P5 | A vision for biobased houses in the tropics Personal information Architectural Engineering Design tutor: Pieter Stoutjesdijk Second tutor: Pierre Jennen Research tutor: Martin Tenpierik External examiner: Ype Cuperus

Problem statement

Design question

Research question

Design criteria I - V

Design proposal

Design Criteria I: Passively provide [adaptive] thermal comfort

Design Criteria II: Fully bio-based

Design Criteria III: Buildable with local construction workers

Design Criteria IV: Accessible for low-income people

Design Criteria V: Building system that can be implemented throughout tropical climate region

Problem statement

Design question

Research question

Design criteria I - V

Design proposal

How can we design a **fully bio-based** building system that can be easily **constructed by local workers**, is **accessible to low-income people**, **passively provides thermal comfort** and can be effectively implemented across the **tropical climate region**

Problem statement
Design question
Research question

Design criterial I - V

Design proposal

How and to what extend do **bioclimatic strategies** in **vernacular architecture** provide adaptive **thermal comfort** in a tropical monsoon climate?

Tropical climate Köppen climate classification [A]

Dry Bulb Temperature [Hourly plot]

Netherlands

Dry Bulb Temperature [Monthly plot]

Netherlands

Relative Humidity [Hourly plot]

Netherlands

Relative Humidity [Monthly plot]

Netherlands

Solar radiation [Hourly plot]

Netherlands

Solar radiation [Monthly plot]

Netherlands

Precipitation [mm]

Netherlands

Tropical monsoon climate characteristics

High solar radiation on west, east and horizontal surfaces (constant throughout the day and season)

High average temperature (constant throughout the day and season)

High average relative humidity (constant throughout the day and season)

High precipitation (constant throughout season and increase during monsoons)

Bio-climatic strategies

1.Building orientation and shape

2. Solar shading

3. Natural ventilation (cross ventilation (a), stack ventilation (b), single-side ventilation (c))

4. Natural lighting techniques

5.Light weight construction

6.High thermal mass

7. Evaporative cooling

8.Earth cooling

9. Passive cooling by using color

10. Thermal insulation by material

11. Thermal insulation by design (e.g., well ventilated

attic, double-skin façade...)

12. Passive solar energy

13.Storm prevention

14.Flood prevention

15.Rainwater discharge

16. Moisture and condensation prevention

17.0thers

Vernacular architecture Bamileke

Vernacular architecture Amazone

Vernacular architecture Kerala

Bio-climatic strategies

1.Building orientation and shape

2. Solar shading

3. Natural ventilation (cross ventilation (a), stack ventilation (b), single-side ventilation (c))

4. Natural lighting techniques

5.Light weight construction

6. High thermal mass

7. Evaporative cooling

8.Earth cooling

9. Passive cooling by using color

10. Thermal insulation by material

11. Thermal insulation by design (e.g., well ventilated attic, double-skin façade...)

12. Passive solar energy

13.Storm prevention

14.Flood prevention

15.Rainwater discharge

16. Moisture and condensation prevention

17.0thers

Problem statement

Design question

Research question

Design criteria I: Passively provide thermal comfort

Design proposal

1.Building orientation and shape	9.Passive cooling by using color		
2.Solar shading	10.Thermal insulation by material		
3.Natural ventilation (cross ventilation (a), stack ventilation (b), single-side ventilation (c))	11.Thermal insulation by design (e.g., well ventilated attic, double-skin façade)		
4.Natural lighting techniques	12.Passive solar energy		
5.Light weight construction	13.Storm prevention		
6.High thermal mass	14.Flood prevention		
7.Evaporative cooling	15.Rainwater discharge		
8.Earth cooling	16.Moisture and condensation prevention		
	17.Others		

Section AA - Climate Scheme | 1:20

Problem statement
Design question
Research question

Design criteria II: Fully bio-based

Design proposal

Tropical climate (A) Köppen climate classification

Tropical rainforest climate (Af),

Tropical monsoon climate (Am),

Tropical savanna climate (Dry summer: As, dry winter: Aw)

Table 1: Palms with potential for industrial conversion of trunks into products.

palms	world area [million ha]	number of palms [million]	rotation period [years]	number of available palms [million]	available million m³ [palm trunks per
					year]
oil palm	25	3,000	25	120	180
coconut palm	12	1,200	50	24	40
date palm	0.8	110	55	2	3

Table 2: Main growing countries for palms and areas in million ha (various sources).

oil palm		coconut palm		date palm	
Indonesia	13.0	Indonesia	4.0	Iran	0.22
Malaysia	5.0	Philippines	3.5	Iraq	0.21
Nigeria	3.5	India	2.0	UAE	0.16
Thailand	1.0	Brasil	0.5	S. Arabia	0.04
World	>25.0	world	~12.0	world	~1.0

Figure 1: Density distribution in an oil palm trunk.

Fig. 1 Sawing pattern of the oil palm trunk sections with board identification numbers

Fig. 10 shows an overview on the key processes in oil palm wood utilization.

Figure 10: Key processes in palm wood utilization

Fig. 5 Combined beam structures to achieve strength class C10 (left) and C14 (right). The left beam is based on non-ripped lamellas, whereas the beam on the right is based on ripped lamellas

Fig. 7 Typical fracture patterns; left: in compression below the load inducing area and in the area of the supports; right: in tension on a reverse loaded beam

Problem statement

Design question

Research question

Design criteria III: Buildable with local construction workers

Design proposal

No cranes

50 < Kg

Experiences with concrete

Max beam: 450mm x 200mm

Max blockboard: 450mm x 20mm

Problem statement - Design question - Research question - Design criteria I - Design criteria II - Design criteria III - Design criteria IV - Design criteria V - Design proposal

Problem statement - Design question - Research question - Design criteria I - Design criteria II - Design criteria III - Design criteria IV - Design criteria V - Design proposal

Problem statement - Design question - Research question - Design criteria I - Design criteria II - Design criteria III - Design criteria IV - Design criteria V - Design proposal

Problem statement

Design question

Research question

Design criteria IV: Accessible for low-income people

Design proposal

Problem statement
Design question
Research question

Design criteria V: Building system that can be implemented throughout tropical climate region

Design proposal

Problem statement - Design question - Research question - Design criteria I - Design criteria II - Design criteria IV - Design criteria IV - Design criteria V - Design proposal

Supra-Cooperative

5 Cooperatives 4800 ha plantation 3100 Biobased housing kits

Supra-Cooperative

5 Cooperatives 4800 ha plantation 3100 Biobased housing kits

Supra-Cooperative

5 Cooperatives 4800 ha plantation 3100 Biobased housing kits

Energy usage: 25 households x 900 kWh/year = **22,500 kWh/year**

Solar radiation: 1,825 kWh/m^2/year

Conversion rate solar panel: 20%

Energy per m2 solar panel: 0.2 x 1,825 kWh/m^2/year = **365 kWh/m^2/year**.

Amount of m2 needed: 22,500 kWh/year ÷ 365 kWh/m^2/year ≈ 61.64 m^2.

Square meters of vegetable garden per household: **341,5 square meters**

Rule of thumb for watering vegetable garden is: **2.36 liters per square meter.**

8536 square meters x 2.36 liters/square meter = **20,124.96 liters per week**

In both Indonesia and the Netherlands, the water usage was reported as **130 liters per person per day**

3 people per household, then the number of people will be 25 households x 3 people/household = **75 people**

75 people x 130 liters/person/day = **9,750 liters.**

a water tank that can hold 3 days x 9,750 liters/day = **29,250 liters**.

(A) FASTEST-GROWING CITIES

Tropical climate (A) Köppen climate classification

Tropical rainforest climate (Af),
Tropical monsoon climate (Am),
Tropical savanna climate (Dry summer: As, dry winter; Aw)

Thank you

