal Face dataset already contains gray-scale thermal images. Furthermore, the dataset con-
tains manually annotated facial landmarks. Based on these landmarks the images are cropped such
that they consist of the face region. The cropped images are resized to a resolution of 96 x 96 and
these images will be used as the ground truth high-resolution images. The final step is to obtain facial
landmark heatmaps and facial parsing maps. To obtain the facial landmark heatmaps, the manually an-
notated landmarks are re-scaled such that they correspond to the cropped thermal gray-scale images
and from these landmarks the facial landmark heatmaps are created. Since the Thermal Face dataset
does not contain annotated masks or corresponding RGB images to the thermal images, it is not pos-
sible to obtain parsing maps. In this thesis, we only use the facial expression images of 5 emotions
(anger, happiness, sadness, surprise, neutral). Furthermore, the subjects that miss images of one
of these emotions are deleted from the dataset. The final dataset contains 1110 thermal gray-scale
images from 74 participants.
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Table 3.1: Overview of the datasets with their characteristics after pre-processing.

Dataset Characteristics after pre-processing

- 29505 gray-scale images
CelebAMask-HQ - No emotion labels
- Parsing maps and facial landmark heatmaps

- 1110 thermal gray-scale images from 74 subjects
Thermal Face - 5 emotions (anger, happiness, sadness,surprise, neutral)
- Parsing maps, but no facial landmark heatmaps

- 250 thermal gray-scale images from 50 subjects
VIS-TH - 5 emotions (anger, happiness, sadness,surprise, neutral)
- Parsing maps and facial landmark heatmaps

VIS-TH dataset

The VIS-TH dataset contains RGB images and thermal images. The thermal images are used for
thermal super-resolution and for thermal facial expression recognition, the RGB images are only used
to obtain the facial landmark heatmaps and parsing maps. Since the VIS-TH dataset does not contain
facial landmarks or annotated masks, we obtain them from the RGB images. For this, the RGB images
and the gray-scale thermal images should be aligned. Therefore, each thermal gray-scale image is
resized, using bi-cubic interpolation, to approximately the same size as the corresponding RGB image,
keeping the aspect ratio of the thermal image. Then, the imregister () function from the Image
Processing Toolbox from MATLAB is used to align the RGB image with the thermal gray-scale image.
After the RGB images are aligned with the corresponding thermal images, the general pre-processing
steps as shown in Figure 3.5 are proceeded. First, the thermal TIFF images are converted to gray-
scale images. Next, the face images are cropped according to their facial landmarks. The 68 facial
landmarks are obtained with OpenFace on the RGB aligned images. Then, the cropped thermal gray-
scale images are resized to 96 x 96, which are the ground truth high-resolution images. Finally, the
obtained facial landmarks are re-scaled to the cropped face image and used to create facial landmark
heatmaps and the masks are obtained from the aligned RFB images with the Face Parsing algorithm’.
For this thesis, only the facial expression images of 5 emotions are used (anger, happiness, sadness,
surprise, neutral). This results in a final dataset of 250 thermal gray-scale images from 50 participants.
In Table 3.1 the characteristics of each dataset after pre-processing are presented.

3.2. Degradation models

For the training of the proposed thermal super-resolution architectures, pairs of high-resolution im-
ages with their corresponding low-resolution images are needed. In real world scenarios, degradation
models are unknown and only the low-resolution images are available. Real-world low-resolution im-
ages can be contaminated with four degradations, namely blur, low-resolution, artifacts and noise [49].
Often, the images are contaminated with a combination of these degradations and not only one. To
simulate real world low-resolution images, researchers have created several degradation models [53]
[101][104]. In this thesis, three different degradation models are used to obtain low-resolution images
from the ground truth high-resolution images. The first degradation model is called Bl. For this degra-
dation model bi-cubic down-sampling is used to obtain low-resolution images from the high-resolution
images. For this degradation model, three different scaling factors will be used, namely x2, x3 and x4.
This results in low-resolutions images of size 48 x 48, 32 x 32 and 24 x 24 respectively. The second
model degradation model is named BD. For this degradation model, thigh-resolution images are first
blurred with a Gaussian kernel of size 7x7 and a standard deviation of 1.6. Then, the images are bi-
cubic down-sampled with scaling factor x3. The last model is called DN. For this degradation model
first bi-cubic down-sampling with scaling factor x3 is performed. Then Gaussian noise with noise level
30 is added. Table 3.2 shows an overview of the different degradation models.

"https://github.com/zllrunning/face-parsing.PyTorch
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Table 3.2: Description of degradation models used to obtain low-resolution images.

Degradation model Description

Bl x2 Bi-cubic down-sampling with scale factor 2.
Bl x3 Bi-cubic down-sampling with scale factor 3.
Bl x4 Bi-cubic down-sampling with scale factor 4.
BD x3 First, image blurring with a Gaussian kernel of size 7x7 and standard

deviation 1.6, followed by bi-cubic down-sampling with scale factor 3.

DN x3 First, bi-cubic down-sampling with scale factor 3,
followed by adding Gaussian noise with noise level 30.

Conv
BN
RelLU
Conv
BlN

Figure 3.7: A residual block [26].

3.3. Architectures

In this thesis, we design two thermal face super-resolution architectures to enhance low-resolution
thermal facial expression images. The first architecture is the Thermal Face Super-Resolution Network
(TFSRNet). This architecture is optimized to minimize the mean squared error (MSE). This optimization
leads to super-resolved images that have a good image quality in terms of PSNR, however they often
miss high-frequency details and have a low perceptual quality [46]. Therefore, we design a second ar-
chitecture, which is the Thermal Face Super-Resolution Generative Adversarial Network (TFSRGAN).
Images enhanced by GAN-based super-resolution architectures often have a lower image quality in
terms of PSNR, but contain high-frequency details and have a high perceptual quality [46]. In the next
sections, both architectures are discussed in more detail.

3.3.1. Thermal Face Super-Resolution Network (TFSRNet)

The Thermal Face Super-Resolution Network, called TFSRNet, is based on the architecture of FSRNet,
which is discussed in Section 2.7. Just as FSRNet, our proposed architecture TFSRNet uses facial
landmark heatmaps and parsing maps to enhance low-resolution thermal face images. In addition, we
integrate an attention mechanism in TFSRNet. This attention mechanism is integrated to emphasize
the most important facial parts for each facial expression and to suppress other irrelevant facial parts.
The attention mechanism that we integrate in TFSRNet is the Convolutional Block Attention Module
(CBAM) [95]. This attention module consists of a channel attention block and a spatial attention block,
which derive attention maps. Figure 3.7 shows a residual block and Figure 3.8 shows how CBAM
can be integrated in a residual block. To integrate CBAM in FSRNet, we replace the last two residual
blocks of the fine super-resolution encoder with residual blocks with CBAM. The decision of replacing
these two residual blocks is based on experiments, which are discussed in Section 4.1. Furthermore,
TFSRNet is adapted such that it can be trained and evaluated on thermal gray-scale images instead of
RGB images and such that it can deal with images with a resolution of size 96 x 96. The final TFSRNet
architecture is presented in Figure 3.9. The objection function of TFSRNet is the same as the objective
function of FSRNet (see Equation 2.8).
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Figure 3.8: A residual block [26] with CBAM [95].

3.3.2. Thermal Face Super-Resolution Generative Adversarial Network (TFSR-

GAN)
The Thermal Face Super-Resolution Generative Adversarial Network, called TFSRGAN, is a GAN-
based architecture, which is inspired by SRGAN [46] and FSRGAN [9]. This architecture consists of a
generator network and a discriminator network. The goal of the discriminator is to distinguish between
the real high-resolution images and the super-resolved high-resolution images and the goal of the gen-
erator is to create high-resolution images from the low-resolutions images to fool the discriminator. The
generator of TFSRGAN has the same architecture as TFSRNet. The architecture of the discriminator
is presented in Figure 3.10. It consists of six convolutional layers, followed by batch normalization and
LeakyReLU activation. The LeakyReLU has been proposed by Radford et al. [74] in their architectural
guidelines for stable deep convolutional GANs. On the final feature maps a sigmoid activation function
is applied to obtain a probability for the classification of the real or fake image. The objection function
of TFSRGAN is the same as the objective function of FSRGAN (see Equation 2.9).

3.3.3. Implementation

The architectures of TFSRNet and TFSRGAN are both implemented in Pytorch. For this, we adapted
and used FSRNet? and CBAM3. The architectures are trained on a GeForce RTX 2080 Nvidia GPU.
For the training of TFSRNet, the same parameters are used as described by Chen et al. [9]. This
means that architectures are trained using the RMSprop algorithm with a learning rate of 2.5x10~* and
a batch size of 14. For the training of TFSRGAN, the Adam optimizer is used with a learning rate of
1x10~* for both the generator and the discriminator. As post-processing step, the histograms of the
low-resolution images are matched with the histograms of the super-resolved images [37].

3.4. Image quality assessment

3.4.1. Quantitative evaluation

To show the effectiveness of the two proposed thermal super-resolution architectures, the image qual-
ity of the super-resolved images will be quantitatively evaluated. For this, the most commonly used
evaluation metrics PSNR and SSIM are used, which are discussed in Section 2.2.2.

3.4.2. Facial emotion recognition

It has been shown that super-resolution can be used as pre-processing step to improve the perfor-
mance for face recognition [17]. To evaluate the performance of the two proposed super-resolution
models to enhance low-resolution images, the super-resolved images will be used for thermal facial
emotion recognition. To perform thermal facial emotion recognition we use a mobile architecture called
MobileNetV2 [82]. We use MobileNetV2, because it is able to process images with a resolution of 96 x
96. Furthermore, this network is used such that the super-resolved images can also be used on mobile
devices. The results will be evaluated based on precision, recall, f1-score and accuracy.

2https://github.com/cs-giung/FSRNet-pytorch
Shttps://github.com/Jongchan/attention-module
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Figure 3.9: The architecture of TFSRNet, with images of the VIS-TH dataset [61]. Where '’k3n64s1’ means that the kernel size k is 3x3, the number of feature maps n is 64 and the stride s is 1.
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Results and Analysis

In this chapter the results obtained with the two proposed thermal super-resolution architectures are
presented and evaluated. First, in Section 4.1, several configurations of FSRNet with the attention
mechanism CBAM are evaluated in order to find the best place in FSRNet to integrate the attention
mechanism CBAM. The best configuration is used in our two proposed thermal super-resolution archi-
tectures. The super-resolved images, obtained with these architectures, are shown and evaluated in
Section 4.2. In Section 4.3, the results of the ablation study are discussed. Finally, the super-resolved
thermal images are used for thermal facial emotion recognition. The results and analysis of the thermal
facial emotion recognition are presented in Section 4.4.

4.1. Attention integration in FSRNet

The architecture that we propose for thermal facial expression super-resolution in Section 3.3.1, is
an adapted version of FSRNet. We adapt FSRNet by integrating the Convolutional Block Attention
Module (CBAM). In order to find the best place in FSRNet to integrate CBAM, several configurations
of FSRNet with CBAM are trained and evaluated. The attention mechanism CBAM is integrated in
FSRNet by replacing one or two residual blocks in one of the three parts of the fine super-resolution
network (fine super-resolution encoder, prior estimation network or fine super-resolution decoder) with
residual block(s) with CBAM. Since layers at the beginning of the network detect basic features (such
as edges and lines) and layers at the end of the network detect more specific features of the image,
we have decided to replace the last one or the last two residual blocks in one of the three parts of the
fine-super-resolution network with residual blocks with CBAM. In this way, CBAM can focus more on
specific features and less on basic features. Furthermore, we have decided to not include CBAM in
the coarse super-resolution network since this network is only used to recover coarse details. These
decisions lead to six different configurations of FSRNet with CBAM which are presented in Table 4.1.

The six configurations are trained and evaluated on the CelebAMask-HQ dataset. For this, the
dataset is split in a train set of 29000 images and a validation set of 505 images. Each of the six
configurations is trained for 150 epochs, however the training can be stopped early if the average
SSIM value of the super-resolved images of the CelebAMask-HQ validation set does not increase
within 30 epochs. The low-resolution images for this attention integration experiment are obtained
with the Bl x4 degradation model, which is the degradation model with the largest scale factor used
in this thesis. Furthermore, for a baseline comparison, the low-resolution images are enhanced with
bi-cubic interpolation. The configuration that generates super-resolved images of the CelebAMask-HQ
validation set with the highest average SSIM value is used in the remaining parts of this thesis. The
early stopping criteria and the choice for the best configuration are based on the SSIM value instead
of the PSNR value, since SSIM better mimics human visual perception than PSNR [93].
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Table 4.1: An overview of the configurations of FSRNet with the attention mechanism CBAM.

ID Description

FSRNet-CBAM_E1 The last residual block in the fine super-resolution
encoder of FSRNet is replaced with a residual block with CBAM

FSRNet-CBAM_E2 The last two residual blocks in the fine super-resolution
encoder of FSRNet are replaced with residual blocks with CBAM

FSRNet-CBAM_P1 The last residual block in the prior estimation network
of FSRNet is replaced with a residual block with CBAM

FSRNet-CBAM_P2 The last two residual blocks in the prior estimation network
of FSRNet are replaced with residual blocks with CBAM

FSRNet-CBAM_D1 The last residual block in the fine super-resolution
decoder of FSRNet is replaced with a residual block with CBAM

FSRNet-CBAM_D2 The last two residual blocks in the fine super-resolution
decoder of FSRNet are replaced with residual blocks with CBAM

Table 4.2: Average PSNR and SSIM values of the super-resolved images of the CelebAMask-HQ validation set. Bold indicates
the best results.

Configuration PSNR SSIM

Bi-cubic interpolation 2455 0.7410
FSRNet-CBAM_E1 23.16 0.7428
FSRNet-CBAM_E2 25.54 0.7932
FSRNet-CBAM_P1 21.90 0.7252
FSRNet-CBAM_P2 21.90 0.7401
FSRNet-CBAM_D1 21.69 0.7486
FSRNet-CBAM_D2 23.68 0.7764

Table 4.2 presents the average PSNR and SSIM values of the super-resolved images of the CelebA-
Mask-HQ validation set. From this it can be seen that FSRNet where the last two residual blocks of
the fine super-resolution encoder are replaced with residual blocks with CBAM (FSRNet-CBAM_E2)
achieve the highest average PSNR and SSIM values. These average PSNR and SSIM values are
higher than the values of the images obtained with bi-cubic interpolation. Based on these results, in
our two proposed architectures, the last two residual blocks of the fine super-resolution encoder are
replaced with residual blocks with CBAM (see Figure 3.9). This configuration is used during the rest of
the experiments. Furthermore, it can be seen that the average PSNR values of the images obtained
with the other five configurations are all lower than the average PSNR value of the images obtained
with bi-cubic interpolation. The average SSIM values of the images obtained with FSRNet with CBAM
are almost all higher than the average SSIM value of the images obtained with bi-cubic interpolation.
The only exceptions are the images obtained with FSRNet where the residual blocks are replaced with
residual blocks with CBAM in the prior estimation network (CBAM_P1 and CBAM_P2). From Table
4.2, it can also be observed that replacing the last two residual blocks with residual blocks with CBAM
gives better results than replacing only the last one residual block.
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TFSRNet-ah ——— >
CelebAMask-HQ Thermal Face

TFSRGAN-ah

Pre-training stage Fine-tuning stage

Figure 4.2: Training stages of TFSRNet-ah and TFSRGAN-ah.

A selection of the images of the CelebAMask-HQ validation set are presented in Figure 4.1. The
figure shows the low-resolution images (LR), the corresponding high-resolution images (HR) and the
enhanced images obtained by bi-cubic interpolation or one of the six configurations. It can be observed
that the images obtained with the six configurations contain more facial details and sharper edges than
the images obtained with bi-cubic interpolation, where the facial details (e.g. eyes) are not visible.

4.2. Thermal super-resolution

In this section the thermal super-resolution results, obtained with the two proposed thermal super-
resolution architectures, are presented and analysed. For each architecture is denoted if they use facial
landmark heatmaps (h), parsing maps (p) and/or the attention mechanism CBAM (a). Below, first the
results of the Thermal Face dataset are discussed, followed by the results of the VIS-TH dataset.

4.2.1. Thermal Face dataset

An overview of the training stages of the two proposed thermal super-resolution architectures TFSRNet-
ah and TFSRGAN-ah, is shown in Figure 4.2. These architectures use the attention mechanism CBAM
(a) and facial landmark heatmaps (h), but no parsing maps. The reason for this is that the Thermal
Face dataset does not contain facial parsing maps and it is not possible to obtain them. The proposed
thermal super-resolution architectures are first pre-trained on the large-scale CelebAMask-HQ dataset
and then fine-tuned on the Thermal Face dataset. The low-resolution images used in these experiments
are obtained with three different degradation models, namely Bl degradation (scale x2, x3, x4), BD
degradation (scale x3) and DN degradation (scale x3), as described in Table 2.2. Since the proposed
thermal super-resolution architectures cannot reconstruct images with different up-scaling factors in
one model, separate models are trained for each degradation method. The results, obtained with the
two proposed thermal super-resolution architectures in the two training stages, are discussed below.

Pre-training stage

In this pre-training stage, the thermal super-resolution architectures TFSRNet-ah and TFSRGAN-ah
are pre-trained on the CelebAMask-HQ dataset. For this, the CelebAMask-HQ dataset is splitin a train
set of 29000 images and a validation set of 505 images. Each model is trained for 150 epochs and
the training can be terminated early if the average SSIM value of the validation set does not increase
within 30 epochs. As baseline, the low-resolution images are enhanced by bi-cubic interpolation.

Table 4.3 shows quantitative results of the super-resolved images of the CelebAMask-HQ validation
set. It can be seen that the low-resolution images enhanced by TFSRNet-ah achieve higher average
PSNR and SSIM values than the low-resolution images enhanced by bi-cubic interpolation, for all the
degradation models. Also, the low-resolution images enhanced by TFSRGAN-ah achieve higher av-
erage PSNR and SSIM values than the bi-cubic interpolated images for almost all the degradation
models, except for degradation model Bl x3. Thus, based on PSNR and SSIM, the image quality of the
super-resolved images obtained with TFSRNet-ah and TFSRGAN-ah outperforms the image quality of
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Table 4.3: Average PSNR and SSIM values of the CelebAMask-HQ validation set. Bold indicates the best results.

Degradation Bi-cubic interpolation TFSRNet-ah TFSRGAN-ah

model PSNR SSIM PSNR  SSIM PSNR SSIM

Bl x2 29.98 0.9230 31.89 0.9397 30.60 0.9246
Bl x3 26.53 0.8352 27.95 0.8658 21.60 0.7280
Bl x4 24.61 0.7556 26.17 0.8140 24.87 0.7622
BD x3 24.76 0.7633 27.73  0.8511 26.76  0.8270
DN x3 21.70 0.5422 2260 0.6433 23.20 0.6890

the bi-cubic interpolated images, for almost all the degradation models. Only the image quality of the
super-resolved images obtained with TFSRGAN-ah, for degradation model Bl x3, is worse than the
image quality of the bi-cubic interpolated images.

The qualitative results of the super-resolved images of the CelebAMask-HQ validation set are pre-
sented in Figure 4.3. For degradation models Bl x2, Bl x3, Bl x4 and BD x3, it can be seen that the
images enhanced by TFSRNet-ah are less smoothed and contain sharper edges and lines than the
bi-cubic interpolated images. Also, for these degradation models, the images enhanced by TFSRGAN-
ah contain sharper edges and lines than the bi-cubic interpolated images. Furthermore, it can be seen
that for degradation model Bl x3, the TFSRGAN-ah super-resolved images contain dark spots. Be-
cause of this, TFSRGAN-ah performs worse than bi-cubic interpolation in terms of PSNR and SSIM,
for degradation model Bl x3.

When comparing TFSRNet-ah with TFSRGAN-ah, it can be observed that the low-resolution im-
ages enhanced by TFSRNet-ah achieve higher PSNR and SSIM values than the low-resolution images
enhanced by TFSRGAN-ah, for almost all the degradation models. Only for degradation model DN x3,
TFSRGAN-ah performs better than TFSRNet-ah. That TFSRNet-ah achieves higher PSNR and SSIM
values than TFSRGAN-ah is as expected, because previous research has shown that MSE-based
approaches score better on these metrics than GAN-based approaches [9] [46]. Although, the GAN-
based approaches do not score high in terms of PSNR and SSIM, they generate images with a high
perceptual quality [46]. However, when looking at the images obtained with TFSRGAN-ah, it can be
seen that some contain artifacts and that the perceptual quality of the images of TFSRGAN-ah is not
better than the perceptual quality of the images of TFSRNet-ah. Since GANs are hard to train and need
a lot of hyperparameter tuning to perform well [22] [81], it can be that our models are not trained well
with optimal parameters. Only for degradation model DN x3, the images obtained with TFSRGAN-ah
are better than the images obtained with TFSRNet-ah in terms of PSNR, SSIM and perceptual quality.
However, the low-resolution images obtained with this degradation model contain a lot of noise and for
this degradation model it is hard to recover high-resolution images that are similar to the ground truth
high-resolution images.
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(e) Degradation model DN x3

Figure 4.3: Visual results of the proposed super-resolution methods for the CelebAMask-HQ dataset.

Fine-tuning stage

In this fine-tuning stage, the pre-trained architectures TFSRNet-ah and TFSRGAN-ah are fine-tuned on
the Thermal Face dataset. For each degradation model, the networks are initialized with the weights
of the pre-trained network. For training and evaluation of the Thermal Face dataset, 10-fold cross-
validation is used. For this, the Thermal Face dataset is first divided into 10 folds. Then, 10 iterations
are run. In each iteration, 1 of the 10 folds is selected once as test set. From the remaining 9 folds, a
validation set is randomly selected and the rest is used as train set. The train set is used to train the
networks, the validation set is used to evaluate the networks during training and the test set is used un-
seen data on which the final models are evaluated. For fair evaluation, it is important to ensure that the
facial expression images of one subject occur either in the train set or the validation set or the test set
and that the images of one subject do not overlap. The two proposed architectures are trained for 200
epochs on each train set of the Thermal Face dataset. The reason that the architectures are trained for
200 epochs instead of 150 epochs, is that the results improve further when training the architectures for
more epochs. As baseline evaluation, the low-resolution images are enhanced by bi-cubic interpolation.

The average PSNR and SSIM values of the super-resolved images of the Thermal Face dataset
are presented in Table 4.4. It can be seen that, super-resolved images by TFSRNet-ah achieve lower
PSNR and SSIM values than bi-cubic interpolated images, for degradation model Bl x2. For degrada-
tion model Bl x3, super-resolved images by TFSRNet-ah achieve a lower PSNR value but a higher
SSIM value than bi-cubic interpolated images. For degradation models Bl x4, BD x3 and DN x3,
TFSRNet-ah achieves higher PSNR and SSIM values than bi-cubic interpolated images. In terms of
PSNR and SSIM, TFSRNet-ah outperforms bi-cubic interpolation for larger degradation models (Bl x4,
BD x3, DN x3), but not for smaller degradation models (Bl x2, Bl x3). For larger degradation models,
more information gets lost which is hard to construct correctly with bi-cubic interpolation. Furthermore,
it can be seen that the super-resolved images by TFSRGAN-ah achieve lower PSNR and SSIM val-
ues than the bi-cubic interpolated images, for almost all the degradation models. Only for degradation
model DN x3, TFSRGAN-ah achieve better PSNR and SSIM values than bi-cubic interpolated images.
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Table 4.4: Average PSNR and SSIM values of the Thermal Face dataset. Bold indicates the best results.
Degradation Bi-cubic interpolation TFSRNet-ah TFSRGAN-ah
model PSNR SSIM PSNR SSIM PSNR SSIM
Bl x2 39.07 0.9758 35.27 0.9697 32.58 0.9161
Bl x3 34.58 0.9431 34.45 0.9462 29.17 0.8354
Bl x4 31.74 0.9047 3245 0.9163 29.37 0.8551
BD x3 32.23 0.9094 33.77 0.9325 27.90 0.8261
DN x3 22.57 0.4258 26.08 0.7627 25.60 0.7418

Figure 4.4 shows qualitative results of the super-resolved images of the Thermal Face dataset. It
can be seen that the super-resolved images by TFSRNet-ah are less blurred than the bi-cubic inter-
polated images and that the facial details are better visible, for degradation model Bl x3, Bl x4, BD x3,
DN x3. For degradation model Bl x2, the difference between the bi-cubic interpolated images and the
super-resolved images by TFSRNet-ah is subtle. Furthermore, it can be seen that the images super-
resolved by TFSRGAN-ah contain artifacts and dark spots (e.g. in the region of the eyes), for aimost all
the degradation models. Because, of this they achieve lower PSNR and SSIM values than the bi-cubic
interpolated images. Only for degradation model DN x3, the images super-resolved by TFSRGAN-ah
have a better perceptual quality than the bi-cubic interpolated images.

The images super-resolved by TFSRNet-ah outperform the images super-resolved by TFSRGAN-
ah. Due to the artifacts that occur on the super-resolved images of TFSRGAN-ah, they achieve lower
PSNR and SSIM values and a lower perceptual quality than the super-resolved images of TFSRNet-ah.

LR Bi-cubic

TFSRNet-ah

(a) Degradation model Bl x2

TFSRGAN-ah

HR
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Figure 4.4: Visual results of the proposed super-resolution methods for the Thermal Face dataset.
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Figure 4.5: Training stages of TFSRNet-ahp and TFSRGAN-ahp.

4.2.2. VIS-TH dataset

An overview of the training stages of the two proposed thermal super-resolution architectures TFSRNet-
ahp and TFSRGAN-ahp, is shown in Figure 4.5. These architectures use the attention mechanism
CBAM (a), facial landmark heatmaps (h) and parsing maps (p). The proposed thermal super-resolution
architectures are first pre-trained on the large-scale CelebAMask-HQ dataset and then fine-tuned on
the VIS-TH dataset. For this, the low-resolution images are again obtained with the three different
degradation models as described in Table 2.2. The results, obtained with the two proposed thermal
super-resolution architectures in the two training stages, are discussed below.

Pre-training stage

In this pre-training stage, the thermal super-resolution architectures TFSRNet-ahp and TFSRGAN-ahp
are pre-trained on the CelebAMask-HQ dataset. For this, the CelebAMask-HQ dataset is splitin a train
set of 29000 images and a validation set of 505 images. Each model is trained for 150 epochs and
the training can be terminated early if the average SSIM value of the validation set does not increase
within 30 epochs. As baseline, the low-resolution images are enhanced by bi-cubic interpolation.

Table 4.5 shows the quantitative results of TFSRNet-ahp and TFSRGAN-ahp on the validation set
of the CelebAMask-HQ dataset. It can be seen that the images enhanced by TFSRNet-ahp achieve
better average PSNR and SSIM values than the images enhanced by bi-cubic interpolation, for all the
degradation models. Also, the images enhanced by TFSRGAN-ahp achieve better average PSNR and
SSIM values than the images enhanced by bi-cubic interpolation, for all the degradation model. Thus,
according to the PSNR and SSIM values, the image quality of the super-resolved images by the two
proposed architectures TFSRNet-ahp and TFSRGAN-ahp outperform the image quality of the bi-cubic
interpolated images, for all the degradation models.

Table 4.5: Average PSNR and SSIM values of the CelebAMask-HQ validation set. Bold indicates the best results.

Degradation Bi-cubic interpolation TFSRNet-ahp TFSRGAN-ahp
model PSNR SSIM PSNR SSIM PSNR SSIM
Bl x2 29.98 0.9230 30.93 0.9239 30.39 0.9187
Bl x3 26.53 0.8352 28.30 0.8761 27.06 0.8204
Bl x4 24.61 0.7556 26.11 0.8027 25.72 0.7819
BD x3 24.76 0.7633 27.86 0.8541 26.82 0.8265

DN x3 21.70 0.5422 23.22 0.6909 2249 0.6526
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Figure 4.6 shows the qualitative results of the super-resolved images of TFSRNet-ahp and TFSRGAN-
ahp for the CelebAMask-HQ validation set. From this it can be seen that the super-resolved images
obtained by TFSRNet-ahp contain sharper lines and edges and sharper facial details than the images
enhanced by bi-cubic interpolation, for all the degradation models. Also, the images super-resolved by
TFSRGAN-ahp are less smoothed and contain sharper facial details than the bi-cubic interpolated im-
ages, for all the degradation model. The perceptual quality of the super-resolved images by TFSRNet-
ahp and TFSRGAN-ahp is higher than the perceptual quality of the bi-cubic interpolated images, which
corresponds to the higher PSNR and SSIM values.

When comparing TFSRNet-ahp and TFSRGAN-ahp, it can be seen that TFSRNet-ahp outperforms
TFSRGAN-ahp in terms of PSNR and SSIM. This is as expected, since in previous research GAN-
based approaches achieve lower PSNR and SSIM values than MSE-based approaches [46]. Although,
GAN-based approaches achieve images with a higher perceptual quality [46]. However, when looking
at the super-resolved images the difference between the super-resolved images of TFSRNet-ahp and
TFSRGAN-ahp is subtle for the Bl degradation models. For degradation models BD x3 and DN x3, the
results of TFSRNet-ahp even look slightly better than the results of TFSRGAN-ahp. Thus, based on the
perceptual quality of the super-resolved images, TFSRGAN-ahp does not outperform TFSRNet-ahp.

LR Bi-cubic TFSRENet-ahp TFSRGAN-ahp HR

(a) Degradation model Bl x2
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LR Bi-cubic TFSRNet-ahp TFSRGAN-ahp HR

(d) Degradation model BD x3
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Figure 4.6: Visual results of the proposed super-resolution methods for the CelebAMask-HQ dataset.
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Fine-tuning stage

In this fine-tuning stage, the pre-trained architectures TFSRNet-ahp and TFSRGAN-ahp are fine-tuned
on the VIS-TH dataset. For the training and evaluation of the VIS-TH dataset 10-fold cross-validation
is used. For fair evaluation, it is again important to ensure that the facial expression images of one
subject only occur in the train set or the validation set or the test set. The two proposed architectures
are trained for 200 epochs on each train set of the VIS-TH dataset. As baseline evaluation, the low-
resolution images are enhanced by bi-cubic interpolation.

Table 4.6 shows the quantitative results of the images of the VIS-TH dataset. The images super-
resolved by TFSRNet-ahp achieve lower PSNR and SSIM values than the bi-cubic interpolated images,
for almost all the degradation models. Only for degradation model DN x3, the average PSNR and SSIM
values of the images enhanced by TFSRNet-ahp are higher than the values of bi-cubic interpolated im-
ages. Also, the images enhanced by TFSRGAN-ahp achieve lower PSNR and SSIM values than the
bi-cubic interpolated images, for all the degradation models except DN x3. This means that the image
quality of the images super-resolved by TFSRNet-ahp and TFSRGAN-ahp is worse than the image
quality of the bi-cubic interpolated images in terms of PSNR and SSIM, for almost all the degradation
models. Only for degradation model DN x3, the image quality of the super-resolved images is better
than the image quality of the bi-cubic interpolated images in terms of PSNR and SSIM.

The qualitative results of the super-resolved images of the VIS-TH dataset are presented in Figure
4.7. It can be seen that for degradation model Bl x2, Bl x3, Bl x4 and BD x3, the images obtained by
bi-cubic interpolation are more blurred than the super-resolved images obtained by TFSRNet-ahp and
TFSRGAN-ahp. Furthermore, it can be seen that the super-resolved images obtained by TFSRNet-ahp
and TFSRGAN-ahp contain some artifacts (for example in the nose region). For degradation model
DN x3, the super-resolved images obtained by TFSRNet-ahp and TFSRGAN-ahp contain more facial
details than the bi-cubic interpolated images. However, they are not similar to the ground truth high-
resolution images.

The two proposed architectures, perform worse than bi-cubic interpolation in terms of PSNR and
SSIM for almost all the degradation models. The reason for this is that the quality of the ground truth
high-resolution images is poor. The ground truth high-resolution images are blurred and do not con-
tain sharp facial details. When using bi-cubic interpolation to enhance the low-resolution images, it
generates blurred images [29]. Comparing blurred bi-cubic interpolated images with blurred ground
truth high-resolution images, results in high PSNR and SSIM values. In contrast, the super-resolution
images enhanced by TFSRNet-ahp and TFSRGAN-ahp contain sharper facial detail, but also artifacts.
Comparing these super-resolved images with the blurred ground truth high-resolution images, results
in lower PSNR and SSIM values. Only for degradation model DN x3, the results of the super-resolved
images obtained by TFSRNet-ahp and TFSRGAN-ah are better than the bi-cubic interpolated images.
However, the super-resolved images still have a poor perceptual quality.

Table 4.6: Average PSNR and SSIM values of the VIS-TH dataset. Bold indicates the best results.

Degradation Bi-cubic interpolation TFSRNet-ahp TFSRGAN-ahp
model PSNR SSIM PSNR SSIM PSNR SSIM
Bl x2 43.91 0.9906 33.64 0.9632 29.67 0.9331
Bl x3 38.12 0.9714 31.81 0.9456 29.54 0.8864
Bl x4 34.41 0.9412 27.43 0.9067 31.65 0.8926
BD x3 34.86 0.9436 32.30 0.9337 26.65 0.7883

DN x3 22.08 0.3936 26.12 0.7645 25.63 0.7102
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Figure 4.7: Visual results of the proposed super-resolution methods for the VIS-TH dataset.

4.3. Ablation study

In order to find the effects of adding facial priors (e.g. facial landmark heatmaps and parsing maps) and
an attention mechanism (e.g. CBAM) to the thermal facial expression super-resolution architectures,
an ablation study is performed. The ablation study is performed for different configurations of TFSR-
Net, since the previous results show that this architecture obtained better super-resolved images than
TFSRGAN. As baseline, an architecture without the prior estimation network and without CBAM is used
for thermal super-resolution. The other configurations of TFSRNet are obtained by adding facial land-
mark heatmaps (h), parsings maps (p) and/or CBAM (a) in different combinations. The low-resolution
images used for the ablation study are obtained with degradation model Bl x4, which is the degradation
model with the largest scale factor used in this thesis.

The results of the ablation study are presented in Table 4.7. For the CelebAMask-HQ dataset, it
can be seen that images enhanced by the baseline architecture achieve the lowest average PSNR
and SSIM values compared to the images enhanced by the configurations of TFSRNet. This shows
that using facial landmark heatmaps, parsing maps and/or CBAM in TFSRNet, lead to an improve-
ment of the image quality of the super-resolved images, in terms of PSNR and SSIM. In Figure 4.8,
a comparison of the qualitative results of the different configurations is presented. From this it can be
seen that the perceptual quality of the images obtained by the baseline architecture is the worst. The
images are blurred and do not contain sharp facial details. Furthermore, it can be seen that the images
super-resolved by the other configurations are less blurred and contain sharper facial details.

Furthermore, it can be seen in Table 4.7, that also for the Thermal Face dataset, the images en-
hanced by the baseline architecture achieve the lowest average PSNR and SSIM values compared to
the images enhanced by the other configurations of TFSRNet. This indicates, that for the Thermal Face
dataset the image quality of the super-resolved images increases when CBAM and/or heatmaps are
used. Since the Thermal Face dataset does not contain parsing maps, it is not possible to investigate
what the effect is of using parsing maps for thermal facial super-resolution. Figure 4.9 shows a compar-
ison of the qualitative results of the different configurations of the images of the Thermal Face dataset.
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It can be seen that the differences between the images enhanced by the different configurations is
subtle.

Finally, it can be seen in Table 4.7, that for the VIS-TH dataset, the images enhanced by the baseline
architecture achieve the lowest SSIM compared to the other configurations. This indicates that using
facial landmark heatmaps, parsing maps and/or CBAM in TFSRNet, lead to an improvement of the
image quality of the super-resolved images, in terms of SSIM. However, the lowest PSNR is achieved
when the images are enhanced by TFSRNet-ahp. This indicates that using CBAM in combination with
facial landmark heatmaps and parsing maps results in worse image quality, in terms of PSNR. In Figure
4.10 the qualitative results of the images obtained with the different configuration are presented. It can
be seen that the images enhanced by the baseline architecture contain some light spots. Furthermore, it
can be seen thatimages enhanced by the other architectures contain some artifacts, but the differences
between the super-resolved images is small.

Table 4.7: Average PSNR and SSIM values of the different datasets.

CelebAMask-HQ Thermal Face VIS-TH

Configuration PSNR SSIM PSNR SSIM PSNR SSIM

Baseline 2468 0.7520 29.89 0.8837 29.30 0.8931
TFSRNet-ahp 26.11  0.8027 - - 27.43 0.9067
TFSRNet-ap 25.65 0.7893 - - 32.68 0.9341
TFSRNet-hp 26.09 0.8040 - - 3211 0.9344
TFSRNet-p 26.08 0.8110 - - 33.06 0.9376
TFSRNet-ah 26.17 0.8140 3245 0.9163 32.01 0.9300
TFSRNet-h 26.08 0.8083 32.26 0.9089 32.04 0.9311
TFSRNet-a 26.16  0.8041 30.71 0.9063 29.45 0.9138

4.4. Thermal facial emotion recognition

In this section the results of the thermal facial emotion recognition are presented and evaluated. Ther-
mal super-resolution can be used as pre-processing step to improve the image quality for facial emotion
recognition. To show the effectiveness of the two proposed architectures, TFSRNet-ah and TFSRGAN-
ah, the thermal super-resolved images obtained with these two architectures are used for facial emotion
recognition. As baseline, the low-resolution images are enhanced by bi-cubic interpolation and used
for thermal facial emotion recognition. Finally, we perform facial emotion recognition on the ground
truth high-resolution images.

The results in Section 4.2.2 show that the ground truth high-resolution images of the VIS-TH dataset
have a poor quality. Besides, the dataset only contains 250 images, which is a small amount of data.
Due to the poor quality of the ground truth high-resolution images and the small size of the VIS-TH
dataset, this dataset is not suitable for thermal facial emotion recognition. Therefore, in this section we
only discuss the thermal facial emotion recognition results of the Thermal Face dataset and the results
of the thermal facial emotion of VIS-TH dataset will be further discussed in Section 5.1.1.

For thermal facial emotion recognition, we use the pre-trained MobileNetV2 architecture. Figure
4.11 shows the training stages of the MobileNetV2. We use the architecture that is already pre-trained
on the ImageNet dataset [12], which is a dataset with generic images but no facial images. Since we
want to use the pre-trained architecture for facial emotion classification, the model is fine-tuned in two
stages. First, the pre-trained MobileNetV2 is fine-tuned on the large scale face dataset CelebAMask-
HQ dataset. This model is fine-tuned for 150 epochs with a patience value of 20. This means that if
the validation loss does not decrease within 20 epochs, the training is stopped early. After fine-tuning
MobileNetV2 on the CelebAMask-HQ dataset, the model is fine-tuned on the Thermal Face dataset.
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Figure 4.9: Visual results of super-resolved images of the Thermal Face dataset.
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MobileNetV2 ImageNet CelebAMask-HQ Thermal Face

Pre-training stage Fine-tuning stage 1 Fine-tuning stage 2

Figure 4.11: Training stages of MobileNetV2.

For the fine-tuning of MobileNetV2 on the Thermal Face dataset, 10-fold cross-validation is used. For
fair evaluation, the folds are split in such a way that the facial expressions images of one subject only
occur in either the train set or the validation set or the test set.

The emotion classification results of the ground truth high-resolution images of the Thermal Face
dataset are shown in Table 4.8 and the emotion classification results of the bi-cubic interpolated and
super-resolved images are shown in Table 4.9. From these tables, it can be seen that the highest
classification accuracy is 61.35 % and that it is obtained with the ground truth high-resolution images.
This is as expected, since the ground truth high-resolution images have the best image quality.

From the emotion classification results presented in Table 4.9 a few observations can be made.
First, we compare the classification results of the bi-cubic interpolated images with the classification
results of images super-resolved by TFSRNet-ah. It can be seen that for degradation model Bl x2 and
BI x3, the emotion classification accuracy of the bi-cubic interpolated images is better than the emotion
classification accuracy of the super-resolved images of TFSRNet-ah. However, for degradation models
Bl x4, BD x3 and DN x3, it can be seen that the emotion classification accuracy of the super-resolved
images of TFSRNet-ah is better than the emotion classification accuracy of the bi-cubic interpolated
images. These results correspond to the super-resolution results of the Thermal face dataset discussed
in Section 4.2.1. For small degradation models, the bi-cubic interpolated images are more similar to
the high-resolution images and therefore they achieve a higher classification accuracy than images
super-resolved by TFSRNet-ah. For larger degradation models or degradation models with more blur
or noise, the images super-resolved by TFSRNet-ah are more similar to the high-resolution images
and therefore they achieve a higher classification accuracy than bi-cubic interpolated images.

Second, we compare the classification results of the bi-cubic interpolated images with the clas-
sification results of images super-resolved by TFSRGAN-ah. It can be seen that the classification
results of the bi-cubic interpolated images outperform the classification results of the super-resolved
images by TFSRGAN-ah, for almost all the degradation models. Only for degradation model DN x3,
the classification accuracy of the super-resolved images by TFSRGAN-ah is higher than the accuracy
of the bi-cubic interpolated images. These results also correspond to the super-resolution results of
the Thermal Face dataset in Section 4.2.1. For degradation model DN x3, the bi-cubic interpolated
images contain a lot of noise and almost no facial details, which makes facial emotion classification
hard. The super-resolved images by TFSRGAN-ah contain better facial details and achieve better
emotion classification accuracy. However, the accuracy is only 27.39 %, since the images still differ
from the high-resolution images. For the other degradation models, the bi-cubic interpolated images
are more similar than the super-resolved images by TFSRGAN-ah and therefore they achieve a higher
classification results. The reason that TFSRGAN-ah does not achieve the expected results and fails to
generate high-resolution images is because the TFSRGAN-ah introduces artifacts, which reduce the
image quality. Furthermore, TFSRGAN-ah fails to recover high-resolution images since GANs are hard
to train [22] [81].

Finally, we compare the classification results of the super-resolved images by TFSRNet-ah with the
super-resolved images by TFSRGAN-ah. It can be seen that TFSRNet-ah outperforms TFSRGAN-ah
for all the degradation models, which again corresponds to the super-resolution results in section 4.2.1.
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Table 4.8: Emotion classification results of the ground truth high-resolution images of the Thermal Face dataset.

Table 4.9: Emotion classification results for the Thermal Face dataset. Bold indicates the best results.

Emotion Precision Recall F1-score
Anger 0.64 0.64 0.64
Happiness 0.81 0.84 0.83
Sadness 0.50 0.40 0.44
Surprise 0.67 0.70 0.69
Neutral 0.43 0.48 0.45
Average 0.61 0.61 0.61
Accuracy 61.35%

Degradation
model

Bi-cubic interpolated

Super-resolved TFSRNet-ah

Super-resolved TFSRGAN-ah

Emotion Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
Anger 0.59 0.65 0.62 0.55 0.60 0.57 0.55 0.68 0.60
Happiness 0.80 0.82 0.81 0.73 0.80 0.76 0.80 0.79 0.80
Sadness 0.42 0.38 0.40 0.41 0.32 0.37 0.42 0.35 0.38
Bl x2 Surprise 0.71 0.68 0.70 0.58 0.71 0.64 0.55 0.66 0.60
Neutral 0.42 0.43 0.42 0.44 0.35 0.39 0.35 0.27 0.30
Average 0.59 0.59 0.59 0.54 0.56 0.55 0.54 0.55 0.54
Accuracy 59.19% 55.68% 54.86%
Anger 0.54 0.61 0.58 0.49 0.65 0.56 0.39 0.64 0.48
Happiness 0.78 0.77 0.78 0.74 0.78 0.76 0.56 0.68 0.61
Sadness 0.46 0.36 0.40 0.35 0.33 0.34 0.34 0.14 0.20
BI x3 Surprise 0.58 0.68 0.63 0.64 0.59 0.61 0.50 0.52 0.51
Neutral 0.42 0.39 0.41 0.39 0.31 0.35 0.37 0.25 0.30
Average 0.56 0.56 0.56 0.52 0.53 0.52 0.43 0.45 0.42
Accuracy 56.31% 53.15% 44.68%
Anger 0.48 0.62 0.54 0.51 0.59 0.55 0.52 0.56 0.54
Happiness 0.72 0.68 0.70 0.67 0.75 0.71 0.57 0.63 0.60
Sadness 0.42 0.36 0.39 0.36 0.27 0.31 0.35 0.28 0.31
Bl x4 Surprise 0.54 0.55 0.54 0.59 0.61 0.60 0.55 0.59 0.57
Neutral 0.38 0.34 0.36 0.40 0.36 0.38 0.33 0.31 0.32
Average 0.51 0.51 0.51 0.50 0.52 0.51 0.46 0.47 0.47
Accuracy 51.08% 51.80% 47.48%
Anger 0.49 0.60 0.54 0.51 0.59 0.55 0.37 0.51 0.43
Happiness 0.74 0.70 0.72 0.70 0.71 0.70 0.49 0.61 0.55
Sadness 0.33 0.26 0.30 0.38 0.36 0.37 0.34 0.20 0.25
BD x3 Surprise 0.53 0.60 0.56 0.57 0.64 0.60 0.43 0.50 0.46
Neutral 0.40 0.35 0.38 0.47 0.36 0.40 0.29 0.19 0.23
Average 0.50 0.50 0.50 0.52 0.53 0.52 0.39 0.40 0.38
Accuracy 50.36% 52.97% 40.18%
Anger 0.22 0.24 0.23 0.33 0.38 0.35 0.28 0.30 0.29
Happiness 0.26 0.22 0.23 0.30 0.30 0.30 0.29 0.31 0.30
Sadness 0.21 0.21 0.21 0.21 0.17 0.18 0.22 0.17 0.19
DN x3 Surprise 0.21 0.23 0.22 0.32 0.35 0.33 0.33 0.36 0.34
Neutral 0.26 0.25 0.26 0.26 0.25 0.25 0.22 0.24 0.23
Average 0.23 0.23 0.23 0.28 0.29 0.28 0.27 0.27 0.27
Accuracy 22.97% 28.83% 27.39%
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4.5. Summary

In this chapter, we have presented the thermal super-resolution results for the Thermal Face dataset
and for the VIS-TH dataset. First, we have used different degradation models (Bl x2, Bl x3, Bl x4, BD
x3 and DN x3) to simulate real-world low-resolution images. Then, we trained the two proposed ther-
mal super-resolution networks, TFSRNet and TFSRGAN, to recover high-resolution images from the
low-resolution images. As baseline, the low-resolution images are enhanced by bi-cubic interpolation.

For the Thermal Face dataset, it was not possible to obtain parsing maps, since the dataset did not
contain annotated masks or RGB images corresponding to the thermal images. The thermal super-
resolution networks therefore only used facial landmark heatmaps (h) and the attention mechanism
CBAM (a) to enhance low-resolution thermal images of the Thermal Face dataset. The results show
that TFSRNet-ah is effective in enhancing images of larger degradation models, such as Bl x4, BD
x3 and DN x3. Furthermore, the results show that TFSRGAN-ah is effective to enhance images of
degradation model DN x3. However, for the other degradation models TFSRGAN-ah fails to enhance
better images than bi-cubic interpolation. The images enhanced by TFSRGAN-ah are worse than the
bi-cubic interpolated images, because the GAN-based super-resolution network introduces artifacts.
Furthermore, GAN-based super-resolution networks are hard to train [22] [81], and it can be that our
GAN-based super-resolution network fails to learn the most optimal images.

For the VIS-TH dataset, the thermal super-resolution networks use facial landmark heatmaps (h),
parsing maps (p) and the attention mechanism CBAM (a), to enhance low-resolution thermal facial
expression images. The results show that TFSRNet-ahp and TFSRGAN-ahp are only effective to en-
hance images of degradation model DN x3. For the other degradation models, the bi-cubic interpolated
images outperform the images enhanced by TFSRNet-ahp and TFSRGAN-ahp. The reason for this
is the poor quality of the ground truth high-resolution images of VIS-TH dataset. The high-resolution
images are blurred and therefore the bi-cubic interpolated images, which are also blurred, are more
similar to the high-resolution images in terms of PSNR and SSIM.

Furthermore, we performed an ablation study to explain the effects of using facial prior knowledge,
such as facial landmark heatmaps and parsing maps, and the attention mechanism CBAM to enhance
low-resolution thermal images. From the thermal super-resolution results it could be observed that the
images enhanced by TFSRNet have a better image quality than the images enhanced by TFSRGAN.
For this reason, the ablation study is only performed for different configurations of TFSRNet and only
for low-resolution images obtained with degradation model Bl x4, which is the largest scale factor used
in this thesis. As baseline network, we trained a network that does not use facial landmark heatmaps,
parsing maps and the attention mechanism CBAM. For the Thermal Face dataset, the results show that
the image quality of the super-resolved images, in terms of PSNR and SSIM, is better when TFSRNet
uses either facial landmark heatmaps, CBAM or a combination of these two. Since it was not possible
to obtain parsing maps for the Thermal Face dataset, the effect of using parsing maps to enhance
low-resolution images of this dataset is unknown. For the VIS-TH dataset, the image quality of the
super-resolved images improve in terms of SSIM when using either facial landmark heatmaps, parsing
maps and the attention mechanism CBAM.

Finally, to show the effectiveness of the thermal super-resolution architectures we have used the
super-resolved images for thermal facial emotion recognition. For the Thermal Face dataset, the high-
est facial emotion recognition accuracy is obtained when using the ground truth high-resolution images.
This makes sense, since these images have the best image quality, from which more useful features
can be extracted. For small degradation models, such as Bl x2 an Bl x3, bi-cubic interpolated images
achieve higher emotion classification accuracy than images enhanced by TFSRNet-ah or TFSRGAN-
ah. For larger degradation models Bl x4, BD x3, DN x3, images enhanced TFSRNet-ah achieve
higher emotion classification accuracy than bi-cubic interpolated images. The images enhanced by
TFSRGAN-ah achieve a lower emotion classification accuracy than the bi-cubic interpolated images
for all the degradation models. This is because the quality of these super-resolved images is not that
good and they contain artifacts. From the thermal super-resolution results we noticed that the ground
truth high-resolution images from the VIS-TH dataset have a poor image quality. Furthermore, the size
of image dataset is small, only 250 images. Because of this, the dataset was not suitable for facial
emotion recognition and the results of this dataset will be further discussed in Section 5.1.1.
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In this thesis, we aimed to use super-resolution to recover high-resolution thermal facial expression
images from low-resolution thermal facial expression images and to use the thermal super-resolved
facial expression images for facial emotion recognition. To achieve this goal, we formulated a set of
research questions that needed to be answered. In this chapter, we summarize our findings related to
the research questions. Furthermore, we discuss the limitations of our research and give suggestions
for future research.

5.1. Discussion

In this section, we reflect on the approaches we used, the limitations of these approaches and what we
have learned from this.

5.1.1. Image quality of the thermal facial expression datasets

For a Deep Neural Network (DNN) to work well and to prevent it from overfitting, a large amount of
data is needed. As discussed in Section 2.4, there are only a few thermal facial expression datasets
available. From the available thermal facial expression datasets, we have selected the Thermal Face
dataset and the VIS-TH dataset for thermal super-resolution and facial emotion recognition. In this
section, we reflect on the choice of these datasets.

Thermal Face dataset

The results of the Thermal Face dataset show that images enhanced by TFSRNet-ah have a better
image quality in terms of PSNR and SSIM than bi-cubic interpolated images, for large degradation
models, such as Bl x4, BD x3 and DN x3. For these degradation models, the emotion classification ac-
curacy obtained with the images recovered by TFSRNet-ah also achieve a higher emotion classification
accuracy than the bi-cubic interpolated images. These results shows that our proposed architecture
TFSRNet-ah is effective in enhancing thermal facial expression images of the Thermal Face dataset,
especially for large degradation models. The only limitation of the Thermal Face dataset is that it does
not contain parsing maps and that it was not possible to obtain the parsing maps, since the dataset
does not contain RGB images or manually annotated masks. Because of this, we could not investigate
the effect of using parsing maps for thermal facial expression super-resolution.

VIS-TH dataset

The results show, that our two proposed thermal super-resolution architectures, TFSRNet-ahp and
TFSRGAN-ahp, fail to enhance images of the VIS-TH dataset with a better image quality (in terms of
PSNR and SSIM) than bi-cubic interpolated images, for almost all the degradation models. Only for
degradation model DN x3, the super-resolved images outperform the bi-cubic interpolation images.
That the bi-cubic interpolated images outperform the super-resolved images for almost all the degra-
dation models is because of the poor quality of the ground truth high-resolution images. Figure 5.1
presents the ground truth high-resolution images of the VIS-TH dataset and Figure 5.2 presents the
ground truth high-resolution images of the Thermal Face dataset. In contrast to the high-resolution
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Figure 5.1: Ground truth high-resolution images of the VIS-TH dataset.
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Figure 5.2: Ground truth high-resolution images of the Thermal Face dataset.

images of the Thermal Face dataset, the high-resolution images of the VIS-TH dataset do not contain
sharp facial details and they are blurred. When using bi-cubic interpolation to recover low-resolution
images, it generates blurred images without sharp facial details [29]. Thus, when the bi-cubic interpo-
lated images are compared with the ground truth high-resolution images, they are more similar in terms
of PSNR and SSIM, than the super-resolved images.

The VIS-TH dataset is also used for thermal facial emotion recognition. For thermal facial emotion
recognition we used the pre-trained MobileNetV2 architecture. This architecture is already pre-trained
on the ImageNet dataset [12]. Since this dataset does not contain face images, we first fine-tune the
model on the large-scale CelebAMask-HQ dataset. This model is fine-tuned for 150 epochs with a
patience value of 20. This means that if the validation loss does not decrease within 20 epochs, the
training is stopped early. Finally, the model is fine-tuned on the VIS-TH dataset. For the fine-tuning
of MobileNetV2 on the VIS-TH dataset, 10-fold cross-validation is used. For fair evaluation, the folds
are split such that the facial expressions images of one subject only occur in either the train set or the
validation set or the test set.

Table 5.1 shows the classification results obtained with the ground truth high-resolution images.
It can be seen that the emotion classification accuracy obtained with these thermal images is only
28.80%. Table 5.2 presents the classification results obtained with the bi-cubic interpolated images
and the super-resolved images by TFSRNet-ahp and TFSRGAN-ahp. It can be observed that it differs
per degradation model, which method achieve higher classification results. Furthermore, it can be ob-
served that images enhanced by bi-cubic interpolation and enhanced by TFSRNet-ahp and TFSRGAN-
ahp achieve better classification results than the ground truth high-resolution images, for almost all the
degradation models. This is not as expected, since the ground truth high-resolution images have the
best image quality. The facial classification are not that good, which can be caused by the small amount
of images in the VIS-TH dataset and the poor quality of the ground truth high-resolution images. Thus,
our proposed super-resolution architectures do not work to enhance images from the VIS-TH dataset
due to the poor quality and the small amount of images.
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Table 5.1: Emotion classification results of the ground truth high-resolution images of the VIS-TH dataset.

Emotion Precision Recall F1-score
Anger 0.23 0.30 0.26
Happiness 0.32 0.26 0.29
Sadness 0.29 0.26 0.27
Surprise 0.39 0.38 0.38
Neutral 0.24 0.24 0.24
Average 0.29 0.29 0.29
Accuracy 28.80%

Table 5.2: Emotion classification results of the VIS-TH dataset. Bold indicates the best results.

Degradation Bi-cubic interpolated Super-resolved TFSRNet-ahp Super-resolved TFSRGAN-ahp
model Emotion Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
Anger 0.30 0.34 0.32 0.30 0.36 0.32 0.36 0.48 0.41
Happiness 0.30 0.30 0.30 0.26 0.24 0.25 0.41 0.26 0.32
Sadness 0.18 0.18 0.18 0.14 0.10 0.12 0.29 0.24 0.26
BI x2 Surprise 0.35 0.34 0.35 0.39 0.48 0.43 0.40 0.36 0.38
Neutral 0.26 0.24 0.25 0.24 0.22 0.23 0.25 0.32 0.28
Average 0.28 0.28 0.28 0.27 0.28 0.27 0.34 0.33 0.33
Accuracy 28.00% 28.00% 33.20%
Anger 0.29 0.30 0.29 0.26 0.26 0.26 0.30 0.32 0.31
Happiness 0.42 0.42 0.42 0.37 0.34 0.35 0.30 0.28 0.29
Sadness 0.22 0.24 0.23 0.17 0.18 0.17 0.18 0.14 0.16
Bl x3 Surprise 0.43 0.46 0.44 0.34 0.44 0.39 0.36 0.46 0.40
Neutral 0.30 0.24 0.27 0.22 0.16 0.18 0.18 0.18 0.18
Average 0.33 0.33 0.33 0.27 0.28 0.27 0.27 0.28 0.27
Accuracy 33.20% 27.60% 27.60%
Anger 0.31 0.30 0.30 0.33 0.36 0.34 0.33 0.34 0.33
Happiness 0.33 0.36 0.34 0.37 0.38 0.38 0.29 0.24 0.26
Sadness 0.28 0.24 0.26 0.30 0.32 0.31 0.18 0.20 0.19
Bl x4 Surprise 0.41 0.48 0.44 0.38 0.48 0.42 0.38 0.42 0.40
Neutral 0.22 0.20 0.21 0.19 0.10 0.13 0.17 0.16 0.16
Average 0.31 0.32 0.31 0.31 0.33 0.32 0.27 0.27 0.27
Accuracy 31.60% 32.80% 27.20%
Anger 0.43 0.38 0.40 0.20 0.20 0.20 0.32 0.28 0.30
Happiness 0.34 0.44 0.38 0.31 0.30 0.30 0.28 0.30 0.29
Sadness 0.28 0.24 0.26 0.18 0.18 0.18 0.18 0.18 0.18
BD x3 Surprise 0.35 0.38 0.36 0.32 0.40 0.36 0.30 0.32 0.31
Neutral 0.30 0.26 0.28 0.20 0.16 0.18 0.17 0.16 0.16
Average 0.34 0.34 0.34 0.24 0.25 0.24 0.25 0.25 0.25
Accuracy 34.00% 24.80% 24.80%
Anger 0.25 0.36 0.30 0.19 0.30 0.23 0.17 0.18 0.17
Happiness 0.24 0.14 0.18 0.19 0.18 0.19 0.26 0.24 0.25
Sadness 0.17 0.14 0.15 0.08 0.04 0.05 0.23 0.20 0.21
DN x3 Surprise 0.21 0.18 0.20 0.24 0.18 0.20 0.10 0.08 0.09
Neutral 0.18 0.24 0.21 0.26 0.32 0.29 0.20 0.26 0.23
Average 0.21 0.21 0.21 0.19 0.20 0.19 0.19 0.19 0.19
Accuracy 21.20% 20.40% 19.20%

Due to the small amount of available thermal facial expression datasets, there were only a few
datasets to choose from to evaluate our proposed thermal super-resolution approaches. From the
two thermal datasets that we selected, we found out, during the experiments, that the VIS-TH dataset
is actually unsuitable for thermal facial expression super-resolution and thermal emotion recognition.
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Figure 5.3: Training stages of TFSRNet-ahp and TFSRGAN-ahp

The reasons for this, are the small amount of images and the poor quality of the high-resolution thermal
facial expression images. To further evaluate our proposed super-resolution approaches, large thermal
facial expression datasets are needed with high-resolution images and facial prior knowledge or the
possibility to obtain this facial prior knowledge.

5.1.2. (Multiple stage) transfer learning

For the training of the proposed super-resolution architectures, a large amount of data is needed in
order for the model to perform well and to prevent it from overfitting. However, the available thermal
datasets only contain a small amount of data. To tackle this problem, we have used transfer learning.
In this thesis, we presented the results of one stage fine-tuning, where the thermal super-resolution
architectures are first pre-trained on the large-scale RGB face CelebAMask-HQ and then fine-tuned on
the thermal datasets Thermal Face and VIS-TH. The results show that gray-scale images from RGB
images used in pre-training can help to enhance low-resolution thermal images.

Besides one stage fine-tuning of the thermal face super-resolution architectures, we did also exper-
iments on two stage fine-tuning of the thermal face super-resolution architectures, inspired by Ng et
al. [67]. The experiments are executed on low-resolution images obtained with degradation model Bl
x4. For two stage fine-tuning of the thermal super-resolution architectures, the architectures are first
pre-trained on the large-scale RGB face CelebAMask-HQ dataset, then for the first fine-tuning stage
they are fine-tuned on the RGB facial expression datasets Oulu-CASIA [106] or Real-world Affective
Faces (RAF) [50] and for the second fine-tuning stage they are fine-tuned on the thermal face dataset
VIS-TH. An overview of the training stages of the VIS-TH dataset is shown in Figure 5.3.

The results show that the super-resolved images of the VIS-TH dataset, obtained with two stage
fine-tuning have a worse quality in terms of PSNR and SSIM than the images obtained with one stage
fine-tuning. Furthermore, the super-resolved images obtained with two stage fine-tuning contain a lot
of artifacts compared to the images obtained with one stage fine-tuning. Based on the results of these
experiments we have decided to only use the one stage fine-tuning in this thesis. That two stage
fine-tuning performs worse than one stage fine-tuning can be due to the quality and the amount of
the images of the Oulu-CASIA dataset and the RAF dataset. The Oulu-CASIA dataset only contains
560 images. The RAF dataset is an into-the-wild dataset. From this dataset, only the images with a
resolution higher than 400 x 400 are selected to ensure a good image quality. However, after cropping
the faces there was still a difference between the quality of the images. Also, some face images are
rotated, which can reduce the performance of the architectures. Therefore, before this dataset can
be used, more pre-processing steps are needed. Another reason that two stage fine-tuning did not
worked well, can be due to the VIS-TH dataset. During the other experiments, we found that the VIS-
TH dataset is not suitable for thermal super-resolution and thermal facial emotion recognition, due to the
poor quality of the ground truth images. However, during the initial experiments of two stage fine-tuning
this problem was not noticed yet. Therefore, more experiments are needed to further investigate the
effects of two-stage fine-tuning on thermal super-resolution, where the selection of the right datasets
and the pre-processing steps of the datasets are very important.
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5.1.3. GAN-based thermal super-resolution

Previous research have shown that images recovered by GAN-based super-resolution architectures
score lower on image quality than images recovered by MSE-based super-resolution architectures,
in terms of PSNR and SSIM [46]. Although, these images do not achieve a high PSNR and SSIM,
they often recover high-resolution images with sharp image details and a high perceptual quality [46].
However, despite the high perceptual quality obtained with GAN-based super-resolution methods, they
can introduce unpleasant artifacts [46] [92].

From Section 4.4, it can be observed that the thermal images obtained by TFSRGAN indeed score
lower on PSNR and SSIM than the thermal images obtained by TFSRNet. However, when looking at
the visual results of the images it can be observed that the perceptual quality of the images enhanced
by TFSRGAN is equal or worse than the perceptual quality of the images enhanced by TFSRNet. The
perceptual quality of the thermal super-resolved images by TFSRGAN is not as expected, since they
are smoothed and do not contain sharp lines and edges. Furthermore, when the thermal super-resolved
images are zoomed in, it can be seen that they contain a checkerboard pattern. This pattern is probably
introduced by the perceptual loss [37], which is part of the loss function of FSRGAN used to generate
sharper images. Besides the checkerboard pattern, TFSRGAN also introduces artifacts such as dark
spots. Due to the checkerboard pattern and the artifacts the image quality of the super-resolved images
is even worse than the image quality of the bi-cubic interpolated images, in terms of PSNR and SSIM,
for almost all the degradation models. This is in contrast with the other GAN-based super-resolution
methods, that achieve a high perceptual quality and sharp lines and edges, with only a few artifacts
that are not that disturbing. Since facial details are important for facial emotion recognition, our super-
resolved images obtained with TFSRGAN are not useful due to the artifacts and blurred facial details.
We still believe that GAN-based super-resolution can be useful for thermal face super-resolution, since
these architectures have shown promising results in previous work and can generate sharp details [46].
However, to make it work for thermal face super-resolution and for thermal facial emotion recognition
it is important to solve the problem of artifacts.

Besides that GAN-based super-resolution architectures introduce artifacts, they are also hard to
train [22][81]. In the training of a GAN the goalis to find a Nash equilibrium between a generator network
and a discriminator network that compete against each other. Both of these networks try to minimize
their own loss functions. However, since the two networks compete against each other, an improvement
in one network can mean that the other network becomes worse. This leads to unstable training.
Furthermore, GAN-based architectures are sensitive to the used hyperparameters. The selection of
the right parameters is thus very important in order for the network to perform well. However, finding
the right hyperparameters is a time consuming task. During the training of our GAN-based thermal
super-resolution architectures we encountered that the networks do not generate images with sharp
lines and edges, which might indicate that our GAN-based thermal super-resolution architectures fail
to learn the most optimal images.

5.1.4. Different image intensities

During the experiments we noticed that the images enhanced by TFSRNet and TFSRGAN were darker
than the low-resolution input images and than the ground truth high-resolution images. When we com-
pare the dark super-resolved images with the ground truth high-resolution images, this leads to a lower
PSNR and SSIM. To improve the intensity of the dark images, we used histogram matching [96] as
post-processing step. For this, the histograms of the super-resolved images are matched to the his-
tograms of the low-resolution input images, such that the histograms of the super-resolved images
are approximately the same as the histograms of the corresponding input images. In this way, the
intensities do not influence the PSNR and SSIM. Since the darker images are generated by both TFS-
RNet and TFSRGAN, we speculate that it is caused by TFSRNet, which is also the generator network
of TFSRGAN. However, in this thesis the exact cause of the darker images is not found. Therefore,
more experiments are needed to find out what causes the darker images such that the network can be
improved and the post-processing step is not needed anymore.

5.1.5. Image quality assessment

In this thesis, we have used the quantitative evaluation metrics PSNR and SSIM to evaluate the super-
resolved images obtained with the proposed thermal super-resolution architectures. Although, these
are the most commonly used evaluation metrics in super-resolution, previous research also have shown
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that these metrics do not correlate with the human perceptual quality [46]. This means that although
high PSNR and SSIM values are obtained, this does not directly mean that the images have a high
perceptual quality. Furthermore, it means that images with a lower PSNR and/or SSIM value can
have a high-perceptual quality. Previous research actually have shown that images with a high PSNR
are blurred and does not contain sharp edges and lines and that images with a lower PSNR, con-
tain sharp lines and edges and a high perceptual quality [46]. When we look at the visual results of
the Thermal Face dataset in Figure 4.4a, it can be seen that for this degradation model, the bi-cubic
interpolated images are more blurred and contain less sharp facial details than the super-resolved im-
ages by TFSRNet-ah. However, the bi-cubic interpolated images have a better image quality than the
images enhanced by TFSRNet-ah in terms of PSNR and SSIM.

Blau et al. [6] proved that the distortion (measured by e.g. PSNR and SSIM) and the perceptual
quality contradict each other. This means that a lower distortion value, leads to a worse perceptual
quality. Because of this, the correct evaluation of the image quality of super-resolved images is still
an open problem [93]. In this thesis, we only used the quantitative evaluation metrics PSNR and
SSIM, causing that the results can give a biased representation of the image quality. For a more
complete evaluation of the thermal images enhanced by the two proposed thermal face super-resolution
architectures qualitative evaluation may also be needed.

5.2. Future work

In this exploratory thesis, we investigated the possibility of using thermal super-resolution to enhance
low-resolution thermal facial expression images for thermal super-resolution. Since, to our knowledge,
there is only little work done on this topic, several directions can be followed in future research. In
this section, we provide some suggestions that could be further investigated to improve the thermal
super-resolution architectures.

Currently, there are only a limited number of thermal facial expression datasets available. From
the available datasets, we selected the Thermal Face dataset and the VIS-TH dataset. However, only
the Thermal Face dataset was suitable for the training and evaluation of the proposed super-resolution
architectures and for facial emotion recognition. From this we have learned that there is a need for ther-
mal facial expression datasets, such that further research can be done on thermal facial expression
super-resolution and on thermal facial emotion recognition. We suggest novel thermal facial expres-
sion datasets that have a sufficient amount of images. Furthermore, it is important that the images of
the novel thermal facial expression datasets have a high-resolution (at least higher than 160 x 120) and
that it is possible to obtain facial prior information. Once these datasets become available in the future,
it is possible to further investigate the influence of using facial prior knowledge (such as facial landmark
heatmaps and parsing maps) and to further evaluate our proposed thermal super-resolution architec-
tures for facial emotion recognition. Furthermore, when larger thermal facial (expression) datasets
become available in the future, it is worth to explore the thermal domain for thermal super-resolution.
In this thesis we used gray-scale images from RGB images to enhance low-resolution thermal images.
Although, RGB images could be useful to enhance thermal images, there is still a difference between
these two types of images.

From the results we have seen that our proposed GAN-based architecture TFSRGAN fails to re-
cover high-resolution images with sharp lines and edges and a high perceptual quality. Furthermore,
it introduces artifacts which influence the image quality. Because of this, the thermal images that are
enhanced by TFSRGAN are not suitable for facial emotion recognition. Since high-frequency details
and images without artifacts are important for thermal facial emotion recognition, the architecture of
TFSRGAN should be improved such that it can generate high-resolution images with sharp facial de-
tails and without artifacts. To reduce the artifacts, we suggest to remove the batch normalization (BN)
layers from the architecture [92]. Furthermore, we suggest to also use a texture loss to reduce the
number of artifacts [36].

The proposed thermal super-resolution architectures, TFSRNet and TFSRGAN, have the limitation
that they generate super-resolved images that are darker than the low-resolution input images and
than the ground truth high-resolution images. To improve the intensities of the darker images, we
have used histogram matching as post-processing step. In future research, we suggest to improve the
architectures of TFSRNet and TFSRGAN such that they do not generate darker images and such that
the post-processing step is not needed anymore. However, to improve the architectures, first more
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experiments are needed to find out what causes the darker images.

The quantitative evaluation metrics PSNR and SSIM used in this thesis and in most super-resolution
works do not meet human perceptual assessment. Therefore, the perceptual quality of the images dif-
fers from the image quality measured by the evaluation metrics. It is still an open problem to correctly
evaluate the image quality of the super-resolved images [93]. For a more complete evaluation of the
super-resolved images, we suggest to use quantitative metrics, such as PSNR and SSIM, in combina-
tion with metrics that meet the human perceptual assessment, such as the mean opinion score (MOS)
[93].

5.3. Conclusion

In this thesis, we aimed to recover high-resolution thermal facial expression images from low-resolution
thermal facial expression images and to use the super-resolved images for thermal facial emotion
recognition. We designed two thermal face super-resolution architectures, called TFSRNet and TFS-
RGAN, to enhance low-resolution thermal facial expression images. The two proposed thermal super-
resolution architectures use facial prior knowledge, such as facial landmark heatmaps and/or parsing
maps, and the attention mechanism CBAM to enhance low-resolution thermal facial expression im-
ages. The architectures are evaluated on two thermal facial expression datasets, Thermal Face and
VIS-TH. However, due to the quality of the ground truth images of the VIS-TH dataset and the size of
the dataset, it is not suitable for the training and evaluation of our super-resolution architectures and
for thermal facial emotion recognition. The conclusion is therefore only based on the results of the
Thermal Face dataset.

Research question 1. Does the use of facial priors (facial landmark heatmaps and/or parsing
maps) and the attention mechanism CBAM for thermal super-resolution lead to an improvement in
image quality of the super-resolved images?

The ablation study showed that low-resolution thermal images enhanced by an architecture that
uses facial landmark heatmaps and/or the attention mechanism CBAM, have a better image quality
than low-resolution images enhanced by an architecture without facial landmark heatmaps and the
attention mechanism CBAM. Thus, using facial landmark heatmaps and/or the attention mechanism
CBAM to enhance low-resolution thermal facial expression images leads to an improvement in image
quality of the thermal super-resolved images, in terms of PSNR and SSIM. Since it was impossible to
obtain parsing maps for the Thermal Face dataset, the influence of using parsing maps to enhance
low-resolution thermal images should still be further explored.

Research question 2. Do the different types of low-resolution images enhanced by TFSRNet and
TFSRGAN have a better image quality than those enhanced by bi-cubic interpolation?

For the Thermal Face dataset, architectures with facial landmark heatmaps (h) and the attention
mechanism CBAM (a) are used. The architecture TFSRNet-ah is effective to enhance images from
larger degradation models, such as Bl x4, BD x3 and DN x3. For these degradation models, the im-
ages enhanced by TFSRNet-ah have a better image quality than the bi-cubic interpolation images in
terms of PSNR and SSIM. For smaller degradation model, such as Bl x2 and Bl x3, bi-cubic interpo-
lated images have a better quality than images enhanced by TFSRNet-ah. This means that to improve
images with small degradations, bi-cubic interpolation can better be used since it provides better im-
ages in terms of PSNR and SSIM, but to improve images with large degradations, TFSRNet-ah can
better be used. The architecture TFSRGAN-ah, can only recover images with a better image quality
than bi-cubic interpolation in terms of PSNR and SSIM, for degradation model DN x3. Despite the
results obtained with TFSRGAN-ah, we still believe that TFSRGAN-ah is promising for thermal super-
resolution. However, for this the architecture should be improved in future research.

Research question 3. Which of the two proposed thermal super-resolution approaches, TFSRNet
or TFSRGAN, is the most suitable to enhance low-resolution thermal images for the task of thermal
facial emotion recognition?

For large degradation models such as, Bl x4, BD x3 and DN x3, the images enhanced by TFSRNet-
ah achieve a higher emotion classification accuracy than the images enhanced by bi-cubic interpolation
and images enhanced by TFSRGAN-ah. However, for small degradation models Bl x2 an Bl x3, bi-
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cubic interpolated images achieve higher emotion classification results than super-resolved images by
TFSRNet-ah or TFSRGAN-ah. Thus, the most suitable thermal super-resolution model is TFSRNet-ah
for large degradation models and for small degradation models, bi-cubic interpolation is more suitable.

In summary, we proposed two thermal super-resolution architectures, TFSRNet-ah and TFSRGAN-
ah, to enhance low-resolution thermal facial expression images from different degradation models. The
super-resolution architectures use facial prior knowledge and the attention mechanism CBAM to re-
cover high-resolution thermal images from low-resolution thermal images. The architecture TFSRNet-
ah is effective to enhance low-resolution thermal images for degradation models Bl x4, BD x3 and DN
x3. For these degradation models, the super-resolved images of TFSRNet-ah are also suitable for
thermal facial emotion recognition. The architecture TFSRGAN-ah is only effective to enhance low-
resolution thermal images obtained with degradation model DN x3. Although, this an exploratory work
containing limitations, the experiments show the effectiveness of using facial prior knowledge and the
attention mechanism CBAM for thermal facial expression super-resolution. In addition, thermal face
super-resolution shows promising results for thermal facial emotion recognition where future work can
build upon.
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