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Abstract: In this paper a novel Active Vibration Control (AVC) strategy based on fractional-
order calculus is developed. A fractional-order Positive Position Feedback (PPF) compensator is
proposed to overcome the limitations of the commonly used integer-order PPF such as: frequency
spillover, amplitude amplification in the quasi-static region of the closed-loop response, and
difficult tuning in multi-mode control. Tuning parameters of the controller are obtained by
optimizing both magnitude and phase response of the controlled plant. Results are shown by
comparing performances of the standard integer-order PPF and the optimized fractional-order
PPF, both on a simple 1-DOF plant and on measured frequency response data from a rectangular

carbon fibre composite plate.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Active Vibration Control, Spillover, Positive Position Feedback, Fractional-order
control, Fractional-order filter, Experimental testing

1. INTRODUCTION

In the past decades research on Active Vibration Control
(AVC) has found increasing interest in control of flexible
thin-walled structures. These structures are often prone
to undesirable vibrations, making AVC necessary particu-
larly in industries where a lightweight design is of great
importance. Piezoelectric transducers are often selected
as sensors and actuators for the active control of flexible
structures because of their unique properties including:
low cost, low mass, ease of integration and wide frequency
range of control. These types of transducers, when used
as sensors, measure strain which is proportional to the
physical displacement. In fact, control schemes specifically
designed to use position as feedback signal have been
extensively studied and applied in this context.

The main objective of the controller is to provide active
damping to the structure (plant), which results in an
attenuation of the resonance peak in the dynamic amplifi-
cation. The dynamics of flexible structures have very inter-
esting properties: because of their flexibility, they have a
large number of elastic modes resulting in very high order
transfer functions that are rather difficult to control. Con-
trollers are designed to target specific vibration modes in a
restricted bandwidth of interest, and the fact that transfer
functions are of high order means that there are out-of-
bandwidth modes which are neglected, but whose effect
might influence the closed-loop response. The effect of the
uncontrolled, or out-of-bandwidth modes, is known in the
literature as spillover (Balas, 1978). Another important as-
pect regarding the controller is that, apart from being able
to reduce structural vibrations, it should ensure robustness
and closed-loop stability for the controlled system. In this

sense, careful positioning of sensors and actuators can
have a great influence. The majority of the controllers
studied in literature use a collocated configuration, where
sensors and actuators are related to the same Degree of
Freedom (DOF) of the structure. The phase of the open-
loop collocated transfer function is always between 0°
and —180°, meaning that poles and zeros interlace on
the imaginary axis, where zeros and poles correspond to
anti-resonances and resonances of the frequency response,
respectively. Collocated systems have the property of being
always closed-loop stable with respect to out-of-bandwidth
dynamics (Preumont, 2011) and that is why most of the
research involves collocation.

One of the most popular collocated modal control schemes
is Positive Position Feedback (PPF), which has been first
proposed in 1985 by Goh and Caughey (Goh and Caughey,
1985) to overcome the instability associated with finite
actuator dynamics. This controller was applied for the
first time in 1987 by Fanson (Fanson, 1987) to experimen-
tally suppress vibrations in large space structures. PPF
is a second order low-pass filter which rolls off quickly
at high frequencies, making it very appealing against
possible instability or performance losses due to out-of-
bandwidth dynamics. Direct Velocity Feedback (DVF),
Resonant Control (RC) (Moheimani, S.O.R. , and Flem-
ing, 2006) and Integral Resonant Control (IRC) (Aphale
et al., 2007) are also collocated control techniques which
are popular in literature, but they present some limitations
when used with piezoelectric transducers. In the field of
AVC in general, apart from the aforementioned methods,
many other different control strategies have been applied
for several types of applications. Fractional-order calculus
has been found to be a very effective tool in control (see
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e.g. HosseinNia et al. (2014, 2013); Monje et al. (2004,
2008); Podlubny (1999)), however it has never found much
room in the context of AVC and little research is present
(Butler and de Hoon, 2013). In this paper, a fractional-
order version of the PPF compensator is proposed to
further improve its already appealing properties and to
overcome some of its limitations such as low-frequency
spillover, quasi-static gain amplification and difficult tun-
ing in multi-mode control.

In the next section DVF, RC, PPF and IRC are elaborated
and compared to justify the choice of PPF. Moreover,
spillover effect has been introduced. In section 3 fractional-
order PPF is developed and its parameters have been
tuned using an optimization algorithm. An illustrative
example is given in section 4, whereas final conclusions
and remarks follow in section 5.

2. PROBLEM DEFINITION
2.1 Direct Velocity Feedback

Direct Velocity Feedback of a 1-DOF system is defined as
follows:

€+ 20w +wPE = W' f (1)
where &, w, ¢ are modal coordinate, natural frequency and
modal damping of the structure, respectively; f = —g¢&

is the modal control force and g is the feedback gain.
Equation (1) can be rewritten in the following form:

£+ (2w +gw?)e+ W =0 (2)
It can be noted that active damping in this case is achieved
through direct velocity feedback signal with gain g. DVF
does not prevent the occurrence of spillover effect, but
unconditional closed-loop stability is guaranteed neverthe-
less for g > 0 (Moheimani, S.O.R. , and Fleming, 2006).
Despite its stability properties, DVF shows important lim-
itations that do not make it an appealing control scheme
in the context of active control with piezoelectric trans-
ducers. First of all, piezoelectric sensors measure strain of
the structure, which can be considered as a displacement
signal that would need to be differentiated before being
fedback to the velocity controller. Therefore, in using DVF
a differentiator is required, but generally not preferred.
Secondly, in order to make sure that the compensator
rolls-of at high frequencies, extra dynamics needs to be
added to it although this could potentially cause insta-
bility(Moheimani, S.O.R. , and Fleming (2006); Goh and
Caughey (1985)). Furthermore DVF has high control effort
at all frequencies, and in this context of vibration control it
is best to restrict the control effort in the frequency range
of interest also to prevent actuator saturation.

2.2 Resonant Control

Resonant Control consists of the realization of an electrical
dynamic vibration absorber. It is a second order high-
pass filter compensator with negative feedback, where the
numerator dynamics convert the position feedback (from
the piezoelectric sensor) to acceleration feedback. In modal
coordinates RC is defined as follows:

System:
€+ 20wl + 0 = WP f (3)
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Compensator:

i+ 20w+ win = € (4)
where 1, wy, (5 are modal coordinate, natural frequency
and modal damping of the compensator, respectively;
f = —gn is the modal control force representing the
negative position feedback. The frequency wy is normally
tuned to the structure’s frequency of interest, and together
with a proper choice for the parameters g and (y vibration
reduction can be achieved. Here, closed-loop stability is
guaranteed for g > 0. The high-pass filter characteristics
prevent spillover at frequencies lower than the tuning
frequency wy, but not at higher frequencies where spillover
causes changes both in magnitude and frequency of higher
vibration modes in the closed-loop response. Therefore,
when multiple modes shall be controlled at the same time,
multiple compensators can be applied in parallel, but
particular attention must be paid to tuning the different
RC filters in order to limit the spillover effect. In fact,
a compensator targeting a low frequency mode should
be tuned prior to the compensator targeting a mode at
a higher frequency. It is worth noting that RC is not
appealing for practical implementation since actuators and
sensors have generally high frequency dynamics which are
not neglected by the high-pass filter of the RC and can
therefore destabilize the closed-loop system.

2.8 Positive Position Feedback

Unlike RC, Positive Position Feedback is a second order
low-pass filter with position signal which is positively
fedback to the plant. In modal domain, the two equations
for a single DOF system and PPF compensator are:

System:
£+ 2wl +wE =P f (5)
Compensator:
ij + 2Cpw i+ win = wiE (6)
where in this case f = g¢gn is the modal control force

representing the positive position feedback.

For this particular formulation, which is found in most of
the literature, the closed-loop stability condition (Fanson,
1987) is simply given by:

g<l1 or equally

K
w—§<1 (7)

where g = K—g,
since this method works with positive feedback. For a
proper performance, wy is tuned equal to w and (y is
normally chosen to be bigger than (. The low-pass filter
characteristics cause the PPF to provide so-called active
flexibility before the tuning frequency wy, active damp-
ing around wy and active stiffness for higher frequencies
(Kwak and Heo, 2007). Therefore, it limits high-frequency
spillover but it does not prevent low-frequency spillover
which causes changes both in magnitude and frequency of
lower vibration modes in the closed-loop response. When
multiple modes need to be controlled at the same time, a
compensator targeting a low frequency mode should be
tuned after a compensator targeting a mode at higher
frequency in order to account for the frequency shift caused
by spillover effect.

DVF, RC and PPF are compared in Table 1.

with gain Ky, is assumed to be positive
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Table 1: Controllers comparison.

Controller Block diagram Stability Properties
e Direct addition of active
disturbance f damping
G(s) U P o Differentiator needed
DVF f Zeonaiuon: e No roll-off at high frequen-
— (9>0) cies
9 e High control effort at all fre-
quencies
disturbance  ~ 6(s) ¢ o 27 order HP filter
s e High frequency spillover
f . e No roll-off at high frequen-
RC C(s) Unconditional cies
2 (9>0) e Difficult tuning in multi-
n % mode control
sc+ fwa + a)f
disturbance &
&) G(s) o 27 order LP filter
f e Low frequency spillover
C(s e Roll-off at high frequencies
PPF ) 0<g<l1 e Difficult tuning in multi-
n w} mode control

52+ 2{fwyps + w}

System: € + 2Cwé + w2& = w2 f ; G(s) = w?/(s% + 2¢ws + w?).

2.4 Integral Resonant Control

Another method that is often found in literature is Inte-
gral Resonant Control (Aphale et al., 2007). This method
is a modified version of the Integral Force Feedback
(IFF) method, which is developed for control systems
where displacement actuators, and force sensors are used
(Preumont, 2011). This implies that the transfer function
of the collocated system to be controlled should represent
the dynamic stiffness, and not the receptance which is
used for the other controllers. Hence, a feed-through term
is added to the collocated transfer function in order to
convert its frequency response function from receptance
to dynamic stiffness, allowing the use of integral feedback.
This collocated transfer function also shows pole-zero in-
terlacing property, but starting with a zero. The appli-
cation of this technique however presents limitations: it
generally requires a model of the structure; modes cannot
be treated separately; the control gain decreases at higher
frequencies causing it to be less effective for high frequency
modes.

2.5 Spillover

In general terms, spillover can be explained as the ef-
fect that modes which are outside the bandwidth of the
controller have on the closed-loop system. Spillover is
classified as observation spillover when sensor outputs are
contaminated by the measured response of residual modes,
and control spillover when residual modes are excited by
the feedback control (Balas (1978)). Observation spillover
can be eliminated by the use of collocated configuration,

whereas the effect of control spillover strongly depends on
the feedback control scheme used. In this work, observation
spillover is assumed not to be present due to the use of
collocation, and only control spillover (here simply referred
as spillover) is treated.

The closed-loop system can become degraded or even
destabilized due to the presence of out-of-bandwidth
modes. The desired behaviour of the controller would be
to target a specific mode and leave the response for the
uncontrolled modes ideally unchanged, which in practice
never happens because of spillover. Uncontrolled modes
can indeed present a change in magnitude and a shift in the
resonance frequency making the tuning of the controller
more difficult when multiple modes are controlled at the
same time. The control action also causes a magnitude
amplification in the quasi-static region of the closed-loop
response.

Spillover effect is strictly related to the phase behaviour
of the closed-loop: the more the phase of the closed-loop
follows the phase of the plant, the less spillover is observed,
at the expense of a smaller reduction in magnitude of the
controlled resonance peak (see Figure 1). This relation
between spillover and phase has not received much atten-
tion in literature (Niezrecki and Cudney, 1997) and it is
intentionally highlighted by the authors. Therefore, in the
next section, a novel controller that improves both phase
and magnitude response of the close-loop is proposed using
fractional-order calculus.
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Fig. 1. Relation between spillover effect and phase of the
closed-loop is shown by two differently tuned PPF
compensators both used to suppress the 34 mode
of the plant: the more the phase of the closed-loop
follows the phase of the plant the less spillover is
observed, at the expense of a smaller reduction in
magnitude of the controlled resonance peak. Quasi-
static gain amplification is also caused by the control
action.

3. PROPOSED METHOD
3.1 Fractional-order systems

As stated by Monje et al. (Monje et al., 2010), 'Fractional
calculus can be defined as the generalization of classical
calculus to orders of integration and differentiation not
necessarily integer’. Fractional-order dynamic systems can
be expressed by fractional-order transfer functions whose
simplest form in Laplace domain is s* where a € R and s is
the Laplace transform variable. The benefit of fractional-
order transfer functions comes from the fact that they
have magnitude and phase response which are not rep-
resentative of any integer-order transfer functions thereby
providing in-between characteristics. In other words, frac-
tional calculus allows for a trade-off between the phase
lag of an integrator and the high frequency gain of a
differentiator. Control engineering applications have found
increasing interest in this concept, which has then been
applied to different control systems like the classical PID
(Podlubny, 1999; Monje et al., 2004; Tejado et al., 2012).

3.2 Fractional-order PPF

As seen in section 2, standard controllers for AVC present
several limitations such as: quasi-static gain amplification,
low and high frequency spillover, and difficult tuning in
multi-mode control. Based on the already appealing prop-
erties of the PPF, a fractional-order PPF compensator is
proposed to improve on these limitations. The integer-
order PPF transfer function C(s) shown in Table 1 is
rewritten in Equation (8) as
1

Cr(s) = ((:f)m +2 (5) 1)

where 1 < a < 2, a € R represents the fractional order.
For o = 1 the standard integer-order PPF is recovered.

(®)
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In Figure 2 the bode plots of both integer and fractional-
order PPF filters are compared.

50
@ o0 a=1
H |
o
kel
2 90r —— Integer-order PPF filter f
5 —— Fractional-order PPF filter
(o] a>1
= -100 - 4
15§ :
3 90 §
S
o
3
< -180
o
270 L I . i
10° 10' 102 10°

Frequency (Hz)

Fig. 2. Bode plots of integer and fractional-order PPF
filters: fractional-order PPF with order 1 < a < 2
has a steeper roll-off after the tuning frequency wy.

The addition of another tunable parameter such as the
fractional-order «, allows for the improvement of the lim-
itations of the integer-order PPF, by providing a different
magnitude and phase response of the filter Cr(s), as seen
in Figure 2. For example, the steeper roll-off after the
tuning frequency wy indicates a greater filtering action
at higher frequencies, thus limiting even more the high
frequency spillover. Low frequency spillover is improved
by the different phase change around wy, which allows the
phase of the closed-loop response to be closer to the phase
of the plant, as already highlighted in Figure 1. The quasi-
static gain amplification S¢ in the closed-loop T'(s) instead
depends only on the controller gain g as shown in (9):
G(0) 1 )
1-gCr(0)G(0) 1-g
However, the fractional-order « allows the use of smaller
values of g for the tuning of the controller, resulting in a
lower closed-loop gain in the quasi-static region.
As a consequence, having less spillover and lower quasi-
static gain allows for an easier tuning of multiple filters
in case of multi-mode control, and an overall improved
control performance.

Se = T(0)

The addition of a as a design parameter makes a full
mathematical derivation of the effects of the fractional-
order PPF very challenging to conduct. That is why an
optimization approach is proposed to find the optimal
filter parameters to actually improve on the aforemen-
tioned limitations. In section 4 an example is presented
to show the expected performance of the new fractional-
order controller.

3.8 Stability Analysis

The stability analysis for fractional-order PPF controller
Cr(s) can be explained as follows.

The roots of the denominator of Cr(s) should all lie on
the complex left-half plane to have a stable controller. By
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mapping A =
be rewritten as

( Sf ), the characteristic equation of (8) can

M420A+1=0 (10)
with roots
A=—CrE4/¢G—1 (11)

Therefore, the condition to have a stable controller Cr(s)
is

R{s =wrAa} <0 (12)
or equally
|arg(M)| < ag (13)

where R indicates the real part of a complex number.

Controller stability for different values of a and ( is
depicted in Figure 3.

T
—¢=01
08 - 031
- Unstable region R{s} >0 G =
= 061° =05
2 —a01]
g 0.4 (=09 _’
c ¢=1
> L f
202
a
L
3 0
9]
‘gg 021
<
S -04r
k)
5061
o 1 Stable region R{s} < 0
-0.8
4 . T | | | | | | |
1 1.05 1.1 1.15 12 1.25 1.3 1.35 1.4 1.45 1.5

Fractional-order - «

Fig. 3. Stability and instability regions for fractional-order
PPF controller Cr(s) for different values of (5.

A closed-loop stability analysis is instead more difficult to
conduct. Unlike the integer-order PPF, where the stability
condition is simply given by g < 1, for the fractional-
order PPF stability does not depend only on g, but
also on the the other parameters (y and o. Thus, a full
mathematical derivation of the stability condition is very
extensive to obtain. Therefore, an alternative approach
based on Nichols stability criterion is proposed.

The Nichols criterion states that closed-loop stability is
guaranteed if the Nichols plot of the stable open-loop
transfer function L(s) does not intersect the line where
ZL(s) = —180° and | L(s)| > 0 dB. Therefore, by imposing
this condition to the open-loop L(s) = —gCr(s)G(s),
stability and instability regions for the closed-loop transfer
function T'(s) can be depicted for different values of a, g
and (; (see Figure 4).

As represented in Figure 4, for a fixed value of (; the
stability region is defined by the relation between the
fractional-order a and the gain g, where the curve indicates
the stability limit. Values of ¢ = 0 indicate that the
controller Cg(s) becomes unstable, as seen in Figure 3.
For different values of (; the stability region changes: as (¢
increases, the stable region increases towards higher values
of a; moreover for a = 1 the stability condition for the
integer-order PPF is recovered (g < 1).
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Fig. 4. Stability and instability regions for the closed-loop
T'(s) for different values of (.

It is important to notice that the tuning frequency of
the filter w; does not affect the stability analysis, since
wy is assumed to be always tuned around the resonance
frequency of the plant w, whose value lies in the stable
region of the closed-loop.

3.4 Filter Optimization

The fractional-order PPF filter of (8) has an additional
design parameter with respect to the standard integer-
order PPF, that is the fractional order o which provides
more freedom for the choice of the other tuning parameters
wy, (5 and g. Therefore, an optimality problem is defined
to find the mentioned parameters for a fractional-order
PPF filter which can limit spillover effect and quasi-static
gain amplification. This is done by improving both phase
and magnitude response of the closed-loop because of their
direct relation with spillover, as already seen in Figure 1.

The objective function A to be minimized is:

G) w2 Y (LT(s) — £G(s))
(s (0. % - )>2
o (e (037 ))
(051
(s (0,32 1))

+p (max (0, CT))
where the magnitude of the closed-loop T'(s), where
G
T(s) = — o)
= 4Cr(5)G(5)
between the magnitude Py, .« at the resonance w and static
gain Sg of the plant G(s), so to impose maximal peak
reduction; the phase is optimized instead by the minimiza-
tion of the difference between phase of the closed-loop T'(s)
and phase of the plant G(s); two weights w; and ws are

(14)

h:wl max_

+p | max

+p | max

, is optimized by the difference
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used to give more importance either to the magnitude or
phase optimization.

The objective is also enhanced by the addition of penaliza-
tion functions, in order to make sure that the resonance
peak is always reduced without creating two additional
peaks around w due to the presence of extra zeros in the
closed-loop (Kwak, Moon K. and Han, Sang-Bo and Heo,
2004) (see Figure 5a). P, and P, are the so-called half-
power points at 3 dB down from the resonance peak and
are used to compute the closed-loop damping (7 at reso-
nance with the Half-power Bandwidth method (see Figure
5b); p is the penalization factor. Closed-loop stability is
also added as equality constraint by setting the number of
unstable poles equal to 0.

(02}
=]

— Plant [
—— Closed-loop | | Pmax

n w N o
o =] o =]

Magnitude (dB)
>

w w w W,

1 2
Frequency (rad/s) Frequency (rad/s)

(a) Closed-loop zero causing two (b) Half-power points P; and P»
extra peaks around resonance. at 3 dB down from the resonance
This effect is limited by the addi- peak. These points are used to
tion of proper penalization func- compute the closed-loop damping

tions. ¢ by the Half-power Bandwidth
method: {7 = w2 - wl.
2w

Fig. 5. Conditions for closed-loop damping (7.

A Global-Search algorithm using a constrained non-linear
optimization is chosen to solve the optimality problem
because the objective h is highly non-linear and presents
several local optima. The algorithm is implemented in
MATLAB by means of the ’‘GlobalSearch’ and ’fmincon’
functions. The plant G(s) is chosen to represent a simple
1-DOF system as in Equation (5), and the outcome of the
optimization gives the four tuning parameters for the filter
Cr(s). Optimization results depend mainly on the choice
of the two weights w; and we, from which a filter Cr(s)
that has either a stronger effect on the magnitude or on
the phase of the closed-loop can be obtained. In the next
section some examples showing the potential benefit of
using a fractional-order PPF rather than an integer-order
PPF are presented.

4. ILLUSTRATIVE EXAMPLE
4.1 Simulation Results
Performances of the standard integer-order PPF and the

optimized fractional-order PPF are compared first on a
simple plant representing a 1-DOF system and then on

L. Marinangeli et al. / [FAC PapersOnLine 50-1 (2017) 12809-12816

a plant representing a multi-DOF system. Comparison is
made by tuning the integer-order PPF such that both
compensators provide the same magnitude reduction of
the resonance peak to be controlled. Tuning parameters
for both filters are listed in Table 2. It is important
to highlight that controllers are normally not tuned to
achieve 100% peak reduction, and that is mainly done to
avoid performance losses in multi-mode control.

Table 2: Tuning parameters for Integer and Fractional-
order PPF filters, both providing same magnitude reduc-
tion of the resonance peak at w.

Parameter | Integer PPF Fractional PPF
g 0.1 0.0365
wy w 1.0366w
Cr 0.45 0.4227
! 1 1.1844

In Figure 6a, a simple plant with single resonance at
50 Hz is controlled by both integer-order and fractional-
order PPF compensators. The same magnitude reduction
is achieved for the two closed-loop responses, but the
phase response is closer to the phase response of the
plant when fractional-order PPF is used. In Figure 6b, the
corresponding step response is shown, where it is clearly
seen how the vibration is quickly damped out by both
controllers although the steady state gain is closer to 1
in case of fractional-order PPF. This corresponds to a
magnitude in the frequency response closer to the ideal
behaviour at 0 dB.

The real benefit of an improved phase behaviour is more
evident in case of a multi-mode plant as shown in Figure?.
In Figure 7a, the 3'¢ mode is controlled and less spillover
is present both at lower and higher frequencies than the
controlled resonance when fractional-order PPF is used,
since it maintains the phase response much closer to the
plant response rather than what the integer-order PPF
does. In Figure 7b, the 2"d and 4** modes are controlled
simultaneously using two parallel PPF filters: again the
spillover effect is much less in case of fractional-order PPF
since the uncontrolled 1% and 3¢ modes are less affected
by the control action. Uncontrolled modes indeed present a
smaller shift in frequency caused by spillover together with
a largely reduced magnitude amplification in the quasi-
static region, thus ensuring a better control performance
and easier tuning of the filters especially when multiple
modes are controlled at the same time.

4.2 Ezxperimental Results

The same performance comparison of the two PPF filters
is done on measured frequency response data. An exper-
imental collocated transfer function has been obtained
by performing modal tests on a rectangular carbon fibre
composite plate. The plate was hung from four corners by
nylon cords to simulate all edge free boundary conditions
and an electrodynamic shaker was used to provide ran-
dom excitation to obtain frequency response curves. An
impedance head measures the force applied by the shaker
and a Laser Doppler Vibrometer measures the velocity vi-
bration response on the other side of the plate with respect
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Fig. 6. Single-mode plant controlled by both integer and
fractional-order PPF.

to the shaker (see Figure 8). The measured data is then
imported into MATLAB as 'frd’ object, velocity is con-
verted to position, and PPF filters are applied similarly to
what was done for the previous section. Tuning parameters
of Table 2 are kept the same except for the gain g which
has been adjusted according to the overall magnitude of
the measured plant which is different from the one used
in the previous section. In Figure 9, the measured plant
response together with the controlled transfer functions
are shown. In Figure 9a, the mode at 37 Hz is controlled
and in Figure 9b, modes at 37 Hz and 108 Hz are controlled
simultaneously. In both cases the spillover effect caused by
the fractional-order PPF is found to be less both at low
and high frequencies with respect to the standard integer-
order PPF.

The experimental vibration setup of Figure 8 is proposed
with the aim to eventually extend this work and implement
the controller with piezoeletric sensors and actuators.

5. CONCLUSIONS

In this paper, a novel fractional-order compensator based
on Positive Position Feedback has been proposed to limit
the spillover effect caused by the dynamics of uncontrolled
vibration modes. The strict relation between spillover ef-
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Fig. 7. Simple plant representing a multi-DOF system
controlled by both integer and fractional-order PPF.

and impedance

(a) Laser Doppler Vibrometer (b) Shaker

setup head.

Fig. 8. Experimental vibration setup.

fect and closed-loop phase response has been highlighted
and used for the controller optimization where both mag-
nitude and phase response are optimized. A Global-Search
algorithm using a constrained non-linear optimization has
been used to obtain the tuning parameters. Performance
of the fractional-order PPF filter has been verified by
comparison with an integer-order PPF tuned such that
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Fig. 9. Effect of PPF on measured frequency response data.

both compensators provided the same magnitude reduc-
tion of the resonance peak. Results obtained both on sim-
ple plants, representing 1-DOF and multi-DOF systems,
and experimental frequency response data have shown that
fractional-order PPF improves the overall control perfor-
mance with respect to the standard integer-order PPF by
limiting the spillover due to uncontrolled modes both at
high frequencies, by providing a steeper roll-off, and at
low frequencies, by providing a better phase behaviour
and limiting the magnitude amplification in the quasi-
static region. It can thus be concluded that the use of
fractional-order transfer functions is very promising to
improve the performance of commonly used active vibra-
tion control strategies since they can provide in-between
response characteristics that would not be achievable by
standard integer-order transfer functions, and they allow
to maintain a very simple design and implementation for
the controller, as seen in this specific case. Furthermore, an
experimental implementation of the proposed fractional-
order compensator needs to be performed to better vali-
date its behaviour in a practical application.
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