
Improving the performance of Recurrent Neural
Networks for time series prediction by combining Long
Short-Term Memory and Attention Long Short-Term

Memory

Aaron van Diepen

Abstract

Recurrent neural networks (RNNs) used in time series prediction are still not perfect
in their predictions and improvements can still be made in the area. Most recently
transformers have led to great improvements in the field of RNNs, however transformers
can not be used on time series data, because the architecture of transformers does not
account for the flow of time and would use future data to predict past events. This
research aims to further improve the performance of machine learning models on time-
series prediction. It attempts to do so by implementing a new neural network model
based on the multi-head attention mechanism (used in transformers) and combining it
with an already existing neural network model called long short term memory (LSTM).
To test whether the newly implemented models have improved performance they are
tested on a weather dataset and compared on their ability to correctly predict daily
maximum temperatures. The final results however show that combining LSTM and
ALSTM models does not results in an improved loss that is worth the extra instability
that is added to the model and the extra computational cost that is needed to train
the model.

1 Introduction
Recurrent neural networks (RNNs) are machine learning models which learn from experience
to solve a variety of previously unsolvable problems. RNNs can use their internal state
(memory) to process variable length sequences of inputs into variable length outputs. They
are already often used by large tech-companies such as Google and Microsoft in order to
improve image recognition, text translation and other knowledge-based reasoning problems.

Attention Long Short Term Memory (ALSTM) is a new model in the field of Recurrent
Neural Networks, this new model will be thoroughly discussed in Chapter 2 of this paper.
The performance of the model had never been analyzed before, therefore its possible value
to machine learning is yet to be uncovered. The ALSTM is a modification of the already
well established multi-head attention mechanism [1]. By modifying the existing multi-head
attention mechanism ALSTMs can easily focus on the important parts of the input data
while partially ignoring the less important input. This modification is done in order to
prevent future input from being used to predict past values. In this paper the ALSTM
will be further discussed and, together with the LSTM and different combinations of the
LSTM and ALSTM, it will be evaluated on a time series dataset. Combining the ALSTM

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

and LSTM may potentially further improve the accuracy of the output for these kinds of
problems.

The aim of this research is to find out whether a combination of Long Short TermMemory
with Attention Long Short Term Memory improves accuracy for time-series classification
using Machine Learning as compared to using either separate from each other.

As previously shown in other research papers, such as [2]–[4] combining multiple ma-
chine learning models can improve accuracy. By undertaking this project I hope to analyse
whether the extra time spend training a complexer model is worth running a combination
of an LSTM and ALSTM in order to achieve higher accuracy outcomes for machine learning
tasks.

In this work three different forms of combining the LSTM and ALSTM models are
proposed, in which their performance is either combined by running them in parallel or by
feeding one networks output as an additional input into the other network. These resulting
models (as well as the basic LSTM and ALSTM) are applied to a time series problem in
which a daily maximum temperature is predicted. After which the accuracy of the results
are compared in different ways.

2 Background
In this section the background for the in this project implemented attention long short-term
memory (ALSTM) as well as the already wide spread long short-term memory (LSTM) will
be discussed in detail.

2.1 RNN
RNNs are a recurrent network consisting of multiple cells, they process sequential informa-
tion by passing through information about the previous inputs as an extra input to the next
cell. This data is then used as extra information for predicting the next output.

Figure 1: Graphical overview of the way RNNs process input [5]

2.2 LSTM
The already existing architecture used in this project is the LSTM, which was first introduced
in 1997 by Hochreiter and Schmidhuber [6]. It is a form of RNN that uses a memory vector
and a hidden state in order to transmit data to the next cell. It can be mathematically
explained according to Formula 1, where the hidden state for input t is defined as ht and
the memory vector for input t is defined as ct. It can also be explained as a graphical

2

overview shown in Figure 2. It can be simply explained as being a combination of 3 gates,
namely the forget gate, input gate and output gate. The forget gate scales the previous
cell state based on hidden state, input and a learned bias. After "forgetting" part of the
previous cell state the input gate adds a new value to the cell state again based on the hidden
state, input and a two additional learned biases. Finally each cell calculates its new hidden
state based on the newly calculated cell state, hidden state, input and a fourth learned bias.
These gate calculations are repeated for every cell used in the full network to output the ht
for each input Xt.

ht := gO(xt, ht−1)� σH(ct), h0 := 0, c0 := 0
ct := gF (xt, ht−1)� ct−1 + gI(xt, ht−1)� gC(xt, ht−1)
gz(x, h) := σz(Θzx+ Uzh+ bz), ∀z ∈ {I,O, F,C}

(1)

Figure 2: Graphical overview of internal mathematical formulas of a single LSTM cell [7]

2.3 Multi-Head Attention
In order to introduce the ALSTM first multi-head attention has to be introduced. Multi-
Head Attention (MHA) is based on the attention mechanism, specifically Scaled Dot-Product

3

Attention, in which keys and queries are mapped to an output based on a weighted sum of
the values. The weight assigned to each value is determined by the scaled dot-product of the
query with all the keys. MHA simply runs through scaled dot-product attention multiple
times. The outputs of these scaled dot-product attention networks are simply concatenated
and linearly combined to form the output of the MHA network as shown in Figure 3. The
final equations used in MHA are shown in Equation 2, where W k represents the normalized
weight matrix, Q the matrix representing the queries, K the matrix representing the keys,
V the matrix representing the values and V’ is the final output of the model.

V ′ := σV (
∑m′

k=1W
kσC(VΘk)

W k := Sk � (Sk11ᵀ)
Sk := exp(1√

d
V QkKkV ᵀ)

(2)

Figure 3: Graphical overview of internal formulas of multi-head attention [8]

2.4 ALSTM
The ALSTM is based on a simplification of the long short-term memory, that when simplified
starts to closely resemble an attention network. The main difference between the ALSTM
and standard multi-head attention layers is a multiplication by a lower-triangular matrix of
the weight matrix, this multiplication removes the upper triangular weight matrix in order
to preserve the sequentially of the input. The modified equations used for the ALSTM are
shown in Equation 3, in which V has been replaced by X in order to show the correlation
to xt used in the notation for the LSTM to represent the input.

4

H :=
∑m′

k=1W
kσC(XΘk)

W k := Sk � (Sk11T)
Sk := exp(1√

d
XQkKkXT)� L)

(3)

The potential improvement for the ALSTM would be to allow for better access to the
prior time series, thus this new architecture should perform better than the LSTM.

3 Methodology
In this section all relevant concepts, theory and models will be described and discussed.

An existing LSTM implementation will be used, as provided by PyTorch. An ALSTM
compatible with this library, in order to keep consistency while testing, has been imple-
mented. The implementation of the ALSTM network will be made available on gitlab in
order for the experiments to be reproducible.

After implementing the ALSTM, the LSTM and ALSTM are combined in 3 different
ways. The first one will be with the two models in parallel fed into a linear layer resulting
in a single prediction in the time-series, as shown in Figure 4. The other two will be with
the two models in series, with the features and the result of the first model as an input for
the second model. One with the LSTM followed by the ALSTM (as shown in Figure 5) and
one with the ALSTM followed by the LSTM (as shown in Figure 6).

Figure 4: Combination 1

Figure 5: Combination 2

5

Figure 6: Combination 3

The models will be evaluated multiple times on data split using a time series split in
order to achieve a more robust evaluation of the machine learning models. A time series
split is the equivalent of k-fold cross validation but adapted in such a way that the training
data is never ahead of the testing data as shown in Figure 7. It is a resampling procedure
used to evaluate machine learning models on a limited data sample. A number of 5 splits
will be used in order to achieve an optimal balance between computational cost and bias as
recommended by Rodríguez, Pérez, and Lozano [9]. All models will be trained on each split
selected, and there will be no communication of values between splits.

Figure 7: The 5 training and test data splits used for training, this method is also called
time series split

6

All models will be trained in Python on the Ozone Level Detection Data Set from the
UCI Machine Learning Repository [10]. Preproccesing will need to be done on the dataset
in order to be able to run all models on it, for each model the same preproccesed dataset
will be used. After the 4th year the dataset contains a lot of gaps in the data, therefore it
was opted for to only use the more accurate first 1500 days of data in this research. This
data still contained a few gaps which were filled up by propagating the last valid observation
forward. The models will be trained on predicting maximum daily temperature of the next
day in the series given all previous values in the series. The error will be calculated using
the mean squared error, and the optimizer used to train the model is ADAM, which is a
replacement optimization algorithm for stochastic gradient descent. All models will use a
total of 2 hidden layers which should give a rough understanding of how well each model
performs while keeping computational complexity low.

Model Split 1 Split 2 Split 3 Split 4 Split 5
LSTM 2e-5 2e-5 2e-5 2e-5 2e-5
ALSTM 1e-3 5e-4 2e-5 1e-3 5e-3
Combination 1 4e-5 1e-4 1e-3 5e-5 1e-3
Combination 2 1e-6 2e-5 5e-5 6e-3 1e-2
Combination 3 4e-6 5e-6 2e-6 2e-6 7e-6

Table 1: Models and their specific learning rates selected to converge between 1000-3000
epochs

Because all models differ in their convergence speed it was decided to have a custom
learn-rate for each model in order to clearly display how well the models could perform in
best case scenario’s. The learn-rate was picked such that the model reaches its minimum test
loss within the first 3000 epochs. The final learning rates used for each model are displayed
in Table 1.

7

4 Results
This section displays the results of the different neural architectures as described in the
previous chapter.

Table 2 shows the time each models took per split for training 3000 epochs as well as
showing the total time each model took to train across all five splits while running in a gpu
accelerated runtime on google colab it is intended to give a rough estimate of how long the
models take to train.

Model Split 1 Split 2 Split 3 Split 4 Split 5 Total
LSTM 80 110 154 201 247 792
ALSTM 37 97 180 310 469 1093
Combination 1 99 196 325 485 679 1784
Combination 2 165 376 670 1049 1522 3782
Combination 3 99 195 322 487 677 1780

Table 2: The time it took each model to process 3000 training cycles in seconds (on a gpu
accelerated runtime in google colab)

Figures 8-16 show the training and test losses over the training cycles (epochs) together
with their minimum test loss achieved and a graph showing the prediction of the model with
the overall lowest achieved test-loss at their respective epochs. The first image is intended
to display the way in which the models converge and give an overview of how the models
compare to each other.

Figure 8: Testing loss graphs for all mod-
els on split 1 and their minimum loss
achieved

Figure 9: Prediction results of the LSTM
(best of split 1)

8

Figure 10: Testing loss graphs for all
models on split 2 and their minimum loss
achieved

Figure 11: Prediction results of the AL-
STM (best of split 2)

Figure 12: Testing loss graphs for all
models on split 3 and their minimum loss
achieved

Figure 13: Prediction results of the AL-
STM (best of split 3)

Figure 14: Testing loss graphs for all
models on split 4 and their minimum loss
achieved

Figure 15: Prediction results of Combi-
nation 2 (best of split 4)

9

Figure 16: Testing loss graphs for all
models on split 5 and their minimum loss
achieved

Figure 17: Prediction results of the AL-
STM (best of split 5)

Table 2 shows the epoch at which each model reached their lowest test loss for the
different splits. Its purpose is to give a rough understanding of how the learning rates of
Table 1 were selected.

Model Split 1 Split 2 Split 3 Split 4 Split 5
LSTM 1675 1315 1949 1405 1574
ALSTM 2510 1780 901 1349 1347
Combination 1 1199 600 404 1914 470
Combination 2 1201 879 1206 2620 2844
Combination 3 1487 858 2506 2999 2979

Table 3: The epoch at which each model reached their lowest test-losses.

Finally table 4 shows the minimum test-losses achieved after 3000 epochs of training the
models for each split, as well as the average minimum test-loss for each model across all
splits. In order to give an overview of best performing model across all splits.

Model Split 1 Split 2 Split 3 Split 4 Split 5 Average
LSTM 3.33E-01 2.11E-01 1.65E-01 3.37E-01 2.38E-01 2.57E-01
ALSTM 4.44E-01 1.85E-01 1.13E-01 2.19E-01 9.84E-02 2.12E-01
Combination 1 6.24E-01 2.22E-01 1.22E-01 2.25E-01 1.55E-01 2.69E-01
Combination 2 6.99E-01 3.03E-01 1.78E-01 2.13E-01 1.17E-01 3.02E-01
Combination 3 6.99E-01 2.30E-01 2.09E-01 4.48E+00 2.30E-01 1.17E+00

Table 4: Models and their minimum test-losses across all different splits

10

5 Responsible Research
There are a few ethical questions to be asked when working with machine learning models,
most of them speculating about what the projects can be used for. One of the main concerns
is that the final results of training the models have no clear algorithm associated with
them that makes easily understandable decisions. Therefore a model used to make actual
predictions might make an inexplicable mistake that can have big consequences when fully
relied upon in an actual use-case. This risk should be taken into account when relying on a
machine learning solution to a problem.

"Garbage in, garbage out" (GIGO) should also be accounted for when one of the models
is used in a real life situation. This concept is in principle about the data that the model
is trained on and reinforces how users should keep in mind that their input data should be
kept clean of any unwanted biases to prevent the model from adapting these biases.

The method should be fully reproducible as all details needed in order to reproduce the
analysis (such as how many splits are used, what preprocessing has been done to the data,
how the attention long short term memory has been implemented and how the combinations
were created) are included in this document.

The dataset used for training the models is freely available for download from
https://archive.ics.uci.edu/ml/datasets/Ozone+Level+Detection [10].

6 Discussion
In this section the results will be compared in order to get to a conclusion on whether training
a combination of the LSTM and ALSTM is worth the additional time spend training a model
(that is more complicated) in order to potentially lower losses for time-series prediction.

As can be seen in table 2 the ALSTM is quicker than the LSTM at training on small
sequences, which is likely due to the level of parallelisation the ALSTM is capable of that is
better utilised on small sequences. The series combinations of the models (combinations 2
& 3) also take more time than the parallel combination of the models (combination 1).

Overall the models took a long time to train, therefore the learning-rate has not been
fully tweaked optimally. The results from the different models could thus still be improved
a lot by further tweaking of the learn-rates.

As can be clearly seen in figures 16 the ALSTM does not really converge but instead
oscillates by slowly learning then making a short step in the wrong direction and then quickly
correcting that mistake. This result can most likely be explained by the ALSTM not being
able to store sequences in its memory cells like the LSTM can, therefore further training
can easily decrease the performance of the model by wrongly adjusting a weight by a small
amount. Which can be easily undone by further training resulting in big spikes.

As seen in table 4 the new architecture called ALSTM achieves a better minimum loss
on average than the LSTM. However when trained on a small training sequence, as seen
for split 1 in Table 4, the LSTM performs better than the ALSTM. Which is likely caused
by the fact that a shorter sequence of prior data can more easily be represented by the cell
state used in the LSTM and thus smaller advantage is gained by the ALSTM having access
to all prior time steps.

The combination in which the ALSTM and the LSTM are used in parallel (combination
1) has the best performance among the combinations. This combination most likely has the
best performance because the linear layer has the clearest correlation between input and
output. As well as having the best performance this combination is the fastest to execute

11

https://archive.ics.uci.edu/ml/datasets/Ozone+Level+Detection
https://archive.ics.uci.edu/ml/datasets/Ozone+Level+Detection

because both models can be executed in parallel, instead of either having to wait for the
other to finish processing.

Overall because the training times are so increased for the combinations of the architec-
tures as well as gaining no additional performance improvements when looking at total loss
for test predictions as well as the learn-rates being harder to tweak, we can conclude that
the increased difficulty of combining the LSTM model with the new ALSTM model is not
worth the effort and time spend on training and tweaking values. This is most likely due to
the LSTM and ALSTM being too close in the type of calculations they perform, such that
combining them does not offer any valuable new way for the models to learn the relations
between input and output.

7 Conclusions and Future Work
Overall possibly valuable insight has been achieved on the combination of different machine
learning models. It shows that in the case of combining alstm and lstm it does not actually
offer a lot of extra value compared to the extra costs and complexity of the model.

Further work could be done tweaking learning-rates in order to possibly still get slight
reductions in the test-losses for the combinations of the LSTM and ALSTM, however seeing
as any loss reduction would not likely be very high this might not be worth the effort unless
no other potential ways to decrease test-losses for RNN’s can be thought of.

Other possible work that could be done is research into whether the ALSTM can be
adjusted such that it can be executed in a traditional, sequential way, such that predicting
single next values in a sequence can be done without recalculating all previous values.

References
[1] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning

to align and translate”, ArXiv, vol. 1409, Sep. 2014.

[2] X. Li, L. Wang, Y. Xin, Y. Yang, Q. Tang, and Y. Chen, “Automated software vulner-
ability detection based on hybrid neural network”, English, Applied Sciences (Switzer-
land), vol. 11, no. 7, 2021. [Online]. Available: www.scopus.com.

[3] T. Gu, X. Zhao, W. B. Barbazuk, and J. .-. Lee, “Mitar: A hybrid deep learning-based
approach for predicting mirna targets”, English, BMC Bioinformatics, vol. 22, no. 1,
2021. [Online]. Available: www.scopus.com.

[4] Y. Qiu, H. .-. Yang, S. Lu, and W. Chen, “A novel hybrid model based on recurrent
neural networks for stock market timing”, English, Soft Computing, vol. 24, no. 20,
pp. 15 273–15 290, 2020, Cited By :2. [Online]. Available: www.scopus.com.

[5] P. Radhakrishnan, Introduction to recurrent neural network, Aug. 2017. [Online]. Avail-
able: https://towardsdatascience.com/introduction-to-recurrent-neural-
network-27202c3945f3.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural computation,
vol. 9, pp. 1735–80, Dec. 1997. doi: 10.1162/neco.1997.9.8.1735.

[7] X. H. Le, H. Ho, G. Lee, and S. Jung, “Application of long short-term memory (lstm)
neural network for flood forecasting”, Water, vol. 11, p. 1387, Jul. 2019. doi: 10.3390/
w11071387.

12

www.scopus.com
www.scopus.com
www.scopus.com
https://towardsdatascience.com/introduction-to-recurrent-neural-network-27202c3945f3
https://towardsdatascience.com/introduction-to-recurrent-neural-network-27202c3945f3
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3390/w11071387
https://doi.org/10.3390/w11071387

[8] Y. Tamura, Multi-head attention mechanism: Âqueriesâ, âkeysâ, and âvalues,â over
and over again, Apr. 2021. [Online]. Available: https://data-science-blog.com/
blog/2021/04/07/multi-head-attention-mechanism/.

[9] J. Rodríguez, A. Pérez, and J. Lozano, “Sensitivity analysis of k-fold cross valida-
tion in prediction error estimation”, Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 32, pp. 569–575, Apr. 2010.

[10] D. Dua and C. Graff, UCI machine learning repository, 2017. [Online]. Available:
http://archive.ics.uci.edu/ml.

13

https://data-science-blog.com/blog/2021/04/07/multi-head-attention-mechanism/
https://data-science-blog.com/blog/2021/04/07/multi-head-attention-mechanism/
http://archive.ics.uci.edu/ml

	Introduction
	Background
	RNN
	LSTM
	Multi-Head Attention
	ALSTM

	Methodology
	Results
	Responsible Research
	Discussion
	Conclusions and Future Work

