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2.5.1 Erdős-Rényi graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Ring of cliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.3 The number of clusters in SSBMs . . . . . . . . . . . . . . . . . . . . 19
2.5.4 Evaluation on real-world networks . . . . . . . . . . . . . . . . . . . . 21

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

II Hyperbolic Network Representations 27

3 Hyperbolic Graphs in d +1 Dimensions 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



vi CONTENTS

3.2 Random hyperbolic graph model in d +1 dimensions . . . . . . . . . . . . 31
3.3 Degree distribution and clustering coefficient . . . . . . . . . . . . . . . . . 34
3.4 Connectivity regimes of the RHG . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Cold regime, τ< 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Critical regime, τ= 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.3 Hot regime, τ> 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Limiting cases of the RHG model . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.1 The τ→ 0 limit in the cold regime . . . . . . . . . . . . . . . . . . . . 50
3.5.2 The a →∞ limit: spherical soft random geometric graphs . . . . . . 52
3.5.3 The a →∞, τ→ 0 limit: spherical random geometric graphs . . . . 52
3.5.4 The ζ→∞, τ→∞ limit: hyper soft configuration model . . . . . . . 53
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SUMMARY

Networks are becoming ever more important in today’s highly interconnected society,
from telecommunication networks and social networks to power grids and the Internet.
The field of Network Science seeks to uncover structure within the complex topologies of
networks and the processes that govern their link formation. Many methods and models
in the field are founded on link-formation principles that are driven by similarity, draw-
ing inspiration from social network theory. In this dissertation, we discuss various net-
work representations based on similarity, and we introduce and illustrate an alternative
link formation principle that is based on complementarity.

The first part of this dissertation focuses on clustering the nodes of a network or com-
munity detection. Here, the nodes of a network are partitioned into several clusters and
the objective is to precisely determine the cluster memberships based on only the net-
work topology. Many clustering methods assume that the true number of clusters is
known a priori. In Chapter 2, we investigate how exactly to find this number of clusters
for a given graph. We discuss several modularity maximization and spectral clustering
methods, and we outline how they can be used to find the number of clusters. We com-
pare the performance of several different algorithms by evaluating these methods on
benchmark graph models where the ground truth clusters are known.

In the second part, we explore network representations in the hyperbolic space. In
Chapter 3, we extend the 2-dimensional random hyperbolic graph model to a hyperbolic
space of arbitrary dimensionality. Our rescaling of the model parameters and variables
casts the random hyperbolic graph model of any dimension to a unified mathematical
framework, such that the degree distribution is invariant to the dimensionality of the
space. We analyze the different connectivity regimes of the model and their limiting
cases. In Chapter 4, we describe how hyperbolic graphs are built on a connection prin-
ciple based on similarity, and we identify a class of real-world networks in which the
links are driven by principles of complementarity rather than similarity. We propose a
framework for embedding complementarity-driven networks into hyperbolic space and
we describe the ensuing complementarity random hyperbolic graph model. In Chap-
ter 5, we further investigate the topological properties of the complementarity random
hyperbolic graph.

The third and final part of the dissertation centers on semantic networks, which de-
scribe semantic relations between words or concepts. In Chapter 6, we systematically
analyze the topological properties of a large, multilingual dataset of semantic networks.
Our investigation covers both universal and language-specific structural properties of
these networks. We examine the roles that the connection principles of similarity and
complementarity play in their link formation, and we discuss how a deeper understand-
ing of these organizing principles benefits applications in natural language processing.
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SAMENVATTING

In een steeds nauwer verbonden samenleving worden netwerken, variërend van tele-
communicatienetwerken en sociale netwerken tot energienetten en het internet, almaar
belangrijker. De netwerkwetenschap streeft ernaar structuur te ontdekken binnen de
complexe topologieën van netwerken en de processen die hun verbindingen vormen.
Veel methoden en modellen in dit veld zijn gebaseerd op verbindingsprincipes die ge-
dreven worden door patronen van gelijkenis, ingegeven door de theorie van sociale net-
werken. In dit proefschrift bespreken we verschillende netwerkrepresentaties op ba-
sis van gelijkenis en introduceren we een alternatief verbindingsprincipe gebaseerd op
complementariteit.

Het eerste deel van dit proefschrift richt zich op het clusteren van de nodes van een
netwerk. Hier zijn de nodes van een netwerk opgedeeld in meerdere clusters en het doel
is om de clusterlidmaatschappen nauwkeurig te bepalen op basis van enkel de netwerk-
topologie. Veel clusteringmethoden gaan ervan uit dat het aantal clusters a priori be-
kend is. In Hoofdstuk 2 onderzoeken we hoe we het aantal clusters in een graaf precies
kunnen vinden. We bespreken verschillende methoden voor modulariteitsmaximalisa-
tie en spectrale clustering, en we schetsen hoe deze kunnen worden gebruikt om het
aantal clusters te vinden. We vergelijken de nauwkeurigheid van verschillende algorit-
men door ze te evalueren op grafen waar de werkelijke clusters bekend zijn.

In het tweede deel verkennen we netwerkrepresentaties in de hyperbolische ruimte.
In Hoofdstuk 3 breiden we de 2-dimensionale hyperbolische toevalsgraaf uit naar een
hyperbolische ruimte van arbitraire dimensionaliteit. Onze transformatie van de varia-
belen en modelparameters brengt de hyperbolische toevalsgraaf van arbitrarire dimen-
sionaliteit in een uniform wiskundig raamwerk, zodat de graadverdeling onafhankelijk is
van de dimensionaliteit. We analyseren de verschillende connectiviteitsregimes van het
model en hun limietgevallen. In Hoofdstuk 4 beschrijven we hoe hyperbolische grafen
zijn gebaseerd op een verbindingsprincipe gebaseerd op gelijkenis, en we identificeren
een klasse van netwerken waarin de verbindingen zijn gebaseerd op complementariteit
in plaats van gelijkenis. We introduceren een raamwerk om deze op complementariteit
gebaseerde netwerken in de hyperbolische ruimte in te bedden, en we beschrijven de
resulterende complementaire hyperbolische toevalsgraaf. In Hoofdstuk 5 onderzoeken
we de belangrijkste topologische eigenschappen van dit graafmodel.

Het derde en laatste deel van het proefschrift richt zich op semantische netwerken,
welke semantische relaties tussen woorden of concepten beschrijven. In Hoofdstuk 6
voeren we een systematische analyse uit van de topologische eigenschappen van een
grote, meertalige dataset van semantische netwerken. Ons onderzoek bestrijkt zowel
universele als taalspecifieke eigenschappen van deze netwerken. We onderzoeken de
rollen die de verbindingsprincipes van gelijkenis en complementariteit spelen in de tot-
standkoming van hun verbindingen en bespreken hoe een beter begrip van deze princi-
pes de natuurlijke taalverwerking (NLP) kan verbeteren.

xi





1
INTRODUCTION

I would have written a shorter letter, but I did not have the time.

Blaise Pascal

C OMPLEX networks are ubiquitous in today’s increasingly interconnected world. With
the rise of modern technologies such as the Internet, distances in our social net-

works have become shorter, and understanding the structures of the networked systems
that connect us has become consistently more important [1]. Other real-world examples
of complex networks include biological networks, telecommunication networks, trans-
portation networks, brain networks, and power grids [2]. Typically, networks are sep-
arated into the topology of the underlying graph and the process that runs on top of
the network [3].

Networks are said to be complex because they are not straightforward to model, due
to the numerous interdependencies and non-linearities they contain. The field of Net-
work Science aims to find structure in the seemingly chaotic nature of network topolo-
gies and processes. One notable approach is the study of graph spectra [4], which play a
key role in, for example, the analysis of epidemic spreading [5]. In this dissertation, we
discuss several network representations that are based on principles of similarity, and
we identify and describe an alternative link formation principle that is based on com-
plementarity.

1.1. NETWORK CLUSTERING
Social networks and several other types of networks often consist of communities: groups
of densely connected similar nodes that together constitute the full network [6]. In com-
munity detection, or network clustering, the goal is to recover the community member-
ships given the topology of the graph. Network clustering is an active area of research,
with new approaches still appearing regularly [7, 8].

1
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2 1. INTRODUCTION

There exists a wide range of community detection algorithms: modularity maxi-
mization [9, 10], spectral clustering [4, 11], hierarchical clustering [12], statistical clus-
tering [13–15], attraction-repulsion processes [8] and more [6]. The outcome of a com-
munity detection algorithm relies heavily on the definition of ‘community’, thus making
the clustering problem scientifically ill-posed. How to define a community is driven by
the motivation behind employing community detection: different motivations lead to
different definitions, none of them is the best, but each of them is potentially useful for a
specific goal [16]. Recently, it was reiterated by Fortunato and Newman [7] that commu-
nity detection remains a challenging problem because of the lack of a general agreement
on what is a community. Commonly used definitions of graphs with community struc-
tures are the stochastic block model (SBM) [17, 18] with a Poisson degree distribution,
and the Lancichinetti–Fortunato–Radicchi benchmark [19] with a power-law degree dis-
tribution.

1.2. HYPERBOLIC GEOMETRY
Besides community structures, many large real-world networks exhibit characteristics
such as sparse average degrees, power-law degree distributions, the small-world prop-
erty, and large graph clustering coefficients [1–3]. These topological properties imply a
latent hyperbolic geometry with constant negative curvature underlying the network [20].
Conversely, the random hyperbolic graph (RHG), a graph model where the nodes have
a latent representation in the hyperbolic disk H2, possesses these exact properties [20–
26]. Real-world networks can be mapped to hyperbolic spaces using the RHG as a null
model [27–29]. Such hyperbolic network mappings, or hyperbolic embeddings, find ap-
plications in routing and navigation [27, 30–35], link prediction [28, 36–42], and network
scaling [21, 24, 34], among others [43]. Because RHGs have large clustering coefficients
that do not approach zero in the thermodynamic limit, connected nodes exhibit similar
neighborhoods in the graph, which we refer to as ‘similarity’.

1.3. SEMANTIC NETWORKS
Technological advances in recent years saw a vast increase in the availability of digital
content, thereby amplifying the demand for computers to interpret and process un-
structured texts written by humans. The field of Natural Language Processing (NLP)
aims to confer to computers the capability to answer questions, analyze sentiment, re-
trieve information, and translate texts [44]. Semantic networks, or knowledge graphs,
play a fundamental role in NLP by representing human knowledge in a structured way
as a graph, for example by denoting ‘is-a’ or ‘related-to’ relationships between real-world
concepts [45, 46]. The applications of semantic networks are numerous, as they enable
enhanced Internet search [47], applications of artificial intelligence [48, 49], and digital
assistants [50, 51]. Recent developments in Transformer-based large language models
have brought about a significant leap forward in the effectiveness of computational text
interpretation tasks [52, 53]. As Transformer models do not leverage semantic networks,
they are not yet fully interpretable in their operations. Whereas many successful NLP
algorithms based on semantic networks have been proposed, there have been relatively
few works focusing on the structure of these networks [54, 55].
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1.4. NOTATION
The following notation is used throughout this dissertation. Vectors, multidimensional
points, and matrices are printed in bold, while scalars are printed in Roman. The N ×
1 all-one vector is denoted by u, and the N ×N all-one matrix by J. A graph G consists
of N nodes and L links and is defined by the N ×N adjacency matrix A, where the ele-
ment ai j = 1 if nodes i and j are connected in G , and ai j = 0 otherwise. The degree ki

of a node i is the i -th element of the degree vector k = Au, where the diagonal matrix
∆ = diag(k) contains the vector k on its main diagonal. We denote by 1{x} an indica-
tor function that equals 1 if statement x is true and 0 if it is false. A random variable X
is capitalized, and its expected value is denoted by E [X ], while its variance is denoted
by Var[X ]. In graphs with a community structure, the variable c denotes the number of
communities or clusters.

1.5. DOCUMENT STRUCTURE
This dissertation consists of three parts, which are further divided into chapters.

I. Network Clustering The first part covers methods and implications of clustering
in complex networks or community detection. Chapter 2 discusses various ap-
proaches and models used for partitioning the nodes of a network. In specific, we
discuss several modularity maximization and spectral clustering methods, while
we focus on their ability to find the number of clusters in a graph. We investigate
and compare the performance of several algorithms that estimate the number of
clusters within a network by evaluating these methods on benchmark graph mod-
els such as the SBM and, in addition, several real-world networks.

II. Hyperbolic Network Representations The second part of this thesis explores hy-
perbolic representations of complex networks and related network models. In
Chapter 3, we extend the 2-dimensional random hyperbolic graph model to a hy-
perbolic space of arbitrary dimensionality. We provide a rescaling of the model
parameters that casts the random hyperbolic graph model of any dimension to
a unified mathematical framework, such that the degree distribution is invariant
to the dimensionality of the space. We provide a systematic analysis of the dif-
ferent connectivity regimes and their limiting cases for different dimensionalities
of the hyperbolic space. In Chapter 4, we describe how the standard hyperbolic
graph is built on a connection principle based on similarity, and we remark that
there is a class of real-world networks in which the links are driven by principles
of complementarity rather than similarity. We propose a framework for embed-
ding complementarity-driven networks into hyperbolic space and derive the com-
plementarity random hyperbolic graph model from our minimal complementar-
ity embedding framework. We show how our embedding method improves upon
similarity-based methods in link prediction tasks for complementarity-driven net-
works. Through the embedding of a semantic network of antonyms, we illustrate
how in our geometric embedding framework similarity is a special case of comple-
mentarity. We further investigate the topological properties of the complemen-
tarity random hyperbolic graph in Chapter 5. A good understanding of both the
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similarity and complementarity connection principles is fundamental for under-
standing the geometric and topological properties of complex networks.

III. Semantic Networks The final part of the dissertation focuses on semantic net-
works, examining their topological properties systematically and the significance
of these networks in various applications. In Chapter 6, we study not only the gen-
eral but also the language-specific structural properties of semantic networks. We
show that the connection principles of similarity and complementarity both play a
role in their link formation processes, and we discuss how a better understanding
of these organizing principles can aid applications of natural language processing.



I
NETWORK CLUSTERING





2
DETECTING THE NUMBER OF

CLUSTERS IN A NETWORK

I don’t want to belong to any club that will accept me as a member.

Groucho Marx

Many clustering algorithms for complex networks depend on the choice for the number
of clusters and it is often unclear how to make this choice. The number of eigenvalues lo-
cated outside a circle in the spectrum of the non-backtracking matrix has been conjectured
to be an estimator of the number of clusters in a graph. In this Chapter, we compare the
estimate of the number of clusters obtained from the spectrum of the non-backtracking
matrix with three estimators based on the concept of modularity and evaluate the meth-
ods on several benchmark graphs. We find that the non-backtracking method detects the
number of clusters better than the modularity-based methods for the graphs in our simu-
lation study, especially when the clusters have slightly different sizes. The estimates of the
non-backtracking method are narrowly distributed around the true number of clusters for
all benchmark graphs considered. Additionally, for graphs without a clustering structure,
the non-backtracking method detects exactly one cluster, which is a convenient property
for an estimator of the number of clusters. However, the lack of a well-defined concept of
a cluster prevents sharp conclusions.

This Chapter is based on G. Budel and P. Van Mieghem (2020), Detecting the number of clusters in a network,
Journal of Complex Networks, 8(6), cnaa047 [56].

7
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2.1. INTRODUCTION
The detection of community structures in complex networks has been a popular topic in
network science for many years [6]. Finding the number of communities or the number
of clusters, however, receives comparably little attention. Many community detection
algorithms require the number of communities as an input and their results depend on
the chosen number of communities.

The number of communities found by a given algorithm depends on the definition
of ‘community’. The precise definition of a community is in turn driven by the moti-
vation behind employing community detection: different motivations lead to different
definitions, none of them is the best, but each of them is potentially useful for a specific
goal [16]. Here, we adopt the clustering approach of finding groups of nodes that are
‘similar’ or ‘close’. In the context of complex networks, similarity or closeness between
nodes is often described by the number of links or the weights on the links in weighted
networks. A cluster is then a group of nodes that is densely connected internally, while
sparsely connected to the nodes of other groups. Figure 2.1 exemplifies the definition.

Figure 2.1: A network with 5 densely connected clusters of nodes. The network is drawn using the force-
directed graph visualization algorithm in Matlab [57].

Initially, the research on clustering in complex networks focused on modularity op-
timization, initiated by Newman and Girvan [9, 58, 59]. The concept of modularity is
naturally linked to the definition of the clustering problem: nodes that share more links
than expected are considered to be part of one group, a cluster. While exact optimization
of modularity is computationally intractable [4], many approximate algorithms were
shown to achieve high modularity for some well-known real-world networks. Many
heuristic modularity maximization algorithms do not require the number of clusters as
prior knowledge; they discover the number of clusters in the network during the opti-
mization.

Another popular and accurate type of clustering is spectral clustering. In spectral
clustering, nodes are assigned to clusters based on the values of their corresponding
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components in a subset of the eigenvectors of a matrix representation of the network,
such as the Laplacian. However, most spectral clustering methods require the knowl-
edge of the number of clusters. In real-world networks, the actual number of clusters is
usually unknown and traditionally researchers therefore resorted to guessing or trying a
range of different values.

Recently, a spectral clustering algorithm based on the non-backtracking matrix was
shown to achieve optimal clustering results for graphs generated by the stochastic block
model [60]. Additionally, Krzakala et al. [60] conjectured that the number of real eigen-
values of the non-backtracking matrix H that are separated from the bulk of the eigen-
values is an estimate of the number of clusters in the network. Our contribution consists
of the assessment of the accuracy of the non-backtracking method in comparison with
three modularity-based methods for estimating the number of clusters in a network. We
find that the non-backtracking outperforms the three other methods for all benchmark
graphs considered in this work.

This Chapter is organized as follows. In Section 2.2, we provide a short descrip-
tion of several clustering techniques for complex networks, focusing on modularity op-
timization methods and spectral clustering. We describe the literature related to this
work in Section 2.3. In Section 2.4, we describe the non-backtracking method and three
modularity-based methods for detecting the number of clusters in a network. We com-
pare the four detection methods on benchmark graphs in several simulation experi-
ments and describe the experimental results in Section 2.5. We conclude our research
and reflect upon our findings in Section 2.6.

2.2. CLUSTERING IN COMPLEX NETWORKS

2.2.1. MODULARITY MAXIMIZATION
The modularity of a graph is a measure for the quality of a given partition of a network
based on the number of links between nodes belonging to the same cluster [4]. The mod-
ularity measure m proposed by Newman and Girvan [9] is defined as the difference be-
tween the actual number of intra-cluster links and the expected number of intra-cluster
links if links were to be placed at random. The expected number of links between node i

and node j if links are placed randomly is
ki k j

2L−1 , or, when L is large, approximately
ki k j

2L .
The modularity m is calculated as

m =
N∑

i =1

N∑
j =1

(
ai j −

ki k j

2L

)
1{i and j belong to the same cluster}. (2.1)

A modularity close to 1 indicates a strong modular structure, while a modularity of 0
indicates that the partition is not better than random. Maximizing the modularity for a
number of clusters c larger than two is equivalent to the maximum cut problem, which is
NP-hard [58]. However, Van Mieghem et al. [61] find that it is possible to derive an upper
bound on the modularity measure m for any graph given the true clustering:

m ≤ 1− 1

c
− Linter

L
, (2.2)

with c the true number of clusters in the graph and Linter the total number of inter-cluster
links in the true clustering of the network. Additionally, the N ×N modularity matrix M
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of a network is defined with elements mi j = ai j − ki k j

2L . If we define the N ×c community
matrix S with elements si g to be equal to 1 if node i is in cluster g and 0 otherwise, we
can express the modularity [4] in terms of these matrices:

m = 1

2L

c∑
g =1

N∑
i =1

N∑
j =1

si g mi j s j g = trace
(
ST MS

)
2L

. (2.3)

Several heuristic algorithms that approximately maximize modularity have been pro-
posed. We consider the popular Louvain method [10] and Newman’s iterative bisection
algorithm [59], because they have been shown to achieve high modularity for several
real-world networks.

2.2.2. SPECTRAL CLUSTERING
In spectral clustering, nodes are assigned to clusters based on the values of their cor-
responding components in one or more of the eigenvectors of a matrix representation
of the network. The Laplacian is the most popular matrix representation for spectral
clustering [6]. Fiedler showed that the eigenvector corresponding to the second small-
est eigenvalue µN−1 of the Laplacian Q can be used to obtain a bipartition of a graph
into two equivalent parts [4]. Here, equivalent means equivalent with respect to the sec-
ond smallest eigenvalue’s eigenvector, the Fiedler eigenvector. If a disconnected network
consists of c connected components, then the Laplacian Q will have c eigenvalues that
are equal to zero. The eigenvectors corresponding to these eigenvalues are the trivial all-
ones eigenvectors of the connected components, with entry 1 for nodes that are part of
the corresponding component and entry 0 for nodes that are not part of the component.
The c eigenvectors map the nodes of one connected component onto a single point on
one of the axes in a c-dimensional space. The c eigenvectors can then be used to detect
the component membership of the nodes.

The idea of spectral clustering with the Laplacian Q is that if the graph consists of c
weakly linked subgraphs (e.g., a network with community structure), the smallest c −1
non-zero eigenvalues will still be relatively close to zero. An eigenvector belonging to one
of the c smallest eigenvalues no longer maps the nodes of one subgraph onto a single
point on one of the axes, but rather to a small cloud of points that are still relatively close
to each other [6]. Any clustering algorithm that can identify clusters shaped as clouds
of points in metric space given the true number of clusters c, such as the k-means algo-
rithm, can detect the original cluster memberships in the network. To what extent the
clusters are considered weakly-linked and to what extent spectral clustering works, we
will discuss in the context of detecting the number of clusters with the maximum eigen-
gap property in Section 2.2.3. For matrix representations other than the Laplacian Q,
spectral clustering also works [6].

2.2.3. MAXIMUM EIGENGAP
Consider the N × N adjacency matrix A of a graph G with c equally-sized clusters of
Ng = N /c nodes. The nodes can always be rearranged such that the nodes are ordered
according to the cluster memberships. The Ng ×Ng adjacency matrices Ag of the cluster
subgraphs are then located on the diagonal of the adjacency matrix A and contain only
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intra-cluster links:

A =


A1 B12 . . . B1c

BT
12 A2 . . . B2c
...

...
. . .

...
BT

1c BT
2c . . . Ac

 . (2.4)

We first consider the case where the c clusters are disconnected and the adjacency ma-
trix A in (2.4) is block diagonal with all blocks Bi j = O. The eigenvalues of the matrix A are
the union of the sets of eigenvalues of the blocks Ag and each block Ag has Ng eigenval-
ues λ1(Ag ) ≥ λ2(Ag ) ≥ ·· · ≥ λNg (Ag ). Let the degree distribution of the subgraph g have
expectation E

[
Dg

]
and variance Var

[
Dg

]
. The Perron-Frobenius eigenvalue λ1(Ag ) of

each subgraph g must satisfy:

λ1(Ag ) ≥ E
[
Dg

]√√√√1+ Var
[
Dg

]
(E

[
Dg

]
)2

, (2.5)

as derived in [4]. If the subgraph g has no community structure itself, then the largest
eigenvalue λ1(Ag ) is substantially larger than the other Ng −1 eigenvalues [62, 63]. An
exception to this statement would be when the expected degree E

[
Dg

]
of nodes in the

subgraph g is relatively low. However, in general we have λ1(Ag ) ≫λ2(Ag ) for subgraphs
without a community structure [63]. If indeed λ1(Ag ) ≫λ2(Ag ) and the degree distribu-
tions of the subgraphs g are similar, then the c largest eigenvalues of A are substantially
larger than the other N − c eigenvalues and we observe a large gap. Finding the largest
gap among the sorted eigenvalues of A, the maximum eigengap identifies the number of
clusters c in this case.

Adding the inter-community links to the graph G can be considered as a perturba-
tion of the adjacency matrix A, such that A(ζ) = A+ζB is the adjacency matrix with inter-
community links for a value ζ that is small enough [63, 64]. The symmetric matrix ζB
contains only the inter-community links in the blocks Bi j from (2.4) and has zeros O on
the diagonal. When the perturbed eigenvalues λ(ζ) of A(ζ) are close to the eigenvalues λ
of A, the maximum eigengap is still a good estimator of the number of clusters c. Simi-
larly, when the perturbed eigenvectors x(ζ) are close to the eigenvectors x of A, spectral
clustering with these eigenvectors still works. If ζ is sufficiently small, then the i -th per-
turbed eigenvalue λi (ζ) can be approximated by the first-order approximation of λi (ζ),

λi (ζ) ≈λi +ζxT
i Bxi , (2.6)

and also for the corresponding eigenvector xi (ζ),

xi (ζ) ≈ xi +ζ
N∑

j ̸= i

xT
j Bxi

λi −λ j
x j , (2.7)

as derived in [65]. In the clustering problem, we assume λi ≫ λ j for the c largest eigen-
values λ1(Ag ) of A. Wu et al. [64] therefore propose to write the approximations for the
eigenvectors xi (ζ) of the c largest eigenvalues as

xi (ζ) ≈ xi +ζ
c∑

j ̸= i

xT
j Bxi

λi −λ j
x j + ζ

λi
Bxi , (2.8)
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where the last term of the approximation error is smaller for large λi . Denote by X\{i } the
N × (N −1) matrix of all eigenvectors x j except xi . The approximations are close to the
actual λi (ζ) and xi (ζ) when

|λi −λi+1|− |ζ|
∥∥∥xT

i Bxi

∥∥∥
2
−|ζ|

∥∥∥XT
\{i }BX\{i }

∥∥∥
2
> 0, (2.9)

and

|ζ|
∥∥∥XT

\{i }Bxi

∥∥∥
2
< 1

2

(
|λi −λi+1|− |ζ|

∥∥∥xT
i Bxi

∥∥∥
2
−|ζ|

∥∥∥XT
\{i }BX\{i }

∥∥∥
2

)
, (2.10)

as described in [64, 66].

2.2.4. STOCHASTIC BLOCK MODEL
The stochastic block model (SBM) is a generative random graph model in which the link
probabilities depend on cluster memberships. A realization of the model therefore re-
sults in a graph with a community structure. Clustering algorithms are often evaluated
on SBM graphs. The hardest case for cluster detection is the symmetric SBM (SSBM),
where there are only two different link probabilities: pin for two nodes that belong to the
same cluster, pout for two nodes that belong to different clusters. When the intra-cluster
link probability is larger than the inter-cluster probability, pin > pout, we obtain graphs
that look similar to the graph in Figure 2.1. In SSBM graphs with clusters of equal size,
the clusters are not detectable based on the node degrees alone, because the expected
degree is the same for each node in the graph, irrespective of its cluster membership.

We consider sparse, assortative SSBMs with c clusters of equal size. The SSBM is said
to be sparse and assortative if pin = bin/N and pout = bout/N for two constants bin >
bout > 0 that do not depend on the number of nodes N . In case of equally-sized clusters,
the expected average degree E [D] is a weighted average of the constants:

E [D] = bin + (c −1)bout

c
. (2.11)

Decelle et al. [67] show that there is a regime where no algorithm can detect the clusters
because the block structure is not apparent enough in the thermodynamic limit N →∞.
When the difference |bin −bout| is larger than the detectability threshold,

|bin −bout| > c
√

E [D], (2.12)

it is theoretically possible to detect the clusters by some algorithm. However, for most
algorithms the difference between bin and bout must much be larger than the detectabil-
ity threshold c

p
E [D] to detect the clusters in the sparse case [60]. Decelle et al. [67] also

show that the detectability limit marks a phase transition from the undetectable state to
the theoretically detectable state.

2.3. RELATED WORK
There is not yet a single, generally accepted method that determines the number of clus-
ters in any given network [6, 7, 13]. In absence of a golden standard, there have been
a few works that—at least partly—address the problem of detecting the number of clus-
ters. In many of the papers, the clustering methods are evaluated on real-world networks
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by comparing the results with the presumed underlying clustering or with a bechmark
random graph model.

Shen and Cheng [11] discuss the detection of the number of clusters for spectral clus-
tering using the maximum eigengap property based on several different matrix repre-
sentations of the network and, additionally, based on the covariance matrix of the node
degrees. They evaluate the estimators on a random graph model proposed by Lanci-
chinetti et al. [19] with clusters of different sizes and heterogeneous node degrees. Shen
and Cheng [11] conclude that in graphs with heterogeneous cluster sizes and heteroge-
neous node distributions the maximum eigengap property of the normalized Laplacian
and the covariance matrix estimates the number of clusters best, because the two ma-
trices both correct for heterogeneous node degrees. At the time of their analysis [11],
the non-backtracking matrix had not been introduced for spectral clustering yet. Shea
and Macker [68] try and formalize the selection of the number of clusters based on the
eigengap property of the normalized Laplacian by combining the eigengap property
with statistics of random cuts of the graph.

Another approach to the detection of the number of clusters consists of fitting a sta-
tistical parametric model to the graph and including the number of clusters as one of
the parameters to be estimated. The stochastic block model is often explicitly assumed
as the true underlying model of the graph and then the most likely number of clusters
is estimated using maximum likelihood [13–15]. Given that the true clustering is unob-
served, multiple values for the number of clusters are evaluated based on some criterion,
before the estimated number of clusters is found. Alternatively, the problem of finding
the number of clusters can also be cast in a Bayesian framework [69, 70], in which one
formulates a prior distribution on both the number of clusters and the cluster member-
ships and then finds the a posteriori most likely number of clusters after learning from
some network data. The disadvantage of Bayesian approaches is the computational bur-
den of the required data sampling, which Decelle et al. [67] overcome by proposing a be-
lief propagation algorithm that runs in polynomial time. They argue that their method
is asymptotically exact for the stochastic block model, also in the sparse case.

Krzakala et al. [60] introduced the non-backtracking matrix of Hashimoto [71] in a
spectral clustering algorithm for networks. They conjectured that a spectral clustering
algorithm based on the non-backtracking matrix can detect clusters all the way down to
the detectability limit of the stochastic block model in the sparse case. Krzakala et al. [60]
remark that the number of eigenvalues located outside a circle around the origin in the
complex plane seems to be a good estimator of the number of clusters in the graph.
Given that the bulk of the eigenvalues of the non-backtracking matrix are contained
within a circle around the origin of the complex plane, the number of eigenvalues out-
side that circle yields a clear and unambiguous decision rule for the choice of the number
of clusters.

2.4. DETECTING THE NUMBER OF CLUSTERS
We compare 4 different methods to detect the number of clusters in a network. We com-
pare the estimate obtained by counting the eigenvalues outside the circle in the spec-
trum of the non-backtracking matrix H with 3 different methods based on the concept
of modularity.
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2.4.1. DETECTION METHODS

SPECTRUM OF THE NON-BACKTRACKING MATRIX H
The non-backtracking matrix H is based on the idea of a non-backtracking walk: a walk
that does not turn around and goes back to its starting point immediately after the first
step. Two directed links are backtracking if they both connect the same pair of nodes but
in opposite directions. Two directed links are non-backtracking if one follows after the
other and does not loop back to the starting node of the first link. For example, the two
links ee = i → j and el = i ← j are backtracking, while the two links ee = i → j and el =
j → k are non-backtracking for k ̸= i . In a non-backtracking walk, no two consecutive
links are backtracking. For illustrating non-backtracking walks, consider the example of
the directed graph in Figure 2.2.

A B C

Figure 2.2: A directed graph with 3 nodes and 3 lexicographically ordered directed links e1 = A → B , e2 = A ← B
and e3 = B →C

A walk over the links e1 = A → B and e2 = A ← B immediately returns to its starting node
and the walk is therefore backtracking. A walk over the links e1 = A → B and e3 = B →C
does not immediately return to its beginning node and is therefore non-backtracking.
The latter is a non-backtracking walk of length 2: a non-backtracking walk consisting of
a succession of 2 links. For undirected graphs, each undirected link {i , j } is considered
twice, once for the direction i → j and once for the direction j → i , resulting in 2L bi-
directional links, illustrated by Figure 2.3.

A BA B

Figure 2.3: Representing an undirected link in graph G by two bi-directional links.

The non-backtracking matrix H is then a 2L×2L matrix with elements

hel =
{

1 if ee = i → j , el = j → k and i ̸= k
0 otherwise

, (2.13)

where e, l ∈ {1, . . . , 2L} the set of all bi-directional links and i , j ,k ∈ {1, . . . , N }. Two con-
secutive links ee = i → j and el = j → k are non-backtracking if i ̸= k. If i = k, then
the link ee connects the same two nodes as the link el but in opposite direction and the
link pair (ee ,el ) is backtracking. A non-backtracking walk is a walk in which every pair
of consecutive links is non-backtracking. Similar to the adjacency matrix A, raising the
non-backtracking matrix H to the k-th power counts the number of non-backtracking
walks of length k +1 on the graph. We describe the non-backtracking matrix H in more
detail in Appendix A.1.

Krzakala et al. [60] conjectured that the number of real eigenvalues of the non-back-
tracking matrix H that are separated from the bulk of the eigenvalues indicates the num-
ber of clusters in the network. The bulk of the eigenvalues are located in a circle around
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the origin of the complex plane with radius the square root of the largest eigenvalue,
therefore the number of eigenvalues located outside of the circle indicates the number
of clusters. Figure 2.4 shows the eigenvalues of the matrix H in the complex plane for a
graph on N = 1000 nodes generated by an SSBM with 3 clusters. The largest eigenvalue is
approximately equal to the expected degree of 7 and there are exactly 3 real eigenvalues
located outside the circle. The spectrum of the matrix H indeed shows that the number
of clusters c = 3, in agreement with the conjecture.

Let |λ1(H)| ≥ · · · ≥ |λ2L(H)| denote the eigenvalues of the non-backtracking matrix H,
sorted in descending order according to the modulus. The eigenvalues λl (H) ∈C are the
solutions to the characteristic polynomial (A.1) in Appendix A.1.2. The largest eigenvalue
λ1(H) is a real, non-negative number [4]. The estimate ĉ of the number of clusters is
the number of real eigenvalues λl (H) larger than the square root

√
λ1(H) of the largest

eigenvalue including the largest eigenvalue λ1(H) itself:

ĉ =
2L∑

l =1
1{

Re(λl (H))>
p
λ1(H)∧ Im(λl (H))=0

}. (2.14)

For finding the estimate ĉ of the number of clusters, not all 2L eigenvalues have to be
computed. One first has to find the largest root λ1(H) of the characteristic polynomial
and compute its square root

√
λ1(H). Next, find all real roots larger than

√
λ1(H) with a

numerical procedure. The number of such roots is the estimate ĉ. Moreover, it is even
more efficient to obtain the estimate ĉ by applying the above iterative procedure to the
2N ×2N block matrix H∗ specified in (A.2), Appendix A.1.2. The size of the square non-
symmetric matrix H∗ is of order O

(
N 2

)
. We discuss the computational complexity of the

non-backtracking method in Appendix A.1.4.

LOUVAIN METHOD

The Louvain method is a popular heuristic method aimed at maximizing the modularity
of a graph [10]. The method starts out with N clusters, one for every node. The clus-
ters are then iteratively merged in a two-stage procedure such that the modularity m
increases in every iteration, until the modularity cannot be improved upon anymore.
However, there is no guarantee that the final result is a global modularity maximum. An
estimate of the number of clusters is obtained from the clustering results.

One iteration in the Louvain method consists of two stages. In stage one, each node
i is considered sequentially and possibly multiple times. Blondel et al. [10] compute the
resulting gain in modularity from moving node i to the cluster g of some neighboring
node j as:

∆m =
[∑

in+2
∑

l :Sl g =1 wi l

2L
−

(∑
tot+ki

2L

)2
]
−

[∑
in

2L
−

(∑
tot

2L

)2

−
(

ki

2L

)2]
, (2.15)

where W is the weighted adjacency matrix of the graph with elements wi j , 2L is defined
as 2L = ∑N

i=1

∑N
j=1 wi j is the sum of the weights of all links in the graph, ki = ∑N

l=1 wi l

is the sum of the weights of the links incident to node i ,
∑

in is the sum of the weights
of the intra-cluster links in cluster g ,

∑
tot is the sum of the weights of all links incident

to one of the nodes in cluster g . Node i is moved to the cluster g of the neighboring
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Figure 2.4: The spectrum of the non-backtracking matrix in the complex plane for a graph with N = 1000 nodes
generated by an SSBM with c = 3 clusters of approximately equal size. The real eigenvalues are indicated by
red dots and the eigenvalues with a non-zero imaginary part are indicated by blue dots. The circle containing
the bulk of the eigenvalues is centered around the origin and has a radius equal to the square root of the largest
real eigenvalue. There are 3 real eigenvalues located outside the circle.

node j for which the modularity gain is most positive. If the resulting gain in modularity
is not larger than some small threshold or even negative for all neighboring nodes j , then
the node i remains in its original cluster. In the first iteration, the weighted adjacency
matrix W is simply the unweighted adjacency matrix A, and from the second iteration
onward, we have the weighted adjacency matrix W constructed in the second stage of
the previous iteration. The cluster re-assignment procedure is repeated until there is no
node anymore for which there is a positive gain in the modularity m achievable.

In the second stage of an iteration, a new weighted graph is constructed in which
each node g represents a cluster g resulting from the first stage. In the new graph, the
weight on the link from node g to node h is the sum of the weights of all inter-cluster
links between cluster g and cluster h in the graph of stage 1. The intra-cluster links in
the graph of stage 1 lead to self-loops in the new graph, such that the new graph has the
same modularity m as the graph in stage 1. The newly constructed graph in stage 2 is the
input for stage 1 of the next iteration. The described iterations are repeated until there is
no positive gain in the modularity m achievable anymore.

NEWMAN’S ITERATED BISECTION

To maximize the modularity m, Newman [59] proposes to make recursive splits accord-
ing to the leading eigenvector of the modularity matrix M, which is inspired by the ap-
proach of Fiedler [4]. In the case of c = 2 clusters, clustering is equivalent to choosing
a vector y with elements +1 and −1 that indicate the cluster membership. The vector y
can be written as a linear combination of the orthogonal eigenvectors w1,w2, . . . ,wN of



2.5. RESULTS

2

17

the modularity matrix M, y = ∑N
j=1β j w j , with coefficients β j = yT w j . Invoking the or-

thogonality of the eigenvectors, the modularity m is written as:

m = 1

4L
yT My = 1

4L

N∑
j =1

β2
jλ j (M). (2.16)

Maximizing the modularity m is equivalent to choosing the vector y with cluster mem-
berships proportional to the eigenvectors corresponding to a few of the largest eigen-
values. Newman [59] proposes to perform the bisection by maximizing the term for the
most positive eigenvalue: β1 = yT w1. Since the elements y j of y only take two possible
values, the coefficient β1 is maximized for y j =−1 if (w1) j < 0 and y j =+1 if (w1) j ≥ 0.

For the case of c > 2 clusters, the network is first split in two and then the procedure
is repeated on each of the resulting subgraphs separately. However, simply applying the
same procedure on the block components of the modularity matrix M corresponding to
the subgraphs is not correct, because the block components do not contain inter-cluster
links and the modularity m would change if the inter-cluster links are disregarded. In-
stead, Newman [59] proposes to write the modularity matrix Mg of a cluster g as:

Mg = mi j −
( ∑

k ∈g
mi k

)
δi j , (2.17)

with Kronecker delta δi j equal to 1 if i = j and 0 otherwise. In the iterated bisection
algorithm of Newman [59], the subgraphs are iteratively split in two until the modular-
ity cannot be improved anymore, indicated by an absence of positive eigenvalues of the
modularity matrix Mg of the subgraph. The stopping criterion is evaluated for each sub-
graph separately, therefore the resulting number of clusters can be any number greater
than or equal to 1 and is not necessarily a multiple of 2. The algorithm provides an esti-
mate of the number of clusters and the corresponding clustering results too.

EIGENGAP MODULARITY MATRIX M

We estimate the number of clusters c by the maximum eigengap of the modularity ma-
trix M as described for the adjacency matrix A in Section 2.2.3. Let the eigenvalues of the
modularity matrix M be sorted in descending order: λ1(M) ≥ λ2(M) ≥ ·· · ≥ λN (M). The
eigenvalues of the modularity matrix M and the adjacency matrix A are interlaced:

λ1(A) ≥λ1(M) ≥λ2(A) ≥λ2(M) ≥ ·· · ≥λN (A) ≥λN (M), (2.18)

as described in [4]. The maximum eigengap property then maximizes the difference
λi−1(M)−λi (M) in the sequence of N eigenvalues as

ĉ = argmax
i

(λi−1(M)−λi (M)), i = 2, . . . , N , (2.19)

with ĉ the resulting estimate of the number of clusters c.
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Figure 2.5: The estimated number of clusters of the largest connected component for ER graphs Gp (N ) with

N = 1000 nodes and different link densities p. Each point in the plots represents an average over 104 realiza-
tions. The vertical dashed line indicates the connectivity threshold pc for an ER graph with N = 1000 nodes.

2.5. RESULTS

2.5.1. ERDŐS-RÉNYI GRAPHS

We evaluate the cluster detection methods on Erdős-Rényi (ER) random graphs with dif-
ferent link densities in Figure 2.5. An ER random graph features no clustering structure
in expectation, but in individual realizations some clustering structure might be present
due to randomness. The non-backtracking method finds on average one single cluster
in the ER graph for each of the link density values. The Louvain method and the mod-
ularity eigengap method find a higher, constant number of clusters on average, while
Newman’s iterated bisection method finds a lower number of clusters as the link den-
sity increases. The non-backtracking method detects 1 cluster in absence of a clustering
structure, which is a convenient property for an estimator of the number of clusters. f

2.5.2. RING OF CLIQUES

We evaluate the cluster detection methods on a ring of c cliques, similar to the eval-
uation method of Fortunato and Barthélemy [72]. Each clique is the complete graph
KNg with Ng nodes and we connect neighboring cliques by a single link. The set-up is
a seemingly easy clustering problem, but Fortunato and Barthélemy [72] illustrate the
resolution limit of modularity optimization methods by showing that for a ring of c >p

L
cliques, the modularity m is maximized for c/2 clusters that consist of 2 cliques each.
We choose a set-up where each cluster has relatively many nodes and links, therefore we
have the opposite: c <p

L. The complete graph KNg has the largest possible spectral gap
between the two largest eigenvalues.

Figure 2.6 shows the estimated number of clusters for our experiment. Intuitively, a
cluster detection method is expected to find as many clusters as there are cliques. The
non-backtracking method estimates the correct number of clusters (cliques) in almost
every instance, while Newman’s iterated bisection and the modularity eigengap method
are close on average. Surprisingly, the Louvain method finds exactly twice the number
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Figure 2.6: The estimated number of clusters for a ring of c cliques, where each clique is the complete graph
K100 with Ng = 100 nodes. The entire graph has N = Ng ·c = 100c nodes and two neighboring cliques in the ring
are connected by a single link. The 45◦ line maps the true number of clusters (cliques) to the estimated number
of clusters on a 1:1 scale, the estimates of an ideal estimator would be positioned close to the 45◦ line. For each
point in the graph, we randomize the order of the nodes 20 times and average over these 20 estimations.

of cliques in every instance. Inspecting the Louvain clustering results reveals that the
method subdivides each clique into two smaller clusters. The clustering results of the
Louvain method are therefore almost equivalent to the partition where each clique is a
cluster, but the detected number of clusters is not the intuitively expected number.

2.5.3. THE NUMBER OF CLUSTERS IN SSBMS

CLUSTERING IN THE EIGENVECTORS OF THE MODULARITY MATRIX M
First, we inspect if and how the clustering pattern appears in the eigenvector compo-
nents of the modularity matrix for a network generated by an SSBM with N = 1000 nodes
and average degree E [D] = 7. Figure 2.7 shows the components of the first eigenvector
w1 versus the components of the second eigenvector w2 for two graphs generated by SS-
BMs with c = 3 clusters. For the network in Figure 2.7(a), the difference bin −bout = 19
is well above the detectability threshold in (2.12) of 7.94. The objects corresponding to
the nodes of a single cluster are clearly cluttered and they are well separated from the
objects corresponding to the nodes of other clusters. For the graph in Figure 2.7(a), a
spectral clustering algorithm based on the first two eigenvectors would successfully de-
tect the cluster memberships of the majority of the nodes. For the graph in Figure 2.7(b)
the difference bin −bout = 11 is closer to the detectability threshold and the objects cor-
responding to the nodes of the different clusters now show significant overlap. Even
though a spectral clustering algorithm would now classify fewer nodes correctly, there
are still three (overlapping) clouds of points visible. The detection of the number of clus-
ters through the maximum eigengap is potentially still possible.

CLUSTERS OF EQUAL SIZE

Figure 2.8 shows the estimated number of clusters for networks generated by SSBMs
with 2, 3, 4, 10, and 20 equally-sized clusters. In each panel, from left to right the num-
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Figure 2.7: Scatter plots of the components of the second eigenvector w2 versus the first eigenvector w1 of
the modularity matrix for two different graphs, both with N = 1000 nodes and generated by SSBMs with c = 3
clusters with (a) bin = 19 2

3 , bout = 2
3 and (b) bin = 14 1

3 , bout = 3 1
3 . The parameters bin and bout are chosen such

that the expected average degree E [D] = 7 in both networks and that they only differ through the difference
bin−bout, for which the theoretical detectability threshold in (2.12) is 7.94. The colors and shapes of the objects
indicate the true cluster memberships.

ber of intra-cluster links increases with respect to the number of inter-cluster links, while
keeping the average degree constant. The contrast of the clusters becomes stronger as
the difference bin −bout increases and the detection of clusters becomes easier. On the
left side of the detectability threshold, all methods appear to have their own default guess
for the number of clusters. The non-backtracking method and the modularity eigengap
find the correct number of clusters already slightly above the detectability threshold for
graphs with a lower number of clusters in Figures 2.8(a-c). Newman’s iterated bisection
method finds the correct number of clusters, but much higher above the detectability
threshold than the first two methods. The Louvain method does not find the correct
number of clusters. However, inspection of the actual clustering results from the Lou-
vain method reveals that the true clusters are found, but they are subdivided into two or
more clusters, similar to the ring of cliques in Figure 2.6. For the SSBMs with a higher
number of clusters c in Figures 2.8(d-e), the results are similar to the results for the low
number of clusters. The difference is that Newman’s iterated bisection does not find the
correct number of clusters and the modularity eigengap needs the difference bin −bout

to be larger than the non-backtracking method before it detects the correct number of
clusters c.

Figure 2.9 shows the simulated densities of the estimators for the case in Figure 2.8(c)
where the number of clusters c = 4. The three different values bin −bout = {6,14,23} cor-
respond to the left, center, and right of the interval in Figure 2.8(c), respectively. The
estimates of the non-backtracking method are narrowly distributed around the correct
number of clusters for the two cases with the highest contrast of the clusters. Although
the modularity eigengap method on average finds a number close to the true number
of clusters for the case bin −bout = 14, most estimates deviate significantly from the true
number and it seems a coincidence that the average estimated number is close to the
true number of clusters. Combining the three cases in Figure 2.9, the distribution of the
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non-backtracking method is overall the most accurate.

IMBALANCED CLUSTERS

Figure 2.10 shows the estimated number of clusters for a similar experiment as in Fig-
ure 2.8(c), but with 4 clusters of heterogeneous size. The size of one cluster, cluster 1, is
set to deviate from the sizes of the other clusters to assess the impact of imbalancedness.
For example, in Figure 2.10(d) the first cluster contains N1 = 400 nodes and the other
three clusters contain N2 = N3 = N4 = 200 nodes each. In Figure 2.8(c), cluster 1 and the
other three clusters have 250 nodes each. How far the size N1 deviates from the value
250 indicates the degree of imbalancedness. Already when the clusters are slightly im-
balanced, Figures 2.10(b-c), the modularity eigengap fails to detect the right number of
clusters c. The graphs in Figure 2.10(a) are recognized as graphs with 3 clusters by the de-
tection methods and the imbalancedness appears to be too strong. In Figure 2.10(e), the
modularity eigengap method seemingly detects the number of clusters perfectly. How-
ever, when comparing Figure 2.10(e) with the other figures, it seems more likely that the
imbalancedness is too strong and that none of the methods can detect the clustering
structure. For the graphs generated by the SSBMs of Figures 2.10(a,e) one could also ar-
gue that the graphs actually have 3 clusters and 1 cluster respectively. A hard definition
of the concept of a cluster would be required to make stronger statements.

Table 2.1: Detected number of clusters for 5 real-world networks.

Detected number of clusters c
Non-back-
tracking

Modularity
eigengapNetwork N L Louvain Newman

Zachary karate 34 78 2 6 4 1
Political books 105 441 3 4 4 2
Facebook 347 2,519 8 26 18 2
NetSci 1,589 2,742 23 401 300 2
ArXiv Hep-Ph 9,877 25,988 83 446 68 2

2.5.4. EVALUATION ON REAL-WORLD NETWORKS

We evaluate the 4 methods for detecting the number of clusters c on several real-world
networks commonly used in community detection. Table 2.1 shows the detected num-
ber of clusters for Zachary’s karate club network [73], a network of political books sold
by Amazon1, a social circle network from Facebook [74], a co-authorship network for
publications in network science [75] and a collaboration network of the Arxiv High En-
ergy Physics Theory category [76]. The detected number of clusters c differs significantly
across the four different methods. The definition of a cluster indeed appears to depend
on the method. It is difficult to make statements about the validity of the methods based
on these results, since the ground truth is not known. The results of the modularity
eigengap are not useful, since the detected number of clusters does not seem to depend

1Unpublished, obtained from http://www-personal.umich.edu/∼mejn/netdata/.

http://www-personal.umich.edu/~mejn/netdata/
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much on the network structure. Potentially the modularity eigengap method fails be-
cause the clusters in real networks are often not of equal sizes, since we know from the
simulation experiment in Section 2.5.3 that the modularity eigengap does not work well
for clusters of different sizes. The non-backtracking method finds a lower number of
clusters c than the Louvain method and Newman’s iterated bisection for most networks.

2.6. CONCLUSION
This work considers the detection of the number of clusters in a graph. Many clustering
methods require the number of clusters as an input and their results depend on the cho-
sen number of clusters. Partly also due to the lack of a clear definition of the concept of
a cluster, the precise number of clusters in a graph is debatable.

We have compared the estimates based on the non-backtracking matrix with several
estimators based on the concept of modularity. We find that the number of eigenvalues
of the non-backtracking matrix located outside a circle in the complex plane is an ex-
cellent estimator of the number of clusters in sparse graphs where the clusters are not
distinguishable based on differences in the node degrees alone. For graphs without a
clustering structure, the non-backtracking method detects one single cluster, which is
a convenient property for an estimator of the number of clusters. We also find that the
detection based on the maximum eigengap of the modularity matrix performs similarly
to the non-backtracking method for equally-sized clusters, but the performance of the
modularity eigengap method breaks down already when the clusters are slightly imbal-
anced. The estimates of the non-backtracking method are narrowly distributed around
the true number of clusters for the benchmark graphs. In conclusion, the method based
on the eigenvalues of the non-backtracking matrix indeed yields an unambiguous deci-
sion rule for the choice of the number of clusters.

The non-backtracking matrix is, however, an asymmmetric matrix and many of its
eigenvalues are complex, making the non-backtracking method spectrally and concep-
tually difficult. The computational complexity can be reduced by calculating the spec-
trum of H∗ in (A.2) from a quadratic eigenvalue equation based on the adjacency matrix.
Moreover, for obtaining the estimate of the number of clusters, only the few largest, real
eigenvalues have to be computed, reducing the computational complexity further. The
computation time of only a few large eigenvalues of the non-backtracking matrix scales
approximately linearly with the number of nodes N in the network.

The problem of detecting the number of clusters in a graph remains a difficult prob-
lem because of the lack of a hard definition of the concept of a cluster. However, we find
that when loosely defining a cluster as a group of densely connected nodes, the number
of eigenvalues of the non-backtracking located outside a circle in the complex plane is a
good estimator of the number of clusters.
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Figure 2.8: The estimated of number of clusters for graphs generated by SSBMs of N = 1000 nodes and c clus-
ters with (a) c = 2, (b) c = 3, (c) c = 4, (d) c = 10 and (e) c = 20. For an SSBM with a given number of clusters c,
we vary the difference bin −bout while keeping the expected average degree constant at E [D] = 7. Each point
in the plots represents an average over 104 realizations. The vertical dashed line indicates the theoretical de-
tectability limit of the SSBM.
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Figure 2.9: Histograms of the estimates of the number of clusters c by the four different methods for graphs
generated by SSBMs with c = 4 clusters. The values in (a) bin −bout = 6, (b) bin −bout = 14 and (c) bin −bout =
23 correspond to the left (a), center (b) and right (c) of the interval of the experiment in Figure 2.8(c). The
estimated probabilities are obtained by evaluating the methods on 104 simulated SSBM graphs with N = 1000
nodes. In panel (a), none of the methods performs well since the difference bin −bout is below the theoretical
detectability limit in this case. In panel (c), both the non-backtracking method and the modularity eigengap
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completely.
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Figure 2.10: The estimated number of clusters for graphs generated by SSBMs of N = 1000 nodes subdivided
into 4 imbalanced clusters. The size N1 of cluster 1 is set to deviate from the sizes of the other three approx-
imately equally sized clusters, with (a) N1 = 100, (b) N1 = 200, (c) N1 = 350, (d) N1 = 400 and (e) N1 = 700.
The deviation of the size N1 from the value 250 indicates the degree of imbalancedness. We vary the difference
bin−bout exactly like in Figure 2.8(c) for comparability, but because of the imbalanced cluster sizes the average
degree E [D] is not equal to 7 anymore. Each point in the plots represents an average over 104 realizations.
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HYPERBOLIC GRAPHS IN

d +1 DIMENSIONS

They think that intelligence is about noticing things that are relevant;
in a complex world, intelligence consists of ignoring things that are irrelevant.

Nassim Nicholas Taleb

We consider random hyperbolic graphs in hyperbolic spaces of any dimension d +1 ≥ 2.
We introduce a rescaling of the model parameters that casts the random hyperbolic graph
model of any dimension to a unified mathematical framework, leaving the degree distri-
bution invariant with respect to the dimension. Unlike the degree distribution, clustering
does depend on the dimension, decreasing to 0 at d →∞. In this Chapter, we analyze all
of the other limiting regimes of the model, and we describe our software package that gen-
erates random hyperbolic graphs and their limits in hyperbolic spaces of any dimension.

This Chapter is based on G. Budel, M. Kitsak, R. Aldecoa, K. Zuev and D. Krioukov (2024), Random hyperbolic
graphs in d +1 dimensions, arXiv preprint arXiv:2010.12303 [77].
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3.1. INTRODUCTION

Random hyperbolic graphs (RHGs) [20, 78] are a latent space network model [79, 80], in
which the latent space is the hyperbolic planeH2: nodes are random points on the plane,
while connections between nodes are established with distance-dependent probabili-
ties. RHGs reproduce many structural properties of real networks including sparsity,
self-similarity, power-law degree distribution, strong clustering, small worldness, and
community structure [20–24]. They are also exponential random graphs with just two
sufficient statistics—the number of links and the sum of their hyperbolic lengths [81].
Using the RHG model as a null model, one can map real networks to hyperbolic spaces [27–
29], the applications of which include routing and navigation [27, 30–35], link predic-
tion [28, 36–42], network scaling [21, 24, 34], semantic analysis [48, 82–84], and many
others [43]. Refer to Appendix B.1 for the main definitions and degree distribution of the
2-dimensional RHG.

While 2-dimensional RHGs have been studied extensively in the literature, their higher-
dimensional generalizations have not received a lot of attention. Here, we aim to fill in
this gap by offering a systematic analysis of the RHG model in a hyperbolic space Hd+1

of arbitrary dimensionality d +1 ≥ 2. Apart from purely academic interest, our work is
inspired by several practical questions. Hyperbolic spaces expand exponentially for any
dimension d + 1 ≥ 2. Thus, intuitively, RHGs should have similar topological proper-
ties regardless of the dimensionality of their latent hyperbolic spaces. We aim to verify
this intuition here. Second, the dimensionality of the latent space has been shown to
affect the accuracy of graph embedding tasks [85]. Finally, one of the most recent stud-
ies suggests that the dimensionality of the hyperbolic space allows one to generate more
realistic and diverse community structures [86].

Many related results were obtained recently. RHGs are equivalent to geometric inho-
mogeneous random graphs (GIRGs), as mentioned in [20] and formalized in [87]. This
GIRG formulation is followed in [81, 88–90], where the small-world, clustering coeffi-
cient, and other properties of GIRGs are analyzed for any dimension d . Yang and Ride-
out [91] follow the hyperbolic formulation and provide rigorous mathematical deriva-
tions of the degree distributions and degree correlations of the high-dimensional RHG
model. The related popularity-similarity optimization (PSO) model has recently been ex-
tended to arbitrary dimensionality d +1 ≥ 2 in [92]. Whereas RHGs are a static network
model, the (d + 1)-dimensional PSO model is a growing network model in hyperbolic
space that possesses similar structural properties.

In this Chapter, we conduct a systematic analysis of the structural properties of RHGs
and their limiting regimes, which is organized as follows. In Section 3.2, we define the
RHG model in hyperbolic spacesHd+1 of any dimension d+1 ≥ 2. We present a rescaling
of model parameters that renders the degree distribution invariant with respect to d in
Section 3.3, focusing on the three connectivity regimes—cold, critical, and hot—in the
model, Section 3.4. In Section 3.5, we analyze the limiting regimes of the model when
its parameters tend to their extreme values. Section 3.6 introduces our software package
that generates RHGs and their limits for any d , generalizing the d = 1 generator in [93].
The concluding remarks are in Section 3.7.
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3.2. RANDOM HYPERBOLIC GRAPH MODEL IN d+1 DIMENSIONS

A random hyperbolic graph (RHG) in the (d + 1)-dimensional hyperbolic space Hd+1

on N nodes is defined as follows. Each of the N nodes of an RHG corresponds to a
point x in Hd+1. The points are the components of the multivariate random variable
X = (X0, X1, . . . , Xd ), which are independently and identically distributed according to a
distribution FX(x) prescribed by the model. The links between node pairs in an RHG are
also independently and identically distributed with a distribution FA(d), which is a func-
tion of the distances d inHd+1. The connection probability pi j between nodes i and j is
pi j = FA

(
d

(
xi ,x j

))
, where d

(
xi ,x j

)
is the distance between the points xi and x j inHd+1.

The (d +1)-dimensional RHG model, as a result, is fully defined by its latent spaceHd+1,
coordinate distribution FX(x), and the connection probability distribution FA(d).

To justify our choices for the distributions FX(x) and FA(d), we first recall the def-
inition of the d-dimensional hyperbolic space and its basic geometric properties. To
this end, we consider the upper sheet of the (d +1)-dimensional hyperboloid of curva-
ture K =−ζ2

x2
0 −x2

1 − ...−x2
d+1 =

1

ζ2 , x0 > 0, (3.1)

in the (d +2)-dimensional Minkowski space with metric

ds2 =−dx2
0 +dx2

1 + ...+dx2
d+1. (3.2)

The spherical coordinate system on the hyperboloid (r,θ1, ...,θd ) is defined by

x0 =1

ζ
coshζr,

x1 =1

ζ
sinhζr cosθ1,

x2 =1

ζ
sinhζr sinθ1 cosθ2, (3.3)

...

xd =1

ζ
sinhζr sinθ1... sinθd−1 cosθd ,

xd+1 =
1

ζ
sinhζr sinθ1... sinθd−1 sinθd ,

where r > 0 is the radial coordinate and (θ1, ...,θd ) are the standard angular coordinates
on the unit d-dimensional sphere Sd .

The coordinate transformation in (3.3) yields the spherical coordinate metric in the
(d +1)-dimensional hyperbolic space Hd+1

ds2 = dr 2 + 1

ζ2 sinh2 (ζr )dΩ2
d , (3.4a)

dΩ2
d = dθ2

1 + sin2(θ1)dθ2
2 +·· ·+ sin2(θ1) . . . sin2(θd−1)dθ2

d , (3.4b)



3

32 3. HYPERBOLIC GRAPHS IN d +1 DIMENSIONS

resulting in the volume element in Hd+1:

dV =
(

1

ζ
sinhζr

)d

dr
d∏

k =1
sind−k (θk )dθk . (3.5)

The distance di j between two points i and j in Hd+1 is given by the hyperbolic law
of cosines:

coshζdi j = coshζri coshζr j − sinhζri sinhζr j cos∆θi j , (3.6)

where ∆θi j is the angle between points i and j :

cos(∆θi j ) =cosθi ,1 cosθ j ,1 + sinθi ,1 sinθ j ,1 cosθi ,2 cosθ j ,2 + . . .

+ sinθi ,1 sinθ j ,1... sinθi ,d−1 sinθ j ,d−1 cosθi ,d cosθ j ,d

+ sinθi ,1 sinθ j ,1... sinθi ,d−1 sinθ j ,d−1 sinθi ,d sinθ j ,d , (3.7)(
θi ,1, ...,θi ,d

)
and

(
θ j ,1, ...,θ j ,d

)
are the coordinates of points i and j on Sd .

For sufficiently large values of ζri and ζr j , the hyperbolic law of cosines in (3.6) is
closely approximated by

d̃i j = ri + r j + 2

ζ
ln

(
sin(∆θi j /2)

)
, (3.8)

like in the 2-dimensional case (B.6). The hyperbolic ball Bd+1 of radius R > 0 is defined
as the set of points with the radial coordinates

r ∈ [0,R]. (3.9)

The nodes of an RHG are points inBd+1 selected independently at random with mul-
tivariate density fX(x) ≡ fX0 (r ) fX1 (θ1) . . . fXd (θd ), where

fX0 (r ) = [sinh(αr )]d /Cd , α≥ ζ/2, (3.10a)

Cd ≡
∫ R

0
[sinh(αr )]d dr, (3.10b)

fXk (θk ) = [sin(θk )]d−k /Id ,k , k = 1, . . . , d , (3.10c)

Id ,k ≡
∫ π

0
[sin(θk )]d−k dθk =p

π
Γ[ d−k+1

2 ]

Γ
[

1+ d−k
2

] , k < d , (3.10d)

Id ,d ≡ 2π. (3.10e)

In other words, the points are uniformly distributed on the unit sphere Sd with respect
to their angular coordinates. In the special case of α = ζ, the points are also uniformly
distributed in Bd+1.

Pairs of nodes i and j are connected independently with connection probability

pi j = FA
(
di j

)= 1

1+exp
(
ζ
(
di j −µ

)
/2T

) , (3.11)
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whereµ> 0 and T > 0 are model parameters and di j is the distance between points i and
j in Bd+1, given by (3.6). We refer to parameters T and µ as temperature and chemical
potential, respectively, using the analogy with the Fermi-Dirac statistics. We note that
the factors of 2 and ζ in (3.11) are to agree with the 2-dimensional RHG that corresponds
to d = 1, Appendix B.1.

Thus, the RHG is formed in a three-step network generation process:

1. Randomly select N points in Bd+1 with distribution FX(x) in (3.10a-3.10e).

2. Calculate distances in Bd+1 between all node pairs (i , j ) using (3.6).

3. Connect node pairs (i , j ) independently at random with distance-dependent con-
nection probabilities pi j = FA

(
di j

)
, prescribed by (3.11).

Taken together, (d +1)-dimensional RHGs are fully defined by 6 parameters: the prop-
erties of the hyperbolic ball, R and ζ; the number of nodes N ; the radial component of
node distribution α; the chemical potential µ and the temperature T . Figure 3.1 visual-
izes an RHG for d = 2.

RHG

1

1 2

2

3

3

3

, ,1 2r

<
>d

d
ij R

Rij

θ1

θ2

r

Figure 3.1: A visualization of an RHG for d = 2 in B3. The spherical coordinates (r,θ1,θ2) of a point in B3 are
shown. A subgraph of 3 nodes is shown with geodesics between the nodes. Node pairs (1,2) and (2,3) are
connected with high probability because d12 < R and d23 < R (green), while node pair (1,3) is disconnected
with high probability because d23 > R (red).
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Only four parameters, however, {N ,α,T,R} are independent. It follows from (3.6) that
the negative curvature ζ is merely a rescaling parameter for the distances di j , and can
be absorbed into the radial coordinates r by the appropriate rescaling. The chemical po-
tential µ controls the expected number of links and the sparsity of the resulting graphs.
We demonstrate below that the sparsity requirement uniquely determines R and µ as a
function of the number of nodes N , R = R(N ), µ=µ(N ).

3.3. DEGREE DISTRIBUTION AND CLUSTERING COEFFICIENT
The structural properties of an RHG can be computed by making use of the hidden vari-
able framework of Boguñá and Pastor-Satorras [94], by treating the node coordinates as
hidden variables. We begin by calculating the expected degree of a node l which is lo-
cated at a point xl =

(
rl ,θ1,l , ...,θd ,l

)
,

E [D |X = xl ] = (N −1)
∫

dxk fXk (xk )

1+e
ζ(dl k−µ)

2T

. (3.12)

The symmetry in the angular distribution of points ensures that the expected degree
of the node depends only on its radial coordinate rl and not on its angular coordinates,
E [D |X = x] = E [D |X = (rl ,0, ...,0)] ≡ E [D |X0 = rl ]. This allows us to integrate out d an-
gular coordinates in (3.12).

We also note that the choice of the radial coordinate distribution given by (3.10a)
with α ≥ ζ/2 results in most of the nodes having large radial coordinates, ri ≈ R ≫ 1.
This fact allows us to approximate the hyperbolic distances using (3.8):

E [D |X0 = rl ] =
∫ R

0

∫ π

0

(N −1) fX0 (r )dr fX1 (θ1)dθ1

1+
[

eζ(r+rl−µ)
(
sin

(
θ1
2

))2
] 1

2T

. (3.13)

To further simplify our calculations, we perform the following change of variables,

X0 ≡ dζ

2
X0, (3.14)

and we rescale the model parameters,

R = dζ

2
R (3.15a)

m= dζ

2
µ, (3.15b)

τ= dT, (3.15c)

a = 2α

ζ
. (3.15d)

such that the transformed radial coordinate r = 1
2 dζr follows the distribution FX0 (r)

with probability density function

fX0 (r) = a

Cd

[
sinh

(ar

d

)]d
, 0 ≤ r≤R, (3.16)
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where Cd is defined in (3.10b). In terms of the transformed variable and the rescaled
parameters, the connection probability is

pi j = 1

1+e
ri +r j −m

τ

[
sin

(
∆θi j

2

)] d
τ

, (3.17)

while (3.13) now reads

E [D |X0 = rl ] =
∫ R

0

∫ π

0

(N −1) fX0 (r)dr fX1 (θ1)dθ1

1+e
r+rl −m

τ

[
sin

(
θ1
2

)] d
τ

. (3.18)

In our analysis, we operate with R ≫ 1 and a > 1. In this case, most nodes are character-
ized by large r values and the probability density fX0 (r) is well-approximated as

f̃X0 (r) = aea(r−R), (3.19)

such that fX0 (r) ≈ f̃X0 (r) for r ∈ [0, R]. The function f̃X0 (r) in (3.19) is only approximately
a proper probability density function under the assumptions of R ≫ 1 and a > 1, as∫ R

0
f̃X0 (r)dr= 1−e−aR ≈ 1. (3.20)

The expected degree of an arbitrary node in the graph is given by

E [D] =
∫ R

0
dr fX0 (r)E [D |X0 = r] , (3.21)

and the degree distribution density of an RHG can be expressed as

Pr[D = k] =
∫ R

0
dr fX0 (r)Pr[D = k |X0 = r], (3.22)

where Pr[D = k |X0 = r] is the conditional probability that a node with radial coordinate r
has degree k.

Like in the 2-dimensional case in Appendix B.1, for sparse graphs, the density Pr[D =
k |X0 = r] can be replaced by its Poisson approximation:

Pr[D = k |X0 = r] ≈ 1

k !
e−λ(r) [λ(r)]k , (3.23)

with the rate λ(r) = E [D |X0 = r], see Boguñá and Pastor-Satorras [94]. The resulting
degree distribution Pr[D = k] is approximately a mixed Poisson distribution with the
probability density

Pr[D = k] ≈ 1

k !

∫ R

0
dre−λ(r) [λ(r)]k fX0 (r), (3.24)

with mixing parameter λ(r) = E [D |X0 = r].
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The clustering coefficient cG (i ) of a node i in graph G with degree ki > 1 is defined as
the ratio of the number of connected neighbors y over the maximum possible number
of connected neighbors

cG (i ) = 2y

ki (ki −1)
, (3.25)

as defined in [95]. Since nodes with degrees k = 0 and k = 1 do not form triangles, their
clustering coefficients are undefined. The graph clustering coefficient cG is then the av-
erage of the node clustering coefficients cG (i ) over all nodes with degree k > 1,

cG = 1

N

N∑
i =1

cG (i ). (3.26)

The hidden variable framework [94] allows for expressing the graph clustering coeffi-
cient of the RHG as a multiple integral over triples of hidden variables. Apart from spe-
cial cases of the RHG, however, these integrals do not have simple closed-form solu-
tions [96]. In this work, we therefore restrict ourselves to numerical studies of clustering
coefficients of the RHGs.

3.4. CONNECTIVITY REGIMES OF THE RHG
Depending on the value of the rescaled temperature τ = dT , there exist three distinct
regimes of the RHG: (i) cold regime (τ< 1), (ii) critical regime (τ= 1), and (iii) hot regime
(τ > 1). We provide detailed analyses of the properties of RHGs in these regimes below,
and summarize our findings in Figure 3.16.

3.4.1. COLD REGIME, τ< 1
Since the inner integral in (3.18) does not have a closed-form solution, to estimate E [D |X0 =
rl ] we need to employ several approximations. We note that most nodes have large radial
coordinates, er+rl−m ≫ 1, and the dominant contribution to the inner integral in (3.18)
comes from small θ1 values. This allows us to estimate the integral by replacing sin(θ1)
and sin(θ1/2) with the leading Taylor series terms, as sin(x) = x +O

(
x3

)
, resulting in

E [D |X0 = rl ] ≈ (N −1)πd

d Id ,1

∫ R

0
dr f̃X0 (r) 2F1

(
1,τ,1+τ,−[umax(rl ,r,m)]

1
τ

)
, (3.27)

with

umax(rl ,r,m) ≡
(π

2

)d
erl+r−m, (3.28)

and where 2F1 is the Gauss hypergeometric function, and

Id ,1 ≡
∫ π

0
sind−1(θ1)dθ1 =

p
πΓ

[
d

2

]
/Γ

[
d +1

2

]
, (3.29)

for d > 1, and I1,1 = 2π. In the τ< 1 regime, the hypergeometric function in (3.27) can be
approximated as

2F1

(
1,τ,1+τ,−[umax(rl ,r,m)]

1
τ

)
≈ [umax(rl ,r,m)]−1 πτ

sin(πτ)
, (3.30)
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and E [D |X0 = rl ] and E [D] are then approximately given by:

E [D] ≈ (N −1)
2d

d Id ,1

πτ

sin(πτ)
E

[
e−X0

]2
em, (3.31a)

E [D |X0 = r] ≈ E [D]

E
[
e−X0

]e−r, (3.31b)

where E
[
e−X0

]≡ ∫ R
0 dr fX0 (r)e−r ≈ ∫ R

0 dr f̃X0 (r)e−r, and an explicit expression for E
[
e−X0

]
follows from (3.16),

E
[

e−X0
]
≈ a

a−1

(
e−R −e−aR

)
. (3.32)

Next, we discuss the choice for the rescaled chemical potential m. To do so, we discuss
the leading order behavior of E [D] in the thermodynamic limit. Since a > 1, we neglect
the second term in (3.32) to obtain

E [D |X0 = r] ∼ Nem−r−R , (3.33a)

E [D] ∼ Nem−2R . (3.33b)

Henceforth, we write f (x) ∼ g (x) when limx→∞
f (x)
g (x) = K , where K > 0 is a constant.

We note that E [D |X0 = r] decreases exponentially as a function of r with the largest
expected degree E [Dmax] corresponding to r = 0, while the smallest expected degree
E [Dmin] corresponds to r = R. By demanding that the largest and smallest expected
degrees scale as

E [Dmax] = E [D |X0 = 0] ∼ N , (3.34a)

E [Dmin] = E [D |X0 =R] ∼ 1, (3.34b)

we obtain R ∼ ln N and m=R+λ, where λ is an arbitrary constant.
First, we note that the scaling for R is consistent with our initial assumption of R ≫ 1

for large graphs. We also note that the exact value of the parameter λ is not important as
long as it is independent of the number of nodes N . To be consistent with the originalH2

formulation, Appendix B.1, we set λ= 0, obtaining

m=R = ln

(
N

ν

)
, (3.35)

where ν is the parameter controlling the expected degree of the RHG. Applying the scal-
ing relationships (3.35) to (3.31), we obtain

E [D] ≈ ν2d

d Id ,1

(
a

a−1

)2 πτ

sin(πτ)

[
1−2

(
N

ν

)1−a

+
(

N

ν

)2(1−a)
]

, (3.36)

and

E [D |X0 = r] ≈ N

ν

(
a−1

a

)
E [D]e−r

∞∑
ℓ=0

( ν
N

)ℓ(a−1)
. (3.37)

As seen from (3.36) and Figure 3.2, RHGs in the cold (τ< 1) regime are sparse. Hence-
forth, we call graphs sparse if their expected degree converges to a finite constant in the
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Figure 3.2: The average degree E [D] as a function of the number of nodes N for RHGs in the cold (τ = 0.5)
regime with (a) d = 1 and (b) d = 3. Each panel includes the results for (red) a = 1.1 (γ = 2.1), (green) a = 1.5
(γ = 2.5), and (blue) a = 2.5 (γ = 3.5). Each point is the average of 100 simulations and the error bars display
standard deviations. The solid lines are the theoretical values for average degree E [D] prescribed by (3.18)
and (3.21), and the dashed line is the thermodynamic limit of (3.36). The insets in (a) and (b) correspond to
extended domains of N values for the cases a = 1.1 and a = 1.5. Note that the a = 1.1 case converges to the
asymptotic value at a much slower rate compared to the a = 1.5 and a = 2.5 cases.

thermodynamic limit. The slow convergence in the a = 1.1 case to the asymptotic value
of E [D] = 10 is due to the breakdown of the sin(x) ≈ x approximation in (3.27) for small
a values. Indeed, at small a values a larger fraction of nodes is characterized by small r
values, for which the e(r+rl−m) ≫ 1 assumption fails.

Finally, using (3.23) and (3.24) we obtain the Pareto-mixed Poisson distribution, which
is approximately a power law

Pr[D = k] ≈ aκa
0
Γ[k −a,κ0]

Γ[k +1]
∼ k−(a+1), (3.38)

where Γ[s, x] is the upper incomplete gamma function, and κ0 ≡ ( a−1
a

)
E [D], as con-

firmed by simulations in Figure 3.3.
Hence, the cold regime corresponds to sparse power-law graphs, Pr[D = k] ∼ k−γ,

with γ = a+ 1 ∈ (2, ∞). We note that the degree distribution is a power law if it takes
the form of Pr[D = k] = ℓ(k)k−γ, where ℓ(k) is a slowly varying function, i.e., a function
that varies slowly at infinity, see [97]. Any function converging to a constant is slowly
varying, and, in the case of (3.38), ℓ(k) → aκa

0 as k →∞. The degree distribution is called
scale-free if γ ∈ (2,3).

The special case of a = 1 (γ = 2) is also well defined. In this case the expressions for
E [D] and E [D |X0 = r] given by (3.31) remain valid but E

[
e−X0

]
is now given by

E
[

e−X0
]
≈Re−R . (3.39)
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2d

(
a−1

a

)2 sin(πτ)
πτ , corresponding

to E [D] = 10 in the thermodynamic limit.

The scaling of R =m = ln(N /ν) does not lead to the desired calibration of node de-
grees in the a = 1 case, E [Dmax] ∼ N and E [Dmin] ∼ 1. Instead, the proper scaling for
a = 1 is

R = ln(N /ν) , (3.40a)

m=R− lnR, (3.40b)

resulting in the approximations

E [D] ≈ ν2d

d Id ,1

πτ

sin(πτ)
ln

(
N

ν

)
, (3.41a)

E [D |X0 = r] ≈ N

ν

E [D]

ln(N /ν)
e−r. (3.41b)

In other words, the a = 1 (γ = 2) case corresponds to graphs with E [D] ∼ ln(N /ν), as
confirmed by Figure 3.5. The degree distribution approximately matches a power-law
with γ= 2, as shown in Figure 3.6. The phenomenon that RHGs are no longer sparse in
the a = 1 (γ= 2) case is not specific to the model but is a general property of all scale-free
network models with Pr[D = k] ∼ k−2.

Here, we do not attempt to obtain analytical expressions of the clustering coefficient
for d ≥ 1, as its computation is quite involved already in the d = 1 case [25, 98], but we
study the graph clustering coefficient numerically as a function of dimension and as a
function of network size in Figure 3.4. In the cold regime τ< 1, we observe that cluster-
ing is non-vanishing in the thermodynamic limit, similar to the d = 1 case. The graph
clustering coefficient decreases as a function of dimension d . This property of the clus-
tering coefficient has been observed in other spatial graph models as well, particularly,
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2d

(
a−1

a

)2 sin(πτ)
πτ ,

corresponding to E [D] = 10 in the thermodynamic limit.

in GIRGS [89]. This is because the angular distance distribution between two random
points on a d-sphere [99] approaches the Dirac delta function centered at π/2. As a re-
sult, the role of a node’s angular coordinates in the hyperbolic distances diminishes, and
the network becomes ‘less geometric’ and more similar to the hypersoft configurational
model (HSCM), Section 3.5.6.

GRAPH PROPERTY PERSPECTIVE, τ< 1

From a graph property viewpoint, the RHG is instrumental in generating synthetic net-
works with desired properties. It follows from our analysis that RHGs in the cold regime
τ< 1 are characterized by power-law degree distributions, Pr[D = k] ∼ k−γ, where expo-
nent γ ∈ [2, ∞) is a function of RHG temperature τ and node density parameter a. The ra-
dius R of the hyperbolic ball Bd+1, on the other hand, controls the average degree E [D]
and the sparsity of the resulting graphs. Relying on these results, we can redefine the
RHG model in terms of parameters

{
N ,γ,τ,E [D]

}
.

To generate an RHG in the cold regime with desired graph properties for γ > 2, one
sets the node density parameter a, the chemical potential m, and radius R of Bd+1 to

a = γ−1, (3.42a)

m=R = ln(N /ν) , (3.42b)

where ν is the solution of (3.36), now taking the form of

E [D] = ν2d

d Id ,1

(
γ−1

γ−2

)2 πτ

sin(πτ)

[
1−2

(
N

ν

)2−γ
+

(
N

ν

)2(2−γ)
]

. (3.43)
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N .
The solid lines are the theoretical values for E [D] prescribed by (3.41a), corrected for the radial coordinate

cutoff. The scaling constant is set to ν= 10× d Id ,1

2d
sin(πτ)
πτ .

When γ= 2 in the cold regime, one must set

a = γ−1 = 1, (3.44a)

R = ln(N /ν) , (3.44b)

m=R− lnR, (3.44c)

and ν is obtained as the solution of (3.41a), which now takes the form of

E [D] = ν2d

d Id ,1

πτ

sin(πτ)
ln

(
N

ν

)
. (3.45)

3.4.2. CRITICAL REGIME, τ= 1
In the τ= 1 regime (3.27) and (3.21) can be approximated as:

E [D] ≈ (N −1)2d

d Id ,1
em

[
d ln

(π
2

)
E

[
e−X0

]2 +2E
[

e−X0
]

E
[
X0e−X0

]
−mE

[
e−X0

]2
]

,

(3.46a)

E [D |X0 = r] ≈ (N −1)2d

d Id ,1
em−r

[
d ln

(π
2

)
E

[
e−X0

]
+ (r−m)E

[
e−X0

]
+E

[
X0e−X0

]]
,

(3.46b)

where E
[
X0e−X0

]≡ ∫ R
0 dr fX0 (r)e−r is given by

E
[
X0e−X0

]
=

( a

a−1

)[(
R− 1

a−1

)
e−R + 1

a−1
e−aR

]
. (3.47)

Given that a > 1, we drop the second terms in (3.32) and (3.47) to obtain:

E [D |X0 = r] ≈ (N −1)2d

d Id ,1

( a

a−1

)(
d log

(π
2

)
− 1

a−1
+R−m+ r

)
em−R−r. (3.48)
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binned logarithmically to suppress noise at large k values. To avoid fluctuations associated with large degree
nodes, we have imposed a cutoff in the radial coordinate distribution, removing nodes with r≤ rcut, where rcut
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Similar to the τ< 1 regime, we demand E [Dmax] ∼ N and E [Dmin] ∼ 1 to obtain the scal-
ing relationships for m and R. For E [Dmax] = E [D |X0 = 0] and E [Dmin] = E [D |X0 =R],
we have

E [D |X0 = 0] ∼ N

(
d log

(π
2

)
− 1

a−1
+R−m

)
em−R , (3.49a)

E [D |X0 =R] ∼ N

(
d log

(π
2

)
− 1

a−1
+2R−m

)
em−2R . (3.49b)

Scaling E [D |X0 = 0] ∼ N and E [D |X0 =R] ∼ 1 is achieved when m=R and Re−R ∼ 1
N .

Analogous to the cold regime, we set R−1eR = N
ν , obtaining

m=R =−W−1

(
− ν

N

)
, (3.50)

where W−1(·) is the W−1 branch of the Lambert W function.
Using the scaling in (3.50), we obtain

E [D] ≈ 2d

d Id ,1

( a

a−1

)2
[

1−
(
d log

(π
2

)
− 2

a−1

)(
W−1

(
− ν

N

))−1
]

, (3.51a)

E [D |X0 = r] ≈ N 2d

d Id ,1

( a

a−1

)(
d log

(π
2

)
− 1

a−1
+ r

)
e−r. (3.51b)

Hence, the critical regime corresponds to sparse graphs in the thermodynamic limit,
as confirmed by simulations in Figure 3.7. Note that the convergence to the N → ∞
asymptote of E [D] = 10 is slower than in the cold regime, likely due to relatively large
subleading terms in (3.51a).

The degree distribution of the RHG in the critical regime seems to follow a power-law
with the same exponent as in the cold regime:

Pr[D = k] ∼ k−γ,

γ= a+1,
(3.52)
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Figure 3.7: The average degree E [D] as a function of the number of nodes N for RHGs in the critical (τ = 1)
regime with (a) d = 1 and (b) d = 3. Each panel includes the results for (red) a = 1.1 (γ = 2.1), (green) a = 1.5
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standard deviations. The solid lines are the theoretical values for E [D] prescribed by (3.18) and (3.21) and the
dashed line is the thermodynamic limit of (3.51a). The insets in (a) and (b) correspond to extended domains
of N values. Note that in the critical regime, all 3 cases converge to the asymptotic value at a much slower rate
than in the cold regime, while the a = 1.1 case has not yet converged even within the extended domain of N
values.

as observed from Figure 3.8. This is the case since the tail of Pr[D = k] is dominated by
nodes at small r values. In the critical regime, E [D |X0 = r] ∼ e−r for r values close to 0,
similar to the cold regime, resulting in the same degree distribution exponent γ.
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values for Pr[D = k] prescribed by (3.38). The scaling constant ν is chosen such that ν = 10× d Id ,1

2d

(
a−1

a

)2
,

corresponding to E [D] = 10 in the thermodynamic limit.

To investigate the a = 1 (γ= 2) case of the critical regime, we need to re-examine the
scaling of E [Dmax] and E [Dmin]. To this end, we plug τ= 1 and a = 1 into (3.18), arriving
at the leading-order approximations

E [D |X0 =R] ≈ 2d
(
π
2

)d

Id ,1
N , (3.53a)

E [D |X0 = 0] ≈ 3×2d−1
(
π
2

)d

Id ,1
N R2em−2R . (3.53b)

It is seen from (3.53) that the desired scalings of E [Dmax] = E [D |X0 = 0] ∼ N and E [Dmin] =
E [D |X0 =R] ∼ 1 are obtained if we set R = ln(N /ν), and m=R−2lnR. Then,

E [D |X0 = r] ≈ 2d

d Id ,1

N

[ln(N /ν)]2 e−r

×
[

Li2

[
−

[
ln

(
N

ν

)]2 (π
2

)d
er−R

]
− Li2

[
−

[
ln

(
N

ν

)]2 (π
2

)d
er

]]
, (3.54a)

E [D] ≈ ν2d

d Id ,1

1

[ln(N /ν)]2

[
2Li3

[
−

[
ln

(
N

ν

)]2 (π
2

)d
]

−Li3

[
−

[
ln

(
N

ν

)]2 (π
2

)d
e−R

]
− Li3

[
−

[
ln

(
N

ν

)]2 (π
2

)d
eR

]]
, (3.54b)

and

E [D] ∼ ν2d

d Id ,1
ln

(
N

ν

)
, (3.55)
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2d .

where Lis (x) is the s-th order polylogarithm function. Like in the cold regime, the a = 1
case in the critical regime corresponds to graphs with E [D] ∼ ln(N /ν), as confirmed by
Figure 3.9. Note that there is a disagreement of theoretical and simulated values for d > 1
in Figure 3.9(b), likely caused by the breakdown of the approximation of [sin(θ1/2)]d

in (3.18) and violation of the assumption a > 1 for the approximation of the density func-
tion in (3.19) at a = 1,τ= 1. The density of the degree distribution for a = 1 in the critical
regime is shown in Figure 3.10.

Unlike the cold regime, Figure 3.11(a) shows that the graph clustering coefficient cG

in the critical regime decreases logarithmically with the number of nodes N like in the
d = 1 case [98]. Similar to the cold regime, we observe that the graph clustering coeffi-
cient decreases as the dimension d increases, Figure 3.11(b)

GRAPH PROPERTY PERSPECTIVE, τ= 1
To generate an RHG in the critical regime with desired graph properties for γ > 2, one
must set

a = γ−1, (3.56a)

m=R =−W−1

(
− ν

N

)
, (3.56b)

where ν is determined by (3.51a), which now takes the form of

E [D] = 2d

d Id ,1

(
γ−1

γ−2

)2 [
1−

(
d log

(π
2

)
− 2

γ−2

)(
W−1

(
− ν

N

))−1
]

. (3.57)

When γ= 2 in the critical regime, one sets

R = ln(N /ν) , (3.58a)

m=R−2lnR, (3.58b)
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(
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a
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,

corresponding to E [D] = 10 in the thermodynamic limit.
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while ν is obtained by solving (3.54b), now taking the form of

E [D] = ν2d

d Id ,1

1

[ln(N /ν)]2

[
2Li3

[
−

[
ln

(
N

ν

)]2 (π
2

)d
]

(3.59)

−Li3

[
−

[
ln

(
N

ν

)]2 (π
2

)d
e−R

]
− Li3

[
−

[
ln

(
N

ν

)]2 (π
2

)d
eR

]]
,

3.4.3. HOT REGIME, τ> 1
In the τ> 1 case the (3.18) and (3.21) can be approximated as

E [D] ≈ (N −1)I(d ,τ)em/τE
[

e−X0/τ
]2

, (3.60a)

E [D |X0 = r] ≈ E [D]

E
[
e−X0/τ

]e−r/τ, (3.60b)

where

I(d ,τ) ≡ 1

Id ,1

∫ π

0

sind−1θ1dθ1

sin
(
θ
2

)d/τ
, (3.61)

and

E
[

e−X0/τ
]
≡

∫ R

0
fX0 (r)e−r/τdr≈ aτ

aτ−1

(
e−R/τ−e−a/R

)
. (3.62)

Note that the approximation for E
[
e−X0/τ

]
given by (3.62) is valid for all values of a and

τ since aτ> 1.
Similar to the τ < 1 regime, we demand E [Dmax] ∼ N and E [Dmin] ∼ 1 to obtain the

scaling relationships for m and R:

m=R = τ ln(N /ν) . (3.63)

This scaling in combination with (3.60a) leads in the thermodynamic limit to

E [D] ≈νI(d ,τ)
( aτ

aτ−1

)2
, (3.64a)

E [D |X0 = r] ≈N

ν

(
aτ−1

aτ

)
E [D]e−r/τ, (3.64b)

Pr[D = k] ≈aτ (E [D |X0 =R])aτ Γ[k −aτ]

Γ[k +1]
∼ k−aτ−1, (3.64c)

confirmed by Figure 3.12.
Similar to the cold and critical regimes, RHGs in the hot regime are sparse and have

power-law degree distributions, Pr[D = k] ∼ k−γ. Different from the cold and critical
regimes, degree distribution exponent γ = aτ+ 1 in the hot regime depends on both a
and τ, as confirmed by Figure 3.13.

In the hot regime, we observe that the graph clustering coefficient decays with N as
n−σ, where the value of the exponent σ depends on both d and τ, see Figure 3.14. It
is already known from [98] that the scaling of the clustering coefficient with N in the
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)2
, corresponding to E [D] = 10 in the thermodynamic limit.
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d = 1 case depends on τ. Here we observe that it also depends on the dimension d ≥ 1.
As discussed in Section 3.4.1, the angular distance distribution between two random
points on a d-sphere approaches the Dirac delta function centered at π/2 [99], causing
the graph clustering coefficient to tend to 0 when d grows larger. Figure 3.14(b) confirms
that clustering in the hot regime decreases slowly with dimension d .

GRAPH PROPERTY PERSPECTIVE, τ> 1
To generate an RHG in the hot regime with given average degree E [D] and power-law
exponent γ> 2, one needs to set

a = 1

τ
(γ−1), (3.65a)

m=R = τ ln(N /ν) , (3.65b)

where ν is given by

E [D] = νI(d ,τ)

(
γ−1

γ−2

)2

, (3.66)

and I(d ,τ) is given by (3.61). Because we require a > 1, in this regime the power-law
exponent is bounded γ−1 > τ. Since τ> 1, a power-law exponent γ= 2 is not possible in
the hot regime.

In summary, we find that under the proper change of variables prescribed by (3.15d),
RHGs of any dimensionality can be naturally described by three regimes based on the
rescaled temperature τ, cold regime (0 ≤ τ < 1), critical regime (τ = 1) and hot regime
(τ> 1). In each of these regimes, RHGs of any dimensionality d ≥ 1 exhibit similar topo-
logical properties with respect to the node degrees, Figure 3.16. Our approximations of
E [D |X0 = r] work well in each of the three regimes, see Figure B.2, but there is a small
constant bias in the hot regime. The approximations break down for nodes close to
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the center of Bd+1 (values of r close to 0) across all three regimes. Consistent with the
d = 1 case [20], the graph clustering coefficient in RHGs seems to approach a constant in
the thermodynamic limit when τ< 1, decreases polynomially as the RHG size increases
when τ > 1, and decreases logarithmically as a function of network size in the critical
regime when τ = 1. We find that the graph clustering coefficient in the RHG model de-
creases monotonically as a function of dimension d in each of the cold, critical, and hot
regimes, consistent with findings for the GIRG model. Finally, Figure 3.15 shows that for
any dimension, the graph clustering coefficient is a decreasing function of τ.

3.5. LIMITING CASES OF THE RHG MODEL
In this section, we analyze several important parameter limits of the RHG and show that
they correspond to well-known graph ensembles.

3.5.1. THE τ→ 0 LIMIT IN THE COLD REGIME
The case of τ= 0 is well-defined as the τ→ 0 limit of the cold regime. The T → 0 limit of
the connection probability function in (3.11) is the step function

pi j =Θ
(
µ−di j

)
, (3.67)

such that connections are established deterministically between node pairs separated
by distances smaller than µ. In this case, we have πτ

sin(πτ) → 1 in (3.36), leading to

E [D] ≈ ν2d

d Id ,1

( a

a−1

)2
[

1−2

(
N

ν

)1−a

+
(

N

ν

)2(1−a)
]

, (3.68a)

E [D |X0 = r] ≈ N

ν

(
a−1

a

)
E [D]e−r

∞∑
ℓ=0

( ν
N

)ℓ(a−1)
. (3.68b)

The resulting graphs are sparse and are characterized by a power-law degree distribution
Pr[D = k] ∼ k−γ, γ= a+1, similar to the 0 < τ< 1 case.
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Figure 3.16: Graph properties in terms of the rescaled model parameters in the different RHG regimes.



3

52 3. HYPERBOLIC GRAPHS IN d +1 DIMENSIONS

3.5.2. THE a →∞ LIMIT: SPHERICAL SOFT RANDOM GEOMETRIC GRAPHS
In this limit, the density of the radial coordinate distribution (3.16) degenerates to

fX0 (r) → δ (r−R) . (3.69)

As a result, all nodes are placed at the boundary of the hyperbolic ball Bd+1 with ri =R.
Even though the distances between nodes are still hyperbolic, they are fully determined
by the angles on Sd :

ζdi j = cosh−1
[

cosh

(
2R

d

)2

− sinh

(
2R

d

)2

sin
(
∆θi j

)]
.

Hence, the connection probability pi j is fully determined by the angles ∆θi j :

pi j = 1

1+exp

(
d̃

(
∆θi j

)−m
τ

) , (3.70)

where d̃
(
∆θi j

)≡ dζ
2 di j .

Effectively, in the a →∞ regime nodes are placed at the surface of the unit sphereSd

and connections are made with distance-dependent probabilities on the sphere. Hence,
RHGs in the a →∞ limit are soft RGGs on Sd .

3.5.3. THE a →∞, τ→ 0 LIMIT: SPHERICAL RANDOM GEOMETRIC GRAPHS
If a →∞ and τ→ 0 the connection probabilities in (3.17) become

pi j =Θ(θc −∆θi j ), (3.71)

where θc is the solution to the equation d̃(θc ) =m. Thus, in this limit the RHG becomes
the sharp random geometric graph on Sd (SpRGG).

The expected degree of the SpRGG equals the expected number of nodes that fall
within an angle θc of the θ1 = 0, . . . , θd = 0 point,

E [D] = (N −1)p̃, (3.72)

where the volume of the (d −1)-dimensional sphere of radius θc in Sd is

p̃ =
∫ θc

0 [sin(θ)]d−1 dθ∫ π
0 [sin(θ)]d−1 dθ

. (3.73)

The degree distribution is thus binomial,

Pr[D = k] = Bin
[
N −1, p̃

]
(k), (3.74)

converging to the Poisson distribution with mean E [D] if θc is such that N p̃ → E [D].
Since the Poisson distribution is the γ→∞ limit of the Pareto-mixed Poisson distribu-
tion (3.38), we refer to this regime as the γ→∞ case in Figure 3.16.
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3.5.4. THE ζ→∞, τ→∞ LIMIT: HYPER SOFT CONFIGURATION MODEL
In the ζ→∞ limit, the hyperbolic distances in (3.6) degenerate to

di j = ri + r j , (3.75)

so that the angular coordinates of nodes are ignored in this limit. Further, if τ also tends

to infinity, τ→∞, but such that limζ→∞
ζ
τ = λ > 0, where λ is a constant, then the con-

nection probability in (3.11) simplifies to

pi j = 1

1+eωi eω j
, (3.76)

which is the connection probability in the hypersoft configuration model (HSCM) [100].
Here, ωi = dλ

2

(
ri − µ

2

)
are the Lagrange multipliers controlling the expected node de-

grees. The Lagrange multipliers are the random variables Z= dλ
2

(
X0 − µ

2

)
, with the prob-

ability density function

fZ(ω) ≈ 2α

dλ
eα

( µ
2 −R

)
e

2α
dλω, ω ∈

(
−dλµ

4
,

dλ

2

(
R − µ

2

))
. (3.77)

The expected degrees in the HSCM are approximated by

E [D |Z=ωi ] ≈ (N −1)E
[

e−Z
]

e−ωi , (3.78a)

E [D] ≈ (N −1)
(
E

[
e−Z

])2
, (3.78b)

where E
[
e−Z

] ≡ ∫
dω fZ(ω)e−ω. By demanding that E

[
D

∣∣∣Z=−dλµ
4

]
∼ N , correspond-

ing to X0 = 0, and E
[

D
∣∣∣Z= dλ

2

(
R − µ

2

)] ∼ 1, corresponding to X0 = R, we obtain R =
2

dλ ln(N ), while µ= R in the case of 2α
dλ > 1 and µ= 2α

dλR in the case of 2α
dλ < 1.

In both cases, the expected node degree E [D |Z=ωi ] ∼ e−ωi , and graphs produced by
the HSCM are sparse, while the conditional probability Pr[D = k |Z=ω] is well-approximated
by the Poisson distribution:

Pr[D = k |Z=ω] ≈ 1

k !
e−E [D |Z=ω] (E [D |Z=ω])k , (3.79)

see Ref. [100]. The resulting degree distribution is a mixed Poisson distribution with
density

Pr[D = k] ≈ 1

k !

∫ dλ
2

(
R− µ

2

)
− dλµ

4

e−E [D |Z=ω] (E [D |Z=ω])k fZ(ω)dω, (3.80)

where E [D |Z=ω] is the mixing parameter. Using (3.23) and (3.24), we obtain

Pr[D = k] ≈ (
γ−1

)
κ
γ−1
0

Γ[k +1−γ,e
dλ
2 (R− µ

2 )κ0]

Γ[k +1]
∼ k−γ, (3.81)

where γ= 2α
dλ +1 and κ0 ≡ e

dλ
2

( µ
2 −R

)
E [D]

E[e−Z]
.

Thus, in the ζ→∞, τ→∞, ζ/τ→ λ limit the RHG model degenerates to the HSCM
with a scale-free degree distribution with exponent γ= 2α

dλ +1.
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3.5.5. THE τ→∞ LIMIT: ERDŐS-RÉNYI GRAPHS
The limit of τ→∞ and finite ζ is the most degenerate case. Indeed, in this regime con-
nection probabilities pi j become independent of hyperbolic distances di j between the
nodes:

pi j = lim
τ→∞

1

1+e−µ(τ)/τ
. (3.82)

It is seen from (3.82) that connection probabilities are non-trivial only in the case µ(τ) ∼
τ. In this case, connection probabilities are constant:

pi j = p = lim
τ→∞

1

1+e−λ
, (3.83)

where λ ≡ limτ→∞
µ(τ)
τ . By varying λ ∈ (−∞,∞) one can tune connection probabilities

p ∈ (0,1) of the resulting ER graphs.
One can also check that the ER limit can be obtained either as the γ→∞ (α→∞ or

λ→ 0) limit of the HSCM or as the τ→∞ limit of the SpSoRGG.

3.5.6. THE d →∞ LIMIT
As dimension d increases, the angular distance distribution between two random points
on a d-sphere approaches the Dirac delta function centered at π/2 [99]. As a result, the
role of a node’s angular coordinates in the hyperbolic distances diminishes, and the net-
work becomes more similar to the HSCM. The distances between nodes now depend
only on their radial coordinates,

di j ≈ ri + r j − 1

ζ
ln2. (3.84)

Using this approximation, in the d ≫ 1 regime, we estimate the expected degree of a
node with radial coordinate rℓ as

E [D |X0 = r] ≈ (N −1)e−aR
∫ eaR

1

dξ

1+ ( 1
2

) d
2τ e

r−m
τ ξ

1
aτ

. (3.85)

Since τ→∞ as d →∞ for any positive T , we are in the hot regime, τ> 1. In this regime,
we set m=R = τ ln(N /ν), resulting in

E [D |X0 = r] ≈ N 2
d
2τ e−

r
τ , (3.86a)

E [D] ≈ ν2
d
2τ , (3.86b)

Pr[D = k] ∼ k−γ, γ= aτ+1. (3.86c)

Thus, high-dimensional RHGs are akin to low-dimensional RHGs in the hot regime. As
seen from (3.17), high-dimensional RHGs are sparse graphs with power-law degree dis-
tributions and a temperature-dependent exponent γ.

High-dimensional RHGs are well-defined in the d →∞ limit. In this case, RHGs are

sparse graphs with E [D] ≈ ν2
1

2T . In the d →∞ limit, γ→∞ implies that RHGs are no
longer described by a power-law degree distribution. This is indeed the case, since in
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Figure 3.17: Average degree E [D] (a) as a function of network size N , density Pr[D = k] of the degree distri-
bution (b), and graph clustering coefficient cG (c) of nodes with degree k > 1 as a function of network size N
for RHGs with d = 100 at τ = 50. Panels (a) and (c) include results for (red) a = 1 and (blue) a = 4/3, panel (b)
includes results for (red) E [D] = 5 and (blue) E [D] = 10 at a = 1 and N = 1000 ·27, while E [D] = 10 in panel (c).
Each point in panels (a) and (c) is the average of 20 simulations and the error bars display standard deviations,
while probabilities Pr[D = k] in panel (b) are obtained from a single network realization for each different value

of E [D]. The scaling constant ν is chosen such that ν= E [D] 2−
1

2T .

the d →∞ limit all nodes are at the boundary of Bd+1, r=R, leading to a Poisson degree
distribution

Pr[D = k] = Pr[D |X0 =R] ≈ 1

k !
e−E [D] (E [D])k , (3.87)

where E [D] = E [D |X0 =R] ≈ ν2
1

2T .

GRAPH PROPERTY PERSPECTIVE, LIMITING CASES

Figure 3.18 summarizes properties of the RHG and its limiting cases in the (τ,γ) phase
space. Within the (τ,γ) phase space, all the RHG temperature regimes condense into the
heterogeneous (2 ≤ γ<∞) soft-geometric (0 ≤ τ<∞) state.

The sharp-geometric limit (τ → 0) of this state is well-defined and is obtained by
taking the τ→ 0 limit in (3.43). In this case, to generate RHGs with desired average degree
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E [D] and power-law distribution exponent γ > 2, one needs to set m = R = ln(N /ν),
where ν is given by

E [D] = ν2d

d Id ,1

(
γ−1

γ−2

)2
[

1−2

(
N

ν

)2−γ
+

(
N

ν

)2(2−γ)
]

. (3.88)

By setting γ→∞ (a →∞) in the RHG, one arrives at Spherical Soft Random Geomet-
ric Graphs (SpSoRGG). Here nodes are placed at the boundary of the Bd+1 ball, and con-
nections are established with probabilities dependent on distances between the nodes
on its Sd boundary, see Section 3.5.2. Since SpSoRGGs are characterized by the Poisson
degree distribution, we refer to them as the homogeneous (γ→∞) soft-geometric limit
of the RHG. The expected degree of the SpSoRGG can be obtained by taking the γ→∞
limit of the RHG in the cold, critical, or hot regimes, depending on the τ value. In other
words, to generate a SpSoRGG with prescribed τ and E [D], one needs to set m, R, and ν
as follows

0 < τ< 1 :m=R = ln(N /ν) , E [D] = ν2d

d Id ,1

πτ

sin(πτ)
; (3.89a)

τ= 1 :m=R =−W−1(ν/N ), E [D] = ν2d

d Id ,1
; (3.89b)

τ> 1 :m=R = τ ln(N /ν) , E [D] = νI(d ,τ). (3.89c)

By taking the τ→ 0 limit of the Spherical Soft RGG we arrive at the Spherical Sharp
RGG, or simply Spherical Random Geometric Graph (SpRGG). Similar to its soft coun-
terpart, nodes in the SpRGG are placed at the Bd+1 boundary but connections are estab-
lished deterministically between nodes separated by distances smaller than the thresh-
old, Section 3.5.2. Another possibility to arrive at the SpRGG is by taking the γ→∞ limit
of the Sharp RHG. One can generate Spherical Sharp RGGs with desired average degree
E [D] by setting m=R = ln(N /ν), and selecting ν from

E [D] = ν2d

d Id ,1
. (3.90)

While both the hypersoft configuration model (HSCM) and the Erdős-Rényi (ER)
model are the τ→∞ limits of the RHG, they belong to two distinct classes, as seen from
the graph property perspective.

The HSCM belongs to the non-geometric (τ→ ∞) heterogeneous (2 ≤ γ < ∞) case
and is a τ→∞, ζ→∞ limit of the RHG. To build RHGs with desired average degree E [D]
and a power-law degree distribution exponent γ> 2, one sets µ= R = 2

dλ ln
( N
ν

)
, where ν

is the solution of

E [D] = ν
(
γ−1

γ−2

)2 [
1−

(ν
n

)γ−2
]2

. (3.91)

The ER model, on the other hand, belongs to the non-geometric (τ→∞) homoge-
neous (γ→∞) state and is a γ→∞ limit of the HSCM. Alternatively, the ER model can
also be attained as the τ→∞, ζ→∞ limit of the SpSoRGG.
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Figure 3.18: Limiting regimes of the RHG, graph property perspective.

In the d →∞ limit, RHGs have a Poisson degree distribution, and one can generate
RHGs with a desired expected degree by selecting ν from

E [D] = ν2
1

2T . (3.92)

3.6. HYPERBOLIC GRAPH GENERATOR IN d +1 DIMENSIONS
We conclude by presenting a software package that generates RHGs of arbitrary dimen-
sionality, to be specified by the user. The generator covers the cold (τ< 1), critical (τ= 1)
and hot (τ> 1) regimes. The software package and detailed instructions on how to com-
pile and use it are available from the Bitbucket repository [101].

The RHG generator can operate in two different modes: hybrid and model-based. In
hybrid mode, the user provides the average degree E [D], power-law exponentγ, rescaled
temperature τ and dimension d . The equations (3.18) and (3.21) are solved for the
rescaled radius R that yields the desired E [D] using the bisection method. The triple in-
tegral that is found by combining (3.18) and (3.21) is evaluated numerically using Monte
Carlo integration with importance sampling with the GNU Scientific Library (GSL) [102].
In model-based mode, the user directly provides the model parameters a, τ, R (or ν),
and d . We expect the model-based mode to be instrumental for research purposes.

3.7. SUMMARY
In this Chapter, we have generalized random hyperbolic graphs (RHGs) to an arbitrary
number of dimensions. In doing so, we have found a rescaling of the model parame-
ters given by (3.15) that allows us to reduce RHGs of arbitrary dimensionality to a single
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mathematical framework. Summarized in Figure 3.16, our results indicate that RHGs ex-
hibit similar connectivity properties, irrespective of the dimensions d of the latent space.
At the same time, higher dimensional realizations of the RHG model differ from the orig-
inal d = 1 RHG model for other topological properties.

One such property is local clustering. We find that the degree-dependent and graph
clustering coefficients behave differently depending on the temperature regime. In the
cold regime, 0 ≤ τ < 1, RHGs are characterized by non-vanishing graph and degree-
dependent clustering coefficients. In the hot regime, τ > 1, the graph clustering coef-
ficient becomes size-dependent and vanishes in the thermodynamic limit. These ob-
servations are expected and have been previously studied in the special d = 1 case [20,
25, 96]. The critical temperature of τ = 1 corresponds to a continuous phase transition,
which has been shown in d = 1 to be topological, characterized by diverging entropy
and atypical finite-size scaling behavior of the clustering coefficient [98]. RHGs of ar-
bitrary dimensionality allow us to study the behavior of the clustering coefficient as a
function of the dimension. To this end, we observe that, in all three regimes, cluster-
ing decreases as a function of d . This observation is consistent with the d → ∞ limit,
which is akin to the hypersoft configuration model (HSCM). In general, we observe that
the degree-dependent clustering coefficient depends on both the dimension d and the
temperature τ, as seen in our numerical experiments. This observation is in line with
another work proposing to use the density of cycles to estimate the network dimension-
ality [89]. Yet it remains an open question what exactly is different between two RHGs
of different dimensionalities where the clustering coefficient is matched by selecting the
appropriate temperatures.

Higher-dimensional RHGs may be instrumental in graph embedding tasks. Indeed,
the dimensionality of the latent space has been shown to impact the accuracy of many
network inference tasks, including link prediction, clustering, and node classification [85].
One of the standard mapping approaches is Maximum Likelihood Estimation (MLE),
finding node coordinates of the network of interest by maximizing the likelihood that
the network was generated as an RHG in the latent space. The likelihood function in
the case of H2 is extremely non-convex to the node coordinates [37], making standard
learning tools, like stochastic gradient descent, inefficient. Raising the dimensionality
of the latent space Hd+1 may lift some of the local maxima of the likelihood function,
potentially leading to faster and more accurate graph embedding algorithms [98].



4
COMPLEMENTARITY IN

COMPLEX NETWORKS

It doesn’t matter how beautiful your theory is,
if it doesn’t agree with experiment, it’s wrong.

Richard P. Feynman

In many networks—including networks of protein-protein interactions, interdisciplinary
collaboration networks, and semantic networks—connections are established between nodes
with complementary rather than similar properties. While complementarity is abun-
dant in networks, we lack the mathematical intuition and quantitative methods to study
the complementarity mechanisms in these systems. In this Chapter, we close this gap by
providing a rigorous definition of complementarity and developing a geometric frame-
work for modeling complementarity-driven networks. We demonstrate the utility of the
complementarity-based framework by learning geometric representations of several real
systems. Complementarity not only offers novel practical analytical methods but also en-
hances our intuition about formation mechanisms in networks on a broader scale, calling
for a careful re-evaluation of existing similarity-inspired methods.

This Chapter is based on G. Budel and M. Kitsak (2024), Complementarity in Complex Networks, arXiv preprint
arXiv:2003.06665 [103].
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4.1. INTRODUCTION
Complementarity plays an important role in many real networks, including networks
of molecular interactions, interdisciplinary scientific collaborations, semantic networks,
and production networks. Similar protein molecules are not guaranteed to interact. In-
stead, interacting proteins seem to exhibit complementarity at several levels, including
shape electrostatic complementarity [104], hydrophobic mismatch [105–107], and shape
complementarity [108, 109]. Collaboration teams, be it scientific collaborators, advisory
boards, or military units, greatly benefit from combining experts who complement each
other’s knowledge and skills. Semantic networks form another domain where comple-
mentarity could play an important role. Indeed, our language would be rather bleak if
we used only similar words in a sentence. Comparisons, generalizations, and analogies
are only a few of many examples of elements that make colorful representations in mod-
ern language. All these examples indicate that we construct sentences with words that
are complementary rather than similar in meaning. Finally, recent work finds that com-
plementarity plays a key role in the formation of production networks since companies
are especially similar to their close competitors but not to their trading partners [110].

Intuitively, complementarity is when one object complements another one by con-
tributing properties or features lacking in the other object. Unfortunately, our under-
standing of complementarity and its mechanisms in network formation and dynamics
does not go far beyond this general definition. We lack both an intuitive understand-
ing of complementarity and methods to quantify complementarity mechanisms in net-
works. In this work, we aim to fill in both gaps by proposing a principled complemen-
tarity framework and developing methods to learn complementarity representations of
real networks.

In the existing literature, complementarity-based networks are routinely analyzed
with similarity-inspired methods. This came to be because the mechanisms of similarity
are much better understood. Indeed, similarity plays a key role in the formation of social
interactions—the more similar individuals are, the higher the chance of their interaction.
Social interactions are relatively easy to measure and document, and, historically, the
first studies of social networks can be traced back to the beginning of the 20th century.
Much later, in the early 2000s, the availability of large-scale social networks fueled the
rise of Network Science and Data Science. As a result, the majority of existing network
analysis and inference techniques have been either developed for or inspired by social
networks.

Another reason for the wide acceptance of similarity methods is, arguably, their geo-
metric interpretation. Network nodes can be viewed as points in a certain latent space,
such that their similarity is a function of the distance between the points. The smaller
the distance, the larger the similarity between the nodes. These geometric frameworks
can be traced back to sociology in the 1970s [79]. It is the similarity interpretation of
distances in the latent space that leads to a large array of network analysis methods,
including link prediction [28, 42, 82, 111–118], soft community detection and cluster-
ing [23, 119–121], network navigation [27, 31, 32, 34], and search [122–124].

The success of network embeddings in representations of social networks—where
node similarity is recognized as one of the key mechanisms for link formation—can be
attributed to the agreement between the transitive property of similarity and the met-
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Figure 4.1: (a) Similarity-based toy network. Nodes are depicted as propellers with a variable number of blades,
all nodes are similar since they are all propellers. Similarity is transitive: if A is similar to B, and B is similar to C,
then A is also similar to C. (b) Complementarity-based toy network: complementarity of two nodes is shown by
matching interfaces. Complementarity is not transitive: if A is complementary to B (there are matching inter-
faces) and B is complementary to C (there are matching interfaces), A is not guaranteed to be complementary
to C (there are no matching interfaces). (c) Embedding the toy network into a metric space imposes constraints
on distances due to the triangle inequality. (d) A subgraph of the ‘Antonym’ semantic network. Note that the
rest-relax and unemployed-unemployment node pairs share 2 common neighbors each and, hence, can be
incorrectly interpreted as being connected if similarity-based methods are applied to the network.

ric property of the latent spaces used in network embeddings. Indeed, consider the
similarity-shaped toy network in Figure 4.1(a). If node A is similar to node B and node
B is similar to C , by transitivity, A is expected to be similar to C . A generic network em-
bedding, Figure 4.1(c), would result in a small distance d(A,B) since nodes A and B are
connected. Likewise, d(B ,C ) is also expected to be small since nodes B and C are con-
nected. Then d(A,C ) must be small by the triangle inequality: d(A,C ) ≤ d(A,B)+d(B ,C ),
implying that A and C are similar and may be connected.

Network embedding methods are not readily applicable to complementarity-driven
systems due to the non-transitivity of complementarity. Imagine that the same toy net-
work is now formed by the principles of complementarity, Figure 4.1(b). The comple-
mentarity of A and B and of B and C does not imply the complementarity of A and
C . The complementarity network in Figure 4.1(b), however, is identical to its similarity
counterpart in Figure 4.1(a), resulting in the same embedding as in Figure 4.1(c). Con-
sequently, a small distance d(A,C ) in the embedding of the complementarity network
immediately leads to inference errors. If the goal of the network embedding is to predict
missing links, for instance, a small distance d(A,C ) implies a false positive link candi-
date between A and C . If, on the other hand, the problem at hand is cluster analysis,
A, B , and C may end up in the same cluster of nodes in M , implying that they all have
similar characteristics, which is not the case for a complementarity-based network. As
a practical illustration, we examine a subgraph of the ‘Antonym’ semantic network de-
rived from ConceptNet [125], which can be regarded as a colloquial complementarity
network. Here, nodes are words, and links are established between words with oppo-
site meanings, Figure 4.1(d). The ‘rest-relax’ word pair are synonyms, in the ‘Antonym’
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network these two words share two antonyms: ‘work’ and ‘play’. Being synonyms, the
words ‘rest’ and ‘relax’ are not connected in the ‘Antonym’ network. If a similarity-based
link prediction algorithm is indiscriminately applied to the ‘Antonym’ network, however,
the ‘rest-relax’ pair can be falsely interpreted as a missing link candidate, contrary to our
intuition.

The demonstrated non-transitivity of complementarity principles invites us to revise
existing network-based and embedding-based approaches to make them applicable to
complementarity-driven networks, which we do in the following sections of this Chap-
ter. In Section 4.2, we define the principled complementarity framework, quantifying
the complementarity between nodes as their ability to execute certain functions or tasks.
In Section 4.3, we analyze the properties of the principled complementarity framework
to deduce a minimal practical framework for learning representations of real systems,
while we define the ensuing graph model of the minimal framework in Section 4.4. In
Section 4.5, we use the minimal complementarity framework to learn the complemen-
tarity representations of five real networks. We conclude this Chapter with the summary
and outlook in Section 4.6.

The idea that the complementarity principle is different from similarity is quickly
getting traction in the scientific community. Therefore, before proceeding further, we
find it important to pause and acknowledge other concurrent efforts to study comple-
mentarity mechanisms in networks. Shortly after the initial work of Kovács et al. [126],
which highlights the role of complementarity in protein-protein interaction (PPI) net-
works and the first version of Budel and Kitsak [103], Mattson et al. [110] discovered the
prominent role of complementarity in economic production networks. Another recent
work by Talaga and Nowak [127] proposes to quantify the relative role of similarity and
complementarity in a network through densities of triangle and quadrangle subgraphs.
While these works are invaluable in developing our intuition about complementarity
in real networks, we lack the rigorous mathematical frameworks that would allow us to
model synthetic complementarity networks and learn complementarity representations
of real networks.

4.2. TOWARDS A PRINCIPLED COMPLEMENTARITY FRAMEWORK
To define complementarity from first principles, we refer to the Oxford English Dictio-
nary, which asserts that ‘two people or things that are complementary are different but
together form a useful or attractive combination of skills, qualities or physical features’.

This definition implies that complementarity can be defined if each network node is
characterized by at least two different skill types or features that might be able to com-
plement each other. These features are intrinsic properties of network nodes that may or
may not be readily observable. In the context of scientific collaborations, the features are
the expertise of researchers in different disciplines. In the context of molecular interac-
tions, the features might correspond to the chemical properties of molecules of interest.

To define the complementarity between two nodes i and j , we need to quantify the
extent to which i and j form a useful combination of features or skills. One way to define
such usefulness is through tasks or functions that nodes i and j can jointly execute. De-
pending on the system of interest, the task can be either a scientific problem in the case
of a scientific collaboration network, or a biological function that two molecules can ex-
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Figure 4.2: (a) The principled complementarity framework. Agents i and j complement each other in
solving an interdisciplinary task k. The two disciplines related to the task k are represented as the latent
metric spaces M1 and M2. Task k consists of two independent disciplinary parts that are represented as
points xk,1 and xk,2 in the latent spaces M1 and M2, respectively. Likewise, the skill sets of agents i and j
are the points

{
xi ,1,xi ,2

}
and

{
x j ,1,x j ,2

}
, respectively. Agent i has a higher probability to solve the subtask

in M1 if d
(
xi ,1,xk,1

) < d
(
x j ,1,xk,1

)
. Similarly, agent j has a higher probability to solve the subtask in M2

if d
(
x j ,2,xk,2

) < d
(
xi ,2,xk,2

)
. (b) The minimal complementarity framework. The minimal complementarity

framework is a special case of the principled complementarity framework when task coordinates in the latent
spaces M1 and M2 are related by an injective continuous map g : M1 → M2 for k = 1, . . . , T . In this case, the
agent coordinates in M2 are effectively mapped to M1, yi ,1 = g−1(

xi ,2
)

for i = 1, . . . , N , see (4.6). As a result,
the complementarity between agents i and j is quantified by the distances d

(
xi ,1,y j ,1

)
and d

(
x j ,1,yi ,1

)
, the

smaller the distances, the higher the complementarity.
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ecute by forming a physical interaction in the case of a PPI network. In our framework,
tasks mediate the complementarity between agents and are also characterized by two
features each.

All aspects considered, to introduce a complementarity-based graph G , we consider
N nodes, each of which is characterized by two skills xi ,1 and xi ,2, i = 1, . . . , N , and T
tasks that are also characterized by two skills each, xk,1 and xk,2, t = 1, . . . , T .

To quantify the complementarity between any two nodes i and j , we need to be able
to compare their skills. To do so, we postulate that skills are nothing else but points in
two latent spaces M1 and M2. Therefore, distances can be defined between features
of the same type but not necessarily between features of different types. In the case
of scientific collaboration, for instance, it is straightforward to compare two skill sets
within the same discipline but it is not for two skill sets from different disciplines. Thus,
in agreement with the similarity intuition, we postulate that the distance d

(
xi ,a ,x j ,a

)
between two nodes i and j quantifies the similarity between the features xi ,a and x j ,a in
the space Ma . The smaller the distance d

(
xi ,a ,x j ,a

)
, the larger the similarity between i

and j with respect to skill a.
We are now in a good position to define complementarity. For a task k, define a graph

Gk with adjacency matrix Ak that indicates if two nodes jointly execute the task k. The
complementarity between any two nodes i and j with respect to task k is the probability
Pr

[
(Ak )i , j = 1

]
that the two agents i and j can jointly execute k. In the most basic setting,

one can think of task k as consisting of two independent parts 1 and 2 corresponding
to M1 and M2, respectively. Then, task k can be executed either as a result of node i
executing part 1 and node j executing part 2, or vice versa:

Pr
[
(Ak )i , j = 1

]= 1−[
1−F1

(
d

(
xi ,1,xk,1

))
F2

(
d

(
x j ,2,xk,2

))]
· [1−F1

(
d

(
x j ,1,xk,1

))
F2

(
d

(
xi ,2,xk,2

))]
. (4.1)

Here, F1
(
d

(
xi ,a ,xk,a

))
is the probability that node i can independently execute part a

of task k, for a = 1,2. Our physical intuition suggests that the connection probabilities
F1(d) and F2(d) are decreasing functions of the distances d , since the smaller the dis-
tance, the more similar the agent’s expertise xi ,a is to the task requirements xk,a in Ma .

Assuming independence between the available tasks, the complementarity between
agents i and j is the probability pi j ≡ Pr

[
ai j = 1

]
they can co-execute at least one task:

pi j = 1−∏
k

(
1−Pr

[
(Ak )i , j = 1

])
. (4.2)

In other words, the agents are connected in G with the probability that they are con-
nected in at least one of the graphs Gk , k = 1, . . . , T . Equations (4.1) and (4.2) serve
as a foundation for the general framework for modeling and learning complementar-
ity representations in real networks, which we summarize in Figure 4.2(a). From the
modeling perspective, the complementarity framework can be used to generate both
bipartite (when both agents and tasks are present) and conventional networks (when
only agents are considered). To generate a complementarity-based synthetic network,
one needs to define the latent spaces M1 and M2, the task execution probability func-
tions F1(d) and F2(d), and the mechanism of distributing nodes and tasks in the two
latent spaces. Since the connections between the nodes are functions of the distances
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between node positions in the latent spaces, and the network links are established inde-
pendently of one another, the complementarity framework belongs to the class of net-
work models with hidden variables [94, 128]—with node positions serving the roles of
hidden variables—allowing for analytical treatment.

From a learning perspective, obtaining a complementarity representation of a real
network includes learning the characteristics of the latent spaces M1 and M2, the task
execution probability functions F1(d) and F2(d), as well as the coordinates of the agents
and tasks in the two latent spaces from the observed adjacency matrix A of the network
of interest.

4.3. MINIMAL COMPLEMENTARITY FRAMEWORK
From practical considerations, learning the principled complementarity representation
may prove suboptimal. One reason is that in many systems, tasks are either poorly de-
fined, as in the case of molecular interaction networks, or not observable, such as in
the case of semantic networks. Another reason is that the principled complementar-
ity framework includes too many ‘degrees of freedom’, which may lead to overfitting
when learning the representations of real systems. Therefore, our next step is to sim-
plify the framework that covers both agents and tasks to a more practical one including
only agents.

When the connection probabilities in the task graphs Gk are small, Pr
[
(Ak )i , j = 1

] ≪ 1,
the largest contribution to connection probability pi j (4.2) in the complementarity graph
comes from the linear terms in Pr

[
(Ak )i , j = 1

]
, resulting in

pi j ≈
∑
k

Pr
[
(Ak )i , j = 1

]
. (4.3)

If the number of tasks T is large, we may replace individual tasks with a certain mean-
field, treating them as drawn independently at random from a joint distribution with pdf
fT

(
X1,X2

)
. In this scenario, we can replace the sums over individual tasks in (4.3) with

integrals over the volumes of M1 and M2, thereby obtaining, to the leading order,

pi j =
∫
M1

∫
M2

dX1dX2 fT
(
X1,X2

)[
F1

(
d

(
xi ,1,X1

))
F2

(
d

(
x j ,2,X2

))+ i ↔ j
]
, (4.4)

where the second term represented by i ↔ j is identical to the first term but with sub-
scripts i and j swapped. The next simplification can be made by assuming a particular
functional form for FT

(
X1,X2

)
. To this end, the simplest case is that of uncorrelated task

coordinates, FT
(
X1,X2

)= F1
(
X1

)
F2

(
X2

)
. This choice results in a trivial degenerate model,

where the collaboration probability of any two agents i and j , to the leading order, is
proportional to the product of their individual productivities.

Empirical studies suggest that a more interesting scenario arises when there is a
strong correlation between the task coordinates in M1 and M2 [129–131]. In such cases,
the simplest choice for FT

(
X1,X2

)
is established through a deterministic injective con-

tinuous function g : M1 → M2 that maps skills between the two spaces, such that X2 =
g
(
X1

)
. Consequently, the task coordinates xk,1 in M1 uniquely determine the task coor-

dinates xk,2 in M2, and the pdf of the task distribution is given by

fT
(
X1,X2

)= F
(
X1

)
δ

(
X2 − g

(
X1

))
, (4.5)
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where δ is the multi-dimensional Dirac delta function.
The strong correlation between task coordinates provides an effective mapping be-

tween skills in M1 and M2. Indeed, for every point y in M1, there is a corresponding
unique point x = g

(
y
)

in M2, and vice versa. Using this property and the explicit form
of fT given by (4.5), we integrate out X2, obtaining the collaboration probability pi j as
a function of type 1 skills in M1, xi ,1 and x j ,1, and the images of type 2 skills in M1,
yi ,1 ≡ g−1

(
xi ,2

)
and y j ,1 ≡ g−1

(
x j ,2

)
:

pi j =
∫
M1

dX1 f
(
X1

)[
F1

(
d

(
xi ,1,X1

))
F2

(
d

(
g

(
y j ,1

)
, g (X1)

))+ i ↔ j
]

, (4.6)

see Figure 4.2(b). Finally, if the tasks are distributed uniformly in M1, we get

pi j = 1

volM1

∫
M1

dX1
[
F1

(
d

(
xi ,1,X1

))
F2

(
d

(
g
(
y j ,1

)
, g

(
X1

)))+ i ↔ j
]

, (4.7)

where volM1 is the volume of M1.
At this point, we can make another important observation for (4.7). The collabora-

tion between agents i and j is likely if either xi ,1 is close to y j ,1, or x j ,1 is close to yi ,1,
or both, see Figure 4.2(b). This is the case since F1(d) and F2(d) are both decreasing
functions of d . Then, the largest contributions to the first term in (4.7) are those when
both d

(
xi ,1,X1

)
and d

(
g

(
y j ,1

)
, g (X1)

)
are small at the same time. This is the case when

xi ,1 = y j ,1. By the same argument, the contributions to the second integral in (4.7) are
maximized when x j ,1 = yi ,1.

In summary, we have made two observations. The first one is that the strong cor-
relation between task skills in M1 and M2 provides an effective mapping between the
two spaces, allowing us to project type 2 skills from M2 onto M1 and vice versa. This
means that one can reduce the complementarity framework to a single latent space. If
this space is M1, type 2 skills in it are the images of type 2 skills from M2, y1 = g−1

(
x2

)
. A

second conclusion is that the complementarity between two agents i and j , quantified
by their collaboration probability, is maximized when either node i ’s type 1 skill, xi ,1, is
close to node j ’s type 2 skill, y j ,1, or when node i ’s type 2 skill, yi ,1, is close to node j ’s
type 1 skill, x j ,1, or when both are close.

These findings allow us to guess a simpler form of the collaboration probability. With-
out loss of generality, we consider the projection of the generalized complementarity
framework onto the latent space M1. Since there is only one latent space after the pro-
jection, we can simplify the notation by dropping the second subscripts of node coordi-
nates indicating the type. Each agent i is characterized by two features or skills in a single
latent space M , which we refer to as xi and yi . Consistent with the first observation that
strong correlations between task features provide an effective mapping between the two
manifolds, we postulate that the features of both types are represented by points in the
same metric space M : the features xi are native in the space, while the features yi are
images projected by the tasks from the second space.

Satisfying the second observation, we postulate that the complementarity between
any two agents i and j is a function of the distances between their skills of different types,
d

(
xi ,y j

)
and d

(
yi ,x j

)
, in M :

pi j = 1− [
1−FA

(
d

(
xi ,y j

))][
1−FA

(
d

(
yi ,x j

))]
, (4.8)
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where FA : R+ → [0,1] is a probability distribution that is a decreasing function. Equa-
tion (4.8) prescribes that the complementarity probability pi j is maximized when xi is
close to y j , yi is close to x j , or both. The complementarity probability pi j in (4.8) can be
interpreted as the union of two probabilities: the complementarity between two agents
is possible due to either the complementarity of skills xi and y j , yi and x j , or both.

A very important observation that we can make based on (4.8) is that complementar-
ity can also model similarity in the special case where the two points of a given node are
the same, xi = yi . If this is the case for a single node i , we can think of this node as self-
complementary. In the context of molecular interactions, we are dealing with a molecule
capable of interacting with itself. In the context of interdisciplinary collaborations, a
self-complementary agent possesses sufficient skills in both domains to solve tasks in-
dependently. At the same time, self-complementary nodes can interact with other nodes
that are complementary to them. If all network nodes are self-complementary, the com-
plementarity framework reduces to a similarity framework. In this case, every node is
effectively characterized by a single point in a space M , since xi = yi for i = 1, . . . , N , and
the complementarity between any two nodes i and j in (4.8) reduces to a function of the
distance between the corresponding points, pi j = 2FA

(
d

(
xi ,x j

))−FA
(
d

(
xi ,x j

))
)2.

We note that the proposed minimal complementarity framework is consistent with
the non-transitivity of complementarity: node A being complementary to B , and B be-
ing complementary to C , does not imply that A is complementary to C . Indeed, within
the minimal complementarity framework the formation of the A-B-C toy wedge net-
work, Figure 4.3(a), is possible in two cases: (i) points xA , yB , and xC are close to each
other, Figure 4.3(b), or (ii) point xA is close to point yB , and xB is close to yC , Figure 4.3(c).
Neither case creates constraints on the distances d

(
xA ,yC

)
and d

(
yA ,xC

)
, relevant for

the formation of the A-C link.

This observation is consistent with a recent result by Kovács et al. [126] in the pre-
diction of protein-protein interactions, where the authors argued that the principles of
complementarity suppress paths of even length between interacting proteins while si-
multaneously promoting the appearance of paths of odd length. To complete this com-
parison, consider the most likely geometric configurations that lead to an ℓ = 3 path,
Figure 4.3(d). As seen from Figures 4.3(e-h), two out of the eight possible configurations
imply the appearance of a link between the endpoints of the ℓ= 3 path. In other words,
while the minimal complementarity framework does not suppress connections between
the endpoints of ℓ= 3 paths, it also does not strongly impose them. We revisit this ques-
tion in Section 4.4, where we assess the densities of 3- and 4-cycles in a synthetic network
generated from the minimal complementarity framework.

In our analysis, we use point representations for similarity-based fields: agents are
defined as points, and similarities are quantified as distances between the points: the
shorter the distance, the higher the similarity. While the distance-based definition of
similarity is popular in social sciences, physics, and network science, there exists an al-
ternative vector representation of similarity, which is more common in computer sci-
ence. In a vector representation, each network node i is represented as a vector vi and
the similarity between any two nodes i and j is quantified by the inner product of the
two vectors vi ·v j . We chose distance-based representations because they are identical
for all metric spaces M . While vector representations are simple in a vector space, for
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Figure 4.3: The minimal complementarity framework does not support the triangle closure rule and may sup-
port the diamond closure rule. (a) The triangle closure rule suggests that node A is connected to node C in
the toy network, forming a triangle. Four complementarity representations may lead to the wedge toy network
in (a). Two representations are shown in (b-c), and the other two are obtained from (b-c) by swapping the fea-
tures of each node, xi ↔ yi . The links between node pairs (A,B) and (B ,C ) are possible due to latent-geometric
proximity of points xA , yB , and xC or latent geometric proximity of xA and yB , and xB and yC . Neither con-
figuration imposes constraints on distances between point pairs xA yC , and yA and xC , which are relevant to
the formation of the A-C tie. (d) The diamond closure rule suggests that node A is connected to D completing
the diamond in the A-B-C -D toy network. There are 8 latent-geometric configurations corresponding to the
toy network in d. Four configurations are shown in (e-h), and the remaining four are obtained from the config-
urations in (e-h) by swapping the features of each node, xi ↔ yi . Note that only two out of the possible eight
configurations, (f) and its counterpart, imply the A-D connection.
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example, Euclidean space, extending these representations to a non-vector space, such
as the hyperbolic space, is not trivial.

It should be straightforward, starting with the same first principles, to derive the
complementarity framework using vector representations. Here we conjecture that sim-
ilar to the point representation, vector-based complementarity frameworks will charac-
terize each node i by at least two vectors, which we call ui and vi , such that the comple-
mentarity of two nodes i and j is a function of the inner products of vectors of different
types,

pi j = FA
(
ui ·v j ;vi ·u j

)
. (4.9)

By examining (4.9), we realize that some network embedding methods previously devel-
oped in the machine learning and natural language processing (NLP) communities do
represent network nodes or vectors by two vectors each. The most basic is, arguably,
the singular value decomposition (SVD), which can be used to factorize the network ad-
jacency matrix A as A = UΣVT , where Σ is the diagonal matrix with the singular values
of A on the diagonal, and U and V can be regarded as two vector representations for each
network node. The Global Vectors for Word Representation (GloVe) unsupervised NLP
approach represents each word i by two vectors ui and vi , referred to as the target and
context vectors, respectively [132]. GloVe quantifies the frequency of finding word i in
the context of word j by a function of the inner product of the corresponding vectors,
ui ·v j . Recently, the GloVe method has been adapted for network embedding, known as
Global Vectors for Node Representations (GVNR) [133]. Since SVD and GVNR also use a
dual-vector representation per node, they have the capacity to effectively learn comple-
mentary representations. Consequently, we examine the framework of complementarity
in conjunction with the methods of SVD and GVNR.

In summary, the minimal complementarity framework can be used in both model-
ing synthetic complementarity networks and learning complementarity representations
of real networks. We discuss them in the following sections. Complementary represen-
tations can be considered as a specific arrangement that combines two or more sim-
ilarity representations. Indeed, we define complementarity as the ability of agents to
co-execute interdisciplinary tasks in two distinct similarity-based spaces. It is the man-
ifestation of tasks in the corresponding similarity-based fields that connects the agents
and defines the nature of complementarity.

4.4. SYNTHETIC COMPLEMENTARITY-BASED GRAPHS
The minimal complementarity framework can be realized for any latent space M and
any decreasing connection probability function FA(d). We expect that for optimal re-
sults, both M and FA(d) should be customized for, or learned from, the specific graph G
under consideration. For brevity, we leave the task of determining M and FA(d) for fu-
ture work and focus on the example of using the hyperbolic disk, M =H2, and the case
of FA(d) given by the sigmoid shape. We refer to the resulting model as the Complemen-
tarity Random Hyperbolic Graph (CRHG).

The CRHG is inspired by the success of the similarity-based RHG [20], which uses a
representation of one point per node for modeling properties of real similarity-driven
networks, see Appendix B.1. As argued in Chapter 3, RHGs reproduce many topologi-
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cal properties of real networks, such as sparsity, a scale-free degree distribution, strong
local clustering, a hierarchical structuring, and self-similarity [20–23]. In RHGs, nodes
are sprinkled as points into a hyperbolic disk H2 and pairwise connections are estab-
lished independently at random with probabilities that are decreasing functions of the
distances between the corresponding points in H2.

Following the minimal complementarity framework, we demand that every node of
the CRHG is represented by two points inH2 and connections between nodes are estab-
lished independently according to (4.8). In more precise terms, each node i is character-
ized by two points xi =

(
ri ,x ,θi ,x

)
and yi =

(
ri ,y ,θi ,y

)
inH2, and the connection probabil-

ity

pi j = FA
(
d

(
xi ,y j

))+FA
(
d

(
x j ,yi

))−FA
(
d

(
xi ,y j

))
FA

(
d

(
x j ,yi

))
, (4.10)

where d
(
xi ,y j

)
is the distance between points xi and y j in H2,

coshd
(
xi ,y j

)= coshri ,1 coshr j ,2 − sinhri ,1 sinhr j ,2 cos∆θi j , (4.11a)

∆θi j =π−|π−|θi ,1 −θ j ,2||, (4.11b)

where sinh x and cosh x are the hyperbolic sine and cosine functions [134].
We distinguish two special cases of the CRHG. In the case where the two points xi

and y j are selected independently for each node i , we have the pure complementarity
model. On the other hand, if the two points per node are equal to each other, xi = y j ,
the CRHG reduces to a similarity model that is very close to the standard RHG, with the
only difference that each link is established with two independent attempts. In a more
general setting, a certain mixture CRHG model is obtained if every node i = 1, . . . , N
with probability p ∈ (0,1) has two independent points

(
ri ,1,θi ,1

)
and

(
ri ,2,θi ,2

)
, and with

probability 1−p has identical points ri ,1 = ri ,2 and θi ,1 = θi ,2.
Below, we consider the pure CRHG, where p = 0, and postpone the analysis of the

general p ̸= 0 case for future work. Inspired by the RHG, we assume that the connection
probabilities in (4.10) are of the sigmoid shape:

FA(d) = 1

1+e
d−R
2T

, (4.12)

for a certain distance d , and where T ∈ (0,1) is the temperature parameter controlling the
relevance of long-distance connections, and R > 0 is the radius of the hyperbolic disk.
Small values of T result in graphs where most connections are established at distances
of at most R. As T increases, links are more likely to form over distances d > R.

The node coordinates are drawn independently at random inH2. The coordinates of
a node are the random variables X1,t for the radial coordinate rt and X2,t for the polar
coordinate θt , with t ∈ {1,2}, which are assumed to be independently distributed. The
random variables X1,t and X2,t each follow the same distributions as X1 and X2 from the
regular hyperbolic graph, Appendix B. Following the definition in [20], the radial coordi-
nate r defined by X1 follows the distribution

FX1 (r ) = Pr[X1 ≤ r ] = cosh(αr )−1

cosh(αR)−1
, 0 ≤ r ≤ R, (4.13)
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for a parameterα> 1
2 controlling the node density. The angular coordinate defined by X2

is uniformly distributed X2
d=U [0,2π], with distribution function

FX2 (θ) = Pr[X2 ≤ θ] = θ

2π
, 0 ≤ θ < 2π, (4.14)

and probability density function fX2 (θ) = dFX2 (θ)
dθ = 1

2π
. Using the hidden variable for-

malism [94], we find that the density Pr[D = k] of the CRHG degree distribution follows a
power law, Pr[D = k] ∼ k−γ, with γ= 2α+1. Indeed, the expected degree of a node char-
acterized by the coordinates {(ri ,x ,θi ,x ), (ri ,y ,θi ,y )} is approximated, to the leading order,
by

E
[
D|X1,i = ri ,x , X2,i = θi ,x ,Y1,i = ri ,y ,Y2,i = θi ,y

]
≈ E

[
DRHG|X1 = ri ,x

]+E
[
DRHG|X1 = ri ,y

]
, (4.15)

where E [DRHG|X1 = r ] is the expected degree of a node with radial coordinate r in the
standard RHG (B.30), Appendix B. We will further discuss the derivation of (4.15) in
Chapter 5. Then, the degree distribution of the CRHG is the convolution of the degree
distributions of two RHGs:

Pr[D = k] =
k∑

k ′=0

Pr[DRHG = k −k ′]Pr[DRHG = k ′] ∼ k−γ, (4.16)

where γ= 2α+1.
Let Mi j be the number of common neighbors between nodes i and j . The expected

number of common neighbors E
[
Mi j

]
between two nodes with known coordinates can

then be expressed, to the leading order, as

E
[
Mi j

]≈ E
[
M RHG

i j |X1,i = ri ,x , X2,i = θi ,x , X1, j = r j ,x , X2, j = θ j ,x
]

+E
[
M RHG

i j |Y1,i = ri ,y ,Y2,i = θi ,y ,Y1, j = r j ,y ,Y2, j = θ j ,y
]
, (4.17)

where E
[
M RHG

i j |X1,i = ri ,x , X2,i = θi ,x , X1, j = r j ,x , X2, j = θ j ,x
]

is the expected number of

common neighbors of nodes with coordinates (ri ,x ,θi ,x ) and (r j ,x ,θ j ,x ) in a regular RHG.
Then, the probability Pr[Mi j = m] of two randomly chosen nodes in the CRHG to have
exactly m common neighbors is the convolution of those in the RHG model,

Pr
[
Mi j = m

]= m∑
m′=0

Pr
[
M RHG

i j = m −m′]Pr
[
M RHG

i j = m′]∼ m−η, (4.18)

since Pr
[
M RHG

i j = m
] ∼ m−η, where the exponent η = η(γ,T ) > 2, as has been docu-

mented in both empirical [135, 136] and theoretical [137] studies.
When developing the complementarity framework in Section 4.3, we hypothesized

that it would inhibit the emergence of odd-length cycles and, conversely, encourage the
formation of even-length cycles. In line with our predictions, we found that the graph
clustering coefficient diminishes as a function of the number of nodes N . Furthermore,
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Figure 4.4: The graph clustering coefficient c3
G based on 3-cycles and the bipartite clustering coefficient c4

G
based on 4-cycles as a function of the number of nodes N for synthetically generated CRHGs. We set the
parameters α = 0.75 (γ = 2.5) and α = 1.0 (γ = 3.0), E [D] = 20, and T = 0.5. CRHGs are characterized by
vanishing densities of 3-cycles and non-vanishing densities of 4-cycles.

in the CRHG model, as illustrated in Figure 4.4, the bipartite clustering coefficient re-
mains constant with respect to N .

To assess how well the CRHG reproduces the topological properties of real complementarity-
driven networks, we consider the ‘Antonym’ network, the human [138, 139] and yeast [140]
protein-protein interaction (PPI) networks, the Messel shell food web [141], and a so-
cial network from the website hamsterster.com [142], see Table C.1 and Appendix C.1.
We measure the density Pr[D = k] of the degree distribution, the degree-based cluster-
ing coefficient c3

G (i ) of nodes i with degree k, and its bipartite counterpart c4
G (i ) [137]

for these networks. We compare the properties of the real networks to their degree-
preserved randomizations, as well as synthetic CRHGs and RHGs with the same average
degree E [D], Figure 4.5. Refer to Van Mieghem et al. [143] for details on the rewiring
procedure. We observe that both the CRHG (complementarity) and RHG (similarity)
can adequately model the degree distributions of real networks, Figure 4.5(a,d,g,j,m).
All of the real-world networks considered here have small clustering coefficients that
are comparable to those of their corresponding degree-preserving randomizations and
CRHGs, Figure 4.5(b,e,h,k,n). Similarity-based RHGs, on the other hand, tend to over-
inflate with triangles, resulting in substantially higher clustering coefficients. Both the
RHG and CRHG models are capable of generating networks with significant densities of
4-cycles, as measured by c4

G (i ), Figure 4.5(c,f,i,l,o).

4.5. COMPLEMENTARITY REPRESENTATIONS OF REAL NETWORKS
After establishing that the CRHG model generates synthetic networks with topological
properties similar to real complementarity-based systems, we next use the CRHG to
learn hyperbolic complementarity representations of these real systems.

In a hyperbolic complementarity representation, every node i = 1, . . . , N from a graph G
of interest is characterized by two points xi = (ri ,x ,θi ,x ) and yi = (ri ,y ,θi ,y ) in hyper-
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Figure 4.5: Topological properties of several complementarity-driven networks. Shown are the degree dis-
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bolic disk H2. To learn complementarity representations, we employ maximum likeli-
hood estimation (MLE). Given a graph G with an adjacency matrix A, we aim to find {xi }
and {yi } for i = 1, . . . , N , maximizing the likelihood L that G was generated from the
CRHG model with a given node assignment. Due to the independence of links in the
CRHG, the thought likelihood is given by

L
(
A | {(ri ,x ,θi ,x ), (ri ,y ,θi ,y )},P

)= ∏
i < j

[
qpi j

]ai j
[
1−qpi j

]1−ai j , (4.19)

where P is the set of model parameters, values ai j are the elements of the adjacency
matrix A, the connection probabilities pi j are prescribed by (4.10), and q ∈ [0,1] is the
probability that a link is present. We use q = 1 when learning representations of fully-
observable networks. If on the other hand, a fraction λ of network links are unobserved,
we set q = 1 −λ. Our complementarity learning algorithm, which we call the Com-
plementarity HyperLink (CHL) embedder, is identical to the HyperLink embedder [28],
modulo the different likelihood function L given in (4.19), Appendix C.2.

Using the CHL embedder, we have obtained complementarity representations for
the five complementarity-based systems under consideration. To evaluate the quality
of these representations and the accuracy of the CHL embedder in link prediction, we
conducted experiments by removing a fraction of 1− q = 0.5 links from each network,
uniformly at random. This process creates a truncated version of the original network.
Subsequently, we learned complementarity representations of these truncated networks
using the CHL embedder. To predict which links are missing, we rank all possible link
candidates (unconnected node pairs) based on the sum of the complementarity dis-
tances between their corresponding points in the complementarity space:

ranki j = d
(
xi ,y j

)+d
(
yi ,x j

)
, (4.20)

such that the smaller the rank is, the higher the chance of a missing link.
Figure 4.6 compares the link prediction results of CHL with those of other embedding

methods. For comparison, we used the ordinary HyperLink Embedder (HL), Global Vec-
tors for Node Representations (GVNR), Singular Value Decomposition (SVD), and the
popular node2vec [115] (N2VEC) and DEEPWALK [144] (DWALK) network embedding
methods. As depicted in Figure 4.6, the link prediction accuracy of CHL is significantly
higher than that of the similarity-based embedding methods HL, N2VEC, and DWALK.
Furthermore, the accuracy of CHL surpasses that of GVNR and exceeds that of SVD in
three out of five networks.

The notable accuracy of the SVD method can be attributed to its utilization of a dual-
vector representation for each node, aligning with our hypothesis in Section 4.3 regard-
ing the necessity of such a representation within the complementarity framework. Sur-
prisingly, the GVNR embedding method, which also employs a dual-vector represen-
tation per node and thus holds promise for effectively representing complementarity-
based systems, exhibited only baseline performance. This underperformance of GVNR
may be ascribed to its reliance on random walks for augmenting the network’s topol-
ogy. Such random walks could dilute the distinct complementarity structure inherent to
the network by promoting the formation of closed triangles, thereby averaging out the
nuanced relationships that define complementarity.
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To gain a more comprehensive understanding, we also compared the link predic-
tion accuracy of CHL to representative non-embedding link prediction techniques, Fig-
ure 4.7. Our findings show that CHL outperforms all examined similarity-based meth-
ods, including the Resource Allocation (RA) [145] and the Adamic-Adar (AA) [146] meth-
ods. This result is expected since similarity-based link prediction methods promote tri-
angle closure, which contradicts the complementarity principle. Moreover, in line with
expectations, non-similarity based methods, including the baseline preferential attach-
ment (PA) method [147], demonstrated improved performance over similarity-based ap-
proaches across the five complementarity-based networks analyzed. Although CHL is
also competitive when compared to non-similarity link prediction methods, it generally
achieves the second-highest accuracy in our experiments, falling behind the L3 [126]
method and, occasionally, the SPM [148] or Katz [149] methods.

The effectiveness of complementarity representations in predicting missing links,
particularly in comparison to similarity-based methods, validates the accuracy of these
representations. While there still is potential for further improvement in the complementarity-
based link prediction method, we leave this problem for future work. Instead, we now
shift our focus to the complementarity representation of the ‘Antonym’ semantic net-
work to delve deeper into its complementarity structure and better understand the work-
ings of the complementarity embedding method.

Figure 4.8(a) displays the complementarity representation of the ‘Antonym’ network.
While links in the antonym network are established between words with opposite mean-
ings, we can use it to not only find new antonyms, as we demonstrated in the link pre-
diction exercise but also to find synonyms. Indeed, consider two words i and j charac-
terized by points

(
xi ,yi

)
and

(
x j ,y j

)
, respectively. While distances between the points of

different types—d
(
xi ,y j

)
and d

(
x j ,yi

)
—quantify complementarity, distances between

points of the same type—d
(
xi ,x j

)
and d

(
y j ,yi

)
—quantify the similarities, according to

the minimal complementarity framework. Using the above intuition, we identified the
words closest to the general words ‘bad’, ‘free’, ‘man’, and ‘real’, finding that most of these
words are indeed close in meaning to the seed words, see Table 4.1. When marked on the
complementarity map of the network, as shown in Figure 4.8(a), each word group is rep-
resented by several geometric clusters. Unlike similarity networks, where typically only
one similarity cluster is expected per group of similar nodes, complementarity represen-
tations can exhibit multiple such clusters. This phenomenon is particularly evident in
the case of words near the word ‘free’, which possesses two meanings: ‘no longer con-
fined or imprisoned’ and ‘without cost or payment’. These two distinct meanings are
represented by two points for the word ‘free’, located around the 6 and 1 o’clock posi-
tions, respectively, as illustrated in Figures 4.8(b-c). In the minimal complementarity
framework, there can be as many as two main clusters for each group, corresponding to
distinct properties of the nodes. Given that each node is depicted by two points and only
one point is necessary to connect the node to others, the second point might be found
outside the primary clusters. For instance, the word ‘escape’, which is associated with
the seed word ‘free’, has one of its points in the 6 o’clock cluster, highlighting its similar-
ity to ‘free’. Meanwhile, the other point representing ‘escape’ is situated around 9 o’clock
on the map, indicating its connection to concepts like ‘away’ and ‘travel’.
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Rank
Seed

Bad Free Man Real

1 Wrong Master Men Actual
2 Ugly Freedom He Genuine
3 Incorrect Free man Guy Truth
4 Unpropitious Essential Person Authentic
5 Composite Escape Male Nothing
6 Show Costlessly King Fact
7 Uncover Unshackle Fellow Sincere
8 Brat Steal Wife Rigidity
9 Mole Receive Chick Reality

10 Beneficial Lord Mistress Farm

Table 4.1: Seed words (top row) and the words in their hyperbolic vicinity in the CHL representation of the
‘Antonym’ network. The words are ranked based on their similarity distances to the corresponding seed word,
d

[
xseed,x

]
and d

[
yseed,y

]
.
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Figure 4.6: Embedding qualities as quantified by link prediction accuracy, measured by AUPR. Link predic-
tion results obtained with the Complementarity HyperLink (CHL) method are compared to the ordinary Hy-
perLink (HL) method, singular value decomposition (SVD), node2vec (N2VEC), and DEEPWALK (DWALK)
in (a) the ‘Antonym’ semantic network (Antonym), (b) human protein-protein interaction network (Human
PPI), (c) S. cerevisiae protein-protein interaction network (Yeast PPI), (d) Messel food web (Messel), and (e)
hamsterster.com social network (Hamster). In all experiments, the fraction of removed links 1−q = 0.5. In
all Euclidean embedding methods, we set the latent space dimensionality to d = 256. We employed 100 epochs
for the N2VEC and DWALK embeddings, and 10 epochs for the GVNR embeddings. For link prediction using
SVD, we truncated the resulting decomposition vectors to a dimension d = 256.
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index [149] with parameter β= 0.1 (Katz), and the Preferential Attachment score (PA) [147],
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Figure 4.9: Paths and communities in complementarity-driven networks. Panel (a) showcases a toy network
comprised of a chain of 5 nodes, while panels (b-c) present two potential spatial configurations that could give
rise to this network. In configuration (b), the chain of connections observed in the network is formed by ar-
ranging complementary points into a geometric trajectory within the latent space. Configuration (c) illustrates
how the chain of connections seen in (a) could emerge from pairwise proximities between points in the latent
space. Unlike complementarity-driven networks, similarity-driven networks are limited to trajectory-based
alignment as their sole mechanism. Panel (d) displays another toy network consisting of a 5-node clique, with
panels (e-f) depicting two spatial configurations that could lead to such a network. Configuration (e) shows
that the clique network can result from the complete clustering of all points in the latent space. Meanwhile,
configuration (f) demonstrates that the clique network seen in (d) could also be produced from partially clus-
tered points in the latent space. This is in contrast to similarity-driven networks, where the formation of a
clique necessitates the complete clustering of all points in the latent space, showcasing the unique flexibility
of complementarity-driven networks in modeling complex structures.
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4.6. DISCUSSION
We have developed two frameworks to quantify complementarity mechanisms in net-
works. The first, the principled complementarity framework, defines complementarity
as a phenomenon emerging from the collaboration of agents with related skills. Within
the principled framework, collaborating agents bring different but related skills that com-
plement each other in their actions. Although this concept is inspired by scientific col-
laborations and team formation challenges, it can be adapted with minimal adjustments
to the domains of systems biology, ecological networks, and natural language process-
ing. We anticipate that this principled framework will serve as a foundational basis for
developing network complementarity models tailored to specific problems and systems
of interest. Building on the principled framework, we have devised a practical minimal
complementarity framework that facilitates the generation of synthetic complementarity-
based networks and the learning of complementarity representations of real networks.
We believe that the insights from our work will help us optimize existing and develop
new analysis methods in the Science of Science, where interdisciplinary collaborations
are of great importance, as well as in BioMedicine, which depends on understanding
networks of molecular interactions to understand human diseases.

By comparing our complementarity framework to existing learning approaches, we
found that Singular Value Decomposition and Global Vectors for Node Representations
are potentially applicable to complementarity-driven systems. Our results indicate, how-
ever, that additional improvements are required for these methods to optimize their pre-
dictive power in complementarity-based systems.

Since the complementarity perspective views each network node as represented by
more than one point per node, an important question arises if complementarity can
be embedded into a higher-dimensional similarity representation. Indeed, consider a
minimal complementarity framework where each node corresponds to two points in a
d-dimensional latent space. Consider the minimal complementarity framework, where
each node is represented by two points within a d-dimensional latent space. Formally,
each node is then characterized by 2d features or vector components, and the connec-
tion probability between nodes is a function of 4d variables. This raises the question:
is it possible to view the complementarity framework as a similarity framework, where
each node corresponds to a single vector in a 2d-dimensional latent space, rather than
a d-dimensional space? Our current answer is no, at least not from the viewpoint of
similarity. In the realm of similarity, the proximity of two vectors—or nodes, depending
on the representation—dictates their similarity level, with maximal similarity achieved
when two vectors are parallel or two points coincide. However, complementarity oper-
ates on a different principle: two nodes can be maximally complementary to each other
even if there is alignment with respect to just one of their vectors or points.

How do we know if the system at hand is either driven by similarity or complementar-
ity? One method to assess the relative presence of the two mechanisms is by measuring
the relative densities of triangles and quadrangles in the network of interest [127]. The
authors proposing this method confirm that the majority of studied biological networks
are predominantly complementarity-driven, while social networks may have a signifi-
cant presence of both similarity and complementarity, as quantified by densities of trian-
gles and quadrangles, respectively. However, a broader conclusion can be drawn: purely
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similarity-driven or complementarity-driven systems do not exist in isolation. Fortu-
nately, our findings suggest that similarity might be considered a special case of comple-
mentarity. Specifically, our minimal complementarity framework accommodates both
complementarity and similarity principles. The similarity aspect is encapsulated in the
special scenario where each node is represented by two identical points in the space,
illustrating how our framework can seamlessly integrate the principles of both comple-
mentarity and similarity.

The complementarity perspective not only paves new pathways for analyzing sys-
tems driven by complementarity but also poses a challenge to the traditional method-
ologies of network science, which were primarily developed for social networks and
subsequently applied to various other network categories. Concepts such as shortest
paths and communities, derived from similarity-based networks, have become staples
in toolkit for the study of complementarity-driven networks. Network community de-
tection, for instance, is extensively utilized to identify disease and functional modules in
biological networks [153–155], as well as to delineate scientific communities within col-
laboration networks [6, 156]. Similarly, shortest paths are frequently employed to mea-
sure separations between specific network modules [157, 158].

Expanding on the concept of the shortest path, which is typically visualized as a spe-
cific discrete trajectory within the latent space of a network, as depicted in Figure 4.9(a),
we find that similar trajectories can also exist within a complementarity framework. In
this context, a sequence of connections could arise from the spatial arrangement of com-
plementary points forming a geometric trajectory, illustrated in Figure 4.9(b). However,
such an alignment, while capable of creating a network chain, is not the only way to
achieve connectivity. An alternative scenario involves a series of pairwise, yet distinct,
proximities between corresponding points in the latent space, as shown in Figure 4.9(c).
This highlights the versatility of complementarity frameworks in representing network
structures through various forms of spatial organization.

Another example is the concept of the network community. Traditionally defined as a
group of nodes that are densely connected internally and sparsely connected with exter-
nal nodes, as discussed in Chapter 2. This definition implies that, within social sciences,
network communities are typically visualized as clusters of similar node points that are
geographically localized in the network, as shown in Figure 4.9(d-f). However, within
a complementarity-driven system, the notions of similarity among nodes and the for-
mation of a relatively dense subgraph are distinctly separate concepts. This distinction
arises because similar nodes are not necessarily expected to connect, and connected
nodes may not always be similar. As illustrated in the complementarity representation
of the ‘Antonym’ semantic network in Figure 4.8(a), similar nodes might form multiple
localized clusters in the latent space, with each cluster representing a different feature. In
contrast, densely connected subgraphs, traditionally identified as communities in net-
work science, can be represented in a complementarity framework as either fully, as
in Figure 4.9(e), or partially localized, as in Figure 4.9(f). This distinction underscores
the unique challenges and opportunities in identifying and understanding community
structures within complementarity-driven systems.

In summary, we hope that the complementarity concept introduced in our work will
serve to not only sharpen our intuition but also expand the toolkit of quantitative meth-
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ods available for network analysis. These advancements aim to provide a more nuanced
understanding of network dynamics, particularly in complementarity-driven systems,
and offer innovative approaches for dissecting complex network structures and behav-
iors.
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There are 1011 stars in the galaxy. That used to be a huge number.
But it’s only a hundred billion. It’s less than the [United States] national deficit!

We used to call them astronomical numbers.
Now we should call them economical numbers.

Richard P. Feynman

In this chapter, we study the topological properties of the Complementarity Random Hy-
perbolic Graph (CRHG). Not all intuitions gained from studying similarity-driven social
networks also apply to networks driven by complementarity. We describe and illustrate
CRHGs and study their topological properties. Just like with standard hyperbolic graphs,
we find that we can construct complementarity hyperbolic graphs that are sparse and have
a power-law degree distribution. CRHGs, however, are dominated by motifs of quadran-
gles rather than triangles, resulting in a lower-than-expected clustering coefficient and a
lower effective graph resistance. A good understanding of the properties of CRHGs might
help us design better statistical methods for real networks in which the link formation is
driven by complementarity.
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5.1. INTRODUCTION

Many of the statistical methods commonly used in Network Science are rooted in social
network analysis [3]. Social networks are, in turn, for a large part driven by the principle
of similarity: the tendency of individuals to connect to similar individuals. The study
of social networks therefore naturally gave rise to well-studied phenomena like scale-
free degree distributions [147], degree assortativity [159], the small-world property and
strong local clustering of nodes [95], latent network geometry [20] and community struc-
ture [156]. Based on these properties, network scientists developed a wide range of tools
that successfully helped us understand the governing mechanisms of link formation in
many real networks.

There are, however, real networks in which the links were shown to establish not
between similar nodes, but between complementary nodes. These complementarity-
driven networks include protein-protein interaction networks [126], company-level pro-
duction networks [110] and semantic networks [160]. In Chapter 4, we have described
our geometric framework for embedding complementarity networks based on the Com-
plementarity Random Hyperbolic Graph (CRHG) model. Here, study the topological
properties of the CRHG model.

Consider, for example, interdisciplinary scientific collaboration networks, where the
nodes are individuals and individuals connect if they collaborate on an interdisciplinary
scientific paper. Two individuals can collaborate if they together possess the skills to
successfully write an interdisciplinary paper; if the skill set of one author complements
the skill set of the other. A biologist and a statistician together might write a brilliant
paper at the intersection of Biology and Statistics, while neither two biologists nor two
statisticians alone would likely be equally successful at this task. Such a complementary
relation can be thought of as the two individuals (the nodes) having complementary
properties, which together allow for the formation of the link between the two individ-
uals (or nodes). A complementary relation leads to quadrangles in the network, rather
than triangles like in social networks [126, 127]. The node properties that constitute the
formations of complementarity links are potentially unobserved and, in that case, exclu-
sively manifest through which other nodes a node forms links with.

In this chapter, we aim to further study the topological properties of the CRHG. Un-
derstanding the properties of a complementarity-driven network model will help us de-
sign better statistical methods for real-world networks in which the connections are not
well explained by similarity alone.

5.2. COMPLEMENTARITY RANDOM GRAPHS

The complementarity random hyperbolic graph (CRHG), defined in Section 4.4, is part
of the class of random graph models with hidden variables proposed in [94]. In CRHGs,
each node is described by more than one hidden variable, each of which is a coordinate
in its hidden space M . First, we describe the framework for graphs with hidden vari-
ables, how the framework can be adjusted to describe complementarity and, finally, we
describe the connection probability function that incorporates the complementarity of
two nodes.
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a b

Figure 5.1: Toy example graphs based on (a) similarity and (b) complementarity link formation principles.
Nodes might form a connection if the shapes of the edges indicated in orange are compatible. In panel (a), all
nodes have the same shape (similarity), leading to multiple triangles. In panel (b), nodes only connect if their
shapes are complementary, leading to an absence of triangles. Consequently, in panel (a), the blue and green
nodes are connected, whereas in panel (b), they are not, as indicated by the red dashed line. This example is
inspired by Kovács et al. [126].

5.2.1. HIDDEN REPRESENTATION
Let the hidden space M of a graph G with N nodes be a d-dimensional metric space
in which each node i is represented by a d-dimensional point xi ∈ M . Each element
in xi can be interpreted as a (distinct) feature or property of the node. The node features
are in general unobserved, but a feature can also be an observable node property, such
as the degree ki . Often, the probability that two nodes i and j are connected in G is a
decreasing function of the distance d(xi ,x j ) in M , where the distance function d(x,y) is
defined by the properties of the chosen metric space. For example, if M is the Euclidean
space, then the distance d(xi ,x j ) is the Euclidean distance between xi and x j . Graphs
with a connection probability function that is a decreasing function of the distance in
the hidden space generally have large clustering coefficients [25, 26, 161].

5.2.2. COMPLEMENTARITY REPRESENTATION
A complementarity graph G with N nodes can be created in a single d-dimensional hid-
den space M when each node is represented by m > 1 points in M . The d-dimensional
points x1, . . . , xm are random variables and each of the m points can be interpreted as
a distinct set of features or properties of the node. Two nodes are said to be comple-
mentary if they have at least one pair of complementary points. We define two points xk

and xl , k, l ∈ {1, . . . , m} and k ̸= l , to be complementary when their respective distance
d(xk ,xl ) is small in the space M . A point of type k for a node i ∈ {1, . . . , N } is denoted
as xi ,k . We define the complementarity of two nodes as follows.

For two nodes i , j ∈ {1, . . . , N } the distance d(xi ,k ,x j ,l ), k ̸= l , is also a measure of the
extent of the complementarity of the two nodes: the lower the distance d(xi ,k ,x j ,l ), the
higher the complementarity of nodes i and j with respect to features k and l . The dis-
tance d(xi ,k ,x j ,k ) between their features of the same type k is a measure of the similarity
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of the two nodes i and j .
The simplest case of a complementarity random graph is where each node is repre-

sented by m = 2 points x1,x2 ∈M , or x,y ∈M for the convenience of notation, such that
there are only two points x and y. The simple case is the graph model underlying the
minimal complementarity framework, Section 4.3.

5.2.3. CONNECTION PROBABILITY
In a complementarity random graph, the connection probabilities depend only on the
distances between points of different types in the latent space M . We define the con-
nection probability for the case with 2 points x and y per node, the probability pi j that
two nodes with coordinates (Xi ,Yi ) = (xi ,yi ) and (X j ,Y j ) = (x j ,y j ) are connected,

pi j ≡ Pr
[
ai j = 1

∣∣(Xi ,Yi
)= (

xi ,yi

)
,
(
X j ,Y j

)= (
x j ,y j

)]
. (5.1)

The connection probability pi j for nodes i and j is a function of the two distances d(xi ,y j )
and d(x j ,yi ), which are each plugged into a similarity-based connection probability dis-
tribution FA(d) that is a decreasing function of the distance d , for d ≥ 0. The connection
probability

pi j = 1− [
1−FA

(
d

(
xi ,y j

))] · [1−FA
((

x j ,yi

))]
. (5.2)

The probability 1−FA
((

xi ,y j

))
is the complement of the probability that the nodes are

connected based solely on the features xi and y j , thus that the nodes are not connected.

The product
[
1−FA

((
xi ,y j

))] ·[1−FA
((

x j ,yi

))]
is then the probability of the intersection

of the two nodes being not connected through either feature pairs (xi ,y j ) and (x j ,yi ).
The probability (5.2) is the complement of the probability of that intersection, which
can be simplified

pi j = FA
((

xi ,y j

))+FA
((

x j ,yi

))−FA
((

xi ,y j

))
FA

((
x j ,yi

))
. (5.3)

To see how the connection probability pi j introduces complementarity into the hidden
space, observe that the connection probability pi j is large when either one of FA

((
xi ,y j

))
and FA

((
x j ,yi

))
is large, which is when either one of their two feature pairs of opposite

types are close in the hidden space.

5.2.4. HYPERBOLIC GRAPHS
As shown in Section 4.4, if the chosen latent space is the two-dimensional hyperbolic
disk H2 like in [20], then complementarity-based hyperbolic graphs possess the same
basic properties in the degree distribution as regular hyperbolic graphs, which are com-
monly found in large real networks: a power-law degree distribution and as sparse aver-
age degree.

On the hyperbolic disk H2 with radius R and (negative) curvature K =−ζ2, for ζ> 0,
a point x is defined as x = (r,θ), where the radial coordinate r ∈ [0,R] is the distance
to the origin of the space and the polar coordinate θ ∈ [0,2π) is the angle with respect
to the origin. The negative curvature ζ of the space is merely a scaling constant and
we set ζ = 1 to shorten the notation. In the random hyperbolic graph (RHG) model,
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the two coordinates of a node are random variables X0 and X1, which are assumed to
be independently distributed. Following the definition in [20], the radial coordinate
defined by X0 has the distribution (4.13). The corresponding probability density func-

tion fX0 (r ) = dFX0 (r )
dr = αsinh(αr )

cosh(αR)−1 , with sinh(x) the hyperbolic sine function. The angular

coordinate defined by X1 is uniformly distributed X1
d=U [0,2π] with distribution (4.14)

and probability density function fX1 (θ) = dFX1 (θ)
dθ = 1

2π
. The probability density func-

tion of the variable X = (X0, X1) is the product of the two individual probability density
functions fX(x) = fX0 (r ) · fX1 (θ) by the independence of the two variables. The radial co-
ordinate X0 directly influences the degree of a node, the closer to the origin of the space
a node is, the higher its degree. The angle between the polar coordinates in X1 of two
nodes, together with their radial coordinates in X0, determines the distance between the
nodes. The two points xi and x j form a hyperbolic triangle with the origin of the space,
therefore the distance between xi and x j in the hyperbolic disk with curvature K = −ζ2

is computed through the hyperbolic law of cosines:

coshζd(xi ,x j ) = coshζri coshζr j − sinhζri sinhζr j cos∆θi j , (5.4)

with ∆θi j = π−|π−|θi −θ j || the angle between the polar coordinates θi and θ j [20]. As
we set ζ= 1, the distance

d(xi ,x j ) = arccosh
(
coshri coshr j − sinhri sinhr j cos∆θi j

)
, (5.5)

where arccosh(x) is the inverse hyperbolic cosine function [134]. The distance is well-
approximated as d(xi ,x j ) ≈ ri +r j +2ln

(
sin

(
∆θi j /2

))
when both ri and r j are sufficiently

large, as first proposed in [20, 27] and briefly shown in Appendix B.1.1. The approxima-
tion holds well for most node pairs given the distribution (4.13).

The connection probability distribution in the RHG model is the Fermi-Dirac distri-
bution

FA
(
d

(
xi ,x j

))= 1

1+e
d(xi ,x j )−R

2T

, (5.6)

such that FA
(
d

(
xi ,x j

)) ∈ [0,1], where the temperature T ∈ (0,1) is a parameter that de-
termines the size of the effect that distance has on the connection probability. Compar-
ing (5.6) to the traditional Fermi-Dirac formulation, the parameter T is the temperature,
the radius R is the chemical potential µ, while the Boltzman constant kB = 2 in this case.

In complementarity graphs in the hyperbolic disk, for each node i both the points Xi

and Yi follow the distributions (4.13) and (4.14). The connection probability function
in (5.6) is plugged into the complementarity connection probability function (5.3).

5.3. BASIC PROPERTIES OF CRHGS

5.3.1. DEGREE DISTRIBUTION
The probability density function Pr[D = k] of the degree of an arbitrary node is found
by integrating the probability density function Pr[D = k |X = x,Y = y] of the degree dis-
tribution of a node with known coordinates x = (rx ,θx ) and y = (ry ,θy ) over all possible
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coordinates, by the law of total probability [3],

Pr[D = k] =
∫ R

0
drx

∫ R

0
dry

∫ 2π

0
dθx

∫ 2π

0
dθy fX0 (rx ) fY0 (ry ) fX1 (θx ) fY1 (θy )

×Pr[D = k |X = (rx ,θx ),Y = (ry ,θy )], (5.7)

following the framework of [94]. Already for regular hyperbolic graphs in a similarity
space with a single coordinate per node, there exists no straightforward closed-form so-
lution for the probability density function Pr[D = k] of the degree distribution. Also for
complementarity hyperbolic graphs, we have to employ several approximations to ob-
tain an expression for the probability density function Pr[D = k].

First, because the distribution of the polar coordinates in X and Y is uniform, the
probability density of the degree distribution of a node does not depend on its angular
coordinates. Therefore, we set the polar coordinates θx = 0 and θy = 0 for the conve-
nience of calculation,

Pr[D = k |X = (rx ,θx ),Y = (ry ,θy )] = Pr[D = k |X0 = rx ,Y0 = ry ], (5.8)

where we omitted X1 = 0 and Y1 = 0 from (5.8) to shorten the notation.
Next, Boguñá and Pastor-Satorras [94] have shown for sparse graphs with hidden

variables that the distribution of the degree D for a node with known coordinates x and y
is closely approximated by the Poisson distribution with rate λ = E [D |X = x,Y = y] for
known x and y. Hence, the corresponding Poisson approximation of the probability den-
sity function of the degree of a node with known radial coordinates rx and ry is

Pr[D = k |X0 = rx ,Y0 = ry ] ≈ 1

k !

[
λ(rx ,ry )

]k e−λ(rx ,ry ), (5.9)

where λ(rx ,ry ) = E [D |X0 = rx ,Y0 = ry ]. We first derive approximations of E [D |X0 =
rx ,Y0 = ry ] and E [D] to show that complementarity hyperbolic graphs are sparse, such
that the Poisson approximation of the degree (5.9) is justified.

We approximate E [D |X0 = rx ,Y0 = ry ] and plug the approximation into (5.9) in or-
der to obtain the corresponding approximation of Pr[D = k] in (5.7). The connection
probability pi j is a function of the coordinates (xi ,yi ) and (x j ,y j ),

pi j = p(xi ,yi ;x j ,y j ) = p(θi ,x ,ri ,x ,θi ,y ,ri ,y ;θ j ,x ,r j ,x ,θ j ,y ,r j ,y ). (5.10)

We find E [D |X0 = rx ,Y0 = ry ] = E [Di |X1,i = ri ,x ,Y1,i = ri ,y ] by integrating the connec-
tion probability (5.10) given the coordinates of a node i over all possible coordinates for
nodes j ̸= i , while setting θi ,x = θi ,y = 0,

E [Di |X0,i = ri ,x ,Y0,i = ri ,y ]

= (N −1)

[∫ R

0
dr j ,x fX0 (r j ,x )

∫ R

0
dr j ,y fY0 (r j ,y )

∫ 2π

0
dθ j ,x fX1 (θ j ,x )(θ j ,y )

×
∫ 2π

0
dθ j ,y fY1 p(ri ,x ,ri ,y ;θ j ,x ,r j ,x ,θ j ,y ,r j ,y )

]
. (5.11)
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Plugging in the connection probability pi j (5.3), we have

E [Di |X0,i = ri ,x ,Y0,i = ri ,y ]

= (N −1)

[∫ R

0
dr j ,x fX0 (r j ,x )

∫ R

0
dr j ,y fY0 (r j ,y )

∫ 2π

0
dθ j ,x fX1 (θ j ,x )

×
∫ 2π

0
dθ j ,y fY1 (θ j ,y )

[
FA

(
d

(
ri ,x ;θ j ,y ,r j ,y

))+FA
(
d

(
ri ,y ;θ j ,x ,r j ,x

))
−FA

(
d

(
ri ,x ;θ j ,y ,r j ,y

))
FA

(
d

(
ri ,y ;θ j ,x ,r j ,x

))]]
. (5.12)

For most nodes, the radial coordinates of X0 are very close to the maximum value R
as defined by the distribution (4.13). Given that the angular coordinates in X1 are uni-
formly distributed, the leading-order terms of the hyperbolic distance (5.4) given in the
approximation (B.6) will therefore be close to 2R for the majority of the node pairs (i , j ).

The term e
d(xi ,x j )−R

2T in the Fermi-Dirac probability (5.6) is then exponentially large, such
that the connection probability is exponentially small. For those node pairs, the prod-
uct FA

(
d

(
ri ,x ;θ j ,y ,r j ,y

))
FA

(
d

(
ri ,y ;θ j ,x ,r j ,x

))
is extremely small and contributes very lit-

tle to the average degree in (5.12). We approximate the average degree of a node with
known coordinates by omitting the product inside the multiple integral:

E [Di |X0,i = ri ,x ,Y0,i = ri ,y ]

≈ (N −1)

[∫ R

0
dr j ,x fX0 (r j ,x )

∫ R

0
dr j ,y fY0 (r j ,y )

∫ 2π

0
dθ j ,x fX1 (θ j ,x )

×
∫ 2π

0
dθ j ,y fY1 (θ j ,y )

[
FA

(
d

(
ri ,x ;θ j ,y ,r j ,y

))+FA
(
d

(
ri ,y ;θ j ,x ,r j ,x

))]]
. (5.13)

By rearranging terms, the multiple integral splits into two independent double integrals:

E [Di |X0,i = ri ,x ,Y0,i = ri ,y ]

≈ (N −1)
∫ R

0
dr j ,y fY0 (r j ,y )

∫ 2π

0
dθ j ,y fY1 (θ j ,y )FA

(
d

(
ri ,x ;θ j ,y ,r j ,y

))
+ (N −1)

∫ R

0
dr j ,x fX0 (r j ,x )

∫ 2π

0
dθ j ,x fX1 (θ j ,x )FA

(
d

(
ri ,y ;θ j ,x ,r j ,x

))
. (5.14)

The two remaining double integrals are each the average degree in the RHG model for a
node with known coordinates rx and ry , respectively:

E [D |X0 = rx ,Y0 = ry ] ≈ E [DRHG |X0 = rx ]+E [DRHG |X0 = ry ]. (5.15)

Plugging in the approximation of E [DRHG |X0 = r ],

E [D |X0 = rx ,Y0 = ry ]

≈ 2(N −1)
T

sin(πT )
e−R/2E [e−X0/2]

(
e−rx /2 +e−ry /2) , (5.16)
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as derived in the appendix, where the expectation

E
[
e−X0/2]= α

cosh(αR)−1

[
1

2α−1

(
e(α− 1

2 )R −1
)
+ 1

2α+1

(
e−(α+ 1

2 )R −1
)]

. (5.17)

The expected degree E [D] of an arbitrary node is found by integrating (5.15) over the
radial coordinates rx and ry ,

E [D] =
∫ R

0

∫ R

0
fX0 (rx ) fY0 (ry )E [D |X0 = rx ,Y0 = ry ]dry drx , (5.18)

by the law of total expectation [3]. By plugging (5.15) into (5.18), we find the average
degree E [D] of an arbitrary node:

E [D] ≈
∫ R

0

∫ R

0
fX0 (rx ) fY0 (ry )

(
E [DRHG |X0 = rx ]+E [DRHG |X0 = ry ]

)
dry drx . (5.19)

Again by rearranging terms, the integral splits into two independent integrals

E [D] ≈
∫ R

0
fX0 (rx )E [DRHG |X0 = rx ]drx +

∫ R

0
fY0 (ry )E [DRHG |Y0 = ry ]dry (5.20)

= 2
∫ R

0
fX0 (r )E [DRHG |X0 = r ]dr, (5.21)

twice the average degree of an arbitrary node in the RHG model:

E [D] ≈ 2E [DRHG]. (5.22)

Plugging in the approximation of E [DRHG],

E [D] ≈ (N −1)
4T

sin(πT )
eR/2 (

E
[
e−X0/2])2

, (5.23)

as derived in the appendix and with E
[
e−X0/2

]
given by (5.17). Inserting the leading-

order approximation of E
[
e−X0/2

]
given by (B.28), under the assumption that R ≫ 1,

yields

E [D] ≈ (N −1)

(
2α

2α−1

)2 4T

sin(πT )
e−R/2. (5.24)

Equation (5.24) reveals that we can make complementarity hyperbolic graphs sparse if
we set R = 2ln(N −1)+b ≈ 2ln(N )+b, for any constant b independent of N , which jus-
tifies the Poisson approximation in equation (5.9). Following [20], we set

R = 2ln

(
N

ν

)
, (5.25)

for some scaling constant ν > 0 that controls the resulting average degree E [D]. By the
definition (5.25), we indeed have that the radius R →∞ when N →∞. Substituting the
radius R (5.25) into the expression of the average degree E [D] in (5.24), we obtain a final
leading-order approximation,

E [D] ≈ 4ν

(
2α

2α−1

)2 T

sin(πT )
. (5.26)
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The corresponding approximation for E [D |X0 = rx ,Y0 = ry ] is

E [D |X0 = rx ,Y0 = ry ] ≈ 2ν

(
2α

2α−1

)
T

sin(πT )
eR/2 (

e−rx /2 +e−ry /2) . (5.27)

The equation for the average degree E [D] in (5.26) also allows for generating com-
plementarity graphs with desired average degree E [D] and power-law exponent γ in the
limit of N → ∞. For given average degree E [D], power-law exponent γ and tempera-
ture T , the parameter α = 1

2 (γ− 1), while equation (5.26) should be solved for ν, after
which the radius R is set according to (5.25).

Since E [D |X0,Y0] is the sum of two Poisson-distributed random variables with iden-
tical rates λ, we find that the conditional distribution of the degree D |X0,Y0 is also Pois-
son distributed with the rate 2E [D |X0 = r ], two times the expected degree of a node
with known radial coordinates in the regular hyperbolic graph. We find the probability
density Pr[D = k] of the degree k by plugging λ= 2E [DRHG |X0 = r ] into (5.9):

Pr[D = k] ≈ 1

k !

∫ R

0
fX0 (r )

[
2ce−r /2]k

e−2ce−r /2
dr, (5.28)

for a constant c ≡ 2ν
( 2α

2α−1

) T
sin(πT ) eR/2. Following the same reasoning as for regular hy-

perbolic graphs in the appendix, we find the approximation of the density

Pr[D = k] ≈ (2α)c2α Γ[k −2α,c]

Γ[k +1]
∼ k−γ, (5.29)

which is approximately a power-law with negative slope γ= 2α+1 for large values of k,
identical to regular hyperbolic graphs.

Figure 5.2 shows that our approximations are close to the simulated values for both
the average degree E [D] and density of the degree distribution Pr[D = k]. The conver-
gence of the leading-order approximation of the average degree E [D] to the target av-
erage degree is slower than for regular RHGs and not yet fully realized in Figure 5.2(a),
likely originating from dropping the product term in the connection probability. The
approximation for Pr[D = k] closely resembles the simulated values, already for a single
realization of the random graph, but we do observe a fat tail, which is characteristic for
power-law distributions. Grouping the observations in bins of logarithmically increasing
size could suppress the noise observed in the tail.

5.4. PROPERTIES COMPLEMENTARITY VS. SIMILARITY
We compare complementarity and similarity hyperbolic graphs across several graph met-
rics. The results obtained in this section are computed numerically. For complementar-
ity graphs, we study the case where both radial coordinates are set to the same value, X0 =
Y0 = r , in order to direct our focus on the complementarity aspect and not on the slow
convergence of the variables X0 and Y0.

5.4.1. CLUSTERING COEFFICIENT
As the node clustering coefficient cG (i ) (3.25) measures the local density of connec-
tions around node i , the graph clustering coefficient cG is also called the average local
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Figure 5.2: Average degree E [D] and density Pr[D = k] of the degree distribution. The average degree E [D]
(a) and the density Pr[D = k] of the degree distribution (b) of CRHGs in the case where X0 = Y0 = r .
Panel (a) shows the observed average degree E [D] for a target average degree E [D] = 10 according to (5.26),
with N = {103 · 20, 103 · 21, . . . , 103 · 27}, the parameter α = 0.75 (γ = 2.5) and the temperature T = 0.5. Each
simulated value is the average of 104 realizations, while the error bars display the standard deviation. The the-
ory line is given by equation (5.23). Panel (b) shows the observed density Pr[D = k] of the degree distribution
for α = 0.75 (target γ = 2.5), where the number of nodes N = 105, the temperature T = 0.5 and the target ex-
pected degree E [D] = 10. The probabilities Pr[D = k] are computed from a single realization of the random
graph, therefore the realized average degree E [D] = 9.42 can deviate slightly from the target value. The nega-
tive slope γ = 2.52 is estimated based on the linear part of the tail in the binned density with 20 bins of equal
logarithmic width.

clustering coefficient. An alternative definition of the clustering coefficient is given by
Luce and Duncan [162], while popularized by Newman [163]. They define the clustering
coefficient čG as 3 times the total number t of undirected triangles in G divided by the
number of connected triples,

čG = 3t∑N
i =1

ki (ki −1)

2

= 6t∑N
i =1 ki (ki −1)

. (5.30)

The clustering coefficient čG is also called the transitivity coefficient, or global cluster-
ing coefficient. We evaluate both clustering coefficients for similarity and complemen-
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tarity hyperbolic graphs and compare them to the coefficients after degree-preserving
rewiring. The clustering coefficients after degree-preserving rewiring serve as a measure
of the clustering we could expect solely based on the degrees of the nodes.

Figure 5.3 shows the clustering coefficients cG and čG of complementarity and simi-
larity hyperbolic graphs as a function of the temperature T , also after degree-preserving
rewiring. We observe that complementarity hyperbolic graphs are just as clustered lo-
cally as could be expected based on the degrees. Globally, complementarity hyperbolic
graphs are slightly more clustered than expected. In contrast, similarity hyperbolic graphs
are significantly more clustered than expected based on degrees, both locally and glob-
ally. Both clustering coefficients are a decreasing function of the temperature T for sim-
ilarity hyperbolic graphs, as was known already from [20]. For complementarity graphs,
the relation between the clustering coefficients and the temperature T is almost com-
pletely flat. Interestingly, complementarity hyperbolic graphs are exactly just as clus-
tered locally as similarity graphs are after rewiring.

a b
Cl

us
te

rin
g 

co
ef

fic
ie

nt
 č

G

Cl
us

te
rin

g 
co

ef
fic

ie
nt

 c
G

Figure 5.3: Clustering coefficients cG and čG as a function of temperature T . Average local clustering coeffi-
cient cG (a) and global clustering coefficient čG (b) before and after degree-preserving rewiring of CRHGs and
RHGs as a function of temperature T . The number of nodes N = 104, the expected degree E [D] = 10 and the
parameter α= 0.75 (γ= 2.5). Each point is the average of 104 simulations. For the rewiring, we select two links
at random and randomly connect two nodes not connected before, in total for 4×2L link pairs (drawn with
repetition).

5.4.2. BIPARTITE CLUSTERING COEFFICIENT

Whereas the clustering coefficient cG measures the average local density of triangles in a
graph, the clustering coefficient c4

G for bipartite networks from Zhang et al. [164] analo-
gously measures the average local density of 4-cycles, or quadrangles. As first remarked
by Kovács et al. [126], triangles are not likely to occur in a complementarity-driven graph,
as it is unlikely that in a triplet of nodes each node is simultaneously complementary to
both of the other two nodes. Instead, one might expect to observe quadrangles, simi-
lar to the example in Figure 5.1(b). The bipartite clustering coefficient c4

G (i ) of a node i
is then defined as the fraction of closed cycles of length 4 containing node i to the to-
tal number of node quadruples that might form a 4-cycle with i . Let N (i ) be the set
of neighbors of node i , such that a node j is an element of N (i ) only if ai j = 1. The
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bipartite clustering coefficient c4
G (i ) is then computed as

c4
G (i ) =

∑N
j =1

∑N
l =1, l ̸= j ai j ai l |N ( j )∩N (l )|∑N

j =1

∑N
l =1, l ̸= j ai j ai l |N ( j )∪N (l )| , (5.31)

which is the fraction of neighbors of i that have a common neighbor other than i . The
graph bipartite clustering coefficient c4

G is the average of c4
G (i ) over all nodes,

c4
G = 1

N

N∑
i =1

c4
G (i ). (5.32)

The coefficient c4
G ∈ [0,1] and the maximum value of 1 is attained for the complete bipar-

tite graph, which is a bipartite graph where each node is connected to all other nodes in
the other of the two sets of nodes.

Figure 5.4 shows the bipartite clustering coefficient c4
G for complementarity and sim-

ilarity hyperbolic graphs as a function of the temperature T , also after degree-preserving
rewiring. We observe that complementarity and similarity hyperbolic graphs both con-
tain more quadrangles on average than could be expected based on the degrees. The
density of quadrangles in similarity graphs is significantly higher than in complementar-
ity graphs, explained by the fact that any two triangles together also form a quadrangle
and that similarity graphs contain many triangles, as we saw in Figure 5.1. Even though
we observe a clear difference between similarity and complementarity graphs in terms
of the bipartite clustering coefficient c4

G in Figure 5.4, the difference is only in the mag-
nitude of the coefficient and it is still difficult to leverage c4

G to classify graphs as being
either complementarity- or similarity-driven.
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Figure 5.4: Bipartite clustering coefficient c4
G as a function of temperature T . The bipartite clustering coeffi-

cient c4
G of CRHGs and RHGs as a function of temperature T . For all graphs, the number of nodes N = 104, the

expected degree E [D] = 10, and the power-law exponent in the degree distribution γ = 2.5. Each point is the
average of 5 ·103 simulations.
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5.4.3. SIMILARITY AND COMPLEMENTARITY COEFFICIENTS
In a recent work, Talaga and Nowak [127] propose a rigorous framework for measuring
the density of triangles and quadrangles in a graph relative to the expected density based
on the node degrees. They note that the clustering coefficient only considers connected
triples where the focal node i is located in the middle position, while one should also
count triples where the node i is located at an outer end of the path. In addition, they
argue that true complementarity results in a strong quadrangle, which is a quadrangle
where the chord or diagonal links are not present, a ring graph with N = 4 nodes, while
the bipartite clustering coefficient c4

G considers all quadrangles if the graph is not strictly
bipartite. They propose measures for the densities of triangles and strong quadrangles
that include all 2-hop and 3-hop paths, also the paths where node i is located at an outer
end of those paths.

a

d

b

e

c

f

Figure 5.5: Patterns of node triples and quadruples considered for computation of the complementarity and
similarity coefficients. Triangle closure (a) and strong quadrangle closure (d). A wedge triple (b) has the focal
node i in the middle position and a head triple (c) has the focal node i in the first position. A wedge quadruple
(e) has the focal node i in the second position and a head quadruple (f) has the focal node i in the first position.

The local clustering coefficient cG (i ) in (3.25) is the fraction of triangles in G that
include node i to the number of connected triples of nodes with node i located in the
middle position. Talaga and Nowak [127] name these wedge triples and the total number
of wedge triples tW

G (i ) = ki (ki −1). For distinction, we denote the similarity coefficient of
node i based on wedge triples s̃W

G (i ) ≡ cG (i ), such that

s̃W
G (i ) = 2y

tW
G (i )

= 2y

ki (ki −1)
, (5.33)

with the superscript W referring to ‘wedge’. Analogously, the number of head triples,
connected triples where node i is located at an outer end, t H

G (i ) =∑N
j =1 ai j (k j −1). The

similarity coefficient of node i based on head triples

s̃H
G (i ) = 2y

t H
G (i )

= 2y∑N
j =1 ai j (k j −1)

, (5.34)

where y is again the number of triangles containing node i and with the superscript H
referring to ‘head’. The coefficient s̃H

G (i ) ∈ [0,1]. The structural similarity coefficient s̃G (i )
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of node i is then the average of s̃W
G (i ) and s̃H

G (i ) weighted by the corresponding numbers
of triples,

s̃G (i ) = tW
G (i )s̃W

G (i )+ t H
G (i )s̃H

G (i )

tW
G (i )+ t H

G (i )
. (5.35)

The value of s̃G (i ) is bounded between those of s̃W
G (i ) and s̃H

G (i ). The graph similarity
coefficient s̃G is the average of s̃W

G (i ) over all nodes,

s̃G = 1

N

N∑
i =1

s̃G (i ). (5.36)

The structural complementarity coefficient c̃G (i ) of node i is computed in a similar
way as the structural similarity coefficient in (5.33), (5.34) and (5.35), but based on the
fraction of strong quadrangles to the number of connected quadruples of nodes. We
compute the wedge and head quadrangular clustering coefficients, which measure the
density of strong quadrangles containing node i to the total numbers of wedge and head
quadruples. A wedge quadruple for node i is a 3-hop path with node i in the second
position and the number of such quadruples is denoted by qW

G (i ). The quadrangular
clustering coefficient of node i based on wedge quadruples with node i in the second
position

c̃W
G (i ) = 2z

qW
G (i )

= 2z∑N
j =1 ai j

[
(ki −1)(k j −1)−|N (i )∩N ( j )|] , (5.37)

where z is the number of strong quadrangles containing node i . The quantity |N (i )∩
N ( j )| is the number of common neighbors between nodes i and j . A head quadruple
is a connected quadruple of nodes with node i in the first position and we name q H

G (i )
the total number of such quadruples. The complementarity coefficient based on head
quadruples

c̃ H
G (i ) = 2z

q H
G (i )

= 2z∑
j ̸= i ai j

∑
h ̸= i , j a j k (kh −1−ai h)

, (5.38)

where z is again the number of strong quadrangles containing node i . The structural
complementarity coefficient c̃G (i ) of node i is then the weighted average of c̃W

G (i ) and c̃ H
G (i ),

c̃G (i ) = qW
G (i )c̃W

G (i )+q H
G (i )c̃ H

G (i )

qW
G (i )+q H

G (i )
. (5.39)

The graph complementarity coefficient c̃G is the average of c̃W
G (i ) over all nodes,

c̃G = 1

N

N∑
i =1

c̃G (i ). (5.40)

The absolute quantities of s̃G and c̃G are incomparable and neither are the values c̃G

and c̃H for two different graphs G and H . The coefficients should be standardized, or
calibrated, by comparing the coefficients of a graph G to B different sampled random
graphs with the same number of nodes and approximately the same degrees as G has [127].
We sample B graphs using the configuration model with the degrees of G as the expected



5.4. PROPERTIES COMPLEMENTARITY VS. SIMILARITY

5

97

degrees and compute a calibrated score x̂G from each coefficient xG by computing the
average log ratio with the coefficients xGb of the b = 1, . . . , B sampled random graphs Gb ,

x̂G = 1

B

B∑
b=1

log

(
xG

xGb

)
. (5.41)

A value of the calibrated score x̂G of 0 indicates that the coefficient xG is equal to the
value that could be expected based on the degrees in the graph G .

Figure 5.6 shows the calibrated similarity and complementarity scores for RHGs and
CRHGs. The similarity score perfectly separates similarity and CRHGs for all values of T ,
similar to what we saw in Figure 5.3(a). RHGs contain significantly more triangles than
expected, whereas complementary graphs contain a number of triangles that is approx-
imately what would be expected by chance. The complementarity score separates the
two graph types for temperature values T < 0.5, which is when connections are formed
over smaller distances in the latent space. CRHGs contain more strong quadrangles than
expected, while RHGs contain fewer such quadrangles than expected. For T ≥ 0.5, the
two graph types both contain more quadrangles than expected and no conclusion can
be drawn based on the complementarity score.

a b

Figure 5.6: Calibrated complementarity and similarity scores as a function of temperature T . Calibrated com-
plementarity (a) and similarity (b) scores for CRHGs and RHGs as a function of the temperature T . The number
of nodes N = 5 ·103, the expected degree E [D] = 10 and the parameter α= 0.75 (γ= 2.5). The number of sam-
pled random graphs for calibration B = 100. Each point is the average of 104 simulations.

5.4.4. EFFECTIVE GRAPH RESISTANCE
The effective graph resistance RG is a fundamental graph metric that measures the dif-
ficulty of transport in a graph, defined as the sum of all pairwise effective resistances in
the graph [165]. The lower the effective graph resistance RG , the easier it is for a flow
to move through the network. The effective resistance ωi j for two nodes i and j takes
into account all paths that exist between i and j , therefore Ellens et al. [165] argue that
graphs with a lower effective graph resistance are more robust.

We compute the effective resistance matrix Ω through the definition in terms of the
pseudoinverse of the Laplacian Q†. For a connected graph G , the pseudo-inverse of the
Laplacian Q† is defined as

Q† =
N−1∑
k =1

1

µk
zk zT

k , (5.42)
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where µk is the k-th eigenvalue of the Laplacian Q such that µ1 ≥ µ2 ≥ . . . ≥ µN−1 ≥ µN

and zk is the corresponding N ×1 eigenvector. The pseudoinverse Q† gives

QQ† = Q†Q = I− 1

N
J, (5.43)

where J is the N × N all-one matrix. The N × N effective resistance matrix Ω is then
defined in terms of Q† as

Ω= uζT +ζuT −2Q†, (5.44)

where u is the N × 1 all-one vector and ζ = (q†
11, q†

22, . . . , q†
N N )T the N × 1 vector with

the diagonal elements of Q†. The element (Ω)i j is the effective resistance ωi j between
nodes i and j . Finally, the effective graph resistance

RG = 1

2
uTΩu. (5.45)

Figure 5.7 shows the effective graph resistance RG of complementarity and similar-
ity hyperbolic graphs as a function of the temperature T . Complementarity graphs have
a lower graph resistance than similarity graphs when they are matched by average de-
gree. The lower effective graph resistance RG suggests that complementarity graphs are
on average more robust than similarity graphs for a given value of T . For both types
of graphs, the effective graph resistance RG is fast increasing when the temperature T
approaches 1.

.G

Figure 5.7: Effective graph resistance RG as a function of temperature T . The effective graph resistance RG of
complementarity and similarity hyperbolic graphs as a function of temperature T . For all graphs, the number
of nodes N = 5 ·103, the expected degree E [D] = 10 and the power-law exponent in the degree distribution γ=
2.5. Each point is the average of 100 simulations.

5.4.5. PAIRWISE METRICS
We inspect the connection probability Pr[ai j = 1] of complementarity and similarity hy-
perbolic graphs as a function of several pairwise metrics. Metric 1 is the effective resis-
tanceωi j , the element (i , j ) of the effective resistance matrixΩ defined in (5.44). Metrics
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2-6 aim to quantify the similarity of the neighbor sets of two nodes and were shown to be
good predictors of missing links in real similarity-driven networks. For metrics 2-6, we
follow the definitions in [28]. For metric 7, the preferential attachment index, we follow
the definition in [166] and we follow the definition in [126] for metric 8, the L3 index.
Let N (i ) again be the set of neighbors of node i . We consider the following pairwise
metrics:

1. Effective resistance ωi j = (Ω)i j ,

2. Jaccard similarity neighbor sets J (i , j ) = |N (i )∩N ( j )|
|N (i )∪N ( j )| ,

3. Number of common neighbors C N (i , j ) = |N (i )∩N ( j )|,
4. Adamic-Adar index A A(i , j ) =∑

h∈N (i )∩N ( j )
1

lnkh
,

5. Resource Allocation index R A(i , j ) =∑
h∈N (i )∩N ( j )

1
kh

,

6. Cannistraci Resource Allocation index
C R A(i , j ) =∑

h∈N (i )∩N ( j )
|N (i )∩N ( j )∩N (h)|

kh
,

7. Preferential Attachment index PA(i , j ) = ki ·k j ,

8. Paths of length 3 index L3(i , j ) =∑
h,l∈N (i )∩N ( j )

ahl√
khkl

.

Figure 5.11 shows the empirical connection probability as a function of each of the
8 pairwise metrics for complementarity and similarity graphs separately. The largest
difference between similarity and complementarity graphs occurs for the effective re-
sistance ωi j . Whereas the connection probability in similarity graphs is a decreasing
function of ωi j , for complementarity graphs the line is almost entirely flat. This rela-
tion is explained when the graph is dominated by quadrangles rather than by triangles.
We indeed saw that similarity graphs contain many triangles, while complementarity
graphs contain many quadrangles. To illustrate the explanation for the flat relation be-
tween Pr[ai j = 1] and ωi j , consider a simple example: the effective resistances of two
connected nodes and of two nodes that are not connected but that are located at oppo-
site sides of a quadrangle are identical, as shown in Figure 5.8. If in both graphs (a) and

Figure 5.8: Example of two connection patterns with equal effective resistance. Example of two nodes i and j
that are (a) connected or (b) not connected and located at opposite sides of a quadrangle. If each link has a
resistance R, in both cases the effective resistance ωi j = R. Thinking of the two graphs as electrical circuits, in
graph (a) we simply have one link with resistance R. In graph (b), we have two series connections of length 2
in parallel, each with resistance 2R, that together have effective resistance R.
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(b) in Figure 5.8 we would add the same additional paths from i to j of at least length
3 (paths of smaller length would form triangles, which we do not have), the effective
resistance ωi j would not change, see Figure 5.9. Thus, if nodes i and j are part of a
quadrangle, the effective resistance ωi j is not able to explain the probability Pr[ai j = 1]
of the existence of a link between them.

Figure 5.9: Example of two connection patterns with equal effective resistance. Again the example of Figure 5.8,
but with an additional path from i to j of length 3 (highlighted in red). The effective resistances ωi j are still

identical between the graphs in (a) and (b), althoughωi j is no longer equal to R (in fact, nowωi j = 3
4 R in both

cases).

Second, the connection probability in complementarity graphs is a decreasing func-
tion of the Jaccard similarity of the neighbors sets of a node pair for complementarity
graphs: the more neighbors two nodes have in common, the less likely they are to con-
nect. This relation is explained by the absence of triangles in complementarity graphs.
For similarity graphs, the relation between connection probability and Jaccard similar-
ity is not straightforward to classify, but for higher values of the Jaccard similarity the
function is increasing.

For the remaining pairwise metrics, the connection probability is an increasing func-
tion of the metric for both complementarity and similarity graphs. Except for the effec-
tive resistance and the Jaccard similarity, the pairwise metrics considered here cannot
distinguish between complementarity and similarity hyperbolic graphs.

5.4.6. DEGREE ASSORTATIVITY
The concept of complementarity, defined in the latent metric space of a network and
therefore not directly observed, could materialize as a disassortativity between observ-
able node properties. We inspect the degree assortativity ρD , which measures the ten-
dency of nodes to connect preferentially to nodes with similar degree [159]. Newman [167]
defines the degree assortativity ρD as the Pearson correlation coefficient between the de-
grees of connected nodes. Van Mieghem et al. [143] find the following graph-theoretic
expression of the degree assortativity

ρD = 1−
∑

i ∼ j
(
ki −k j

)2

∑N
j =1 k3

j − 1
2L

(∑N
j =1 k2

j

)2 , (5.46)

where i ∼ j indicates that nodes i and j are direct neighbors.
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Figure 5.10 shows the degree assortativity ρD of complementarity and similarity hy-
perbolic graphs as a function of the temperature T . We first observe that complemen-
tarity and similarity hyperbolic graphs have a degree assortativity ρD very close to 0.
We also observe that complementarity and similarity hyperbolic graphs do not differ
through the degree assortativity ρD on average. The degree assortativity ρD is not a met-
ric that distinguishes complementarity and similarity hyperbolic graphs.

ρ
D

Figure 5.10: Degree assortativity ρD as a function of temperature T . The degree assortativity ρD of comple-
mentarity and similarity hyperbolic graphs as a function of temperature T . For all graphs, the number of
nodes N = 104, the expected degree E [D] = 10, and the power-law exponent in the degree distribution γ= 2.5.
Each point is the average of 104 simulations.

5.5. CONCLUSION
We have studied the topological properties of the CRHG from Chapter 4. We can con-
struct CRHGs that are sparse and we find that they have approximately a power-law de-
gree distribution, like similarity-driven RHGs. We find that the topology of the CRHG is
dominated by quadrangles, contrary to the RHG, of which the topology is dominated by
triangles. This finding agrees with earlier studies of real complementarity-driven net-
works. Because of the quadrangular patterns, we find that in CRHGs the effective resis-
tance is not related to the probability of link existence. Overall, CRHGs have a lower ef-
fective graph resistance than regular hyperbolic graphs, which indicates that they might
be more robust. Both CRHGs and RHGs show almost no degree assortativity. A good
understanding of the topological properties of the CRHG model might help us design
better statistical methods for real networks in which the link formation is driven by com-
plementarity.
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Figure 5.11: Connection probability Pr[ai j = 1] as a function of different pairwise metrics. Histograms of the
connection probability Pr[ai j = 1] as a function of different pairwise metrics for CRHGs and RHGs. In each
panel, the empirical connection probabilities and metrics are computed from a single simulated network per
network type, with N = 5 ·103, E [D] = 10, T = 0.5 and γ = 2.5. In a given histogram, each bin has equal loga-
rithmic width.
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6
TOPOLOGICAL PROPERTIES AND

ORGANIZING PRINCIPLES OF

SEMANTIC NETWORKS

We acquire languages in one way, and only one way: by understanding messages,
not through explicit teaching aimed at conscious learning.

Stephen D. Krashen

Interpreting natural language is an increasingly important task in computer algorithms
due to the growing availability of unstructured textual data. Natural Language Processing
(NLP) applications rely on semantic networks for structured knowledge representation.
We study the properties of semantic networks from ConceptNet, defined by 7 semantic re-
lations from 11 different languages. We find that semantic networks have universal basic
properties: they are sparse, highly clustered, and many exhibit power-law degree distri-
butions. Our findings show that the majority of the considered networks are scale-free.
Some networks exhibit language-specific properties determined by grammatical rules, for
example networks from highly inflected languages, such as e.g. Latin, German, French,
and Spanish, show peaks in the degree distribution that deviate from a power law. We
find that depending on the semantic relation type and the language, the link formation
in semantic networks is guided by different principles. In some networks the connections
are similarity-based, while in others the connections are more complementarity-based.
Finally, we demonstrate how knowledge of similarity and complementarity in semantic
networks can improve NLP algorithms in missing link inference.

This Chapter is based on G. Budel, Y. Jin, P. Van Mieghem and M. Kitsak (2023), Topological properties and
organizing principles of semantic networks, Scientific Reports 13(1), 11728 [160].
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6.1. INTRODUCTION
Due to the explosive increase in the availability of digital content, the demand for com-
puters to efficiently handle textual data has never been greater. Large amounts of data
and improved computing power have enabled a vast amount of research on Natural Lan-
guage Processing (NLP). The goal of NLP is to allow computer programs to interpret and
process unstructured text. In computers, text is represented as a string, while in reality,
human language is much richer than just a string. People relate text to various concepts
based on previously acquired knowledge. To effectively interpret the meaning of a text,
a computer must have access to a considerable knowledge base related to the domain of
the topic [44].

Semantic networks can represent human knowledge in computers, as first proposed
by Quillian in the 1960s [45, 168]. ‘Semantic’ means ‘relating to meaning in language or
logic’ and a semantic network is a graph representation of structured knowledge. Such
networks are composed of nodes, which represent concepts (e.g., words or phrases), and
links, which represent semantic relations between the nodes [46, 169]. The links are tu-
ples of the format (source, semantic relation, destination) that encode knowledge. For
example, the information that a car has wheels is represented as (car, has, wheels). Fig-
ure 6.1 shows a toy example of a semantic network as the subgraph with the neighbor-
hood around the node car.

carSUV wheels

road

seats

related-to

part-of

is-a

has

part-of

motor

Figure 6.1: Toy example of a semantic network with six concepts and five semantic relations of four different
types.

The past two decades have witnessed a rise in the importance of NLP applications [170–
172]. For instance, Google introduced Google Knowledge Graph to enhance their search
engine results [47]. A knowledge graph is a specific type of semantic network, in which
the relation types are more explicit [173, 174]. Voice assistants and digital intelligence
services, such as Apple Siri [50] and IBM Watson [51], use semantic networks as a knowl-
edge base for retrieving information [175, 176]. As a result, machines can process infor-
mation in raw text, comprehend unstructured user input, and achieve the goal of com-
municating with users, all up to a certain extent. Recently, OpenAI made a great leap for-
ward in user-computer interaction with InstructGPT, better known to the general public
as ChatGPT [53].

Language is a complex system with diverse grammatical rules. To grasp the meaning
of a sentence, humans leverage their natural understanding of language and concepts
in contexts. Language is still poorly understood from a computational perspective and,
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hence, it is difficult for computers to utilize similar strategies. Namely, machines operate
under unambiguous instructions that are strictly predefined and structured by humans.
Though we can argue that human languages are structured by grammar, these grammat-
ical rules often prove to be ambiguous [177]. After all, in computer languages, there are
no synonyms, namesakes, or tones that can lead to misinterpretation [178]. Computers
rely on external tools to enable the processing of the structure and meaning of texts.

In this paper, we conduct systematic analyses of the topological properties of seman-
tic networks. Our work is motivated by the following purposes:

• Understand fundamental formation principles of semantic networks.
In many social networks connections between nodes are driven by similarity [179–
182]. The more similar two nodes are in terms of common neighbors, the more
likely they are connected. Thanks to the intensive study of similarity-based net-
works, many successful tools of data analysis and machine learning were devel-
oped, such as link prediction [183] and community detection [184]. These tools
may not work well for semantic networks, because words in a sentence do not
necessarily pair together because of similarity. Sometimes, two words are used in
conjunction because they have complementary features. Therefore, we study the
principles that drive the formation of links in semantic networks.

• Document language-specific features.
Languages vary greatly between cultures and across time [185]. Two languages that
originate from two different language families can differ in many types of features
since they are based on different rules. It is natural to conjecture that there exist
diverse structures in semantic networks for different languages.

• Better inform NLP methods.
Although there have been numerous real-world NLP applications across various
domains, existing NLP technologies still have limitations [186]. For example, pro-
cessing texts from a language where single words or phrases can convey more than
one meaning is difficult for computers [187, 188]. Existing, successful algorithms
built on top of semantic networks are usually domain-specific, and designing al-
gorithms for broader applications remains an open problem. To design better
language models that can handle challenges such as language ambiguity, we first
need to gain a better understanding of the topological properties of semantic net-
works.

Previous studies on semantic networks focused on a few basic properties and relied
on multiple datasets with mixed semantic relations, which we discuss in detail in Sec-
tion 6.2. Therefore, it is difficult to compare the results within one study and between
two different studies. To our knowledge, there has been no systematic and comprehen-
sive analysis of the topological properties of semantic networks at the semantic relation
level.

To sum up, the main objective of this paper is to understand the structure of seman-
tic networks. Specifically, we first study the general topological properties of semantic
networks from a single language with distinct semantic relation types. Second, we com-
pare semantic networks with the same relation type between different languages to find
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language-specific patterns. In addition, we investigate the roles of similarity and com-
plementarity in the link formation principles in semantic networks.

The main contributions of this paper include:

1. We study the topological properties of seven English semantic networks, each net-
work defined by a different semantic relation (e.g., ‘Is-A’ and ‘Has-A’). We show
that all networks possess high sparsity and many possess a power-law degree dis-
tribution. In addition, we find that most networks have a high average clustering
coefficient, while some networks show the opposite.

2. We extend the study of the topological properties of semantic networks to ten
other languages. We find non-trivial structural patterns in networks from lan-
guages that have many grammatical inflections. Due to the natural structure of
the grammar in these languages, words have many distinct inflected forms, which
leads to peaks in the density of the degree distribution and results in deviations
from a power law. We find this feature not only in inflecting languages but also in
Finnish, which is classified as agglutinating.

3. We study the organizing principles of 50 semantic networks defined by different
semantic relations in different languages. We quantify the structural similarity
and complementarity of semantic networks by counting the relative densities of
triangles and quadrangles in the graphs, following a recent work by Talaga and
Nowak [127]. Hereby, we show to what extent these networks are similarity- or
complementarity-based. We find that the connection principles in semantic net-
works are mostly related to the type of semantic relation, not the language origin.

This Chapter is organized as follows. In Section 6.2, we provide a brief overview
of the previous work on the properties of semantic networks. In Section 6.3, we study
the general topological properties of seven English semantic networks. We compare the
properties of semantic networks between 11 different languages in Section 6.4, while
Section 6.5 deals with the fundamental connection principles in semantic networks. We
measure and compare the structural similarity and complementarity in the networks in
this study and we discuss the patterns that arise. Finally, in Section 6.6 we summarize
our conclusions and findings and give recommendations for future research.

6.2. RELATED WORK
Due to the growing interest in semantic networks, related studies were carried out in
a wide range of different fields. Based on our scope, we focus on two main aspects in
each work: the topological properties that were analyzed in the study and the dataset
that was used in the analysis (i), and the universal and language-specific patterns which
were found and discussed (ii).

The majority of semantic network literature is centered around three link types: co-
occurrence, association, and semantic relation. In a co-occurrence network, sets of
words that co-occur in a phrase, sentence, or text form a link. For association net-
works, participants in a cognitive-linguistic experiment are given a word and asked to
give the first word that they think of. There are several association datasets, one example
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is the University of South Florida Free Association Norms [189]. Semantic relations are
relations defined by professionals like lexicographers, typical examples are synonyms,
antonyms, hypernyms, and homonyms. The specific instances of the semantic relations
are also defined by the lexicographers or extracted computationally from text corpora.

In 2001, Ferrer-i-Cancho and Sole [190] studied undirected co-occurrence graphs
constructed from the British National Corpus dataset [191]. They measured the average
distance between two words and observed the small-world property, which was found in
many real-world networks [95]. Motter et al. [192] have analyzed an undirected concep-
tual network constructed from an English Thesaurus dictionary [193]. They focused on
three properties: sparsity (small average degree), average shortest path length, and clus-
tering. That same year, Sigman and Cecchi [194] studied undirected lexical networks
extracted from the noun subset of WordNet [195], where the nodes are sets of noun syn-
onyms. They grouped networks by three semantic relations: antonymy, hypernymy, and
meronymy. A detailed analysis of characteristic length (the median minimal distance
between pairs of nodes), degree distributions, and clustering of these networks was pro-
vided. Semantic networks were also found to possess the small-world property of sparse
connectivity, short average path length, and strong local clustering [192, 194].

Later, Steyvers and Tenenbaum [54] performed statistical analysis of 3 kinds of se-
mantic networks: word associations [189], WordNet and Roget’s Thesaurus [196]. Apart
from the above-mentioned network properties, they also considered network connect-
edness and diameter. They pointed out that the small-world property may originate
from the scale-free organization of the network, which exists in a variety of real-world
systems [3, 197, 198].

As for patterns across different languages, Ferrer-i-Cancho et al. [199] built syntac-
tic dependency networks from corpora (collections of sentences) for three European
languages: Czech, German and Romanian. They showed that networks from different
languages have many non-trivial topological properties in common, such as the small-
world property, a power-law degree distribution and disassortative mixing [159].

Existing studies have identified some general network properties in semantic net-
works such as the small-world property and power-law degree distributions. However,
the datasets used in these studies are often different, sometimes even within the same
study, rendering direct comparison of results difficult. Some used associative networks
generated from experiments and some studied thesauri that were manually created by
linguists. In addition, most of the research performed consists of coarse-grained statis-
tical analyses. Specifically, different semantic relations were sometimes treated as iden-
tical and the subset of included nodes was often limited (e.g., only words and no phrases
or only nouns). Further, there are only very few studies on semantic networks from lan-
guages other than English.

Therefore, our analyses focus on semantic networks with different semantic relations
(link types) from a single dataset. We consider networks defined by a specific link type,
make these networks undirected and unweighted, and compare the structural properties
between networks with different link types. In addition, we apply similar analyses to
semantic networks with the same link type across different languages. Furthermore, we
investigate the roles that similarity and complementarity play in the formation of links
in semantic networks.
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6.3. GENERAL PROPERTIES OF SEMANTIC NETWORKS
To gain an understanding of the structure of semantic networks, we first study the gen-
eral topological properties of English semantic networks. The dataset that we use through-
out this study is ConceptNet [125], Appendix D.1. We list the semantic relations that de-
fine the networks in this study in Table D.1. An overview of the semantic networks is
given by Table D.2. In this Section, we compute various topological properties of these
networks related to connectedness, degree, assortative mixing, and clustering. We sum-
marize the overall descriptive statistics of the semantic networks in Table D.2.

6.3.1. CONNECTEDNESS
We measure the connectedness of a network by the size of the largest connected com-
ponent and the size distribution of all connected components. The component size dis-
tributions of the English semantic networks are shown in Figure D.4. Table D.4 lists the
sizes of the largest connected components (LCCs) in absolute as well as relative num-
bers. The same statistics are computed after degree-preserving random rewiring of the
links for comparison [159]. The purpose of random rewiring is to estimate the value of
the graph metric that could be expected by chance, solely based on the node degrees
(see Appendix D.3.1 for details on the rewiring process).

Based on the percentages of nodes in the LCC, all seven semantic networks are not
fully connected. The networks ‘Is-A’, ‘Related-To’ and ‘Union’ are almost fully connected
given that their LCCs contain over 90% of nodes. Networks ‘Has-A’, ‘Part-Of’, ‘Antonym’
and ‘Synonym’ are largely disconnected, with the percentages of nodes in their LCCs
ranging from 22% to 65%. Most of the rewired networks are more connected than the
corresponding original networks, especially networks ‘Antonym’ and ‘Synonym’. In other
words, the majority of our semantic networks are less connected than what could be
expected by chance. For networks ‘Related-To’ and ‘Union’, the percentage of nodes in
the LCC remains almost unchanged, while the ‘Is-A’ network is more connected than
expected.

6.3.2. DEGREE DISTRIBUTION
Figure 6.2 shows that the densities Pr[D = k] of the degree distributions of our seven
English semantic networks all appear to follow power laws in the tail visually. A more
rigorous framework for assessing power laws was proposed by Voitalov et al. [97], who
consider networks to have a power-law degree distribution if Pr[D = k] = ℓ(k)k−γ for
a slowly varying function ℓ(k), see Appendix D.3.1. Figure 6.2 includes the estimates γ̂
based on the slopes of the densities Pr[D = k] on a log-log scale, along with the three
consistent estimators from the framework of Voitalov et al. [97, 200]. According to these
estimators, the degree sequences of 5 out of the 7 networks are power-law. The degree
sequences of the ‘Synonym’ and ‘Antonym’ networks are hardly power-law because at
least one of the γ̂> 5 and therefore the estimated exponents are not listed.

For most networks, the estimated exponent γ̂ lies between 2 and 3. Therefore, most
semantic networks are scale-free, except for the ‘Synonym’ and ‘Antonym’ networks. In
the literature, semantic networks were also found to be highly heterogeneous [54, 55].
Moreover, the word frequencies in several modern languages were found to follow power
laws [201]. In Section 6.4, we will see that the ‘Synonym’ and ‘Antonym’ networks in most
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considered languages are hardly power-law or not power-law networks.
The heterogeneity in the degree distribution seems natural for networks such as the

‘Is-A’ network: there are many specific or unique words with a small degree that con-
nect to only a few other words, while there are also a few general words that connect to
almost anything, resulting in a large degree. Examples of general words with a large de-
gree are ‘plant’ and ‘person’, while specific words like ‘neotectonic’ and ‘cofinance’ have
a small degree. Our results show that many semantic networks have power-law degree
distributions, like many other types of real-world networks [202–204].

=2.3
=2.3

=2.4

=2.4

=2.4

Figure 6.2: Degree distribution densities Pr[D = k] of the LCCs of the seven English semantic networks. The
data is scaled by powers of 1000 to better visualize the power law in each density. The corresponding estimated
power-law exponents γ̂ are shown if there is a power law, Pr[D = k] ≈ ℓ(k)k−γ. The degree sequences of the
networks ‘Antonym’ and ‘Synonym’ were estimated to be hardly power-law because at least one of the γ̂ > 5.
The data are logarithmically binned to suppress noise in the tails of the distributions, see Appendix D.3.1 for
details on how the power-law densities are processed and the power-law exponent estimation procedures.

6.3.3. DEGREE ASSORTATIVITY
A number of measures have been established to quantify degree assortativity, such as the
degree correlation coefficientρD and the Average Nearest Neighbor Degree (ANND) [159].
Figure 6.3 shows the average nearest neighbor degree as a function of the degree k for
four selected networks and their values after random rewiring as well as the degree cor-
relation coefficient ρD . Refer to Figure D.2 for the ANND plots of all networks. The
degree-preserving rewired networks have no degree-degree correlation and, as a result,
the function ANND does not vary with k. The rewired networks serve as a reference for
the expected ANND values when the links are distributed at random.

We find that most semantic networks are disassortative as ANND is a decreasing
function of the degree k and the degree correlation coefficient ρD is negative. These net-
works are ‘Has-A’, ‘Part-Of’, ‘Is-A’, ‘Related-To’, and ‘Union’. In disassortative networks,
nodes with larger degrees (general words) tend to connect to nodes with smaller degrees
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(less general words). This is not surprising. Indeed, if we use these relations in a sen-
tence, then we often relate specific words to more general words. For example, we say
‘horse racing is a sport’, in which ‘horse racing’ is a very specific phrase while ‘sport’ is
more general.

On the other hand, network ‘Synonym’ is assortative as the function ANND increases
in the degree k. This indicates that large-degree nodes (general words) connect to nodes
that have similar degree (words with the same generality). The same applies to network
‘Antonym’. Although the degree correlation is not very pronounced and reflected by the
small correlation coefficient ρD =−0.005, we still see a slight upward trend in the curve
of ANND.

The function ANND of a rewired network is not degree-dependent anymore, shown
by the orange curves in Figure 6.3. The curve is almost flat for ‘Synonym’ and ‘Related-
To’. At the larger degree k, the curve may drop slightly, as for large-degree nodes there
are not enough nodes of equal degree to connect to.
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Figure 6.3: Average nearest neighbor degree (ANND) as a function of degree k and degree correlation coeffi-
cient ρD of four English semantic networks. Panels correspond to (a) Network ‘Has-A’, (b) Network ‘Is-A’, (c)
Network ‘Antonym’, (d) Network ‘Synonym’. See Figure D.2 for the results of all seven networks. Data points in
circles are the average ANND of nodes with degree k in a network, triangles represent the data after logarith-
mic binning, and squares are the average ANND of nodes with degree k in the rewired network. Logarithmic
binning is used to better visualize the data.

6.3.4. CLUSTERING COEFFICIENT
In networks such as social networks, the neighbors of a node are likely to be connected
as well, which is called clustering [95, 163]. If a person has a group of friends, there is a
high chance that these friends also know each other. These networks are characterized
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by many triangular connections.
The clustering coefficient cG (i ) of a node i is defined in (3.25). Figure 6.4 shows the

average clustering coefficient cG (i ) of nodes i with degree k of four English networks. Re-
fer to Figure D.3 for the clustering coefficients of all seven networks. All networks have
small clustering coefficients in absolute terms, which, in combination with the small
average degree E [D], indicates a local tree-like structure. We find that the networks
‘Part-Of’, ‘Antonym’, and ‘Synonym’ have substantially larger clustering coefficients than
their rewired counterparts: there are more triangles in these networks than expected by
chance. On the other hand, the network ‘Has-A’ has lower clustering coefficients cG (i )
than the randomized network, therefore it seems that the ‘Has-A’ network is organized
in a different way than the other networks. As for the networks ‘Is-A’, ‘Related-To’, and
‘Union’, the clustering coefficients cG (i ) are similar to their corresponding rewired net-
works.

In summary, we find that English semantic networks have power-law degree dis-
tributions and most are scale-free, which coincides with the results in previous stud-
ies [54, 55]. Besides, semantic networks with different link types show different levels
of degree assortativity and average local clustering. Most works in the literature have
identified high clustering coefficients in semantic networks [54, 55, 192, 194]. This en-
courages us to further investigate the organizing principles of these semantic networks,
which we will discuss explicitly in Section 6.5.
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Figure 6.4: The average clustering coefficient cG (i ) of nodes i with degree k of four English semantic networks.
Panels correspond to (a) Network ‘Has-A’, (b) Network ‘Is-A’, (c) Network ‘Related-To’, (d) Network ‘Synonym’.
See Figure D.3 for the results of all seven networks. Data points in circles are the original average local clus-
tering coefficients of nodes i with degree k, triangles represent data after logarithmic binning, and squares
show the average clustering coefficients of nodes i with degree k (logarithmically binned) in the randomized
networks.
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6.4. LANGUAGE-SPECIFIC PROPERTIES
In this Section, we consider semantic networks from 10 languages other than English
contained within ConceptNet: French, Italian, German, Spanish, Russian, Portuguese,
Dutch, Japanese, Finnish, and Chinese. We group the 11 languages based on their lan-
guage families and we again study the topological properties of 7 different semantic rela-
tions per language. Finally, we observe peculiarities in the degree distribution densities
of the ‘Related-To’ networks in some languages, which we later explain by grammar.

6.4.1. LANGUAGE CLASSIFICATION
In linguistics, languages can be partitioned in multiple different ways. Mainly, there are
two kinds of language classifications: genetic and typological.

The genetic classification assorts languages according to their level of diachronic re-
latedness, where languages are categorized into the same family if they evolved from the
same root language [205]. An example is the Indo-European family, which includes the
Germanic, Balto-Slavic, and Italic languages [206].

One popular typological classification distinguishes isolating, agglutinating, and in-
flecting languages. It groups languages in accordance with their morphological word
formation styles. A morph or morpheme (the Greek word µορφή means ‘outer shape,
appearance’ of which the English ’form’ is derived) is the basic unit of a word, such as
a stem or an affix [207]. For instance, the word ‘undoubtedly’ consists of three morphs:
‘un-’, ‘doubted’ and ‘-ly’. In an isolating language, like Mandarin Chinese, each word
contains only a single morph [205]. In contrast, words from an agglutinating language
can be divided into morphs with distinctive grammatical categories like tense, person,
and gender. In an inflecting language, however, there is no exact match between morphs
and grammatical categories [205]. A word changes its form based on different grammar
rules. Most Indo-European languages belong to the inflecting category.

Based on these two types of classifications, we have selected 11 languages to cover
different language types, Table D.5. Typologically, Chinese is an isolating language, while
Japanese and Finnish are agglutinating languages. The rest of the languages under con-
sideration (8 out of 11) belong to the inflecting category. Genetically, French, Italian,
Spanish, and Portuguese belong to the Italic family, while English, German, and Dutch
are Germanic. Russian is a Balto-Slavic language, Japanese is Transeurasian, Chinese is
Sino-Tibetan and Finnish belongs to the Uralic family. We mainly refer to the typological
classification throughout our analyses.

6.4.2. OVERVIEW OF SEMANTIC NETWORKS
For every language, we construct seven undirected semantic networks with the link types
‘Has-A’, ‘Part-Of’, ‘Is-A’, ‘Related-To’, ‘Union’, ‘Antonym’, and ‘Synonym’. Due to missing
data in ConceptNet, only three languages have the ‘Has-A’ relation. For these languages,
the ‘Union’ network is the union of three link types: ‘Part-Of’, ‘Is-A’, and ‘Related-To’. In
this Section, we provide an overview of the numbers of nodes N and numbers of links L
of the semantic networks. Again, we restrict our study to the LCCs of these networks.

Regarding the numbers of nodes N , the networks ‘Related-To’ and ‘Union’ are gen-
erally the largest networks in a language, with the French ‘Union’ network being the ab-
solute largest with N = 1,296,622, as denoted in Table D.6. Nevertheless, there are many
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small networks with size N < 100, particularly for the ‘Part-Of’ and ‘Synonym’ networks.
Similar to the English semantic networks, we observe that most networks with more

than 100 nodes are sparse. All networks have an average degree between 1 and 6, which
is small compared to the network size. Consider the Dutch ‘Is-A’ network for example,
where a node has about 5 connections on average, which is only 2.45% of 191 nodes in
the whole network. Table D.7 lists the average degree E [D] of all our semantic networks.

6.4.3. DEGREE DISTRIBUTION
Many of the semantic networks in the 11 languages have degree distributions that are
approximately power laws. We estimate the power-law exponents only for networks with
size N > 1000 because we require a sufficient number of observations to estimate the
power-law exponent γ. Table D.8 lists the estimated power-law exponents γ̂ using the
same 4 methods as in Figure 6.2 for each semantic network. Refer to Section D.3.1 for
details on these estimation procedures.

We find that many networks have power laws in their degree distributions and many
of those networks are scale-free (2 < γ̂ < 3). The Chinese ‘Related-To’ network even has
a power-law exponent γ̂ < 2. The degree distributions of all ‘Synonym’ and ‘Antonym’
networks are hardly or not power laws, however. The likely reason for this is that nodes
in these networks generally have smaller degrees than in other networks. As a result, the
slope of the degree distribution is steeper and therefore not classified as a power law.
This is not unexpected, as for a given word there are only a certain number of synonyms
or antonyms and therefore there are not many nodes with high degrees. Another in-
teresting finding is that the densities of the degree distributions of the ‘Related-To’ and
‘Union’ networks for French, Spanish, Portuguese, and Finnish show notable deviations
from a straight line in the log-log plot, which we discuss in-depth in the next Section.

6.4.4. LANGUAGE INFLECTION
In some languages, the densities of the degree distributions of the ‘Related-To’ and ‘Union’
networks show deviations from a straight line on a log-log scale. An example is the Span-
ish ‘Related-To’ network in Figure 6.5(a), where we observe a peak in the tail of the dis-
tribution. To find the cause of the anomaly in the degree distribution, we inspect the
words with a degree k located in the peak, referred to as peak words, and their neigh-
bors. Table D.9 lists a few examples of the peak words, which are almost all verbs and
have similar spellings. The links adjacent to these nodes with higher-than-expected de-
grees might be the result of grammatical inflections of the same root words since Spanish
is a highly inflected language. We observe a similar anomaly in the degree distributions
of French, Portuguese, and Finnish ‘Related-To’ and ‘Union’ networks. In Table D.6 we
saw that the network ‘Union’ is mostly composed of ‘Related-To’ in these four languages,
therefore we restrict the analysis to the ‘Related-To’ networks.

Two common types of language inflection are conjugation, the inflection of verbs,
and declension, the inflection of nouns. The past tense of the verb ‘to sleep’ is ‘slept’,
an example of conjugation in English. The plural form of the noun ‘man’ is ‘men’, an
example of declension. The languages Spanish, Portuguese, and French are much richer
in conjugations than English, while Finnish is rich in declensions.



6

116 6. TOPOLOGICAL PROPERTIES OF SEMANTIC NETWORKS

PART-OF-SPEECH TAGS

In the ConceptNet dataset, only part of the nodes is part-of-speech (POS) tagged with
one of four types: verb, noun, adjective, and adverb. For French, Spanish, and Por-
tuguese, the percentage of verbs in the peak is larger than in the LCC, while for Finnish
the percentage of nouns in the peak is larger than in the LCC, see Table D.10. Remark-
ably, 100% of the Portuguese peak words are verbs. Most neighbors of the peak words are
verbs for Spanish (97%), Portuguese (99%), and French (87%), while most neighbors of
the peak words are nouns for Finnish (90%), Table D.11. This strengthens our belief that
the abnormal number of nodes with a certain degree k is related to language inflection
in these four languages.

MERGING OF WORD INFLECTIONS

To investigate whether the peaks in the degree distribution densities are indeed related
to word inflections, we leverage the ‘Form-Of’ relation type in ConceptNet, which con-
nects two words A and B if A is an inflected form of B, or B is the root word of A [208]. We
merge each node and its neighbors from the ‘Form-Of’ network (its inflected forms) into
a single node in the ‘Related-To’ network, as depicted in Figure D.5. Figure 6.5 shows the
degree distribution densities of the ‘Related-To’ networks before and after node merg-
ing. The range of the anomalous peak in the density of the degree distribution is high-
lighted in yellow. In each panel, the number of grammatical variations m coincides with
the center of the peak. As seen in Figure 6.5(a), the peak completely disappears in the
Spanish ‘Related-To’ after node merging, thus the peak is described entirely by connec-
tions due to word inflections. We also observe significant reductions in the heights of
the peaks for Portuguese and Finnish ‘Related-To’ networks. However, for the French
‘Related-To’ network there is only a slight reduction in height after merging, which we
believe is likely due to poor coverage in the French ‘Form-Of’ network with only 17% of
words in the peak. In contrast, the Spanish ‘Form-Of’ network covers 97% of the Spanish
peak words, while for Portuguese and Finnish, approximately 50% of the peak words are
covered, Table D.12.

THE NUMBER OF INFLECTIONS

In a language, the number of distinct conjugations of regular verbs is determined by the
number of different pronouns and the number of verb tenses, which are grammatical
time references [209]. In Spanish, there are 6 pronouns and 9 simple verb tenses, result-
ing in at most m = 6×9 = 54 distinct verb conjugations [210, 211]. Table 6.1 exemplifies
these 54 different conjugations for the verb ‘amar’, which means ‘to love’. There are also
irregular verbs that follow different, idiosyncratic grammatical rules, but the majority
of the verbs in Spanish are classified as regular, like in most inflecting languages. The
number of grammatical variations m = 54 coincides with the center of the peak in Fig-
ure 6.5(a).

Like Spanish, Portuguese has m = 54 distinct conjugated verb forms [212]. In French,
there are m = 6×7 = 42 distinct verb conjugations [213]. In Finnish, there are in total 15
noun declensions or cases with distinct spelling, each having singular and plural forms,
resulting in m = 30 different cases of a Finnish noun [214]. Table D.13 lists the number
of grammatical variations m in French, Spanish, Portuguese, and Finnish, along with
the minimum and maximum degree kmin and kmax where the peak starts and ends. By



6.5. COMPLEMENTARITY AND SIMILARITY IN SEMANTIC NETWORKS

6

117

Original
Merged (binned)
Peak range
Grammatical variations

Figure 6.5: Densities Pr[D = k] of the degree distributions of the ‘Related-To’ networks before and after node
merging of inflected forms in (a) Spanish, (b) French, (c) Portuguese and (d) Finnish. The logarithmically
binned densities after node merging are shown in orange. The peaks are highlighted in yellow. The vertical
black lines indicate the number of grammatical variations m for the relevant grammatical rule in the respective
language. In each panel, the number of grammatical variations m coincides with the center of the peak.

Figure 6.5 we confirm that the number of grammatical variations m coincides with or is
close to the center of the peak.

In summary, we observe anomalies in the degree distributions of ‘Related-To’ net-
works from the inflecting languages Spanish, French, and Portuguese and the aggluti-
nating Finnish. Because of grammatical structures, root words in these languages share
many links with their inflected forms, resulting in more nodes with a certain degree than
expected. While Finnish is typologically classified as agglutinating, it still has many noun
declensions, suggesting that the agglutinating and inflecting language categories are not
mutually exclusive.

6.5. COMPLEMENTARITY AND SIMILARITY IN SEMANTIC

NETWORKS
Although we have identified several universal characteristics of semantic networks, we
also observe notable differences in some of their properties. The clustering coefficient in
some semantic networks, for instance, is greater than expected by chance, while in other
semantic networks, e.g., the English ‘Has-A’ network, the clustering coefficient is smaller
than expected by chance.

We hypothesize that these semantic networks are organized according to different
principles. It is commonly known that one such principle is similarity: all factors being
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Tense
Pronoun Yo Tú Él/Ella/Usted Nosotros Vosotros Ellos/Ellas/

(I) (You) (He/She) (We) (You) Ustedes (They)

Present Indicative amo amas ama amamos amáis aman
Imperfect Indicative amaba amabas amaba amábamos amabais amaban
Preterite Indicative amé amaste amó amamos amasteis amaron
Future Indicative amaré amarás amará amaremos amaréis amarán
Conditional Indicative amaría amarías amaría amaríamos amaríais amarían
Present Subjunctive ame ames ame amemos améis amen
Imperfect Subjunctive 1 amara amaras amara amáramos amarais amaran
Imperfect Subjunctive 2 amase amases amase amásemos amaseis amasen
Future Subjunctive amare amares amare amáremos amareis amaren

Table 6.1: Verb conjugation table for the Spanish verb ‘amar’ (to love). The 6 pronouns and 9 verb tenses result
in a maximum of 54 different conjugated forms.

equal, similar nodes are more likely to be connected. Similarity is believed to play a lead-
ing role in the formation of ties in social networks and lies at the heart of many network
inference methods. At the same time, recent works indicate that many networks may be
organized predominantly according to the complementarity principle, which dictates
that interactions are preferentially formed between nodes with complementary proper-
ties. Complementarity has been argued to play a significant role in protein-protein in-
teraction networks [126] and production networks [110]. In addition, we have proposed
a geometric complementarity framework for modeling and learning complementarity
representations of real networks, Chapter 4.

This Section aims to assess the relative roles of complementarity and similarity mech-
anisms in different semantic networks. We utilize the method by Talaga and Nowak [127].
The method assesses the relative roles of the two principles by measuring the relative
densities of triangular and quadrangle motifs in the networks. Intuitively, the transitivity
of similarity—A similar to B and B similar to C implies A similar to C —results in a high
density of triangles [180, 215, 216], Figure D.6. The non-transitivity of complementarity,
on the other hand, suppresses the appearance of triangles but enables the appearance
of quadrangles in networks [126, 217].

We measure and compare the density of triangles and quadrangles with the struc-
tural similarity and complementarity coefficients using the framework of Talaga and
Nowak [127]. After computing the densities of triangles and quadrangles, the framework
assesses their significance by comparing the densities to those of graphs with match-
ing degree distributions generated by the configuration model, see Appendix D.7.1 for
a summary. As a result of the assessment, the network of interest is quantified by two
normalized structural coefficients corresponding to complementarity and similarity.

Figure 6.6 depicts the relative roles of complementarity and similarity in 50 seman-
tic networks. We observe that semantic networks are clustered together according to
semantic relation types and not their language families, indicating that specific types
of semantic relations matter more for the organizing principles of a semantic network
rather than its language.

Based on the calibrated complementarity and similarity values, we can categorize
most semantic networks as (i) predominantly complementarity-based, (ii) predominantly
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Cluster 2
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of both
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Complementarity-prevalence
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Figure 6.6: Calibrated average structural coefficients of the LCCs of 50 semantic networks from 11 different
languages. Languages that belong to the same family are marked with similar shapes: triangles represent
Italic, quadrilaterals represent Germanic, circles represent Balto-Slavic, a star represents Transeurasian, a cross
represents Sino-Tibetan, and a pentagon represents Uralic. The marker size scales logarithmically with the
number of nodes N in the network and is further adjusted for visibility. The grey lines at x = 0 and y = 0
indicate the expected coefficients based on the configuration model (see Appendix D.7.1). The dashed line at
y = x indicates that the structural similarity and complementarity coefficients are equal. Networks in the upper
left area (shaded in blue) are more complementarity-based, while networks in the lower right area (shaded in
yellow) are more similarity-based. We highlight four clusters of networks using different colors.

similarity-based, and (iii) networks where both complementarity and similarity are sub-
stantially present.

We observe four clustering patterns in Figure 6.6.

• Cluster 1 (light blue): the ‘Synonym’ networks are characterized by stronger sim-
ilarity than complementarity values. This observation is hardly surprising since
‘Synonym’ networks link words with similar meanings. Since similarity is transi-
tive, the Synonym’ networks contain significant numbers of connected node triples,
leading to large clustering coefficients.

• Cluster 2 (red): the ‘Antonym’ networks, as observed in Figure 6.6, belong to the
upper triangle of the scatter plot plane, hence complementarity is more prevalent
in these networks than similarity. This observation is as expected, as antonyms
are word pairs with opposite meanings that complement each other. In Chap-
ter 4, we have learned a geometric representation of the English ‘Antonym’ net-
work, demonstrating that antonyms indeed complement each other.

More surprisingly, some antonym networks are characterized by substantial simi-
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larity values, implying the presence of triangle motifs. This is the case since there
are instances of three or more words that have opposite meanings to all other
words in the group. One example is the triple of words (man, woman, girl). Each
pair of words in the triple is opposite in meaning along a certain dimension, here
either gender or age.

• Cluster 3 (purple): the ‘Has-A’ networks show more complementarity than simi-
larity. Intuitively, words in ‘Has-A’ complement one another. For instance, ‘a house
has a roof ’ describes a complementary relation, and these two objects are not sim-
ilar to one another.

• Cluster 4 (dark blue/yellow): Most of the ‘Related-To’ and ‘Union’ networks show
more similarity, except for Chinese. As defined in the ‘Related-To’ relation, words
are connected if there is any sort of positive relationship between them, therefore
triangles are easily formed. One exception to that rule is that the Chinese ‘Related-
To’ network (dark blue cross) shows the strongest complementarity of all networks
and lower-than-expected similarity. We find that a possible explanation is that the
Chinese language has many measure words that are connected to a wide range
of nouns. Measure words, also known as numeral classifiers, are used in com-
bination with numerals to describe the quantity of things [218, 219]. For exam-
ple, the English ‘one apple’ translates to一个苹果 in Chinese, where the measure

word个 (gè) must be added as a unit of measurement between the number ‘one’,
一 (yī), and the noun ‘apple’,苹果 (píng guǒ). The Chinese measure word个 can
be loosely translated to English as ‘unit(s) of’, as in ‘one unit of apple’. This gram-
matical construct is comparable to the phrase ‘one box of apples’ in English, where
‘box’ serves as a measure word, but, contrary to Chinese, measure words are rare
in English. In the Chinese ‘Related-To’ network, there are many measure words
that are connected to multiple nouns, and these nouns may have no connection
with each other at all. Most of the measure words are not connected either. Hence,
the pairings of measure words and nouns lead to quadrangles, a likely explanation
of why the Chinese ‘Related-To’ network shows the highest complementarity.

6.6. DISCUSSION
In summary, we have conducted an exploratory analysis of the topological properties of
semantic networks with 7 distinct semantic relations arising from 11 different languages.
We have identified both universal and unique characteristics of these networks.

We find that semantic networks are sparse and that many are characterized by a
power-law degree distribution. We also find that many semantic networks are scale-
free. We observe two different patterns of degree-degree mixing in these networks, some
networks are assortative, while some are disassortative. In addition, we find that most
networks are more clustered than expected.

On the other hand, some semantic networks—‘Related-To’ in French, Spanish, Por-
tuguese, and Finnish—have unique features that can be explained by rules of grammat-
ical inflection. Because of the grammar in these languages, words have many conjuga-
tions or declensions. We have related anomalous peaks in the degree distributions to the



6.6. DISCUSSION

6

121

language inflections. Notably, we found word inflection not only in inflecting languages
but also in Finnish, which is an agglutinating language.

We have also quantified the relative roles of complementarity and similarity princi-
ples in semantic networks. The proportions of similarity and complementarity in net-
works differ depending on the semantic relation type. For example, the ‘Synonym’ net-
works exhibit stronger similarity, while the links in the ‘Antonym’ network are primar-
ily driven by complementarity. In addition, the Chinese ‘Related-To’ network has the
highest structural complementarity coefficient of all networks, which we attribute to a
unique grammatical phenomenon in Chinese: measure words.

Through the analysis of the topological properties of semantic networks, we found
that complementarity may play an important role in their formation. Since most of the
state-of-the-art network inference methods are either built on or inspired by the similar-
ity principle, we call for a careful re-evaluation of these methods when it comes to infer-
ence tasks on semantic networks. One basic example is the prediction of missing links.
In a seminal work, Kovács et al. [126] demonstrated that protein interactions should
be predicted with complementarity-tailored methods. We expect that similar methods
might be in place for semantic networks. Instead of using the triangle closure principle,
one might benefit from the methods based on quadrangle closure, Figure 6.7.

Figure 6.7: Examples of similarity and complementarity in semantic networks. (a) Similarity: triangle closure
in the ‘Synonym’ network. (b) Complementarity: quadrangle closure in the ‘Antonym’ network.

It is not as easy to illustrate quadrangle closure in network embedding methods or
NLP methods in general. A plethora of methods use multiple modules and parameters in
learning tasks and can, in principle, be better optimized for the complementarity struc-
ture of semantic networks, see for example [48, 49]. In Chapter 4, we have proposed
a complementarity embedding method and illustrated it using the ‘Antonym’ semantic
network of ConceptNet.

Recent groundbreaking advances in large language models are attributed to the multi-
head attention mechanism of the Transformer, which uses ideas consistent with the
complementarity principle [52]. We advocate that a better understanding of statistical
mechanisms underlying semantic networks can help us improve NLP methods even fur-
ther.
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CONCLUSION

Risk happens in the future.

Nassim Nicholas Taleb

This dissertation explores several representations of complex networks, focusing on the
leading mechanisms that govern link formation. The findings of this thesis improve our
understanding of the leading connection principles in networks. We have studied net-
works with community structures driven by similarity, and graphs that have hidden rep-
resentations in hyperbolic spaces of arbitrary dimensionality. Additionally, we have de-
veloped a framework for embedding complementarity-driven networks into hyperbolic
space.

7.1. MAIN CONTRIBUTIONS
In Chapter 2, we have demonstrated that the spectrum of the non-backtracking matrix
provides an excellent estimator of the number of clusters in a network. When the clus-
ters are of approximately equal size, the number of eigenvalues separated from the bulk
accurately indicates the number of clusters in the network. In addition, we have shown
that the non-backtracking method for estimating the number of clusters has an attrac-
tive computational complexity: the computation time scales approximately linearly with
the number of nodes in the network.

In Chapter 3, we have extended the 2-dimensional random hyperbolic graph model
to the hyperbolic space of arbitrary dimensions. Our rescaling of the model parameters
casts the random hyperbolic graph model of any dimension to a unified mathematical
framework, such that the degree distribution is invariant to the dimensionality of the
space. We have systematically analyzed the properties of hyperbolic graphs with arbi-
trary dimensionality of the hidden space for each of the different connectivity regimes
of the model and their limiting cases. This work serves the Network Science community
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by providing a reference of the properties of hyperbolic graphs, which can be useful for
embedding real networks into hyperbolic spaces of arbitrary dimensions.

We have described the newly identified connection principle of complementarity
in Chapter 4. We have argued how many of the methods within Network Science are
based on the connection principle of similarity, either explicitly or implicitly. We have
remarked that there is a class of real-world networks in which the links are driven by
principles of complementarity rather than similarity. Consequently, we have proposed
a framework for embedding these complementarity-driven networks into hyperbolic
spaces, aiding inference tasks on real networks that are driven by complementarity. We
have complemented these results by further investigating the topological properties of
the complementarity random hyperbolic graph in Chapter 5. A good understanding of
both the similarity and complementarity connection principles is fundamental for gain-
ing a full understanding of the geometric and topological properties of complex net-
works.

In Chapter 6, we have systematically studied the topological properties of semantic
networks. We have found both general and language-specific structural properties of
semantic networks from 11 different languages. We have shown that the connection
principles of similarity and complementarity both play a role in their link formation, and
we have discussed how a better understanding of these organizing principles benefits
applications of natural language processing.

7.2. DIRECTIONS FOR FUTURE RESEARCH
In Chapter 2, we studied the non-backtracking matrix within the scope of network clus-
tering. However, deriving fundamental results proved challenging, primarily due to the
matrix’s inherent asymmetry. We observed that employing the non-backtracking ma-
trix in clustering shows potential for specific types of network models, yet formalizing
these findings remains an open problem. As advancements in the understanding of
asymmetric matrices emerge, it might be worthwhile to revisit the spectrum of the non-
backtracking matrix.

We have identified the complementarity connection principle as an alternative to
the connection principle of similarity in Chapter 4. Many of the methods within Net-
work Science assume similarity between connected nodes, either explicitly or implicitly.
Similarity-based embedding methods are often indiscriminately applied to networks
driven by complementarity. It might be useful to re-evaluate inference tasks on net-
works driven by complementarity, which are currently reliant on embedding methods
based on similarity. Furthermore, although our minimal complementarity embedding
framework has been demonstrated as a viable solution for embedding networks driven
by complementarity, the fine-tuning of this embedding method is far from complete,
presenting further opportunities for improvement.

We have shown that both similarity and complementarity play a role in the link for-
mation of semantic networks in Chapter 6. While we have provided an illustrative ex-
ample in link prediction for semantic networks, other inference tasks based on semantic
networks should be revisited with their proper organizing principles in mind. Especially
recent developments in Transformer-based large language models should be revisited
from a complementarity angle.
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A.1. THE NON-BACKTRACKING MATRIX H
A.1.1. DEFINITION
The non-backtracking matrix H is defined in (2.13). Starting from an undirected graph G ,
the matrix H is defined for each pair of bi-directional links in the bi-directional graph
representation of G . Each of the L undirected links in G is represented by two bi-directional
links, one in each direction, hence there are 2L links in the bi-directional representation,
see Figure 2.3. The two bi-directional links that are created from a single undirected link
in G are backtracking by construction.

Raising the matrix H to the k-th power and taking the element (e, l ) counts the num-
ber of non-backtracking walks of length k+1 from the link ee to the link el . Similarly, rais-
ing the adjacency matrix A to the k-th power and taking the element (i , j ) counts all walks
of length k from node i to node j . Krzakala et al. [60] and Bordenave et al. [220] have
argued that counting only the non-backtracking walks rather than all possible walks is
more informative on the structure of the graph in specific applications such as cluster-
ing.

A.1.2. SPECTRUM
The non-backtracking matrix was first mentioned by Hashimoto in the context of the
Ihara-Bass zeta function [71]. The eigenvalues of the non-backtracking matrix H are the
reciprocal of the poles of the Ihara-Bass zeta function. Stark and Terras [221] found and
proved the surprising relation between the eigenvalues of the non-backtracking matrix H
and the adjacency matrix A and the diagonal matrix ∆ with the degrees ki on the diag-
onal. Following [222], the characteristic polynomial of the non-backtracking matrix H
is:

det(I2L − zH) = (1− z2)(L−N )det(IN −Az + (∆− IN )z2), (A.1)

for complex values z ∈ C and where I2L is the 2L ×2L identity matrix and IN the N ×N
identity matrix. The equation (A.1) has 2(L − N ) simple zeros that are equal to z = ±1.
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The other 2N eigenvalues are given by the quadratic eigenvalue equation on the right-
hand side of (A.1). Angel et al. [222] remark that the 2N non-trivial eigenvalues can be
obtained from the eigenvalue equation of a block matrix H∗ constructed as follows

H∗ =
[

A I−∆
I O

]
. (A.2)

Computing the 2N eigenvalues of the 2N ×2N block matrix H∗ rather than all 2L eigen-
values of the 2L ×2L non-backtracking matrix H reduces the number of required com-
putations significantly for most graphs.

A.1.3. SYMMETRY
The non-backtracking matrix H is an asymmetric matrix by definition: if a walk over two
directed links ee and el is non-backtracking, then a walk in the opposite direction is not
possible because of the directions of the links. If the element (e, l ) equals 1, then the
element (l ,e) must always equal 0. Still, the non-backtracking matrix H features certain
symmetry. The matrix H is defined for the pairs of bi-directional links that are created
from the undirected links in the graph G . Bordenave et al. [220] note that if the link ee

followed by the link el is non-backtracking, then the same links but in opposite direc-
tions and opposite order are also non-backtracking. It turns out that the transpose HT

of the matrix H is the non-backtracking matrix of the same graph G but with opposite
directions in the bi-directional graph representation. After all, the chosen directions in
the bi-directional graph representation are arbitrary (see Figure 2.3), and turning them
around does not change the structure of the graph G . There exists a permutation ma-
trix P that relabels the bi-directional links in the bi-directional graph representation such
that all directions are reverted:

HP = PHT , (A.3)

where HP is a symmetric matrix. Bordenave et al. [220] find that while the eigenvalues
of HP are strongly related to the node degrees in the graph G , the bulk of the eigenvalues
of H are not.

A.1.4. COMPUTATIONAL COMPLEXITY
We discuss the computational complexity of detecting the number of clusters c with the
non-backtracking method as defined in (2.14). The size of the square non-symmetric
matrix H∗ in (A.2) is of order O

(
N 2

)
and calculating all 2N eigenvalues of H∗ takes an or-

der of O
(
N 3

)
operations, for example with the QR algorithm for non-symmetric matrices

[223]. For dense networks, calculating the eigenvalues of H∗ offers a large reduction in
computational complexity as compared to calculating all eigenvalues of H in an order of
O

(
L3

)
operations. It is even more efficient to apply the iterative procedure described in

Section 2.4.1 to the matrix H∗. Alternatively, it suffices to compute the k largest eigen-
values in absolute value for a small number k << N if the number k is larger than the
number of clusters c. An efficient way to approximate the k << N largest eigenvalues of
an N ×N (or 2N ×2N ) sparse matrix is with ARPACK, a collection of algorithms mainly
based on the Arnoldi process [223]. ARPACK is used for eigenvalue computations in pop-
ular software packages. It is difficult to determine the exact complexity of ARPACK, but
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in some cases, it is possible to obtain the k eigenvalues in an order of as low as O (N )
operations for a sparse matrix [224], which offers a great reduction in computational
complexity for the non-backtracking method. Whether the condition k > c holds has to
be checked in retrospect, but it is safest to choose a number k that is much higher than
the number of clusters c one expects to find.

Figure A.1 shows a numerical evaluation of the scaling of the computation time of
the non-backtracking method. We measure the computation time T of estimating the
number of clusters c by calculating the k = 10 largest eigenvalues with the ARPACK im-
plementation of MATLAB [57]. The non-backtracking method is evaluated on graphs of
exponentially increasing sizes generated by an SSBM with the number of clusters c = 3
and parameters bin = 10 and bout = 1, which is slightly above the detectability thresh-
old in (2.12). Figure A.1 shows the logarithm of the computation time T plotted versus
the logarithm of the number of nodes N . Regression lines are fitted to 3 different sec-
tions. In the leftmost section, the computation time T scales slower than linearly with
the network size N . In the middle and rightmost sections, the computation time T scales
slightly faster than linearly with the network size N . Overall, the scaling of the compu-
tation time T is close to linear. The scaling of the computation time of detecting the
number of clusters with the non-backtracking method is therefore quite favorable.
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Figure A.1: Measured computation times T in seconds for evaluating the non-backtracking method on graphs
generated by an SSBM with an exponentially increasing number of nodes N , from N = 200 to N = 200·212. The
SSBM graphs are generated with the number of clusters c = 3 and parameters bin = 10 and bout = 1. The k = 10
largest eigenvalues are calculated from the 2N ×2N matrix H∗ (A.2) with ARPACK. For each network size N , we
average the computation time over 20 instances. Regression lines are shown for three different sections.
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B.1. HYPERBOLIC GRAPHS IN 2 DIMENSIONS
Here we briefly illustrate the main steps for derivations of the approximations of the
average degree E [D] and density Pr[D = k] of the degree distribution of an arbitrary node
in a 2-dimensional hyperbolic graph, as proposed in [20].

B.1.1. APPROXIMATION HYPERBOLIC LAW OF COSINES
The hyperbolic law of cosines for the distance d(xi ,x j ) between two points xi = (ri ,θi )
and x j = (r j ,θ j ) in a hyperbolic disk with curvature K =−ζ2 given in (3.6),

coshζd(xi ,x j ) = coshζri coshζr j − sinhζri sinhζr j cos∆θi j , (B.1)

with ∆θi j =π−|π−|θi −θ j ||, can be approximated well with a simpler expression when
both ri and r j are sufficiently large. The functions sinh(x) = 1

2 [ex − e−x ] and cosh(x) =
1
2 [ex +e−x ] are dominated by the term ex when x is large, namely sinh(x) = 1

2 ex +O(e−x )
and cosh(x) = 1

2 ex +O(e−x ). Invoking the approximations sinh(x) ≈ 1
2 ex and cosh(x) ≈

1
2 ex in (5.4), provided that ri and r j are sufficiently large, we have

eζd(xi ,x j ) ≈ 1

2
eζri eζr j − 1

2
eζri eζr j cos∆θi j (B.2)

≈ 1

2
eζri+r j ) (1−cos∆θi j

)
. (B.3)

Substituting the trigonometric identity 1−cos∆θi j = 2sin2(∆θi j /2),

eζd(xi ,x j ) ≈ eζ(ri+r j ) sin2
(
∆θi j

2

)
, (B.4)

and

ζd(xi ,x j ) ≈ ζ(ri + r j )+2ln

(
sin

(
∆θi j

2

))
. (B.5)
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Finally,

d(xi ,x j ) ≈ ri + r j + 2

ζ
ln

(
sin

(
∆θi j

2

))
. (B.6)

Figure B.1 shows the true distance (5.4) and its approximation (B.6) for two points at
an angle ∆θi j = 0.1, where point i is located at the boundary of the space. Only when
the radial coordinate r j is very small relative to R, the approximation breaks down. The
approximation breakdown only occurs for a few nodes in the graph, as most radial co-
ordinates will be close to the boundary of the disk, as specified by the radial coordinate
distribution (4.13). The slight uptick in the hyperbolic distance for low values of r j is due
to the curvature of the hyperbolic disk: nodes near the center of the space are close to
almost every point in the space.
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Figure B.1: Evaluation of the hyperbolic distance approximation. Hyperbolic distance and its approximation
between two points i and j at an angle ∆θi j = 0.1, as a function of r j , for ri = 15, in a hyperbolic disk with R =
15 and ζ= 1.

B.1.2. AVERAGE DEGREE

We find the average degree E [Di |X0,i = ri , X1,i = θi ] of a node i with known coordinates
Xi = (ri ,θi ) by integrating the connection probability density function (5.6) over all pos-
sible coordinates for other nodes j ,

E [Di |X0,i = ri , X1,i = θi ] = (N −1)
∫

dr j fX0 (r j )
∫

dθ j fX1 (θ j ) f (d(ri ,θi ;r j ,θ j )) (B.7)

= (N −1)
∫

dr j fX0 (r j )
∫

dθ j fX1 (θ j )
1

1+e
1

2T (d(ri ,θi ;r j ,θ j )−R)
,

(B.8)

with d(ri ,θi ;r j ,θ j ) as defined in (5.4). By the symmetry and uniformity of the distribu-
tion of X1, the expectation E [Di |X0,i = ri , X1,i = θi ] does not depend on the coordinate
X1,i = θi and we set θi = 0 for convenience of calculation. At θi = 0, the angle ∆θi j = θ j .



B.1. HYPERBOLIC GRAPHS IN 2 DIMENSIONS

B

131

We compute E [Di |X0,i = ri , X1,i = 0] = E [Di |X0,i = ri ] and plug in fX1 (θ j ) = 1
2π ,

E [Di |X0,i = ri ] = N −1

2π

∫ R

0
dr j fX0 (r j )

∫ 2π

0
dθ j

1

1+e
1

2T (d(ri ,0;r j ,θ j )−R)
. (B.9)

The integrand in the inner integral depends on θ j only through the term cos
(
θ j

)
in

d(ri ,0;r j ,θ j ), therefore the integrand is symmetric around π in the interval θ j ∈ [0,2π].
We simplify the inner integral from [0,2π] by taking twice the integral from [0,π],

E [Di |X0,i = ri ] = N −1

π

∫ R

0
dr j fX0 (r j )

∫ π

0
dθ j

1

1+e
1

2T (d(ri ,0;r j ,θ j )−R)
. (B.10)

Still, the resulting double integral has no closed-form solution and we have to employ
several approximations to obtain the average degree [20]. First, we approximate the hy-
perbolic distance as in (B.6) while simultaneously setting ζ= 1,

E [Di |X0,i = ri ] ≈ N −1

π

∫ R

0
dr j fX0 (r j )

∫ π

0
dθ j

1

1+e
1

2T (ri+r j +2ln(sin(θ j /2))−R)
(B.11)

= N −1

π

∫ R

0
dr j fX0 (r j )

∫ π

0
dθ j

1

1+
[

e
1
2 (ri+r j −R) sin(θ j /2)

] 1
T

. (B.12)

Second, by the Taylor series expansion sin(x) = x+O(x3), while we observe that the most
significant contributions to the inner integral come from θ j values close to 0. As the term
O(x3) will be very small for θ j values close to 0, we approximate sin(θ j /2) ≈ θ j /2,

E [Di |X0,i = ri ] ≈ N −1

π

∫ R

0
dr j fX0 (r j )

∫ π

0
dθ j

1

1+
[

e
1
2 (ri+r j −R)

(
θ j

2

)] 1
T

. (B.13)

Next, we perform a change-of-variable substitution u = e
1
2 (ri+r j −R)

(
θ j

2

)
, such that du =

1
2 e

1
2 (ri+r j −R)dθ j ,

E [Di |X0,i = ri ] ≈ 2(N −1)

π
e(R−ri )/2

∫ R

0
dr j fX0 (r j )e−r j /2

∫ 1
2 e

1
2 (ri +r j −R)

0

du

1+u
1
T

. (B.14)

For most node pairs, ri + r j −R will be approximately equal to R, as each of the coor-
dinates ri and r j are close to R. We require R ∼ ln N , therefore R → ∞ when N → ∞.

For T < 1, the function (1+u
1
T )−1 is fast decreasing and function values for large u con-

tribute very little. We approximate the upper limit of the inner integral as 1
2 e

1
2 (ri+r j −R) ≈ ∞,

E [Di |X0,i = ri ] ≈ 2(N −1)

π
e(R−ri )/2

∫ R

0
dr j fX0 (r j )e−r j /2

∫ ∞

0

du

1+u
1
T

. (B.15)

We observe that the integral over r j is now independent of u and that∫ R

0
dr j fX0 (r j )e−r j /2 = E

[
e−X0/2] , (B.16)
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for which the exact evaluation is denoted in (5.17), leading to

E [Di |X0,i = ri ] ≈ 2(N −1)

π
e(R−ri )/2E

[
e−X0/2]∫ ∞

0

du

1+u
1
T

. (B.17)

For T < 1, the integral over u has a well-defined closed-form solution∫ ∞

0

du

1+u
1
T

= πT

sin(πT )
, (B.18)

which gives us the final approximate expression for the average degree of a node with
known radial coordinate

E [Di |X0,i = ri ] ≈ 2(N −1)
T

sin(πT )
E

[
e−X0/2]e(R−ri )/2. (B.19)

The corresponding approximation of the average degree of an arbitrary node in the RHG
model is

E [Di ] =
∫ R

0
dri fX0 (ri )E [Di |X0,i = ri ] (B.20)

≈ 2(N −1)
T

sin(πT )
E

[
e−X0/2]∫ R

0
dri fX0 (ri )e(R−ri )/2 (B.21)

≈ 2νeR (
E

[
e−X0/2])2 T

sin(πT )
. (B.22)

To obtain a leading-order approximation of (B.19), we approximate fX0 (r ) in (B.16) using
that

fX0 (r ) =
α
2 [eαr −e−αr ]

1
2 [eαR −e−αR ]−1

=
α
2 eαr +O(e−αr )

1
2 eαR +O(e−αR )−1

, (B.23)

allowing us to drop the terms O(e−αr ) and O(e−αR ), since they are both close to 0 for α>
1
2 ,

fX0 (r ) ≈
α
2 eαr

1
2 eαR −1

. (B.24)

Also, since R is large 1
2 eαR −1 ≈ 1

2 eαR , arriving at an approximation of the density func-
tion

f̃X0 (r ) =αeα(r−R), (B.25)

such that fX0 (r ) ≈ f̃X0 (r ) for r ∈ [0,R]. Given that integrating f̃X0 (r ) over the entire do-
main of X0 yields ∫ R

0
f̃X0 (r )dr = 1−e−αR , (B.26)

the density function f̃X0 (r ) is only normalized approximately, as in general e−αR > 0, but
e−αR → 0 as R →∞ forα> 1

2 . The expectation E
[
e−X0/2

]
is approximated by substituting

the approximate probability density function f̃X0 (r ) for fX0 (r ) in (B.16),

E
[
e−X0/2]≈ ∫ R

0
f̃X0 (r )e−r /2 dr =

(
2α

2α−1

)[
e−R/2 −e−αR]

. (B.27)
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We further approximate E
[
e−X0/2

]
to the leading order by again invoking e−αR ≈ 0, there-

fore

E
[
e−X0/2]≈ (

2α

2α−1

)
e−R/2, (B.28)

which we plug into (B.22) to obtain a leading-order approximation of the average degree
in the RHG model

E [Di ] ≈ 2ν

(
2α

2α−1

)2 T

sin(πT )
. (B.29)

The average degree E [Di |X0,i = ri ] of a node with known radial coordinate is approxi-
mated in a similar way,

E [Di |X0,i = ri ] ≈ 2ν

(
2α

2α−1

)
T

sin(πT )
e(R−ri )/2, (B.30)

such that the average degree approximations are then related as

E [Di |X0,i = ri ] ≈ E [Di ]

E
[
e−X0/2

]e−ri /2. (B.31)

B.1.3. DEGREE DISTRIBUTION
The density Pr[D = k] of the degree distribution in the RHG model is found by integrating
the density Pr[D = k|X0,i = ri ] of the degree distribution of a node with known radial
coordinate over all possible radial coordinates, by the law of total probability [3],

Pr[D = k] =
∫ R

0
dri fX0 (ri )Pr[D = k|X0,i = ri ]. (B.32)

In general, it is difficult to find a closed-form expression for the probability density func-
tion Pr[D = k|X0,i = ri ]. For sparse graphs, Boguñá and Pastor-Satorras [94] propose
that Pr[D = k] in (B.32) is approximated sufficiently well by replacing the density Pr[D =
k|X0,i = ri ] by its Poisson approximation,

Pr[D = k|X0,i = ri ] ≈ 1

k !
[λ(ri )]k e−λ(ri ), (B.33)

with the rate λ(ri ) = E [Di |X0,i = ri ], which is the average degree of a node with known
radial coordinate in (B.30). We define the constant c = 2ν

( 2α
2α−1

) T
sin(πT ) eR/2 to shorten

the notation and we substitute the approximate probability density function f̃X0 (r ) for
fX0 (r ) in (B.32),

Pr[Di = k] ≈ 1

k !

∫ R

0
f̃X0 (ri ) [λ(ri )]k e−λ(ri ) dri (B.34)

= α

k !

∫ R

0
dri eα(ri−R) [ce(R−ri )/2]k

e−ce(R−ri )/2
. (B.35)

The integral (B.35) is evaluated with a change-of-variable substitution t = ce(R−ri )/2, d t =
− 1

2 ce(R−ri )/2dri and dri =−2t−1d t . We have eα(ri−R) = c2αt−2α, and t = ceR/2 when ri =
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0, while t = c when ri = R. Hence,

Pr[Di = k] ≈−2α

k !
c2α

∫ c

ceR/2
d t t k−2α−1e−t , (B.36)

= 2α

k !
c2α

∫ ceR/2

c
d t t k−2α−1e−t , (B.37)

where we have flipped the sign of the integral in the last step. Since ceR/2 →∞ as R →∞
and since the integrand is a fast decreasing function, we approximate the upper bound
of the integral in (B.37) as ceR/2 ≈∞ and

Pr[Di = k] ≈ 2α

k !
c2α

∫ ∞

c
d t t k−2α−1e−t . (B.38)

Recognizing that the resulting integral is the definition of the upper incomplete gamma
function Γ[k −2α,c], we arrive at

Pr[Di = k] ≈ 2α

k !
c2αΓ[k −2α,c] (B.39)

= (2α)c2α Γ[k −2α,c]

Γ[k +1]
. (B.40)

From here we conclude that if the constant c is relatively small, that for large k the den-
sity Pr[Di = k] of the degree distribution scales approximately as a power-law

Pr[Di = k] ∼ k−γ (B.41)

with negative exponent γ = 2α+ 1, controlled by the parameter α > 1
2 , such that γ ∈

(2,∞).

B.1.4. AVERAGE DEGREE E [D |X0 = r]
Figure B.2 shows the theoretical values and approximations of the average degree E [D |X0 = r]
for different values of r ∈ [0,R]. The approximations of E [D |X0 = r] are close to the the-
oretical values in each of the three regimes, but there is a small constant bias in the hot
regime. The approximations break down for nodes close to the center of Bd+1 (values of
r close to 0) across all three regimes.
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Figure B.2: The average degree E [D |X0 = r] for r ∈ [0,R] and N = 105, d = 3 and E [D] = 10. Panels (a-c) correspond to the cold regime at τ = 0.5, panels (d-f)
correspond to the critical regime at τ= 1, and panels (g-i) correspond to the hot regime at τ= 1.5. Further, γ= 2.1 in panels (a,d,g), γ= 2.5 in panels (b,e,h), and γ= 3.5
in panels (c,f,i). The combination γ= 2.1, τ= 1.5 in panel (g) implies a < 1, which is not possible in our framework. Each point is the average of 100 simulations. The
solid lines are the theoretical values for E [D |X0 = r] prescribed by Eq. (3.18) and the dashed lines are the same values but with the approximations sin x ≈ x.
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C.1. COMPLEMENTARITY-BASED NETWORKS
In our work, we employ five networks where complementarity plays an important role.
Here we provide basic description of these networks. The basic topological properties of
these networks are described in Table C.1.

The ‘Antonym’ semantic network is a network of words and short phrases, where
links are established between words or short phrases if those are antonyms. The network
is a subset of semantic relationships of the ConceptNet database [125], Appendix D.1.

Human PPI and Yeast PPI are networks of protein-protein interactions. In both net-
works, the nodes are specific proteins, and the links represent interactions between these
proteins. The Human PPI network is constructed by the Human Reference Protein Inter-
actome Mapping Project (HuRi) [139]. The Yeast PPI network is the network of protein-
protein interactions of S. cerevisiae commonly known as baker’s yeast. We obtain the
Yeast PPI network from the BioGrid interaction database [225].

Messel is a foodweb network of the Messel Shale [141]. The nodes are organisms
or taxa, and the links are feeding relationships between the organisms. Finally, Ham-
ster is the social network consisting of friendship ties between the users of the website
hamsterster.com. The network is obtained from the KONECT database [142].

Network N L E [D]
Antonyms 5,912 7,986 2.70
Human PPI 6,480 31,576 9.75
Yeast PPI 3,488 11,386 6.53
Messel 701 6,395 18.25
Hamster 1,788 12,476 13,96

Table C.1: Basic properties of the largest connected components of the considered complementarity-based
networks.
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Figure C.1: Distribution of link prediction AUPR scores for 20 independently learned complementarity repre-
sentations of the ‘Antonym’ semantic network.

C.2. COMPLEMENTARITY HYPERLINK EMBEDDER
We learn complementarity representations by repurposing the HyperLink (HL) embed-
der [28]. The HL embedder is designed for embedding similarity-driven networks into a
2-dimensional hyperbolic disk H2 using maximum likelihood estimation. In more pre-
cise terms, the HL embedder aims to find node coordinates in H2 by maximizing the
likelihood that the network of interest is generated as a Random Hyperbolic Graph. The
HL embedder is freely available from the repository [226].

The Complementarity HyperLink (CHL) embedder finds node coordinates in H2 by
maximizing the likelihood that the network of interest is generated by the Complemen-
tarity Random Hyperbolic Graph (CRHG) model. The CHL embedder is almost identical
to the HL embedder save for the function it is maximizing. To facilitate the embedding
of a trimmed network, with links missing at rate 1− q uniformly at random, the CHL
embedder is looking for node coordinate assignment {xi } and {yi } for every node i in the
network, i = 1, . . . , N , maximizing the posterior probability

L
(
{xi ,yi }|A,P

)= L
(
A | {xi ,yi },P

)
Pr

[
{xi }

]
Pr

[
{yi }

]
L (A |P )

, (C.1)

where P are the model parameters, A is the adjacency matrix with elements ai j , and
L

(
{xi ,yi }|A,P

)
is given by Eq. (C.1). Pr[{xi }] and Pr[{yi }] are the prior probabilities of

latent coordinates given by the model, which we assume to be independent.
Other than the posterior probability, the CHL embedder is nearly identical to the

HL embedder. As a result, the CHL embedder has the same computational complexity
of O

(
N 2

)
, with N the number of nodes.

To test the stability of our complementarity representations, we obtained 20 inde-
pendent complementarity embeddings of incomplete complementarity networks and
evaluated their accuracies in link prediction experiments. As seen from Figure C.1, all
independent complementarity representations result in similar link prediction scores
narrowly distributed around the mean of AUPR = 3.5 ·10−3.

C.3. HIGHER-ORDER GENERALIZATIONS
The complementarity framework proposed in Chapter 4 assumes that each network node
is mapped to two points in the latent space, each point corresponding to a unique feature
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or characteristic of a node. Here, we sketch a possible generalization of the complemen-
tarity framework to the case of an arbitrary number of features per node.

We formulate such a generalization using the terminology of a collaboration net-
work. Suppose we have N nodes, i = 1, . . . , N , each of which is characterized by M
different skills, xi ,m , m = 1, . . . , M . Any two nodes i and j are connected in the comple-
mentarity network if they jointly engage in at least one task k, k = 1, . . . , K . Depending
on the context, tasks can be either explicit, e.g., scientific publications or problems in a
collaboration network, or implicit (unobserved), e.g., biological functions in molecular
interaction networks.

Thus, we introduce a collection of tasks, each of which is characterized by a set {yk }
of features. The basic building block is the probability Pr

(
xi ,m ,yk

)
that node i engages

in task k using its skill xi ,m . The probability for node i to engage in task k through any of
its tasks independently is

qi k = 1−
M∏

m=1

[
1−Pr

(
xi ,m ,yk

)]
, (C.2)

and the probability for any two nodes i and j to interact in the network is the probability
that any two nodes co-engage in at least one task:

pi j = 1−
K∏

k =1
(1−qi k q j k ). (C.3)

In case qi k ≪ 1, the connection probability in Eq. (C.3) can be approximated to the lead-
ing order as

pi j =
M∑

m=1

M∑
n=1

g mn (
xi ,m ,x j ,n

)
, (C.4)

g mn (
xi ,m ,x j ,n

)= K∑
k =1

Pr
(
xi ,m ,yk

)
Pr

(
x j ,n ,yk

)
. (C.5)

As seen from Eq. (C.5), the general framework contains both similarity and complemen-
tarity components. In the M = 1 case, each network node has only one feature and the
connection probability pi j depends on the mutual match between features x1

i and x1
j .

The case of M = 2 contains both similarity, g 11 and g 22, and complementarity compo-
nents, g 12 and g 21.

We note that the functions g mn
(
x,y

)
comprising the minimal complementarity frame-

work in Eqs. (C.4) and (C.5) are not necessarily geometric, and their functional form
should be learned from the network of interest.

It is established that ordinary geometric networks, including random geometric graphs
and random hyperbolic graphs, are characterized by a strong clustering coefficient due
to the constraints imposed by the triangle inequality. Recent results from Krioukov [227]
imply that strong clustering should be a sufficient condition for network geometricity.
What are the network geometricity conditions for complementarity-driven networks re-
mains an open question.
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C.4. COMPLEMENTARITY AND BIPARTITE NETWORKS
Several parallels can be drawn between the complementarity-driven networks and bi-
partite (multipartite) networks.

In a bipartite network, nodes are split into two classes or domains, and links are pos-
sible only between nodes of different classes. The principled complementarity frame-
work operates with agents and tasks: agents that are able to collaborate on tasks are
complementary to each other. Therefore, synthetic networks generated by the princi-
pled complementarity framework are bipartite.

In a one-mode projection, nodes of one domain of the bipartite network are re-
moved. Nodes of the other domain are connected if they share at least one common
neighbor in the bipartite network. Therefore, complementarity links between the agents
in the principled complementarity framework can be viewed as one-mode projections
of the full network onto the domain of agents.

Coordinates of agents and tasks in the principled complementarity framework can
be viewed as hidden variables, such that connections between agents and tasks are es-
tablished independently with probabilities that are functions of the corresponding hid-
den variables. Therefore, the principled complementarity framework belongs to the
class of bipartite networks with hidden variables [128].

Furthermore, one can think of a reduced complementarity framework if each agent
is represented by one point either in M1 or M2 but not in both. The reduced comple-
mentarity framework may be instrumental in modeling, for example, scientific collabo-
rations where each scientist has exactly one domain-specific expertise. If this is the case,
the reduced complementarity model also belongs to the class of bipartite networks in
latent spaces [137].
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D.1. DATA

ConceptNet [125] is a multilingual database in the form of a semantic network where
nodes are words and phrases from natural language. The links indicate in total 34 differ-
ent semantic relations. The ‘knowledge’ is collected from a variety of resources, includ-
ing crowdsourced resources, expert-created resources, and games with a purpose [125].
We study the semantic networks from ConceptNet as it is one of the richest semantic
network resources available.

We study the networks belonging to in total 7 link types (relations), 6 of which are
directly contained within ConceptNet. They are the ‘Has-A’, ‘Part-Of’, ‘Is-A’, ‘Related-To’,
‘Antonym’, and ‘Synonym’ relations. These are the relation types in ConceptNet that we
deem the most meaningful and that also have a sufficient amount of data. In addition,
we define an additional link type ‘Union’, which is the set union of the nodes and links
of four networks: ‘Has-A’, ‘Part-Of’, ‘Is-A’, and ‘Related-To’. The purpose of adding this
link type is to treat all four relations equally and to evaluate how the structure of the
whole network is different from the individual ones. The definitions of the six selected
relations from ConceptNet and related examples are outlined in Table D.1. The links
of some networks are directed, i.e., of the ‘Has-A’, ‘Part-Of’, and ‘Is-A’ networks, but we
treat all networks as undirected for simplicity of the analysis and also comparability. We
remove nodes with phrases consisting of more than 5 words, as we deem these to be
artifacts of the automated data extraction in ConceptNet.
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D.2. SEMANTIC RELATIONS

Relation Description Directed Example Creation
Has-A B belongs to A, either as an inher-

ent part or due to a social con-
struct of possession. Has-A is of-
ten the reverse of Part-Of.

Yes bird → wing Manual +
Automatic

Part-Of A is a part of B. This is the
part_meronym relation in Word-
Net.

Yes gearshift → car Manual +
Automatic

Is-A A is a subtype or a specific in-
stance of B; every A is a B. This
can include specific instances; the
distinction between subtypes and
instances is often blurry in lan-
guage. This is the hyponym rela-
tion in WordNet.

Yes car → vehicle Manual +
Automatic

Related-
To

The most general relation. There
is some positive relationship be-
tween A and B, but ConceptNet
can’t determine what that rela-
tionship is based on the data.

No learn ↔ erudition Manual +
Automatic

Antonym A and B are opposites in some rel-
evant way, such as being opposite
ends of a scale, or fundamentally
similar things with a key difference
between them. Counterintuitively,
two concepts must be quite sim-
ilar before people consider them
antonyms. This is the antonym re-
lation in WordNet.

No black ↔ white Automatic

Synonym A and B have very similar mean-
ings. They may be translations of
each other in different languages.
This is the synonym relation in
WordNet.

No sunlight ↔
sunshine

Automatic

Table D.1: Definition of the six relations and related information from ConceptNet [208].

D.3. METHODS

D.3.1. DEGREE-PRESERVING NETWORK REWIRING

Degree-preserving network rewiring randomly rewires the links between nodes without
changing the node degrees. To preserve the degrees of all nodes, we randomly select
1 link pair (4 nodes) and swap the endpoints of these 2 links. Figure D.1 illustrates the
rewiring method. To make sure that all links are likely to be rewired at least once, we
repeat the random selection of links for T times, where we choose T = 4L, four times the



D.3. METHODS

D

143

number of links. The pseudocode is provided in Algorithm 1.

a c

b d

OR

a c

b d

a c

b d

Figure D.1: Illustration of degree-preserving rewiring. By randomly swapping the endpoints of two links (a,b)
and (c,d), new links can be constructed without changing the node degrees.

Algorithm 1: Degree-preserving network rewiring

Data: a list of links
Result: a rewired network
E ← a list of links;
T ← 4L ; /* all links are rewired at least once */
while T ̸= 0 do

(a,b) and (c,d) ← randomly pick 2 links from E ;
n ←|set(a,b,c,d)| ; /* number of unique nodes in 2 links */
if n < 4 then

continue
else

a and c ← randomly select one node from each link ;
(c,b) and (a,d) ← swap the two selected nodes;

if (c,b) ∈ E or (a,d) ∈ E then
continue

else
E ← update the list of links with the 2 rewired links (c,b) and (a,d);
T ← T −1

end
end

end

LOGARITHMIC BINNING

To suppress noise at larger values of the degree k in the density of the degree distribu-
tion Pr[D = k] (the tail), we group the data in bins of equal logarithmic width. In linear
binning, every bin has the same linear width w = ki+1−ki , while in logarithmic binning,
the bins have constant logarithmic width b, where b = log(ki+1)−log(ki ) [228]. Thus, the
linear bin width of a logarithmic bin, wi = ki+1 − ki = ki (eb − 1), is proportional to ki .
The sizes of the logarithmic bins grow exponentially. Therefore, the number of observa-
tions x in a bin is equal to the density of observations f (k) in that bin times the width w
of that bin.



D

144 D. APPENDIX TO CHAPTER 6

SIMPLE POWER-LAW EXPONENT ESTIMATION

A common method for estimating the power-law exponent γ in Pr[D = k] ≈ ck−γ is to
measure the slope of log(Pr[D = k]) versus log(k). Since the probability density func-
tion Pr[D = k] of the degree is proportional to k−γ, the number of observations x ∝
Pr[D = k]×w ∝ k1−γ. Regressing log(x) against log(k) yields a slope equal to 1−γ. To es-
timate γ, normalization of the number of observations x is required. Due to the increas-
ing bin width, a bin can contain more than one value of k. The sum of all observations
within a bin is x. To preserve the probability of a node with degree k such that the total
probability of degree distribution is equal to 1, the number of observations x is normal-
ized by the linear width of the bin. This converts x to the number of observations per
unit of the bin width, (x/w) ∝ k−γ. As a result, regressing the normalized logarithmic
bin counts log(x/w) against the logarithmic degree log(k) yields a slope of −γ [228]. We
base our slope estimate of γ on the linear part of the tail in the density Pr[D = k], which
we determine by inspection for each network.

CONSISTENT POWER-LAW EXPONENT ESTIMATORS

A more rigorous approach to power-law degree distributions is provided by Voitalov
et al. [97], here we summarize the main conclusions for the convenience of the reader.
They consider a degree distribution to be a power law if the probability density function
is a member of the class of regularly varying functions: Pr[D = k] = ℓ(k)k−γ, where ℓ(k)
is a slowly varying function. The function ℓ(k) is called slowly varying if

lim
k →∞

ℓ(ak)

ℓ(k)
= 1, (D.1)

for any a > 0. This definition corresponds with a perfect power law in the tail of the
distribution. Voitalov et al. propose to use three different consistent estimators of the
power-law exponent: the Hill, moments, and kernel estimators. We use their software
package to obtain these estimates for the degree sequences of our networks [200]. These
estimators do not estimate γ directly, but rather the extreme value index

ξ= 1

γ−1
. (D.2)

As a rule of thumb, Voitalov et al. consider a distribution to be a power law if ξ̂> 1/4 for
all three estimators [97], corresponding with γ̂ < 5. Here, we adopt this rule for distin-
guishing power-law distributions. In addition, they call a distribution hardly power-law
if all ξ̂> 0, but at least one ξ̂≤ 1/4 (γ̂> 5). If any ξ̂< 0, the distribution is not a power law.

D.4. ENGLISH SEMANTIC NETWORKS

D.4.1. OVERVIEW
In Table D.2, we list basic descriptive statistics of the seven semantic networks: the num-
ber of nodes N , the number of links L, the maximum degree dmax and the average de-
gree E [D].

Based on the number of nodes, network ‘Has-A’ is the smallest (N = 7,503) and net-
work ‘Union’ is the largest (N = 677,426). The number of links L ranges from 5,421 to
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1,819,646. Relative to the network sizes, all 7 networks have a small average degree,
ranging from 1.45 to 5.43. For instance, in network ‘Part-Of’, on average a node only
has connections to 2 (0.02%) out of the total of 11,839 nodes. In other words, the num-
ber of links is of the same order as the number of nodes, which indicates that semantic
networks are sparse.

Network Has-A Is-A Part-Of Related-To Union Antonym Synonym

N 7,503 152,538 11,839 592,816 677,426 16,867 166,922
L 5,421 220,589 12,003 1,610,452 1,819,646 14,371 155,048
dmax 372 2913 116 4025 5263 38 103
E [D] 1.45 2.89 2.03 5.43 5.37 1.70 1.86

Table D.2: Basic statistics of the seven English semantic networks extracted from ConceptNet.

D.4.2. DESCRIPTIVE STATISTICS
Table D.3 shows the overall descriptive statistics of the English semantic networks: the
number of nodes N , the number of links L, the maximum degree dmax, the average
degree E [D], the average nearest neighbor degree (ANND), the graph clustering coef-
ficient cG and the estimated power-law exponents γ̂. We rewire all semantic networks
using the methods described before, after which the same statistics are calculated for
the rewired networks.

For networks obtained by degree-preserving rewiring, only the ANND and the graph
clustering coefficient cG change. The average nearest neighbor degree ANND becomes
smaller for all randomized semantic networks, except for the ‘Synonym’ network.

All networks except the ‘Has-A’ network have a remarkably larger graph clustering
coefficient cG (at least by an order of magnitude) than the randomized networks. Be-
cause in random networks links are randomly distributed, there are fewer triangles. On
the contrary, the randomized networks of ‘Has-A’ exhibit a clustering coefficient more
than seven times larger than their original networks.

Network Has-A Is-A Part-Of Related-To Union Antonym Synonym

N 1,664 140,024 7,562 571,079 650,079 5,912 53,279
L 1,842 213,319 9,212 1,598,548 1,804,666 7,986 80,668
dmax 198 2913 116 4025 5263 38 103
E [D] 2.21 3.05 2.44 5.60 5.55 2.70 3.03
ANND 33.6 242 14.1 170 219 6.77 7.13
ANND rewired 23.3 142 10.8 145 173 6.25 7.51
cG 2.2 ·10−3 5.7 ·10−2 4.6 ·10−2 1.0 ·10−1 1.0 ·10−1 1.5 ·10−2 1.1 ·10−1

cG rewired 1.8 ·10−2 6.3 ·10−3 2.1 ·10−3 3.3 ·10−3 3.7 ·10−3 7.3 ·10−4 1.5 ·10−4

γ̂Sl ope 2.3 2.3 2.4 2.4 2.4
Ś Ś

γ̂Hi l l 2.3 2.3 2.5 2.3 2.3
Ś Ś

γ̂Mom 2.5 2.3 2.6 2.2 2.2
Ś Ś

γ̂K er n 2.6 2.3 2.7 2.1 2.1
Ś Ś

Table D.3: Statistics of the LCCs of seven English semantic networks extracted from ConceptNet. A cross (
Ś

)
indicates the degree sequence of the corresponding network is hardly or no power-law.
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In summary, we find universalities across semantic networks from different languages
in degree distribution, degree assortativity, clustering, sparsity, and connectedness. Most
semantic networks have power-law degree distributions and most of them are scale-free
networks. There are two types of degree mixing patterns in semantic networks: assorta-
tive and disassortative. Most networks have higher average clustering coefficients than
expected by chance, except for one network, the network ‘Has-A’, which shows lower
clustering. All semantic networks have high sparsity. Most networks have a single con-
nected component containing the majority of the nodes, except for the network ‘Has-A’,
which is more fragmented.

D.4.3. LARGEST CONNECTED COMPONENTS

Network Size of full network Number of nodes in LCC Percentage

Has-A
7,503

1,664 22.18%
Has-A (rewired) 2,416 ± 35 (32.20 ± 0.47)%

Is-A
152,538

140,024 91.80%
Is-A (rewired) 127,258 ± 73 (83.43 ± 0.05)%

Part-Of
11,839

7,562 63.87%
Part-Of (rewired) 7,993 ± 53 (67.51 ± 0.45)%

Related-To
592,816

571,079 96.33%
Related-To (rewired) 570,012 ± 116 (96.15 ± 0.02)%

Union
677,426

650,079 95.96%
Union (rewired) 650,474 ± 182 (95.77 ± 0.03)%

Antonym
16,867

5,912 35.05%
Antonym (rewired) 8,845 ± 59 (52.44 ± 0.35)%

Synonym
166,922

53,279 31.92%
Synonym (rewired) 103,466 ± 142 (61.98 ± 0.09)%

Table D.4: Number of nodes in the LCCs of the seven English networks in the original and rewired networks.
The LCC sizes of the rewired networks are each the average over 10 rewiring realizations with standard devia-
tion shown.
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D.4.4. AVERAGE NEAREST NEIGHBOR DEGREE

ρD = -0.146

ρD = 0.104

ρD = -0.005ρD = -0.084

ρD = -0.156

ρD = -0.083

ρD = -0.088

Degree k Degree k

Degree k Degree k

Degree k Degree k

Degree k

AN
N

D

AN
N

D

AN
N

D

AN
N

D

AN
N

D

AN
N

D

AN
N

D

Figure D.2: Average nearest neighbor degree (ANND) as a function of the degree k and degree assortativity ρD
of the seven English semantic networks. (a) Network ‘Has-A’, (b) Network ‘Is-A’, (c) Network ‘Part-Of’, (d) Net-
work ‘Related-To’, (e) Network ‘Union’, (f) Network ‘Antonym’, (g) Network ‘Synonym’. The circle data points are
the original average ANND of nodes with degree k in a network, triangles represent the data after logarithmic
binning, and squares are the average ANND of nodes with degree k in the randomized networks.
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D.4.5. CLUSTERING COEFFICIENT
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Figure D.3: The average clustering coefficient cG (i ) of nodes i with degree k of the seven English semantic
networks. (a) Network ‘Has-A’, (b) Network ‘Is-A’, (c) Network ‘Part-Of’, (d) Network ‘Related-To’, (e) Network
‘Union’, (f) Network ‘Antonym’, (g) Network ‘Synonym’. The circle data points are the original average local clus-
tering coefficients of nodes, triangles represent data after logarithmic binning, and squares show the average
clustering coefficient of nodes with degree k in the randomized networks (logarithmically binned).
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D.4.6. CONNECTED COMPONENT SIZE DISTRIBUTION

Figure D.4 shows the size distribution of the connected components for each semantic
network.

Figure D.4: Size distributions of connected components of the seven English semantic networks. The dashed
lines indicate the percentage of nodes in the connected components relative to the network total. The regres-
sion line is fitted on the bulk of the data points.
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D.5. MULTILINGUAL SEMANTIC NETWORKS

D.5.1. DESCRIPTIVE STATISTICS
This section shows the descriptive statistics of semantic networks from the eleven lan-
guages. Each property is compared among the seven networks for the eleven languages.

LANGUAGE CLASSIFICATIONS

Table D.5 shows the typological and genetic classifications of the eleven considered lan-
guages.

Genetic
Typological

Inflecting Isolating Agglutinating

Italic Spanish, French,
Italian, Portuguese

Germanic English, Dutch,
German

Balto-Slavic Russian

Transeurasian Japanese

Sino-Tibetan Chinese

Uralic Finnish

Table D.5: Genetic and typological language classifications of the eleven languages in this study.

DESCRIPTIVE STATISTICS

Table D.6 shows the number of nodes of each semantic network in the eleven different
languages. A blank element in the table indicates that the network does not exist, i.e., a
relation is not available in that language.

AVERAGE DEGREE

Network Has-A Is-A Part-Of Related-To Union Antonym Synonym

English 2.21 3.05 2.44 5.60 5.55 2.70 3.03
French 2.64 2.51 3.44 3.46 2.45 2.81
Italian 2.86 2.89 2.20 2.27 1.85 2.54
German 2.75 1.60 4.77 4.53 2.16 3.57
Spanish 2.45 2.73 2.13 2.13 1.87 2.57
Russian 2.23 1.33 4.14 3.88 1.83 2.26
Portuguese 2.24 2.67 2.49 2.65 2.00 2.84
Dutch 4.68 4.98 2.30 2.69 2.11 3.53
Japanese 2.89 4.42 4.11 4.34 4.79 2.00 2.73
Finnish 1.97 1.83 2.30 2.26 1.92 2.24
Chinese 3.58 3.02 3.36 4.06 3.78 1.50 2.24

Table D.7: Average degree E [D] in the LCCs of the semantic networks from the eleven different languages
extracted from ConceptNet. A blank element indicates the corresponding network is unavailable.
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Network Has-A Is-A Part-Of Related-To Union Antonym Synonym

English 1,664 140,024 7,562 571,079 650,079 5,912 53,279
French 17,519 2,832 1,289,083 1,296,622 1,361 20,144
Italian 2,663 9 36,295 46,468 13 1,580
German 113,301 5 100,737 172,147 187 43,072
Spanish 255 11 12,094 22,861 15 3,491
Russian 557 3 20,268 25,887 12 1,148
Portuguese 3,341 15 5,929 11,426 17 6,421
Dutch 191 53 303 1,418 111 11,964
Japanese 38 40,256 7,230 7,200 43,286 20 230
Finnish 76 12 4,483 6,958 24 1,569
Chinese 6,355 10,073 3,417 3,163 17,128 4 17

Table D.6: Number of nodes N in the LCCs of the semantic networks from the eleven different languages ex-
tracted from ConceptNet. A blank element indicates the corresponding network is not available. The ‘Union’
network is the union of four networks (‘Has-A’, ‘Is-A’, ‘Part-Of’ and ‘Related-To’). Because we display the LCC
sizes, for some ‘Union’ networks, the number of nodes exceeds the sum of the sizes of its four constituent net-
works.

POWER-LAW EXPONENTS

Table D.8 lists the estimated power-law exponents γ̂ for each semantic network in the
eleven languages. We consider a network to not have a power-law degree distribution if
it is not or hardly power-law according to the method of Voitalov et al. [97].

D.6. DEGREE DISTRIBUTION PEAKS

D.6.1. SPANISH ‘RELATED-TO’ PEAK WORDS

Peak word Translation Neighbors

cenar to dine cená, cenábamos, cenáculo, cenáis, cenáramos, cenáremos, ...

viajar to travel viaja, viajaba, viajabais, viajaban, viajabas, viajad, viajado, ...

pasear to walk pasea, paseaba, paseabais, paseaban, paseabas, pasead, ...

reparar to repair repararais, repararan, repararas, reparareis, repararemos, ...

comparar to compare comprar, comparaba, comparabais, comparaban, comparabas, ...

Table D.9: Examples of words in the peak and their neighoring words in the Spanish ‘Related-To’ network.
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D.6.2. POS TAGS OF PEAK WORDS

Percentage (%)
French Spanish Portuguese Finnish

LCC Peak LCC Peak LCC Peak LCC Peak

POS tagged 98.71 98.66 92.72 77.84 67.60 60.00 81.37 64.13

Verb 68.90 89.97 87.62 98.44 32.56 100.00 11.40 11.36
Noun 19.21 7.14 9.20 1.56 51.96 0 77.96 84.09
Adjective 11.53 2.75 2.89 0 14.60 0 7.17 4.55
Adverb 0.36 0.15 0.29 0 0.88 0 3.47 0

Table D.10: Percentages of POS tags among peak words and in the LCCs of the ‘Related-To’ networks of four
inflecting languages.

D.6.3. POS TAGS OF PEAK WORD NEIGHBORS

Percentage (%)
French Spanish Portuguese Finnish

Mean SD Mean SD Mean SD Mean SD

POS tagged 97.39 0.88 96.96 1.73 97.74 0.75 93.72 4.45

Verb 87.26 25.85 97.24 2.59 99.23 0.94 3.86 14.64
Noun 9.34 20.08 2.07 2.15 0.77 0.94 89.67 26.50

Table D.11: The mean and Standard Deviation (SD) percentage of verbs and nouns in the neighbors of peak
words of the LCC of network ‘Related-To’ in four inflecting languages.

D.6.4. NODE MERGING PROCEDURE

First, we extract the network ‘Form-Of’ in the same way as for all other networks. Then
we treat the merged group of words as a single word in the ‘Related-To’ network in the
same language. Next, we calculate the number of nodes with degree k in the new ‘Related-
To’ network. Finally, we plot the densities of the degree distributions of French, Spanish,
Portuguese and Finnish networks.

Figure D.5: Illustration of the merging of words in the ‘Related-To’ network. After merging a root word and its
neighbors, all words in a circle are seen as a single word.
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D.6.5. COVERAGE OF PEAK WORDS IN ‘FORM-OF’ NETWORK

Percentage French Spanish Portuguese Finnish

Percentage of peak words covered by
‘Form-Of ’

33.72% 100% 60.00% 91.30%

Percentage of neighbors of peak words
covered by ‘Form-Of ’

17.38% 97.76% 55.47% 45.08%

Table D.12: The percentages of matched words among the peak words of the LCCs of the ‘Related-To’ networks
in four languages.

D.6.6. THE NUMBER OF GRAMMATICAL VARIATIONS

Language Grammatical variations m kmin kmax

French 42 36 51
Spanish 54 45 61
Portuguese 54 53 53
Finnish 30 25 35

Table D.13: The maximum number of grammatical variations m for the grammatical rule of interest in French,
Spanish, Portuguese, and Finnish. The minimum and maximum degree kmin and kmax where the peak starts
and ends in the densities of the degree distributions of the ‘Related-To’ networks are included for comparison.

D.7. SIMILARITY AND COMPLEMENTARITY COEFFICIENTS
For the convenience of the reader, here we summarize the main components of the
framework for computing structural similarity and complementarity coefficients by Ta-
laga and Nowak [127].

STRUCTURAL COEFFICIENTS

Similarity-based networks are rich in triangles because of the triangle closure principle.
The clustering coefficient is a classic measure of the density of triangles in a network.
However, we cannot simply compare the number of triangles and quadrangles between
two networks, because these networks have different sizes and degree distributions. We
need to reliably calculate the statistics of triangles and quadrangles of a network to quan-
tify similarity and complementarity. To this end, we rely on a recent work on comple-
mentarity [127]. The structural similarity coefficient is a weighted average of two clus-
tering coefficients based on head and wedge triples, Figures D.6(b-c). Analogous to the
clustering coefficient, we can use structural complementarity measures based on quad-
rangle closure rules, Figure D.6(d). Similarly, the structural complementarity coefficient
is a weighted average of two coefficients based on head and wedge quadrangles, Fig-
ures D.6(f-e). Here, we summarize the main components of the procedures for calculat-
ing the structural similarity coefficient and complementarity coefficient of a network G .
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(a) Triangle closure

(d) Quadrangle closure

(b) Wedge triple (c) Head triple

(e) Wedge quadruple (f) Head quadruple

Figure D.6: Quadrangle and quadruples in comparison with triangle and triples. Wedge and head triples (or
quadruples) are different with respect to the location of the node i . In a wedge triple (b), node i is located in
the middle, while in a head triple (c), node i is located at the head. Similarly, in a wedge quadruple (e), node i
is located at the second location, while node i is located at the head of a head quadruple (f).

STRUCTURAL SIMILARITY COEFFICIENT

The structural similarity coefficient si generalizes the local clustering and closure coeffi-
cients. The local clustering coefficient sW

i of a node i is the classic clustering coefficient.
It is defined as the fraction of triples centered at i which can be closed to form a triangle,

sW
i = 2Ti

tW
i

=
∑

j ,k ai j ai k a j k

ki (ki −1)
, (D.3)

where Ti is the number of triangles including i and tW
i is the number of wedge triples,

Figure D.6(b), or 2-paths with node i in the middle, e.g., ( j , i ,k). The definition of the
local closure coefficient [229] is given as follows

sH
i = 2Ti

t H
i

=
∑

j ,k ai j ai k a j k∑
j ai j

(
k j −1

) , (D.4)

where t H
i is the number of head triples, Figure D.6(c), i.e., 2-paths starting from node i ,

such as (i , j ,k). Both sW
i and sH

i are bounded in the range [0,1], but they capture different
parts of the spectrum of similarity-driven structures [127].

Combining the weighted average of these two coefficients results in a more com-
prehensive measure of local structure, the structural similarity coefficient [127], which
captures the full spectrum of structural similarity. It is defined as

si = 4Ti

tW
i + t H

i

= tW
i sW

i + t H
i sH

i

tW
i + t H

i

. (D.5)

The coefficient si = 1 only if node i is in a fully connected network.
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The structural similarity coefficient of a whole network G is then the average over all
nodes

s(G) = 1

N

N∑
i =1

si . (D.6)

STRUCTURAL COMPLEMENTARITY COEFFICIENT

Analogously, the local quadruples clustering coefficient at node i is defined as the frac-
tion of closed quadruples with i at the second position [127]

cW
i = 2Qi

qW
i

=
∑

j ̸=i ai j
∑

k ̸=i , j ai k
(
1−a j k

)∑
l ̸=i , j ,k akl a j l (1−ai l )∑

j ai j
[
(di −1)

(
d j −1

)−ni j
] , (D.7)

where Qi represents the number of quadrangles contain that node i and qW
i is the num-

ber of wedge quadruples Figure D.6(e), or 3-paths with i at the second node, e.g., (l , i , j ,k).
Similarly, the local quadruples closure coefficient of a node i calculates the percentage
of closed quadruples beginning at i

c H
i = 2Qi

q H
i

=
∑

j ̸=i ai j
∑

k ̸=i , j ai k
(
1−a j k

)∑
l ̸=i , j ,k akl a j l (1−ai l )∑

j ̸=i ai j
∑

k ̸=i , j a j k (dk −1−ai k )
, (D.8)

where q H
i is the number of head quadruples originating from node i , Figure D.6(f).

Finally, the structural complementarity coefficient is constructed as the weighted av-
erage of the local quadruples clustering and closure coefficients [127]

ci = 4Qi

qW
i +q H

i

= qW
i cW

i +q H
i c H

i

qW
i +q H

i

. (D.9)

The structural complementarity coefficient ci ∈ [0,1], which is proven to be a more gen-
eral measure than using only cW

i or c H
i [127]. The maximum ci = 1 happens only if node i

belongs to a fully connected bipartite graph. In a bipartite graph, nodes are divided into
two groups, and connections are only formed between groups but not within the same
group.

The structural complementarity coefficient of a whole network G is then the average
of all nodes:

c(G) = 1

N

N∑
i =1

ci . (D.10)

Table D.14 lists the procedures of how we compute the structural similarity and com-
plementarity coefficients to quantify the density of triangles and quadrangles in a net-
work G , respectively.
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Procedure Structural coefficients
Network G

Similarity (△) Complementarity (□)

Step 1
Wedge triple/quadruple sW

i (D.3) cW
i (D.7)

Head triple/quadruple sH
i (D.4) c H

i (D.8)

Step 2 Node-wise si (D.5) ci (D.9)

Step 3 Network-wise s(G) = 1
N

∑N
i=1 si (D.6) c(G) = 1

N
∑N

i=1 ci (D.10)

Step 4 Calibrated Network-wise C (s)G = 1
R

∑R
i=1 log s(G)

s(Gi ) C (c)G = 1
R

∑R
i=1 log c(G)

c(Gi )

Table D.14: The procedure of calculating the structural similarity coefficient and complementarity coefficient
of a network G . The calibrated structural coefficients in step 4 are obtained by taking the average log ratio of a
network-wise coefficient over the coefficients of sampled networks Gi , see ( D.11).

D.7.1. CALIBRATION
This section presents the calibration procedure using the configuration model used to
normalize the structural coefficients of semantic networks.

UNDIRECTED BINARY CONFIGURATION MODEL

We utilize the Undirected Binary Configuration Model (UBCM) [230] to calibrate the
structural coefficients. The UBCM generates a maximum entropy probability distribu-
tion over the nodes of an undirected and unweighted network with the constraints of an
expected degree sequence. The resulting maximum entropy distributions are maximally
unbiased with respect to any other property [231].

CALIBRATION OF STRUCTURAL COEFFICIENTS

First of all, we calculate one structural coefficient (similarity or complementarity) of a
given network G . We denote this coefficient as x(G). Second, we sample R randomized
copies Gi ’s of the given network from the configuration model. Then, we calculate the
structural coefficient x(Gi ) for each sampled network. At last, we take the average log
ratio of x(G) and x(Gi )’s. As a result, the calibrated coefficient CG (x) based on R samples
from the configuration model is obtained as follows [127]

C (x)G = 1

R

R∑
i =1

log
x(G)

x (Gi )
. (D.11)

The calibrated structural coefficient can be less than, equal to, or larger than zero. Con-
sider the calibrated structural similarity coefficient CG (s) for example:

• CG (s) < 0, the structural similarity coefficient s(G) is smaller than s(Gi ) of random
networks.

• CG (s) = 0, the structural similarity coefficient is comparable to the ones in random
networks.
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• CG (s) > 0, the structural similarity coefficient is larger than in random networks.

We do not compute the structural coefficients for networks that have less than 100
nodes, because likely there exist no triangles or quadrangles in the sampled networks,
and the structural coefficient x(Gi ) = 0, in that case. When x(G) = 0 or x(Gi ) = 0, the
calibrated coefficient C (x)G (D.11) is undefined.

Since the runtime of the algorithm depends on the size of a network and the choice
of the number of randomized networks R, we do not compute the structural coefficients
for the two largest networks, the French ‘Related-To’ and ‘Union’ networks with N >
1,200,000 each, as the computation time is infeasible for the resources we have at hand.
We use R = 500 for most networks, while for the remaining two largest networks, the
English ‘Related-To’ and ‘Union’, we set R = 100 to avoid the long computation time.
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Network γ Has-A Is-A Part-Of Related-To Union Antonym Synonym

English

γ̂Sl ope 2.3 2.3 2.4 2.4 2.4
Ś Ś

γ̂Hi l l 2.3 2.3 2.5 2.3 2.3
Ś Ś

γ̂Mom 2.5 2.3 2.6 2.2 2.2
Ś Ś

γ̂K er n 2.6 2.3 2.7 2.1 2.1
Ś Ś

French

γ̂Sl ope 2.4 2.3
Ś Ś

2.7 3.1
γ̂Hi l l 2.5 2.5

Ś Ś

3.3 3.6
γ̂Mom 2.5 2.6

Ś Ś

4.5 3.9
γ̂K er n 2.6 2.6

Ś Ś

4.2 4.8

Italian

γ̂Sl ope 2.3 2.6 2.6
Ś

γ̂Hi l l 2.8 2.4 2.4
Ś

γ̂Mom 2.2 2.4 2.5
Ś

γ̂K er n 2.3 2.5 2.6
Ś

German

γ̂Sl ope 2.5 2.6 2.5 3.1
γ̂Hi l l 2.2 2.7 2.9 3.6
γ̂Mom 3.3 2.7 2.9 3.7
γ̂K er n 2.3 2.9 2.6 3.9

Spanish

γ̂Sl ope Ś Ś Ś

γ̂Hi l l Ś Ś Ś

γ̂Mom Ś Ś Ś

γ̂K er n Ś Ś Ś

Russian

γ̂Sl ope Ś Ś Ś

γ̂Hi l l Ś Ś Ś

γ̂Mom Ś Ś Ś

γ̂K er n Ś Ś Ś

Portuguese

γ̂Sl ope 2.6 2.4 2.5
Ś

γ̂Hi l l 2.8 2.6 2.8
Ś

γ̂Mom 2.6 2.1 2.4
Ś

γ̂K er n 2.6 2.9 2.7
Ś

Dutch

γ̂Sl ope 2.2
Ś

γ̂Hi l l 2.8
Ś

γ̂Mom 3.1
Ś

γ̂K er n 3.5
Ś

Japanese

γ̂Sl ope 2.4 2.3 2.2 2.3
γ̂Hi l l 2.6 2.9 4.9 2.6
γ̂Mom 2.6 2.9 2.4 2.7
γ̂K er n 2.6 2.6 2.6 2.6

Finnish

γ̂Sl ope Ś Ś Ś

γ̂Hi l l Ś Ś Ś

γ̂Mom Ś Ś Ś

γ̂K er n Ś Ś Ś

Chinese

γ̂Sl ope 2.5 2.3 2.7 1.9 2.3
γ̂Hi l l 3.4 2.4 2.3 2.7 4.3
γ̂Mom 3.8 2.4 2.4 1.9 2.4
γ̂K er n 2.7 2.3 2.3 2.3 2.5

Table D.8: Estimated power-law exponents γ̂ for the LCCs of the semantic networks in different languages.
A blank element indicates the corresponding network is either unavailable or the number of nodes N < 1000.
A cross (

Ś

) indicates that the degree sequence of that network is not or hardly power-law.
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