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I must not fear.
Fear is the mind-killer.

Fear is the little-death that brings total obliteration.
I will face my fear.

I will permit it to pass over me and through me.
And when it has gone past I will turn the inner eye to see its path.
Where the fear has gone there will be nothing. Only I will remain.

Bene Gesserit Litany Against Fear
from Dune by Frank Herbert
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SUMMARY

Recent advances in DNA sequencing, synthesis and genetic engineering have enabled
the introduction of choice DNA sequences into living cells. This is an exciting
prospect for the field of industrial biotechnology, which aims at using microorganisms
to produce foods, beverages, pharmaceuticals and fine- and bulk chemicals in a
sustainable fashion. Biotechnologists often achieve this by genetically engineering
these microorganisms to introduce novel production pathways using genes found in
other strains or species. However, detailed understanding of gene expression regulation
remains elusive, especially at the level of translation; thus, when it comes to writing DNA
to express proteins at user-specified levels, we are still miles away.

Second generation DNA sequencing technologies have made it easy and affordable
to reconstruct the genomes of industrially relevant microbes, thus providing better
reference sequences for genetic engineering. However, technological limitations allow
for reconstructing only parts of the entire genomes unambiguously, thus requiring
additional scaffolding steps to obtain genome-length reconstructions. We propose a
method that improves genome scaffolding by integrating heterogeneous sources of
information on genome contiguity. These methods improve the quality of genome
reconstructions at the cost of a limited number of additional errors.

The ease and affordability of DNA sequencing has also led to the development of
a number of biological assays which exploit sequencing, among which the ribosome
profiling assay. This assay allows for unprecedented examination of the process
of protein synthesis by recording positions of actively translating ribosomes across
thousands of living cells. We employed these data to develop data-driven models of
Saccharomyces cerevisiae protein synthesis. A relatively simple model was used to
re-design genes for heterologous expression; a second, more complex model yielded
insights into the process of translation. Our models suggest that protein synthesis is
limited at the stage of initiation, and that codon translation rates are not determined by
tRNA levels alone, and appear to be sequence context-dependent.

Finally, the combination of DNA synthesis and sequencing offers the possibility to
perform high-throughput in vivo assays to study the effect of user-designed sequences.
We used this approach to study translation initiation at Internal Ribosome Entry Sites
(IRESs). We identified short sequence elements predictive of IRES activity in viruses
and humans, and obtained insights into the effect of element sequence, multiplicity
and position on IRES activity. We propose a high-level architecture of viral and cellular
IRESs, and offer a mechanistic explanation for differences between IRES architectures of
different virus types.

xi





SAMENVATTING

Recente ontwikkelingen in de genetische modificatie en in het aflezen en synthetiseren
van DNA hebben het mogelijk gemaakt om gekozen sequenties in levende cellen
te introduceren. Dit levert spannende mogelijkheden op voor de industriële
biotechnologie, die tot doel heeft micro-organismen te gebruiken om voeding, dranken,
geneesmiddelen en stoffen voor de fijn- en bulkchemie op duurzame wijze te
produceren. Biotechnologen beogen dit vaak te bereiken door micro-organismen
genetisch te modificeren, om nieuwe productiepaden te introduceren op basis van
genen die in andere stammen of species zijn gevonden. Een gedetailleerd begrip van
de regulering van genexpressie ontbreekt echter nog, in het bijzonder waar het gaat om
translatie, en dus zijn we nog ver verwijderd van het schrijven van DNA zodanig dat we
eiwitten op gewenste niveaus kunnen produceren.

De tweede generatie van de technologie om DNA af te lezen heeft het makkelijk
en betaalbaar gemaakt om genomen van industrieel interessante micro-organismen
te reconstrueren en daarmee betere referentiesequenties te krijgen voor genetische
modificatie. Technologische beperkingen zorgen er echter voor dat genomen slechts
in een aantal delen kunnen worden afgelezen, zodat er nog zogenaamde scaffolding
(“steigerbouw”) plaats moet vinden om sequenties van genoom-lengte te reconstrueren.
Wij stellen een methode voor om de scaffolding van een genoom te verbeteren door
heterogene informatiebronnen over contiguïteit te integreren. Deze methode verbetert
de kwaliteit van genoomreconstructies, ten koste van een klein aantal additionele
fouten.

Het gemak en de betaalbaarheid waarmee DNA kan worden afgelezen heeft ook
geleid tot de ontwikkeling van een aantal biologische analyses die hier gebruik van
maken, waaronder ribosoomprofilering (ribosome profiling). Deze analyse maakt het
mogelijk om het proces van eiwitsynthese in ongekend detail te bestuderen, door
de posities van actief translerende ribosomen te meten in duizenden levende cellen.
We gebruiken deze meetgegevens om data-gedreven modellen van eiwitsynthese in
Saccharomyces cerevisiae te ontwikkelen. Een relatief eenvoudig model is gebruikt om
genen te herontwerpen voor heterologe expressie; een tweede, meer complex model
gaf inzicht in het proces van translatie zelf. Ons model suggereert dat eiwitsynthese
gelimiteerd wordt in de initiatiefase, en dat translatiesnelheden van codons niet alleen
worden bepaald door tRNA niveaus, maar ook afhankelijk lijken van de sequentiecontext
van de codons.

Tenslotte maakt de combinatie van DNA synthese en aflezen het mogelijk om
metingen op grote schaal in vivo uit te voeren, om het effect van door een gebruiker
ontworpen sequenties te meten. Deze aanpak hebben we gebruikt om initiatie van
translatie in zogenaamde Internal Ribosome Entry Sites (IRESs) te bestuderen. We
vonden korte stukken sequentie die IRES activiteit in mensen en virussen voorspellen,
en kregen inzicht in het effect van de sequentie, aantal en positie van IRES elementen

xiii
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op hun activiteit. We stellen een globale architectuur voor van virale en cellulaire
IRES elementen, en geven een mechanistische verklaring voor het verschil tussen IRES
architecturen in verschillende virustypes.
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2 1. INTRODUCTION

Biological research and its bioinformatic challenges are driven by the introduction
of new measurement and genetic engineering technologies. During the past decade,
advances in DNA reading (DNA sequencing) and writing (DNA synthesis) have resulted
in a continuing cost reduction of DNA sequencing and de novo DNA synthesis. The sharp
decrease in sequencing costs prompted novel methods for interrogating previously
inaccessible cellular mechanisms. This is revolutionising biotechnology by providing the
tools necessary for production of user-designed proteins at user-specified levels through
rational design methodologies. However, when it comes to rational design of synthetic
sequences, we still struggle with detemining the exact message to write using these tools.

This thesis supports the ongoing adoption of DNA writing technologies in systems
biology and biotechnology research. It describes methods for constructing models
of protein synthesis that yield novel insights into the regulation of this mechanism,
and could be used to guide rational design of synthetic sequences with desired
regulatory properties. It also describes methods for improving genome sequence
reconstructions obtained using current DNA sequencing technologies, which facilitates
genetic engineering efforts required for downstream expression of designer DNA
sequences.

1.1. READING DNA: A DATA-RICH ERA OF BIOLOGICAL

SCIENCES
The first genome-scale biological datasets started appearing in the 1990’s and 2000’s
and came from several independent directions: DNA microarrays for measuring
relative expression levels and genomic copy number aberrations [1–3]; protein-protein
interaction (PPI) measurements [4]; and first generation DNA sequencing [5]. At their
prime, these technologies and their variants generated vast amounts of measurement
data, and were widely used in research.

Introduction of the first generation sequencing technologies in 1970’s [5] marked the
beginning of a new age in biology, in which reading DNA sequences of selected genes
and entire genomes became possible. This trend culminated with the 19-year long and
an estimated $3bn Human Genome Project, which concluded in the early 2000’s with
the publication of the human genome [6]. But it was not until 2005-2007 [7–11] and
the advent of second generation sequencing technologies, which super-exponentially
decreased the costs of sequencing by introducing new chemistry and dramatically
elevating sequencing instruments’ throughput, that the data-rich era truly began.
Nowadays, the costs of sequencing an entire human genome are approaching $1k
[12]. This 300,000-fold reduction in costs not only turned genome sequencing into
an accessible research tool, but generally made DNA sequencing a standard readout
mechanism for high-throughput screens and assays. This prompted the development
of a plethora of “-seq” counterparts of microarray-based measurements, and novel
applications.

Today, genome-scale assays enabled by high-throughput sequencing can be found
in virtually all areas of functional genomics (see Soon et al. [13], Pachter [14] for an
extensive list). They include measurements of RNA levels (RNA-seq, Mortazavi et al.
[15]); examination of mRNA alternative polyadenylation sequences (3′-seq, Lianoglou
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et al. [16]); analysis of protein-DNA, protein-RNA and RNA-RNA interactions (ChIP-seq,
iCLIP-seq and CLASH-seq, Johnson et al. [17], König et al. [18], Helwak et al. [19]);
measurements of chromatin structure and accessibility (e.g., Hi-C and ATAC-seq,
Lieberman-Aiden et al. [20], Buenrostro et al. [21]); determination of genome replication
order (Repli-seq, Hansen et al. [22]); measurements of RNA structure (PARS-seq,
[23]); measurements of locations of actively translating ribosomes (ribo-seq, Ingolia
et al. [24]); and many more, including a growing number of single-cell analyses [25–
27]. Second generation sequencing has also been used in combination with genome
editing techniques to devise high-throughput screens for studying the architecture of
transcriptional and translational regulation [28–31].

DNA SEQUENCING TECHNOLOGIES
Sanger sequencing, the first generation of sequencing technologies, is based on the
chain-termination method [5]. It is characterised by low-throughput and the ability to
“read” relatively large DNA molecules. Modern Sanger sequencing generates reads of
400−900 bases [32], which are suitable for de novo sequencing of small DNA molecules.
However its low-throughput makes Sanger sequencing prohibitively expensive for most
other applications. This shortcoming was addressed approximately 30 years later with
the independent introduction of several second generation technologies [8, 10, 33–
35] characterised by massively parallel sequencing through DNA synthesis. Out of
these technologies, Illumina is currently the most widely used sequencing platform.
Although its first instruments generated reads of only 35 bases, its modern chemistry
is characterised by read lengths of up to 300 bases and the lowest cost per base in its
class [32], which makes it the method of choice for high-throughput assays and screens.

The field of DNA sequencing is currently experiencing the rise of another, third,
generation of sequencing technologies. The 3rd generation sequencing platforms
are characterised by real-time single-molecule sequencing, and, with their current
chemistry, produce high-error rate reads that are tens of thousands of bases long [36, 37].
Given their read lengths, 3rd generation platforms are particularly suited for de novo
genome sequencing [38, 39].

COMPUTATIONAL CHALLENGES OF DNA SEQUENCING
Hand in hand with the introduction of DNA sequencing came the first computational
challenges of reconstructing genomes from sequenced DNA fragments, and of
comparing genomes and sequences to each other. As sequencing technologies evolved,
and second and third generations of DNA sequencing machines became more mature,
the computational challenges have also changed [40–43]. This thesis only describes
computational challenges specific to the second generation sequencing technologies,
as they were most prominent at the time when thesis work was carried out.

Whole-genome sequencing (WGS) is an important tool in genome engineering. First,
availability of a high quality reference genome is a prerequisite for most genome editing
efforts; and second, sequenced genomes can be used to learn what sequences we should
write to achieve desired phenotypes. For these reasons, WGS is often employed to obtain
reference genome sequences of organisms employed in biotechnology and industrial
microbiology.
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Figure 1.1: A schematic representation of shotgun sequencing, genome assembly and scaffolding. (A) Multiple
copies of the genome are randomly fragmented to create short DNA fragments that can be read by sequencing
machines. Some fragments (bleak) are lost in this process. Fragmentation causes the order and orientation
relationships between fragments to be lost. Once sequenced, the redundant information from fragmenting
multiple identical genome copies is used to reconstruct the original genome sequence from overlapping
reads. However, due to the fragments lost during fragmentation, only parts of the genome (contigs) can
be reconstructed. (B) The problem of recovering shredded documents from unordered strips is a helpful
analogy for understanding genome reconstruction. It can be solved by unambiguously joining those strips
that go together. In this example only parts of the document corresponding to each of the two columns can
be recovered because column order is lost during shredding. (C) To improve the assembly, contigs can be
further joined into longer gapped scaffolds. This requires the use of additional information on the relative
contig order, orientation and distance constraints, which often comes from paired reads (inside the magnifying
glass). Optimisation of the contig order, distance and orientation to satisfy these constraints produces the
sought scaffolds. (D) In the document shredding analogy additional information, such as the position of page
numbers, can be used to correctly re-order the recovered document parts.



1.1. READING DNA: A DATA-RICH ERA OF BIOLOGICAL SCIENCES

1

5

GENOME ASSEMBLY

WGS aims at reading the entire genome of an organism, i.e., all the molecules
(chromosomes or plasmids) that it carries. However, because most (first and second
generation) sequencing technologies can only read sequences that are substantially
shorter than the millions and billions of nucleotides composing microbial and
mammalian genomes, a method called shotgun sequencing is often employed to
sequence longer fragments [44]. In shotgun sequencing many copies of the genome are
randomly fragmented into smaller molecules, which can be (partially) read, as shown in
Fig. 1.1A. When the genome is fragmented, all information regarding the location and
strand of the genome, from which fragments originate, is lost. So once these fragments
are read, the resulting reads need be put together to form the original genome like strips
of a shredded document (see Fig. 1.1B). Such a document could be reconstructed by
joining strips that “go together”. The shredder model is illustrative for the problem of
genome reconstruction, where reads need to be joined into longer sequences to form
the genome. However, because in shotgun sequencing multiple genome copies are
fragmented simultaneously, one can decide whether two reads belong together based on
their sequence overlap. The process of repeated joining of overlapping sequences and
reads into longer contiguous sequences (contigs) forms the basis of genome assembly
[45].

ASSEMBLY SCAFFOLDING

Unfortunately, due to repeats in the genome (identical sentences in a shredded
document), read errors (unreadable letters on the shredded strips) and uneven genome
coverage (lost strips), the read extension process inevitably becomes ambiguous and
cannot continue indefinitely. Contigs resulting from the assembly step may belong to
one or more chromosomes, can come from any of the two strands of the genome, and
may not even cover the entire genome. To improve the assembly further, so-called
scaffolds may be constructed by joining contigs from the same DNA strand into longer
(gapped) sequences in the correct order in a process called scaffolding [45]. This process
relies on additional information about contig order, distance and orientation (whether
two contigs come from the same DNA strand, or opposite strands), which would allow
extending contigs beyond ambiguities encountered in the assembly step (see Fig. 1.1C
and D).

Additional information for scaffolding can be obtained from a variety of sources.
For example, paired end and mate pair information on read pairs can be used, which
provides relative orientation and approximate distance for pairs of reads originating
from the same piece of fragmented DNA [41, 46]. Read pairs are a particularly popular
source of additional scaffolding information because they can easily be generated with
standard DNA sequencing protocols. However, information from related genomes, or
restriction maps, can also be used [47, 48]. The scaffolding problem is particularly
important for genomes assembled from shorter reads generated by the 2nd generation
sequencing technologies, as they yield highly fragmented assemblies [49].

Due to the relatively low complexity of microbial genomes, second generation
sequencing quickly became the technology of choice for de novo microbial sequencing.
However, its adoption further aggravated the challenge of improving the resulting
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Figure 1.2: Schematic example of a plant enzyme introduced into a yeast genome. One of the plant genes
(green; left) involved in the enzymatic conversion of A → B → C is isolated from the plant genome (green
chromosome; centre), cut out using “molecular scissors”, optimised for expression in yeast and “pasted” into
the yeast genome (right).

fragmented short-read assemblies. Our involvement in the de novo sequencing of the
Saccharomyces cerevisiae CEN.PK 113-7D, a laboratory yeast strain commonly used in
industrial biotechnology research [50], prompted us to develop GRASS, one of the
first approaches for scaffolding such assemblies. As described in Chapter 2, GRASS
is a generic assembly scaffolder based on a computational model, that can integrate
any type of scaffolding information, and is combined with an efficient optimisation
strategy. Since the publication of our approach, a number of assembly and scaffolding
algorithms have been proposed [51–57], with different underlying models, assumptions
and optimisation strategies; some allowing to combine different types of scaffolding
information. However, to our knowledge, in 2010 few standalone scaffolders were
available that could make use of any type of scaffolding information.

1.2. WRITING DNA: A NEW FRONTIER
Independent from the introduction of Sanger sequencing in 1970s, important advances
were made in recombinant DNA technology [58]. Sequence-specific DNA cutting using
restriction enzymes, commercial DNA synthesis, in vitro DNA amplification and the first
transgenic organisms were introduced at that time [59–62], and formed the foothold
of modern biotechnology and synthetic biology. Recent advances in nuclease-based
genetic engineering technologies (ZFNs, TALENs and CRISPR-Cas; Gilles and Averof
[63]), and continuously decreasing costs of DNA synthesis [64] have allowed for writing
DNA sequences spanning entire chromosomes [65].

MICROBIAL CELL FACTORIES

Biotechnology has a long history of using microorganisms for sustainable production
of foods, pharmaceuticals, fuels and fine and bulk chemicals. Some famous examples
of using microbes for their natural products include the use of fungus Penicillium
rubens for production of antibiotic penicillin [66, 67], the use of yeast for beverage
fermentation and the use lactic acid bacteria for cheese production [68, 69]. However,
modern biotechnology is also used to engineer organisms for production of proteins
and chemicals that they normally cannot synthesise. One of the first applications of
recombinant DNA technology for this purpose dates back to 1978, when an Escherichia
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coli containing the human insulin gene was engineered [70]. Nowadays, genetic
engineering in biotechnology is used at a much larger scale to create microbial
cell factories, which go through several enzymatic steps before producing the target
chemical. This is achieved by introducing entire chemical pathways, often from higher
eukaryotes, into the host microbes [71, 72] as illustrated in an example in Fig. 1.2.

The aim of microbial cell factory engineering is to make production of chemicals
of interest sustainable and accessible, which would ultimately contribute to increasing
quality of life and to economic growth. For example, recently, artemisinic acid, a
precursor of a highly effective anti-malarian drug artemisinin, was produced at an
industrial scale using genetically engineered yeast. Such production has the potential to
substantially reduce the cost of artemisinin and make it available to people who need it
the most [73, 74]. However, this milestone required almost a decade of strain engineering
to make the production cost-effective and scalable.

The stage of improving cell factories for yield or robustness is common to
production process engineering. It is usually accomplished by metabolic engineering,
i.e., optimising cellular processes through genetic modification to increase production
of a target substance. Genetic modifications in metabolic engineering can be introduced
through laboratory evolution, random mutagenesis or by means of rational design. The
latter often includes adjusting expression levels of pathway enzymes by replacing their
promoters, modifying their genomic copy numbers or by changing coding sequences of
those enzymes to increase their translation rates. This can be achieved by introducing
recombinant or, when possible, synthetic DNA sequences into the microbial factories.

DATA-DRIVEN MODELS
Despite advances in DNA synthesis, the use of synthetic DNA in biotechnology and
synthetic biology remains limited. Regardless of our ability to write DNA, we often do
not know what exactly to write, as determining the sequence of synthetic DNA that
would exert the desired regulatory effect (a version of the genotype-phenotype mapping
problem) remains a challenging task.

High-throughput assays and screens generate data at a pace previously
uncharacteristic for biology, which allows for employing modelling approaches
from Statistics and machine learning (ML) for their analyses. These approaches have a
long history of solving data-rich problems, and when applied to biological problems,
can be used to construct predictive genotype-phenotype models (e.g., predicting
promoter strength from its sequence; Lubliner et al. [75]) for guiding rational design of
synthetic DNA sequences.

CLASSIFICATION AND REGRESSION

Classification and regression are supervised ML techniques that are used for assigning
class labels (classification) or numeric values (regression) to objects based on their
features [76]. They rely on constructing models (classifiers or regressors) based on
a training set of objects with known labels, which are used to learn the unknown
relationships between object features and labels. Ultimately, the trained models are used
for predicting labels of new objects, and are interpreted to uncover object features most
predictive of the labels.
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Figure 1.3: A high-level overview of translation and the “cars on a road” mental model helpful in understanding
of this process. (A) Classically, eukaryotic translation requires capped (black filled circle) and polyadenylated
mRNA (black A’s) to be circularised through the interaction of the eukaryotic initiation factors (eIFs; grey),
the poly-A tail and the poly(A)-binding protein (PABP; blue), which prompts the recruitment of the ribosome
(orange) through its 40S subunit. Recruited ribosomes bind to the 5′ untranslated region (UTR) of the mRNA
(black solid line) and move in the direction of the 3′ end until they encounter the protein-coding region
(thick green line) and initiate translation. Ribosomes synthesise the encoded protein during the elongation
phase, and terminate once they reach the end of the protein-coding region (black dashed line). In some
cases ribosomes can be recruited to regions other than the 5′ UTR through internal ribosome entry sites
(IRESs; clover leaf structure shown in green). (B) In the elongation phase the ribosome repeatedly grows the
peptide chain one amino acid at a time (coloured circles) by matching codons (ribonucleotide triplets) on the
mRNA against their complementary anticodons on the tRNAs (light blue). (C) For simplicity one can think
of ribosomes attached to mRNA as cars entering a road (initiation), driving on it (elongation) and exiting it
(termination). Speed limits for regions of such road would correspond to various codons and their translation
speeds, whereas ramps merging into the main road would be equivalent to translation initiation via an IRES.

These techniques enjoyed successful applications in numerous fields [77–79],
including biology [80], where they have also been applied to the analysis of
high-throughput functional genomics data. For example, ML allowed for recognising
transcription start sites, promoters, enhancers, splice sites and for determining
nucleosome positioning [81–84]. Additionally, it helped to gain insight into the
molecular mechanisms involving these genetic elements and processes. In Chapters 3
and 5 of this thesis we too employ machine learning techniques to analyse
high-throughput functional genomics data, and to improve our understanding of the
molecular mechanisms of protein synthesis.

THE PROCESS OF PROTEIN SYNTHESIS

Protein synthesis is a crucial cellular mechanism, entailing the translation of
DNA-encoded genetic information into biomolecules central to virtually all cellular
processes - proteins. A holistic understanding of protein synthesis has fundamental
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scientific significance. It also finds important applications in health and disease
and biotechnology, such as understanding the effects of synonymous mutations on
high-level disease phenotypes [85], or solving the problem of gene optimisation for
expression in a new host [86]. Despite its centrality and a relatively old age, translation
regulation is a still field of active research with ongoing debates about determinants of
translation initiation and elongation.

A detailed description of eukaryotic translation can be found in Hinnebusch and
Lorsch [87] and Dever and Green [88]. In a simplistic view, the three-phase process
of translation begins with the recruitment of ribosomes at the 5′ end of capped and
circularised mRNA molecules. Recruitment of the ribosome to the 5′ untranslated region
of the mRNA involves the interaction of several eukaryotic translation initiation factors,
the Poly(A)-binding protein and the 40S ribosomal subunit, which form a complex
together. Once assembled at the 5′ of the mRNA, the complex starts scanning it in
the direction of the 3′ end for the start of the protein-coding region to recruit the 60S
ribosomal subunit, finalise ribosome assembly, and initiate translation (see Fig. 1.3A).
Next, in the elongation phase, the ribosome repeatedly grows the nascent peptide chain
by decoding each codon it encounters using a suitable aminoacyl-tRNA molecule as an
adapter, and adding the corresponding amino acid to the growing chain (see Fig. 1.3B).
This process stops once the ribosome encounters a stop codon and the peptide chain is
released to fold into its three-dimensional conformation and become a protein. Leaving
biological complexity aside for a moment, one can think of ribosomes translating an
mRNA as cars on a single-lane road with consecutive regions and speed regimes of this
road corresponding to codons with their specific elongation rates (see Fig. 1.3C). In this
analogy, translation initiation and termination are equivalent to entering and exiting the
road.

However, despite the relative simplicity of this above process, the exact mechanistic
details of its individual steps remain largely unknown, including the exact rates of
translation initiation or elongation, and their RNA sequence determinants. Owing to
this knowledge gap and the difficulty of measuring rate parameters directly, existing
computational models of translation often make significant simplifying assumptions
about the process of translation [89–92].

CODON OPTIMISATION

It is generally accepted that synonymous codons, i.e., codons translated to the same
amino acid, are translated at different rates. Moreover, these rates, believed to be
determined mainly by the abundance of tRNAs recognising them [93, 94], may differ
between organisms, as does tRNA abundance. For microbial cell factories this means
that a gene that is efficiently translated in one organism may be translated slowly in its
new host. For this reason genes are often “recoded” prior to synthesis and heterologous
expression in a way that would maximise their translation rate, but retains the original
amino acid sequence (see Fig. 1.2). This process is called codon optimisation.

Despite being commonly used, codon optimisation (CO) remains largely an
empirical technique due to the limited understanding of the mechanistic details of the
process it optimises. Consequently, it is reported to increase protein expression of an
optimised gene in some cases; and to have no effect on expression, or to reduce protein
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solubility or enzymatic activity in others [95–97]. Despite the complex and multifactorial
nature of mechanisms of translation regulation [98], virtually all existing CO approaches
focus on a single aspect of the optimised sequence. Typically, the extent to which codon
usage of the optimised gene matches that of a reference set of the hosts highly expressed
genes, thought to be efficiently translated, is minimised [99–101]. The latter is often
quantified using the Codon Adaptation Index (CAI, Sharp and Li [102]) or a similar ad
hoc measure [103–105].

In Chapter 3 we introduce a data-driven codon optimisation approach that
does not explicitly model the process of translation, but rather attempts to capture
features predictive of efficient translation using ML. In our approach, instead of
arbitrarily choosing a single aspect or measure for optimising the sequence, we
employ regression to learn the relationship between multiple sequence features and
its total protein production from ribosome profiling measurements [24, 106] for native
Saccharomyces cerevisiae genes. We then use the learned model to navigate the space
of possible optimised sequences and choose the one that maximises model prediction.
Unfortunately, in a follow-up experimental validation of our approach we discovered
that it improved enzyme activity of an optimised synthetic test gene relative to its wild
type to a lesser extent than a CAI-based method did, suggesting that our approach
was unable to fully capture sequence determinants of translation efficiency. We briefly
describe the experimental validation procedures and potential issues of our approach in
an addendum to Chapter 3.

RIBOSOME PROFILING

Recently, a new high-throughput measurement technique, called ribosome profiling,
was proposed [24, 106]. It allows for previously unavailable genome-wide measurements
of the exact locations of actively translating ribosomes in vivo. The core of ribosome
profiling consists of (i) the ribo-seq high-throughput assay, which measures positions
of translating ribosomes; and (ii) RNA-seq used for measuring mRNA transcript
abundances.

Briefly, through the addition of the chemical cycloheximide and the use of low
temperatures, ribo-seq achieves a situation when ribosomes are frozen in place on
the transcripts that they were translating. Transcripts with bound ribosomes are then
digested, leaving only 28nt – 30nt fragments bound by the ribosomes, which can be
reverse-transcribed and sequenced using second generation sequencing technologies.
When mapped back the genome, sequenced reads yield a snapshot of locations of
actively translating ribosomes from many cells. Mapped reads also yield ribosome
density profiles for every translated gene. Density changes along the profiles can
be interpreted as changes in local elongation speed, where slower and faster regions
respectively have higher and lower normalised density (see Fig. 1.4A; busy and free).
Continuing the analogy of cars on a road, ribosome profiling essentially yields a view
of how busy roads are, akin to modern navigation software (see Fig. 1.4B). These data
were used to study differences in translation efficiency between yeast species [107],
to provide evidence of short peptide translation in 5′ untranslated regions [24], to
demonstrate prevalence of stop codon read-through in Drosophila melanogaster [108],
to study ribosome pausing [109–113], to derive yeast codon elongation rates [111, 114]
and even to construct whole-genome models of protein translation [89, 92].
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Figure 1.4: A brief outline of ribo-seq high-throughput assay employed in ribosome profiling. (A) To determine
the locations of actively translating ribosomes (orange), they are first halted and cross-linked to mRNA
transcripts they are translating (green and blue strings). The transcripts are then subjected to nuclease
treatment, which removes all RNA that is not protected by bound ribosomes. After releasing the ribosomes the
remaining footprints (short green and blue strings) can be sequenced using high-throughput sequencing, and
mapped to the genome to recover ribosome positions and determine fast (sparse) and slow (dense) translation
regions. (B) In the framework of the “cars on a road” analogy introduced earlier, performing ribo-seq is
equivalent to taking photographs of roads (halting the ribosomes), calculating car positions on the photos, and
accumulating position information across several photos of the same road (footprint mapping) to determine
busy areas.

Whole-genome modelling of protein translation is a computationally challenging
task. To facilitate it, existing approaches [89, 92] either assumed that codon elongation
rates are known, and used ribosome profiling data only to find gene-specific initiation
rates; or neglected situations when one ribosome would block elongation of another
ribosome on the same transcript (ribosome queueing). In Chapter 4 we propose a
modelling framework that combines strengths of existing models, while making no
a priori assumptions about model parameters (elongation and initiation rates). Our
framework unites an explicit ribosome movement model, that supports ribosome
queueing, with a data-driven approach to find its parameters by fitting model
simulations on to the ribosome profiling data. Or, using the cars on a road analogy, our
approach aims at learning what the speed limits on roads are without knowing how to
read the speed limit signs written in a foreign language (see Fig. 1.3), just by looking at
how busy the roads are on average.

CAP-INDEPENDENT TRANSLATION INITIATION

One notable exception to the described simplistic view of the protein synthesis process
(Section 1.2) is translation initiation that does not require the 5′ mRNA cap structure, and
can directly recruit ribosomes to inner regions of the mRNA. RNA elements responsible
for this mechanism of initiation are called Internal Ribosome Entry Sites (IRESs; see
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Figure 1.5: Simplified outline of the IRES activity high-throughput assay from Weingarten-Gabbay et al. [31].
Assayed sequences (RNA loops; dark green, purple, blue, orange and red) are inserted in between the mCherry
red fluorescent protein (mRFP, red) and the enhanced green fluorescent protein (eGFP, green) so that if an
assayed sequence can function as an IRES, the eGFP protein will be produced and will turn the cells green.
These DNA constructs are integrated into cells to obtain transformed cells that contain at most one construct.
A fluorescence activated cell sorter (FACS) is used to iteratively separate transformed cells into populations that
have a varying amounts of eGFP (high IRES activity, low IRES activity, and no IRES activity). Sequences that
are responsible for these activities are then read out by sequencing each of the three populations individually.

Fig. 1.3A). In the “cars on a road” analogy (Fig. 1.3C), IRES-mediated ribosome recruiting
can be viewed as cars joining the main road through a ramp connecting to it in the
middle. IRESs were first discovered in positive-sense ssRNA viruses [115, 116]. Some
of these viruses spend their entire replication cycle in the hosts cytoplasm and do
not poses the 5′ cap, since capping occurs co-transcriptionally in the nucleus [117],
and hence their translation has to occur in a cap-independent manner. Since then
IRESs were discovered in other viruses, including HCV and HIV [118, 119], and in
cellular transcripts [120]; and implicated in cell apoptosis and stress response [121].
The study of IRES-mediated translation regulation can have significant ramifications for
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understanding and treatment of numerous diseases [122–124].
Unfortunately, relatively little is known about the mechanisms governing

IRES-mediated ribosome recruitment [125]. This has to do with an apparent lack
of common sequence or structure motifs shared by known cellular IRESs [120]. And,
because experimental validation of potential IRESs is cumbersome and requires the use
of bicistronic report constructs and multiple control experiments to rule out expression
due to cryptic splicing or promoter activity [126], relatively few IRESs were known
until recently (≈ 120 according to IRESite [127]; accessed on December 1, 2015). To
alleviate this situation, in Weingarten-Gabbay et al. [31] we designed and performed
a high-throughput IRES activity screen that is used to measure IRES activity for tens
of thousands short sequences and increased the number of known IRESs 50-fold. In
Fig. 1.5 we provide a shortened description of this screen, a complete description can
be found in the original publication.

In Chapter 5 we describe work to exploit high-throughput IRES activity measurement
data to uncover sequence determinants of IRES activity. We achieve this by constructing
data-driven regression models that learn the relationship between IRES activity and RNA
sequence and structure, and by interpreting the learned models afterwards.
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1.3. CONTRIBUTIONS OF THIS THESIS
This thesis contributes to the ongoing transition from DNA reading to DNA writing
philosophy in biotechnology and systems biology. First, by developing computational
algorithms for scaffolding microbial genome assemblies to facilitate reconstruction
of the reference genome sequences for downstream microbial host engineering, in
Chapter 2. And second, by constructing data-driven models for understanding
regulation of classical translation initiation and elongation in Chapter 4, and of
cap-independent translation initiation in Chapter 5. In addition to providing novel
insights into the corresponding regulatory mechanisms, these models have potential
applications in guiding design of synthetic sequences for metabolic engineering efforts,
cf. the methods discussed in Chapter 3.

In Chapter 2 we describe GRASS, an algorithm for improving genome assemblies
through scaffolding. It facilitates obtaining high-quality reference genome sequences,
a prerequisite for genetic engineering efforts. GRASS relies on a novel computational
model, which combines the goals of finding the correct order, orientation and positions
of assembled contigs in an intuitive way. This allows it to use a variety of information
sources for constructing long high-quality scaffolds, which we demonstrated by applying
it to short-read second generation sequencing assemblies of three bacterial genomes in
situations when multiple sequencing datasets or related genomes were available.

Our venture into systems biology and algorithms for writing DNA sequences began
with the challenge of optimising production of naringenin in recombinant yeast, which
we sought to achieve by maximising expression of individual enzymes in the naringenin
biosynthesis pathway by means of codon optimisation. In Chapter 3 we describe
a simple data-driven approach for codon optimisation based on predicting the total
protein production of a gene from its sequence. We used it to optimise genes from
the naringenin biosynthesis pathway genes from the plant Arabidopsis thaliana [128]
for expression in Saccharomyces cerevisiae. In a later experimental validation of one
of the optimised genes, we discovered that it improved protein expression, albeit to a
lesser extent than a traditional method did. We describe the experimental validation
procedure in an addendum to Chapter 3, where we also discuss possible improvements
of our codon optimisation strategy.

Having learned about the complexities of translation regulation and limitations
of our codon optimisation approach through validation experiments, we sought to
devise a whole-cell model of translation that would overcome these limitations and
explicitly model the physical processes of translation initiation and elongation, while
also learning model parameters from data. In Chapter 4 we present an approach
for deriving data-driven models of translation from ribosome profiling measurements.
In this work we developed an efficient simulation method for the physical process
of translation, a framework for analysing ribosome profiling data, and an overall
computational framework for fitting translation models on to this data. We applied
this approach to learn models of Saccharomyces cerevisiae translation, which were used
to study this process in the context of its rate-limiting steps, robustness to changes in
codon elongation rates and in the context of codon optimisation. Our models indicated
that codon elongation rates often deviate from values dictated by tRNA levels alone,
suggesting that other factors are involved in determining these rates.
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Finally, in Chapter 5 we describe a study of an alternative mechanism of translation
initiation via the Internal Ribosome Entry Sites (IRESs), in which we developed sequence
models of IRES activity using machine learning methods. Interpretation of the learned
models highlighted similarities and differences between IRESs from different species
and viral classes. Together, our models yield an high-level architecture of IRESs that
suggests optimal mRNA binding site positions of IRES trans-acting factors (ITAFs),
proteins involved in IRES-mediated translation initiation [129].

Overall, this thesis contributes to several aspects of cell factory engineering through
(i) methods and analyses that improve our understanding of the process of translation
regulation, and (ii) a method for improving genome assemblies. These two major
contributions set the stage for further systems biology research and its applications in
metabolic engineering through synthetic DNA design.
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ABSTRACT

Motivation: The increasing availability of second-generation high-throughput
sequencing (HTS) technologies has sparked a growing interest in de novo genome
sequencing. This in turn has fuelled the need for reliable means of obtaining
high-quality draft genomes from short-read sequencing data. The millions of reads
usually involved in HTS experiments are first assembled into longer fragments
called contigs, which are then scaffolded, i.e., ordered and oriented using additional
information, to produce even longer sequences called scaffolds. Most existing
scaffolders of HTS genome assemblies are not suited for using information other than
paired reads to perform scaffolding. They use this limited information to construct
scaffolds, often preferring scaffold length over accuracy, when faced with the tradeoff.

Results: We present GRASS (GeneRic ASsembly Scaffolder) - a novel algorithm
for scaffolding second-generation sequencing assemblies capable of using diverse
information sources. GRASS offers a mixed-integer programming formulation of the
contig scaffolding problem, which combines contig order, distance and orientation
in a single optimisation objective. The resulting optimisation problem is solved using
an Expectation-Maximization (EM) procedure and an unconstrained binary quadratic
programming approximation of the original problem. We compared GRASS to existing
HTS scaffolders using Illumina paired reads of three bacterial genomes. Our algorithm
constructs a comparable number of scaffolds, but makes fewer errors. This result is
further improved when additional data, in the form of related genome sequences, are
used.
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2.1. INTRODUCTION
High-throughput sequencing (HTS) technologies, such as Illumina (Illumina, Inc., San
Diego, CA), 454 (Roche Applied Science, Penzberg, Germany) and SOLiD and IonTorrent
(Life Technologies, Carlsbad, CA) produce millions of short DNA reads of typical lengths
of 36-500 bp at low cost, making them attractive for de novo sequencing applications.
With the aid of assembly algorithms [2–4], short reads can be joined together into longer
sequences called contigs. However, contigs are typically shorter than the sequenced
DNA molecules, as genomic repeat regions longer than the read length cannot be
unambiguously assembled using the read sequences alone. Scaffolding, the process
of using additional data to place contigs in the right order, orientation and at the right
distance in longer (gapped) supercontigs called scaffolds, is a crucial step in obtaining
high quality draft genome sequences.

Paired reads (mate pair or paired end reads, depending on the sequencing protocol),
i.e., reads of known relative orientation, order and approximate physical distance, are
often used for scaffolding. Additional information, including reference sequences of
related organisms, restriction maps [5] and RNA-seq data, can be used to derive more
accurate contig placement [6, 7], thereby reducing the cost of finishing experiments and
allowing for more reliable downstream analyses. However, most existing scaffolding
algorithms are not able to utilise such information for scaffolding. To our knowledge,
only Bambus [7] and SOPRA [8] can make use of additional data sources, although the
latter was not originally designed for this purpose.

Generally, the Contig Scaffolding Problem (CSP) is finding a linear ordering and
orientation of contigs that minimises the number of unsatisfied scaffolding constraints.
These constraints are derived from the available data through translation of the inherent
distance, order and orientation constraints onto the contigs. The derived constraints
can be mutually exclusive, which makes the problem of minimising the number of
unsatisfied constraints NP-hard [9, 10]. Consequently, practical scaffolding algorithms
only approximately solve this problem: Bambus [7] separately finds contig orientation
and order and uses greedy heuristics to remove inconsistent constraints; SSPACE [11]
greedily extends scaffolds using a heuristic stopping criterion; and SOPRA [8] uses an
iterative procedure to identify a subset of contigs with consistent scaffolding constraints.
Notable exceptions are OPERA [12] and the MIP Scaffolder [13], which simplify the
CSP by dropping types of constraints. OPERA implements an algorithm for finding an
exact CSP solution without minimum contig distance constraints; the MIP Scaffolder
[13] couples a Mixed-Integer Programming (MIP) formulation of the contig scaffolding
problem that does not enforce order constraints with an algorithm heuristically dividing
the original problem into subproblems to be solved exactly.

We propose a novel GeneRic ASembly Scaffolding (GRASS) algorithm that can be
applied to any type of scaffolding information. Our work is similar to Salmela et al.
[13], as we propose a MIP formulation of the scaffolding problem. However, we
combine contig orientation, order and distance in a single quadratic optimisation
objective. Similar to Dayarian et al. [8], we employ an iterative procedure to select a
consistent subset of contigs. However, we apply an expectation-maximization strategy
to maximise the objective function that identifies inconsistent constraints rather than
contigs, thereby retaining more scaffolding information.
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We implemented the algorithm in C++ and tested it on de novo assemblies of
paired read data for the bacteria Eschrichia coli, Pseudoxanthomonas suwonensis, and
Pseudomonas syringae and compared it to the SSPACE, OPERA and MIP scaffolders.
GRASS produces a competitive number of scaffolds with fewer scaffolding errors,
particularly when combining various sources of scaffolding information.

2.2. METHODS

DATA REPRESENTATION
Scaffolding constraints on contig distance, order and orientation are derived from
the data in a manner depending on the data type. For example, the known relative
orientation, relative order and approximate distance of paired reads that map to different
contigs can be translated into relative contig orientation, order and approximate contig
distance by taking mapping orientations and positions into account; similarly, physical
distance, relative order and orientation of two contigs mapping to the same reference
sequence can be translated into corresponding constraints. However, different data
types eventually define the same type of pair-wise contig constraints, which can be
conveniently represented as arcs (i.e., directed edges) l j = (al j ,bl j ) ∈ E of weight ωl j

in a digraph G = (V ,E) defined over the set of contigs V [7, 10, 12]. The weight can be
chosen to reflect information source importance and consistency. A relative order rl j ,
relative orientation el j and approximate distance suggested by the pair-wise constraints,
are then associated with every arc l j . The approximate distance is recorded as mean µl j

and its standard deviation σl j . This form is a natural choice for capturing variation in
contig distances derived from the paired read insert size. It is also suitable for scaffolding
constraints without (reliable) distance estimates, for example constraints derived from
paired RNA-seq data of an organism with abundant intron splicing, or by mapping
contigs to genome of a distant relative. Such constraints can use a large σl j to reflect
the uncertainty in the data source. We refer to l j , its importance weight ωl j , and the
corresponding contig pair-wise constraints as a contig link, and to G as the contig link
graph. For succinct notation, for every contig link constraints are recorded as

• el j =
{

0, al j and bl j are from different strands
1, al j and bl j are from the same strand

• rl j =
{

0, al j follows bl j

1, bl j follows al j

given that al j has forward orientation.

This abstract definition is illustrated in Fig. 2.1. It allows capturing any combination of
contig order, distance and orientation, including constraints derived from paired end
reads, mate pair reads, and contig mapping.

CONTIG LINK BUNDLING AND EROSION
We create a single contig link for every available piece of evidence (e.g., pair of reads)
and by default set its importance weight to one (a parameter adjustable per information
source). For high coverage HTS data this procedure creates a large number of links.
Contig link bundling is used to reduce the number of links, and thereby the complexity
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Figure 2.1: Examples of contig links l j between contigs al j
and bl j

and their corresponding relative orientation

(el j
), relative order (rl j

) and distance (µl j
±σl j

) constraints.

of the problem. For every ordered pair of contigs (u, v), arcs (u, v) ∈ E that agree on
contig distance, order and orientation are combined into one or more contig links as
in Huson et al. [10]. The weight of a link after bundling is equal to the sum of weights
of links bundled together to create it. Our definition of contig links permits having links
that agree on all constraints, yet cannot be bundled together because they are oppositely
directed in G . To enable bundling of such links, we re-set rl j relative to one of the
end points of l j to make sure that all links connecting a pair of contigs have the same
directionality. Finally, contig links with importance weight smaller than a predefined
erosion threshold e are removed from the graph. This assumes that erroneous links are
rare.

OPTIMISATION FORMULATION
We present a mixed-integer quadratic programming (MIQP) formulation of the contig
scaffolding problem. Our formulation is equivalent to the traditional one (minimise
the number of unsatisfied constraints, Huson et al. [10]), but uses slack variables as
continuous measures of the extent to which each order and orientation constraint is
satisfied. This allows for uncertain data, yielding less trustworthy constraints, to be
accurately exploited in the scaffolding process. A number of optimisation variables
are associated with every contig and contig link. We maximise an objective function
f of these variables subject to scaffolding constraints expressed as linear optimisation
constraints. The function reaches its maximum value when all distance, order and
orientation constraints are satisfied. Each valid collection of the optimisation variable
values forms a solution to the optimisation problem. These values are sufficient to
puzzle contigs into scaffolds. For every contig ci , where i = 1, . . . ,n, the following
variables are defined as illustrated in Fig. 2.2

• ti =
{

0, ci comes from the forward strand of the scaffold
1, ci comes from the reverse strand of the scaffold

is used to define contig orientation in the scaffold.

• xi ∈R+ corresponds to the 5′ position of ci in the scaffold (when input contigs and
the constructed scaffold are viewed as having a 5′ to 3′ orientation).
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Figure 2.2: Optimisation variables xal j
, xbl j

, tal j
and tbl j

associated with contigs. Example for el j
= 0∧rl j

= 0.

Naturally, xi should be an integer variable, but it is relaxed to simplify the
optimisation problem and is rounded to the nearest integer when the solution is
converted into scaffold nucleotide sequences. Additionally, with every link l j , j =
1, . . . ,m the following variables are associated:

• Slack variables for distance constraints, ξl j = {
→
ξl j ,

←
ξl j } ∈ R+ × R+, and order

constraints, ∆l j = {
→
∆l j ,

←
∆l j } ∈ R+×R+, for forward (tal j

= 0) and reverse (tal j
= 1)

orientations of the contig pair respectively. By design these variables reflect the
degree to which the corresponding constraints are violated. They are penalised in
the optimisation objective f .

• Switch variables for distance constraints, αl j ∈ {0,1}, and order constraints,
βl j ∈ {0,1} (0, constraint is disabled; 1, enabled) used for disabling contig link
constraints with high penalties.

As distance and order constraints are influenced by the orientation, different slack
variables are required for both orientations. We omit orientation arrows above slacks ξl j

and ∆l j when the contig pair orientation is not important, or is clear from the context.
Contig links impose scaffolding constraints, which can be modelled as MIQP

optimisation constraints. We demonstrate here how such constraints can be derived
from paired read data; the same type of constraints can be derived in a similar way from
other sources of scaffolding information (for example, see section 2.3).

Distance constraints are expressed as:

|d(al j ,bl j )−µl j |
σl j

≤ ξl j , (2.1)

where d(al j ,bl j ) is the distance between contigs al j and bl j , and ξl j is a distance
slack variable. This inequality captures uncertainty in the distance by measuring the
difference with the mean in standard deviations. We derive contig distance d(al j ,bl j )
from the paired read insert size as the gap size plus the contig lengths. The calculation
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Figure 2.3: Contigs a and b are not in the order predicted by mapped paired reads l and r , although the paired
reads are in the correct order.

then depends on the order and orientation of contigs connected by l j . It can be fixed
by assuming that the contigs have relative orientation and order suggested by l j . For
example, for the case of (el j = 0 ∧ rl j = 0) shown in Fig. 2.2, the distance expression
depends on contig pair orientation through tal j

:

d(al j ,bl j ) = xal j
−xbl j

+ len(al j )+ len(bl j ), tal j
= 0

d(al j ,bl j ) = xbl j
−xal j

+ len(al j )+ len(bl j ), tal j
= 1.

Combined with (2.1) the following constraints are obtained:

xal j
−xbl j

≤ σl j

→
ξl j +µl j − len(al j )− l en(bl j )

xal j
−xbl j

≥ −σl j

→
ξl j +µl j − len(al j )− l en(bl j )

xbl j
−xal j

≤ σl j

←
ξl j +µl j − len(al j )− l en(bl j )

xbl j
−xal j

≥ −σl j

←
ξl j +µl j − len(al j )− l en(bl j )

, (2.2)

where different slack variables are used for the two contig pair orientations. The
expressions for other combinations of el j and rl j are derived similarly.

Order constraints are derived from read order constraints (i.e., if c j follows ci , then
they should not overlap and c j must be upstream of ci ), which additionally can be
relaxed. The relaxation is necessary because (i) assembled contigs may overlap [7]; (ii)
in some cases the order constraints on data are not valid when extended to contigs, as
illustrated in Fig. 2.3. Translating order constraints into optimisation constraints as xal j

−xbl j
≥ −len(bl j ) · →

∆l j , tal j
= 0

xbl j
−xal j

≥ −l en(al j ) · ←
∆l j , tal j

= 1
(2.3)

(formulas shown for el j = 0 ∧ rl j = 0) discourages overlaps while still allowing the order
constraint to be violated when ∆l j > 1. These slack variables are weighed by the length
of the downstream contig to allow measuring them on a single scale. As for the distance
optimisation constraints, it is assumed that the relative contig orientation is correct.

Orientation constraints are modelled in the optimisation objective function, which
is designed to attain larger values when more orientation constraints are satisfied. The
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function is given by a polynomial

g (t ) =
el j

=0∑
j=1,...,m

qal j
bl j
ωl j +

el j
=1∑

j=1,...,m
(1−qal j

bl j
)ωl j ,

where qab = ta + tb − 2ta tb ≡
{

0, a and b are equally oriented
1, otherwise

. It is equal to the

sum of weights of contig links with satisfied orientation and serves as a basis for the
optimisation objective that is further penalised proportionally to slack variables.

Slack penalties. The distance and order constraints are added to the optimisation
problem through slack variable penalisation. The penalty is proportional to the
importance weight of the corresponding contig link and to the value of the slack variable.
To avoid situations when a low-weight violated constraint results in a large penalty,
a maximum penalty of half of the importance weight is enforced, after which the
constraint is considered disabled. Doing this has the additional benefit of equalising
the influence of order and distance constraints. To this end we penalise as follows

ωl j

2
·

min(ξl j ,Sξ)

Sξ
, (2.4)

where ξl j is chosen as
→
ξl j or

←
ξl j , according to the contig pair orientation and Sξ is

the maximum slack threshold (after which the slack is disabled). Because the expression
min(ξ,Sξ) is not suitable for direct use in a MIP, it is unrolled using the switch variables
as [αl j ξl j + (1 −αl j )Sξ]. Similar penalties with variables ∆l j and βl j , and maximum
slack threshold S∆ are used for the order constraints. We set Sξ = 6 (i.e., six standard
deviations), as in Gao et al. [12], Li and Durbin [14]; and S∆ = 1, as at this value of slack
the physical order constraint is not satisfied anymore. Further, only the slacks for the
appropriate contig pair orientation have to be penalised. This is achieved by penalising

(1−tal j
)
→
ξl j +tal j

←
ξl j in place of ξl j in (2.4). This expression “chooses” which slack variable

to penalise depending on the contig pair orientation. Finally, the constraints have to
be penalised only when they are meaningful (i.e., the relative contig orientation el j is
assumed to be satisfied). The resulting function looks as follows:

h(t ,α,ξ,Sξ) =
el j

=0∑
j=1,...,m

qal j
bl j

ωl j

2Sξ

[
(1− tal j

)
→
ξl j + tal j

←
ξl j

]
+

+
el j

=1∑
j=1,...,m

(1−qal j
bl j

)
ωl j

2Sξ

[
(1− tal j

)
→
ξl j + tal j

←
ξl j

]
.

Expansion of this function leads to a fourth degree polynomial, containing only
terms that consist purely of binary variables, or one continuous and up to three
binary variables. To construct a MIQP formulation, using the big-M formulation [15],
these terms can be replaced by a single new auxiliary variable each at the expense of
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introducing new optimisation constraints.

Putting it all together. We maximise

f (x, t ,α,β,ξ,∆) ≡ g (t )−h(t ,α,ξ,Sξ)−h(t ,β,∆,S∆),

s.t. constraints (2.2) and (2.3) are satisfied. Here g (t ) is maximised for orientation,
h(t ,α,ξ,Sξ) is minimised for orientation and distance, and h(t ,β,∆,S∆) is minimised
for orientation and order, in a single optimisation objective. Given the NP-hard nature
of MIPs and the large number of binary variables in the proposed formulation, this
problem becomes intractable even for small numbers of contigs.

PROBLEM SPLITTING
We tackle this intractability with an expectation-maximisation (EM) -like procedure.

The maximisation step assumes the contig orientations are known (i.e., ti and

qab are fixed). Knowing ti allows us to choose the slack variables (
→
ξ l j

or
←
ξ l j

, and
→
∆l j or

←
∆l j ) depending on the contig pair orientations, and to select contig links

with satisfied relative orientation before the optimisation problem is constructed,
significantly reducing the number of optimisation constraints and the complexity of the
optimisation problem:

f (x,α,β,ξ,∆) = g −h(α,ξ,Sξ)−h(β,∆,S∆)

g =∑
ωl j ≡ const , h(α,ξ,Sξ) =∑

min(ξl j ,Sξ) · ωl j

2Sξ

. (2.5)

This fixed optimisation problem, however, is still NP-hard due to the binary variables
αl j and βl j involved in expansion of the min terms. We obtain an approximate solution
to this problem by first exactly solving its continuous relaxation, choosing αl j and
βl j according to the slack values in the relaxation solution and finally, re-solving the
problem with these values fixed. The relaxation is obtained by replacing h(α,ξ,Sξ) by
h(ξ,Sξ) = 1

2Sξ

∑
ωl j ξl j in (2.5). This eliminates all binary variables, allowing the use of

efficient optimisation algorithms [16]. The solution for the relaxed problem gives us
optimal values for slacks ξl j and ∆l j , which are used to choose αl j and βl j as

αl j =
{

0, ξl j > Sξ
1, ξl j ≤ Sξ

, βl j =
{

0, ∆l j > S∆
1, ∆l j ≤ S∆

,

and allows us to re-solve problem (2.5). The rationale behind is that, since the majority
of link information is assumed to be correct, large slack values will be associated with
incorrect constraints that have to be disabled. The total penalty for l j is memorised
(initially set to zero) for use in the expectation step as

Θl j ←
min(ξl j ,Sξ)

2Sξ
ωl j +

min(∆l j ,S∆)

2S∆
ωl j .

The expectation step is used to obtain the expected contig orientations ti , which
maximise the objective function for the previously observed penalties. Consider the
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MIQP problem when penalties associated with the links are known (i.e., ∆l j , ξl j , αl j

and βl j are fixed), and the optimal contig orientation is sought. In this problem, when
a contig link is enabled, its weight is penalised by the associated slack Θl j . We can,
therefore, consider an equivalent problem where all slacks are zero and link weights are
modified as ω̃l j ←ωl j −Θl j . The problem is then to maximise

f (t ) ≡ g (t ) =
el j

=0∑
j=1,...,m

qal j
bl j
ω̃l j +

el j
=1∑

j=1,...,m
(1−qal j

bl j
)ω̃l j (2.6)

free of any constraints. This is an unconstrained binary quadratic programming (UBQP)
problem [17], the problem of maximising a function c(t ) = t t C t , where x is a binary
vector of length n and C is an n ×n real matrix. Consider a vector of orientations t ∈
{0,1}n and a matrix C of size n. Starting from a zero matrix, C = (ci j ) can be obtained by
updating it for every link l j = (a,b) as

caa ← (−1)
el j ω̃l j + caa , cbb ← (−1)

el j ω̃l j + cbb

cab ← (−1)
el j

+1 ·2ω̃l j + cab .

The functions f (t ) and c(t ) will then differ by a constant and, therefore, reach maxima
for the same t . Solving a UBQP is known to be an NP-hard, but well-studied problem
with efficient heuristic algorithms available [18–20]. Thus, the UBQP formulation of the
problem is preferred over (2.6) for obtaining values of ti .

The EM steps are iterated while contig orientations change. The algorithm can be
viewed as an iterative UBQP approximation of the original MIQP problem. In practice, it
converges to a solution within 7 iterations.

SCAFFOLD EXTRACTION AND POST-PROCESSING
Repeat contigs in the contig link graph G are connected by ambiguous links, hindering
a confident positioning in scaffolds. In a pre-processing step, we detect such contigs
using a modification of the A-statistic [21] proposed by Zerbino [22], and prevent their
incorporation in scaffolds by removing all links from G incident to them. The connected
components of G correspond to separate subproblems, which are solved independently.

After optimisation, each solution tuple (x, t ,α,β) and corresponding subgraph G ′
are converted into one or more scaffolds. First, contig links with disabled constraints
(i.e., αl j = 0 ∨ βl j = 0) are removed from G ′ to minimise the chance of incorrectly
incorporating contigs in the same scaffold. Every connected component of the resulting
G ′ is used to construct a single nucleotide sequence. Contigs are processed in order of
their downstream end coordinates. The left end of the first contig is put at the start of
the sequence; every new contig is added to the scaffold such that the gap between two
consecutive contigs is preserved. When consecutive contigs are predicted to overlap (i.e.,
have a negative gap size), the new contig is pushed upstream to eliminate the overlap.

Because resolving contig overlaps in this way potentially leads to erroneous sequence
reconstruction, we also explore an optional post-processing approach that performs
global sequence alignment on consecutive contigs to find the best overlap. Global
alignment is performed using a divide-and-conquer version of the Needleman-Wunsch
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algorithm [23]. Algorithm implementation from the NCBI C++ Toolkit was used [24]. For
every consecutive pair of contigs predicted to have a gap of µ bp, all gap sizes of at most
d = 100 bp away from the predicted value are examined. Negative gap sizes indicate
overlaps. For each gap size g , global alignment of overlapping contig ends is performed
(match score of pmatch = 2, mismatch penalty of pmismatch = −3). The best gap size is
then chosen based on the alignment score S and proximity to the predicted gap size µ by
maximising

S

g ·pmatch
· d −|g −µ|

d
. (2.7)

With the (mis)match scores chosen as above, this expression takes values in [−1.5;1].
Due to computational complexity only overlaps of no more than 1500 bp are considered
(gap sizes with longer overlaps are assigned a score of -1). The decision to join two
contigs, to leave a gap between them or to split the scaffold is then made:

• If none of the considered gap sizes suggest overlaps, the two contigs are positioned
in a scaffold with a gap of µ bp.

• If value of expression (2.7) for the chosen gap size g passes a quality threshold
of 0.8, the contigs are positioned to have an overlap of g bp. The overlap is
replaced with the alignment consensus sequence, where mismatches are masked
with unknown nucleotides.

• If the chosen gap size does not pass the quality threshold and is shorter than 50 bp,
the two contigs are positioned successively one following another with no overlap.

• Finally, if the chosen gap size suggests a longer overlap, the currently constructed
scaffold is split into two with a new scaffold starting from a contig that was
predicted to lie upstream.

In principle, the proposed post-processing step with scaffold splitting allows for
construction of more accurate scaffolds compared to the naïve scaffold extraction. We
refer to the combination of GRASS and post-processing as GRASS+.

EVALUATION CRITERIA
Similar to assemblies, scaffolds are evaluated based on accuracy and contiguity. Scaffold
accuracy can be assessed by comparing scaffolds to available reference sequences. We
adopted the evaluation criteria from Dayarian et al. [8], Gao et al. [12] and counted the
number of scaffold breakpoints, i.e., consecutive contig pairs in the scaffold that do
not agree with the reference on contig distance, order or orientation. We perform local
alignment of scaffolds to the reference and count the number of breakpoints within each
scaffold. Two consecutive alignments are counted as a breakpoint if any of these hold: (i)
they align to two different chromosomes in the reference; (ii) their relative orientations
in the scaffold and in the reference do not match; (iii) their relative orders in the scaffold
and in the reference do not match; (d) the difference in distance in the scaffold and in the
reference is larger than ∆. We used ∆ = 10 kbp and ∆ = 500 bp to asses contig distance
correctness at low and high resolution respectively.
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MUMmer [25] was used to align scaffolds to references. Best hits for each position in
the scaffold were computed. Only hits with at least 90 aligned bases (alignment length
× alignment identity), were taken into account. In practice, very few alignments do not
pass this cutoff. The alignments are also used to calculate the percentage of the scaffold
bases and the reference bases that are aligned [13]. These numbers capture scaffold
accuracy and completeness.

Finally, scaffold completeness and contiguity are captured as in sequence assembly,
calculating total length of all scaffolds, number of scaffolds, maximum scaffold length
and the N50 statistic.

2.3. IMPLEMENTATION
GRASS source code is available under the GNU GPL v3 license. It was developed in
C++ and tested on Linux. GRASS consists of linker and scaffolder modules. The linker
takes contigs and the available information sources as input and produces linking and
coverage data, which is then used by the scaffolder module. It filters out repeat contigs
and uses the remaining data to produce scaffolds. Scaffolds are output both as lists of
contigs with assigned coordinates and orientations, and as linear FASTA sequences with
gaps.

PAIRED READ DATA PROCESSING
To obtain contig links from paired read data, the linker module performs single-end
mapping of the reads to contigs. The algorithm used for mapping depends on the data
type: BWA [14] for Illumina reads, NovoAlign (http://www.novocraft.com/) for 454 data.
The aligners are set to output all mapping locations, including non-unique hits, as a SAM
file [26], which is then converted to BAM for further processing. This process is applied
to each paired read library.

Read alignments are preprocessed to remove read pairs with low-quality and
ambiguous alignments. As a rule, only unique hits with no mismatches and minimum
read length of 30 bp are kept. The filtered alignments are then scanned for paired reads
that align to different contigs. Each such read pair mapping is used to create a single
contig link with distance, order and orientation constraints derived from the mapping
and the given read pairing method (i.e., paired ends or mate pairs). The BamTools API
[27] is used for filtering and processing read alignments.

RELATED GENOME DATA PROCESSING
An available reference sequence, such as the genome of a related organism, can be used
for guiding the scaffolding process. For this purpose, contigs are aligned to the reference
sequence. For every contig, a position in the reference sequence is obtained from
contig tiling constructed from local alignments using MUMmer. Contig links are then
created for every pair of consecutive contigs aligning to the same reference sequence,
with relative orientation and order derived from the tiling. To capture alignment quality,
weights for links l j = (al j ,bl j ) are set to Ial j

× Ibl j
×Cal j

×Cbl j
×W , where Ial j

and Ibl j
are

alignment identities, Cal j
and Cbl j

are alignment coverages reported by MUMmer for

the corresponding contigs, and W > 0 is a weight assigned to the reference sequences as

http://www.novocraft.com/
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Table 2.1: Available datasets. NCBI/EBI accession numbers are given for reference sequences and read sets. In
all cases reads were produced by the Illumina sequencing platform.

E. coli P. suwonensis P. syringae

Genome size 4.64 Mbp 3.42 Mbp 6.09 Mbp
Reference NC_000913.2 CP002446.1 NC_007005.1

Dataset SRR001665 SRR001666 SRR097515 SRR191848 ERR005143
Read count 2×10,408,224 2×7,047,668 2×23,960,004 2×19,789,425 2×3,551,133
Read length 36 bp 36 bp 76 bp 76 bp 36 bp
Coverage 160× 107× 709× 824× 38×
Insert size 216±10 488±18 189±17 189±17 401±33

a scaffolding information source. This procedure is applied for each available reference
sequence to create links, which are then used together in the optimisation.

OPTIMISATION PROBLEM SOLUTION
The EM procedure proposed for solving the MIQP formulation of the contig scaffolding
problem splits it into a continuous linear programming (LP) problem, and an UBQP
problem. Although more efficient algorithms for solving UBQPs are available [18,
20], a memetic algorithm from Merz and Katayama [19] was chosen for ease of
implementation. Usually, contig link graphs are sparse due to the linear scaffold
structure that they encompass. Memetic algorithms improve individual solutions
through local search, which in turn is well-suited for smooth search landscapes (as in the
case of sparse contig link graphs). Graph sparsity is further exploited by implementing
sparse matrix operations as in Merz and Katayama [19].

We use the C++ Concert API for the CPLEX Optimiser [28] to solve LPs. CPLEX is
freely available for academic use.

2.4. RESULTS AND DISCUSSION

EXPERIMENTAL SETUP
We have evaluated GRASS on de novo HTS assemblies of three bacterial genomes:
Escherichia coli K12, substr. MG1655; Pseudoxanthomonas suwonensis 11-1; and
Pseudomonas syringae B728a. For these organisms, finished genome sequences and
HTS data from resequencing experiments are available. Presence of a finished genome
sequence allows for reliably evaluating the algorithm and comparing it to other
scaffolders in a de novo setup. This is achieved by using the reference sequence only
in scaffold evaluation (thus not as an additional information source in the scaffolding
process). The available test data is summarised in Table 2.1. Insert size and coverage
were obtained from paired read mapping using BWA and BEDTools [29].

Velvet [2] was used to assemble reads into contigs. All assemblies had a coverage
cutoff of 6 and were not scaffolded by the assembler. Only contigs longer than 150 bp
were kept. Repeat resolution was disabled (i.e., no expected coverage was provided). For
each organism, the k-mer length was chosen by performing assemblies for various k and
choosing one based on assembly contiguity, length, percentage of mapped single reads,
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and percentage of properly paired reads [14] (Suppl. Tables 2.6,2.7 and 2.8). For E. coli, P.
suwonensis and P. syringae, k = 31, k = 59 and k = 23 were chosen respectively. This way
of choosing k reflects real-life de novo assembly scenarios, yielding a realistic algorithm
evaluation. Final assemblies are characterised in Tables 2.2–2.4.

COMPARISON TO OTHER SCAFFOLDERS
We compared GRASS to SSPACE, MIP and OPERA scaffolders. Where required, insert size
estimates from Table 2.1 were used. Tables 2.2–2.4 show evaluation metrics calculated
for these scaffolders and the available test data. Unless stated otherwise, all scaffolders
were run with default parameter settings. BWA was used to map reads to scaffolds and
produces SAM files required by MIP. As in Salmela et al. [13], at most two mismatches
were allowed in read mapping. For SSPACE and OPERA, reads were aligned with Bowtie
[30] using scripts provided with the scaffolders.

GRASS used an erosion cutoff of 4 (although better results can be obtained by tuning
this parameter) and coverage estimates obtained from exact mapping of the reads to the
assembly contigs. The latter is available from output of the linker module.

The SSPACE maximum distance parameter was set to 6 standard deviations for each
paired library. Libraries were input in order of increasing insert size.

The MIP Scaffolder was also provided with coverage estimates computed from exact
read mapping. Following the original publication, we tried different filtering parameters
(ω, p) and chose those which gave the highest N50 value. Settings (36,0.8), (70,0.4) and
(50,0.6) were selected for the E. coli, P. suwonensis and P. syringae data respectively.
Maximum partition sizes were set to 100 for the E. coli scaffolds and 50 for the P.
suwonensis and P. syringae scaffolds. Maximum and minimum insert sizes were chosen
by adding and subtracting 6 standard deviations to the mean insert size.

OPERA does not allow using multiple read sets. It was applied to each read library
separately, and in the case of P. suwonensis, also to a join of the available read sets, as
they have the same insert size. The minimum contig length was set to 150 bp, i.e., the
contig length cutoff parameter used in Velvet. We used the default PET parameter value
whenever possible and increased it to the minimum value that allowed OPERA to finish
without triggering a timeout abort. Cutoff values 6 and 7 were used for the E. coli dataset;
cutoffs 27, 5 and 5 were used for the P. suwonensis dataset; and 11 was used for the P.
syringae dataset (values are given in the order of the experiments in Tables 2.2–2.4).

SOPRA was applied to assembly graphs produced by Velvet. However, when used
with parameters chosen in accordance to the manual provided, SOPRA produced highly
fragmented scaffolds compared to results from Salmela et al. [13]. To allow for a fair
comparison, its results were not taken into account.

As a scaffolder, Velvet was provided with mean insert size and standard deviation
for each library. The data was reassembled with repeat resolution (expected coverage
estimated automatically) and scaffolding turned on. Its performance was used as a
baseline over which all scaffolders improved on P. syringae data and only SSPACE and
GRASS improved on E. coli and P. suwonensis data.

Tables 2.2–2.4 contain the results. Note that the minimum number of breakpoints is
one, due to the circular structure of bacterial genome. Breakpoints at ∆= 10 kb and ∆=
500 bp differ only slightly, suggesting that gap lengths are estimated with high precision.
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SSPACE produced the longest scaffolds for E. coli. It also produced the smallest number
of scaffolds for E. coli and P. suwonensis. The longest scaffolds and the smallest number
of scaffolds on the P. syringae dataset are achieved by the MIP Scaffolder. Similar scaffold
and reference coverage percentages were achieved by all scaffolders. However, GRASS+
has the smallest number of breakpoints for all considered organisms. Additionally,
for the case of P. suwonensis, GRASS constructed the longest scaffolds and GRASS+
produced breakpoint-free scaffolds while providing a 2-fold reduction in the number of
contigs. Scaffolds produced by the MIP Scaffolder and OPERA are either very fragmented
or have a large number of breakpoints.

When constructing scaffolds, scaffolding algorithms balance between scaffold
contiguity and scaffold accuracy. This tradeoff is captured in Fig. 2.4 by plotting the
number of breakpoints (at∆= 10 kbp) against the number of scaffolds. A good scaffolder
would be located in the lower left corner of such a plot. In many cases, GRASS
combines a smaller number of breakpoints with a small number of scaffolds, compared
to other scaffolders. The MIP Scaffolder and SSPACE can achieve smaller numbers of
scaffolds, but at the cost of (much) larger numbers of breakpoints. Clearly, GRASS and
SSPACE represent two possible choices of scaffolding algorithms, with GRASS being
more accurate with respect to the number of breakpoints and SSPACE constructing
longer scaffolds. This behaviour of the two algorithms is consistent over all datasets.

We also measured scaffolding running times, these are depicted in Fig. 2.4 using
marker size. Exact numbers, as well as read mapping running times are available in
Suppl. Table 2.9. Like most scaffolders, GRASS spends a majority of its time on read
alignment, making running times of different scaffolders comparable and running time
of the core scaffolding part of GRASS on the considered datasets negligible. Based on
simulation results, we do not expect computation to become a bottleneck for large
genomes. Nevertheless, to reduce computational load it is always possible to split the
contig graph into graphs of manageable size by increasing the erosion parameter e.

USING ADDITIONAL INFORMATION

To demonstrate the ability of GRASS to utilise various scaffolding information sources,
we used two related genomes (see Fig. 2.5) to help scaffold the E. coli assembly: DH10B
and BW2952. These genomes were used individually, together and in combination with
paired reads. When combining several information sources, care has to be taken in
choosing the weights Wr and the erosion threshold parameter e. In individual genome
experiments, W = 100 and e = 80 were chosen to remove links derived from low-quality
alignments. In the experiment using only two related genomes (thus no links derived
from paired read data) a higher weight was given to the more closely related strain:
e = 70 and WDH10B = 80, WBW2952 = 100 were used for the DH10B and BW2952 strains
correspondingly. For experiments combining a single genome with paired reads, W = 10
and e = 4 were chosen. Finally, WDH10B = WBW2952 = 3 and e = 5 were used in the
experiment combining all data (including the paired read constraints) to emphasise use
of links supported by at least two information sources. When used in the experiment,
paired read link weights were set to 1. A standard deviation of 3000 bp was used for links
derived from related genomes.

Interestingly, using just related genomes GRASS constructs a smaller number of
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BW2952

DH10B

MG1655

9.999999999999999E-5

Figure 2.5: Phylogenetic tree showing evolutionary distance between the E. coli MG1655 strain and two related
strains. Genome sequences were obtained from GenBank.

scaffolds than when only paired reads are used. Table 2.5 shows, however, that this is
achieved at the expense of scaffold accuracy: besides having an increased number of
breakpoints, scaffolds constructed based on related genomes alone have a high total
assembly length and, as a consequence, a low scaffold coverage. The higher than
anticipated total assembly length is due to differences in contig distances (i.e., physical
distances obtained by aligning contigs to a genome sequence) between the MG1655
strain and the related strains. This is also the reason for the large differences observed
between breakpoints at ∆= 10 kbp and ∆= 500 bp: while relative order and orientation
have been preserved for large parts of the genomes of the considered strains, the exact
physical distances have not. This situation is partially alleviated when information
from the two genomes is combined, because (i) consistent links (derived from the two
genomes) get higher weights after link bundling, and (ii) the more closely related strain
BW2952 was given a higher weight. In this case GRASS is able to further reduce the
number of scaffolds without introducing new breakpoints.

Combining paired read data with information from individual related genomes
allows for construction of a smaller number of scaffolds with fewer breakpoints than
when using these data individually. The results vary between repeated runs of the
algorithm, due to inconsistencies between linking information provided by paired reads
and related genomes, combined with the stochastic nature of the optimisation strategy
used for solving the MIQP formulation. Depending on the intermediate solutions found,
different contig links are disabled in the optimisation process, leading to different final
solutions and, thereby to different scaffolds. Table 2.5 hence shows a range of scaffold
and breakpoint counts, and other results as averages over five repeated runs. This
variability is smaller when all data is combined, since a “voting” approach can be
implemented by setting W and e in such a way that all links supported by only a single
information source have low weights and are ignored. Using all available information,
GRASS reduced the number of scaffolds by 40% compared to just using paired reads,
at the expense of introducing a single new breakpoint. The increase in the number
of breakpoints is not surprising, as the de novo scaffolding information is augmented
with links derived for a different (related) organism. The best result on combined data is
shown in Fig. 2.4A.

2.5. CONCLUSION
We presented GRASS, a generic scaffolding algorithm suitable for combining multiple
information sources, as well as GRASS+, incorporating a post-processing scaffolding
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step. Its use was demonstrated by scaffolding genomes based on paired read data and
information in related genome sequences, both individually and combined. GRASS
achieves the best results when all available scaffolding information is used, as this allows
conflicting information from a single source to be ignored when the majority of sources
do not support it. Such a mode of operation is supported by the possibility of choosing
weights for the individual information sources, combined with the contig link erosion
threshold.

We compared GRASS to a number of state-of-the-art scaffolders (SSPACE, MIP and
OPERA) on three datasets. GRASS constructs the most accurate scaffolds on all datasets,
while keeping the number of scaffolds low. Only SSPACE consistently produces lower
numbers of scaffolds, but these are significantly less accurate. The accuracy/contiguity
tradeoff displayed by GRASS puts it in a unique niche compared to existing scaffolders.

The current implementation of GRASS supports the use of paired read information
and related genomes for scaffolding. However, the algorithm is not limited to any
particular set of information sources. We will extend GRASS to allow use of other sources,
such as optical restriction maps, RNA-seq and EST data.

2.A. SUPPLEMENTARY INFORMATION

SEQUENCE ASSEMBLY
To select the k-mer length for de novo genome assembly using Velvet we tried different
values of k and calculated length and accuracy statistics for the resulting assemblies.
We measured the number of contigs, maximum contig length, the N50 statistic and total
assembly length to get a feel of assembly completeness and contiguity. We also measured
coverage as percentage of reads mapping to the genome, and accuracy as the percentage
of paired reads with proper pairing (as defined by BWA, [14]). To measure accuracy and
coverage, single- and paired-end mapping of the reads to the assembled contigs was
performed using BWA. Tables 2.6, 2.8 and 2.7 show these statistics for different k for E.
coli, P. syringae and P. suwonensis assemblies correspondingly.

PHYLOGENETIC TREE CONSTRUCTION
The phylogenetic tree for E. coli strains MG1655, BW2952 and DH10B was constructed
using the SplitsTree 4 package [31] and the coverage distance function from [32].
Genome alignments were obtained using MUMmer [25] with settings from [33].

SCAFFOLDER RUNNING TIME
Scaffolding and mapping running times were measured for all experiments. This data is
presented in Table 2.9. Scaffolding time for Velvet and mapping time for SSPACE have
been calculated from the programs’ output. Preprocessing of reads prior to mapping
and post-processing of the mapper’s output was counted as mapping time.
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Table 2.6: E. coli assembly statistics for different k-mer lengths of Velvet. Assembly for the chosen k is
highlighted.

k Contigs N50 Maximum Total length Coverage Accuracy

19 4,180 1,621 9,259 4,505,092 91.66% 72.38%
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23 951 9,181 41,213 4,521,870 94.47% 90.93%
25 722 12,114 55,230 4,527,423 94.83% 92.51%
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29 512 18,358 71,241 4,531,657 95.16% 94.00%
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Table 2.7: P. syringae assembly statistics for different k-mer lengths of Velvet.

k Contigs N50 Maximum Total length Coverage Accuracy

19 5,059 1,892 12,464 5,846,661 84.47% 64.51%
21 1,926 7,024 42,317 5,886,062 86.70% 80.78%
23 1,560 8,599 46,055 5,902,217 87.20% 82.93%
25 1,990 5,977 24,056 5,930,228 87.55% 81.27%
27 3,829 2,623 13,478 5,946,020 87.32% 72.76%
29 8,825 865 8,433 5,592,074 81.59% 45.63%
31 5,523 343 2,676 1,755,054 28.42% 6.57%
33 57 500 3,166 21,040 1.10% 0.61%
35 15 244 448 3,588 0.24% 0.04%

Table 2.8: P. suwonensis assembly statistics for different k-mer lengths of Velvet.

k Contigs N50 Maximum Total length Coverage Accuracy

21 798 178 672 148,597 1.16% 0.70%
23 3,640 194 609 724,989 6.90% 6.73%
25 6,457 222 900 1,451,717 15.79% 16.58%
27 8,045 264 1,273 2,084,930 25.28% 28.08%
29 8,538 313 1,793 2,522,405 32.97% 37.82%
31 8,306 385 2,421 2,846,252 39.62% 46.66%
33 7,520 482 3,595 3,069,871 45.06% 54.49%
35 6,391 635 3,505 3,220,911 49.30% 61.05%
37 5,270 857 5,770 3,321,047 52.65% 66.44%
39 3,978 1,223 7,233 3,371,436 55.17% 70.96%
41 2,939 1,706 11,487 3,396,276 56.95% 74.35%
43 2,039 2,721 16,786 3,407,475 58.35% 77.06%
45 1,435 3,959 16,772 3,408,865 59.12% 78.75%
47 1,020 5,818 23,722 3,408,282 59.68% 79.90%
49 697 9,367 36,131 3,405,741 60.05% 80.72%
51 537 12,638 46,479 3,402,802 60.21% 81.10%
53 427 16,065 64,878 3,400,488 60.33% 81.40%
55 351 19,866 87,700 3,399,187 60.42% 81.60%
57 308 24,193 87,698 3,396,963 60.49% 81.74%
59 303 26,043 90,572 3,394,128 60.47% 81.74%
61 309 24,862 90,573 3,392,147 60.46% 81.73%
63 301 24,005 78,697 3,386,612 60.46% 81.74%
65 334 21,764 78,707 3,380,022 60.38% 81.63%
67 380 17,029 78,569 3,372,389 60.26% 81.44%
69 462 13,262 74,778 3,363,394 60.10% 81.18%
71 648 9,303 54,433 3,351,627 59.81% 80.67%
73 1,088 5,308 22,390 3,338,680 59.36% 79.71%
75 4,214 933 13,128 3,082,996 53.13% 68.00%

[33] A. F. Auch, H.-P. Klenk, and M. Göker, Standard
operating procedure for calculating genome-to-genome

distances based on high-scoring segment pairs,
Standards in Genomic Sciences 2, 142 (2010).
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Table 2.9: Scaffolder and mapping running time. For E. coli “(all)” denotes usage of paired reads and related
genomes of E. coli strains DH10W and BW2952 for scaffolding.

Dataset Scaffolder
Mapping time,

min
Scaffolding

time, min
Total time, min

E. coli Velvet N/A 8 sec 8 sec
SSPACE 2 m 48 sec 1 m 7 sec 3 m 11 sec
GRASS 29 m 55 sec 23 sec 30 m 18 sec
GRASS+ 29 m 55 sec 53 sec 30 m 48 sec

(all) GRASS+ 47 m 16 sec 40 sec 47 m 56 sec
MIP Scaffolder 68 m 49 sec 2 m 2 sec 70 m 52 sec

SRR001665 OPERA 21 m 11 sec 27 m 45 sec 48 m 56 sec
SRR001666 OPERA 27 m 49 sec 30 sec 28 m 19 sec

P. suwonensis Velvet N/A 13 sec 13 sec
SSPACE 5 m 8 sec 7 m 22 sec 12 m 3 sec
GRASS 139 m 59 sec 23 sec 140 m 23 sec
GRASS+ 139 m 59 sec 45 sec 140 m 44 sec
MIP Scaffolder 95 m 37 sec 1 m 1 sec 96 m 37 sec
OPERA 125 m 28 sec 8 m 19 sec 133 m 47 sec

SRR097515 OPERA 74 m 56 sec 25 sec 75 m 22 sec
SRR191848 OPERA 75 m 32 sec 1 m 53 sec 77 m 25 sec

P. syringae Velvet N/A 1 sec 1 sec
SSPACE 1 m 6 sec 27 sec 1 m 33 sec
GRASS 13 m 20 sec 15 sec 13 m 35 sec
GRASS+ 13 m 20 sec 3 m 7 sec 16 m 27 sec
MIP Scaffolder 9 m 19 sec 27 sec 9 m 46 sec
OPERA 10 m 38 sec 72 m 22 sec 83 m 1 sec
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ABSTRACT

Given recent advances in synthetic biology and DNA synthesis, there is an increasing
need for carefully engineered biological parts (e.g. genes, promoter sequences or
enzymes) and circuits. However, forward engineering approaches are thus far rarely
used in biology due to lack of detailed knowledge of the biological mechanisms. We
describe a framework that enables forward engineering in biology by constructing
models predictive of properties of interest, then inverting and using these models to
design biological parts.

We demonstrate the applicability of the proposed framework on the problem of
codon optimisation, concerned with optimising gene coding sequences for efficient
translation. Results suggest that our data-driven codon optimisation (DECODON)
method simultaneously considers the effects multiple translation mechanisms to
produce optimal sequences, in contrast to existing codon optimisation techniques.
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3.1. INTRODUCTION
In biotechnology, microorganisms such as yeast are genetically engineered for improved
production of foods, beverages, fuels and pharmaceuticals. Recent advances in synthetic
biology and dropping cost of DNA synthesis have led to a growing need for methods
to engineer biological parts (promoter regions, gene coding sequences (CDSs) and even
entire enzymes) with specific properties. Whereas in many engineering disciplines
optimisation techniques are routinely used to design such parts (e.g., aircraft wings [2]),
in synthetic biology this is not yet the case. This stems from a lack of fundamental
biological knowledge on the processes in which these parts are involved.

For some problems, this limitation can be overcome by constructing predictive
models for properties of biological parts (e.g., promoter strength, mRNA translation
rate or enzyme activity) and inverting the constructed models to design biological parts
with desired properties. A successful use of such a “black-box” modelling approach
would enable forward engineering in areas of biology where detailed knowledge of the
underlying processes is unavailable. We showcase the use of our proposed framework
on the problem of codon optimisation, in which a gene coding sequence is changed to
obtain a desired translation rate of the mRNA into protein while keeping the amino acid
sequence intact.

The degeneracy of the genetic code manifests itself in the differential use of
synonymous codons in different organisms and different genes in the same organism.
It has been long noticed that organisms preferentially use just one or two codons out of
a family of codons translated into the same amino acid. This preference, termed codon
usage bias (CUB), is more pronounced in highly expressed genes, which sometimes
exclusively use only the preferred codons. For this reason it is believed that in unicellular
organisms, such as baker’s yeast Saccharomyces cerevisiae and the bacterium Escherichia
coli, the codon bias of a gene is related to its translation rate [3]. Over the years numerous
methods (called indices) summarising the degree of CUB of a gene in a single number
have been proposed and have been demonstrated to correlate with intracellular mRNA
and protein levels [4].

These correlations have been used in a process called codon optimisation to modify
gene CDSs such that their translation rate is maximised, by introducing synonymous
codon substitutions which increase one of the codon indices [5]. Codon optimisation
is routinely applied in biotechnology to overexpress genes for heterologous protein
production and heterologous pathway expression [6]. However, CUB only partially
explains the difference in translation rates among genes. Although the precise
mechanisms influencing gene translation rates are not known, there is evidence
suggesting that codon pair usage, tRNA recycling [7], mRNA secondary structure [8],
adaptation to an organisms tRNA pool, mRNA untranslated regions (UTRs) and protein
amino acid charge [8] may influence translation initiation and elongation rates. The
relative influence of these factors on translation is not understood, making it difficult to
combine them in a single codon optimisation strategy. To our knowledge only Maertens
et al. [9] have successfully combined multiple codon optimisation objectives, by equally
weighting them.

We present DECODON (data-driven codon optimization), an approach to codon
optimisation that combines multiple optimisation objectives in a data-driven way by
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constructing a regression model. We use Support Vector Regression (SVR) [10] to predict
ribosome density, a measure related to translation rate, based on coding sequence
features of S.cerevisiae genes. We then invert this predictor by using it inside a genetic
algorithm to optimise gene CDSs for desired ribosome density.

3.2. MATERIALS AND METHODS

DATASET
To our knowledge no datasets with direct measurements of translation rates are
available. However, Ingolia et al. [11] performed genome-scale measurements of average
ribosome density, defined as the number sequencing reads originating from parts of
mRNA molecules covered by ribosomes in all mRNA copies of a particular gene, divided
by the length of the gene transcript. Ribosome density is indicative of translation rate, as
genes with higher densities are expected to produce more protein per copy of mRNA.

The number of gene mRNA copies per cell depends on its transcription rate and
the stability of its mRNA. Although the relationship is poorly understood, the latter
may be influenced by the secondary structure of the mRNA, which can differ between
synonymous (i.e., encoding the same peptide) versions of a gene. In order to take the
potential influence of coding sequence on the transcript levels into account, we propose
to directly (i.e., without normalising by the mRNA read density) use ribosome density as
a measure of gene translation rate.

Yeast gene CDSs were obtained from the Saccharomyces Genome Database and the
matching 5′- and 3′-UTR sequences were obtained from Nagalakshmi et al. [12] and
Yassour et al. [13] (preference given to the former in cases when the two studies were
not in agreement). The resulting dataset contains of 5,048 yeast genes, each associated
with coding and UTR sequences and a measured ribosome density.

SEQUENCE FEATURES
In order to construct a predictor of ribosome density from gene sequences a number of
candidate sequence-based features identified from the literature have been computed
for each gene in the dataset. These features were then used in a multivariate regression
training step. Selected candidate features (Table 3.1) include a subset of existing codon
bias indices (13 features); protein indices and protein properties (12 features); and
nucleotide, codon and amino acid composition features (122 features). Prior to training,
features as well as the ribosome density to be predicted were standardised to zero mean
and unit variance.

REGRESSION MODEL TRAINING
ε-SVR [17] has been chosen as a regression method as it supports nonlinear regression
through the use of kernels, allowing for complex models, and because efficient training
algorithms are available. SVR relies on the choice of several parameters, including the
cost parameter C , the error in sensitivity ε, the regression kernel and its parameters.
Often, due to the lack of a theoretical framework for choosing these parameters, a
grid search approach is used to find a combination of parameters that minimises the
regression error. This training procedure, if performed inside cross-validation (CV),
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Table 3.1: Sequences-based features used as initial input for regression model training. CF and SF respectively
stand for the number of candidate features in the feature group and the number of features selected for the
final ribosome density predictor. Description of codon indices can be found in Cannarozzi and Schneider [4].

Name Description SF CF

CAI Codon Adaptation Index measures the extent to which a gene is composed of
codons from the highly expressed genes.

0 1

tAI tRNA Adaptation Index measures the extent to which a gene consists of
codons recognised by abundant tRNAs. It is computed for the full CDS and
its first 14, 17 and 19 codons (tAI, tAI14, tAI17 and tAI19 respectively) [8].

3 4

Nc Effective number of codons estimates the number of uniformly used codons
that would produce the CUB observed in a gene.

0 1

Dncu Distance to native codon usage [14] measures the difference between codon
usage of a gene and the overall codon usage of the organism.

1 1

Ew Weighted sum of relative entropy measures the degree of deviation from equal
usage of synonymous codons using the Shannon entropy.

1 1

CPB Codon Pair Bias score [15] is computed as the sum of log-ratios of observed
and expected codon pair counts.

0 1

TPI2 tRNA Pairing Index measures the extent of potential tRNA re-use during gene
translation.

1 1

Fop For computing the Frequency of optimal codons, optimal codons were chosen
as corresponding to the most abundant tRNA species.

1 1

RCBS Relative codon usage bias measures codon usage difference of a gene with
respect to the its nucleotide composition.

0 1

P1 Mean number of non-specific tRNA interactions per elongation cycle. 1 1

prot Protein hydrophobicity, aromaticity, aliphatic and instability indices. 3 4
Qport Protein net charge, isoelectric point and weight. 3 3
Qside Mean amino acid side chain charge computed for the full protein and its first

4, 11, 15 and 40 amino acids [8].
0 5

len Lengths of the CDS, the 5′- and the 3′-UTR regions. 3 3
nuc Nucleotide and dinucleotide frequencies of the CDS regions. 7 20
GC15 GC-content computed for the first 15 codons of the CDS 1 1
RSCU Relative Synonymous Codon Usage is computed for each codon (except ATG)

as the ratio between the observed number of its occurrences and the mean
number of occurrences for codons encoding the same amino acid.

41 63

codon2 tAI and CAI weights of the second codon in the CDS (denoted tAI2 and CAI2). 2 2
amino Amino acid frequencies. 6 21
∆G Gibson free energy for mRNA secondary structures predicted by the Vienna

RNA package [16]. It is computed for the 5′-/3′-UTR sequences; and the first
17, 34, and 53 codons of the CDS [8] with (∆G5′-UTR,CDS17

, ∆G5′-UTR,CDS34
and ∆G5′-UTR,CDS53

) and without (∆GCDS17 , ∆GCDS34 and ∆GCDS53 ) 5′-UTR
sequence

4 12

becomes computationally very expensive.

As a performance measure we calculate the coefficient of determination R2.
Normally this measure approaches 1 with increasing model complexity regardless of its
validity and is therefore not suitable for assessing quality of complex (nonlinear, many
features) models. However, if the coefficient of determination is computed using CV
(denoted R2

CV), it becomes a measure of the amount of variance in unseen data explained
by the model. Similar to the coefficient of determination computed without CV, the
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Figure 3.1: Predictor training and evaluation scheme (adapted from [18]). The full dataset is used to preselect
SVR parameter ranges (block A) and evaluate the training protocol using CV (block D). Predictor training
consists of parameter estimation (block B) used to find an optimal set of SVR parameters, for which feature
selection is performed (block C). The optimal parameters and the selected features are used to train the final
predictor which is evaluated on the testing set of the CV loop. The same training procedure (block E) is used to
train the final predictors used for sequence optimisation on the complete dataset.

cross-validation R2
CV approaches 1 as generalisation becomes better, but can be negative

if the trained model explains less variance in unseen data than a constant model. We
believe that R2

CV is a suitable measure for assessing quality of nonlinear models and use
it to optimise and assess performance of our regression models.

PARAMETER PRESELECTION

To keep the amount of computation tractable, we first screened the parameter space
by training predictors with different parameter settings and assessing their coefficient
of determination computed by 10-fold CV (R2

10CV) on the complete dataset (Fig. 3.1,
block A). Screening results (data not shown) indicated that the performance of RBF and
polynomial kernels on the considered dataset is comparable, which led us to consider
only polynomial kernels K (u, v) = (γ · 〈u, v〉+ 1)d with degrees d = 2,3,4 for the actual
parameter selection stage. Based on the screening R2

10CV results, ranges for parameters

C , γ and ε were set to {1}∪ {0.001 ·3i } for i = 0, . . . ,6.

PARAMETER ESTIMATION

The preselected parameter ranges were used to estimate optimal SVR parameter settings
(Fig. 3.1, block B) in a grid search procedure. For each combination of parameters an
SVR is trained and its R2

4CV is computed to select a single combination of SVR parameter
settings with the best performance. This combination is then used in the subsequent
feature selection step.

FEATURE SELECTION

Feature selection was used to eliminate features that do not contribute to the model’s
generalisation capability. This also allowed for selecting a concise set of features
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which can be interpreted biologically. While generally yielding good results, wrapper
approaches to feature selection are computationally very demanding. To lower the
computational load, backward feature elimination [19] was performed only on the SVR
parameter settings obtained as discussed above (Fig. 3.1, block C). At every step of the
feature elimination procedure, given n features, we computed R2

4CV for n predictors
trained on subsets of n − 1 features (i.e., obtained by removing one of the features).
A subset with the highest R2

CV was then selected for the next step of the feature
elimination procedure. After the procedure was complete, the number of features (and
the corresponding subset) with the best performance was chosen. If multiple subsets
gave optimal performance, the smallest one was selected. The selected features were
used to train the final predictor on the available data (Fig. 3.1, block E).

TRAINING STRATEGY EVALUATION

In order to obtain an unbiased estimate of the predictor performance we used a second
4-fold CV loop (Fig. 3.1, block D) around the described parameter estimation and feature
selection strategies. The R2

4CV values computed in the outer CV loop are reported in
Section 3.3 as estimates of predictor generalisation.

SEQUENCE OPTIMISATION
In order for the constructed predictor y = f (x) to be useful for sequence optimisation,
it first needs to be “inverted” such that it can be used to find sequences x that have
the desired ribosome density y̌ . Constructing the inverse function x = f −1(y) for
SVR is impossible. Moreover, solving this function for a given y̌ would yield multiple
non-synonymous sequences x, thereby presenting an additional problem of selecting
the suitable sequences from a large pool of solutions. Instead we implicitly invert the
predictor by searching through the space of sequences xi synonymous to the original
sequence x to find x̌ such that its predicted ribosome density f (x̌) is close to the desired
y̌ .

GENETIC ALGORITHM

The space of all nucleotide sequences synonymous to a given sequence x grows
exponentially with the length of the sequence. Typically, it is too large to evaluate all
possible xi and requires an efficient search strategy to find (an approximation of) x̌
in a timely manner. Genetic algorithms (GAs), specifically tailored for large discrete
optimisation problems, use computational equivalents of genetic crossover, mutation
and selection concepts from biological systems to evolve a pool of potential solutions to
a given optimisation problem. The problem of finding an x̌ whose predicted ribosome
density f (x̌) is as close as possible to a desired level y̌ can be cast into an optimisation
problem and tackled using GAs if g (x) = | f (x)−y̌ | is used as an objective to be minimised.

In practical applications, optimised gene sequences are synthesised and cloned
into living cells in the wet lab. It is then required that the sequences do not contain
certain motifs, such as restriction sites of enzymes used in cloning. This presents an
optimisation constraint that has to be taken care of by the GA. Treating this constraint
as an additional objective of minimising the number of undesired motifs present in
the sequence allows to refrain from banning parts of the search space at the cost of
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Figure 3.2: Predicted vs. true (A) ribosome density and (B) protein level plotted for S.cerevisiae genes.

casting the problem of finding x̌ into a multi-objective discrete optimisation problem
with two objectives. If it exists, the solution to the original problem will then be among
the non-dominated solutions (i.e., solutions that cannot be improved in both objectives
simultaneously) of the multi-objective optimisation problem.

NSGA-II [20], a multi-objective GA, was chosen to solve the optimisation problem
as previously it has been successfully applied to DNA sequence optimisation. It was
implemented using multi-point crossover with a rate of 0.9; a mutation operator
synonymously changing every sequence codon with probability 1

n , where n is the
number of degenerate codons in the sequence; and a binary tournament selection
operator. For the genes optimised in this paper, the number of crossover points was
set to 100.

3.3. RESULTS

REGRESSION MODEL
The cross-validation loop used to evaluate the regressor training strategy described in
Section 3.2 gave an R2

4CV = 0.66± 0.03, suggesting that the proposed strategy produces
regressors that generalise well on unseen data. This strategy was employed to train the
final ribosome density predictor (shown in Fig. 3.2A) for use in codon optimisation on
the complete dataset.

SELECTED FEATURES

The final predictor contained 78 features (Table 3.1, Fig. 3.3), including codon indices,
protein features, sequence composition and mRNA structure features selected to best
explain the data. While black-box predictors are generally hard to interpret in biological
terms, the fact that a certain feature was selected in the final predictor suggests that
the mechanism it describes could indeed be used by the translation machinery. In this
way, selection of the tRNA Pairing Index (TPI2) suggests presence in yeast of a tRNA
recycling mechanism, in which outgoing tRNA molecules stay bound to the ribosome
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Figure 3.3: Cross-validated R2
4CV for the backward feature elimination procedure during final predictor

training. Features eliminated at a particular step are marked with black circles. The maximum R2
4CV is achieved

at 78 features (see Table 3.1).

to be recharged and reused in the course of translation [4]. Selection of the CAI2 and
tAI2 features, describing respectively the extent to which the second codon of a gene is
used in highly expressed genes of S.cerevisiae and its adaptation to the organisms tRNA
pool, suggests that choice of the second codon influences ribosome density. Fredrick
and Ibba [21] observe that the second codon is usually a highly frequently used codon
that is translated more quickly, and speculate that this mechanism may be required for
efficient recycling of the initiator tRNA.

Similarly, the selected tAI17, tAI19, and the∆G5′-UTR,CDS17
,∆G5′-UTR,CDS53

and∆GCDS53

features suggest that the mechanism of slowly translated “ramp” in the beginning of the
CDS [8] influences gene translation rate. It is believed that the role of this “ramp” is to
generate space between translating ribosomes and thereby prevent ribosome collision
[8, 21]. The same mRNA structure features also describe the accessibility of the 5′-UTR
for translation initiation by the ribosome machinery, suggesting it as another S.cerevisiae
mechanism influencing gene translation.

CODON OPTIMISATION

The final ribosome density predictor (Section 3.3) was used to optimise sequences
of the genes 4CL (4-coumaric acid-CoA ligase, 562 codons) and PAL1 (phenylalanine
ammonia lyase, 726 codons) involved in flavonoid biosynthesis [6]. The genes’ cDNA,
obtained from the plant Arabidopsis thaliana, was optimised using the described GA
for maximum ribosome density. Based on preliminary experiments, optimisation was
performed for 200 generations with a population size equal to the gene length in codons.
An initial population was generated by back-translating genes from their amino acid
sequences by choosing codons with probabilities proportional to their CAI weights.
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Table 3.2: Sequence optimisation results for the 4CL and PAL1 genes. Predicted ribosome densities are shown
for the plant cDNA, sequences codon-optimised using JCat [5] and sequences optimised using DECODON.
The number of different codons and the fold increase in the predicted density are computed relative to the
cDNA sequences.

4CL PAL1

Type Different
codons

Predicted
density

Fold
inc.

Different
codons

Predicted
density

Fold
inc.

cDNA N/A 0.0000000090 1 N/A 0.0000000524 1
JCat 338 (60.14%) 0.0000101491 1128 414 (57.02%) 0.0000079718 152
DECODON 361 (64.23%) 0.0000201560 2240 444 (61.16%) 0.0000172657 329

The 5′- and 3′-UTR sequences were set based on the respective sequences of the GPD
promoter and CYC1 terminator sequences used in the pAG416GPD yeast expression
vector. The SpeI and XhoI restriction site sequences used for cutting the expression
vector were treated as undesired motifs.

Table 3.2 shows that the predicted ribosome density of the optimised sequences
is significantly higher than that of the plant cDNA. As a sanity check, we compared
sequences optimised using our method DECODON to sequences optimised by JCat
[5], a well-known codon optimisation tool that optimises sequences for high CAI. The
constructed predictor also predicts a significant increase in ribosome density for the
JCat-optimised sequences (Table 3.2), showing that the trained predictor agrees with
the currently used codon optimisation methods. Note that the predicted ribosome
density for the DECODON-optimised sequences is nearly two-fold higher than that of
the JCat-optimised sequences.

SEQUENCE ANALYSIS

Compared to the cDNA sequences, the DECODON- and JCat-optimized versions have
roughly the same number of codon substitutions. To highlight the specific differences
between the sequences, we compared them to each other. It can be seen from
Fig. 3.4 that codon usage in the DECODON sequences is more similar to that of the
JCat-optimized genes than to that of the original sequences.

When optimised for maximum ribosome density, codon usage of the optimised
sequences follows the “one amino acid - one codon” rule meaning that for each amino
acid only a single (preferred) codon is used to encode it. The preferred codons in the
genes optimised by DECODON mostly correspond to the codons with high CAI weights
(the JCat- and density-optimised 4CL and PAL1 genes differ only in 126 and 150 codons
respectively) with a few notable exceptions: (i) ACC is preferred for the amino acid
threonine; (ii) GTC is preferred for valine; (iii) TGC is preferred for cysteine; and (iv) ATT
is preferred for isoleucine.

The preference rules account for all but a few codon differences (underscored in
Fig. 3.4) between the optimised sequences. These substitutions, when introduced in
the sequences optimised using the “one amino acid - one codon rule”, influence codon
indices and mRNA features (∆GCDS53 and ∆G5′-UTR,CDS53

), according to which the mRNA
secondary structures at the 5′-UTR become less stable. This further suggests that the
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…CCG GAC ATT GAC ATC CCT AAC CAC CTC CCT CTC CAC ACT TAC TGC TTC GAA AAA CTC TCA TCT GTT…

…CCA GAC ATT GAC ATT CCA AAC CAC TTA CCA TTA CAC ACC TAC TGT TTC GAA AAG TTG TCT TCT GTC…

…CCA GAC ATC GAC ATC CCA AAC CAC TTG CCA TTG CAC ACT TAC TGT TTC GAA AAG TTG TCT TCT GTT…

cDNA

Protein

JCat

…GGC GGA GAC ATC AAG ACA AAG AAC ATG GTG ATC AAC GCG GAG GAT CCT CTC AAC TGG GGA GCT GCA…

…GGT GGT GAC ATT AAG ACC AAG AAC ATG GTA ATT AAC GCT GAA GAC CCA TTG AAC TGG GGT GCT GCT…

…GGT GGT GAC ATC AAG ACT AAG AAC ATG GTT ATC AAC GCT GAA GAC CCA TTG AAC TGG GGT GCT GCT…

cDNA

Protein

JCat

A

B

•

•

•

•

• •

• • •

• •

• • •

• •

• • •

• •

• • • • •

•

• •

• •

•

•

• •

• •

• •

•

• • • • • •

• •

• • •

•

•

Figure 3.4: Comparison of codons 20 to 41 of sequences of the (A) 4CL and (B) PAL1 genes codon-optimised
by JCat and DECODON for ribosome density. Matching codons are marked with black circles. Underscored
codons are not explained by the “one amino acid - one codon” rule.

constructed predictor takes into account multiple translation mechanisms, even when
used to optimise genes for maximum ribosome density.

APPLICABILITY TO OTHER DATASETS
To demonstrate the applicability of the framework proposed in this paper to different
datasets, we used it to optimise codon use based on the predicted absolute protein
level measurements of 756 proteins [22]. All the training steps (parameter preselection,
training strategy evaluation and final predictor training) were repeated, yielding an
cross-validation R2

4CV = 0.65 ± 0.09 and a final predictor with 138 features (Fig. 3.2B).
This large number of features, explained by the relatively high variance in the R2

4CV used
for feature selection due to the limited size of the dataset, hampers further biological
interpretation.

The 4CL and PAL1 gene sequences optimised for maximum protein levels using the
constructed predictor show a “one amino acid - one codon”’ rule behaviour similar to
the density-optimised genes with several differences: (i) TGT is preferred for cysteine
(as in JCat); (ii) ATC is preferred for isoleucine (as in JCat); and (iii) GCT and GCC are
preferred for alanine. Similarly, these rules explain all but a few codon substitutions near
to the 5′ end of the CDS (Fig. 3.5). The codon usage similarities between the protein- and
density-optimised gene sequences show that the proposed framework can be applied to
various types of biological data to enable forward engineering approaches. However,
wet-lab experiments are required in order to determine which of the constructed
predictors is better suited for codon optimisation.

3.4. DISCUSSION
We have described a generic framework for forward engineering of biological systems
and demonstrated its use by optimising genes for maximum ribosome density and
maximum protein levels using predictors constructed from the corresponding yeast
datasets. The general agreement between the optimised gene sequences obtained
by us and gene sequences optimised using an existing codon optimisation method
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…GCT CTA CAC GAA CCT CAG ATT CAC AAA CCA ACC GAT ACA TCC GTC GTC TCC GAT GAT GTG CTT CCT…

…GCT TTG CAC GAA CCA CAA ATC CAC AAG CCA ACC GAC ACG TCT GTC GTC TCT GAC GAC GTG TTG CCA…

…GCT TTG CAC GAA CCA CAA ATC CAC AAG CCA ACT GAC ACT TCT GTT GTT TCT GAC GAC GTT TTG CCA…

cDNA

Protein

JCat

…GGG GCA CAC AAG AGC AAC GGA GGA GGA GTG GAC GCT ATG TTA TGC GGC GGA GAC ATC AAG ACA AAG…

…GGT GCT CAC AAG AGC AAC GGT GGT GGT GTT GAT GCC ATG TTG TGT GGT GGT GAC ATC AAG ACC AAG…

…GGT GCT CAC AAG TCT AAC GGT GGT GGT GTT GAC GCT ATG TTG TGT GGT GGT GAC ATC AAG ACT AAG…

cDNA
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Figure 3.5: Comparison of codons 5 to 26 of sequences of the (A) 4CL and (B) PAL1 genes codon-optimised by
JCat and DECODON for absolute protein levels.

suggests that the proposed approach can be successfully utilised for forward engineering
of biological parts, whereas the differences between the sequences suggest that our
codon optimisation method DECODON simultaneously considers the effects of multiple
translation mechanisms to produce optimal sequences. Time complexity of DECODON
is much higher than that of JCat, however, it is negligible compared to the time involved
in ordering and experimenting with the synthesised DNA.

Features selected for the final ribosome density predictor and the exceptions
to the “one amino acid - one codon” rule in the optimised sequences show that
data-driven models can combine multiple features describing (competing) biological
mechanisms in a way that best explains the available data. While the effect of combining
multiple mechanisms in a single predictor is hard to observe in sequences optimised
for maximum ribosome density (or protein level), we believe that it would be more
pronounced in sequences optimised for intermediate ribosome density, in which no one
single mechanism would have a dominating influence.

Using black-box models for combining multiple (potential) mechanisms in a single
predictor is particularly useful in areas where precise workings of a system are not
known, but hypotheses on its important aspects can be generated and described by
features. Note that a danger associated with the interpretation of the results is that
the constructed model will select features that correlate with the property it is trained
to predict, rather than the features describing the actual underlying mechanisms. For
example, Qian et al. [14] suggest that strong CUB in highly expressed genes is not related
to translation rate of those genes, but is rather a consequence of random mutations and
the evolutionary pressure to keep codon usage and tRNA availability of an organism
balanced. Nevertheless our models exhibit the “one amino acid - one codon” behaviour
when genes are optimised for maximum density/protein levels. It is, therefore, crucial
to validate predictive models by testing their predictions in the wet-lab prior to their
application.

For the constructed predictors (especially in the case of the protein level predictor)
we observed that a single codon substitution often leads to changes in many features.
These changes are often difficult to interpret and to link to the effect a substitution has
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on the prediction. Nevertheless, we believe that by trading interpretability for general
applicability, our framework will enable forward engineering of various parts essential
for synthetic biology such as promoters, coding sequences and UTRs.

3.A. Addendum: EXPERIMENTAL VALIDATION

INTRODUCTION

Above we proposed DECODON, a data-driven codon optimisation method that aims
at simultaneously considering the effects of multiple translation mechanisms during
the optimisation process. It achieves this by optimising for the net effect of these
mechanisms on the resulting expression, which is estimated by a predictor of ribosome
density trained on gene sequence features that capture various mechanisms employed
in the process of translation. The learned predictor showed a good fit to the
ribosome density data (CV R2 = 0.66), and sequences of genes codon-optimised by
this predictor demonstrated considerable agreement with the previously established
CAI-based method JCat [5], while yielding higher predicted expression. Together, this
suggests that DECODON-optimised genes can potentially achieve higher expression
than genes optimised solely using the CAI or similar metrics. However, because superior
in silico performance does not guarantee successful applications to gene re-design, we
sought to further validate the developed method by measuring expression of genes
synthetically designed using our method. We chose to re-design the PAL1 (phenylalanine
ammonia lyase) gene from the flavonoid biosynthetic pathway due to its importance
to the ongoing project of yeast flavonoid production [6], and availability of enzymatic
activity assays [23]. Here, we report on the comparison of enzymatic activity between
the different versions of the PAL1 obtained using our method and JCat.

RESULTS

To assess the applicability of DECODON for optimising genes for high protein
expression, we used it to re-design the PAL1 cDNA obtained from Arabidopsis thaliana
for maximum predicted ribosome density as in Chapter 3 (dcPAL1; Table 3.2 and
Figure 3.4B), and compared it to the JCat-optimised version (jcPAL1) and the original A.
thaliana cDNA (atPAL1) [6]. All versions of the enzyme were expressed using the TDH3
promoter on a centromeric plasmid (see Tables 3.3 and 3.4) in Saccharomyces cerevisiae
yeast strain CEN.PK 113-5D, and had the hemagglutinin (HA) epitope attached at the
C-terminus. To confirm that the HA tag does not have a significant impact on expression,
we also measured expression of the jcPAL1 version of the enzyme without the tag (jcPAL1
no tag).

As measuring protein levels directly is not trivial, specific enzymatic activity of the
PAL1 enzyme was used as a proxy for its expression (see Materials and Methods, below).
The use of enzymatic activity as a measure of protein expression additionally ensures
that gene re-designs do not render the protein non-functional, and thus presents
a more stringent measure of the effect of codon optimisation than protein levels.
Enzymatic activity measurements (Figure 3.6) confirmed that the HA tag does not have
a significant impact on PAL1 activity; and showed that genes codon-optimised by either
method achieve higher activity than the A. thaliana wild type sequence, suggesting
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Figure 3.6: Specific activity of several versions of the PAL1 enzyme. Standard deviations are calculated from
two technical replicate measurements.

that both methods increase protein expression, presumably by increasing its translation
rate. However, the results also revealed that the JCat-optimised gene achieves higher
enzymatic activity than its DECODON counterpart, suggesting that translation rates
achieved by our method are lower than that of the CAI-based JCat. We propose potential
explanations of this result in the following section.

DISCUSSION

Comparison of the enzymatic activity of different versions of the PAL1 gene suggests that
both, our method and the CAI-based JCat, improve heterologous protein expression of
the A. thaliana cDNA sequence in Saccharomyces cerevisiae. This result is in line with
the goal of DECODON to optimise gene sequences for efficient translation, and thus
serves as an initial validation of our method. However, we also observed that jcPAL1
showed consistently higher activity than dcPAL1, thus suggesting that gene re-design
using JCat yielded a higher translation rate than our method. This result is surprising
in the context of our approach, which aims at optimising genes for the net effect of
the various mechanisms on translation, and should have lead to gene re-design with
expression comparable or better to that of JCat. We identified several possible reasons
for this discrepancy.

In our experimental validation we use enzymatic activity of the PAL1 gene as a
measure of its expression, thus assuming that the introduced enzyme sequence changes
do not adversely affect its mRNA levels or function. While it is unlikely that mRNA
levels are affected by sequence changes aimed at increasing translation rates [24], it is
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possible that changes introduced by DECODON affected the enzyme folding in a way
that reduced its activity [3]. To gain more insight into the entire process of protein
expression of the re-designed genes, and to rule out the possibility that PAL1 activity was
affected by changes in mRNA levels or enzyme functionality, the experiments performed
here should be complemented by measurements of mRNA and protein levels (e.g.,
measured by qPCR and ELISA).

However, a more likely explanation for the higher expression of jcPAL1 compared to
dcPAL1 is related to the data used for developing the DECODON method. As described in
Chapter 3, DECODON uses regression to learn the relationship between gene sequence
features and the resulting net effect of translation efficiency (TE) changes. The net effect
of TE changes is challenging to measure, and the total ribosome density of a gene as
measured by [11] was used as a proxy for it. This approach has several limitations:

1. The predictor learned by DECODON was trained on the entire set of genes with
measured ribosome densities [11]. The expression of these genes spans multiple
orders of magnitude, but their distribution is skewed with relatively few genes
having very high expression levels (see Chapter 3, Fig. 3.2). This limits the number
of examples of highly expressed genes available for training, and thus also the
certainty of the corresponding predictions. The dcPAL1 gene was optimised for
highest expression, and is thus potentially affected by the prediction uncertainty.
To test relationship between prediction accuracy and the predicted expression
level, several DECODON-based re-designs of the PAL1 gene should be produced
and validated.

2. The predictor was trained on the first publicly available ribosome profiling dataset
[11]. At the time, experimental biases of the ribosome profiling technique
were poorly understood. Later studies demonstrated that cycloheximide, a
chemical used in the majority of ribosome profiling protocols, is responsible for
the accumulation of ribosome reads at the beginning and upstream of coding
sequences [25], and for altering A-site occupancies of many codons [26]. These
biases affect overall gene ribosome profiles, and thus limit the ability of the
regressor used by DECODON to learn the relationship between sequence and TE.
This limitation could be overcome by applying the DECODON method to the more
mature ribosome profiling datasets [27], and comparing the resulting predictors.

3. Ribosome density does not allow distinguishing between the situations (i) of high
ribosome density due to efficient translation, and (ii) high ribosome density due
to ribosome stalling. Optimising genes for high ribosome density as a proxy for
high TE may thus actually optimise for ribosome stalling and result impaired
translation. While it is unlikely that under normal growth conditions many native
S. cerevisiae genes (the data used to train the DECODON predictor) undergo
ribosome stalling, inability to distinguish between the two situations of high
ribosome density may still be responsible for the lower expression of dcPAL1
compared to jcPAL1.

4. Although the aim of DECODON is to optimise gene sequences at the level of
translation, to capture the overall effect of translation efficiency changes on
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Table 3.3: Saccharomyces cerevisiae strains used in this study.

Strain Genotype Source

CEN.PK 113-5D MATa MAL2-8C SUC2 ura3-53 P. Kötter
IMC082 CEN.PK 113-5D pUDC136 This study
IMC083 CEN.PK 113-5D pUDC137 This study
IMC084 CEN.PK 113-5D pUDC138 This study
IMC085 CEN.PK 113-5D pUDC139 This study
IMC086 CEN.PK 113-5D pAG416GPD This study

Table 3.4: Plasmids used in this study.

Strain Description Source

pAG416GPD-ccdB Centromeric plasmid, Amp, URA3, PTDH3-ccdb-TCYC1, Addgene
plasmid 14148

[31]

pUDC136 Centromeric plasmid, Amp, URA3, PTDH3-atPAL1-HA-TCYC1 This study
pUDC137 Centromeric plasmid, Amp, URA3, PTDH3-jcPAL1-HA-TCYC1 This study
pUDC138 Centromeric plasmid, Amp, URA3, PTDH3-jcPAL1-TCYC1 This study
pUDC139 Centromeric plasmid, Amp, URA3, PTDH3-dcPAL1-HA-TCYC1 This study
pAG416GPD Centromeric plasmid, Amp, URA3, PTDH3-TCYC1 This study

expression, its predictor was trained on the genes’ total ribosome density without
normalising by the mRNA levels. Variability of cellular mRNA levels across genes
could mask the differences between their translation efficiencies, which may
explain the substantial agreement between the jcPAL1 and dcPAL1 sequences. It
would be interesting to also consider a version of DECODON that is trained to
predict mRNA-normalised ribosome density, and thus separates the changes in
TE between genes from their potential effect on mRNA levels.

Overall, experimental validation of DECODON showed that the method is suitable
for re-designing gene sequences for higher expression, thus confirming the methods
potential. However, it also highlighted several limitations of the method, which we
addressed in the approach developed for modelling protein synthesis in Chapter 4.

MATERIALS AND METHODS

STRAINS AND MAINTENANCE

All strains used in this study were derived from the S. cerevisiae CEN.PK strain family
[28, 29]. Yeast cultures were grown at 30◦C in 500 ml shake flasks containing 100 ml
synthetic medium (SM) [30] with 20 g · L−1 glucose and growth factors to supplement
auxotrophic requirements of the strains. After overnight growth, glycerol was added to
achieve final concentration of 20%, and 1 ml aliquots were stored at −80◦C.

STRAIN AND PLASMID CONSTRUCTION

Plasmids were constructed using the standard restriction-ligation cloning with the SpeI
and XhoI restriction sites, and the pAG416GPD-ccdB as a backbone vector. Genes jcPAL1
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Table 3.5: Oligonucleotide primers used in this study.

Gene Name Sequence

atPAL1 FK1, Fw GCGACTAGTATGGAGATTAACGGGGC
jcPAL1 AG2, Fw GCGACTAGTATGGAAATCAACGGTGCTC
dcPAL1 AG6, Fw GCGACTAGTATGGAAATTAACGGTGCTCAC
jcPAL1 no tag AG3, Rev GCGCTCGAGTTAACAGATTGGGATTGGAGC
atPAL1 AG8, Rev GCGCTCGAGTTAAGCGTAATCTGGAACGTCATATGGATAACATATTGGA

ATGGGAGCTCC
PAL1 AG10, Rev GCGCTCGAGTTAAGCGTAATCTGGAACGTCATATGGATAACAGATTGGG

ATTGGAGC

and dcPAL1 were respectively optimised using JCat and our method, and commercially
synthesised; atPAL1 was obtained from [6]. All genes were amplified using high
fidelity PCR and primers from Table 3.5; the SpeI and XhoI restriction sites and, when
appropriate, the HA-tag were added during this step.

Ligation products were transformed into E. coli cells using electroporation, and
plated on LB-Amp plates. Isolated single colonies were transferred into liquid
LB-Amp medium, and their structures were verified using restriction analysis. Yeast
transformations were performed through heat shock using cells grown to OD = 0.6 after
re-inoculating overnight cultures. Transformed cells were plated on SM-URA plates and
stocks were prepared from single colonies verified using PCR.

MEDIA AND CULTIVATION

Yeast shake flask cultures were grown at 30◦C in 500 ml flasks containing 100 ml
synthetic medium with 20 g · l−1 glucose and growth factors to supplement auxotrophic
requirements of the strains. Optical density at 660 nm was measured with a Libra S11
spectrophotometer (Biochrom, Cambridge, UK).

PHENYLALANINE AMMONIA LYASE (PAL) ACTIVITY

Enzyme extraction was performed according to [32]. Briefly, 25 ml of shake flask cultures
were sampled at OD = 5, and their cell extract was prepared by sonication using a
protocol optimised for Saccharomyces cerevisae.

Cell extracts were used to measure PAL1 activity according to [23]. Specifically, 100 µl
of the extract were suspended in 850 Triethanolamine-HCl (pH 8.5, at 1 M) buffer, and
the enzymatic reaction was started by the addition of 50µl of L-phenylalanine (at 0.01 M)
to start the reaction. Enzymatic activity at 30◦C was measured as trans-cinnamate
absorbance at 290 nm (molar attenuation coefficient ε = 2.1 mM−1cm−1). To obtain
specific activity, the total protein concentration was determined using the Lowry assay
[33]. All measurements were performed in duplicate.
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ABSTRACT

Translation of RNA to protein is a core process for any living organism. While for
some steps of this process the effect on protein production is understood, a holistic
understanding of translation still remains elusive. In silico modelling is a promising
approach for elucidating the process of protein synthesis. Although a number of
computational models of the process have been proposed, their application is limited by
the assumptions they make. Ribosome profiling (RP), a relatively new sequencing-based
technique capable of recording snapshots of the locations of actively translating
ribosomes, is a promising source of information for deriving unbiased data-driven
translation models. However, quantitative analysis of RP data is challenging due to
high measurement variance and the inability to discriminate between the number of
ribosomes measured on a gene and their speed of translation.

We propose a solution in the form of a novel multi-scale interpretation of RP data
that allows for deriving models with translation dynamics extracted from the snapshots.
We demonstrate the usefulness of this approach by simultaneously determining for
the first time per-codon translation elongation and per-gene translation initiation rates
of Saccharomyces cerevisiae from RP data for two versions of the Totally Asymmetric
Exclusion Process (TASEP) model of translation. We do this in an unbiased fashion,
by fitting the models using only RP data with a novel optimisation scheme based on
Monte Carlo simulation to keep the problem tractable. The fitted models match the data
significantly better than existing models and their predictions show better agreement
with several independent protein abundance datasets than existing models. Results
additionally indicate that the tRNA pool adaptation hypothesis is incomplete, with
evidence suggesting that tRNA post-transcriptional modifications and codon context
may play a role in determining codon elongation rates.
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4.1. INTRODUCTION
The process of protein synthesis is central to all living organisms. It has been actively
researched for over five decades, and by now the individual steps of this process are
known in great detail at the molecular and mechanistic levels [2]. Gene adaptation
to the tRNA pool, mRNA secondary structure strength, codon order and local amino
acid charge were independently implicated in shaping rates of protein production
[3–5]. However, many disciplines would benefit from a holistic view of how these
factors collectively influence translation. In particular, in biotechnology this knowledge
would allow for tuning protein expression as desired with ramifications for cost-effective
production of medicines and biofuels using microbes [6]. However, owing to the
biological complexity of the process and the difficulty of measuring kinetic rates of the
individual steps of protein synthesis, the development of computational models that
would enable such applications lagged behind.

Only recently, the accumulated knowledge was integrated into several
state-of-the-art models of increasing complexity. Zhang and Ignatova [7] proposed
a “static” model for predicting the local speed of translation within a gene from
codon-specific elongation rates derived from tRNA concentrations; their approach
was extended by Reuveni et al. [8], who suggested using a “dynamic” model in which
ribosomes initiate translation at the first codon and block each other while moving
towards the end of the mRNA transcript. Siwiak and Zielenkiewicz [9] and Shah et al.
[10] independently proposed static and dynamic full-cell models that additionally
integrated the intracellular concentrations of ribosomes, mRNA and tRNA molecules,
and their diffusion inside the cell in a single model. While predictions made by these
models are usually in accordance with the current understanding of translation, most
of their core assumptions (e.g., codon translation rates) have not been subjected to
comparison against measured data.

Ribosome profiling (RP) [11, 12], a relatively new technique based on
high-throughput sequencing of ribosome-protected RNA fragments (footprints), is
nowadays often employed for studying translation [13–16]. It provides noisy snapshots
of the locations of actively translating ribosomes attached to mRNA transcripts, thereby
convolving the number of ribosomes and their speed of translation (a few stalled
ribosomes can generate similar sets of footprints as many ribosomes involved in rapid
translation). While in principle these data allow for simultaneously reasoning about
ribosome counts and their local speed, such analysis is hampered by the limited
understanding of the error model and biases of RP data [17]. To date RP measurements
have been analysed either at the level of full genes [9, 10] or at single codon resolution
[5, 18]. While only the latter allows for analysing the dynamics of translation, it is
not clear whether codon-resolution measurements are sufficiently reliable for such
quantitative analysis (see Suppl. Text, page 100). To overcome the measurement
reliability issue several studies [19–21] performed “meta-codon” analysis by pooling
observations from different occurrences of a particular codon together to produce
an estimate of the codon elongation time. It is unclear, however, to what extent such
estimates are affected by ribosomal interference.

We propose a set of methods for deriving full translation kinetics of an organism
from RP data (see Fig.. 4.1). Our approach is conceptually similar to Ciandrini et al.
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Figure 4.1: Schematic overview of the proposed approach for inferring translation kinetics from RP data. To
obtain a segment tree representation of the RP data (left) mapped ribo-seq (light grey) and RNA-seq (dark
grey) reads are assigned to nested segments of decreasing lengths (starting from segments [1,S] equivalent to
the full-length CDSes) while there is sufficient data. Ribosome densities ω for each segment are computed for
the available replicates and are used to parameterize the log-normal distributions describing measurement
error of these segments. To determine per-gene translation initiation rates k0 and per-codon elongation rates
kAAA, . . . ,kGGG many candidate sets of translation rates are tested. For every candidate set the TASEP model of
translation is simulated with the proposed rates for all genes in the model simulation step (right). Ribosome
occupancy, i.e., the relative amount of time ribosomes spend at a particular location on the mRNA, obtained
from the simulation (dashed grey) is then aggregated per segment to compute the average occupancies N ,
which are compared the log-normal distributions of the corresponding segments from the segment tree
representation in the model evaluation step. Evaluation results are used by a genetic algorithm to propose
new candidate sets of rates and repeat the simulation-evaluation cycle until the search for translation rates
converges. To simplify notation, the gene index g is dropped for all gene-specific variables in the figure.

[22], who inferred translation initiation rates of yeast genes from polysome profiling
data, except that we use RP for deriving these rates and additionally determine the
translation elongation rates. The method is based on a novel “segment tree” multi-scale
interpretation of the RP data that captures ribosome translation dynamics along mRNAs
without sacrificing reliability due to measurement noise. We use this interpretation
to simultaneously extract, for the first time, per-gene translation initiation rates and
per-codon translation elongation rates for the bakers yeast Saccharomyces cerevisiae
by fitting two version of the TASEP (Totally Asymmetric Exclusion Process), a simple
dynamic model of translation [23], on the segment tree estimates. To make fitting
tractable, we devised a highly efficient initiation rate approximation scheme and
combined it with a novel Monte Carlo simulation strategy inside an evolutionary
optimisation algorithm.

Fitted TASEP models match the RP data significantly better than the state-of-the-art
models, and their predicted protein production rates are confirmed by several
independent protein abundance (PA) datasets. In particular our models show
significantly better agreement with PA than existing models when the measurements
are corrected for mRNA levels, i.e., when only the effect of translation on protein levels
is considered. Interestingly, the fitted codon elongation rates deviate significantly from
the tRNA pool adaptation hypothesis.
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4.2. MATERIALS AND METHODS

RIBOSOME PROFILING DATA

RP data for yeast Saccharomyces cerevisiae strain S288C [24] containing ribosome
footprint reads (ribo-seq) and fragmented mRNA reads (RNA-seq) measured in
duplicate were obtained from the NCBI Short Read Archive (accession SRP028552).
Reads were trimmed and mapped to the latest S. cerevisiae strain S288C reference
genome taken from the Saccharomyces Genome Database (SGD, Cherry et al. [25])
in two stages, and assigned to gene coding sequences (CDSes) obtained from SGD.
Aligned ribosome footprint and mRNA reads were assigned to single positions within
the CDSes based on respectively their inferred A-sites or the centre position of the read
(see Suppl. Text, page 89 for details).

MEASUREMENT RESOLUTION

To obtain a high-resolution map of mRNA and ribosome density without sacrificing
measurement accuracy, for each gene we construct a segment tree of density
measurements from nested parts of the CDSes (Fig. 4.1, left). By pooling reads from
all segment positions, average densities per segment can be calculated more reliably
than would be possible at single codon resolution (see also Suppl. Text, page 89), while
recording these densities for nested segments of decreasing lengths allows for indirectly
capturing the change in density along a transcript.

Starting from an initial segment [l ,r ] equivalent to the complete CDS we count the
number of ribo-seq reads R[l ,r ] and RNA-seq reads M[l ,r ] assigned to this segment. These
counts are normalised by the total number of ribo- and RNA-seq reads aligned to all
CDSes (NR and NM respectively) and the segment length L[l ,r ] = r − l + 1 to obtain

ribosome and mRNA densities d Ribo
[l ,r ] = R[l ,r ]

L[l ,r ]NR
and d mRNA

[l ,r ] = M[l ,r ]
L[l ,r ]NM

for the current

segment. To obtain the sought per transcript ribosome density (later referred to as

density ratio) the ratio of the two measurementsω[l ,r ] =
d Ribo

[l ,r ]

d mRNA
[l ,r ]

is calculated. The average

segment ribosome density given by this ratio is normalised for transcript abundance and
allows for directly comparing segments from different genes to each other. A cut point
p is then chosen and the process is repeated recursively for segments [l , p] and [p +1,r ]
(see Fig. 4.1, left). The aim behind calculating d mRNA

[l ,r ] for each segment independently
instead of estimating a single gene-specific value is to remove any local sequencing bias
(presumed to be identical between RNA- and ribo-seq since very similar protocols are
used for library preparation [24]) from the ratio estimates. Density measurements are
computed for each replicate individually, but the same segment cut points are used in
order to merge replicates later. Cut points are chosen such that the combined number
of RNA- and ribo-seq reads across replicates is divided equally between the left and the
right segments (see Suppl. Text, page 95 for details).

The recursive tree construction continues while there are sufficient reads for making
reliable density estimates (at least 128 reads in the two replicates summed together for
RNA-seq and ribo-seq, separately; see Suppl. Text, page 95 for details on choosing these
thresholds) and segment length is large enough, L[l ,r ] ≥ 20 codons. The segment length
cutoff aims at keeping the segments long enough to average out any measurement
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error due to incorrect read assignment or sequence bias. Prior to interpreting the
measurements, we additionally remove a systematic density-dependent bias present
in the density and ratio measurements using the available replicate information (see
Suppl. Text, page 97).

This procedure was used to construct segment trees for 4,892 genes with a total of
60,466 nested density estimates left after removing genes classified as dubious or located
on the mitochondrial chromosome.

STATISTICAL TREATMENT OF THE MEASUREMENTS

In order to accurately capture variance of RP data, we assume that the measured
segment densities follow a log-normal distribution around the density values. A similar
assumption is often made for transcriptome measurements and is justified by the
observation that inter-replicate errors (i.r.e.), i.e., the ratios of replicated mRNA and
ribosome density measurements, follow a log-normal distribution (Suppl. Fig. 4.10 and
Ingolia et al. [11]). It then holds that density ratios ω[

l j ,r j
] ( j ∈ J g , where J g is the set of

all segments of gene g ) from different replicates also follow a log-normal distribution
lnN (µ j ,σ j ) as ratios of log-normally distributed random variables - the mRNA and
ribosome segment densities. Here µ j and σ j are used as shorthands for µ[

l j ,r j
] and

σ[
l j ,r j

] respectively.

To determine the parameters of this distribution we estimate µ j for the j -th segment
from the available replicated measurements as the log of their geometrical mean. Ideally,
a separate shape parameter σ j should also be estimated per segment, but, given the
number of replicates, doing so would not yield reliable estimates. Instead it was chosen
to group segments from all genes based on their length, and estimate shape parameters
σ

group
k for group k from the i.r.e. of measurements from that group (see Suppl. Text,

page 98 and Suppl. Fig. 4.12).

The proposed measurement distribution lnN (µ j ,σgroup
k j

), where k j denotes the

length group of the j -th segment, is used throughout this paper as an error model for
fitting TASEP models of translation on RP data and for comparing different models with
the data.

DATA INTERPRETATION AND MODEL EVALUATION

Computational models of translation typically provide the ability to extract steady-state
codon occupancy probabilities obtained from model simulations, i.e., estimates of the
chance that a particular position of an mRNA is occupied by an actively translating
ribosome. Similar to the ribosome profiling measurements these occupancy profiles are
determined by the local speed of translation and the number of ribosomes translating
an mRNA. This allows for evaluating how well a given model matches the RP data by
comparing the average segment occupancies and the segment tree ratio estimates (see
Fig. 4.1, right).

Quantitative measurements obtained via high-throughput sequencing such as the
mRNA and ribosome densities (and hence their ratios) are measured in arbitrary
units. Without explicit assumptions on the physiological characteristics of the analysed
organism, such as the full size of its transcriptome [9] or the number of ribosomes
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per cell [10], and on the efficiency of individual experimental steps, it is impossible to
estimate sequencing depth of the RP measurements (i.e. the average number of reads
per ribosome or the average number of reads per kilobase of transcript) and therefore
impossible to express the measured values in physiologically meaningful units (e.g.
number of ribosomes per transcript). Additionally, this unit mismatch complicates the
comparison of modelled ribosome occupancies to the measured densities. To derive
a model evaluation criterion, we first assume that an unknown scaling factor C that
transforms model output into measurement data units is given, and propose a method
for calculating it later.

Let ng
i be the model-predicted ribosome occupancy at position i of gene g and T g ={(

µ
g
j ,σg

j

)∣∣∣ j ∈ J g
}

be the set of ratio distribution parameters for segments
[

l g
j ,r g

j

]
. Here

the upper index g denotes the gene, and for a more succinct notation we use the lower

index j in place of
[

l g
j ,r g

j

]
. For segment j on gene g the probability of the predicted

occupancies given the segment ratio estimates can be expressed as

p
(
C , N g

j

∣∣∣µg
j ,σg

j

)
∝ fC (N g

j ;µg
j ,σg

j ), (4.1)

where N g
j ≡ ∑r

g
j

i=l
g
j

ng
i

/(
r g

j − l g
j +1

)
is the predicted average occupancy on segment j

of gene g , and fC (x;µ,σ) = 1
xσ

p
2π

e−
(ln x+lnC−µ)2

2σ2 is the log-normal probability density

function describing the density ratio measurement error scaled by factor 1
C . This

formulation is used for comparing the predicted occupancies to the estimated values
in a probabilistic fashion. Assuming independence between ratio estimates of the same
gene and between genes, the probability of observing all estimates, denoted by n, can be
expressed as

p (C ,n|T ) ∝
∏
g

∏
j∈J g

fC (N g
j ;µg

j ,σg
j ), (4.2)

In practice these calculations are more easily performed in log space and the
constant factors are dropped:

ψ (C ,n|T ) =
∑
g

∑
j∈J g

ln fC (N g
j ;µg

j ,σg
j ) ∼

∼∑
g

∑
j∈J g

− 1

2
(
σ

g
j

)2

(
ln N g

j −µg
j + lnC

)2 − ln N g
j

 (4.3)

We useψ (C ,n|T ) as the objective function for quantifying how well model-predicted
ribosome occupancies match measured data.

To choose the scaling factor C , we note that it is the only free parameter of ψ (C ,n|T )
if model output n and segment tree estimates T are given. In that case, the value of C



4

70 4. USING RIBOSOME PROFILING DATA TO MODEL PROTEIN SYNTHESIS

Ribosome

mRNA

kg
0

kg
i

i

kg
j

j

kg
Sg

Sg

(i)

(ii) (iii)

L

Figure 4.2: In TASEP mRNAs are modelled as one-dimensional lattices of Sg sites (codons) and ribosomes - as
particles occupying L sites (L = 3 in the figure). During translation (i) ribosomes attach to the first codon with
rate k
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0 if the beginning of the mRNA is not occupied by other ribosomes (initiation); (ii) ribosomes move from
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Sg (termination).

maximising ψ can be determined analytically:

lnC =

 ∑
g , j∈J g

1(
σ

g
j

)2

(
µ

g
j − ln N g

j

)/ ∑
g , j∈J g

1(
σ

g
j

)2

 (4.4)

Throughout this paper, different models are evaluated at a scaling factor C maximising
their fit to the data (i.e., maximising ψ). While the unknown true scaling factor is
determined by the physiological properties of the cell, the efficiency of the experimental
protocols and characteristics of the high-throughput sequencing measurements (see
section “Initiation rate approximation” and Suppl. Text, page 101), evaluating models
at the best possible scale allows for a more fair evaluation as it does not penalise models
in cases when the model and the true scales mismatch.

THE TASEP MODEL OF TRANSLATION
TASEP (Totally Asymmetric Exclusion Process) models mRNAs g as one-dimensional
lattices of length Sg and ribosomes as abstract “particles” occupying L sites
corresponding to codons (Fig. 4.2). These particles hop on (translation initiation)
and off (translation termination) the lattice at the first and last sites with rates kg

0
and kg

Sg respectively. They only move towards the end of the lattice (hence the

totally asymmetric) by hopping one site at a time with site-specific elongation rate kg
i .

Ribosomes interact with each other by “excluding” a volume of L sites that they cover on
the lattice, meaning that a ribosome cannot continue to the next codon if it is already
covered by another ribosome. The exact location of the active site among the L covered
codons does not change the rules governing ribosome motion [23], but the choice of
L may influence simulation dynamics in cases of high ribosome queueing. Typically,
values 9 ≤ L ≤ 11 are used [9, 10, 17, 22]; L = 10 was chosen for our simulations as it best
matches the RP footprint size distribution [11].

TASEP captures the high-level physical interaction between ribosomes and
transcripts by describing the ribosomes as travelling on the mRNAs. While in practice
a number of varying translation scenarios are possible (e.g., RER-bound translation with
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ribosomes glued to the endoplasmic reticulum and moving very slowly while the mRNA
is instead pulled though the ribosomes [26]), the rich set of behaviours attainable by
TASEP makes it a suitable framework for modelling translation. It requires specification
of a large number of parameters, namely the gene- and site-specific elongation rates
kg

i (with the stop codon elongation rate functioning as the termination rate) and the

gene-specific initiation rates kg
0 . To reduce the number of parameters we assume that

the site-specific elongation rates are codon-specific and do not differ between genes.
This commonly made assumption [8, 17, 22, 27] is necessary for determining model
parameters from RP data as it makes the model fitting problem tractable. Depending
on the experiment, either elongation rates consistent with the tRNA pool adaptation
hypothesis were fixed to allow fitting the initiation rates only, or all model parameters
were fit on the available data.

MONTE CARLO SIMULATIONS
Evaluation and fitting of the TASEP model requires an efficient way of obtaining
steady-state ribosome occupancies. TASEP models allow limited analytical tractability
and, to our knowledge, no analytical results for the steady-state codon occupancy
probabilities are available for the general case. Additionally, existing TASEP mean-field
approaches poorly approximate codon occupancies [28], a quantity of particular
importance to this study, leaving stochastic simulations as the only suitable approach.

TASEP steady-state codon occupancies were obtained by simulating the model using
a Monte Carlo algorithm, i.e., by randomly selecting an event (translation initiation,
elongation or termination) in every simulation step and, if no other ribosomes interfere
with the event, executing it with a probability proportional to its rate. To speed up
simulation we developed a continuous time simulation method similar to the Gillespie
algorithm [29], but based on the use of the Erlang distribution to only sample times
between state-changing events, i.e., events that change the configuration of ribosomes
attached to an mRNA.

Formally, the times between consecutive initiation or elongation events at position
i are assumed to be exponentially distributed with rates kg

0 and kg
i respectively (i.e., the

corresponding model rate parameters, Fig. 4.2). Let oi , i = 1, . . . ,Sg be the current state
of the simulated molecule:

oi =
{

1, codon i is occupied by a ribosome (is at its A-site)

0, otherwise
. (4.5)

Then the time between any two consecutive events is also exponentially distributed
with rate k = kg

0 +∑Sg

i=1 oi kg
i as the minimum of independent exponentially distributed

random variables. Once an event occurred, the probability that it was event j is given by

p j = o j kg
j

/
k (it is assumed that ribosomes are always available to initiation translation,

i.e., o0 = 1). Some of the events cannot be executed due to ribosomes blocking each
other and do not lead to a state change. If k+ is the sum of rates of events leading to a
state change, then the number of events between consecutive state changes, denoted as
e, follows a geometric distribution with parameter p+ = k+

/
k and the time ∆t between

state changing events follows the Erlang distribution with shape e and rate k as the
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sum of iid exponential random variables. The simulation proceeds by repeated random
sampling of the number of events, the time between events and the event type s from the
appropriate probability distributions; and updating ribosome locations in accordance to
the sampled event:

s ∼ Categorial
(
p0, p1, . . . , pSg

)
, e ∼ Geometric

(
p+

)
, ∆t ∼ Erlang(e,k) . (4.6)

Simulating only state-changing events allows the simulation to progress faster, especially
in cases of high ribosome queueing. The total time T g

i spent by ribosomes at position
i and the total simulation time T g are recorded to estimate the per-transcript ribosome
occupancy at this position as ng

i = T g
i

/
T g , which is then used for comparing the model

to RP data. Similarly the total number of translation terminations F g is used to estimate
the protein production rate J g = F g

/
T g .

To reach steady-state distribution of ribosomes on mRNA irrespective of the CDS
length, each mRNA was simulated until 1000 translation termination events occurred.
After that the model was further simulated for up to 107 additional steps or until
the average ribosome occupancy in the segments of interest was estimated with high
precision (absolute error ε < 10−3). The latter stopping criterion is based on the
observation that average ribosome occupancy over a fixed segment of the mRNA can
be reliably estimated before per-position occupancies can. Segment densities were
first estimated after 5× 105 simulation steps and then every 106 steps. Simulation was
stopped if the absolute error between consecutive estimates was smaller than ε.

INITIATION RATE APPROXIMATION
In addition to the elongation rates, large TASEP models require specification of hundreds
gene translation initiation rates prior to simulation. Direct measurements of the
initiation rates rates are unavailable and instead their values are often inferred from
other sources such as ribosome profiling [9, 10] or polysome size measurements [22]
data. Initiation rates estimated in such a way depend on the rates of translation
elongation used in the analysis, and hence need to be optimised together with the
elongation rates of the TASEP model. This leads to an explosion of the number of
parameters that need to be determined, stressing the need for highly efficient initiation
rate approximation strategies if the initiation and elongation rates are to be determined
from the RP data simultaneously.

The problem of determining initiation rates was previously tackled by
approximations neglecting ribosome queueing [9, 10], and by near-exhaustive
computational search [22]. We propose a method that is a compromise between the
two approaches - it allows approximating gene initiation rates for the TASEP model
from RP data at a fraction of the computational cost of an exhaustive search. Briefly,
we add an additional parameter C̃ , the “proposed” scaling factor, to the list of model
parameters that need to be estimated. This parameter is identical to the scaling factor C
from eq. (4.4), but is used within the model to obtain biologically meaningful initiation
rates. We calculated the value of C̃ from the number actively translating ribosomes [30]
and the number of mRNA molecules [31] per cell using a procedure proposed by Siwiak
and Zielenkiewicz [9]. Given some estimate of the elongation rates and C̃ we then find
optimal initiation rates using a novel numerical approximation of ribosome density for
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TASEP models that is based on the observations of Cinandrini et al. [22]. This approach
allows us to decouple initiation rates from elongation rates and greatly reduces the
number of model parameters that need to be fitted explicitly (next section). We used
this method to efficiently (re-)approximate initiation rates of genes for each new set of
elongation rates kg

i . A full description of the approach is available in the Suppl. Text,
page 104.

MODEL FITTING
When fitting the TASEP models, translation rates that maximise ψ (C ,n|T ) are sought.
Lacking a closed-form solution, we employed the Covariance Matrix Adaptation
Evolutionary Strategy (CMA-ES [32]) to find these rates.

We considered two different TASEP models: TASEPinit and TASEPelong. In TASEPinit

the elongation rates are fixed at values consistent with the tRNA pool adaptation
hypothesis and initiation rates are approximated as described earlier. In the TASEPelong

model none of the parameters are fixed: also the codon-specific elongation rates are
optimised with the CMA.

Since TASEP simulation output is invariant to scaling of translation rates, many
equally good solutions exist. To constrain the search the elongation rate of codon GAA
was fixed at its initial tRNA pool adaptation hypothesis value. The codon was chosen as
it is present in many genes and segments (Suppl. Fig. 4.14). Further details regarding the
use of CMA can be found in the Suppl. Text, page 107.

Despite the efficient Monte Carlo simulation and translation rate search strategies,
model fitting remains a very CPU-intensive task. To speed up computations in practice,
the models were fitted using hundreds of CPUs in parallel as individual genes can be
simulated independently.

Because TASEP simulations of different genes are independent of each other, it may
be unclear how to interpret the fitted elongation and initiation rates, as they must
depend on such global biophysical quantities as the number of tRNAs or ribosomes
within the cell. Nevertheless, the final simulation results are compared to whole-genome
RP measurements. We can therefore expect that if our TASEP simulations agree well
with RP data, the fitted translation rates used within the simulations account for
the necessary biophysical parameters. Thus they should be regarded as the effective
initiation and elongation rates that account for the relevant biophysical characteristics
of the cell and growth conditions. We note that translation rates determined in such a
way are condition-specific, and would likely change if fitted on a dataset obtained under
different growth conditions.

COMPARISON TO OTHER MODELS
To obtain a baseline for evaluating the performance of fitted TASEP models we also
evaluated several existing state-of-the-art static and dynamic models of translation and
compared them to each other based on their agreement with the RP data as given
by eq. (4.3). SMoPT [10] and Zhang’s model [7] were chosen for evaluation on the
segment tree data as other state-of-the-art models, namely the Ribosome Flow Model [8]
and the model from Siwiak and Zielenkiewicz [9], do not provide ribosome occupancy
profiles compatible with the segment tree interpretation. The latter model was however
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compared to the fitted TASEP models based on several independent PA datasets.

When comparing models’ predictions using independent protein abundance
datasets, the “initiation frequency” P , “total amount of protein molecules produced
from transcripts of particular type” B and the “total time of translation of one protein
molecule from a given transcript” T from Siwiak and Zielenkiewicz [9] were respectively
treated as translation initiation rate, the product of J and mRNA levels, and the inverse
of J ; the average gene total elongation time from SMoPT [10] was treated as the inverse
of J ; P from Ciandrini et al. [22] was treated as J .

EXPERIMENTAL SETUP

Since the sets of genes included in SMoPT and the segment trees differ, to facilitate
comparison, all models were evaluated on a set of 3,617 genes (49,894 segments) that
were in common between all models after removing very long genes to speed up TASEP
simulations (31 genes longer than 2,000 codons). This set of genes was used to fit TASEP
models inside a 5-fold stratified cross-validation (CV) loop over genes, in which the CV
folds were chosen to balance the number of genes and segments between folds. In every
step of the CV 1 fold was used for fitting (training set) and 4 folds were used for model
evaluation (test set). Smaller training sets were used to reduce model fitting time. To
evaluate predictions of the proposed TASEP models we also fitted them on all segment
tree estimates. And to further reduce fitting time on this large dataset, codon elongation
rates of the TASEPelong model were set to the geometric mean of elongation rates from
CV folds, and only the initiation rates were estimated from the data.

To simplify comparison of different models, we computed CV objectives for all
evaluated models, including the models that did not require any parameter fitting (i.e.,
SMoPT and Zhang’s model). While the static Zhang model does not explicitly model
the translation initiation step, SMoPT and TASEP models require initiation rates to be
defined for every gene in the test sets in order to calculate the CV objective. We used the
original initiation rates inferred from the RP data [10, 11] for SMoPT, and approximated
TASEP initiation rates using the test set segment tree measurements.

THE TRNA POOL ADAPTATION HYPOTHESIS

Some of the experiments required the translation elongation rates to be defined.
For those experiments we used translation elongation rates kAAA, . . . ,kGGG consistent
with the tRNA pool adaptation hypothesis, which could be seen as a statement that
codons recognised by more abundant tRNAs are translated faster. The exact values
for the elongation rates were defined based on the tRNA Adaptation Index (tAI [33]),
which quantifies the decoding efficiency of a codon by simultaneously considering
abundances of all tRNA species recognising it and the strength of wobble base pairing
between the codon and the anticodons of the isoacceptor tRNAs. The elongation rates
kAAA, . . . ,kGGG were calculated as the inverse of the codon translation times taken from
the Ribosome Flow Model [34]; and translation termination rates (i.e., kTAG,kTAA,kTGA)
were set to 1.
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Figure 4.3: Segment length histogram overlaid with the shape parameters of the density ratio distributions for
segment length groups (separated by dashed lines) shows that shorter segments tend to have more variable
measurements. Segments were separated based on their length into 10 equal-content groups (group edges
adjusted to allow for unique segment assignment), and the shape parameters σ were calculated from the
inter-replicate errors of the measurements falling within each group (Suppl. Table 4.5).

COMPARISON TO TAI AND CAI
The tAI and CAI (Codon Adaptation Index [35]) are the most commonly used codon
indices. They quantify respectively the extent to which a particular sequence consists of
codons recognised by abundant tRNAs, and the extent to which a particular sequence
consists of codons present in highly expressed (e.g., ribosomal and glycolytic) genes.
These indices are often used as a proxy for translational efficiency of a gene and are
employed to optimise its sequence for expression in a different host organism. Having
determined elongation rates for the TASEPelong model, we sought to understand whether
these rates suggest a different optimisation scheme than the one given by tAI or CAI.

For each codon the tAI (CAI) assigns a number - the absolute adaptiveness of
that codon to the tRNA pool (codons used in highly expressed genes). To facilitate
comparison between the different indices, following the definition of the CAI, we
define the relative adaptiveness of a codon as its absolute adaptiveness normalised
by the maximum adaptiveness among synonymous codons. We then use the relative
adaptiveness for CAI, tAI and an index based on the TASEPelong elongation rates
(described below), when comparing optimisation schemes.

We note that from the definitions of tAI [33] and elongation rates consistent with
the tRNA pool hypothesis (previous section and [8]) it follows that the tAI absolute
codon adaptiveness and the elongation rates are proportional to each other, and use
this observation to define a codon index based on the fitted TASEPelong elongation rates.
We define the relative adaptiveness of a codon according to TASEPelong as its elongation
rate normalised as described above.
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OTHER DATASETS
Protein abundance measurements were taken from Newman et al. [36] (YEPD and SD
media) and Ghaemmaghami et al. [37]. 5′- and 3′ UTR lengths were determined based
on Nagalakshmi et al. [38] and Yassour et al. [39] as the mean length obtained from the
two studies.

4.3. RESULTS

SEGMENT TREES RELIABLY CAPTURE DENSITY CHANGES ALONG

TRANSCRIPTS
Segment density ratios are estimates of the average number of ribosomes engaged
in translation of a given segment (measured in arbitrary units), and are expected to
become more reliable if the segment length is increased. Fig. 4.3 shows that estimates
obtained for longer segments are indeed more reliable (smaller σ values) with the
longest segments (rightmost group) being nearly as reliable as the full-CDS estimates
from all genes (Suppl. Fig. 4.12). We note that although group widths increase almost
exponentially, potentially collecting segments with different i.r.e. in the top group, the
constructed groups map very well to individual levels of the segment trees because
lengths of segments with each new level are halved on average. This mapping thus
provides important additional information to the segment trees about the increasing
reliability of measurements that are located higher within the tree.

In this way, segment trees establish a tradeoff between measurement reliability and
measurement resolution by combining the use of trustworthy estimates high in the tree
(corresponding to longer segments, describing high-level gene behaviour) with the use
of many less reliable estimates located lower in the tree that describe the local density
variation. As can be seen from the visualisation of the raw data for gene YLR449W and
its segment tree reconstruction in Fig. 4.4, our multi-scale approach, that combines
measurements from different scales (segment lengths), allows for implicitly capturing
changes in ribosome density along transcripts, while at the same time keeping the
average ribosome density across larger segments close to the observed levels. This
representation also encodes uncertainty about the density ratio at a particular region
of the gene, even if that region is not directly represented by a segment from the tree.
For example, region (85,104) (highlighted in the figure) is covered by 6 segments (i.e.,
has depth 5 within the tree) and has one of the tightest confidence intervals (CIs) in
the reconstruction. At the same time region (105,120) was not measured at the two
lowest scales (has a depth 3) and its average density has to be derived from the density
values of other segments and our uncertainty about them, leading to a wider CI. This
example demonstrates how segment trees capture changes in ribosome density along
the transcript, which are crucial for fitting translation rates and evaluating competing
models.

KNOWLEDGE-BASED MODELS DO NOT FIT RP DATA
Small standard deviations of the scaling factors and objective scores (determined
using CV) of the evaluated models shown in Table 4.1 suggest that the (fitted) models
perform consistently across different folds. The objective scores also show that
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Table 4.1: Objective ψ and scaling factor C for the evaluated models computed on the test folds inside a 5-fold
CV loop.

Model Fitted lnC Objective ψ

Zhang No −4.55±0.00 −600 286±4449
SMoPT No† 5.04±0.01 −244 834±2962
TASEPinit Init. 5.40±0.00 99 144±2137
TASEPelong Yes 5.41±0.02 114 865±4335

† - RP data Ingolia et al. [11] was used in the original publication to set initiation rates.

knowledge-based models (i.e., the SMoPT and Zhang models) based on a manual
choice of numerous translation-related parameters explain the ribosome density
measurements significantly worse than the two models fitted on RP data. This can
also be concluded from a visual inspection of the predictions made by these models
for one of the genes in Fig. 4.4C, which shows that their ribosome occupancies tend to
“miss” the measured density ratios. For the Zhang model this could be explained by the
absence of gene-specific initiation rates in the model, whereas SMoPT often overshoots
the measured density ratios, presumably because it over-estimates initiation rates by
neglecting ribosome queueing.

The TASEPinit model simulated with tAI-based elongation rates and fitted initiation
rates achieves a significantly higher objective scores than the two state-of-the-art
models. It is further improved by the TASEPelong model, for which the elongation
rates are additionally fit on the segment tree measurements. Fig. 4.5 shows that
superior objective function values of the fitted models translate to better predictions
of the measured ribosome density (Pearson correlation coefficient r = 0.77 vs. 0.45,
p < 10−293). Although the predictions are generally better for longer segments,
improvements can be observed at all scales (see Suppl. Fig. 4.13). While due to its relative
simplicity only a weak positive correlation was expected for the Zhang model, for reasons
unclear, a highly significant (p < 10−293) negative correlation is observed (Fig. 4.5,
left). This demonstrates that current knowledge-based models are not supported by
RP measurements and highlights the importance of a critical evaluation of existing
translation models against independent measurements.

TASEP PREDICTIONS ARE SUPPORTED BY INDEPENDENT DATASETS

Although TASEPinit and TASEPelong outperformed existing models in the CV
experiments, care has to be taken when interpreting these results as only the TASEP
models were fitted directly on the segment tree measurements. We sought to obtain
additional confirmation of the models’ performance and to determine if they make
biologically meaningful predictions. To this end we compared the protein production
and translation initiation rates given by TASEP models fitted on all segment tree
estimates to several independent large-scale PA datasets (see Materials and Methods).

Most importantly, we found that for both models the predicted protein production
rates (PPRs) J positively correlate with the PA measurements (Table 4.2). As expected,
because J describes PPR per transcript, these correlations improve when the product of
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Table 4.2: Correlations of TASEP predictions with independent PA datasets. Spearman rank correlation
coefficients r for are reported; J ′ is the partial correlation between J and PA given mRNA.

TASEPinit

Newman YEPD Newman SD Ghaemmaghami

Init. rate r = 0.56∗∗∗ r = 0.55∗∗∗ r = 0.49∗∗∗
J r = 0.57∗∗∗ r = 0.56∗∗∗ r = 0.50∗∗∗
J ×mRNA r = 0.72∗∗∗ r = 0.70∗∗∗ r = 0.63∗∗∗
J ′ r = 0.52∗∗∗ r = 0.49∗∗∗ r = 0.39∗∗∗

TASEPelong

Newman YEPD Newman SD Ghaemmaghami

Init. rate r = 0.54∗∗∗ r = 0.53∗∗∗ r = 0.49∗∗∗
J r = 0.56∗∗∗ r = 0.53∗∗∗ r = 0.49∗∗∗
J ×mRNA r = 0.72∗∗∗ r = 0.70∗∗∗ r = 0.63∗∗∗
J ′ r = 0.52∗∗∗ r = 0.48∗∗∗ r = 0.39∗∗∗

∗ - p−value < 10−5 ∗∗ - p−value < 10−20 ∗∗∗ - p−value < 10−100

J and mRNA levels (J ×mRNA; mRNA levels taken from the RP data) is considered. Even
when both J and PAs are corrected for mRNA levels (thereby removing transcriptional
regulatory influences in order to study translational regulation in isolation), the
remaining (partial) correlation between J ′ and PA′ is still significant, indicating that our
TASEP models adequately capture the effects of protein translation on protein levels.
These correlations are superior compared to correlations observed for state-of-the-art
models (Table 4.3), especially when the partial correlations are considered. While strong
positive partial correlations would be expected, we find these only for the fitted TASEP
models. Unexpectedly low and negative partial correlations between PA′ and J ′ for other
models, together with strong correlations between PPR and mRNA levels (Table 4.4)
suggest that existing models are overfit on transcript levels and may not accurately
model translation. These findings provide an independent confirmation that the TASEP
models with fitted translation rates accurately capture the dynamics of the S. cerevisiae
translation machinery.

Looking more in detail (Table 4.4), we find that for both models the fitted initiation
rates agree well with the rates inferred by the existing full-cell models of Shah et al.
(SMoPT), and of Siwiak and Zielenkiewicz. However, we did not find the previously
reported strong negative correlation between initiation rates and CDS length [10, 22]. We
note that this correlation is also not supported by the model of Siwiak and Zielenkiewicz.
The initiation rates also exhibit a weak correlation with the 3′ UTR lengths (similar
correlations also found for several other models), supporting the hypothesis of more
efficient translation re-initiation in genes with longer 3′ UTRs.

Interestingly, we did not find the tendency for genes with short 5′ UTRs to exhibit
high initiation rates suggested by Shah et al. and supported by Ciandrini et al. [22] in
our models or the model of Siwiak and Zielenkiewicz. We also note that no relationship
or a negative relationship can be observed between initiation rates and 5′ UTR lengths
corrected for CDS lengths can be found in most considered models. This suggests that
the previously observed inverse relationship between 5′ UTR lengths and initiation rates
may not be indicative of a 5′ UTR-mediated initiation rate regulation mechanism, but
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Table 4.3: Correlations of predictions made by existing models with independent PA datasets. Spearman rank
correlation coefficients r are reported.

Siwiak and Zielenkiewicz

Newman YEPD Newman SD Ghaemmaghami

Init. rate r = 0.45∗∗ r = 0.48∗∗∗ r = 0.40∗∗∗
J r = 0.33∗∗ r = 0.36∗∗ r = 0.37∗∗∗
J ×mRNA r = 0.58∗∗∗ r = 0.54∗∗∗ r = 0.50∗∗∗
J ′ r =−0.12∗ r =−0.07 r =−0.01

SMoPT

Newman YEPD Newman SD Ghaemmaghami

Init. rate r = 0.45∗∗ r = 0.49∗∗∗ r = 0.44∗∗∗
J r = 0.21∗∗ r = 0.23∗∗ r = 0.26∗∗
J ×mRNA r = 0.45∗∗ r = 0.46∗∗ r = 0.46∗∗∗
J ′ r =−0.26∗∗ r =−0.21∗ r =−0.13∗

Ciandrini et al. [22]

Newman YEPD Newman SD Ghaemmaghami

Init. rate r = 0.44∗∗∗ r = 0.43∗∗∗ r = 0.43∗∗∗
J r = 0.45∗∗∗ r = 0.44∗∗∗ r = 0.44∗∗∗
J ×mRNA r = 0.57∗∗∗ r = 0.56∗∗∗ r = 0.55∗∗∗
J ′ r = 0.10∗ r = 0.10∗ r = 0.14∗

∗ - p−value < 10−5 ∗∗ - p−value < 10−20 ∗∗∗ - p−value < 10−100

could be merely a consequence of a positive correlation between 5′ UTR lengths and
CDS lengths.

While correlations observed for the fitted models do not change between TASEPinit

and TASEPelong (Table 4.4), the latter model makes considerably better ribosome
occupancy predictions. It can be seen from the example in Fig. 4.4C that fitting the
elongation rates allows the segment-averaged ribosome occupancy of TASEPelong to
follow the reconstructed density considerably better than any of other model.

FITTED ELONGATION RATES ARE NOT EXPLAINED BY ADAPTATION TO TRNA
LEVELS ALONE

Since the TASEPelong model achieves a significantly better fit to the RP data compared
to TASEPinit with tAI-based rates (Table 4.1), having fitted its elongation rates on
different CV folds, we sought to interpret the obtained values and their variance. We
first, however, confirmed that elongation rates determined from different RP datasets
agree qualitatively with each other by fitting a new TASEPelong model on the dataset
of Ingolia et al. [11] and comparing its translation rates to the original model (see
Suppl. Text, page 108).

It can be seen from Fig. 4.6 that despite the generally large SDs, for many codons
the elongation rates fitted in different folds of the CV are spread compactly around
codon-specific values. This is clearly visible for codons with smaller SDs (green and
blue), for which similar rates were found in different folds. Nonetheless the rate SDs
differ considerably between codons. While the majority of the fitted elongation rates
are consistently different from tAI-based rates, only for 13 codons this difference is
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Table 4.4: Comparison of TASEP predictions to existing models. Spearman rank correlation coefficients r are
reported. When “corrected for” column is non-empty, partial correlations are reported.

Variable 1 Variable 2 Corrected for Correlation
coeff.

p-value

TASEPinit init. rates SMoPT init. rates r = 0.67 p < 10−298

Siwiak and Zielenkiewicz init. rates r = 0.74 p < 10−298

Ciandrini et al. init. rates r = 0.47 p < 10−197

TASEPelong init. rates TASEPinit init. rates r = 0.94 p < 10−298

SMoPT init. rates r = 0.65 p < 10−298

Siwiak and Zielenkiewicz init. rates r = 0.73 p < 10−298

Ciandrini et al. init. rates r = 0.46 p < 10−182

CDS lengths TASEPinit init. rates r =−0.07 p < 10−4

TASEPelong init. rates r =−0.05 p < 10−2

SMoPT init. rates r =−0.52 p < 10−257

Siwiak and Zielenkiewicz init. rates r =−0.02 p > 10−1

Ciandrini et al. init. rates r =−0.65 p < 10−298

5′ UTR lengths TASEPinit init. rates r =−0.01 p > 10−1

TASEPelong init. rates r =−0.02 p > 10−1

SMoPT init. rates r =−0.06 p < 10−3

Siwiak and Zielenkiewicz init. rates r = 0.00 p > 10−1

Ciandrini et al. init. rates r =−0.09 p < 10−10

TASEPinit init. rates CDS lengths r = 0.00 p > 10−1

TASEPelong init. rates CDS lengths r =−0.01 p > 10−1

SMoPT init. rates CDS lengths r = 0.03 p > 10−1

Siwiak and Zielenkiewicz init. rates CDS lengths r = 0.03 p < 10−1

Ciandrini et al. init. rates CDS lengths r =−0.06 p < 10−3

3′ UTR lengths TASEPinit init. rates r = 0.04 p < 10−2

TASEPelong init. rates r = 0.04 p < 10−1

SMoPT init. rates r = 0.06 p < 10−3

Siwiak and Zielenkiewicz init. rates r = 0.07 p < 10−5

Ciandrini et al. init. rates r = 0.03 p < 10−1

TASEPinit init. rates CDS lengths r = 0.04 p < 10−1

TASEPelong init. rates CDS lengths r = 0.04 p < 10−1

SMoPT init. rates CDS lengths r = 0.07 p < 10−4

Siwiak and Zielenkiewicz init. rates CDS lengths r = 0.08 p < 10−6

Ciandrini et al. init. rates CDS lengths r = 0.02 p > 10−1

mRNA levels TASEPinit init. rates r = 0.36 p < 10−115

TASEPelong init. rates r = 0.33 p < 10−93

SMoPT init. rates r = 0.58 p < 10−298

Siwiak and Zielenkiewicz init. rates r = 0.33 p < 10−117

Ciandrini et al. init. rates r = 0.62 p < 10−298

TASEPinit J r = 0.34 p < 10−97

TASEPelong J r = 0.37 p < 10−115

SMoPT J r = 0.65 p < 10−298

Siwiak and Zielenkiewicz J r = 0.69 p < 10−298

Ciandrini et al. J r = 0.63 p < 10−298

mRNA levels Newman YEPD PA r = 0.58 p < 10−209

Newman SD PA r = 0.57 p < 10−194

Ghaemmaghami PA r = 0.54 p < 10−273

Continued on next page.
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Table 4.4 continued.

CDS lengths Newman YEPD PA r =−0.13 p < 10−10

Newman SD PA r =−0.14 p < 10−12

Ghaemmaghami PA r =−0.16 p < 10−22

Newman YEPD PA mRNA r = 0.32 p < 10−60

Newman SD PA mRNA r = 0.28 p < 10−42

Ghaemmaghami PA mRNA r = 0.21 p < 10−36

mRNA r =−0.53 p < 10−298

5′ UTR lengths r = 0.14 p < 10−20

3′ UTR lengths r =−0.03 p < 10−1

statistically significant (single sample t-test for population mean difference, p < 0.05;
Fig. 4.6, Supplementary Data): GAC, TTG, CCA, CAA, GCC, GGT, GAT, TTT, CAG, GTG, ACG,
CCT and CGA. Although these differences between the tAI-based and fitted elongation
rates are challenging to explain, their presence suggests that additional unknown factors
are shaping these rates.

Having identified differences in elongation rates between the TASEPinit and
TASEPelong models, we sought to understand their effect on models’ predictions. As
could be expected from the similar correlations in Table 4.4 and Fig. 4.5, the two models
make very similar PPR and ribosome density predictions (Suppl. Fig. 4.11). However,
ribosome density predicted by the TASEPelong model with fitted elongation rates agrees
better with RP measurements. To understand the cause of this improvement we looked
for genes whose fit to the RP data improved when fitted elongation rates were used.
These genes can be classified into two groups: (i) genes that have a very similar initiation
rate in both models (Fig. 4.7, left); and (ii) genes that have a considerably lower initiation
rate in the TASEPelong model (Fig. 4.7, right). Because all 13 codons with significantly
different elongation rates were predicted to be slower, their presence in CDSes generally
leads to higher predicted ribosome occupancy, especially if the genes initiation rate
remains unchanged. For genes from the first group, such as YOR202W shown on the left
panel of Fig. 4.7, this already results in a more accurate ribosome occupancy prediction.
For most other genes, the second group, this increase in codon elongation times yields
ribosome occupancy that is too high under the current initiation rate. For these genes
(e.g., YGR284C on the right panel of Fig. 4.7) a smaller fitted initiation rate is required to
reduce ribosome occupancy that would otherwise be too high due to the effects of slow
codons and high ribosomal flux (due to high initiation rate). Together these effects allow
the model to better match the ribosome density changes along the transcript.

SIGNIFICANCE OF THE FITTED ELONGATION RATES FOR CODON

OPTIMISATION
Codon optimisation, the process of substituting codons with synonymous alternatives
that are elongated faster, thus contributing to the overall protein production rate,
is routinely used to improve protein expression [40, 41]. Nonetheless, it remains a
controversial tool because the same optimisation techniques can lead to contradicting
results when applied to different proteins [42]. Here we compare our fitted elongation
rates to codon optimality estimated by the commonly used tAI [33] and CAI [35] indices.

We considered the relative adaptiveness of a codon (see Materials and Methods)
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given by the CAI, the tAI and the fitted elongation rates of the TASEPelong model. Fig. 4.8
shows that the three measures of codon adaptation often agree on the optimal codon
for a particular amino acid (relative adaptiveness of 1.0, dark blue), which further
demonstrates that our findings are in line with the earlier work. In particular, despite
significant differences between the fitted elongation rates and elongation rates given
by the tRNA adaptation hypothesis, the two sets agree on optimal codons for all but
four amino acids. Only for isoleucine, leucine, lysine and serine the TASEPelong model
suggests codons ATC, AAA, TTA and TCG instead of ATT, AAG, TTG and TCT respectively.
An interesting observation is that the bottom row in Fig. 4.8 is much more blue than the
top ones, suggesting codon optimisation is less black-and-white than suggested by tAI
and in particular CAI, meaning that many more codons are “reasonably good”, i.e., there
may be less to gain by codon optimisation than thought before. This observation is also
corroborated by Leavitt and Alper [43], who noted that the level of control achievable
in yeast through codon optimisation is considerably smaller than what can be achieved
through transcriptional regulation.

TRANSLATION INITIATION LIMITS PROTEIN PRODUCTION

It is still unclear whether translation of endogenous yeast genes is limited by initiation
or elongation [44, 45]. To test whether translation is limited by the initiation rates or
by the elongation rates we artificially increased the initiation rate of each gene from the
TASEPelong model by 10%. To obtain robust results the experiment was repeated 5 times
with different random initialisations and the average increase in PPRs was calculated for
every gene.

Fig. 4.9 shows the relative differences in PPRs for all genes. In almost all cases (except
7 genes) the PPR increased substantially (relative difference > 0.02) when increasing
the initiation rate, supporting the hypothesis that under exponential growth in the rich
medium translation in S. cerevisiae operates in an initiation-limited regime. This also
explains why fitting the codon elongation rates in TASEPelong did not improve the PA
correlations compared to the TASEPinit model. Elongation-limited production for these
genes can be explained by the very high initiation rates predicted for them, which shift
the rate-limiting step from translation initiation to translation elongation. Interestingly,
groups of genes that had a low, medium and high PPR increase are enriched for several
biological functions (FDR < 0.05, Fig. 4.9). Notably, genes in the high increase group are
involved in negative regulation of various biosynthetic and metabolic processes. This
suggests that yeast cells may have evolved to rapidly “switch on” negative regulation by
keeping a buffer of the required mRNA transcripts that are efficiently translated only
once there is demand.

4.4. DISCUSSION

For the first time, we described an approach that derives complete translation kinetics
of an organism from ribosome profiling data and used it to simultaneously infer the
translation elongation, translation initiation and protein production rates all together
without neglecting the effects of ribosomal interference. We applied our methodology
to the ribosome and RNA sequencing data of the baker’s yeast Saccharomyces cerevisiae.
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Figure 4.9: Distribution of the relative changes in PPR after a 10% increase in initiation rates shows that
translation initiation is the rate limiting step for the protein production for most S. cerevisiae genes from the
considered RP dataset. Groups of genes with low (≥ 0.02 and < 0.08, red), medium (≥ 0.08 and < 0.11, yellow)
and high (≥ 0.11, green) increase in PPRs are enriched for several biological functions (white boxes in the figure,
FDR < 0.05).

The fitted yeast translation models agree considerably better with independent protein
abundance datasets than existing models. In particular, our TASEP models are the only
ones that maintain strong correlations with protein abundance after removing the effect
of transcriptional regulation.

While translation initiation rates provided by the models are similar to rates from
other studies, we did not find the previously reported negative correlation between
initiation rates and CDS lengths. The observed negative correlations between PA
and CDS length, which one would expect to see as a result of this correlation,
can alternatively be explained by transcriptional regulation, i.e., the strong negative
correlation between mRNA levels and CDS lengths (Table 4.4). An alternative
explanation can be offered by a mechanism driven by amino acid chain elongation
rather than translation initiation. For example, abortive translation or the degradation of
misfolded proteins [46], since the chance of producing a misfolded protein is expected
to increase with protein length.

We also found that translation elongation rates deviate considerably from the widely
accepted tRNA pool adaptation hypothesis, for 13 codons significantly so. Differences
in elongation rates of these codons between the tRNA pool adaptation hypothesis and
TASEPelong may be partially explained by nucleotide modifications of their respective
tRNAs, which are known to modify the specificity and efficiency of messenger decoding
[47]. As such, some of these 13 codons were shown to be affected by post-transcriptional
nucleotide modifications of tRNAs in different organisms [48]. We speculate that for
these codons the concentration of (un)modified tRNAs, rather than the total tRNA
concentration, plays a non-negligible role in determining their elongation rates [19].
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An additional factor that possibly contributes to the observed deviation from the tRNA
pool adaptation hypothesis is its implicit assumption that different tRNA genes from the
same family contribute equally to determining the rate of translation. This assumption
should be revisited in light of the recent finding of Bloom-Ackermann et al. [49] that the
contributions of different gene copies from the same tRNA family to the tRNA pool and
cellular fitness are far from equal.

In our experiments we found that SDs of elongation rates from different CV folds
differ markedly between codons. In order for the elongation rates to be specified
with high precision by the RP data, small changes in the rates must lead to detectable
differences in ribosome density. However, in light of our finding that yeast translation is
initiation-limited and the observation of Bloom-Ackermann et al. [49] that S. cerevisiae
is robust to deletions of tRNA genes, especially in rich medium used to produce the
ribosome profiling measurements analysed here, it is unlikely that in the considered
physiological conditions the elongation rates exert a strong enough effect on ribosome
density to allow the RP data to specify elongation rates with high precision. We speculate
that found SDs reflect the robustness of the yeast translation system w.r.t. the codon
translation rates, with the system being more sensitive to changes in rates of those
codons that have smaller SDs. In this case, yeast translation appears to be robust
to fold changes in codon translation rates and, consequently, to the aminoacyl-tRNA
availability that these rates are thought to be determined by [45].

Alternatively, the SDs may reflect the extent to which codon translation rates change
between CV folds due to codon context, i.e., the local sequence around a codon which
may alter its elongation rate (see Suppl. Text, page 108). It is unlikely that the TASEP
model captures the full complexity of the translation process by assuming that codon
elongation rates are determined solely by the codon identity, and not also by the
sequence surrounding the codons as was previously suggested [3, 4]. Such a constraint
limits the models ability to capture the underlying translation dynamics and may bias
it towards fitting different rates on different sets of genes (e.g., CV folds) with varying
codon contexts, thereby inflating the SDs. The observed variation in fitted elongation
rates puts forward codon context as a factor that may significantly modulate the baseline
elongation rates.

Using our models we found that under exponential growth in rich medium
translation initiation appears to be the main limiting factor of protein production of
endogenous genes in Saccharomyces cerevisiae, with protein production being limited by
initiation rates for all but 7 genes with very high initiation rates. These findings suggest
that rational design of 5′ UTRs involved in translation initiation [50, 51] may be a more
promising avenue for achieving protein over-expression than the routinely used codon
optimisation techniques. It is likely, however, that further over-expression could be
achieved using codon optimisation. Because once the gene is put under the translational
control of an efficient 5′-UTR, which is usually the case in heterologous gene expression,
translation elongation is expected to become a rate-limiting factor. In such cases
we recommend performing codon optimisation using the fitted TASEPelong elongation
rates, which, while mostly agreeing with existing techniques, also demonstrate several
differences.

Although we found that translation initiation appears to be the main factor limiting
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protein production in yeast under exponential growth in rich medium, it is possible
that different mechanisms are dominant in other organisms. For example, Li et al.
[52] and Guimaraes et al. [53] discuss greater contribution of protein elongation
respectively by anti-Shine-Dalgarno sequences and codon usage in E. coli. Our method
could be applied to ribosome profiling data of other organisms to delineate the relative
contribution of initiation and elongation.

All translation models proposed to date, including TASEPinit and TASEPelong, assume
that translation elongation rates are not influenced by codon context, i.e., the sequence
around a particular codon, although various factors affecting the speed of elongation
have been suggested [3–5]. Variation in fitted elongation rates and the highly varying
codon translation times recently observed by Dana and Tuller [54] suggest that
codon context may play a more compelling role in determining translation rates than
previously thought. Fortunately investigations of codon context are becoming feasible
thanks to the growing adoption of ribosome profiling as a standard technique for
studying translation. With the increasing amount of ribosome profiling measurements,
data-driven approaches, such as the one described here, will become instrumental for
delineating the effects of multiple competing translation mechanisms, for generating
new hypothesis, and for constructing predictive models for use in other fields. These
goals can be achieved by incorporating alternative translation mechanisms as sequence-
and position-specific effects altering the codon elongation rates.
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Figure 4.10: Histograms of the log2 inter-replicate errors (ratios of replicated measurements) of reliable
ribosome and mRNA density measurements show that the full-CDS and segment tree density estimates follow
comparable log-normal distributions. Distributions fitted into data (solid lines) are centered around zero, but
their SDs differ.

Figure 4.11: Agreement between the PPR (left) and gene-level average ribosome occupancy (right) predictions
made by TASEPinit and TASEPelong models.

RIBOSOME PROFILING READ PROCESSING
With the exception of elongation rate reproducibility analysis, the RP data for yeast
Saccharomyces cerevisiae strain S288C [24] were used for all analyses. These data
are available as raw sequencing reads that needed to be trimmed and aligned to
the genome prior to any analysis. The read mapping procedure from [13] was used
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Figure 4.15: Histogram of the running times (average over 3 replicates) of the TASEP model simulations for
genes in the evaluation set. tAI-based elongation rates and initiation rates of 1.0 were used in the simulations.

Table 4.5: Shape parameters of the density ratio distributions for segments grouped by length. Left (inclusive)
and right (exclusive) edges give the range of segment lengths of a given group.

# Left Right Group size Shape parameter σ, log2

1 20 25 5284 0.235565455789103
2 25 33 6804 0.216285904079930
3 33 41 5591 0.207713921552678
4 41 54 6361 0.199316542112745
5 54 71 6163 0.183918710525198
6 71 95 5989 0.177805660887211
7 95 132 6097 0.164353210454788
8 132 194 6063 0.159682537763375
9 194 325 6057 0.142796300946171

10 325 4912 6057 0.128137654321086

to align RP reads to the yeast genome. After trimming the reads to a length of
21 nt to remove any linker-adapter sequences, the trimmed reads were aligned to
the S288C reference genome sequences (release R64, accessed on January 14, 2014)
using Bowtie [55]. First, the reads were mapped to the annotated CDSes and UTRs
(taken from SGD [25]) of S288C extended by 100 nt on each side, and then unaligned
reads were mapped to the entire reference genome sequence. These alignments were
then extended up to the original read length to minimise the number mismatches
between the untrimmed read, the reference and the linker sequences. Sequences
CTGTAGGCACCATCAAT and AGATCGGAAGAGCACACGTCTGA were used for the RP linker and
Illumina sequencing adapter during extension. Alignments with up to 2 mismatches
were accepted, and multiple alignments were allowed for a single read, but alignments
with fewer mismatches were preferred. Following McManus et al. [24] only RNA- and
ribo-seq alignments of lengths 27 ≤ l ≤ 40 and 27 ≤ l ≤ 33 respectively were kept for
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Figure 4.16: Histograms of the locations of the start and stop codons within ribosomal footprints of various
lengths. Offsets give distances from the beginning of the read to the first nucleotides of the start or stop codons.
High peaks around positions 11-14 on the start codon offset histograms directly give position of the P-site in
ribosomal footprints, whereas the leftmost periodic peaks in stop codon offset histograms are located 6 nt
upstream of the P-site. Offsets fixed for every footprint length are given in Table 4.6.

analysis.
We then sought to assign reads to the (parts of) CDSes that they originate from.

Ribo-seq reads should be assigned to CDSes based on the position of the A-site codon in
the read, which may differ with read length. Metagene analysis [13] was used to calibrate
the position of the A-site codon for various footprint lengths. Reads with alignments
containing start or stop codons of annotated CDSes were considered and the positions of
these codons were recorded. Histograms of the positions of the start and stop codons in
Fig. 4.16 were then used to determine the location of the P-site for each footprint length.
The footprints were then assigned to CDSes based on the alignment coordinate of the
overlap of the second nucleotide of the A-site codon (i.e., P-site offset+4) with annotated
CDSes. RNA-seq reads were similarly assigned to CDSes based on the coordinate of
their central nucleotide. For reads that map to multiple locations (ambiguous reads)
an equal fraction of the read count was counted towards each location; and reads
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Figure 4.17: MA-plot of the full-CDS density estimates. Measurement variance for ribosome and mRNA density
estimates is higher for genes with low density. Unreliable density estimates (< 128 total RNA-seq reads or < 128
ribo-seq reads; coloured red) show increased measurement variance.

assigned to multiple CDSes (“overlapping” reads) contributed their full read count to
each assignment region. Read assignment was performed separately for each of the two
mRNA- and ribo-seq biological replicates (see Table 4.7 for statistics).

SETTING THE READ COUNT THRESHOLDS

MA-plots typically applied to the analysis and normalisation of 2-channel microarray
data [56] were used to visualise density measurement differences between replicates by
plotting the log-ratio of the measurements M = log2 a − log2 b against the log of their
geometrical mean A = 0.5 · (log2 a + log2 b). Here a and b are density and density ratio
measurements for the same gene (segment) from two different replicates. These plots
were made for full-length CDSes and for segment trees.

MA plots for the full length genes (Fig. 4.17) were used to manually set the total read
count thresholds for reliable density estimates. The chosen thresholds of 128 reads are
identical to the ones used in Ingolia et al. [11] for defining reliably measured genes.

SEGMENT TREE CONSTRUCTION

When constructing segment trees, cut points p are chosen such that the combined
number of RNA- and ribo-seq reads across replicates is divided equally between the left
and the right segments. This is achieved by simultaneously minimising for the available
replicates the sum of absolute per-replicate differences in the combined numbers of
RNA- and ribo-seq reads between the left and the right segments.

When recursively splitting segments, cuts where both segments pass the minimum
length criterion are preferred to cuts that minimise the read count imbalance. If
multiple cut points with the same imbalance are available, the leftmost one is chosen.
Measurements from segments, in which one or more density estimates are based on
read counts containing ≥ 20% ambiguous or overlapping reads with other CDSes, are
discarded, but tree construction is allowed to continue.
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Figure 4.18: MA-plots of the segment tree density and ratio measurements (top) before bias correction show
a density-dependent systematic bias, which (bottom) after removal of mRNA and ribosome density bias is no
longer present in density estimates, but is amplified for the ratio estimates. An identical procedure is applied to
correct this amplified bias (see Fig. 4.19). The locally estimated mean M̄ (red line) was obtained using LOWESS
[57] using 33% of the data.

Figure 4.19: MA-plot of the segment tree density ratio estimates after normalisation shows that no significant
bias is present at the extreme density ratio values.

DENSITY-DEPENDENT BIAS CORRECTION

MA-plots in Fig. 4.18 (left) suggest presence of a systematic density-dependent bias
in density and ratio measurements. To remove the bias, density measurements were
normalised by first estimating the local bias using LOWESS regression (red line in
MA-plots) and then (i) subtracting it from M and (ii) subtracting a half of it from
A. Although this bias is negligible for mRNA and density measurements, it may get
amplified when the ratio of the two biased measurements is computed. This effect
can already be seen from the density ratio MA-plots, where the bias only becomes
more pronounced after density normalisation. The remaining bias in the density ratio
estimates is removed be applying the normalisation procedure to the ratio estimates
(Fig. 4.19).

We note that although this bias correction procedure does not allow for removing
bias from the original measurements, it provides bias-corrected versions of quantities
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M and A, which are sufficient to determine parameters of the log-normal distributions
describing the segment tree measurements. Quantity A directly gives the scale
parameter µ of the distribution for the corresponding segment, and M is essentially the
i.r.e. which is used to determine segment length group shape parameters.

ESTIMATING SHAPE PARAMETERS FROM I.R.E.
To estimate shape parametersσ j of the log-normal distributions lnN (µ j ,σ j ) describing
density ratio measurements, segments were divided into 10 groups based on their
length. Because each segment in a group follows a different distribution, with its own
parameter µ j , the per-group shape parameter cannot be estimated directly from the
density ratio measurements. Instead, for each group k we estimate it via the shape
parameter σi.r.e.

k of the i.r.e. for measurements in this group. If X ,Y ∼ lnN (µ j ,σ j ) are
random variables representing two independent replicated measurements of the density
ratios, then the shape parameters of the i.r.e. and the density ratio distributions are
related as (

σi.r.e.
k

)2 = Var(X )+Var(Y ) = 2 · (σgroup
k

)2
(4.7)

Using this equation the group shape parameter is calculated as σgroup
k = 1p

2
σi.r.e.

k and

used in place of σ j for all segments in the group.

VARIANCE STRUCTURE IN SEGMENTS WITH HIGH AND LOW INITIATION RATES

It is possible that segments originating from genes with high initiation rates have
a different variance structure (e.g., are more reliable) than genes with low initiation
rates. If present, this kind of relationship would be missed by the proposed segment
grouping strategy and render it problematic. To confirm that gene initiation rates do not
significantly alter variance structure of their corresponding segments we plotted inferred
gene initiation rates from several existing datasets [9, 10, 22] against the segments
inter-replicate errors (i.e., M from the MA-plots) used for estimating the log-normal
distribution shape parameters σgroup

k as described before. Figs 4.20 to 4.22 show that
no strong relationship between the initiation rates and inter-replicate errors is present.
Only for initiation rates obtained from Shah et al. [10] (Fig. 4.22) there appears to be a
weak tendency of increasing i.r.e. for lower initiation rates. We believe that absence of
strong dependencies between initiation rates and i.r.e. justifies our segment grouping
approach and use it to derive log-normal distribution shape parameters as described
above.

RIBOSOME OCCUPANCY PROFILES
The mRNA and ribosome occupancy profiles were obtained by assigning reads to coding
sequences as in the case of segment tree construction. The nucleotide occupancy
counts were then normalised by dividing them by NR or NM (the total number of ribo-
and RNA-seq reads mapped to CDSes) depending on the profile; and the normalised
counts were coarse-grained into codon-resolution count profiles by summing counts
over nucleotide positions of the corresponding codons.

To obtain per-transcript ribosome occupancy profiles, the ribosome count profiles
were further normalised in two different ways: either by dividing the per-position



4.A. SUPPLEMENTARY INFORMATION

4

99

Figure 4.20: Density ratio i.r.e. (M from the MA-plot in Fig. 4.19) plotted against initiation rates obtained from
Siwiak and Zielenkiewicz [9] for each of the 10 segment length groups used in the main text. No relationship
between i.r.e. and initiation rates can be observed.

Figure 4.21: Density ratio i.r.e. M plotted against initiation rates obtained from Ciandrini et al. [22] for each of
the 10 segment length groups used in the main text. No relationship between i.r.e. and initiation rates can be
observed.

counts of the ribosome profiles by the average count of the corresponding mRNA profile
(referred to as mean normalisation); or by dividing per-position counts of the ribosome
profiles by the respective (same CDS and same position in the CDS) counts of the
mRNA profiles (referred to as profile normalisation). The latter normalisation method is
conceptually similar to the way in which density ratios in segment trees are calculated,
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Figure 4.22: Density ratio i.r.e. M plotted against initiation rates obtained from Shah et al. [10] for each of the
10 segment length groups used in the main text. Only a weak relationship (the scatterplot has a droplet-like
shape if viewed horizontally; clearly seen for group 194 ≤ L < 325) between i.r.e. and initiation rates can be
observed.

but is applied at single codon resolution.

HIGH VARIANCE OF RP MEASUREMENTS AT SINGLE CODON RESOLUTION COMPLICATES

INFERENCE OF TRANSLATION KINETICS

Prior to choosing for a “multi-scale” segment tree approach to interpreting the RP data,
we evaluated its quantitative reproducibility at single-codon resolution by comparing
ribosome occupancy profiles between replicates. To this end we obtained occupancy
profiles using either profile or mean normalisation (PN and MN respectively). Separate
ribosome occupancy profiles were obtained for the available biological replicates. For
each reliably measured gene (as defined in Section 4.A) Pearson correlation between
profiles obtained from the two replicates were calculated. Profile positions, for which
it was impossible to obtain a profile (e.g., due to zero mRNA profile counts) in at least
one of the replicates, were left out of the analysis.

We found that profile correlations demonstrate limited agreement of the ribosome
occupancy profiles (median correlation coefficient r̃ = 0.55; Fig. 4.23, left). This
conclusion does not change even when more stringent read filtering is used (Fig. 4.24).
Since PN profiles can be viewed as an extreme case of a segment tree, where segments
do not overlap and are one codon in length, they were computed as a reference for
the segment tree interpretation. We found that PN scheme performed worse than
MN (median correlation coefficient of r̃ = 0.32; Fig. 4.23, right), presumably because
it introduced additional noise into the profiles through division by poorly estimated
counts.

In the original publication Ingolia et al. [11] showed that RP data has good
reproducibility when analysed at whole-gene scale. Given the low Pearson correlation
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Figure 4.23: Histograms of Pearson correlation coefficients for ribosome occupancy profiles obtained from two
biological replicates demonstrate limited reproducibility of the profiles in a majority of the reliably measured
genes irrespective of the used normalisation method.
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Figure 4.24: Histograms of Pearson correlation coefficients for ribosome occupancy profiles obtained from
two biological replicates. Only uniquely mapping reads with at most 1 mismatch were used to construct the
profiles (see Table 4.7 for statistics on read mapping). Nonetheless, the resulting correlation coefficients did
not improve compared to the case of using less stringent read filtering (Fig. 4.23).

coefficients obtained for occupancy profiles evaluated at single codon resolution, we
concluded that the RP data interpreted at single codon resolution would not allow for
quantitative inference of translation kinetics; and devised a segmentation approach that
estimates (local) average ribosome occupancy of a gene at multiple scales.

OBJECTIVE FUNCTION DERIVATION

In order to derive the objective function we assume that the density ratios obtained from
the RP data follow the log-normal distribution. Further we assume that measurements
for different genes and segments are independent from each other. We then seek to
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quantify how likely it is that a certain simulated segment density matches the measured
one by plugging it into the log-normal probability density function (PDF) of that
segment. The objective function can then be written as a product of PDFs of individual
segments:

F (n|T ) =
∏
g

∏
j∈J g

fx

(
N g

j ;µg
j ,σg

j

)
,

where fx
(
x;µ,σ

) = 1
xσ

p
2π

e−
(ln x−µ)2

2σ2 is the log-normal PDF and other variables hold the

following meaning:

• g denotes the gene.

• J g denotes the set of segments of gene g .

• j denotes the segment within this gene.

• µ
g
j and σ

g
j are the scale and shape parameters of the log-normal distribution

describing density ratios of segment j from gene g .

• T denotes the set of µg
j and σg

j for all genes and segments.

• n denotes the simulated ribosome occupancy for all genes at single codon
resolution.

• N g
j denotes the average simulated ribosome occupancy for segment j of gene g ,

which is matched against the estimated density ratio of the same segment.

The comparison of simulated average ribosome occupancy and the estimated
density ratios is complicated by the fact that these are measured on different scales. We
therefore need to rescale the simulated occupancy and the measured data to the same
scale. We do this by scaling the ratio density distributions by a factor 1

C , which for the
moment we assume to be known. This is equivalent to transforming the PDF of the
measured data into the PDF of the simulated occupancy and using the latter to evaluate
simulation results. To derive the transformed PDF fy (y ;µ,σ) we apply Theorem 5.11
from [58].

Let x be the random variable with PDF fx (x;µ,σ) representing the data distribution
and let y = 1

C x be the rescaled version of this random variable that is on the simulation
scale. The goal is then to determine fy (y ;µ,σ), i.e., the PDF of the rescaled variable.
According to Theorem 5.11 fy can be written as

fy (y ;µ,σ) = 1
1
C

fx (
1
1
C

y) =C fx (C y) = C

C yσ
p

2π
e−

(ln(C y)−µ)2

2σ2 = 1

yσ
p

2π
e−

(ln y+lnC−µ)2

2σ2 =

= 1

yσ
p

2π
e−

(ln y−(µ−lnC ))2

2σ2 = fx (y ;µ− lnC ,σ)
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We can now go back to the objective function F (n|T ) and replace fx with fy (denoted as
fC in the main text):

F (C ,n|T ) =
∏
g

∏
j∈J g

fx

(
N g

j ;µg
j − lnC ,σg

j

)
=∏

g

∏
j∈J g

1

N g
j σ

g
j

p
2π

e

−
(
ln N

g
j
−µg

j
+lnC

)2

2

(
σ

g
j

)2

To avoid working with multiplications, we will instead consider the logarithm of F :

lnF (C ,n|T ) =
∑
g

∑
j∈J g

−
(
ln N g

j −µg
j + lnC

)2

2
(
σ

g
j

)2 + ln

(
1

N g
j σ

g
j

p
2π

)=

=∑
g

∑
j∈J g

− 1

2
(
σ

g
j

)2

(
ln N g

j −µg
j + lnC

)2 − ln
(
N g

j σ
g
j

p
2π

)=

=∑
g

∑
j∈J g

− 1

2
(
σ

g
j

)2

(
ln N g

j −µg
j + lnC

)2 − ln N g
j − ln

(
σ

g
j

p
2π

)

If we now drop the constants from lnF (C ,n|T ), we get the final objective function:

ψ (C ,n|T ) =
∑
g

∑
j∈J g

− 1

2
(
σ

g
j

)2

(
ln N g

j −µg
j + lnC

)2 − ln N g
j

 .

We now address an earlier assumption that the scaling factor C is known. To this
end we find a C that maximises the objective ψ when all other variables are given (i.e.,
when the simulated occupancy n and the parameters of the log-normal distributions are
available). To this end we take the derivative of ψ with respect to lnC and equate it to
zero:

∂ψ

∂ lnC
=∑

g

∑
j∈J g

− 2

2
(
σ

g
j

)2

(
ln N g

j −µg
j + lnC

)=∑
g

∑
j∈J g

− 1(
σ

g
j

)2

(
ln N g

j −µg
j + lnC

)= 0
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∑
g

∑
j∈J g

− 1(
σ

g
j

)2

(
ln N g

j −µg
j + lnC

)= 0

∑
g

∑
j∈J g

1(
σ

g
j

)2

(
ln N g

j −µg
j

)
+∑

g

∑
j∈J g

1(
σ

g
j

)2 lnC = 0

∑
g

∑
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1(
σ

g
j

)2

(
ln N g

j −µg
j

)
=−∑

g

∑
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1(
σ

g
j

)2 lnC

−∑
g

∑
j∈J g

1(
σ

g
j

)2

(
ln N g

j −µg
j

)
=∑

g

∑
j∈J g

1(
σ

g
j

)2 lnC

∑
g

∑
j∈J g

1(
σ

g
j

)2

(
µ

g
j − ln N g

j

)
=∑

g

∑
j∈J g

1(
σ

g
j

)2 lnC

∑
g
∑

j∈J g
1(
σ

g
j

)2

(
µ

g
j − ln N g

j

)
∑

g
∑

j∈J g
1(
σ

g
j

)2

= lnC

The end result

lnC =

∑
g
∑

j∈J g
1(
σ

g
j

)2

(
µ

g
j − ln N g

j

)
∑

g
∑

j∈J g
1(
σ

g
j

)2

also allows an appealing interpretation as the weighted sum of scale differences and
matches the intuition about the scaling factor.

INITIATION RATE APPROXIMATION
We propose a method for approximating initiation rates that is based on the observation
of Ciandrini et al. [22] that the average number of ribosomes bound to a segment (i.e.,
the segments average ribosome occupancy) as a function of the initiation rate, A(k0),
reaches saturated state either smoothly or abruptly (Figs 4.25A and 4.27). This limited set
of steady-state behaviours allows for efficiently approximating A(k0). For each segment
j we approximate the shape of this function as

f j (k0) =
{

f −
j (k0), k0 ≤ e j

f +
j (k0), k0 > e j

f −
j (k0) ≡ a j k0

/
(b j +k0) ,

f +
j (k0) ≡ c j k0 +d j

where a j ,b j ,c j ≥ 0, and d j are parameters that need to be determined. Here f −
j (k0)

and f +
j (k0) are used to approximate the unsaturated and saturated parts of A j (k0)
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A

B

Figure 4.25: A j (k0), the average number of ribosomes attached to segment j at steady-state increases as a
function of initiation rate k0 and reaches saturated state (A) smoothly, abruptly or abruptly with a “jump”; this
observation can be used to efficiently approximate the shape of A j (k0). At each step of the bracket search
(B) the decision whether the gene is saturated at initiation rate h, the midpoint of bracket [u, v], is made
based on the squared distance from A j (h) (red dashed line) to f −j (h) (green lines) and f +j (h) (blue lines) -

the approximation functions fitted into model simulation results (circles); and the approximations are refit in
accordance to the decision made.

respectively. Approximation parameters are iteratively updated inside a bracket search
(Fig. 4.25B). The approximation of A j (k0) is then used to approximate gene initiation
rates as discussed below.

In order to approximate initiation rates, we assume that codon elongation rates
are given and a “proposed” scaling factor C̃ , an estimate of the unknown true scaling
factor C , is available. Gene initiation rates k0 are then chosen to maximise the objective
ψ (C ,n|T ) for C̃ and the approximations f j (k0) obtained earlier. In practice the objective
evaluated for f j (k0) is a unimodal function of the initiation rate (see Fig. 4.26) and
ternary search is used to efficiently find the k0 that maximises it, i.e., the sought
initiation rate approximation.

To determine approximation parameter values for segment j , the model is simulated
for E low and high initiation rates and f −

j and f +
j are first fit onto points

(
k0, A j (k0)

)
recorded for low and high initiation rates respectively by minimising the summed
squared error. E = 5 was used as it gives robust estimates in practice and the low and
high initiation rates are equally spaced in

(
0, mini ki

/
2
]

and [maxi ki ,1] respectively.
Bracket search is then used to find the switch point e j .
Starting from bracket [u, v] = [0,1], a midpoint h = (u + v)/2 is chosen and A j (h) is
found by simulation. A j (h) is compared to f −

j (h) and f +
j (h) to determine whether at
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Figure 4.26: Objective function value for genes YLR197W, YCL037C and YGL206C plotted as a function of
the initiation rate for proposed scale C̃ ≈ 181.956 (see next section). The objective calculated using the
approximation of the average number of ribosomes (dashed lines) and the objective calculated based on the
simulation output (solid lines) demonstrate near-identical behaviour. tAI-based elongation rates were used in
simulations.
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Figure 4.27: Examples of the three types of behaviour of the average number of ribosomes A j (k0) as a function
the initiation rate k0 (solid lines) and their approximations (dashed lines): smooth - YGL103W (blue, green);
abrupt - YPR017C (red, cyan); abrupt jump - YGL256W (magenta, yellow). tAI-based elongation rates were
used in simulations.

initiation rate h the mRNA is already in saturated state, and the bracket is updated as

u ← h, if
(

f −
j (h)− A j (h)

)2 <
(

f +
j (h)− A j (h)

)2

v ← h, otherwise.

Parameters a j ,b j or c j ,d j are then refit with the new point
(
h, A j (h)

)
depending on

whether the left or the right edge of the bracket was changed. The process continues
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until the bracket length becomes smaller than 10−6 and the switch point is then
calculated as e j = (u + v)/2 .
Approximations f j (k0) are obtained for each segment j and are recomputed each time
elongation rates change.

THE PROPOSED SCALING FACTOR C̃
The proposed scaling factor C̃ and the scaling factor C used in the objective function ψ

are both responsible for matching scales between simulated ribosome occupancy and
the measured data. However, unlike the freely changing parameter C , the proposed
scale C̃ is fixed and defines which portion of the difference between the simulated and
measured densities (N g

j and µ
g
j respectively) can be attributed to the scale mismatch,

and which portion must be explained the TASEP model. Choosing C̃ to be a good
estimate of the unknown true scaling factor is required to ensure that the fitted
translation rates have biologically meaningful values.

The true scaling factor is impossible to measure exactly, but it is possible to estimate
it. It is determined by the amount of DNA available for sequencing, which in turn
depends on the number of actively translating ribosomes (for ribo-seq), the total size
of the coding transcriptome (for RNA-seq) and the efficiencies of individual steps of the
experimental protocol. To estimate this factor we assume that individual steps of the
ribosome profiling protocol are either highly efficient (i.e. only a moderate portion of the
genetic material and ribosomes are lost during their execution), or that they are equally
inefficient for the ribo-seq and RNA-seq measurements, and use the procedures from
Siwiak and Zielenkiewicz [9] to estimate the number of actively translating ribosomes
Pactive and the size of the coding transcriptome Q.

The total number of ribosomes Ptotal = 2×105 and the fraction of ribosomes involved
in active translation ρ = 0.85 [30] were used to calculate Pactive = ρ ·Ptotal = 1.7×105. The
size of the coding transcriptome was computed as

Q = 3 ·∑
g

Sg Kg ,

where Sg and Kg are respectively the length in codons of CDSes and the absolute number
of transcripts of gene g . Quantities Kg were calculated as the relative mRNA abundance

mg = M[1,Sg ]
NM

scaled by the total number of mRNA molecules per cell E = 36,139 [31],

yielding Q = 3E ·∑g Sg mg ≈ 3.09×107.
Using these quantities the proposed scaling factor can be estimated as

C̃ = Q

Pactive
≈ 181.956.

The described procedure was used to set the proposed scale C̃ for all analysed datasets
individually.

CMA PARAMETER SETTINGS
CMA search space was constrained to [−12,12]. This way, when sigmoid-transformed
prior to TASEP simulations, the rates would occupy the interval (0,1) almost entirely.
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When fitting elongation rates, rates consistent with the tRNA pool adaptation hypothesis
were used as a starting point and their standard deviation (SD) was used to set CMA
parameter σ0 ≈ 0.94. CMA was run with the default population size µ = 16. To control
the runtime of the algorithm, it was stopped if the search ran for at least 300 generations
and the overall best solution did not improve over the last 50 generations.

COMPARISON TO OTHER MODELS
Zhang’s model [7] was designed to predict the relative local speed of translation at a given
position from codon elongation rates around it. Codon elongation times ti (inverse
of elongation rates) consistent with the tRNA pool adaptation hypothesis were used to
parameterize it as in Wohlgemuth et al. [59].

To obtain per-gene translation time profiles from the Zhang model, individual
codon translation times ti were smoothed with a moving average window of 19 codons
as in the original publication. For model evaluation these profiles were treated as codon
occupancy probabilities output by other models.

SMoPT (Stochastic Model of Protein Translation [10]) is a full-cell model developed and
parameterised for yeast using the RP data [11]. It describes the movement of ribosomes
on mRNA transcripts with a TASEP-like process while also taking tRNA and ribosome
concentration into account.

To obtain ribosome occupancy profiles, the model was simulated with default
settings for the maximum allowed time (2.4× 106 seconds; Fig. 4.28) and snapshots of
the state of the model with exact locations of ribosomes on all transcripts were taken
every second. These snapshots were processed into ribosome occupancy estimates
by recording how often a ribosome was seen at a particular location and dividing this
number by the total simulation time. Observations for different transcripts of the same
gene were combined into a single occupancy profile normalised by the number of
transcripts. Since SMoPT implicitly assumes that termination is instantaneous, codon
occupancies for stop codons were set to zero.

TRANSLATION RATE REPRODUCIBILITY ANALYSIS
In order to determine how robust translation rates fitted on the McManus et al. [24]
dataset are, we set out to repeat model fitting on an independent dataset. The RP data
for yeast Saccharomyces cerevisiae strain BY4741 [11] was used for this purpose. It is
available as a read mapping against the reference genome sequence of S. cerevisiae strain
S288C taken from SGD on June 22, 2008 (release R58). These data were re-mapped
to release R64 (January 14, 2014) by sequentially updating the alignment coordinates
according to the sequence changes file available from SGD. The updated alignments
were filtered as in in the original publication. We intentionally did not use a stringent
cutoff and kept alignments with up to 2 mismatches, as we expect that a fraction of
the mismatches originates from the use of the S288C reference genome for reads of a
different strain. After discarding footprint lengths for which location of the A-site could
not be reliably determined, reads of lengths 22 ≤ l ≤ 32 and 27 ≤ l ≤ 32 for mRNA- and
ribo-seq reads respectively were used in the analysis. A-site determination (Fig. 4.29 and
Table 4.8) and assignment of reads to CDSes (see Table 4.9 for statistics) were performed
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Figure 4.28: CV objective ψ for the SMoPT simulation output (red line) and its standard deviation (blue area)
plotted as the function of the simulation time demonstrates that reliable density estimates were determined
by the end of the simulation period.

as before.
MA-plots for the full length genes (Fig. 4.30) were similarly used to set read count

thresholds for reliable density estimates to 128 and 64 mRNA- and ribo-seq reads
respectively. Segment trees constructed with these thresholds were then bias-corrected
(Figs 4.31 and 4.32) and ratio measurement errors (Table 4.10) were determined as
before.

The set of 2,949 genes common between the McManus et al. [24] and Ingolia
et al. [11] datasets with 13,443 Ingolia and 51,223 McManus segments was then used
to independently fit two TASEPelong models on the two datasets inside a common 5-fold
CV loop.

MODEL FITTING IS ROBUST AGAINST EXPERIMENTAL BIASES

Translation rates obtained from the two datasets (Fig. 4.33) and initiation rates show
qualitatively similar behaviour (Fig. 4.34) despite significant differences in protocols,
strains, sequencing depth and computational processing between the two datasets.
Ingolia et al. [11] describe the first application of the ribosome profiling method. They
used an RP protocol based on poly-A tailing of ribosomal footprints, which was later
substituted by ligation of an adapter sequence to the 3′ end (e.g., McManus et al.
[24]). The latter is a standard procedure in small RNA sequencing, as it simplifies
the experimental protocol and subsequent short read mapping. This difference in
protocols results in substantially different biases due to sequence preferences of poly-A
polymerase and RNA ligase [60], which could explain the discrepancies between the
elongation rates fitted on the two datasets. Relatively low sequencing depth of the Ingolia
et al. dataset is also a likely factor contributing to higher SDs of the fitted elongation rates
and moderate reproducibility. Nevertheless, the general agreement between the two sets
of translation rates shows that our approach is robust against experimental biases.
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Figure 4.29: Histograms of the locations of the start and stop codons within ribosomal footprints of various
lengths for the Ingolia et al. [11] dataset. Offsets fixed for every footprint length are given in Table 4.8.

Table 4.10: Shape parameters of the Ingolia et al. [11] dataset density ratio distributions for segments grouped
by length. Values of σ determined for this dataset are considerably higher than the values obtained for
McManus data.

# Left Right Group size Shape parameter σ, log2

1 20 31 1304 0.320130113060900
2 31 47 1400 0.292439449293707
3 47 67 1359 0.278283672264551
4 67 94 1366 0.261941203773427
5 94 130 1399 0.245270164406985
6 130 176 1359 0.239063834104316
7 176 246 1353 0.225808138327335
8 246 354 1375 0.214356415855909
9 354 560 1374 0.206160115988558

10 560 4912 1367 0.199898527308120

MODEL FITTING IS ROBUST TO CHANGES IN THE GENES USED FOR FITTING

We also sought to compare the McManus translation rates obtained in the previous
section to the rates we determined on the set of genes common between the McManus
dataset and the SMoPT model. Translation rates for these two sets of genes quantitatively
agree with each other (Fig. 4.35). This suggests that the rate fitting procedure is robust to
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Figure 4.30: MA-plot of the full-CDS density estimates computed for the Ingolia et al. [11] dataset.
Unreliable density estimates (< 128 total RNA-seq reads or < 64 ribo-seq reads; coloured red) show increased
measurement variance.

Figure 4.31: MA-plots of the segment tree density and ratio measurements for the Ingolia et al. [11] dataset
(top) before bias correction show a density-dependent systematic bias, which (bottom) after removal of mRNA
and ribosome density bias is no longer present in density estimates. An identical procedure is applied to
correct density-dependent amplified in ratio measurements (see Fig. 4.32).

Figure 4.32: MA-plot of the segment tree density ratio estimates of the Ingolia et al. [11] dataset after
normalisation shows that no significant bias is present at the extreme density ratio values.
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Figure 4.34: Translation elongation rates (left) and translation initiation rates (right) fitted independently on
the McManus and Ingolia datasets also show qualitatively similar behaviour (Pearson r = 0.531, p < 10−4 for
elongation rates; and r = 0.592, p < 10−277 for initiation rates).
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Figure 4.35: Translation elongation rates (left) and translation initiation rates (right) fitted independently
on different sets of genes from McManus datasets show similar behaviour (Pearson r = 0.644, p < 10−7 for
elongation rates; and r = 0.830, p < 10−293 for initiation rates). As expected, elongation rates fitted on different
sets of genes from the McManus dataset agree well with each other.

the gene set used to obtain the rates. However, the agreement between the rates is not
perfect. This could be a result of overfitting the rates in individual CV folds due to using
only a single fold for training - a limitation dictated by the computational complexity of
the fitting procedure.

Alternatively the non-perfect agreement may also be a consequence of the implicit
assumption, that codon elongation rates are independent of codon context, being
incorrect. All translation models proposed to date, including ours, assume that
translation elongation rates are constant and are not influenced by the sequence around
a particular codon, although various factors affecting the speed of elongation have been
suggested [4]. Differences between elongation rates induced by local sequences that
are over-represented in a particular gene set provide an alternative explanation for the
limited agreement between translation rates fitted on different sets.
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Table 4.11: Correlations of TASEPinit predictions with independent PA datasets for the full-CDS model.
Spearman rank correlation coefficients r for are reported; J ′ is the partial correlation between J and PA given
mRNA.

TASEPinit full-CDS

Newman YEPD Newman SD Ghaemmaghami

Init. rate r = 0.56∗∗∗ r = 0.55∗∗∗ r = 0.48∗∗∗
J r = 0.57∗∗∗ r = 0.55∗∗∗ r = 0.48∗∗∗
J ×mRNA r = 0.71∗∗∗ r = 0.69∗∗∗ r = 0.61∗∗∗
J ′ r = 0.50∗∗∗ r = 0.47∗∗∗ r = 0.35∗∗∗
∗ - p−value < 10−5 ∗∗ - p−value < 10−20 ∗∗∗ - p−value < 10−100

MODEL FITTING WITHOUT SEGMENT TREES
In order to assess the effect of gene segmentation on the fitted translation rates we
sought to compare our model to one fitted without the use of segment trees. To this
end we restricted our segment trees to a maximal depth of 1 (i.e., they were allowed to
contain only the top-level segment, corresponding to the entire CDS). The 4,768 full-CDS
segments obtained in such way were bias-corrected as described in Section 4.A (results
are shown in Figs 4.36 and 4.37), and a single shape parameter σ≈ 0.17 (log2 scale) was
estimated for all full-CDS segments. The set of full-CDS segments was then used to fit
the TASEPinit model and compare its predictions to the independent PA datasets and to
the TASEPinit model fitted with the use of segment trees.
It can be seen from Fig. 4.38 that (i) predictions of the full-CDS model compare
favourably to the predictions made by the original TASEPinit model; and that (ii) the
predicted ribosome occupancy of the full-CDS model and the measured per-transcript
density are also in agreement. A cloud of outlier points that can be clearly seen in
Fig. 4.38 (right) consists of genes with low fitted initiation rates. This suggests that
the initiation rate approximation procedure used for segment trees may not be very
suitable for the case when only the full-CDS segments are used. Table 4.11 shows
that the correlation between the predictions made by the full-CDS TASEPinit model
and independent PA datasets are lower, but comparable to the correlations obtain
by that model fitted on segment trees. Together these findings suggest that the use
of segment trees, when compared to the traditional full-CDS approach, does not
introduce any significant biases into the fitted rates, but instead makes the initiation
rate approximation procedure more accurate.

We also used the set of full-CDS segments to fit elongation and initiation rates of the
TASEPelong model as described before. The best fits (note that the CMA evolutionary
strategy will at best find one of the many equally good solutions if the problem is
underdetermined) from each of the folds were used to calculate the CV mean rate
and its SD for each of the 61 codons (shown in Fig. 4.39). It can be seen from
Fig. 4.39 that fitted elongation rates differ considerably between CV folds, suggesting
that the full-CDS approach does not provide sufficient constraints for simultaneously
determining translation elongation and translation initiation rates of the full-CDS
TASEPelong model.
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Figure 4.36: MA-plots of the full-CDS density and ratio measurements for the McManus et al. [24] dataset (top)
before bias correction show a density-dependent systematic bias, which (bottom) after removal of mRNA and
ribosome density bias is no longer present in density estimates. An identical procedure is applied to correct
the density-dependent bias amplified in ratio measurements (see Fig. 4.32).

Figure 4.37: MA-plot of the full-CDS density ratio estimates of the McManus et al. [24] dataset after
normalisation shows that no significant bias is present.

FUNCTIONAL ENRICHMENT
Gene ontology functional enrichment analysis was performed using the DAVID tool [61]
with functional categories GOTERM_BP_FAT, GOTERM_CC_FAT and GOTERM_MF_FAT. A
score cutoff of 0.1 and a size cutoff of 2 were used in the analysis. Only enrichments
significant at 0.05 FDR were reported.

SEGMENT TREE RECONSTRUCTION
To visualise the change of density along transcripts and the uncertainty about it
captured by the segment trees, we sought to obtain a reconstruction of the per-transcript
ribosome density of the tree, which could be directly plotted. Since every node within
the segment tree defines a probability distribution (PD) of the average density ratio of the
corresponding segment, together these segments define a joint probability distribution
of segment-averaged (i.e., piecewise constant) density of the entire gene. Samples from
this joint PD can be used to reconstruct the encoded density and to obtain confidence
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Figure 4.38: PPR (left) and gene-level average density (middle) predicted by the TASEPinit model fitted on
full-CDS segments and the TASEPinit fitted on segment trees agree well with each other. Similarly, gene-level
average density predicted by TASEPinit fitted on full-CDS estimates agrees well with density ratios obtained
from RP data (right).

bounds on the reconstruction. We note that the logarithm of the PDF of this distribution
has the same form as the objective function ψ evaluated for the same gene.

Formally we assign a random variable x[
l j ,r j

], describing the average density of the

corresponding segment to every leaf segment
[
l j ,r j

]
in the tree, and a random variable

x[lk rk ] with the same meaning to every segment [lk ,rk ] that needs to be added to the tree
in order for each parent node to have exactly two children (see Fig. 4.40). These variables
are used to compute the average density at every non-leaf segment as the weighted mean
of values x[

l j ,r j
] falling within that segment with segment lengths used as weights. We

then assume a wide uniform prior for variables x and use Markov chain Monte Carlo [62]
to sample them from the joint PD.

When building reconstructions for visualisation we obtained 2×108 samples with a
burn phase of 108 samples and thinning of 100, yielding a total of 106 samples. The 10%,
50% and 90% highest posterior density (HPD) intervals calculated from this sample were
then used to plot the reconstruction.

4.B. SUPPLEMENTARY DATA
Supplementary data is available from PLoS Computational Biology online1.
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ABSTRACT

Translation of mRNAs through Internal Ribosome Entry Sites (IRESs) has emerged as
a prominent mechanism of cellular and viral initiation. It supports cap-independent
translation of select cellular genes under normal conditions, and in conditions when
cap-dependent translation is inhibited. IRES structure and sequence are believed to be
involved in this process. However due to the small number of IRESs known, there have
been no systematic investigations of the determinants of IRES activity With the recent
discovery of thousands of novel IRESs in human and viruses [1], the next challenge is to
decipher the sequence determinants of IRES activity.

We present the first in-depth computational analysis of a large body of IRESs,
exploring RNA sequence features predictive of IRES activity. We identified predictive
k-mer features resembling IRES trans-acting factor (ITAF) binding motifs across human
and viral IRESs, and found that their effect on expression depends on their sequence,
number and position. Our results also suggest that the architecture of retroviral IRESs
differs from that of other viruses, presumably due to their exposure to the nuclear
environment. Finally, we measured IRES activity of synthetically designed sequences
to confirm our prediction of increasing activity as a function of the number of short IRES
elements.
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5.1. INTRODUCTION
Translation of mRNA into protein is an essential step in the process of gene expression.
Eukaryotic translation begins with the formation of the pre-initiation complex after the
delivery of the Met-tRNAMet

i initiator tRNA to the P-site of the 40S ribosomal subunit
by the eukaryotic initiation factor eIF2. The pre-initiation complex is then recruited
to the 5′ untranslated region (5′-UTR) of the mRNA via the interaction between the
5′ m7GpppN cap structure, the poly-A tail of the mRNA, the poly-A binding protein
(PABP) and additional initiation factors (eIF3 and eIF4) and begins scanning the 5′ UTR
for the start AUG. Once the AUG is found in a favourable context, the 60S ribosomal
subunit is assembled on the mRNA to begin protein synthesis [2, 3]. This translation
initiation route accounts for more that 95% of cellular mRNAs [4], however, in a growing
number cases alternative strategies are employed to initiate translation [5, 6]. One such
strategy relies on the Internal Ribosome Entry Site (IRES) element, a ci s-regulatory
mRNA element that can attract the ribosome in a cap-independent manner. IRESs were
first described as elements driving translation in poliovirus RNAs that do not possess
the 5′ cap structure [7]. But IRESs were since discovered in other viruses, including
HCV and HIV [8–10], in cellular genes such as p53 [11], XIAP [12] and Bcl-2 [13]. They
were also shown to support the ongoing protein synthesis under conditions in which
cap-dependent translation is inhibited, such as mitosis or cellular stress. The latter
commonly occurs during viral infections, cancer and other human diseases [14–16].
Emerging evidence also suggests that in addition to this “back-up” mechanism, cellular
IRESs also play important roles under conditions in which cap-dependent translation
is intact: they facilitate the translation of different proteins from cellular bicistronic
transcripts [17]; guide ribosomes to produce N-truncated isoforms from alternative
downstream AUG codons [18–20]; and enable translation of transcripts with locally
inhibited cap-dependent translation [21].

Despite this accumulating evidence of relevance of IRES elements to numerous
diseases and cellular processes, compared to cap-dependent translation, relatively little
is known about mechanisms of IRES-mediated translation. However, it is believed that a
combination of primary sequence and RNA structure is functionally important for IRES
activity [14, 22–24], which is achieved either via direct recruitment of the ribosome by the
structured RNA, or through mediation by a combination of canonical initiation factors
and additional IRES trans-acting factors (ITAFs; [24–26]). Precisely how ITAFs regulate
IRES translation is not fully understood, but they are thought to function either as
RNA chaperons, i.e. RNA-binding proteins (RBPs) that alter or stabilise RNA secondary
structure in order to allow for ribosome binding, or as adaptor proteins interacting
with the ribosome and other initiation factors [27]. Over a dozen proteins have been
suggested to function as ITAFs [8, 25], but only few have been studied extensively.
Among them, the PTB (polypyrimidine tract-binding protein) and PCBP (poly-C binding
protein) RNA chaperon ITAFs were shown to remodel RNA structures of cellular IRESs
[28, 29] for interactions with the 40S ribosomal subunit, and were proposed to have
a similar role in viral IRESs [30, 31]. Whereas the hnRNP (heterologous nuclear
nucleoproteins) C1/C2, the La autoantigen and Unr were implicated in modulating
activity of multiple IRESs, but not in RNA structure remodelling [25].

Systematic methods to investigate mRNA translation have lagged behind the field
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Figure 5.1: Overview of the available data and our analysis approach. (A) Schematic representation of the bicistronic
reporter construct used in [1] with eGFP (green) expression used to measure IRES activity of variable sequences (grey), and
constitutively expressed mRFP used to control for unique genomic integration. To capture context effects, in our analyses the
assayed variable sequences (thick grey) were extended to include flanking regions (solid filling). (B) The available sequences
can be divided into 7 groups based on their origin species and location within transcripts. Number of active sequences, i.e.
sequences with IRES activity above background levels, and the total number of RNA sequences are shown for each class. (C)
Sequences from each of the groups are represented as vectors of sequence k-mer features (UA - orange, AC - green), which are
recorded globally and in windows (grey shading). From this large set of features, those unlikely to be predictive are removed
based on their weak correlation with IRES activity. Surviving features are used to construct a reduced feature matrix. (D) The
reduced feature matrix is used for Random Forest training. Each RF tree consists of decision nodes (coloured according to
the variables selected by those nodes during training) and leaf nodes that predict IRES activity (coloured according to their
prediction). RF trees are constructed by iteratively selecting for each node a variable and split that yield the highest reduction
in weighted variance in the nodes children; normalised variance reduction is shown for every node as a number. (E) Trained
RFs are used to make IRES activity predictions for feature vectors x of unseen sequences by following each tree to the leaf node
corresponding to x (path and leaves marked in red), and accumulating leaf node predictions to obtain the overall RF prediction
f (x). (F) To select features that are most predictive of IRES activity, variance reduction values from (D) are accumulated
per tree and averaged across trees to obtain feature importance. Normalised importance is also calculated for use in model
interpretation. (G) To understand the effect of a feature (e.g. the AC k-mer), for each of its possible values v the expected
prediction ȳv is plotted (blue curve). The resulting curve allows for characterising v either as having a positive (increasing
curve, blue), or a negative (decreasing curve, red) effect on IRES activity. Expected predictions ȳv are approximated as the
average of predictions made for training samples with the corresponding feature vector components substituted by value v .
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of transcriptional control. Although isolated examples of IRESs with known ITAF
binding sites or resolved three-dimensional structure are available [32–34], there are
currently no systematic studies that aim at deciphering sequence elements governing
cap-independent translation regulation. A major hindrance to progress in this direction
is the relatively low number of known IRESs. The identification of novel IRES elements
requires a series of labour-intensive reporter assays to confirm expression and to rule
out the presence of cryptic promoter or splicing activity, so that only ≈120 IRESs were
reported until recently [8]. Thus, unlike transcriptional regulation [35–37], attempts
to systematically decipher determinants of cap-independent translation initiation were
not feasible until now. In a recent work we developed a high-throughput IRES activity
assay, and used it to identify thousands of novel IRESs in human and viral genomes [1],
thereby expanding the dataset of known IRESs by 50-fold and allowing for the first time
the construction and interpretation of predictive models.

Here we perform an in-depth computational analysis of data from our
high-throughput IRES activity assay [1] to explore the relationship between RNA
sequence and IRES activity. We find several common sequence k-mer features
predictive of IRES activity that are shared between (i) sets of viral IRESs originating from
viruses of the same type, and (ii) sets of cellular IRESs originating from similar locations
within human transcripts, as well as features specific to retroviral IRESs. These features
include the poly-U, poly-A and C/U-rich k-mers, many of which are found upstream of
the start AUG in distinct “location islands”, continuous stretches of positions where these
sequence features have the strongest effect, suggesting that positions of ITAF binding
sites relative to the AUG are important determinants of IRES activity. Finally, systematic
measurements of hundreds of fully designed synthetic oligos confirmed our finding
of a positive relationship between the number of short IRES elements in a sequence
and its IRES activity. Together, we provide the first in-depth computational analysis of
thousands of IRESs from the human genome and different types of viruses and offer
novel insights into the relationship between RNA sequence and IRES activity.

5.2. MATERIALS AND METHODS

DATASET

In a recent study [1] we described a high-throughput IRES activity assay that we used to
measure IRES activity for thousands of sequences. Briefly, we obtained a mixed pool
of oligonucleotides, 210nt (174nt variable region plus constant primer sequences) in
length, using parallel DNA synthesis technology [38–40]. We then amplified the library
using constant primers, cloned it into the lentiviral bicistronic plasmid 12nt upstream
of the eGFP (enhanced Green Fluorescent Protein) coding sequence (Fig. 5.1A) and
infected H1299 human lung cells so that each cell integrates a single oligo. In this
plasmid mRFP (monomeric Red Fluorescent Protein) is translated in a cap-dependent
manner, whereas eGFP translation requires alternative mechanisms. We thus used
eGFP expression as a proxy for IRES activity induced by the variable sequence. To
obtain eGFP expression we sorted the resulting pool of cells into 16 bins according
to eGFP fluorescence, while also filtering based on mRFP fluorescence to control for
cell state, and used deep sequencing to compute a score for the expression of each
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designed oligo based on the distribution of its sequence reads across expression bins.
Additionally, we controlled for eGFP expression that could arise due to RNA splicing
or promoter activity of the measured sequences (see Suppl. Text, page 145). Using this
approach, we measured IRES activity of a library of 55,000 sequences, including 28,669
native fragments from the human and viral genomes. In the current study we use these
measurements to uncover RNA sequence and structure determinants of IRES activity.

The library measured in [1] includes sequences originating from human transcripts
and viral genomes. In particular, the library sequences were generated by (i) taking
the sequences directly upstream of transcripts’ translation start site; and (ii) by tiling
transcripts and viral genomes with sequences to be measured. Because most sequences
in such library are not expected to have IRES activity, ≈ 11% of the sequences
showed activity above background levels (see Fig. 5.1B and Suppl. Fig. 5.8). Library
sequences were taken from genomes of viruses with considerably different life cycles and
replication strategies. For example, viruses from positive-sense ssRNA class replicate
in the cytoplasm and their transcripts lack the 5′ cap structure, which is normally
acquired in the nucleus. Thus, these viruses rely heavily on cap-independent translation
mechanisms for gene expression. In contrast, retroviruses are integrated into the
host genome and thus undergo transcription, RNA processing, and cap-dependent
translation similarly to cellular genes. These differences in the available host gene
expression machinery and subjection to distinct selection pressures due to the employed
replication strategies [41, 42] may have prompted different viral classes to evolve
distinct cap-independent translation strategies [43]. For this reason we separated
viral sequences into (i) positive-sense (+) ssRNA viruses; (ii) negative-sense (−) ssRNA
viruses; (iii) dsRNA viruses; and (iv) retroviruses based on their viral class (Fig. 5.1B). We
similarly divided human sequences from the library into those originating from (i) the
coding sequences (CDSes); (ii) the 5′ UTRs; and (iii) the 3′ UTRs of human transcripts,
due to mechanistic differences between these regions [44, 45].

We analysed the above seven groups of sequences both together and individually.
For each of the groups we learned a predictor of IRES activity from RNA features with
the goal of elucidating sequence features that may determine IRES activity, and would
consequently provide a prediction of the IRES activity for novel sequences.

RANDOM FOREST MODEL LEARNING

Our approach for learning sequence models of IRES activity is depicted in Fig. 5.1C-E.
We chose Stochastic Gradient Boosting Random Forest regression for learning sequence
models for several reasons. First, Random Forests (RFs) allow for construction of
nonlinear predictors that offer established model interpretation techniques. Second,
stochastic gradient boosting allows for achieving highly accurate predictions by fitting
the gradient of the residual error with every new tree added to the forest, while
being fairly robust to overfitting in practice [46]. The latter is especially important in
our case, because for some of the considered groups of IRES sequences only a few
hundred training instances are available (sequences with measured IRES activity) while
thousands of features (M) are being used, leading to a situation that can easily result
overfitting.

We used the scikit-learn software [47] to learn RFs from training data. We chose to
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train 1000 trees per forest. To speed-up the training process, each tree only evaluatedp
M features when choosing split features. The trees were allowed to have arbitrary

depth, but their complexity was controlled by parameter m, defining the minimum
allowed number of training samples per leaf node. This parameter was set, together
with the learning rate r and subsampling fraction f , using a double-loop 10-fold
cross-validation (CV) scheme on the available training data (described in detail in
Suppl. Fig. 5.8). Briefly, each outer CV training set was randomly partitioned into 10
sets; every time, 9 of these sets were used as an inner training set and the remaining
set was used for validation. For each of the 10 inner training sets, we learned an RF
for every combination of the parameters

(
m,r, f

)
from a pre-defined grid and evaluated

its performance (in terms of the R2 statistic) on the held-out inner validation set. The
parameter set with the highest average performance across the 10 validation sets was
used for learning the final predictor on the outer CV training data, which was evaluated
on the outer CV validation set. When randomly partitioning sequences into CV folds,
we ensured that the numbers of sequences with background levels of IRES activity were
balanced across sets.

k-MER FEATURE PRE-SELECTION
To explore the relationship between IRES sequence and activity, we described its primary
sequence using numerical features which could be related to IRES activity by the learned
RFs. We chose to represent IRES RNA sequences using k-mers and counted how many
times every possible RNA subsequence of length k ≤ 5 occurs the training sequences
(see example in Fig. 5.1C). These counts were recorded for the entire sequences (global
counts), as well as in moving windows of 20nt with a 10nt overlap (positional counts)
to generate position-sensitive k-mer features. To assess the added predictive power of
the k-mer copy numbers, we also created a k-mer occurrence feature description of the
available RNA sequences, in which k-mer counts were capped at a maximum value of 1.

Because this representation of IRES sequences generates thousands of features, to
facilitate model learning and interpretation we sought to reduce the number of used
features by pre-selecting them prior to RF training. To this end, on the inner training set
for each feature we (i) computed correlation coefficient and p-value for the Spearman
rank correlation between feature values and IRES activity for k-mer counts; or, for k-mer
occurrences, the Mann-Whitney U-test statistic and p-value to assess the difference
between IRES activity distributions for sequences with and without the feature; and (ii)
counted in how many training samples the feature value was non-zero. Only features
with an association significant at a false discovery rate of 0.05 (controlled using the
Benjamini-Hochberg procedure) and features present in at least 10% of the sequences
were used for model learning.

RANDOM FOREST FEATURE INTERPRETATION
Unlike linear models relying on L1 regularisation (e.g. [48, 49]), RFs cannot perform
simultaneous feature selection and learning. This means that all features provided to RFs
will generally be used by the learned model to make predictions. This property of RFs
complicates model interpretation by increasing the number of features of the learned
model that need to be examined. To efficiently sift through the features we calculate
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their feature importances as in [50] and use them to select and prioritise interesting
features (see Fig. 5.1D and F). For each tree in an RF, the feature importance of a variable
captures its contribution to the resulting prediction by quantifying the total reduction in
variance the variable provides each time it is selected as a split feature in this tree. The
importance of a variable in an RF is then calculated as its average feature importance
across all RF trees. To facilitate comparison of feature importances across models with
different numbers of features, i.e. models obtained for different CV folds or sequence
groups, we normalised importances of every model by dividing its feature importances
by the maximum feature importance attained.

Similarly, because RFs do not provide a direct way of evaluating the direction of
the effect (positive or negative) features have on the resulting prediction, we computed
the partial dependence [50] of an RF w.r.t. its features at all possible values (see
Fig. 5.1E and G). Partial dependence of a feature provides an estimate of the expected
prediction (IRES activity) of a sequence with a given value for this feature. When
plotted for all possible values of a selected feature, partial dependence allows for graphic
inspection of the relationship between the feature and IRES activity. We observed that in
practice, partial dependence often shows near-monotonic behaviour (see Suppl. Fig. 5.9
for representative examples), i.e. the expected prediction either tends to increase
(or to decrease) with increasing feature values, and used this property to determine
directionality of each feature based on the average derivative of its partial dependence.
Features were classified as increasing IRES activity (positive) if their average derivative
was positive, otherwise they were classified as negative (decreasing IRES activity).
This classification can be thought of as a generalisation of the linear model variable
separation into positive and negative based on their slopes (i.e. model coefficients).

To obtain robust results, partial dependences and feature importances were
averaged across 10 RFs models trained on different outer CV folds.

SYNTHETIC DATA DESIGN AND ANALYSIS

We designed a total of 1024 oligos in which we planted the sequence of two short
elements with experimentally validated IRES activity in 1-8 copies: (i) the TEV IRES
(UACUCCC) and (ii) the Poliovirus type-2 IRES (CGUCAAUUCCUUUA) [51, 52]. Each oligo
is composed of 164nt of variable sequence, 10nt of unique barcode at the 5′ end
(barcodes differ by at least 3nt from each other) and constant primer sequences to
amplify the oligos with PCR reaction. We chose one native and one synthetic background
sequences (see Suppl. Table 5.1), which lack intrinsic IRES activity: (i) 164nt of the
human beta-globin gene (HBB, NM_000518) that was used as a negative control in a
previous study [53], and (ii) a concatenation of a 9-mer that was used as a spacer between
multiple copies of the Gtx IRES in a previous study (Spacer1: TTCTGACAT; [54]). This set
of 1024 sequences was measured for IRES activity as part of a 55,000 oligos library in
a high-throughput bicistronic assay described before [1] and analysed here for the first
time.

Synthetic construct measurements were filtered as the original data (see Suppl. Text,
page 145) and analysed using ANOVA. Each of the two short elements (TEV and
Poliovirus type-2) was analysed independently. To account for possible effects of
background sequences on IRES activity, we averaged activity measurements across all
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Figure 5.2: Performance of trained predictors. (A) Cross-validation (CV) performance of a model trained on all
available native IRES sequences shown for different combinations of k-mer lengths, and k-mer count (solid
lines) or presence (dashed lines) features (left), with the selected combination marked with a circle. Scatter plot
of predicted and true IRES activities for the selected model (middle). And training and test performance of the
selected model evaluated using several metrics. (B) CV performance of models trained for different groups of
sequences. Only results for groups with models achieving sufficiently high performance are shown.

sequences with the same number of sites and background sequence type (HBB or
Spacer1). However, to increase the number of samples, and the power of our analyses,
we treated replicates as independent measurements and performed joint analyses of
all samples from the two backgrounds. We analysed the samples in a two-way ANOVA
model with factors “background sequence” (binary) and “number of sites” (integer):

activity =α ·background+β ·Nsites+γ.

After obtaining a least squares fit of α,β and γ for log2 IRES activity on the available
measurements, we tested for their significant with IRES activity using the F-test. For
convenience of visualisation and continuity, we represented IRES activity values as the
log2 fold change over background levels, as in [1].

5.3. RESULTS

PREDICTION OF IRES ACTIVITY FROM SEQUENCE
With the recent discovery of thousands of novel IRESs in human and viruses, providing
a 50-fold increase over previously available data [1], the next big challenge is to uncover
the RNA sequence features predictive of IRES activity. We sought to employ a machine
learning approach for this purpose, in which we train Random Forests to predict IRES
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activity from RNA sequence features, and then use the trained forests to uncover
predictive sequence features. To this end we computed k-mer and structural features
for all 20,872 available native IRES sequences, randomly partitioned the sequences into
10 sets of near-equal size and used them in a cross-validation scheme to train and
test 10 independent RF models (see Materials and Methods). To get a comprehensive
evaluation of model performance, we evaluated them using three metrics: the R2

statistic, which quantifies the portion of variance in the data that is explained by the
models, the Pearson correlation, r , and the Spearman rank correlation, ρ, calculated on
test set predictions.

In a previous study we found that the effect of mutations on expression was not
uniform across the IRES sequence, suggesting that in addition to the sequence of the
functional elements, their position within the IRES is also important [1]. Thus, we
tested the effect of both, global sequence features (counts of k-mers within the examined
sequence) and positional sequence features (counts of k-mers within a specific region
of the examined sequence; Fig. 5.1C). Further, we sought to check whether k-mer
copy number information provides additional predictive power, compared to k-mer
presence (k-mer counts capped at a maximum value of 1), and considered both feature
representations in our models. We first learned combined models of IRES activity
on the entire set of sequences without separation into groups based on virus type or
location within transcripts. The models were learned for different combinations of
k-mer length and k-mer feature types (global or positional; count or presence). The
highest predictive power was achieved by a model that makes use of the global and
positional 3-mer or 4-mer count features (see Fig. 5.2A, left). We selected this model
with k = 4 for further analysis. Its test set R2 is 0.18, indicating that RNA sequences
can explain 18% of the variance in IRES activity of cellular and viral IRESs in human
cells. The agreement between R2 and the Pearson r of 0.429 (Fig. 5.2A, right) suggests
that our models correctly capture the mean IRES activity in unseen test data. However,
the differences between the test set Pearson and Spearman correlations (r = 0.429 and
ρ = 0.297; Fig. 5.2A, right) indicate that the models are biased towards better prediction
of extreme IRES activity values. This behaviour is expected from the skewed IRES activity
distribution of the available sequences (see Suppl. Fig. 5.7), in which the negative skew
can be explained by the relatively low abundance of IRESs in human and viral genomes
[55]; and by potential underestimation of IRES activity due to its dependence on cellular
conditions. Given the good agreement between the three evaluation metrics, we chose
to use the R2 statistic in all our analyses.

We hypothesised that IRESs from different virus types and locations within human
transcripts may have evolved distinct initiation mechanisms, which would be easier
to learn in isolation. To test this hypothesis we separated the available human data
based on their location within transcripts into sequences from (i) human 5′ UTRs, (ii)
human 3′ UTRs and (iii) human CDSes; and the available viral data based on their
virus type into sequences from (iv) positive-sense ssRNA viruses, (v) negative-sense
ssRNA viruses, (vi) dsRNA viruses and (vii) retroviruses, irrespective of their position
in the viral genome of origin. We then learned RF models for each of the groups as
before. As can be seen from their test R2 in Fig. 5.2B, in line with our hypothesis, IRES
activity in some groups could be predicted much better than in others. In particular,
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the variation in R2 between defined groups is significantly higher than expected by
chance (see Suppl. Text, page 150). Specifically, the R2 statistic for the group of dsRNA
viruses is 0.298, a considerable improvement in predictive power over the combined
model. At the same time we also found that in some groups cannot be predicted by the
proposed approach (e.g. the human CDSes, R2 ≈ 0, or the negative-sense ssRNA viruses,
R2 = 0.036; see Suppl. Fig. 5.10). Translation initiation of IRESs from these groups
may rely on mechanisms that are poorly captured by primary sequence features, such
those involving pseudoknots and the three-dimensional structure of RNA molecules.
Additionally, these groups have the lowest absolute and relative incidence of active IRESs
(≈ 6.4%), which makes it difficult to learn predictive models (see Suppl. Fig. 5.11).

Interestingly, models based on the k-mer count features consistently achieved higher
performance than their k-mer presence counterparts across all sequence groups. While
this result is unsurprising, given that the count features provide a richer description
of the sequences than the capped presence features, it also suggests possibilities for a
regulatory effect of k-mer copy number on IRES activity.

We have also considered several types of RNA structure features, which captured
local RNA accessibility and base pairing between regions of the RNA. Individual
structural features were pre-selected based on their correlations with IRES activity and
used for model training in the same way as k-mer count features were (see Suppl. Text,
page 147). However, despite being weakly predictive when used alone (R2 < 0.02;
Suppl. Text, page 147), the considered types of structural features did not allow for
increasing model predictive power beyond what could be achieved using k-mer features
alone.

GLOBAL SEQUENCE FEATURES RESEMBLE ITAF BINDING MOTIFS

Having obtained several predictive models, we sought to use them to elucidate
individual sequence features that are strong determinants of IRES activity. Given the
superior performance of models trained on the combination of global and positional
count features (Fig. 5.2), we chose to interpret them, as it would provide a more faithful
view of IRES features. Additionally, we chose to interpret models with k = 4 for all
sequence groups irrespective of whether the highest predictive power is achieved at
this k-mer length. This choice facilitates feature comparison at the cost of a negligible
drop in performance for some sequence groups. Further, only the 5 groups with useful
predictive models (R2 > 0.1; Fig. 5.2B) were analysed.

For every sequence group we took k-mer features that were robust (present in all
10 CV models) and predictive (defined as having an average feature importance of at
least 0.1; see Fig. 5.1D and F). For each of the selected features we also determined its
directionality (positive or negative) from the shape of its partial dependence plot (see
Materials and Methods, and Fig. 5.1E and G). We first sought to examine features that
are consistently related to IRES activity across multiple sequence groups, i.e. common
features, and thus focused on those k-mers that were predictive and robust in at least
two groups. In Fig. 5.3A we show common k-mer count features separated into several
classes based on their composition and effect; the remaining non-common features are
shown in Suppl. Fig. 5.12.

Our predictive k-mer analysis recapitulates the findings from [1], as we also show
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Figure 5.3: Overview of IRES global sequence features. (A) Robust and predictive global k-mer count features
that appear in at least two IRES sequence groups; features were divided into classes based on their nucleotide
composition and interpretation (vertical bars). For each feature, its effect (feature importance taken with sign
“+” if the feature was classified as positive, and with sign “−” otherwise) is shown, and non-robust features
are marked with a cross. (B) Comparison of C-rich pyrimidine tract feature importances across three viral
sequence groups; non-robust features are shown with hatched bars. (C) Sequence GC content distribution for
the defined sequence groups.

that k-mers presenting the poly-U motif are consistently selected in all sequence groups
with poly-U k-mer presence being associated with increased IRES activity. However,
in addition to the poly-U motif discussed in [1], we found that (i) k-mers representing
pyrimidine (C/U) tracts are also strong determinants of IRES activity; and that (ii) these
k-mers can equally contribute to the activity of IRESs from various positions on the
transcripts and in various types of viruses.

Poly-A k-mers represent another group of features shared across models for different
sequence groups. However, adenine tracts were not previously associated with
decreased IRES activity in human cells. Selection of these k-mers by the trained
models may be a consequence of an anti-correlation between the count of A/G and
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U/C nucleotides in the measured sequences. However, Poly-G k-mer are generally not
present in the trained models, suggesting that a mechanism specific to Poly-A tracts is
involved in IRES-mediated translation. Similarly, the purine tract features, which are
mostly associated with decreased IRES activity, can be explained by an anti-correlation
between presence of purines and pyrimidines in sequences, and by an additional
adenine tract specific mechanism.

Our results suggest that despite differences in model predictive power between
sequence groups, robust and predictive global k-mer features are often shared by
multiple groups, in which they agree on the effect they have on IRES activity (Figs. 5.3A
and S7). However, we also sought to uncover features that are specific to a single
sequence group or viral class. When reviewing features that were robust and predictive
only for a single sequence group (Suppl. Fig. 5.12), we found that a number of
pyrimidine tract features (C1−4 and UC3) were uniquely selected for the retroviruses
group. Interestingly, these features are all C-rich k-mers, whereas the common
pyrimidine tract features, shared by multiple sequence groups, are not (Fig. 5.3A). This
preference of retroviral IRESs for C-rich k-mers can be clearly seen from differences in
feature importances of C-rich pyrimidine tract features across viral sequence groups (see
Fig. 5.3B), which show that C-rich features are either uniquely used by the retroviral
predictive models, or have the highest importance in those models. Furthermore,
preference for C-rich k-mers within the group of retroviral sequences does not appear to
be a consequence of GC-content bias, which is similar between retrovirus and (+) ssRNA
virus groups (Wilcoxon rank-sum test, p > 0.06) and lower in retroviruses compared to
dsRNA viruses (Wilcoxon rank-sum test, p < 10−7; see Fig. 5.3C).

SYSTEMATIC MEASUREMENTS REVEAL THAT INCREASING THE NUMBER OF

SHORT IRES ELEMENTS CAN LEAD TO ELEVATED IRES ACTIVITY

Collectively our k-mer count feature analyses (Figs. 5.2, 5.3A and S4) suggest that
increasing the copy number of short “IRES elements” in an mRNA sequence would lead
to increased IRES activity. In order to systematically test the effect of the number of
short IRES elements on expression we designed synthetic oligos, in which we introduced
the sequence of two short elements in 1-8 copies. We focused on short elements with
reported IRES activity and high abundance of C/U nucleotides from the Tobacco Etch
Virus (TEV, UACUCCC) and Poliovirus Type-2 (PV-2, CGUCAAUUCCUUUA) [51, 52]. To control
for the effects of additional parameters varied between designed sequences, such as the
distance of the site from the start AUG, the distance between two adjacent elements and
the immediate flanking sequence in each position, we introduced each IRES element
in all possible combinations of 1-8 sites at 8 predefined locations within two different
backgrounds, resulting in a total of 1024 oligos (256 oligos for each element in each
background; Fig. 5.4A). This set of sequences was measured for IRES activity as part
of the 55,000 oligos library described before [1] in a high-throughput bicistronic assay
using fluorescence activated cell sorting (FACS) and deep sequencing (see Materials and
Methods).

We then computed the average IRES activity across all oligos with the same
number of sites in each background sequence separately (Figs. 5.4B and C). To test the
association between the number of short IRES elements and the measured IRES activity
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Figure 5.4: Design and results of experimental study of the effect of IRES element count on activity. (A)
Two IRES elements (TEV and PV-2; coloured blocks) were placed in all possible combinations of 1-8 sites in
predefined positions of two background sequences (native and synthetic; coloured lines) to generate synthetic
oligos (grey blocks and lines), which were measured using the biscistronic IRES activity reporter assay. (B)
Average measured IRES activity (log2 fold change over background levels) of these oligos shown for two
biological replicates (green and orange circles) as a function of the number of the TEV IRES elements in
synthetic sequences with two different backgrounds (left and right columns). The relationship between IRES
activity and the number of sites is shown as a black line. (C) Same as B, but for the PV-2 IRES element. The
relationship between IRES activity and the number of sites computed from data with up to 6 sites is shown as
a dashed line.

we used a two-way ANOVA model. To increase the power we performed joint analyses
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of the computed average IRES activity in the two backgrounds and biological replicates
(green and orange circles in Figs. 5.4B and C). Notably, we observe a positive association
between the number of TEV sites and IRES activity (Fig. 5.4B; F-test, p < 0.01). Moreover,
we also found significant associations between IRES activity and background sequence
type (F-test, p < 0.05), which suggests that sequences surrounding the introduced motif
can determine whether or not the motifs will be functional. Examining the relationship
between the number of sites and expression for the PV-2 IRES element reveals a more
complex behaviour. A general trend of elevated IRES activity is obtained when increasing
the number of elements up to six sites (F-test, p < 10−3; Fig. 5.4C, dashed line). However,
in both backgrounds a clear drop in expression is observed when placing 7 or 8 sites. One
potential explanation for this is that higher numbers of elements, which result in smaller
distances between adjacent sites, lead to steric hindrance as previously described for
transcription factors binding sites when located in close vicinity [40]. Since the PV-2
IRES element is longer than the TEV element (14nt vs 7nt respectively) the resulting
minimal distance between adjacent sites in the designed oligos is smaller (4nt for PV-2
sites vs. 11nt for TEV sites). Thus, it is possible that the synthetic PV-2 sequences were
more sensitive to steric hindrance effects than the TEV sequences, so that the decrease
in expression is not obtained for the latter.

k-MER POSITION IS A STRONG DETERMINANT OF IRES ACTIVITY

Having obtained a rendering of the global k-mer features predictive of IRES activity,
we sought to expand our analysis of the effect that k-mer location may have on IRES
activity. We were encouraged by the results of training models on different combinations
of global and positional k-mer features (Fig. 5.2B) which showed that for all sequence
groups models trained on positional features achieved highest performance, suggesting
that k-mer position relative to the start AUG is a strong determinant of IRES activity.

To investigate this further we assessed the effect of positional k-mers as a function
of their location in the sequence. We first focused on those positional k-mer features
that were common to multiple sequence groups. To this end positional features were
investigated only for those k-mers, which showed a robust location-specific signal
(had at least two windows where the k-mer feature was selected in all CV folds), were
predictive (had an average importance in those windows of at least 0.1) and were shared
by several sequence groups (i.e. the windows were also robust and predictive for at
least one more group). Common positional features in Fig. 5.5 are shown as heat
maps depicting k-mer effect along the sequence and across sequence groups, which
is summarised as a consensus effect, i.e. the largest effect at a particular position
that is supported by multiple groups; the remaining positional features are shown in
Suppl. Fig. 5.13.

Interestingly, nearly all predictive positional k-mers from Fig. 5.5 were also selected
as robust and predictive global k-mer count features in Fig. 5.3. In particular the poly-U
and pyrimidine k-mers are among the most predictive k-mers for both feature types.
However, positional feature plots additionally show that effect strengths of these k-mers
differ with their position relative to the start AUG. For example, the U1-3 k-mers have an
overall positive effect on IRES activity, which is largest if the k-mers are located about
50nt upstream of the start AUG.
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At the same time, many other features (e.g. CU, UUC, G and CAG) also show
positions location-specific effects on IRES activity. Most notably, positional features
of these k-mers tend to form “islands” from positions at which they have an effect on
activity. These islands are consistently located around positions −50 (k-mers CU, UC,
UCU, CUU, UUC, G, AG and GA) and −150 (k-mers G, UA, AG and GA). Interestingly,
for the majority of presented k-mers, positions with the strongest effect are not located
directly upstream of the start AUG. Further, congruence between optimal location for
k-mers with negative effects (G, AG, GG, GA) and optimal locations for C/U-rich k-mers
with positive effects further supports our interpretation of the poly-A, purine tract and
G/A-rich k-mers as anti-correlated with the C/U-rich k-mers.

The CAG k-mer also shows distinct positional preferences for locations immediately
upstream of the start codon. We further investigated its effect to determine whether it is
a part of a larger motif, and whether there is a difference in splicing between sequences
with and without the CAG k-mer. Our analyses (see Suppl. Text, page 145) indicate that
the CAG k-mer may be related to RNA splicing in the group of dsRNA viruses, but not in
Retroviruses.

In addition, a large number of k-mers are robust and predictive only for a single
sequence group (Suppl. Fig. 5.13). Similar to the global k-mer features, the unique
positional k-mers include C-rich k-mers C, CC, CUCC, UCC, CUC selected exclusively
by the retroviral group. Interestingly, these k-mers show positional preferences different
from those of the common positional k-mers, by forming islands around positions
−50 and −200. Finally, we also found that a number of predictive positional k-mers
are selected uniquely for the group of dsRNA viruses (e.g. AU, ACC, UG, AUU, UAC;
Suppl. Fig. 5.13); these positional k-mers show little consistency in terms of preferred
positions, suggesting a different mode of action of IRESs from dsRNA viruses.

5.4. DISCUSSION
In this work we provide the first in-depth computational analysis of thousands of IRESs
from the human genome and different types of viruses. Analyses of this largest set of
IRESs to date allowed us to decipher the effect of sequence features, their number and
position relative to the AUG on IRES activity (summarised in Fig. 5.6A). To achieve this,
we trained and interpreted Random Forest models that predict IRES activity from k-mer
features of RNA sequences.

IDENTIFIED k-MERS RESEMBLE ITAF BINDING MOTIFS

Using the trained models, we identified robust and predictive k-mer features, which
based on their composition could be divided into two classes: pyrimidine-rich elements,
and purine-rich elements (Figs. 5.3A and 5.6A). Notably, k-mers from these classes
are generally associated with the same kind of effect on IRES activity: pyrimidine-rich
elements tend to have a positive effect on activity, whereas the purine-rich elements
tend to have a negative effect.

Interestingly, sequences of predictive pyrimidine-rich k-mers resemble consensus
binding motifs of known IRES trans-acting factors (ITAFs). The poly-U k-mers
are consistent with the poly-U binding motif described for the hnRNP C1/C2 [56]
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Figure 5.6: Summary of the sequence features associated with IRES activity. (A) Illustration of the sequence
features found by our models and their association with IRES activity: (left) k-mer sequence, (middle) the
number of sites of a k-mer, and (right) the position of the k-mer relative to the AUG start codon. (B) Illustration
of the different life cycles of (left) dsRNA/(+) ssRNA viruses and (right) Retroviruses which may have led to
differences in their IRESs sequence features. Retroviruses are integrated into the host genome and RNA-PolII
transcribes their mRNA in the nucleus. Thus, their IRES elements are exposed to the nuclear environment
including mRNA modifying enzymes (methylation, pseudouridylation etc) and nuclear specific ITAFs that can
shuttle with the mRNA to the cytoplasm to facilitate cap-independent recruitment of the ribosome. In contrast,
dsRNA and (+) ssRNA viruses that spend their entire replication cycle in the cytoplasm are exposed to cytosolic
factors, which in turn can facilitate cap-independent recruitment of the ribosome.

RNA-binding proteins (RBPs), which were shown to be a part of the protein complex
forming the XIAP IRES [57]. Whereas the pyrimidine-rich k-mers are consistent with the
binding motifs of the PCBP-2 [58], PCBP-1 [59] and PTB-1 RBPs. The PCBP proteins were
previously implicated in regulating IRES activity of the hepatitis C virus, poliovirus and
rhinovirus IRESs [60], and the human proto-oncogene c-myc [61]. And the PTB-1 was
previously shown to interact with many cellular and viral IRESs [25], and proposed as
an universal ITAF [55]. The correspondence between ITAFs and pyrimidine-rich k-mer
features, and the strong positive effect of the poly-U and pyrimidine tract k-mers on
IRES activity (Fig. 5.3A), agree with the proposed role of ITAFs as RNA-binding proteins
involved in cap-independent translation initiation.

In accordance with this interpretation, we observed that C/U-rich k-mers that
contain a single non-C/U nucleotide tend to be associated with increased IRES activity.
Given their similarity to the poly-U and pyrimidine tract k-mer features, interpreted as
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potential ITAF binding sites, we propose that the C/U-rich k-mer features may represent
imperfect binding sites of the PCBP and PTB proteins. This interpretation is supported
by the observation that, compared to the perfect C/U-tract k-mers, features of this class
tend to have a weaker effect on predicted activity.

Notably, systematic measurements of hundreds of fully designed oligos, in which the
number of sites of the pyrimidine-rich TEV IRES element was carefully varied, support
our finding of the positive relationship between the number of pyrimidine-rich elements
and IRES activity. Thus, our study demonstrates the power of combining computational
models with systematic measurements of synthetically designed oligos to decipher the
principles governing IRES activity.

IRES ARCHITECTURES DIFFER BETWEEN VIRUS TYPES
Our results on common and unique sequence features uncover that poly-U and
C/U-rich k-mers are shared among cellular and viral IRESs, including different families
of viruses. This suggests that the involvement of ITAFs these k-mers represent in
IRES-mediated translation initiation is not limited to a single viral class or location
within human transcripts, but is shared across viral classes, as well as between
viruses and eukaryotes. However, we also found that for IRESs originating form
retroviral genomes, C-rich elements are stronger predictors of high IRES activity than
for dsRNA and (+) ssRNA viruses (Fig. 5.3B) and have different positional preferences
(Suppl. Fig. 5.13).

If pyrimidine tract k-mers indeed represent PCBP-1/2 and PTB binding sites, then
while binding of these ITAFs to mRNA leads to increased IRES activity irrespective of its
virus type, our results suggest that different virus types preferentially rely on different
ITAFs for cap-independent translation initiation. The U/C-neutral k-mers are more
consistent with the U[UC]U[UC]2 and C2U PTB binding motifs [55, 62] that have a
weaker preference for cytosines, whereas the C-rich k-mers are more consistent with
the UC3U2C3U and U2C6AU PCBP-2 binding motifs [58] showing a stronger cytosine
preference. Together this suggests that, compared to other sequence groups, retroviruses
preferentially employ PCBP-1/2 RBPs for cap-independent translation initiation.

Interestingly, in contrast to most dsRNA and (+) ssRNA viruses, which spend
their entire replication cycle in the cytoplasm, retroviruses are integrated into the
host genome and their transcribed mRNA is exposed to the nuclear environment
(Fig. 5.6B). Previous reports indicated that some IRESs require a “nuclear experience”
in order to be functional [63–65]. It was suggested that nuclear specific events such
as RNA modifications (by methylation, pseudouridylation and others) or the binding of
exclusively nuclear ITAFs are required for certain IRESs. Our finding of retroviral IRESs
preference for C-rich k-mers, presumably recognised by the PCBP ITAF, suggests that
the mechanism by which IRES-mediated translation is accomplished, and consequently,
IRES architecture, differ between viruses, which were evolved in differed cellular
compartments and under different constraints. Taken together with numerous k-mer
features, which were found to be predictive only for dsRNA IRESs (Suppl. Figs. 5.12
and S8), these results provide further support the proposition that viral IRESs arose
independently several times in evolution [43].
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ITAFS EXHIBIT DISTINCT LOCATION PREFERENCES
When considering positional k-mer features, we additionally found that many of
the pyrimidine-rich features have a strong positional preference for location islands
approximately 50nt and 150nt upstream of the start codon and a similar positive effect
on the predicted IRES activity (Figs. 5.5 and 5.6A). The positive effect of these features,
their similarity to ITAF binding motifs, and preference for distinct locations upstream
of the start codon collectively suggest that ITAFs, whose (partial) binding motifs these
k-mers describe, have multiple distinct optimal locations upstream of the start AUG at
which they can contribute towards cap-independent translation initiation.

Intriguingly, predictive positions of the C-rich k-mers differ from that of the poly-U
and U/C-neutral k-mers, and show a preference in retroviral IRESs for locations
approximately 200nt upstream of the start codon. This further supports our proposition
that IRESs originating from retroviral genomes rely more on PCBP-1/2 ITAFs for
translation initiation, and suggests their optimal binding location.

RNA STRUCTURE AS A DETERMINANT OF IRES ACTIVITY
In our analyses we were unable to find a strong predictive relationship between
RNA secondary structure and IRES activity (see Suppl. Text, p. 147), although RNA
structure was previously shown to be functionally important for some viral IRESs.
There are several possible reasons: First, the high-throughput assay conducted in [1]
used designed synthetic oligonucleotides as the input sequence. Thus, the length of
the tested sequences was limited to 174nt, which is shorter than some reported long
structural viral IRESs [8]. It is possible that the identified IRESs do not form complex
secondary structures as reported before (e.g. [66]), therefore limiting our ability to
detect structural features in the current dataset. Second, it was shown that IRESs can
form dynamic structures and that the binding of ITAFs can induce conformational
changes that, in turn, facilitate IRES activity [67]. Thus, in silico prediction of RNA
structure may differ considerably form the in vivo structures in the presence of ITAFs. In
addition, computational predictions are limited in the ability to model complex tertiary
structures such as pseudoknots. In order to investigate the relationship between RNA
structure and IRES activity systematic measurements of secondary structures should
be performed on the assayed sequences in cells. Recent advances in technology that
facilitate high-throughput structural measurements in vivo [68] can shed light on this
important layer of IRES regulation.

In this study we demonstrated that RNA sequence is predictive IRES activity, and
proposed common and virus type-specific sequence k-mer features that may play a
functional role in determining IRES activity, and could be used to predict IRESs in silico.
Our results also yield a high-level IRES architecture of sequence features and their spatial
organisation in RNA sequences, which suggests optimal positioning of ITAF binding sites
upstream of the start AUG, and may be used to guide future synthetic IRES designs.
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Figure 5.7: IRES activity distribution for all sequences remaining after filtering. Inset plot shows distribution
of IRES activity in active sequences (IRES activity above background levels).
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Figure 5.10: CV performance of k-mer count (solid lines) or presence (dashed lines) models trained on Human
CDS and negative-sense ssRNA viruses sequence groups.
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Figure 5.12: Robust and predictive global k-mer features that are uniquely selected by one sequence group.

Table 5.1: Sequences of oligos with no IRES elements (i.e. background sequences) used in synthetic designs.

Name Sequence

HBB CTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGAGGA
GAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCC
TGGGCAGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGT

Spacer1 TCTGACATTTCTGACATTTCTGACATTTCTGACATTTCTGACATTTCTGACATTTCTGACATTTC
TGACATTTCTGACATTTCTGACATTTCTGACATTTCTGACATTTCTGACATTTCTGACATTTCTG
ACATTTCTGACATTTCTGACATTTCTGACATTTC
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Figure 5.13: Robust and predictive positional k-mer features that are uniquely selected by one sequence group.
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DATA PRE-PROCESSING
IRES activity measurements analysed in this work are complemented by
high-throughput measurements of splicing activity and promoter activity [1]. As
in the original manuscript, these additional measurements were used to filter out
unreliable sequences, i.e. sequences whose eGFP expression was likely to be a result
of cap-dependent translation due to (i) the mRFP and the assayed sequence being
spliced out using a splice acceptor site present in the assayed sequence, or due to
(ii) independent transcription of the eGFP from a cryptic promoter in the assayed
sequence. To this end, following Weingarten-Gabbay et al., all oligos with splicing scores
below −2.5 or promoter activity above 0.2 were removed from the analyses. To further
reduce the fraction of oligos, for which eGFP translation could be a result of splicing, we
additionally removed all positive sequences (IRES activity above background levels) for
which splicing activity could not be measured.

Several filtering and averaging steps were taken in order to obtain more reliable
estimates and to increase robustness of the learned sequence models. First, for all
analyses measured IRES activities were log2-transformed and averaged across the two
replicates. Then, IRES sequences that had background IRES activity levels in only one
of the replicates, and sequences that could be measured in at least one of the replicates
were filtered out. Finally, to reduce the affect of outlier sequences with very high IRES
activity on the learned predictive models, IRES activities were capped at the 99.5%
percentile.

Further, because sequences outside of the 174nt variable region can affect IRES
activity (e.g. by forming secondary structure with the variable region), for our analyses
we extended the variable region by 84nt downstream and 74nt upstream as shown in
Fig. 5.1A (solid filling).

RANDOM FOREST PARAMETER GRID SEARCH
When learning random forests, parameters were chosen using a grid search performed
on the inner CV loop that evaluated all possible parameter combinations. The learning
rate r , minimum number of leaf node training samples m and subsampling fraction f
parameters were chosen in this way from grids [0.001,0.002,0.004,0.008], [5,25,125] and
[0.9,0.7] respectively.

DETAILED ANALYSIS OF THE UPSTREAM CAG FEATURE
The CAG k-mer in Fig. 5.5B does not share positional preferences of other features for
locations around −50 or −150; instead its effect is strongest when it is located close to
the start AUG at positions [−30,0]. We expected that if this k-mer is a part of the optimal
translation initiation context or splicing signal, then it would show further position
or reading frame preferences within the [−30,0] window. To check this, we analysed
CAG position preferences, sequence around CAG, and splicing score difference between
sequences with and without CAG for the groups of dsRNA viruses and retroviruses. These
groups were chosen as they are the two most specific sequence groups for which this
feature was consistently selected across all CV folds and had a strong effect.

First, we compared position distributions for CAG within the [−20,0] window
between positive and negative dsRNA virus sequences. Fig. 5.14A shows a strong
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Figure 5.14: Detailed analyses of the CAG k-mer within the [−20,0] window of the dsRNA viruses group (top
row, A-C) and within the [−30,−10] window of the retroviruses group (bottom row, D-F). (A, D) position
preference; (B, E) enriched motif around the k-mer; and (C, F) distribution of splicing scores for positive
sequences with (+CAG) and without (−CAG) the k-mer in the corresponding window.

preference of the CAG k-mer in dsRNA virus IRES sequences for position −15, i.e. the
end of the variable part of the assayed sequences (positions [−12;0] are the same for all
sequences; see Fig. 5.1A). We then sought to determine whether this k-mer is a part of a
larger sequence motif and checked for position-specific nucleotide enrichment between
the sets of positive and negative dsRNA virus sequences with a CAG in the [−20,0]
window. Fig. 5.14B shows a significant (Binomial test p < 0.05; visualised using the Two
Sample Logo website, Vacic et al. [69]) enrichment for Us upstream of the CAG k-mer;
the downstream part was not included in the analyses due to the strong preference of
the CAG for positions right before the constant part of the sequences. Remarkably, the
enriched sequence resembles the canonical splice acceptor motif of poly-U followed by
N[CT]AGG [37], suggesting that the CAG k-mer may be a part of a splicing site located at
the end of analysed IRES sequences.

Presence of such a splicing site may lead to the loss of mRFP and the assayed IRES
sequences in spliced mRNAs and result in translation of the eGFP protein through
classical cap-dependent initiation mechanisms. To confirm that this is indeed what may
be happening, we compared distributions of splicing scores from Weingarten-Gabbay
et al. [1], which are indicative of the log2 splice-in ratios for the assayed sequences,
between positive dsRNA virus sequences with a CAG in the [−20,0] window and without
it. Fig. 5.14C shows that IRES sequences with a CAG k-mer in the given window tend to
have significantly smaller splicing scores than the sequences without it (Mann-Whitney
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U-test, p < 0.001), suggesting that the +CAG sequences are spliced more often.
We repeated the above analyses for the retroviral group, and found that it only

partially recapitulates the results obtained for the group of dsRNA viruses. In particular,
while we found a similar poly-U enrichment upstream of the CAG, there was no longer a
strong preference for position −15, and the difference in splicing scores between −CAG
and +CAG sequences was not present. Neither the reason for differences in position
preferences between dsRNA viruses and retroviruses, nor a possible mechanism that
could link CAG −15 position preference and splicing activity, are clear to us.

Presence of active splicing signals in IRES sequences is problematic for the IRES
activity assay, as its measurements may be inflated by eGFP produced via cap-dependent
translation mechanisms. However, our analyses of predictive RNA sequence features
across different groups of sequences suggest that splicing signals may only moderately
effect IRES activity measurements, since only a handful of presented sequence features
could be linked to the splicing mechanism. Moreover, the sequence overlap between
the splicing acceptor motif and the hnRNAP C1/C2 ITAF binding motifs, both of which
require the presence of a poly-U stretch, suggests that co-occurrence of splicing and
IRES activity is a general phenomenon. This is supported by the fact that most of the
known ITAFs have also been implicated in pre-mRNA splicing [43]; and by the existence
of IRESs, such as XIAP, which are known to contain splice sites [70].

RNA SECONDARY STRUCTURE FEATURES
Because RNA structure is considered to be a major determinant of IRES activity in known
IRESs, we sought to incorporate it in our prediction models. To this end several features
describing RNA structure and accessibility were calculated for all sequences and, after
applying the same feature pre-selection as in the case of k-mer counts, were used as
predictive model features.

RNA ACCESSIBILITY AND REGION INTERACTION
First, we attempted to describe RNA structures in terms of accessibility and region
interactions. To account for local context effects, secondary structures were predicted
for sequences with regions flanking them in the reporter construct (Fig. 5.1A). RNA base
pairing probabilities were computed using the Vienna RNA package [71] with default
settings.

We defined RNA accessibility of a region as the expected number of unpaired
nucleotides in this region. The intuition behind this definition is that if a region is highly
paired, it is unavailable for interactions with RNA-binding proteins (RBPs) required to
initiate translation or with the ribosome itself. This measure was calculated as region
length minus the sum of base pairing probability matrix (BPPM) columns corresponding
to that region. Similarly, to capture high-level RNA secondary structure, we defined the
RNA interaction measure of two regions as the expected number of paired nucleotides
between the two regions; and calculated it as the sum of elements in the BPPM located
at the intersection of rows corresponding to the first region and columns corresponding
to the second region.

RNA accessibility and interactions features were calculated for 10nt moving
windows. These features showed weak (Spearman

∣∣ρ∣∣ ≤ 0.13), but consistent
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B 

A 

Figure 5.15: (A) RNA accessibility correlations for 10nt moving windows with a step of 5nt; and (B) RNA region
interaction correlations for moving 10nt× 10nt regions with a step of 5nt computed for different sequence
groups. Correlations for overlapping windows (regions) were averaged.

correlations across different sequence groups. Specifically, RNA accessibility shows
a reproducible pattern of negative-positive-negative correlation with IRES activity in
region [0,50] and a similar, although weaker, correlation pattern for region [−270,−230]
(Fig. 5.15A). Because we expected that RNA accessibility correlations would be easier to
interpret as a product of individual region interactions, we also computed correlations
between RNA region interaction features and IRES activity (Fig. 5.15B). Correlation
pattens observed for region interaction features suggest that (i) pairing between
the region located immediately upstream of position −250 or the region located
immediately downstream of position 50 with any other region negatively correlates
with IRES activity (predominantly red columns and rows are observed around these
positions across all sequence groups); (ii) interactions of regions around the start AUG
with nearby regions show strongest correlations with IRES activity (as can be readily seen
from the dark grey/red spots around the origin for the Retroviruses and Human 5′ UTR
sequence groups in Fig. 5.15B). These correlations suggest that the RNA structure formed
by the three mentioned regions may play a role in the mechanism of IRES-mediated
translation.
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Figure 5.16: Performance for predictors trained with RNA structure. CV performance of models for difference
groups of sequences trained on combinations of (A) k-mer count for k = 4, accessibility and region interaction
features; and (B) accessible k-mer count features.

Given these observed correlations, we sought to improve our Random Forest models
by including RNA accessibility and region interaction features. We followed the same
feature pre-selection procedure as described for k-mer features in the main text, and
considered different feature combinations, but did not observe any improvement in
predictor accuracy beyond what could be achieved using k-mer features alone (see
Fig. 5.16A).

ACCESSIBLE k-MER COUNTS
Having observed good predictive power of k-mer features and no improvement in
predictor performance when naïvely combining RNA structure or accessibility features
with k-mer features, we sought to combine the two feature descriptions in a more
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Figure 5.17: Variation in predictive power (R2) between groups for randomly permuted (green) and defined
(orange) groups for different feature combinations (left, middle and right sub-figures) and k-mer lengths.
Observed variations in the defined groups are annotated with the corresponding p-values.

in a more direct manner. To this end we modified k-mer count features to produce
counts of accessible k-mers by summing k-mer accessibilities instead of occurrences.
k-mer accessibilities were calculated as RNA accessibility measurements for regions
occupied by k-mer occurrences and normalised by k-mer length. To include accessible
k-mer count features in our models, we followed the same feature pre-selection and
combination procedure as described for k-mer count features. Unfortunately, as in the
case of RNA accessibility and interaction features, we did not observe an increase of
model predictive power beyond what can be achieved by k-mer count features alone
(see Fig. 5.16B).

GROUP SEQUENCE PERMUTATION

Separation of sequences into n = 7 groups based on their species and origin resulted
in differences in predictive power between groups. These differences may arise due
to group-specific IRES mechanisms being captured by the learned models, or due to
group structure (i.e. the number of positive and negative sequences). To see whether
the observed variation in the defined groups is higher than the variation one would
expect from group structure alone, we performed 10 permutation experiments. In
each experiment positive and negative sequences were independently permuted across
groups, thus preserving group structure, and models were learned on the permuted
groups for each combination of features and k-mer lengths as before. CV predictive
power of models learned on the permuted groups were used to obtain 10 samples of
variation that can be expected due to group structure alone (green boxplots in Fig. 5.17).
These samples were used to arrive at p-values for the variation observed in defined
groups (orange dots in Fig. 5.17) by assuming that they follow a scaled χ2 distribution
with n − 1 degrees of freedom and scaling factor n−1

σ2 , where σ2 is the unknown true
variance estimated as mean of the 10 permutation variances [72]. Fig. 5.17 shows that
variation observed in defined groups is significantly higher than what can be expected
due to group structure alone for the majority of feature and k-mer length combinations
(p < 0.05 for k > 2), suggesting that the sequence groups we defined in the main text
capture group-specific mechanisms of IRES translation.
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FEATURE IMPORTANCE AND PARTIAL DEPENDENCE
When training a RF, tree node variables and splits are chosen to maximise the reduction
in weighted variance between the node itself and the two children produced by the node
split. Formally, if p, l and r are respectively the current node, and its left and right
children; and Sn

v,s =
{(

x, y
)}

are the sets of training samples assigned to nodes n = p, l ,r
created for feature v and split s, and given as

(
feature vector, IRES activity

)
pairs, then

feature v and split s are chosen for node p (concisely written as V
(
p

)= v and S
(
p

)= s)
by maximising

C p = Var(x,y)∈Sp
(
y
) · ∣∣Sp ∣∣−[

Var(x,y)∈Sl

(
y
) · ∣∣∣Sl

∣∣∣+Var(x,y)∈Sr
(
y
) · ∣∣Sr ∣∣] ,

where Var(x,y)∈Sn
(
y
)

gives the variance off all IRES activity values in Sn , and |Sn | gives the
number of elements in Sn . Intuitively, the more a variable v is used in the RF trees, and
the higher the values C p are for nodes associated with this variable, the more predictive
of IRES activity it is. For our analysis we used feature importance as defined in Hastie
et al. [73], which captures this intuition by accumulating values C p for all RF trees t ∈ T
and all nodes p assigned to variable v when calculating its importance Iv :

Iv = 1

|T |
∑
t∈T

∑
p∈{p|p∈t∧V (p)=v} C p∑

u

[∑
p∈{p|p∈t∧V (p)=u} C p

] .

These feature importances were additionally normalised by the maximum Iv to allow
for comparison of feature importances between models trained on different sequence
groups:

Ĩv = Iv

maxu Iu
.

A Random Forest f (x) = f
([

x1 . . . xM
])

trained on samples
{(

x j , y j
)∣∣ j = 1. . . N

}
and

M features can be used to investigate the relationship between each its features and the
RF prediction. In order to understand the relationship between the i th variable and the
prediction f (x) we considered its partial dependence on the RF prediction function f , as
described in Hastie et al. [73]:

fi

(
xi

)
= Exi

[
f
(
x1, . . . , xi , . . . , xM

)]
,

which for RFs this function can be efficiently estimated using the training samples x j as

f̂i

(
xi

)
= 1

N

N∑
j=1

[
f
(
x1

j , . . . , xi , . . . , xM
j

)]
.

We used the latter estimation in our model interpretation analyses.
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Figure 5.18: (A) Training and test performance of selected models for each of the sequence groups. (B) Scatter
plots of the true vs. predicted IRES activity for these models.
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6
DISCUSSION

The marked drop in the costs of DNA sequencing and programmable DNA synthesis
made it possible for individual labs to (re-)design DNA sequences in a targeted manner,
and prompted novel applications in biotechnology, metabolic engineering (ME) and
synthetic biology (SB). This thesis presented several algorithms for the analysis of second
generation sequencing data from the above disciplines. It includes methods developed
for improving microbial genome assemblies through scaffolding (biotechnology), for
optimising protein expression by synonymously re-writing genes (ME and SB), for
whole-cell modelling of protein translation (ME and molecular biology; MB), and for
uncovering RNA sequence features governing IRES-mediated translation (MB). These
methods were motivated by open biological questions that can directly affect industrial
applications, and aim at bridging the gap between basic and translational research.

Below, we discuss current challenges in sequencing data analysis (Section 6.1) and
translation modelling (Section 6.2) addressed in this thesis, followed by an outlook into
the future opportunities for these fields (Section 6.3).

6.1. CHALLENGES IN GENOME SCAFFOLDING
The availability of a high-quality reference genome sequence is a prerequisite for genetic
engineering and synthetic biology techniques employed in metabolic engineering. Good
reference genome sequences of the studied organism (i.e. same strain) provide a better
backbone for genetic engineering. Decreasing costs of second generation sequencing
made it an attractive technology for de novo sequencing and re-sequencing of host
organisms used in biotechnology. Our association with the de novo sequencing of
the Saccharomyces cerevisiae laboratory yeast strain (CEN.PK 113-7D; Nijkamp et al.
[1]) prompted us to develop the GRASS assembly scaffolder (described in Chapter 2),
which can use existing reference sequences and paired read sequencing information to
improve fragmented microbial genome assemblies.
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IMPROVED OPTIMISATION STRATEGIES

GRASS is based on a strict mathematical formulation that combines the contig order,
distance and orientation constraints in a single optimisation objective. However,
the resulting optimisation problem is computationally intractable and solving it
requires the use of approximation techniques. In Chapter 2 we described an
expectation-maximisation (EM) strategy that can be used to address this optimisation
problem. However, our approach has several limitations: first, the EM strategy uses
stochastic algorithms for solving some of the sub-problems within the EM approach.
This leads to undesired variation in the optimisation results, and complicates scaffolder
use within larger pipelines. Second, due to the complexity of the EM approach, it is
unclear whether GRASS can be used to produce competitive results on larger (e.g. plant
or mammalian) genome assemblies. Third, the approximate optimisation strategy does
not allow for estimating the gap between the current solution and the unknown optimal
solution, which complicates solution quality assessment.

Although further research is required to overcome these limitations, they could
potentially be addressed by alternative optimisation strategies that (i) provide solution
quality guarantees, and (ii) do not rely on stochastic optimisation. Generally, the trade
off between a mathematically rigorous problem description and the ability to solve the
resulting problem should be considered during the design of scaffolding algorithms to
avoid similar limitations in the future.

MODULAR INFORMATION EXTRACTORS

The mathematical formulation employed by GRASS allowed it to use a wide range
of information sources (e.g. paired reads, restriction maps, related genomes) for
scaffolding. However, its practical application as a generic scaffolder was limited by
the ability of its linker module implementation to derive contig links from the various
information sources. The pace of technology development makes keeping an up-to-date
version of the scaffolder targeting a variety of information sources impractical without a
dedicated team. This challenge can be partially alleviated by sharing this responsibility
with the research community that uses the scaffolder, which could be achieved by
providing an implementation and instructions that allow for easy addition of new
modules for contig link generation.

Alternatively, this goal could be achieved by standardising the different scaffolding
steps (e.g. contig linking and scaffold optimisation), as already done for genome
assembly within the AMOS (A Modular, Open-Source whole genome assembler; Pop
et al. [2]) consortium. The mathematical description of contig links provided in
Chapter 2 can serve as a starting point for a generic description of the contig relationship
information, and for the development of a standardised storage format of that
information. Independent modules can be used to process the individual information
sources that, after a merging step, would be fed to one of the interchangeable
scaffolding modules. Such an approach would not only increase the power of existing
scaffolding algorithms, but would additionally allow for their direct comparison and easy
incorporation into larger genome sequencing pipelines.
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6.2. CHALLENGES IN TRANSLATION MODELLING
Despite the limited understanding of the mechanisms behind it, codon optimisation
(CO) is routinely employed to increase heterologous expression of genes in new host
organisms. In Chapter 3 we described the development of a predictive model for yeast
Saccharomyces cerevisiae that combined existing sequence features typically used for
CO, and which could be used to guide CO. In an addendum to Chapter 3 we described
an attempt to codon optimise the Arabidopsis thaliana PAL1 gene for expression in yeast
using this model.

This result led us to believe that the process of protein synthesis is too complex to
be tackled by a naïve data-driven approach, and requires a different type of modelling
before directing codon optimisation. The complexity of CO is further aggravated by
the fact that translation contains numerous recently discovered and debated stages and
mechanisms that do not fit within the simplistic three-stage model of translation (see
Chapter 1). These include:

• ribosome recycling, in which a ribosome in the translation termination stage can
efficiently re-initiate translation of the same mRNA [3, 4];

• tRNA re-use, which presumably allows for efficiently (quickly) reusing tRNA
molecules that were used to translate one of the recent codons [5];

• translation of upstream reading frames (uORFs) in the 5′ UTR that impacts
initiation efficiency of the main coding sequence [6, 7];

• initiation of translation using mechanisms that do not rely on the 5′ cap structure
or the scanning for a start codon, such as IRES-mediated translation [8, 9],
and translation via the 3′- and 5′-CITEs (Cap-Independent Translation Elements;
Miller et al. [10], Shatsky et al. [11]);

• inhibition of translation through miRNA targeting [12, 13];
• stop codon read-through [14, 15];
• reading frame shifting during the elongation phase [16];

and many others. Currently, no unified models covering all of the above mechanisms
are available. However, models of varying detail addressing individual mechanisms or
combinations thereof, have been proposed in this thesis (Chapters 4-5) and elsewhere.

WHOLE-CELL MODELS OF TRANSLATION
Some of the central cellular processes, such as stress response or mRNA localisation [17]
are regulated translationally, with evidence suggesting that dysregulation of translation
may lead to disease [18, 19]. Modelling of global effects of translation regulation does not
require detailed description of all of the constituent translation mechanisms, and can
be captured by high-level models addressing the three phases of translation. Difficulties
in measuring translation kinetics make it challenging for existing models to accurately
model the underlying process. The recent advent of ribosome profiling (RP; Ingolia
[20]) measurements provided the information necessary for constructing translation
models with data-derived parameters. However, construction of such models requires
reconciling the noisy RP data with stochastic simulation techniques. In Chapter 4
we described the first method addressing this challenge. We analysed RP data at
several scales to capture as much information as the noisy low-coverage measurements



6

158 6. DISCUSSION

would allow, and developed a statistical framework for comparing stochastic simulations
to multi-scale measurements, which together allowed us to fit whole-cell models of
translation to Saccharomyces cerevisiae yeast RP data that compared favourably to
exiting models.

HIGH-RESOLUTION ACCURATE DATA

Low-coverage unreliable RP data makes capturing changes in ribosome density along
genes challenging. To address this, in Chapter 4 we devised a multi-scale representation
of this data, which pooled reads for more reliable estimates by considering the average
ribosome density of gene regions at resolutions determined by the local coverage depth.
While necessary for processing low-coverage data, this approach potentially limits the
model fitting procedures sensitivity to changes in global translation parameters. This
limitation could be overcome by fitting models to high-coverage RP data that allows for
reliable single-codon measurements.

However, recent studies showed that even high coverage data may not be
suitable for single codon level analyses [21–23]. It was suggested that differences in
experimental protocols, such as the pre-treatment of cells using cycloheximide or its
used concentration, may prevent translation elongation from halting immediately on
some codons. Continued elongation “smears” codon-specific signals across several
downstream codons, thus reducing measurement accuracy. While it may be possible
to develop bioinformatic algorithms for deconvolving smeared signals (e.g. by fitting
Gaussian mixture models with codon-specific parameters onto the RP data), a better
approach would be to generate data that does not require deconvolution by eliminating
the cycloheximide pre-treatment step and carrying out RP measurements in cryogenic
conditions.

Nevertheless, given the evident sensitivity of RP to protocol-specific conditions, even
with the necessary protocol adjustments, quality control should become a routine step
of RP. It should at least include checking for continued translation elongation, but could
also involve Ribo-seq spike-ins from well-characterised bacterial species or in vitro
translation systems [24].

DATA NORMALISATION

It has been shown that Ribo-seq and mRNA-seq measurements are subject to
sequence (e.g. pausing at certain codons) and sequencing biases, which affect local
read depth of transcripts. While sequence biases represent the sought signal, the
sequencing biases, PCR amplification, RNA digestions, or other readout biases may
overshadow the sought signal. To remove the effect of sequencing biases, we averaged
ribosome and mRNA read density across longer regions in Chapter 4. While this
approach was justified for low coverage datasets, alternative techniques are required
for analysing single-codon resolution data. These approaches will either have to
manually classify the detected signals into sequencing biases (e.g. signals related to PCR
amplification and endonuclease digestion biases likely to be located towards the ends
of sequencing reads), or require the development of normalisation methods based on
the assumption of shared biases between the Ribo-seq and mRNA-seq reads included
in RP measurements [21]. Alternatively, RP measurements could be normalised using
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spike-ins of reference RNA added to the Ribo-seq and mRNA-seq samples, as was
previously proposed for RNA-seq data [25–27].

RIBOSOME CONFORMATIONS

Existing RP data analysis pipelines, including the one described in Chapter 4, are
typically restricted to analysis of the canonical ≈ 28nt ribosome protected fragments.
It was suggested that different fragment lengths correspond to distinct elongating
ribosome conformations [28] that can be stabilised by different chemicals. It is possible
that the choice of chemical (and thus conformation) creates biases in single-codon
RP data analyses by allowing ribosomes to transition from their current conformation
to the conformation they can be stabilised in. Such biases would effect downstream
single-codon analyses of the data and should be avoided whenever possible. It would
be interesting to augment ribosome profiling experiments by employing simultaneous
treatment using multiple chemicals to stabilise translating ribosomes in their current
conformation. Footprint length differences produced by the augmented RP should
allow for separating the different conformations, and thus provide the data necessary
for modelling this phenomenon in silico.

ALTERNATIVELY SPLICED TRANSCRIPTS

The models introduced in Chapter 4 do not support alternatively spliced transcripts.
This is not a significant limitation for organisms that do not extensively use mRNA
splicing (such as the bakers yeast Saccharomyces cerevisiae; Ast [29]). However,
simulation of alternatively spliced transcripts of the same gene is necessary for
modelling translation in higher eukaryotes, such as human or the fruit fly.

Currently, no whole-cell protein synthesis models exist that support alternatively
spliced transcripts. Simulation of such models would only require treating such
transcript isoforms as independent molecules that share the gene-specific initiation
rate parameter. However, fitting such models would additionally require algorithmic
improvements that address the following points:

• Comparison of simulated density from transcript isoforms to the same measured
mRNA-seq and Ribo-seq profiles in a way that accounts for isoform abundances
and inclusion/exclusion of introns and exons.

• Fitting of the gene-specific initiation rates shared by all isoforms, which may
hamper the use of the initiation rate approximation scheme we introduced in
Chapter 4.

SHARED MOLECULE POOL

Over-expression of tRNAs or heterologous genes [30], hijacking of the cells gene
expression machinery by viral infections [31], or subjection of cells to stress or different
growth conditions [32], are examples of events that can dramatically change the
numbers of available cellular molecules involved in translation (e.g. ribosomes, mRNA
transcripts or tRNAs), thus also changing the kinetics of protein synthesis. Models from
Chapter 4 were fitted on the RP data measured in normal conditions, and thus do not
generalise to situations with significantly different quantities of translation molecules.
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Models that describe transcript abundances and keep track of the (un)bound
ribosomes and tRNAs (e.g. SMoPT, Shah et al. [30]), can adjust translation initiation
and elongation rates in accordance with these quantities, and consequently can be
used to model translation in unseen cellular conditions. However, the use of global
quantities creates inter-dependencies between modelled mRNAs, and thereby prevents
their efficient simulation through parallel mRNA simulations. Since fitting of the
models from Chapter 4 was already computationally challenging, it is likely that, if
approached naïvely, fitting of models with global quantities onto the RP data would be
computationally intractable.

While fitting models with global quantities requires further research, it could be
tackled by separating the model simulation into two stages: (i) a stage in which the
steady-state values of the global quantities of the (un)bound ribosomes and tRNAs are
found; and (ii) a stage in which these values are used to independently simulate model
transcripts as in Chapter 4. Specifically, the steady-state values from stage (i) could be
efficiently obtained by simulating an equivalent coarse-grained version of the original
model that describes molecule pool states, but is not concerned with exact locations of
ribosomes or tRNAs on transcripts.

MODELS OF CAP-INDEPENDENT TRANSLATION INITIATION
Although currently available knowledge and data do not allow for the construction of
unified translation models encompassing the entirety of translation mechanisms, some
of these mechanisms could be modelled using measurements obtained from specifically
designed functional genomics assays. In Weingarten-Gabbay et al. [33] we developed an
IRES activity assay (see also Chapter 1) that we used to measure the ability and strength
of 55,000 sequences to initiate translation in an IRES-dependent manner. In Chapter 5
we described the development of Random Forest (RF) models predicting IRES activity
from RNA sequence, which uncovered sequence determinants of IRES translation.

MODEL INTERPRETATION AND EXPERIMENTAL VALIDATION

Sequence models of IRES activity described in Chapter 5 are based on the k-mer feature
description of the RNA sequence. By interpreting these models we found that k-mer
features associated with increased IRES activity resembled (partial) ITAF binding motifs.
This association is in line with the proposed role of ITAFs as RNA-binding proteins
involved in IRES-mediated translation, and suggests that their binding is a part of the
IRES mechanism employed by the analysed sequences. However, additional research is
required to confirm this.

This hypothesis could be further tested by constructing a sequence model of their
activity that is based on the description of these sequences in terms of their similarity
to known ITAF binding motifs [34, 35]. Known binding motifs of ITAFs and other
RNA binding proteins (RBP) can be used to detect and score potential binding sites
in RNA sequences; these scores could then be used to devise a feature description of
the sequences that is used to learn models of IRES activity as described in Chapter 5.
Combined with model feature selection, this approach can then be employed to further
test whether a predictive relationship between ITAF binding sites and IRES activity exists.

However, a model based on RBP binding motifs still would not prove that (i) ITAFs
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indeed bind to the studied RNA sequences, and that (ii) their binding influences IRES
activity. Additional validation experiments are required to confirm these hypotheses.
The former hypothesis could be validated by performing a CLIP-seq assay [36] that reads
out the unique barcodes present in the IRES sequences analysed in Chapter 5, whereas
the latter hypothesis would require mutating the predicted (or identified via CLIP-seq)
binding sites in these sequences and measuring the effect on IRES activity.

RNA STRUCTURE

IRESs are believed to execute their function using a combination of specific RNA primary
sequence and secondary structure, which makes it surprising that we were unable to
find a strong RNA structure signal predictive of IRES activity. In Chapter 5 we discussed
the possible reasons for this outcome, and proposed additional experiments that would
help uncovering the role of RNA structure in IRES translation. Here, we propose
computational approaches that could be used to detect a relationship between IRES
activity and RNA structure.

To our knowledge only two studies [37, 38] previously reported the ability to predict
IRESs. Both studies are based on the idea of comparing predicted RNA structures to a
small number of known IRES RNA structures. While it is unclear whether the results
reported in these studies are based on independent validation sets, and whether the
predictive performance estimates obtained using small datasets are reliable, it would be
interesting to extend this idea to the large set of IRESs measured by Weingarten-Gabbay
et al. [33].

Largely, the above approach could be seen as a special case of describing RNA
sequences or structures in terms of their similarity to a target set of structures, and using
the results of this similarity to classify the original RNA sequence as an IRES or not.
This general description suggests a straightforward integration of RNA structure into the
analysis pipeline described in Chapter 5, in which structure similarity scores would be
used as additional features of the RF models. Further, several target sets and similarity
scores could be used:

• The set of RNA structures of known IRESs (e.g. obtained from Rfam [39]) with an
RNA structure alignment-based similarity as in Wu et al. [37], Hong et al. [38];

• The set of known atomic resolution IRES 3D structures [40] with a similarity
measure based on homology modelling (i.e. approximation of the unknown 3D
structure based on sequence similarity to RNAs with known structures; Saxena
et al. [41]) of the new RNA sequences;

• The set of motifs from the RNA 3D Motif Atlas [42] with a similarity measure
provided by JAR3D [43] or a similar tool.

The latter target set - similarity combination is particularly interesting, as it was recently
reported [44] to improve binding affinity prediction of the PTBP (Pyrimidine Tract
Binding Protein), a known ITAF whose involvement in IRES activity we also suggested
in Chapter 5.

CODON OPTIMISATION
Chapter 4 contains several results important for codon optimisation. First, our finding
that predictions made by existing translation models are heavily biased by mRNA
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transcript levels suggests that the CO model from Chapter 3 may have suffered from the
same limitations, especially since we chose to use protein abundance and unnormalised
ribosome density as prediction targets. This could be remedied by using alternative
targets, as discussed in the addendum to Chapter 3.

Second, the observation that protein production is limited at initiation rather than
elongation (presumably targeted by CO), suggests that stronger (over-)expression effects
could be gained by optimising sequences that affect the initiation step. This could be
achieved by constructing sequence models of the 5′ UTR or through the incorporation
of alternative initiation mechanisms (e.g. IRES) into the optimised sequence. The former
would ideally allow for detecting and quantifying the relationship between the sequence
around the initiation site and a quantitative measure of translation initiation (e.g. as
obtained by FACS-seq, GTI-seq or QTI-seq; Noderer et al. [45], Lee et al. [46], Gao et al.
[47]).

Finally, the context-dependence of codon elongation times suggests that existing
codon adaption indices (e.g. the CAI or tAI) do not adequately capture the mechanisms
complexity, and that more explicit models (e.g. models from Chapter 4 that take codon
context into account) would be more suitable for CO.

TAKING A STEP BACK

The complex nature of gene regulation, the results discussed above, and known cases of
failed CO attempts [48, 49] raise the question of whether translation elongation is indeed
the aspect of translation that is improved through CO. Synonymous changes in the CDS
can alternatively affect transcript stability, translation initiation or protein folding, which
would all manifest themselves in the expression or activity of the protein in question.
The lack of a clear-cut selection of mechanisms affected by CO, their complex interplay,
and the sheer size of the space of possible synonymous versions of the same gene, all
presumably contribute to making the CO approach pioneered by DNA 2.0 (Menlo Park,
CA) successful. In their approach [50] multiple gene re-designs are considered, and
assayed to be used for construction of predictive models employed to design the next
batch of re-designs. This process is repeated until a re-design with the sought properties
is obtained.

While being considerably more time-consuming and cost-intensive than a
single-shot optimisation approach, the iterative strategy of DNA 2.0 allows for learning
the protein- and condition-specific net effect of the various translation mechanisms,
without untangling them or modelling their individual effects. It is likely that in the near
future, until a better understanding of translation emerges, this CO approach will remain
most reliable.

CONDITION SPECIFICITY

Although protein expression levels are determined by the net effect of multiple
regulation mechanisms, it is likely that under some conditions this effect is dominated
by a single mechanism. For example, under the conditions of strong transcript
over-expression, small differences in its codon bias can lead to large differences in the
resulting protein expression [30]. In those conditions, optimisation techniques targeting
the limiting aspect of translation could be successful, whereas for the conditions where
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no one mechanism is dominant, the gene- and condition-specific iterative approach
discussed above would be better suited.

Conditions (e.g. medium, cell type, transcript expression levels) appropriate for
using a particular optimisation approach can be identified by performing simulations
of whole-cell translation models with shared molecule pools. More generally, a
strategy that encompasses translation bottleneck identification through whole-cell
modelling, followed by bottleneck-specific gene optimisation, could provide the
necessary intermediate step between the currently employed mechanism-unaware CO
approaches and future approaches, that would likely rely on accurate modelling of the
entire gene expression process.

6.3. TECHNOLOGICAL INNOVATION AS A DRIVER OF

BIOLOGICAL RESEARCH
The past decade brought about several disruptive technological advancements and
methodological innovations in measurement and genetic engineering techniques,
such as high-throughput sequencing or genome editing using engineered nucleases
[51]. These techniques revolutionised biological research by providing the means
to interrogate previously inaccessible aspects of living organisms. Today, continuing
maturation of established technologies, and improvement of cutting-edge techniques,
such as single molecule sequencing or the CRISPR-Cas system [52], are creating
new opportunities in basic research and prompting their application in metabolic
engineering and synthetic biology.

THIRD GENERATION SEQUENCING TECHNOLOGIES
Current third generation sequencing technologies, consisting of the Pacific Biosciences
(Menlo Park, CA) and Oxford Nanopore Technologies (Oxford, UK) single molecule
sequencing platforms, generate reads that are tens of thousands of nucleotides long
[53, 54]. Their long reads allow sequencing through repeat regions that would
be problematic for second and first generation sequencing platforms, making 3rd

generation technologies particularly suited for de novo genome sequencing. Similarly, by
sequencing through RNA splice junctions, long reads also alleviate problems associated
with transcript assembly and isoform identification in mRNA sequencing [55].

WHOLE-GENOME SEQUENCING AND SCAFFOLDING

Data from these technologies can be used to create near-finished de novo genome
assemblies with contigs spanning entire chromosomes, thus making the problem
of genome scaffolding, and methods like GRASS (Chapter 2), obsolete for future
whole-genome sequencing projects of low complexity genomes. However, due to the
high error rate of these platforms (20% to 38%; Ross et al. [53], Laver et al. [54]), the costs
associated with generating enough coverage depth to create such assemblies are still
prohibitively high for most labs, as for consortia sequencing large cohorts (e.g. clinical
trials or population studies). So for the foreseeable future, until the sequencing cost
and accuracy of these platforms improve, hybrid strategies that combine the low cost
high-throughput 2nd generation sequencing with long read 3rd generation sequencing,
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are likely to be favoured. In these strategies short accurate reads are used either alone or
in combination with long reads to create contigs that are then scaffolded using the (very)
long 3rd generation reads in a post-processing step. Scaffolding using long reads can also
be used to improve genomes previously assembled from shorter reads. However, there
are several challenges specific to the use of 3rd sequencing reads for scaffolding:

• Correctly using constraints that span multiple contigs (several contigs aligning to
the same read), and should be simultaneously “on” or “off” for all of them;

• Ensuring that overhanging and overlapping long reads in the scaffold agree on
distance and sequence;

• Handling of non-unique or uncertain alignments of contigs to error-prone long
reads;

• Handling long chimeric reads that falsely join different DNA molecules.

Solving these challenges will require re-visiting the formulation of the contig scaffolding
problem, and innovation in the computational approaches addressing it.

However, it is likely that for some genomes scaffolding will remain necessary for
obtaining finished genomes even after the cost and accuracy of 3rd generation improve.
Even the long reads of these technologies are unable to resolve megabase-long segment
duplications present in some genomes [56], and require scaffolding using additional
information, such as optical mapping data [57], to resolve such repeats. Interestingly,
current 3rd generation sequencing read lengths are limited by the size of input DNA
molecules rather than the physical characteristics of the instruments [54]. It is thus
possible that new versions of instrument chemistry and library preparation protocols
will further alleviate the necessity of downstream assembly scaffolding.

Overall, it can be expected that ongoing improvements in DNA sequencing
technologies will relieve most de novo assembly challenges and allow for accurate
chromosome-length genome assemblies necessary for genetic and metabolic
engineering efforts.

TRANSLATION NOISE AND TRANSCRIPT HETEROGENEITY

Third generation sequencing technologies allow for single-read transcript sequencing,
which simplifies alternative splicing analyses, and allows for mapping noisy
transcription start and stop sites. For the moment, sequencing costs prevent generating
enough sequencing data to allow for quantitative analyses of these effects. However,
once the sequencing costs drop, deep single-molecule sequencing could be used to
obtain quantitative isoform measurements.

A recent study used deep second generation sequencing of polysome fractions1 to
reconstruct transcript isoforms for each of the fractions [58]. This approach, if combined
with quantitative single-molecule sequencing, could allow for studying the quantitative
relationship between mRNA isoforms and translation. Unlike ribosome profiling, which
gives the average ribosome density across all transcripts of the same gene, this approach
would also allow for quantifying translation noise from the distribution of isoforms
across polysome fractions; and for studying its determinants, as was previously done for
transcriptional noise [59, 60]. Ultimately, data and insights learned from these studies

1mRNA molecules with the same number of ribosomes bound to them.
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should facilitate the creation the next generation of translation models described in
Chapter 4, which may need to model heterogenous families of mRNA transcripts of the
same gene with transcript-specific initiation rates.

As accuracy of third generation sequencing improves, single-read transcript
sequencing could be used to devise an assay analogous to the CLIP-seq and PAR-CLIP
techniques [36, 61], in which transcript positions bound by ribosomes would be
modified or mutated in a way that is detectable with subsequent single-molecule
sequencing. Such an assay would yield locations of ribosomes bound to the
same transcript, thus providing the measurements required for studying translation
heterogeneity. This data would allow for further improving translation models
by constraining the kind of situations that may occur on simulated transcripts.
Alternatively, techniques for studying translation heterogeneity could come from
advances in single-cell second generation sequencing approaches. For example,
a single-cell equivalent of ribosome profiling would allow for mapping cell-to-cell
variability of gene density profiles and, thus, for studying dynamics of translation
regulation.

Irrespective of the assay or technology that will be used to study translation noise,
it is likely that these data will itself be noisy (e.g. missing ribosomes due to failed
cross-linking) and sparse. Their analysis will require the development of statistical
methods that are robust to missing and noisy data, which could be based on the idea of
pooling sparse single-transcript or single-cell data to tune statistical model parameters,
and then using the tuned models to analyse single cells and transcripts [62].

SYSTEMATIC STUDIES OF GENE REGULATION

Gene expression regulation is a highly multi-factorial process, whose individual aspects
can be difficult to tease apart due to their influence on each other. For example,
sequence features that promote mRNAs translation initiation may also extend mRNA
half-life by making it less accessible to degradation machinery through increased
ribosome occupancy [63]. This regulatory crosstalk makes studying determinants of
gene expression from native genes in their native context very challenging. Systematic
approaches that vary a single aspect of the expression machinery while keeping
all other aspects constant have proven instrumental for uncovering determinants of
transcriptional regulation [64]. However, systematic studies of translation regulation
have lagged behind despite their potential to deepen the understanding of this process.

In Weingarten-Gabbay et al. [33] and Chapter 5 we demonstrated that systematic
measurements of cap-independent translation can be used to uncover mechanisms
involved in IRES-mediated translation. This approach, relying on synthesis of short
oligonucleotide sequences that are later assayed for their effect on expression, can
be used to study other aspects of translation that are known to occur, but whose
mechanisms are poorly understood. For example, synthetic libraries combined with
appropriate reporter constructs can be used to study stop codon read-through, which
was shown to be extensively used by viruses and Drosophila, and was identified in
human transcripts [14]; or to study programmed frame-shifting, which was identified
in viruses, as well as more complex organisms [16]. Insight into the regulation of
these processes could lead to better understanding of diseases and ultimately to the
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identification of novel therapeutic targets; as well as provide new “knobs” for adjusting
gene expression for metabolic engineering and biotechnology.

In the spectrum of translation regulation mechanisms amenable to systematic
measurements, translation elongation would benefit the most from such approach.
Assaying expression of synonymous gene encodings, while controlling for all other
variation, would allow for quantifying the effect that these substitutions have on
expression. Similar measurements were previously carried out in Escherichia coli [65],
and used to identify a strong contribution of RNA secondary structure around the start
codon towards gene expression. However, these measurements assessed only reporter
protein levels, and thus could not separate contributions of transcription and translation
on the measured expression. The two levels of regulation could be disentangled by
performing ribosome profiling measurements on the pool of cells with synonymously
encoded genes (one per cell), and using bioinformatic processing to recover translation
efficiency measurements from Ribo- and mRNA-seq reads that may align non-uniquely
to the synonymous genes. Ultimately, such systematic measurements of synonymous
codon substitutions would be particularly suited for developing predictive models for
codon optimisation described in Chapter 3, and could lead to accurate data-driven
codon optimisation approaches.

EPITRANSCRIPTOMICS - A NEW LEVEL OF REGULATION

Decreasing costs of second generation sequencing prompted the development of
numerous high-throughput functional genomics assays, some of which allow for
interrogating biochemical RNA modifications. These modifications (e.g. nucleotide
methylation or pseudouridinilation, m6A, m5C; Sun et al. [66]), do not alter the RNA
sequence, but modify its chemical properties. Similar to DNA methylation or histone
modifications in epigenetics, RNA modifications comprising the epitranscriptome, can
alter gene expression, thus providing an additional layer of expression regulation.
Compared to the dozens of known DNA modifications, RNA modifications have a richer
repertoire with more than 140 alternative forms [67], suggesting a strong potential of
these modifications for transcriptional and translational control.

Owing to the recent availability of whole-genome epitranscriptomic maps, we
are only now beginning to understand the effect of RNA modifications on cellular
processes. However, accumulating evidence suggests that these modifications can
affect miRNA targeting [68], RNA folding [69], tRNA selection in translation elongation
[70], IRES-mediated translation [71], translation of methylated mRNA [72], mRNA
localisation, stability [73] and splicing [74]. It may thus be necessary to re-visit
previously developed models and mechanism of gene regulation and to consider them
in the context of these recent findings. For example, the TASEP model in Chapter 4
could be extended to include codon- and modification- specific elongation rates,
and to assess the effect of this extension on model predictions. More broadly, any
approach combining sequence information and ribosome profiling data, could be
complemented by epitranscriptome measurements and used to test the effect of RNA
modifications on translation. Further, our IRES activity determinants study (Chapter 5),
if complemented by epitranscriptome measurements, could be modified to check
whether the epitranscriptome is predictive of cap-independent translation. Notably,
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the first attempts at answering these questions would not require investments into
new measurements, and could be undertaken today by combining publicly available
datasets.

Further, epitranscriptome data could be used to determine sequence specificity
of the various RNA modifications by learning sequence models that predict local
modification abundance along the genome. The genome-scale sample sizes available
for learning these models, and the inherent structure of linear sequences makes the
problem of predicting RNA modifications from sequence particularly amenable to
modelling using Deep Learning techniques [75].

DATA INTEGRATION

The explosion of high-throughput functional genomics assays in recent years allowed
for interrogating previously inaccessible cellular mechanisms (see Chapter 1), however,
it also made it difficult for data integration efforts to keep up with the rapid growth in
available measurements. This has to do with the lag between the introduction of new
measurement techniques and the development of analysis and integration methods for
them.

Integration of data from existing functional genomics assays has a vast potential
for improving existing analyses. For example, in vivo measurements of RNA structure
[76] could be used to extend the IRES translation model described in Chapter 5, as
it would allow for detecting the expected relationship between IRES activity and RNA
structure suggested by previous studies. Initial attempts to integrate these data could
use the base pairing probabilities measured by RNA structure probing methods as
model features, however, more advanced approaches that reconstruct the (family) of
likely in vivo structures [77] could better capture structural features and mechanism.
Reconstruction approaches should focus on predicting pseudoknotted RNA structures
that are often implicated in translation regulation, and are challenging to predict using
current methods [78, 79]. Considering multiple possible structures would require new
algorithms that correctly handle such information. These methods could draw from
Multiple Instance Learning (MIL, Babenko [80]) approaches used in Machine Learning.
Similar algorithms would also be required for extending the translation models from
Chapter 4, which would have to consider the effect of dynamically changing RNA
structures on model kinetics.

Data integration can also be used to test new hypothesis of gene expression
regulation. For example, combining epitranscriptomic and RNA structure
measurements would allow for studying the effects of RNA modifications on RNA
folding. As another example, a combination of ribosome profiling, epitranscriptomic
and chromatin conformation measurements can be used to test whether genes that
are co-localised in the genome (i) receive similar RNA modifications; or (ii) tend to be
translated with similar efficiency. These examples represent only a small fraction of
the questions that could be answered by integrating different types of measurements.
Due to the heterogeneity of the available measurements, it is likely that development of
problem-specific methods would be required for every new question asked. Tackling
this challenge would require data integration to become a priority of the broader
scientific community, much like generation of new data is.
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CO-TRANSLATIONAL FOLDING
Once translation modelling allows for reliable prediction of translation efficiency of
RNA sequences, the next big challenge is to quantify the link between translation
and protein folding (i.e. co-translational folding; Yu et al. [81]). Isolated examples
[48, 49] suggest that synonymous codon substitutions can cause protein misfolding
and reduced enzymatic activity, presumably by not allowing sufficient time for correct
co-translational folding of the nascent peptide. However, this process has not been
systematically studied, and how exactly translation pausing affects protein structure is
not fully understood. Progress in this direction is hampered by the lack of assays that
can simultaneously assess transcription, translation and folding (or enzymatic activity)
of a reporter gene. Development of such assays or alternative methods for measuring
protein (mis-)folding will likely remain challenging in the near future, but once solved,
their data could be used to devise structure-aware models of translation. These models
would require novel algorithms that are capable of calculating the probability space of
possible protein folds from the simulated RNA sequence.

6.4. CONCLUDING REMARKS
SYNTHETIC DESIGNS ARE THE NEXT STEP

This thesis described algorithms and models that address several challenges in
Biotechnology, ME and MB. We have developed models addressing different aspects of
protein translation, including whole-cell modelling, context-dependence of elongation
and cap-independent translation. The next step is to validate these models through
design of synthetic sequences with sought translation activity. Additionally, validation
results of model-designed sequences can be used for improving the models, as is usually
done within the systems biology cycle [82]. Finally, models and approaches presented in
this thesis can also be applied in other fields. For example, they could be used to predict
the effects of synonymous or non-coding (e.g. IRES) mutations on expression and to
investigate their links to diseases.

RECONCILING DIFFERENT REGULATORY MECHANISMS REQUIRES A “MODEL OF MODELS”
The biggest challenge for synthetic biology and metabolic engineering lays perhaps not
in solving the immediate questions of codon or pathway optimisation, but rather in
closing the gap between basic and applied research. These disciplines would benefit
greatly from the ability to express user-designed proteins at user-desired levels when
designing DNA sequences, which is hampered by the incomplete understanding of
gene regulation mechanisms. It is, thus, desirable that, when writing DNA sequences,
we make use of the novel regulation layers as soon as they are discovered. Due to
the cross-talk between different levels of regulation, application of new mechanisms
in synthetic designs would require re-visiting the previously discovered mechanisms.
With the current pace of discoveries, such an approach is entirely infeasible, and would
leave practical applications of new research lagging far behind. An alternative way is to
create a modular framework, a “model of models”, which would allow easy incorporation
of new predictive models based on recent discoveries as building blocks. Black-box
methods (e.g. late classifier integration) could be used to combine the individual models.
However, for the sake of interpretability and reduced complexity, explicit integration
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should be used whenever possible. For example, the IRES activity models (Chapter 5)
could be integrated within the TASEP model (Chapter 4), in which rates of codon
elongation, translation initiation and internal ribosome entry are context-dependent
and provided by the corresponding “building block models”. Such a modular approach
is also advantageous from a cost point of view, as constructing several smaller models
would require exponentially less data than constructing the overall model directly.

LARGER DATASETS SHOULD LEAD TO MORE ACCURATE MODELS

Construction of reliable models requires large amounts of high-quality data. However,
most basic research experiments are designed to test a priori hypotheses and do not
generate data of quality or coverage suitable for model construction. For example,
in Chapter 5 we described analysis of a library of 55,000 synthetic sequences of
172nt in length. This is the largest library with measured IRES activity available to
date, however, it represents less than 1

1095 % of all possible sequences of that length.
While datasets with low coverage of the problem space can also be used to derive
predictive models, larger datasets are required for achieving prediction confidence high
enough for model integration, and for model-driven ME and SB that would not require
multiple design-measurement iterations. Ideally, future modelling efforts should be
complemented by (iterations of) data generation to facilitate model construction.

Overcoming current bioinformatic challenges will rely on algorithmic and
methodological improvements of in silico analyses. It will likely also prompt further
technological innovation, which, in turn, is bound to lead to new bioinformatic
challenges and opportunities, thus creating a “flywheel” spinning ever-faster to
accelerate the pace of biological discovery. This positive feedback loop will guarantee a
bright future for bioinformatics and computation biology for the years to come.
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