
BSc verslag Technische Wiskunde

Het schatten van de duur van het Branch and Bound algoritme
voor 0-1 Knapsack problemen.

Estimating the duration of the Branch and Bound algorithm for
0-1 Knapsack problems.

Jelle de Jong

Technische Universiteit Delft

Contents

1 Abstract 2

2 Branch and Bound algorithm for 0-1 Knapsack problems 3
2.1 0-1 Knapsack Problems . 3
2.2 ILP Problems . 4
2.3 LP relaxation . 5

3 Branch and Bound algorithm 6
3.1 Using bounds to prune subproblems 7
3.2 Depth First Search . 7

4 Time Estimation 8
4.1 The importance of time estimation 8
4.2 Overview of the model . 8
4.3 Branch and Bound algorithm in the model 9
4.4 Pseudocode of the Branch and Bound Algorithm 10

5 Estimating the duration of the algorithm 11
5.1 Estimating the γ-sequence . 11
5.2 Time estimation . 12

6 Data analysis 13
6.1 Problems . 13
6.2 Small Variety Problems . 13
6.3 Large size problems . 13
6.4 Test results . 14
6.5 Problem Small11 35 . 14
6.6 Problem Large1 500 . 17

7 Conclusions 19

References 20

1

1 Abstract

The Branch and Bound method is a very useful method for finding solutions
to optimization problems. However it does come with some problems as the
search tree used for the Branch and Bound algorithm can be very large in
size and can result in very long processing times as well as a large memory
use. There is currently no known way to exactly know how large this tree
will be and how long the algorithm will take, therefore having more infor-
mation on this algorithm can be of great interest.

This report will look into the method used in the article Early Estimates of
the Size of Branch-and-Bound Trees by Gerard Cornuéjols, Miroslav Kara-
manov and Yanjun Li [1]. In this report their method will be tested against
a specific set of problems, the 0-1 Knapsack problems. Their time estimation
method will be tested against a variety of 0-1 Knapsack problems and the
estimation will be compared to the real time it takes to solve the problems.
This will give an idea of how good the method works for the method works
for the 0-1 Knapsack problems and show any issues it might run into.

2

2 Branch and Bound algorithm for 0-1

Knapsack problems

2.1 0-1 Knapsack Problems

The knapsack problem can be best explained by imagining a real knapsack.
The knapsack only has the capability to carry a certain weight of items.
There is a number of items, which each have their own weight and a price.
This price indicates how much value you would give bringing this item with
you in the knapsack. The goal is to bring an as high as possible value of
items with you, while not going over the maximum weight constraint the
knapsack has.

In the case of a 0-1 knapsack problem, each item can only be picked at
most once, so there are no extra copies of items available to pick. A variable
xi is created, this xi is equal to 1 if the item in included in a solution, and
is 0 when an item is not included in the solution.

Source: https://en.wikipedia.org/wiki/Knapsack_problem#/media/File:Knapsack.svg

3

This is an example of what a simple knapsack problem can look like.
There is a set of 5 items which each have their own value and weight. The
optimal solution would be to carry as much value as possible while staying
under the weight limit of 15 kg. In this case of a simple problem like this, it
can easily be seen that the optimal solution would include all boxes except
the green one. This would stay under the weight limit since it only reaches
a weight of 8 kg, while having a value of $15.

2.2 ILP Problems

This knapsack problem is what is known as an ILP problem or Integer Lin-
ear Programming problem. A minimization or maximization optimization
problem with linear constraints and a linear objective function. Each prob-
lem consists of a set of items, all of these items have two properties, a value
and a weight. The value of item i will be called vi and the weight of the
item will be called ci.

Each problem will have an objective function, in this case the objective
function is to maximize the sum of vixi for all i, which would be the cu-
mulative value of all the items included in the knapsack. There is also a
restriction on the problem, the maximum weight that can be carried, this
value will be indicated by b. Now a general knapsack problem can be defined
in the following way:

max
n∑

i=0

vixi

n∑
i=0

cixi ≤ b

xi ∈ {0, 1} i = 0, 1, ..., n

4

2.3 LP relaxation

An LP relaxation is a simplified version of an ILP problem, the integral
constraint is dropped from the problem. This means that the variable xi
can now take values between 0 and 1 as well.

max

n∑
i=0

vixi

n∑
i=0

cixi ≤ b

xi ∈ [0, 1] i = 0, 1, ..., n

With this the exact weight limit b can always exactly be hit allowing for a
potentially more optimal solution than the ILP would allow. This means
the LP relaxation of the problem will give an upper bound to the maximum
value the ILP problem can reach.

5

3 Branch and Bound algorithm

The Branch and Bound method is based on the idea of intelligently enumer-
ating over the feasible points of a combinatorial optimization problem. [5]
Branch and Bound breaks a problem into a series of smaller problems that
are easier to solve, and the information from the smaller problems help solve
the main problem. This is typically done using an enumeration tree. In the
case of the Knapsack problem, a binary enumeration tree is created, this tree
is created by first splitting the main problem into two subproblems: One
with the first item included in the solution (x1 = 1), and one with the first
item excluded from the solution (x1 = 0). Then each of these subproblems
gets split again into two new subproblems with the second item included
(x2 = 1) or excluded (x2 = 0). This can be repeated for every single item
for a tree consisting of 2n+1 − 1 subproblems. The binary enumeration tree
will be referred to as the search tree.

Solving 2n+1 − 1 subproblems becomes impossible to solve for larges val-
ues of n. [3] So a more intelligent way of looking at subproblems is needed.

6

3.1 Using bounds to prune subproblems

This intelligent way of looking at subproblems is done by calculating a lower
bound and upper bound to the solution every time a new subproblem is
created. Then if a subproblem is created that has an upper bound that is
worse than the lower bound of another subproblem, this new subproblem
can not lead to the optimal solution of the original problem. Because of
the structure of the enumeration tree created, none of the new subproblems
coming from this original problem can lead to the optimal solution either so
a large part of the tree can be pruned this way.

3.2 Depth First Search

Pruning subproblems is very important for speeding up the Branch and
Bound algorithm so it is of interest to prune non-optimal subproblems as
soon as possible. To make this process faster, it is important to find a high
lower bound as soon as possible, as many new subproblems can be found to
be infeasible from that point on. This is why a Depth-First Search strategy is
used. [4] This means that when choosing a subproblem to split into new sub-
problems, the best option would be to take the subproblem that previously
had the highest lower bound, as the problems created from this are more
likely to improve that bound. Having this high lower bound makes it much
more likely that new subproblems can be found to be incapable of being an
optimal solution, and therefore increasing the speed of the algorithm. [2]

7

4 Time Estimation

4.1 The importance of time estimation

Estimating the duration of the algorithm can be important as bigger prob-
lems can easily take an extremely long time to complete. In case of the 0-1
Knapsack Problem, every item has two options, it is either included as an
item in the final solution, or left out. In a problem with n items this would
mean that there are 2n possibilities of item combinations that could be a
final solution. This also means that the Branch and Bound algorithm has a
worst case running time for O(2n).

Knapsack problems can easily contain thousands or more items in real
world applications. If a program could check millions of possibilities per
second, a computer would still not ever in millions of years be able to check
all 21000 possibilities. This means that there is a chance that you will not
be able to solve this problem in any reasonable time. However there is also
a possibility the program will be able to solve the problem in a fraction of
a second.

It can be important to know in advance if the solution is easily solvable
before you start working on a solution. Having an estimation in advance
will give a lot of insight in the problem and what can be expected.

4.2 Overview of the model

The model used for estimating the duration of the Branch and Bound
method for 0-1 Knapsack problems is based on the article: ”Early Estimates
of the Size of Branch-and-Bound Trees” by Gerard Cornuéjols, Miroslav
Karamanov and Yanjun Li [1]
The model starts by running the Branch and Bound method as normal to
find the optimal solution for a set problem. It will continue doing so until
two requirements are met: At least five seconds have passed, and the amount
of nodes checked is at least 20 times the depth of the tree created thus far.
From here the total tree of subproblems that have been looked at will be
summarized into a couple of key variables. Those variables will then be used
to make a size estimation of what the full tree would look like if the program
would keep running until an optimal solution is found. Using this size and
an average computation time per subproblem up to that point. An estimate
for the running time can be made.

8

4.3 Branch and Bound algorithm in the model

The Branch and Bound solver uses a method to solve the algorithm by first
sorting the items by the best value over weight ratio. This way the most
value efficient items will be checked first as these are very likely to be part
of the final solution.

It starts with a single problem, the original problem we want to eventu-
ally solve. Then upper and lower bounds will be created for this problem.
The lower bound is calculated by adding the items in the list in order until
the next item does not fit anymore. The items are ordered by best value to
weight ratio, so this creates decent lower bound for the problem. The upper
bound is the calculated by finding an optimal solution to the LP-Relaxation
of the problem. The LP-relaxation can always find a solution that is equal
or better than the solution the ILP problem could give, so this is guaranteed
to be an upper bound of the actual solution.

9

4.4 Pseudocode of the Branch and Bound Algorithm

1. Order the items from highest value over weight to lowest.

2. Calculate the upper and lower bounds of the problem and mark the
problem as checked. Set the highest lower bound to the calculate lower
bound.

3. Split the problem into two new subproblems with the first item on the
list included or excluded.

4. Repeat until there are no unchecked problems:

(a) Pick the subproblem with the highest depth in the search tree
that has not yet been checked.

(b) Calculate the upper and lower bounds of the subproblem. If the
new lower bound is higher than the previous highest lower bound,
make this the new highest lower bound.

(c) If the upper bound is lower than the highest lower bound: Go to
the next unchecked problem.

(d) If the upper bound is higher than the highest lower bound: Split
the subproblems into two new subproblems with the next item
in the list included and excluded, then go to the next Unchecked
subproblem.

5. The subproblem with the highest lower bound will have the optimal
solution to the original problem.

10

5 Estimating the duration of the algorithm

The goal is to find a time estimation for the algorithm based on running
part of the Branch and Bound algorithm. This estimation will be based on
the shape of the tree created by the subproblems that are looked at. Three
properties describing the shape of the tree will be used to make the final
estimation:

1. wT (i), will be the width of level l, this means the amount of nodes at
level l of the tree.

2. dT will be the depth of the tree, which is the lowest level of the tree
that contains nodes.

3. lT is called the last full level, before this level all levels will have exactly
twice as many nodes and the tree will form a complete binary tree.

4. bT is the waist of the tree, the level with the maximum width, in case
there are multiple levels with the maximum width, bT is defined as
the average level of the lowest and highest level with this maximum
width: bT = b1+b2

2 where b1 = min{i : wT (i) = t} and b2 = max{i :
wT (i) = t} with t being the maximum width.

5.1 Estimating the γ-sequence

A γ-sequence is defined as the sequence γ0, γ1, ..., γdT−1 where γi = wT (i+1)
wT (i)

for 0 ≤ i ≤ dT which shows the relative size difference between levels of the
tree. It is another way to describe the way a tree looks.

A time estimation is made using the estimated size of the final tree de-
scribed by the γ-sequence of the final tree. However the width values of the
final tree are not known, so the γ-sequence will have to be estimated, for
this a linear estimation will be used based on the properties derived from
the partial tree.

This linear estimation is based on the fact that the γ-sequence is gen-
erally decreasing for i greater than the last full level. This sequence is also
approximately 1 at the waist and is 0 at the deepest level. Using this a
γ-sequence is defined using the following formula:

γi =


2, for 0 ≤ i ≤ lt − 1

2− i−lt+1
bt−lt+1 , lt ≤ i ≤ bt − 1

1− i−bt+1
dt−bt+1 , bt ≤ i ≤ dt

A number of nodes at every level can now be estimated using w∗
i+1 = w∗

i γi
with w∗

0 = 1. And adding all of these w∗
i values will give an estimation of

the nodes in the tree.

11

5.2 Time estimation

With an estimation of the full size of the tree, the duration of the algorithm
can finally be estimated. To do this, the average time per node up until the
time of estimation is used. This average time per node can now be used
with the estimated amount of nodes in the full tree to get a total estimated
time.

This now gives an estimated time to compare to the real time, there will
always be an error though, so this error is required to be limited in size. It
is most important that the estimated time is of the same magnitude as the
real time, if the estimate is 5 minutes the program should not take a full day
to complete. A time range will be constructed of five times the estimation
in which the estimation is considered to be of the same magnitude.
This means the requirement is that the real time is between 0.2 times and
5 times the estimated time. This lower bound can be slightly improved by
making it the maximum of 0.2 times the estimated time and the already
elapsed time when the estimation is made. Since it can obviously not be
shorter than the already elapsed time.

12

6 Data analysis

The goal is to test the performance of the estimation method for 0-1 Knap-
sack Problems, therefore multiple types of Knapsack problems will have to
be tested. Knapsack problems with a small number of items but with very
small variety in the weights and values, and problems with a larger amount
of items but also a larger difference between the weights and values each
item can have.

These two problems will cause very different solution times as the algo-
rithm has to check many more possibilities for the problems with a small
variety in cost and weight. This will result in a very wide estimation tree
but not a very deep one. Whereas in the problems with a large number of
items the estimation tree will become very deep but it will not be very wide.

By testing this estimation method for a variety of different Knapsack
problems, it can be properly tested how well it performs and when the
method lacks accuracy.

6.1 Problems

Using the method created the estimation method can now be tested against
a variety of different problems. It is important to test different types of
problems as they can create different issues for the estimation method. The
problems will be created by generating a list of random numbers for the
weights and another list for the value of the items. These two lists will then
be paired to create an item with both a value and cost. Now these items
can be put into the program which will start solving the problem, make an
estimate when the estimation tree fits the restrictions for estimation, and
then continue solving the problem to create a final actual solving time.

6.2 Small Variety Problems

To keep the problems hard to solve the difference in value and weight be-
tween the items has to be small. These problems will be randomly generated
to have the weight and value of each item in an interval of around [0.9x, x]
with x being a set value. This way the values for each item will be very
close to each other making the ratio of value over weight very similar. It
will be very difficult for the algorithm to find a solution as even the difference
between the ”best” and ”worst” items is not that large.

6.3 Large size problems

These problems will have a large amount of items to see how the algorithm
preforms when there are lots of possibilities. Overall these problems will
have any more cuts in the algorithm so a lot of problems will not have to

13

be checked. However the large amount should create extra problems for the
estimation method as the linear estimation for the amount of nodes could
easily heavily overestimate the amount of nodes

6.4 Test results

Problem Algorithm Duration (s) Time estimate interval (s)

Small1 30 247.582752 [5.008063554763794 , 71.93847929101015]
Small2 30 254.8848522 [5.0066423416137695 , 67.069068864531]
Small3 30 235.1424277 [5.0275163650512695 , 50.69532322382676]
Small4 30 229.1956658 [5.006619453430176 , 59.23833057770466]
Small5 35 1027.761663 [25.13548160951973 , 628.3870402379931]
Small6 35 896.1050351 [26.782633641928665 , 669.5658410482165]
Small7 30 529.3638763 [19.06282932966888 , 476.570733241722]
Small8 100 19.62864876 [6165736541437.09 , 154143413535927.25]
Small9 100 85.3552711 [5828753016363.98 , 145718825409099.53]
Small10 100 6.37242198 [1653025304221.0215 , 41325632605525.54]
Small11 35 1584.0622961521149 [20.082528583670687 , 502.06321459176706]
Large1 500 3431.878951 [8.006646766827597e+80 , 2.0016616917068997e+82]
Large2 500 102.8649545 [9.256545299339401e+80 , 2.3141363248348506e+82]
Large3 500 5.360163927 [8.399670225483611e+62 , 2.0999175563709023e+64]
Large4 600 213.7400203 [6.321416736974491e+97 , 1.5803541842436226e+99]
Large5 600 254.5948122 [2.0677817904892242e+95 , 5.1694544762230605e+96]

It seems that the estimation does not work properly as it the true algo-
rithm duration does not fall within any of the intervals that were estimated
during the tests. The large problems seem to have very extreme mistakes
as they give incredibly high times while the actual problem sometimes only
took a couple of minutes to solve. To see why these mistakes are happening,
the problems need to be looked at at an individual scale.

Two problems will be looked at further to see what went wrong with the
estimation. Small11 35 as it has a much longer solving time than estimated,
and Large1 500 as it has the opposite problem, of the actual solving time
being much lower than estimated.

6.5 Problem Small11 35

Small11 has an actual solving time of around 26 minutes, while the estima-
tion interval only goes to about 8 minutes. When the linear size estimation
made by the program is compared to the actual size once the problem is
solved, it is clear that the problem was expected to be a lot smaller to-
wards higher levels of the tree than it actually was. To see how this problem

14

could arise, another look has to be taken at how the estimated size is created.

This causes issues for the three variables on which the estimation is based.
The first value, the last full level lt will be at 1, as not enough iterations
have been done at lower levels to know anything more about this value. The
next value, the level of maximum width bt is set at 34.5 as both level 34 and
35 contain the same amount of nodes. The final value the depth of the tree
is 35 which means that every single item in the list will have been considered
for an optimal solution and no cuts have been made, this makes sense as the
nature of the small problem is to create a problem that is relatively hard to
solve.

However since our estimation is only based on these three values, flaws of
the estimation method are starting to show. The last full level is 1, so only
for the first level will our estimation double in size. In the actual final width
of the tree, this value ends up being 5. This means that our estimation does

15

not grow as much at the start as the final solution does, resulting in a lower
estimation.

The next problem is created because of the assumption the model would
take a linear shape. This means that from lt until bt the growth between
levels will slowly lower from a two times growth per level, to a value of one
where the amount of nodes is stable. However when this is compared to the
actual solution, the estimated growth rate is consistently under the actual
growth rate.

16

6.6 Problem Large1 500

As with all of the estimations of large problems, the time estimates are ex-
tremely large. In this case a duration of around 1081 seconds is estimated
by the program. Times that do not make any sense in the context of the
problem. In reality the problem takes a little under an hour to solve. So
the estimation method has some major issues with problems with a larger
amount of items. To see what goes wrong with this problem, another look
has to be taken into how the estimation is made.

Looking at the width levels at the time of estimation, this shape fairly
closely resembles the final shape of the problem, although on a scale about a
thousand times smaller than the final solution. This seems like a decent es-
timation of what the final shape could look like, however there is a problem
with then making the time estimation. The time estimation is only based
on the three variables: The last full level lt = 1, the depth dt = 500 and the
level of maximum width bt = 499.5.

The depth once again being the final level is not very surprising, since it
is not unlikely that all items will be checked unless there are some severe
outliers which will not even be taken into consideration by how bad they
are. The last full level being 1 is actually correct with the final result since
the first hundreds of levels will stay at a minimum value of a width of 2.
The level of maximum width for the actual width of the tree is at level 485
which is also not very far off of the estimated level 499.5.

17

So the variables used for estimating the time duration seem good, how-
ever the final time estimation is not even close to the actual time duration.
The problem lies in the assumption of linearity for the estimation. The
growth rate is assumed to be linearly decreasing from 2 to 1 over the levels
between lt and bt. However in this problem the growth rate actually stays
at 1 for the first 385 levels. This means in the estimation, the width of each
level grows enormously at the start, while in the problem stays very small.
This huge increase assumed by the linearity causes a giant overestimation
of the actual amount of nodes in the tree, and therefore the time estimation
made for the problem.

Comparing the Growth Rate Estimation to the Actual Growth Rate, shows
that this assumption of linearity does not at all work for the problem ana-
lyzed. It is clear that the Actual Growth rate moves around a lot and does
not follow the shape a linear growth rate would have.

18

7 Conclusions

In both the smaller and larger problems, many issues occur preventing a
proper time estimation using the method proposed in the paper ”Early
Estimates of the Size of Branch-and-Bound Trees” by Gerard Cornuéjols,
Miroslav Karamanov and Yanjun Li when applied to 0-1 Knapsack Prob-
lems. The linear estimation does not seem to be a proper estimation method
based on the actual growth rates found in the sample problems, and three
variables does not give enough information about the shape of the tree the
branch and bound algorithm creates when solving the problem.

Of course not only changing the linear estimation to another type of es-
timation could help improving the time estimation. Solutions like adding
more variables that describe the behaviour of the tree, or adding more time
before an estimation is made, could be made to improve the accuracy of the
time estimation as well. However these solutions do come with a downside.
The benefit of this method is that it is quickly able to give an estimation
after about five seconds, and does not take a lot of computational power,
adding more variables or more time loses a lot of these benefits. If an es-
timation is wanted, a good look has to be taken at the importance of the
estimation and how much time they are willing to spend on making this
estimation over just solving the problems.

Based on the results found in this paper, this method is not reliable enough
to give a good time estimation that can be trusted. It would not be rec-
ommended to use this to estimate how long a branch and bound problem
for 0-1 Knapsack problems would take to solve. If improvements were to be
made to the method, it would be up to the user to determine if the extra
time spend on making a better estimation is worth having the advanced
knowledge of how long a problem will take, as the speed of estimation for
this method is one of the big benefits of using it.

19

References

[1] G. Cornuéjols, M. Karamanov, Y. Li. 2004 Early Estimates of the Size
of Branch-and-Bound Trees.

[2] L. A. Wolsey, 1998. Integer Programming p99 John Wiley and Sons, New
York, NY.

[3] L. A. Wolsey, 1998. Integer Programming p9 John Wiley and Sons, New
York, NY.

[4] D. E. Knuth, 1975. Estimating the efficiency of backtracking programs.
Mathematics of Computing 29 121-136

[5] C. H. Papadimitriou, K. Steiglitz, 1998, Combinatorial Optimization Al-
gorithms and Complexity p433 Prentice-Hall, Inc., New Jersey.

20

Attachments

1 import threading

2 from random import randrange

3 import time

4

5

6 class KnapsackInstance:

7 def __init__(self, w, c, U):

8 n = self.n = len(w)

9

10 # We sort the weights and costs according to cost / weight

11 # ratio.

12 N = self.N = list(sorted(range(n), key=lambda i: -1.0 * c[i] / w[i]))

13 self.w = [w[i] for i in N]

14 self.c = [c[i] for i in N]

15 self.U = U

16

17

18 def generate_random_instance(nitems):

19 w = [randrange(866, 1001) for i in range(nitems)] # Was xrange but python 3

20 c = [randrange(866, 1001) for i in range(nitems)]

21 return KnapsackInstance(w, c, 0.75 * sum(w))

22

23

24 # Create random weights and cost for every item, Capacity of weight U is 0.75* total sum of weights

25 # Returns a knapsackinstance as class above

26

27 class Subproblem:

28 def __init__(self, fixed_one, fixed_zero, ub, depth):

29 self.fixed_one = set(fixed_one)

30 self.fixed_zero = set(fixed_zero)

31 self.ub = ub

32 self.depth = depth

33

34

35 # Items which are in/out of knapsack and upper bound.

36

37 class InfeasibleSubproblem(Exception):

38 pass

39

40

41 def compute_bounds(inst, P):

42 # inst is the random instance created (or any instance), P is the active nodes list.

21

43 lb = 0

44 total_weight = 0

45

46 # First we add up the fixed items.

47 for i in P.fixed_one:

48 lb += inst.c[i]

49 total_weight += inst.w[i]

50

51 if total_weight > inst.U:

52 raise InfeasibleSubproblem

53

54 # Then greedily fill up the rest to get a lower bound.

55 items = []

56 for i in range(inst.n):

57 if i not in P.fixed_one and i not in P.fixed_zero:

58 if total_weight + inst.w[i] <= inst.U:

59 lb += inst.c[i]

60 total_weight += inst.w[i]

61 items.append(i)

62 else:

63 # First item not to fit.

64 first_fail = i

65 break

66 else:

67 # All items fit, so we have the optimal solution (upper bound

68 # is equal to lower bound).

69 return lb, lb, items

70

71 # Compute the upper bound.

72 ub = (lb + 1.0 * inst.c[first_fail]

73 * (inst.U - total_weight) / inst.w[first_fail])

74

75 return lb, ub, items

76

77

78 def check_estimate_periodically(width, estimate_width, initial_timeout_occured, estimated_time, start_time):

79 initial_timeout_occured[0] = True

80 if width[-1] != 0:

81 first_zero_index = len(width)

82 else:

83 first_zero_index = width.index(0)

84 if sum(width) > first_zero_index * 20:

85 for i in range(len(width)):

86 estimate_width[i] = width[i]

87 estimated_time[0] = time.time()

22

88 print(estimated_time[0]-start_time[0])

89 print("5 second time limit exceeded and sum(width) > first_zero_index * 20, setting estimate_width = width")

90

91

92 def do_branch_and_bound(inst):

93 Pbest = 0

94 start_time = []

95 start_time.append(time.time())

96 width = [1]

97 for i in range(inst.n):

98 width.append(0)

99 estimated_time =[0]

100 # Global upper and lower bounds, and best solution found so far.

101 global_ub = sum(inst.c) + 1

102 global_lb = -1

103 best_solution = []

104 depth = 0

105 # After processing a node, the new global upper bound is the

106 # maximum of the upper bounds of active nodes and integer

107 # nodes. Since integer nodes get out of the list of active nodes,

108 # we keep the maximum upper bound of integer nodes in the

109 # following variable.

110 integer_node_bound = -1

111

112 # Initialization.

113 active_nodes = [Subproblem([], [], global_ub, depth)]

114

115 # Main loop.

116 estimate_width = [0] * len(width)

117 initial_timeout_occurred = [False]

118

119 # Start 5 second timer, after that we check every iteration for estimate of appropiate size.

120 threading.Timer(5, check_estimate_periodically, args=[width, estimate_width, initial_timeout_occurred, estimated_time, start_time]).start()

121

122 while active_nodes:

123 Pbest = active_nodes[0]

124 if initial_timeout_occurred[0] == True and estimate_width[0] == 0:

125 print("Making an estimation is now possible.")

126 check_estimate_periodically(width, estimate_width, initial_timeout_occurred, estimated_time, start_time)

127 if estimate_width[0] != 0:

128 print("")

129 # The estimate was made!

130

131

132

23

133 # Select an active node to process.

134 for X in active_nodes:

135 if X.depth > Pbest.depth:

136 Pbest = X

137 P = Pbest

138 active_nodes.remove(P)

139 #print(len(P.fixed_one)+len(P.fixed_zero))

140 # Process the node.

141 try:

142 lb, ub, items = compute_bounds(inst, P)

143 except InfeasibleSubproblem:

144 # Pruned by infeasibility.

145 continue

146

147 # Update global lower bound.

148 if lb > global_lb:

149 global_lb = lb

150 best_solution = list(P.fixed_one) + items

151 print('Improved lower bound:', global_lb)

152

153 # Update global upper bound.

154 if lb == ub and lb > integer_node_bound:

155 integer_node_bound = lb

156

157 if active_nodes:

158 new_global_ub = max(ub, integer_node_bound,

159 max(P.ub for P in active_nodes))

160 else:

161 new_global_ub = max(ub, integer_node_bound)

162

163 if new_global_ub < global_ub:

164 global_ub = new_global_ub

165 print('Improved upper bound:', global_ub)

166

167 # Prune by bound?

168 if ub < global_lb:

169 continue

170

171 # Prune by optimality?

172 if lb == ub:

173 continue

174

175 # Select variable for split and perform the split.

176 for i in range(inst.n):

177 if i not in P.fixed_one and i not in P.fixed_zero:

24

178 break

179 else:

180 raise RuntimeError('no variable to fix; this is a bug')

181

182 width[P.depth + 1] = width[P.depth + 1] + 2

183 Pl = Subproblem(list(P.fixed_one) + [i], P.fixed_zero, ub, P.depth + 1)

184 Pr = Subproblem(P.fixed_one, list(P.fixed_zero) + [i], ub, P.depth + 1)

185 active_nodes += [Pl, Pr]

186

187 assert global_ub >= global_lb

188

189 # Check that the solution is truly feasible.

190 if sum(inst.w[i] for i in best_solution) > inst.U:

191 raise RuntimeError('solution is infeasible; this is a bug')

192

193 # Return optimal solution.

194 return lb, best_solution, width, estimate_width, estimated_time, start_time

195

196

197

198 def main():

199 inst = generate_random_instance(100)

200

201

202 bthelp = []

203 maxwidth = 0

204 # w = [71, 71, 72, 71, 72, 72, 72, 72, 75, 73, 74, 76, 73, 71, 76, 77, 77, 74, 71, 75, 72, 73, 77, 74, 74, 78, 75, 72, 72, 72, 76, 73, 78, 78, 78, 71, 75, 79, 79, 73, 74, 78, 75, 76, 80, 72, 72, 73, 72, 81, 73, 78, 78, 75, 80, 81, 72, 82, 79, 76, 81, 77, 82, 73, 83, 83, 79, 75, 72, 72, 83, 78, 78, 80, 80, 81, 76, 71, 71, 83, 79, 79, 80, 81, 82, 82, 78, 79, 79, 73, 73, 81, 81, 82, 83, 77, 77, 77, 77, 85, 72, 75, 76, 76, 77, 79, 88, 81, 74, 82, 82, 83, 77, 85, 78, 86, 79, 79, 81, 83, 76, 76, 85, 85, 85, 77, 78, 87, 71, 71, 74, 84, 75, 75, 85, 86, 90, 71, 71, 71, 83, 83, 83, 85, 86, 76, 76, 89, 90, 90, 81, 82, 83, 83, 84, 85, 73, 73, 86, 86, 74, 74, 74, 75, 77, 78, 79, 81, 81, 82, 83, 83, 72, 88, 75, 92, 93, 94, 79, 82, 83, 83, 86, 87, 87, 87, 71, 73, 76, 76, 77, 80, 83, 85, 87, 87, 87, 88, 88, 88, 89, 89, 92, 93, 94, 95, 74, 74, 79, 80, 81, 83, 84, 85, 87, 89, 94, 95, 95, 95, 96, 97, 71, 73, 73, 73, 74, 76, 77, 78, 79, 84, 85, 87, 88, 88, 90, 91, 92, 97, 76, 76, 76, 77, 80, 80, 81, 83, 83, 85, 86, 89, 91, 98, 98, 79, 96, 91, 87, 84, 80, 86, 74, 89, 86, 82, 95, 75, 83, 79, 80, 100, 76, 99, 97, 88, 88, 87, 87, 86, 79, 79, 77, 72, 72, 100, 100, 99, 99, 98, 97, 97, 96, 94, 91, 90, 86, 84, 83, 81, 79, 78, 77, 76, 99, 98, 97, 97, 96, 91, 88, 87, 86, 86, 84, 83, 82, 79, 79, 77, 98, 96, 96, 93, 91, 90, 88, 86, 82, 80, 100, 80, 99, 78, 97, 97, 94, 92, 89, 89, 99, 81, 97, 94, 94, 78, 93, 93, 77, 92, 92, 91, 87, 94, 93, 78, 100, 87, 99, 98, 85, 83, 82, 93, 81, 80, 89, 97, 96, 85, 84, 84, 94, 82, 90, 100, 90, 89, 79, 79, 79, 95, 94, 94, 83, 92, 91, 90, 99, 99, 80, 80, 80, 97, 95, 86, 85, 85, 93, 92, 92, 92, 99, 99, 96, 96, 87, 86, 93, 85, 100, 84, 99, 97, 97, 82, 89, 96, 96, 95, 95, 94, 85, 99, 99, 91, 91, 96, 96, 87, 100, 99, 92, 98, 84, 90, 89, 89, 94, 98, 98, 90, 89, 94, 98, 97, 90, 95, 89, 100, 100, 94, 88, 99, 92, 97, 90, 100, 89, 88, 88, 88, 98, 96, 95, 100, 89, 96, 100, 100, 94, 93, 97, 100, 99, 98, 98, 98, 98, 98, 92, 100, 99, 94, 94, 94, 98, 96, 100, 100, 96, 99, 95, 96, 99, 98, 98, 100, 99, 99]

205 # c = [100, 99, 100, 98, 99, 99, 98, 96, 100, 97, 98, 100, 96, 93, 99, 100, 100, 96, 92, 97, 93, 94, 99, 95, 95, 100, 96, 92, 92, 92, 97, 93, 99, 99, 99, 90, 95, 100, 100, 92, 93, 98, 94, 95, 100, 90, 90, 91, 89, 100, 90, 96, 96, 92, 98, 99, 88, 100, 96, 92, 98, 93, 99, 88, 100, 100, 95, 90, 86, 86, 99, 93, 93, 95, 95, 96, 90, 84, 84, 98, 93, 93, 94, 95, 96, 96, 91, 92, 92, 85, 85, 94, 94, 95, 96, 89, 89, 89, 89, 98, 83, 86, 87, 87, 88, 90, 100, 92, 84, 93, 93, 94, 87, 96, 88, 97, 89, 89, 91, 93, 85, 85, 95, 95, 95, 86, 87, 97, 79, 79, 82, 93, 83, 83, 94, 95, 99, 78, 78, 78, 91, 91, 91, 93, 94, 83, 83, 97, 98, 98, 88, 89, 90, 90, 91, 92, 79, 79, 93, 93, 80, 80, 80, 81, 83, 84, 85, 87, 87, 88, 89, 89, 77, 94, 80, 98, 99, 100, 84, 87, 88, 88, 91, 92, 92, 92, 75, 77, 80, 80, 81, 84, 87, 89, 91, 91, 91, 92, 92, 92, 93, 93, 96, 97, 98, 99, 77, 77, 82, 83, 84, 86, 87, 88, 90, 92, 97, 98, 98, 98, 99, 100, 73, 75, 75, 75, 76, 78, 79, 80, 81, 86, 87, 89, 90, 90, 92, 93, 94, 99, 77, 77, 77, 78, 81, 81, 82, 84, 84, 86, 87, 90, 92, 99, 99, 79, 96, 91, 87, 84, 80, 86, 74, 89, 86, 82, 95, 75, 83, 79, 80, 100, 76, 98, 96, 87, 87, 86, 86, 85, 78, 78, 76, 71, 71, 98, 98, 97, 97, 96, 95, 95, 94, 92, 89, 88, 84, 82, 81, 79, 77, 76, 75, 74, 96, 95, 94, 94, 93, 88, 85, 84, 83, 83, 81, 80, 79, 76, 76, 74, 94, 92, 92, 89, 87, 86, 84, 82, 78, 76, 95, 76, 94, 74, 92, 92, 89, 87, 84, 84, 93, 76, 91, 88, 88, 73, 87, 87, 72, 86, 86, 85, 81, 87, 86, 72, 92, 80, 91, 90, 78, 76, 75, 85, 74, 73, 81, 88, 87, 77, 76, 76, 85, 74, 81, 90, 81, 80, 71, 71, 71, 85, 84, 84, 74, 82, 81, 80, 88, 88, 71, 71, 71, 86, 84, 76, 75, 75, 82, 81, 81, 81, 87, 87, 84, 84, 76, 75, 81, 74, 87, 73, 86, 84, 84, 71, 77, 83, 83, 82, 82, 81, 73, 85, 85, 78, 78, 82, 82, 74, 85, 84, 78, 83, 71, 76, 75, 75, 79, 82, 82, 75, 74, 78, 81, 80, 74, 78, 73, 82, 82, 77, 72, 81, 75, 79, 73, 81, 72, 71, 71, 71, 79, 77, 76, 80, 71, 76, 79, 79, 74, 73, 76, 78, 77, 76, 76, 76, 76, 76, 71, 77, 76, 72, 72, 71, 74, 72, 75, 75, 72, 74, 71, 71, 73, 72, 72, 72, 71, 71]

206 inst = KnapsackInstance(w, c, 0.75 * sum(w))

207

208 print('Here is the output of the branch-and-bound method')

209 opt, sol, width, estimate_width, estimated_time, start_time = do_branch_and_bound(inst)

210 end_time = time.time()

211 print(

212 '\nOptimal solution =', opt, ' items =', sol)

213 print(" ")

214 print(width)

215 print(estimate_width)

216 dt=1

217 for i in range(len(estimate_width)):

218 if estimate_width[i] == 2 ** i:

219 lt = i

220 if estimate_width[i] != 0:

221 dt = i

222 if estimate_width[i] == maxwidth:

25

223 bthelp.append(i)

224 if estimate_width[i] > maxwidth:

225 maxwidth = estimate_width[i]

226 bthelp = [i]

227 bt = (bthelp[0] + bthelp[len(bthelp) - 1]) / 2

228 # print ('lt: ', lt, 'bt: ', bt, 'dt: ', dt)

229 print('Start_time: ', start_time, 'Estimate time: ', estimated_time[0], 'End time: ', end_time)

230 print('Time till estimate: ', estimated_time[0] - start_time[0], 'Total algorithm duration: ', end_time - start_time[0])

231

232

233 gamma = [2]

234 for i in range(0, dt+1):

235 if i <= lt - 1:

236 gamma.append(2)

237 # print(i, 'a')

238 if lt <= i <= bt - 1:

239 gamma.append(2 - (i - lt + 1) / (bt - lt + 1))

240 # print(i,'b')

241 if bt <= i <= dt:

242 gamma.append(1 - (i - bt + 1) / (dt - bt + 1))

243 # print(i, 'c')

244

245 time_per_node = (estimated_time[0] - start_time[0])/sum(estimate_width)

246 measurement_tree = [1]

247 for i in range(1, len(gamma)):

248 measurement_tree.append(gamma[i] * measurement_tree[i-1])

249 min_estimated_Duration_of_Algorithm = max((estimated_time[0]-start_time[0]), 0.2*sum(measurement_tree)*time_per_node)

250 max_estimated_Duration_of_Algorithm = 5*sum(measurement_tree) * time_per_node

251 print("Algorithm duration estimation: [", min_estimated_Duration_of_Algorithm, ",", max_estimated_Duration_of_Algorithm, "]")

252 print('Estimation of amount of nodes', sum(measurement_tree))

253 print('Actual amount of nodes', sum(width))

254 print('W= ', inst.w)

255 print('C= ', inst.c)

256 print('lt= ', lt)

257 print('bt= ', bt)

258 print('dt= ', dt)

259

260

261

262

263 main()

26

	Abstract
	Branch and Bound algorithm for 0-1 Knapsack problems
	0-1 Knapsack Problems
	ILP Problems
	LP relaxation

	Branch and Bound algorithm
	Using bounds to prune subproblems
	Depth First Search

	Time Estimation
	The importance of time estimation
	Overview of the model
	Branch and Bound algorithm in the model
	Pseudocode of the Branch and Bound Algorithm

	Estimating the duration of the algorithm
	Estimating the -sequence
	Time estimation

	Data analysis
	Problems
	Small Variety Problems
	Large size problems
	Test results
	Problem Small11_35
	Problem Large1_500

	Conclusions
	References

