
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2014

MSc THESIS

LLVM-based ρ-VEX compiler

Maurice Daverveldt

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2014-06

This thesis describes the development of an LLVM-based compiler
for the ρ-VEX processor. The ρ-VEX processor is a runtime re-
configurable VLIW processor. Currently, two compilers exist that
target the ρ-VEX processor: a HP-VEX compiler and a GCC-based
compiler.
We show that both compilers have disadvantages that are very dif-
ficult to fix. Therefore we have built an LLVM-based compiler that
targets the ρ-VEX processor. The LLVM-based compiler can be pa-
rameterized in a way similar to the HP-VEX compiler. Furthermore,
we will present certain optimizations that are new for LLVM-based
compilers. These optimizations include a custom machine scheduler
that avoids structural and data hazards in the generated binaries.
Finally, we demonstrate the operations of the LLVM-based compiler
and compare the performance of generated binaries with the exist-
ing compilers. We will show that the LLVM-based compiler exceeds
the performance and code quality of the GCC-based compiler. Bina-
ries generated with the HP-VEX compiler outperform those of the
LLVM-based compiler.

LLVM-based ρ-VEX compiler

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Maurice Daverveldt
born in Leiderdorp, Netherlands

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

LLVM-based ρ-VEX compiler

by Maurice Daverveldt

Abstract

This thesis describes the development of an LLVM-based compiler for the ρ-VEX processor.
The ρ-VEX processor is a runtime reconfigurable VLIW processor. Currently, two compilers
exist that target the ρ-VEX processor: a HP-VEX compiler and a GCC-based compiler.

We show that both compilers have disadvantages that are very difficult to fix. Therefore
we have built an LLVM-based compiler that targets the ρ-VEX processor. The LLVM-based
compiler can be parameterized in a way similar to the HP-VEX compiler. Furthermore, we
will present certain optimizations that are new for LLVM-based compilers. These optimizations
include a custom machine scheduler that avoids structural and data hazards in the generated
binaries.

Finally, we demonstrate the operations of the LLVM-based compiler and compare the per-
formance of generated binaries with the existing compilers. We will show that the LLVM-based
compiler exceeds the performance and code quality of the GCC-based compiler. Binaries gener-
ated with the HP-VEX compiler outperform those of the LLVM-based compiler.

Laboratory : Computer Engineering
Codenumber : CE-MS-2014-06

Committee Members :

Advisor: dr.ir. Stephan Wong, CE, TU Delft

Chairperson: dr.ir. K.L.M. Bertels, CE, TU Delft

Member: dr.ir. A. van Genderen, CE, TU Delft

Member: dr.ir. Guido Wachsmuth, CE, TU Delft

i

ii

Dedicated to my family and friends

iii

iv

Contents

List of Figures vii

List of Tables ix

List of Acronyms xi

Acknowledgements xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem statement . 3

1.2.1 Previous works . 4

1.3 Goals . 5

1.4 Methodology . 5

1.5 Thesis overview . 6

2 Background 7

2.1 VEX System . 7

2.1.1 Architecture . 7

2.1.2 ISA . 8

2.1.3 Run-time architecture . 9

2.2 LLVM Compiler infrastructure . 10

2.2.1 Current frontends . 11

2.2.2 LLVM IR . 11

2.2.3 Code generation . 12

2.2.4 Scheduling . 13

2.2.5 Current backends . 14

2.3 Verification . 14

2.4 Conclusion . 15

3 Implementation 17

3.1 Tablegen . 17

3.1.1 Register definition . 18

3.1.2 Pipeline definition . 19

3.1.3 Other specifications . 20

3.2 Code generation . 21

3.2.1 Instruction transformation . 21

3.2.2 Instruction lowering . 21

3.2.3 Instruction selection . 22

3.2.4 New instructions . 22

v

3.2.5 Floating-point operations . 25
3.2.6 Scheduling . 25
3.2.7 Register allocation . 25
3.2.8 Hazard recognizer . 25
3.2.9 Prologue and epilogue insertion . 26
3.2.10 VLIW Packetizer . 26

3.3 New LLVM features . 26
3.3.1 Generic binary support . 27
3.3.2 Compiler parameterization . 27

3.4 Conclusion . 29

4 Optimization 31
4.1 Machine scheduler . 31
4.2 Branch analysis . 33
4.3 Generic binary optimization . 34

4.3.1 Problem statement . 35
4.3.2 Implementation . 35

4.4 Large immediate values . 36
4.4.1 Problem statement . 36
4.4.2 Implementation . 37

4.5 Conclusion . 37

5 Verification and Results 39
5.1 Simulation environment . 39
5.2 Verification . 40
5.3 Benchmark results . 42

5.3.1 General performance . 42
5.3.2 Generic binary performance . 47
5.3.3 Compile-time . 49

5.4 Conclusion . 50

6 Conclusion 53
6.1 Summary . 53
6.2 Main contributions . 54
6.3 Future work . 55

Bibliography 59

A LLVM Quickstart guide 61
A.1 Compilation . 61
A.2 Simulation . 62

B LLVM Development guide 65
B.1 Building LLVM from source . 65

vi

List of Figures

1.1 MIPS pipeline [1] . 2

2.1 ρ-VEX architecture [2] . 8
2.2 ρ-VEX instruction format . 9
2.3 Basic compiler structure . 10
2.4 Basic codegeneration process . 13

3.1 tablegen instructions . 18

5.1 ρ-VEX testbench . 39
5.2 Absolute performance . 43
5.3 HP-LLVM relative performance . 45
5.4 GCC-LLVM relative performance . 46
5.5 Relative performance for increasing issue-width 47
5.6 Generic-Regular performance . 48
5.7 Compile-time in seconds . 50

vii

viii

List of Tables

2.1 ρ-VEX Register usage [3] . 10

5.1 LLVM-based compiler performance in ns 42
5.2 HP-based compiler performance in ns . 44
5.3 GCC-based compiler performance in ns 45
5.4 Relative performance of LLVM-compiler binaries 46
5.5 Generic binary performance . 48
5.6 Register usage . 49
5.7 Compile-time in seconds . 50

ix

x

List of Acronyms

ALU Arithmetic Logic Unit

AST Abstract Syntax Tree

CPI Clocks Per Instruction

DAG Directed Acyclic Graph

DFA Deterministic Finite Automaton

DSL Domain-specific Language

FP Floating-point

FU Functional Unit

GCC GNU Compiler Collection

IDE Integrated Development Environment

ILP Instruction Level Parallelism

IPC Instructions Per Clock

IR Intermediate Representation

ISA Instruction Set Architecture

ISD Instruction SelectionDAG

JIT Just-in-time compilation

LLVM Low Level Virtual Machine

MBB Machine Basic Block

MI Machine Instruction

OoO Out-of-Order Execution

PC Program Counter

RAW Read After Write

RISC Reduced Instruction Set Computer

SSA Single Static Assignment

VEX VLIW Example

VLIW Very Long Instruction Word

xi

xii

Acknowledgements

In 2007 I started studying Electronic Engineering and Design at the University of applied
sciences Utrecht. After graduating in 2011 I decided to pursue a degree in Computer
Engineering at the Technical University Delft. This thesis reflects the new things I have
learned since beginning my study at the Electrical Engineering Department.

Firstly I would like to thank my advisor Stephan Wong for giving me the opportunity
to work on this subject. Secondly, I would like to thank Roël Seedorf, Anthony Brandon,
and Joost Hoozemans for their discussions and help during the realization of this project.
Their advice has proven to be priceless.

And of course I would like to thank my friends and family for all the support they
have given me over the years.

Maurice Daverveldt
Delft, The Netherlands
April 22, 2014

xiii

xiv

Introduction 1
This thesis will describe the build of an LLVM-based compiler targeting the ρ-VEX
processor. In this chapter we describe the motivation for building a new compiler for
the ρ-VEX processor. We discuss the history of the ρ-VEX processor and of VLIW
processors in general. Furthermore, we are going to see how an LLVM-based compiler
can be an improvement over the current solutions that exist.

1.1 Motivation

In 2008, Thijs van As designed the first version of the ρ-VEX processor [4]. This processor
uses a VLIW design and is based on the VEX ISA. The VEX ISA is a derivative of the
Lx family of embedded VLIW processors [5] from HP/STMicroelectronics. In 2011 the
design of the ρ-VEX processor was updated by Roël Seedorf [2]. This new version of the
ρ-VEX processor introduced pipelining and forwarding logic. This processor could be
parameterized in issue-width, type and number of functional units, number of registers
and the presence of forwarding logic.

Around this processor a set of tools has been developed in collaboration with the TU
Delft, IBM, STMicroelectronics and other universities. Currently, the ρ-VEX 2.0 tool
suite include a synthesizable core, a compiler system, and a processor simulator. IBM
has developed a GCC-based VLIW compiler backend.

Very Long Instruction Word (VLIW) [6] processors can execute multiple operations
during a single clock cycle. A compiler is required to find parallelism between instruc-
tions and to provide scheduling that enables the VLIW processor to execute multiple
operations during a single cycle.

Regular RISC type processor, such as the MIPS and ARM processor, contains a
single instruction pipeline that executes instructions. Figure 1.1 shows a basic MIPS
integer pipeline. By introducing pipelining registers the clock frequency of a processor
can be increased because execution of an instruction is broken up into smaller and simpler
parts. The RISC pipeline can contain multiple instructions that are in different stages
of execution.

Generally speaking, pipelining will decrease the Instructions Per Clock (IPC) rate of
a processor because it is very difficult to use all the stages of the pipeline all the time.
Pipelining introduces hazards where situations will occur that force the pipeline to wait
until a certain operation has finished executing. This wait cycle decreases the IPC of the
processor and in turn decreases the performance. Special hardware has been developed,
such as forwarding units, branch predictors, and speculative execution that will try to
increase the IPC to a value that approaches 1.0 [1].

If a higher than 1.0 IPC is desired multiple instructions need to be executed during a
single clock cycle. Machines that can execute multiple instructions are called multi-issue

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: MIPS pipeline [1]

machines. These types of processors use special hardware to find dependencies between
instructions and to determine which instructions can be executed in parallel. These
techniques include Tomasulo’s algorithm [7] for Out of Order execution and register
renaming. Most modern processors use these techniques to increase performance.

Finding dependencies between instructions becomes increasingly complex when the
issue-width of machines is increased. The Pentium 4 processor [8] demonstrated the limi-
tations of further ILP extraction in a spectacular way. It used a 20-stage pipeline [9] with
seven functional units. It operated on RISC-like micro-ops instead of x86 instructions
and could handle 50 in-flight instructions at a time. The amount of silicon and energy
that was dedicated to finding and executing ILP made the Pentium 4 processor very in-
efficient. The clock frequency increase that Intel expected the hyper pipelined processor
(6-7 GHz) to deliver never materialized and the Pentium 4 Netburst architecture was
dropped for a much simpler architecture [10].

In [11] the actual limitations of ILP extraction in hardware has been demonstrated
and they show that other techniques need to be used to find and execute more ILP.

VLIW processors differ from multi-issue machines in that parallelism is found during
compile-time instead of during run-time [12] [13]. This results in a processor that can
be made significantly simpler because the ILP extraction algorithms do not need to be
implemented in hardware and because dependency checking is not required during run-
time. Additional ILP can also be found with the compiler because the compiler has got a
higher-level view of the code that is to be executed. Optimizations such as swing modulo
scheduling and loop vectorization are nearly impossible to achieve in hardware because
the higher-level structure of a program is no longer available. A compiler can interpret
the higher-level structure of a program and optimize the output for better scheduling.

The origins of the VEX ISA can be traced to the company Multiflow and John Fisher,
one of the inventors of VLIW processors at Yale University [6]. Multiflow designed a
computer that used VLIW processors to execute instructions up to 1024-bits in size.
Along with these computers Multiflow also designed a compiler system that used trace-
based scheduling to extract ILP from programs [14]. Reportedly the code base for the
Multiflow compiler has been used in modern compiler such as Intel C Compiler (ICC)

1.2. PROBLEM STATEMENT 3

and HP-VEX compiler because of the robustness and the amount of ILP that can be
exposed by the compiler [15].

John Fisher has designed the VEX ISA as an example of VLIW type processors [16].
His work includes the design of an ISA, processor design, and a compiler system that
generates code for this processor. Thijs van As developed a processor called ρ-VEX that
is binary compatible with the VEX processor [4].

Currently two different compilers exist that target the ρ-VEX processor: the HP-
VEX compiler [17] and a GCC port developed by IBM. We will show that both existing
compilers are not optimal and that a new compiler is required for the ρ-VEX project.
Furthermore, we will present an LLVM-based compiler that targets the ρ-VEX processor
with features similar to the HP-VEX compiler.

1.2 Problem statement

Currently, both the HP-VEX and GCC compilers can be used to generate code for the
ρ-VEX processor. Both compilers have got a number of advantages and disadvantages
that will be explored. The compilers will be judged on the following properties: Code
quality, support, languages support, backend supported and customization possibilities.

• Code quality: The code a compiler produces must be correct and fast. Compila-
tion for VLIW type processors is complex and a compiler is required that is able to
produce code of high quality that uses the features offered by the ρ-VEX processor
in the best possible way.

• Support: Compiler development becomes easier if an active community is avail-
able that can help with support. Furthermore, an active community also ensures
the compiler can gain new features.

• Front-end languages: The compiler is more flexible to the end-user when a large
number of front-end languages are supported. This allows the end-user to choose
the language that he or she is most familiar with for development of applications.

• Customization: The ρ-VEX processor can be reconfigured using parameters. The
code that is generated by the compiler needs to reflect the hardware configuration
of the ρ-VEX processor.

Based on these properties we have analyzed the HP-VEX and GCC-based compiler.
HP-VEX:

• Code quality: Excellent code quality and ILP extraction. This is demonstrated
in Chapter 5.

• Support: Bad, no active community.

• Front-end: Bad, only support for C.

• Back-end: Not applicable since compiler is specifically targeted to one architec-
ture.

4 CHAPTER 1. INTRODUCTION

• Customization: Customization possible through machine description. Further
research on optimization strategies are not possible because compiler is proprietary
and closed source. Because of this expanding the functionality of the compiler is
impossible.

GCC:

• Code quality: The ρ-VEX backend for GCC has not been optimized and the
quality of the code is quite low. Performance of GCC executables is lower then
code compiled by the HP-VEX compiler. Some programs do not function correctly
when compiled by GCC. This is demonstrated in Chapter 5.

• Support: There is a very active development community around GCC itself [18].
Unfortunately, the support for the ρ-VEX is not good because the ρ-VEX branch
is maintained privately.

• Front-end: GCC supports a large number of programming languages including
C, C++, Fortran and Java.

• Customization: Because GCC is open source the compiler can be customized to
support new passes, optimizations and instructions. The ρ-VEX backend currently
only supports a 4-issue ρ-VEX processor. Furthermore, the internal workings of
GCC are complex and poorly documented. Different parts of the compiler are
linked in a complex way and it is very difficult to obtain a general overview on
how the compiler operates. Because of the complexity it is difficult to add new
functionality to the GCC compiler.

The comparison shows that both the HP-VEX and GCC compilers have serious
disadvantages. The fact that HP-VEX cannot be customized excludes it from further
development for the ρ-VEX project. Bringing the GCC compiler performance and fea-
tures up to the same level as HP-VEX will be very difficult because of the complexity
involved with GCC development.

In 2000, the LLVM project [19] has been started with the goal of replacing the
code generator in the GCC compiler. LLVM provides a modern, modular design and
is written in C++. Originally, the GCC frontend was used to translate programs into
LLVM compatible intermediate representation. Around 2005, the Clang project was
started which aimed to replace the GCC frontend with an independent frontend that
supports C, C++ and ObjC. Currently the LLVM-based compiler offers performance
that approaches GCC, but offering a significant improvement in terms of modularity,
ease of development, and “hackability”. In addition, the LLVM compiler can also be
used to target different architectures such as GPU’s and VLIW based processors.

1.2.1 Previous works

Currently the LLVM compiler has support for the Qualcom Hexagon VLIW processor
[20]. In [21] it is mentioned that it took two engineers 23 days to get an LLVM-based
back-end working. Within 107 Calendar days they were able to achieve 87% performance
of GCC.

1.3. GOALS 5

[22] documents the implementation of an LLVM backend for the TriCore processor.
They conclude that their TriCore backend could emerge as a serious alternative to the
current compilers that target the TriCore processor.

A similar project that aims to create a TriCore backend for GCC is presented in [23].
While they were able to complete the backend they concluded that building a GCC-
backend is a hard task and that it requires intricate knowledge of the GCC internals.

1.3 Goals

The main goal of this thesis is to develop a new compiler for the ρ-VEX system. The
compiler will be based on the LLVM compiler. The new compiler should have the
following characteristics:

• Open source: The compiler should be open source so the compiler can be cus-
tomized and used for future research.

• Code quality: A new compiler should provide a significant improvement in terms
of performance, code size and resource utilization.

• Reconfigurability: Characteristics of the ρ-VEX processor should be reconfig-
urable during run-time.

1.4 Methodology

The following steps need to be completed for successful implementation of a ρ-VEX
LLVM compiler.

• Research ρ-VEX and VEX platform

• Research LLVM compiler framework

• Build LLVM-based VEX compiler with following features:

– 4-issue ρ-VEX processor

– Code generation

– Assembly emitter

• Add support for reconfigurability:

– VEX machine description

– Reconfigure LLVM during runtime

• Optimize performance:

– Instruction selection

– Hazard recognizer

– Register allocator

6 CHAPTER 1. INTRODUCTION

1.5 Thesis overview

The thesis is organized as follows. In Chapter 2 we will discuss the architecture of
the ρ-VEX processor and the workings of the LLVM compiler suite. This chapter will
demonstrate the supported instructions, run-time architecture, and show the general
architecture of the ρ-VEX processor. The chapter will also show how the LLVM compiler
operates and what steps are involved during compilation.

In Chapter 3 will discuss how the ρ-VEX compiler was implemented. We will show
how code is transformed from the LLVM Intermediate Representation (IR) into a ρ-VEX
specific assembly language. In addition, we will also discuss new functionality that has
been added to the LLVM compiler.

Chapter 4 will discuss how the performance of the LLVM compiler has been opti-
mized. Compilation problems that have been found are demonstrated and we will show
how these problems have been resolved to increase performance of the binaries.

Chapter 5 will explore the performance of the new compiler. Performance will be
compared to existing compilers in terms of issue-width.

A conclusion and recommendations for future research is presented in Chapter 6.

Background 2
In this chapter we will explore the background of the VEX system and the LLVM com-
piler. This chapter will show the basic design of the ρ-VEX processor and how the
ρ-VEX processor operates. Furthermore, we will also demonstrate the design of the
LLVM compiler framework and how code is transformed from a high-level language such
as C/C++ to a target specific assembly language.

2.1 VEX System

The ρ-VEX processor is based on the VEX ISA [4]. The processor uses a VLIW archi-
tecture and is designed to serve as both a application-specific processor and a general-
purpose processor. During synthesis the core can be reconfigured to alter the issue-width,
the amount of physical registers, the type of functional units, and other parameters.

The VEX ISA defines hardware operations as syllables. An instruction is defined as
a set of multiple syllables. The VEX operations are similar to 32-bit RISC operations.

2.1.1 Architecture

The architecture of the ρ-VEX core is depicted in Figure 2.1 [24]. The core uses a five-
stage pipelined design. There are multiple functional units with different functionalities,
such as ALUs, multipliers, load / store units, and branch units.

The register file consists of 64 32-bit general-purpose registers. These registers can
generally be targeted by any instruction. In addition to the general-purpose registers
there also exists 8 1-bit branch registers. These registers are used by the branch opera-
tions to determine if a branch should occur.

The pipeline uses five stages to execute an instruction. For example, consider a
ρ-VEX processor with a 4-issue organization:

• Fetch stage: An instruction is selected from the instruction memory using the
Program Counter (PC) or the Branch Target address. Note that 1 instruction
contains four different operations.

• Decode stage: Each operation is decoded in parallel and the needed registers are
read from the register file.

• Execute 1 stage: In this stage, the functional units produce results for ALU
operations. In addition this stage is also used to write to the data memory when
Store operations are executed. The ρ-VEX processor uses 16∗32-bit multipliers that
require two stages to produce a result. In this stage the multiplication operations
are started.

7

8 CHAPTER 2. BACKGROUND

Figure 2.1: ρ-VEX architecture [2]

• Execute 2 stage: This stage produces results for multiply operations. In addition
this stage reads data from the data memory when load operations are executed.

• Writeback stage: In this stage results that have been generated in the previous
stages are committed to the register file.

The ρ-VEX processor uses a bypass network to forward operations to other pipeline
stages when needed [2].

2.1.2 ISA

The assembly format for VEX instructions is shown in Figure 2.2 [3]. The destination
of an operation is to the left of the “=” sign, while the source operands are listed on
the right-hand side. On the right-hand side both registers and immediate values can be
used as source operands. The ρ-VEX processor does not support multiple clusters and
each instruction is executed on cluster 0.

The ρ-VEX processor supports 32-bit immediate values through an operations bor-
rowing scheme. Each instruction can supports 8-bit immediate values but if larger values
are required the adjacent operation is used to store the upper 24-bits of the immediate

2.1. VEX SYSTEM 9

Figure 2.2: ρ-VEX instruction format

value. This means that when using large immediate values the amount of operations
that can be executed decreases.

Multiple classes of ρ-VEX instructions exists with the following properties:

• Integer arithmetic operations: These operations include the traditional RISC-
style instructions such as ADD, SUB, AND, and OR.

• Multiplication operations: The VEX ISA defines multiple multiplication oper-
ations that use the built-in 16 ∗ 32-bit multiplier. Operations include for example:
Multiply Low 16 * Low 16, etc.

• Logical and Select operations: These operations are used to compare two
registers to each other or to select between two values based on the result of a
branch register. Operations include: CMPEQ, CMPNEQ, etc.

• Memory operations: Operations that load and store data from the data memory.
Operations exist to store and load operands of different sizes such as LDW, LDH and
LDB.

• Control operations: These operations are used to control the Program Counter
of the ρ-VEX processor. Operations include: GOTO, CALL, BR, and RETURN.

2.1.3 Run-time architecture

The ρ-VEX Run-Time architecture defines the software conventions that are used during
compilation, linking and execution of ρ-VEX executables. ρ-VEX programs are executed
in a 32-bit environment where integers, longs, and pointers are 32-bit values.

The following ρ-VEX register classes are used:

• Scratch registers: Caller-saved registers that are destroyed during function calls.

• Preserved registers: Callee-saved registers that must not be destroyed during
procedure calls.

10 CHAPTER 2. BACKGROUND

Register Class Description

$r0.0 Constant Constant register 0

$r0.1 Special Stack-pointer: Holds the limit of the current stackframe.
The SP is preserved across function calls.

$r0.2 Scratch Struct return pointer: If a function returns a struct or
union the register contains the memory adres of the value
being returned.

$r0.3-$r0.10 Scratch Arguments and return values: Arguments that do not
fit in the registers are passed using the main memory.

$r0.11-$r0.56 Scratch Caller-saved scratch registers.

$r0.57-$r0.63 Preserved Callee-saved registers that need to be preserved across func-
tion calls.

$l0.0 Special Link register: Used to store the return adres when a func-
tion call is performed.

$pc0.0 Special Program Counter

$b0.0-$b0.7 Scratch Branch registers: Caller-saved registers.

Table 2.1: ρ-VEX Register usage [3]

• Constant registers: Contains a value that cannot be changed.

• Special registers: Used during call / return operations.

The 2.1 described the properties of all the available ρ-VEX registers.

2.2 LLVM Compiler infrastructure

LLVM is based on the classic three-stage compiler architecture depicted in Figure 2.3.
The compiler uses a number language-specific frontends, an optimizer, and target-specific
backends. Each module consists of a number of generic passes that are used to transform
the code. This modular design enables compiler designers to introduce new passes and
parts of the compiler without having to change the existing framework. Support for a
new processor can be added by building a new back-end. The existing frontend and
optimizer can be reused for the new compiler.

Figure 2.3: Basic compiler structure

The frontend is used to transform the plain text source code of a program into an

2.2. LLVM COMPILER INFRASTRUCTURE 11

intermediate representation that will be used during compilation process. This transfor-
mation is achieved by performing the following steps:

1. Lexical analysis: Break input into individual tokens.

2. Syntax analysis: Using a grammar, the sequence of tokens is transformed into a
parse tree which represents the structure of the program. Clang uses a handwritten
recursive descent parser for this transformation.

3. Semantic analysis: Semantic information is added to the parse tree, type check-
ing is performed, and a symbol table is built.

The resulting abstract syntax tree (AST) is transformed into LLVM IR and passed
to the optimizer and backend of the compiler. These parts of the compilation process
are completely language agnostic and do not require any other information from the
backend.

The optimizer is used to analyze and optimize the program. Optimization such
as dead code elimination and copy propagation are performed during this phase but
also more advanced operations that extract ILP, such as loop vectorization [25], can be
enabled.

The back-end optimizes and generates code for a specific architecture. The LLVM
IR is transformed into processor specific assembly instructions. In addition the backend
also allocates registers, and schedules the instructions.

2.2.1 Current frontends

The modular design of LLVM enables the compiler to be used as a part of the existing
GCC compiler. For example, the dragonegg GCC plugin [26] is designed to replace the
GCC code generator and optimizer with the LLVM backend. This would enable LLVM
to be able to use the existing GCC based frontends and supported languages.

Clang has been developed to allow LLVM to operate independently of GCC. Clang is a
frontend supporting C, C++, and ObjC. The frontend is designed to be closely integrated
with the Integrated Development Environment (IDE) allowing more expressive diagnostic
messages. In addition, Clang also aims to provide faster compilation and lower memory
usage [27].

2.2.2 LLVM IR

The frontend transforms a source code into the LLVM Intermediate representation
(LLVM IR). The LLVM IR is used to represent a high level language cleanly in a target
independent way and is used during all phases of compilation. Instructions are similar
to RISC instructions and can use three operands. Control flow instructions and type
specific load/store instructions are used and an infinite amount of registers are available
in Single Static Assignment (SSA) form. The LLVM IR is available in three different
forms: human readable text, binary form, and an in-memory form [28].

The LLVM IR is designed to expose high-level information for further optimiza-
tion. Examples of high-level information include dataflow analysis using the SSA form,

12 CHAPTER 2. BACKGROUND

control-flow graphs, language independent type information and explicit use of pointer
arithmetic.

Primitives such as voids, floats and integers are natively supported in the LLVM
IR. The bit width of the integers can be defined manually. Pointers, arrays, structures
and functions are derived from these basic types. The operations that are supported in
LLVM IR are contained in the Instruction Selection DAG (ISD) namespace.

Object-oriented constructs such as classes and virtual methods are not natively sup-
ported but can be built using the existing type system. For example, a C++ class can
be represented by a struct and a list of methods.

The SSA-based dataflow form allows the compiler to efficiently perform code opti-
mizations such as dead code elimination and constant propagation.

Figure 2.1 depicts an example program in C. The equivalent LLVM IR representation
is depicted in Figure 2.2.

int main() {

int sum = 1;

while(sum < 10)

{

sum = sum + 1;

}

return sum;

}

Listing 2.1: C example program

define i32 @main () nounwind ssp uwtable {

%1 = alloca i32 , align 4

%sum = alloca i32 , align 4

store i32 0, i32* %1

store i32 1, i32* %sum , align 4

br label %2

; <label >:2 ; preds = %5, %0

%3 = load i32* %sum , align 4

%4 = icmp slt i32 %3, 10

br i1 %4 , label %5, label %8

; <label >:5 ; preds = %2

%6 = load i32* %sum , align 4

%7 = add nsw i32 %6, 1

store i32 %7 , i32* %sum , align 4

br label %2

; <label >:8 ; preds = %2

%9 = load i32* %sum , align 4

ret i32 %9

}

Listing 2.2: LLVM Intermediate representation

2.2.3 Code generation

During code generation the optimized LLVM IR is translated into machine-specific as-
sembly instructions. The modular design of LLVM enables generic algorithms to be used

2.2. LLVM COMPILER INFRASTRUCTURE 13

for this process.

A backend is described in a domain-specific language (DSL) called tablegen. The
tablegen files describe properties of a backend such as available instructions, registers,
calling convention and pipeline structure. During compilation of LLVM the tablegen

files are converted into a C++ description of the backend. tablegen has been specifically
designed to describe the backend structure in a flexible and generic way. Common
features can be more easily described using tablegen. For example the add and sub

instruction are almost identical and using tablegen can be described in a more generic
way. This results in less repetition and reduces the chance of error in the backend
description.

Because of the generic description of the backend large amount of code can be reused
by each backend. Algorithms such as register allocation and instruction selection operate
on the generic tablegen descriptions and do not require target specific hooks to operate
correctly. An additional advantage of this approach is that multiple algorithms are
available to achieve certain functionality. For example, LLVM offers the developer a
choice between four different register allocation algorithms. Each algorithm has a number
of advantages and disadvantages and the developer can choose between an algorithm
which matches the target processor best.

At the moment not all parts of the backend can be described in tablegen and
hand written C++ code is still needed. As LLVM matures more parts of the backend
description should be integrated into the backend.

Figure 2.4 shows the basic code generation process. Each block can consist of multiple
LLVM passes. For example the instruction selection phase consists of multiple passes
that transform the input LLVM IR into a DAG that only contains instructions and types
that are supported by the target processor.

Figure 2.4: Basic codegeneration process

2.2.4 Scheduling

The LLVM compiler uses basic blocks to schedule instructions. A basic block is a block
of code that has exactly one entry point and one exit point. This means that no jump
instruction exists with a destination in the block.

LLVM uses the MachineBasicBlock (MBB) class to represent a Basic Block. A MBB
contains a list of MachineInstr instances. The MachineInstr class is an abstract way
to represent instructions for the target processor.

Multiple MBB are used to create a MachineFunction instance. The
MachineFunction class is used to represent an LLVM IR function. In addition to a

14 CHAPTER 2. BACKGROUND

list of MBB the MachineFunction also contains references to the MachineConstantPool,
MachineFrameInfo, MachineFunctionInfo, and MachineRegisterInfo. These classes
keep track of target specific function information such as which constants are spilled to
memory, the objects that are allocated on the stack, target specific function information,
and which registers are used.

2.2.5 Current backends

The current version of the LLVM compiler supports the following processor architectures:

• ARM: RISC type processor designed for use in embedded systems.

• AArch64: Targets ARMv8 ISA that has support for 64-bit architectures.

• Hexagon: 32-bit DSP processor developed by Qualcomm. Targets a VLIW type
processor

• MIPS: One of the original RISC type processors [29].

• MBlaze: Derivative of the MIPS processor developed by Xilinx for use in FPGAs.

• MSP430: 16-bit processor developed by Texas Instruments.

• NVPTX: CUDA backend targeting NVIDIA GPUs.

• PowerPC: RISC type processor developed by IBM.

• R600: Backend that targets R600 AMD GPUs.

• Sparc: One of the original RISC type processors [30].

• SystemZ: Processor used in IBM Mainframes.

• X86: General purpose processor.

• XCore: 32-bit RISC type processor.

Backends that target other architectures also exist but these are not included in
the distribution of the LLVM compiler and are not actively maintained by the LLVM
community. The Hexagon, NVPTX, and R600 backends are of special interest because
these backends target VLIW processors or massive parallel systems such as GPUs. The
Hexagon processor demonstrates that it is possible to build an LLVM backend that
targets a general purpose VLIW type processor.

2.3 Verification

Verification of the LLVM compiler is extremely important. Performance of the generated
binaries is irrelevant if only half of the binaries produce a correct result. The LLVM
compiler will be verified by simulating the generated binaries.

2.4. CONCLUSION 15

Two simulators are available: xSTsim and Modelsim. xSTsim is an ISA simulator
that can simulate a 4-issue ρ-VEX processor. Output of the simulator is customizable
and the simulator is fast enough to simulate large executables. Modelsim is used to
perform a complete functional simulation of the ρ-VEX processor. The Modelsim simu-
lation provides the highest accuracy because the hardware description files of the ρ-VEX
processor are used during simulation. The disadvantage of using Modelsim is the perfor-
mance. Simulation of an executable will take a long time because the complete processor
is simulated.

Writing test programs that generate certain instruction sequences will be used to
verify the compiler. The output of these test programs will be compared to the expected
result to check for errors in the backend.

Writing test programs that have a high coverage of all the possible output patterns
is impossible. To further verify the compiler we will compile benchmark programs. The
output of the benchmarking programs will be compared to expected outputs to check
for errors in the compiler.

2.4 Conclusion

This chapter presented the basic design of the ρ-VEX processor and of the LLVM com-
piler framework. The ρ-VEX processor is a VLIW-type processor that uses RISC like
instructions to operate. We presented the basic design of the processor, the instructions
that are supported, register properties, and the run-time architecture has been discussed.
This information will be used during implementation of the LLVM-based compiler.

We also discussed the basic working of the LLVM compiler framework. Building a
ρ-VEX backend for the LLVM compiler is feasible because the current version of the
LLVM compiler already targets a VLIW processor.

Finally, we discussed how the LLVM compiler will be verified. The verification step is
extremely important to determine whether the binaries that are generated work correctly.

16 CHAPTER 2. BACKGROUND

Implementation 3
The previous chapter demonstrated the architecture of the ρ-VEX processor and of the
LLVM compiler. We have also shown that the LLVM compiler currently has support for
a VLIW type processor. In this chapter we will show how the LLVM-based backend for
the ρ-VEX processor has been implemented.

3.1 Tablegen

LLVM uses a domain-specific language (DSL) called tablegen to describe features of
the backend such as instructions, registers, and pipeline information.

tablegen uses a object-oriented approach to describe functionality. Information is
described in classes and definitions that are called records. Inheritance is supported so
classes can derive information from superclasses. In addition, multiclasses can be used
to instantiate multiple abstract records at once.

The tablegen tool aims to provide a flexible way to describe processor features. The
processor instructions are be described as follows:

A class is created that represents an abstract instruction. The class will describe
information that is of direct importance to code generation such as opcode, register usage
and immediate values but also information that is needed during the code generation
process such as liveness information, instruction patterns, and scheduling information.

class rvexInst <dag outs , dag ins , string asmstr , list <dag > pattern ,

InstrItinClass itin , Format f, CType type >: Instruction

{

}

Listing 3.1: Base ρ-VEX instruction

The rvexInst class is used for all type of instructions that are supported by the
ρ-VEX processor. Multiple instructions with common feature such as add, sub, and
and instructions can be described in subclasses that inherit from the rvexInst class.
For example, the class ArithLogicR holds arithmetic instructions that use three register
operands. The class describes common features such as the instruction string format
and the instruction pattern that are used during instruction selection.

class ArithLogicR <string instr_asm , SDNode OpNode ,

InstrItinClass itin , RegisterClass RC , bit isComm = 0, CType ←↩
type >:

rvexInst <(outs RC:$ra), (ins RC:$rb , RC:$rc),
!strconcat(instr_asm , "\t$ra = $rb , $rc"),
[(set RC:$ra , (OpNode RC:$rb , RC:$rc))], itin , type >

{

}

Listing 3.2: Class representing three-operand instructions

17

18 CHAPTER 3. IMPLEMENTATION

The following code shows how to define instructions that inherit from the
ArithLogicR class. The instruction is defined as using the ArithLogicR class with
certain parameters that match the instruction properties. These properties include in-
struction string, LLVM IR opcode, and other information that is needed during compi-
lation.

def ADD : ArithLogicR <"add ", add , IIAlu , CPURegs , 1, TypeIIAlu >;

Listing 3.3: add instruction

Figure 3.1 displays an example of how individual instructions inherit from the high-
level classes. The final class is a rvexInstr that contains a description of all the available
ρ-VEX instructions.

Figure 3.1: tablegen instructions

tablegen provides for a very flexible way to describe backend functionality. The
existing LLVM backends use tablegen in a variety of ways which best match the target
processor.

The tblgen tool is used to transform the tablegen input files into C++. The resulting
C++ files contain enums, structs and arrays that describe the properties. The instruction
selection part is transformed into imperative code that is used by the backend for pattern
matching.

3.1.1 Register definition

LLVM uses a predefined class register to handle register classes. All ρ-VEX registers
are derived from this empty class. The rvexReg class is used to define all type of ρ-VEX
registers.

class rvexReg <string n> : Register <n> {

field bits <7> Num;

let Namespace = "rvex";

}

Listing 3.4: Register class definition

3.1. TABLEGEN 19

The rvexReg class is used to define the general purpose registers and the branch
registers.

class rvexGPRReg <bits <7> num , string n> : rvexReg <n> {

let Num = num;

}

class rvexBRReg <bits <7> num , string n> : rvexReg <n> {

let Num = num;

}

Listing 3.5: ρ-VEX register types

Each physical register is defined as an instance of one of these classes. For example,
r0.5 is defined as follows. The register is associated with a register number, a register
string, and a dwarf register number that is used for debugging.

def R5 : rvexGPRReg < 5, "r0.5">, DwarfRegNum <[5] >;

Listing 3.6: ρ-VEX register

The physical registers are divided in two register classes for the general purpose
registers and for the branch registers. The register classes also define what type of value
can be stored in the physical register.

def CPURegs : RegisterClass <"rvex", [i32], 32,

(add

(sequence "R%u", 0, 63),

LR, PC

)>;

def BRRegs : RegisterClass <"rvex", [i32], 32,

(add

(sequence "B%u", 0, 7)

)>;

Listing 3.7: ρ-VEX register classes

The branch registers have been defined to also use 32-bit values even though in
reality the branch register is only 1-bit wide. This has been done because LLVM had
trouble identifying the correct instruction patterns for compare instructions. The ρ-
VEX compare instructions can produce results in both the CPURegs and the BRegs as
illustrated in the following example:

<1 bit >BRRegs = Operation , <32 bit >CPURegs , <32 bit >CPURegs

<32 bit >CPURegs = Operation , <32 bit >CPURegs , <32 bit >CPURegs

The LLVM compiler is unaware that when the compare instruction is used to define
a 32-bit result only the lowest bit will be set. The compiler tried to resolve this issue
by inserting truncate and zero extend instructions even though this is not required.
This has been solved by implementing the BRRegs as 32-bit wide so LLVM will not insert
truncate and extend instructions when operating on these type of instructions.

3.1.2 Pipeline definition

tablegen can be used to describe the architecture of the processor in a generic way.
LLVM will schedule an instruction to a processor functional unit during the scheduling

20 CHAPTER 3. IMPLEMENTATION

pass. The following code describes the available functional units for a 4-issue a ρ-VEX
processor.

def P0 : FuncUnit;

def P1 : FuncUnit;

def P2 : FuncUnit;

def P3 : FuncUnit;

Each instruction is associated with an instruction itinerary. An instruction itinerary
is used to group scheduling properties of instructions together. The ρ-VEX processor
uses the following instruction itineraries.

def IIAlu : InstrItinClass;

def IILoadStore : InstrItinClass;

def IIBranch : InstrItinClass;

def IIMul : InstrItinClass;

The functional units and instruction itineraries are used to describe the properties
of the ρ-VEX pipeline. The scheduling properties are derived from a description of an
instruction stage with certain properties and the associated instruction itinerary. These
properties include the cycle count, that describes the length of the instruction stage, and
the functional units that can execute the instruction. The following itinerary describes a
ρ-VEX pipeline with four functional units. Each functional unit is able to execute every
instruction except for load/store instructions. Only P0 is able to execute load / store
instructions. Load / store instructions take two cycles to complete.

def rvexGenericItineraries : ProcessorItineraries <[P0 , P1 , P2, P3], [], [

InstrItinData <IIAlu , [InstrStage <1, [P0 , P1 , P2, P3]>]>,

InstrItinData <IILoadStore , [InstrStage <2, [P0]>]>,

InstrItinData <IIBranch , [InstrStage <1, [P0 , P1, P2, P3]>]>,

InstrItinData <IIIMul , [InstrStage <1, [P0, P1 , P2 , P3]>]>,

]>;

The machine model class is used to encapsulate the processor itineraries and certain
high-level properties such as issue-width and latencies.

def rvexModel : SchedMachineModel {

let IssueWidth = 4;

let Itineraries = rvexGenericItineraries;

}

3.1.3 Other specifications

tablegen is also used to describe other properties of the target processor. LLVM has
stated as goal to move more parts of the backend description to the tablegen format
because tablegen offers such a flexible implementation. At the moment tablegen is
also used to implement:

• Calling convention: Describes the registers that are used to pass arguments
between functions, the return registers, the callee-saved registers, the caller-saved
registers and the reserved registers.

• Subtarget features: Target-specific features can be defined using the subtarget
description.

3.2. CODE GENERATION 21

3.2 Code generation

To understand how the compiler changes code from the LLVM IR representation to
VEX assembly instruction it is necessary to understand how the code generation process
works. The code generation process is divided into multiple steps, called passes, which
are performed in order. Directed acyclic graphs (DAG) are used to represent the LLVM
IR during the code generation process.

3.2.1 Instruction transformation

The instruction selection phase is completed in the following steps

• Build initial DAG: Transform the LLVM IR into a DAG that contains illegal
types and instructions. The initial DAG is a one-to-one representation of the LLVM
IR code.

• Legalize instructions: Illegal instructions are expanded and replaced with legal
instructions that are supported by the target processor.

• Legalize types: Transform the types used in the DAG to types that are supported
by the target processor

• Instruction selection: The legalized DAG still contains only LLVM IR instruc-
tions. The DAG is transformed to a DAG containing target-specific processor
instructions.

3.2.2 Instruction lowering

The rvexISelLowering class gives a high-level description of the instructions that are
supported by the target processor. The class can describe how the compiler should
handle each LLVM IR instruction using four parameters: Legal, Expand, Promote or
Custom. The default option is Legal, which implies that the LLVM IR instruction is
natively supported by the target processor.

3.2.2.1 Expanded instructions

The Expand flag is used to indicate that the compiler should try to expand the instruction
into simpler instructions. For example consider the LLVM IR UMUL LOHI instruction.
This instruction multiplies two values of type iN (for example 32-bit) and returns a
result of type i[2*N] (64-bit). Through expansion this instruction will be transformed
into two multiply instructions that calculate the low part and the high part separately.

setOperationAction(ISD::UMUL_LOHI , MVT::i32 , Expand);

22 CHAPTER 3. IMPLEMENTATION

3.2.2.2 Promote instruction

Some instruction types are not natively supported and the type should be promoted
to a larger type that is supported by the target processor. This feature is useful for
supporting logical operations on Boolean functions. The following operation transforms
an AND instruction that operates on a boolean value to a larger type.

setOperationAction(ISD::AND , MVT::i1, Promote);

3.2.2.3 Custom expansion

There are some instructions that cannot be expanded automatically by the compiler.
To support these instructions the instruction expansion can be defined manually. For
example consider the MULHS instruction that multiplies two numbers and returns the
high part.

setOperationAction(ISD::MULHS , MVT::i32 , Custom);

When a MULHS instruction is parsed the compiler will execute a function that describes
the sequence of operations to lower this instruction. This sequence of instructions is im-
plemented in the LowerMULHS function of the rvexISelLowering class. The LowerMULHS
function is used to manually traverse the DAG and insert a sequence of instructions to
support the operation.

For each instruction that requires custom lowering a LowerXX function has been
defined.

3.2.3 Instruction selection

After instruction lowering the DAG contains LLVM IR operations and types that are all
supported by the target processor but the DAG still contains only LLVM IR operations
and no target-specific operations. The rvexISelDAGToDag class is used to match LLVM
IR instructions to instructions of the target processor. The bulk of this class is gener-
ated automatically from the tablegen description but instructions can also be matched
manually.

3.2.4 New instructions

The ρ-VEX processor supports some instructions that have no equivalent LLVM ISD
operation. These instructions include divs, addcg, min, max, and others. Two stages
are required to add support for these operations:

1. Extend ISD namespace: The new instructions will be added to the ISD names-
pace. This means that the LLVM IR will be extended with the new instructions.

2. Instruction lowering: Describe when these instruction should be inserted in the
LLVM IR. For example, lowering of the LLVM IR div instruction uses a custom
lowering function to describe the algorithm that uses the ρ-VEX divs instruction.

3.2. CODE GENERATION 23

3. Instruction matching: New pattern matching rules need to be defined that map
a custom instruction from the extended ISD namespace to the final target-specific
ρ-VEX instructions.

For this example we are going to consider the ρ-VEX divs instruction. The divs

instruction is used to execute a single division step. The following code [3] shows the
division step operation. In [31] the algorithm is described that uses the division step
operation.

#define DIVS(t, cout , s1, s2, cin) {

unsigned tmp = ((s1) << 1) | (cin); \

cout = UINT32(s1) >> 31; \

t = cout ? tmp + (s2) : tmp - (s2); \

}

3.2.4.1 Extend ISD namespace

The ISD namespace can be extended with target-specific operations by defining the in-
struction type and the instruction name. Because the divs instruction uses five operands
a custom instruction type will be used. The following code shows the definition for the
custom instruction type. This type describes an instruction that produces two results
and consumes three operands.

def SDT_rvexDivs : SDTypeProfile <2, 3

[SDTCisSameAs <0, 2>,

SDTCisSameAs <0, 3>,

SDTCisInt <0>, SDTCisVT <0, i32 >,

SDTCisSameAs <1,4>,

SDTCisInt <1>, SDTCisVT <1, i1 >]>;

The next step involves defining the name of the custom instruction. The instruction
is defined as a custom SDNode and uses the instruction type that has been defined earlier.
This operation expands the LLVM ISD namespace with custom operations that are only
available in the ρ-VEX backend.

def rvexDivs : SDNode <"rvexISD ::Divs", SDT_rvexAddc >;

3.2.4.2 Instruction lowering

The rvexISelLowering class is extended with functions that produce the new ISD op-
eration. For this example LLVM IR div instruction is custom lowered in the LowerDIVS

function. In this function an algorithm is implemented that uses the new divs SDNode.
After instruction lowering a DAG will have been produced that contains only legal

ISD operations and the new ISD operations that have been defined earlier.

24 CHAPTER 3. IMPLEMENTATION

3.2.4.3 Instruction selection

The following code describes the instruction class that is used by the divs instruction.
This class describes the instruction string, register class properties and certain schedul-
ing properties of this instruction. Note that the instruction pattern is empty because
the current version of tablegen has no support for instructions that produce multi-
ple results. A custom pattern matching function will need to be implemented in the
rvexISelDAGToDAG class.

class ArithLogicC <bits <8> op, string instr_asm , SDNode OpNode ,

InstrItinClass itin , RegisterClass RC , RegisterClass BRRegs , ←↩
bit isComm = 0, CType type >:

FA<op, (outs RC:$ra , BRRegs:$co), (ins RC:$rb , RC:$rc , BRRegs:$ci),
!strconcat(instr_asm , "\t$ra , $co = $rb , $rc , $ci"),
[], itin , type > { // Note empty instruction matching pattern

let shamt = 0;

let isCommutable = 0;

let isReMaterializable = 1;

}

The last step is to define the properties of the custom instruction.

def rvexDIVS : ArithLogicC <0x13 , "divs ", rvexDivs , IIAlu , CPURegs , BRRegs , ←↩
1, TypeIIAlu >;

The rvexISelDAGToDAG class is used to define the custom instruction selection pat-
terns. This class implements the pattern matching code that is generated from the
tablegen description files. The class has a separate select function to match instruc-
tions that have no pattern matching rules defined.

The select function uses switch statements to select between custom SDNodes. The
following function implements the pattern matching rule for the divs instruction that
replaces the extended ISD divs instruction with the ρ-VEX instruction rvexDIVS. The
rvexDIVS instruction has been defined earlier in the tablegen description files.

case rvexISD ::Divs: {

SDValue LHS = Node ->getOperand (0);

SDValue RHS = Node ->getOperand (1);

SDValue Cin = Node ->getOperand (2);

return CurDAG ->getMachineNode(rvex::rvexDIVS , dl, MVT::i32 , MVT::i32 ,

LHS , RHS , Cin);

break;

}

3.2.4.4 Other cases

Some ρ-VEX-specific instructions, such as the SHXADD instructions, are easier to sup-
port and do not need custom lowering. These instructions are also defined with empty
pattern matching rules so the compiler will never insert them automatically. However
the SHXADD instruction is easier to support because we can also match an instruction to
a sequence of instructions. The following code describes a rule to replace the sequence
(ADD (LHS<<1), RHS) with (SH1ADD LHS, RHS).

def : Pat <(add (shl CPURegs:$lhs , (i32 1)), CPURegs:$rhs),
(SH1ADD CPURegs:$lhs , CPURegs:$rhs) >;

3.2. CODE GENERATION 25

3.2.5 Floating-point operations

ρ-VEX processor does not natively support floating-point (FP) instructions. Instead
software functions are used to execute FP operations. During instruction lowering FP
operations are translated into library calls that will execute the instructions.

The LLVM compiler uses library functions that are compatible with the GCC Soft-
FP library. The LLVM compiler-RT library is compatible with the GCC soft-FP library
and is used for execution of FP instructions. Compiler-RT is a runtime library developed
for LLVM that provides for these library functions.

3.2.6 Scheduling

During the scheduling pass the SDNodes are transformed into a sequential list form.
Different schedulers are available for different processor types. For instance the register
pressure scheduler will always try to keep the register pressure minimal which works
better for x86 type processors. For the ρ-VEX processor a VLIW scheduler is used.

The list still does not contain valid assembly instructions. Virtual SSA based registers
are still used and all the stack references do not reference true offsets.

3.2.7 Register allocation

During register allocation the virtual registers are mapped to available physical registers
of the target processor. The register allocator considers the calling convention, reserved
registers and special hardware registers during allocation. In addition the register allo-
cator also inserts spill code when a register mapping is not available.

Liveness analysis is used to determine which virtual registers are used at a certain
time. The liveness of virtual registers can be determined easily through the SSA based
form of the input list. Multiple register allocation algorithms are available. All algo-
rithms operate on the liveness information.

3.2.8 Hazard recognizer

The ρ-VEX processor has no way to recognize hazards or halt execution of code for
a cycle. Because of this the correct scheduling of instructions is important for correct
execution. Consider the following sequence of code:

ldw $r0.2 = 0[$r0.2] # Load from main memory

;;

add $r0.2 = $r0.2, 2 # Add 2 to register

;;

26 CHAPTER 3. IMPLEMENTATION

After execution the register r0.2 will contain an undefined value because the load
instruction has not completed execution. The compiler needs to insert an instruction or
nop between the load and add instruction for correct execution. The correct instruction
sequence should be the following:

ldw $r0.2 = 0[$r0.2] ## Load from main memory

;;

Empty instruction

;;

add $r0.2 = $r0.2, 2 ## Add 2 to register

;;

The ScheduleHazardRecognizer is only able to resolve structural hazards, not data
hazards. In Chapter 4 we will describe how the hazard recognizer has been combined
with a new scheduling algorithm to resolve both data and structural hazards.

3.2.9 Prologue and epilogue insertion

After the register allocation pass the prologue en epilogue functions are inserted. The
prologue and epilogue pass is used to calculate the correct stack offset for each variable.
Code is inserted that reserves room on the stack and saves / loads variables from the
stackframe.

3.2.10 VLIW Packetizer

The packetizer pass is an optional pass that is used for VLIW targets. The packetizer
receives a list of sequential machine instructions that need to be bundled for VLIW
processors.

The tablegen pipeline definition is used to build a Deterministic Finite Automata
(DFA) that represents the resource usage of the processor. The DFA can be used to
determine to which functional unit an instruction can be mapped and if enough functional
units are available.

The DFA representation is powerful enough to consider different properties of func-
tional units. For example consider a 4-issue VLIW processor but with only one unit
supporting load / store operations. The DFA can model this pipeline and guarantee
only one load / store instruction will be executed per clock cycle.

The VLIW packetizer also checks if certain instructions are legal to bundle together.
The packetizer can be customized to check for hazards such as data-dependency hazards,
anti-dependencies, and output-dependencies. Custom hazards can also be inserted to
make sure that control flow instructions are always in a single bundle.

3.3 New LLVM features

This section describes features that have been added to the LLVM compiler. Currently,
the ρ-VEX backend is the only backend that supports these kind of features.

3.3. NEW LLVM FEATURES 27

3.3.1 Generic binary support

In [32] the design was presented for a binary format that will execute on any ρ-VEX
processor, regardless of issue-width. This is achieved by generating binaries for an 8-
issue ρ-VEX processor. If this binary is executed on a ρ-VEX processor with a lower
issue-width the execution of the binary will be serialized and is performed in steps. For
instance, consider executing a generic binary on a 2-issue ρ-VEX processor. 4 instruction
cycles are needed to execute each part of the instruction packet.

The generic binary format adds certain instruction packet constraints. Data hazards
are not allowed inside generic instruction packets because these would alter the register
state of the processor. For instance, consider the instruction packet shown in Listing
3.8. A Read After Write (RAW) hazard will occur on the r0.8 register. During the
assembly phase the ordering of operations inside the instruction bundle can be altered
to match the mapping of functional units in the ρ-VEX processor. When this instruction
is serialized the contents of register r0.8 is altered during the first clock cycle. During
the second clock cycle this updated register will be used for execution even though the
compiler intended to use the original value of r0.8. By disallowing RAW hazards in
instruction bundles, binaries can be generated that can execute on any ρ-VEX processor
irrespective of issue-width.

add $r0.10 = $r0.10, $r0.11
add $r0.12 = $r0.12, $r0.13
add $r0.14 = $r0.14, $r0.8
add $r0.8 = $r0.8, $r0.9

;;

Listing 3.8: Regular ρ-VEX binary.

To ensure that the first use of r0.8 is executed before the last use of this register
the bundle will be split as shown in Listing 3.9.

add $r0.10 = $r0.10, $r0.11
add $r0.12 = $r0.12, $r0.13
add $r0.14 = $r0.14, $r0.8

;;

add $r0.8 = $r0.8, $r0.9
;;

Listing 3.9: Generic ρ-VEX binary.

The VLIW packetization step is used to find RAW hazards between operations in
instruction packets. If a RAW hazard is found the current packet is finalized and the
operation is added to the next instruction packet.

3.3.2 Compiler parameterization

The HP-VEX compiler supports a machine description file that describes properties of
the processor. Using this machine description certain parameters, such as issue-width,
multiply units, load / store units, and branch units can be customized.

Currently the LLVM compiler supports parameterization through subtarget support.
Backend features can be enabled and disabled with command line parameters. The ARM

28 CHAPTER 3. IMPLEMENTATION

backend uses this approach to select between different ARMv7 architectures, floating-
point support, and div/mul support. This approach is not be useful for the ρ-VEX
processor because of the amount of features that can be customized. Each customizable
feature would need a new subtarget. For example, when four features can be customized
(W, X, Y and Z), then W ∗X ∗Y ∗Z subtargets would be needed. Clearly, this approach
is not usable for the ρ-VEX processor where multiple parameters can be customized with
a wide range of possibilities.

A different approach is used that changes the target description during runtime of the
compiler. The target processor features are described in the rvexMCTargetDesc class.
During runtime a machine description file is read and parsed. Information from this
machine description will be used to update the rvexMCTargetDesc class.

The following properties can be customized through the machine description file:

• Generic binary: disable RAW hazard check in VLIW packetizer

• Width: issue-width of the processor

• Stages: describes all the available functional units an the amount of cycles an
instruction fills a functional unit.

• Instruction itinerary: maps an instruction itinerary to a function unit. Also
describes at what cycle the output contains a legal value.

The parameters are also used to generate the DFA that will track the resource us-
age. During the translation of the tablegen file an algorithm is used to generate a
DFA from the available functional units. This algorithm has been implemented in the
rvexMCTargetDesc class.

The location of the machine description file is passed to the rvexMCTargetDesc

through command line parameters. Custom command-line parameters can be imple-
mented in LLVM using cl::opt templates.

Some parameters such as the toggling of generic binary support is not handled
through the rvexMCTargetDesc file. These parameters are used to set global state flags
that can be read at anypoint in the compilation process. The Is Generic flag is used
during the rvexVLIWPacketizer pass.

The following code demonstrates the configuration file for a 4-issue ρ-VEX processor
with support for generic binaries. The Stages parameter uses three values. The first
value describes the amount of clock cycles an instruction occupies a functional unit. The
second parameter is a bitmask for which functional unit can handle this instruction. The
third parameter is currently not used.

The InstrItinerary parameter describes which type of instruction maps to which
Stage. The first value references the Stage an instruction is going to use. The second
parameter describes when the result of the operation is available. For example, {3, 5}
describes uses the third instruction stage ({2, 2, 1}) and has a latency of 5 - 3 = 2. Each
instruction itinerary that is described in tablegen is associated with an InstrItinerary
in the configuration file.

3.4. CONCLUSION 29

Generic = 1;

Width = 4;

Stages = {1, 15, 1}, {1, 1, 1}, {2, 2, 1};

InstrItinerary = {1, 2}, {1, 2}, {3, 5}, {2, 3};

The compiler parameterization feature can be easily ported to other LLVM backends.
The only part that has changed is the rvexMCTargetDesc class.

3.4 Conclusion

In this section, we have shown how the ρ-VEX backend for the LLVM compiler has been
implemented. Using the tablegen description we have described all the instructions
that are supported by the ρ-VEX processor. We have also shown how LLVM IR code
is transformed into a DAG that represents the original program. Through lowering
functions this DAG is transformed into a DAG that contains only operations that are
supported by the target processor. During the instruction selection phase the DAG is
transformed into a new DAG that contains target specific operations.

The finished DAG is transformed into a sequential list of instructions. This instruc-
tion list is used for the remaining passes. The remaining passes are used to map virtual
registers to physical registers, emit prologue and epilogue functions and to perform VLIW
packetization.

Certain features that are required for the ρ-VEX processor were not available in
the LLVM compiler. Features such as a machine description file are new to LLVM
and we have shown what changes have been made to the LLVM compiler to support
machine description files. In addition, we have shown how the backend has been updated
to provide support for the ρ-VEX generic binary format. Support for floating-point
operations has been added by porting the LLVM floating point library to the ρ-VEX
processor.

30 CHAPTER 3. IMPLEMENTATION

Optimization 4
The previous chapter described how the basic ρ-VEX LLVM compiler has been imple-
mented. In this chapter we are going to discuss certain optimizations that improve the
performance of binaries that are generated with the LLVM-based compiler.

4.1 Machine scheduler

A Machine Instruction scheduler is used to resolve structural and data hazards. The
hazard recognizer that has been described earlier only resolves structural hazards. This
means that the hazard recognizer can keep track of the functional units but it cannot
keep track of data hazards between packets. The machine scheduler operates before
the register allocator and is used to determine register allocation costs of each virtual
register. This information is used during the register allocation pass to select a better
mapping of physical to virtual registers that avoids expensive spills for commonly used
virtual registers.

The Hexagon Machine scheduler has been customized to provide support for the
ρ-VEX processor. The original Hexagon Machine Scheduler was used to perform pack-
etization and to provide register allocation hints to the register allocator. The ρ-VEX
machine scheduler has been enhanced with support for resolving data and structural
hazards.

The machine scheduler pass uses the VLIW packetization information to build tem-
porary instruction packets. A register allocation cost metric is used to determine an
optimal scheduling and packetization of instructions. The following ρ-VEX instructions
can produce data hazards that need to be resolved with the machine scheduler:

• Multiply instructions: 2 cycles

• Load instructions: 2 cycles

• LR producing instructions: 2 cycles

• Compare and branch operations: 2 cycles

The machine scheduler operates in two phases: building of an instruction queue and
scheduling of the instruction queue. During initialization of the machine scheduler two
queues are built: The pending instruction queue and the available instruction queue.
The available queue contains all the instructions that are available to schedule before
a structural hazard occurs. The scheduler will schedule instructions until the available
queue is empty and checks for any remaining structural hazards. If this hazard exists, a
nop instruction will be inserted, otherwise nothing will be done. The machine scheduler

31

32 CHAPTER 4. OPTIMIZATION

will then load new instruction from the pending queue to the available queue until a new
structural hazard occurs.

The scheduling phase is used to keep track of data hazards in instruction packets.
The algorithm builds temporary packets and checks for data dependencies between each
packet. If a data dependency has been found a nop instruction is inserted to resolve the
hazard. Listing 4.1 displays the algorithm in pseudo-code that is used to determine data
dependencies.

Get instruction from queue

Candidate = GetCandidate(Available_Queue)

if (! Candidate)

No Candidate found , structural hazard

ScheduleMI(NULL , isNooped = True)

Check latencies for all predecessors of candidate

for Predecessor in Candidate.Predecessors

Get instruction latency and scheduled cycle

Latency = Predecessor.Latency

SchedCycle = Predecessor.SchedCycle

if (Latency + SchedCycle > CurrentCycle)

Only 1 Noop per <def > of instruction

if (Predecessor.Nooped == false)

Schedule Noop

InsertNoop = True

#

Predecessor.Nooped = True

Predecessor.SchedCycle --

Add Candidate to current packet

Reserve(Candidate)

If (Packet.full)

If packet is full increase scheduling cycle

CurrentCycle ++;

Packet.clear

Schedule instruction with Noop if required

Schedule(Candidate , InsertNoop)

The ρ-VEX processor has a 1 cycle delay between defining a branch register and using
a branch register. The scheduler has been customized to insert nop instruction proceeding
each branch instruction. This solution is not optimal because the empty instruction could
also be used to execute an instruction that is independent. Unfortunately, this proved
impossible to implement in the current version of the LLVM compiler because branch
instructions are not scheduled with the machine scheduler. The machine scheduler uses
branch instructions as scheduling boundaries and does not include these instructions in
the temporary instruction packets.

The following instruction sequence illustrates the current solution:

4.2. BRANCH ANALYSIS 33

c0 cmpgt $b0.0, $r0.2, 9

;;

;;

c0 br $b0.0, .BB0_3

;;

Select instructions also use a branch register but because of the ρ-VEX pipeline
design do not require a delay cycle. As shown in the following code, select instructions
are scheduled regularly similar to other arithmetic instructions.

c0 cmpgt $b0.0, $r0.2, 9

;;

c0 slct $r0.1 = $b0.0, $r0.2, $r0.3
;;

After the machine scheduler pass the temporary instruction bundles are deleted but
the instruction ordering remains. Between the machine scheduler and VLIW packeti-
zation the only pass that can insert new code is the register allocator when spill code
is introduced. During the ExpendPredSpill pass the spill code is checked for data
dependencies and additional nops are inserted when required.

The final packetization occurs during the VLIW packetizer pass. The VLIW pack-
etizer detects nop operations and outputs these instructions as barrier packets. These
packets do not contain any instructions.

Scheduling could be improved further by integrating the instruction scheduling with
the register allocation. The getCandidate function should be expanded to take into
account both register pressure and resource utilization. In [33] an approach is discussed
that minimizes register pressure and resource usage and can optimize performance.

4.2 Branch analysis

Analysis of assembly files generated with the LLVM-based compiler showed that branches
were not handled correctly. Consider the following C code:

if (c)

return 1;

else

return 2;

34 CHAPTER 4. OPTIMIZATION

This code will be roughly translated into the following assembly code:

br $b0.0, .BB0_2

;;

goto .BB0_1 ## Goto not required

;;

.BB0_1

add $r0.3 = $r0.0, 1

;;

goto .BB0_3

;;

.BB0_2

add $r0.3 = $r0.0, 2

;;

.BB0_3

return

;;

The first goto operation is not required because it will jump to an adjacent block
of instructions. A branch analysis pass has been developed that can recognize jumps to
adjacent blocks and remove unnecessary goto instructions. This pass works by iterating
over each MachineBasicBlock and finding MachineInstr that are branch instructions.
If a branch instruction is found the instruction is analyzed to determine if the goto

statements can be removed.

In addition, LLVM hooks for insertbranch, removebranch, and
ReverseBranchCondition have been implemented that allow the BranchFolding
pass to further optimize branches.

4.3 Generic binary optimization

Research [32] has shown that generic binaries incur a performance penalty because of
inefficient register usage. Consider the previous generic binary example again:

add $r0.10 = $r0.10, $r0.11
add $r0.12 = $r0.12, $r0.13
add $r0.14 = $r0.14, $r0.8
add $r0.8 = $r0.8, $r0.9

;;

This instruction packet is not legal because of the RAW hazard that is caused by
r0.8. The current approach to fix the RAW hazard is to split the instruction packet
into two separate instructions.

add $r0.10 = $r0.10, $r0.11
add $r0.12 = $r0.12, $r0.13
add $r0.14 = $r0.14, $r0.8

;;

add $r0.8 = $r0.8, $r0.9
;;

Because more instruction packets are used than required the amount of ILP that is
extracted decreases and the performance of the resulting binary decreases. Performance
could be improved by using a different register for the last assignment of r0.8.

4.3. GENERIC BINARY OPTIMIZATION 35

4.3.1 Problem statement

This kind of optimization poses a significant challenge for VLIW type compilers because
the register allocation pass is executed before the VLIW packetization. This implies
that the register allocator has no information about which operations will be grouped
together and for which operations an extra register should be used.

A solution could be to perform VLIW packetization before register allocation is
completed. This would allow the register allocation pass to determine if a RAW hazard
occurs inside a packet and to assign an extra register if needed.

In practice this approach is not possible because between the register allocation pass
and the VLIW packetizer pass other passes are run that can change the final code. For
example, the register allocator pass can insert spill code and the prologue / epilogue
insertion pass inserts code related to the stack layout. Inserting new instructions into
instructions packets that have already been formed is very ugly because packet spilling
could occur where a packet that is already full needs to move instructions to the next
packet, etc.

The new machine scheduler could be customized to retain bundling information for
the register allocator. Due to the complexity of implementing this approach we have
chosen to change the register allocator itself and to make register allocation less aggres-
sive.

The liveliness allocation pass determines when a virtual register is used. The reg-
ister allocator uses this information to create a register mapping with minimal register
pressure.

By increasing the live range of a virtual register it should be possible to force the
register allocator to use more registers when multiple virtual registers are used consecu-
tively. Consider again the previous example:

add $r0.10 = $r0.10, $r0.11
add $r0.12 = $r0.12, $r0.13
add $r0.14 = $r0.14, $r0.8
add $r0.8 = $r0.8, $r0.9

;;

This would be transformed into the following code where the final r0.8 assignment
is changed to an unused register.

add $r0.10 = $r0.10, $r0.11
add $r0.12 = $r0.12, $r0.13
add $r0.14 = $r0.14, $r0.8
add $r0.15 = $r0.8, $r0.9

;;

4.3.2 Implementation

The LiveIntervals pass is used to determine the live ranges of each virtual regis-
ter. The pass uses the LiveRangeCalc class. Each virtual register has an associ-
ated SlotIndex which tracks when the register becomes live and when the register
is killed. The SlotIndex class also provides method that give information on the
MachineBasicBlock (MBB) in which the virtual register is used. The ExtendToUses

36 CHAPTER 4. OPTIMIZATION

method of the LiveRangeCalc class is used to update the SlotIndex to match the latest
use of a virtual register.

Extending of the liverange has been enabled by getting the boundary of the MBB
from the SlotIndex and by extending the SlotIndex to this boundary. This enables
the virtual register to be live for the duration of the basic-block and will make sure
the register allocator will not assign a new virtual register to a previously used physical
register.

This approach is not optimal because it will increase the register usage even if RAW
hazards do not occur. If more virtual registers are used then physical registers are
available the execution speed will drop because extra spill code needs to be inserted.

4.4 Large immediate values

The ρ-VEX processor has support for using 32-bit immediate values. 8-bit immediate
values can be handled in a single ρ-VEX operation. Values larger then 8-bit values
borrow space from the adjacent ρ-VEX operations. The following code examples show
the maximum amount of instruction in a packet for a 4-issue ρ-VEX processor.

add $r0.10 = $r0.10, 200

add $r0.11 = $r0.11, 200

add $r0.12 = $r0.12, 200

add $r0.13 = $r0.13, 200

;;

The following instruction packet contains an operation that uses an immediate value
that cannot be contained inside a single ρ-VEX operation.

add $r0.10 = $r0.10, 2000

add $r0.11 = $r0.11, 200

add $r0.12 = $r0.12, 200

;;

Large immediate values are used throughout the ρ-VEX ISA. Not only arithmetic
instruction can use large immediate values but also load and store operations to represent
the address offset.

ldw $r0.2 = 2000[$r0.2]
;;

4.4.1 Problem statement

Large immediate values can be supported by creating a new instruction itinerary with
support for large immediate values. This instruction itinerary would be special because it
requires two functional units during VLIW packetization. The algorithm that builds the
resource usage DFA needs to be updated to reflect instruction itineraries with multiple
functional unit usage.

This approach is impractical for a couple of reasons. Each instruction that supports
immediate values needs to be implemented twice, once for small immediate values and
once for large immediate values. This would increase the risk of errors in the Tablegen

4.5. CONCLUSION 37

files because each instruction has multiple definitions that need to be updated when
changes are made.

A second approach is to update the VLIW packetizer to recognize large immediate
values during the packetization pass.

4.4.2 Implementation

During the packetization pass each operation that uses an immediate value is checked
before it is bundled in an instruction packet. If an operation is found that uses an
immediate value the size of this immediate value is determined. If the immediate value
is smaller then 256 then the operation is added to the instruction bundle and the DFA
resource tracker is updated accordingly.

If the immediate value is larger the DFA resource tracker is used to determine if the
current packet can fit the current operation plus an empty operation. If this is possible
the operation is added to the instruction bundle and the DFA packetizer is updated with
two new occupied resources.

4.5 Conclusion

In this chapter we discussed the optimizations that have been implemented to increase
performance of ρ-VEX binaries that have been generated with the LLVM compiler.

The rvexMachineScheduler pass is used to handle structural and data hazards.
Temporary instruction packets are generated and are filled with instructions that have
been selected using cost-based scheduling algorithms to reduce register pressure. The
pass enables ρ-VEX binaries to execute correctly and to perform better than binaries
that have not been scheduled using the rvexMachineScheduler.

The branch analysis optimization is used to erase unnecessary goto statements from
the code. In addition, hooks have been provided that allow the LLVM BranchFolding

pass to further optimize branches that are used in ρ-VEX binaries.
The generic binary optimization allows binaries with generic binary support to per-

form on par with regular binaries. The performance of generic binaries will only degrade
once the register pressure becomes too high and spill code needs to be inserted.

The immediate value optimization allows more efficient use of available instructions
of the ρ-VEX processor.

38 CHAPTER 4. OPTIMIZATION

Verification and Results 5
The previous chapters described how the LLVM-based ρ-VEX compiler has been imple-
mented. In this chapter, we are going to verify the correct operation of the compiler
and we are going to measure the performance of the binaries that are generated with the
LLVM-based compiler.

5.1 Simulation environment

Benchmarking and verification can be performed using the architecture simulator xST-
sim and using the hardware simulator Modelsim. We have chosen to use the Modelsim
hardware simulator because a complete logical simulation of the processor is used for
evaluation. This provides for a more accurate simulation compared to the xSTsim sim-
ulator. Modelsim builds a simulation environment using the ρ-VEX VHDL files. A
testbench is used to generate test signals. For this simulation the testbench is used
to load the instruction and data memory of the ρ-VEX processor and to generate cor-
rect clock and enable signals to start execution. In Figure 5.1, the testbench process is
depicted.

Figure 5.1: ρ-VEX testbench

Modelsim wave viewer can be used to monitor execution of the processor. The wave
viewer has been used to check the contents of the registers and to monitor the instruction
pipeline when necessary.

39

40 CHAPTER 5. VERIFICATION AND RESULTS

5.2 Verification

Unit testing has been used to verify the correct operation of the LLVM compiler. The
tests have been performed using the xSTsim simulator and Modelsim. xSTsim can only
print pipeline and register information to the terminal. It is not possible to parse strings
or information from the program that is executing back to the user. To check if tests
are executed correctly we check the return statement after completion of a benchmark.
The value in the return register indicates whether the test executed correctly or where
and at which point the test failed. Using Modelsim the contents of the return register
can be monitored during execution.

• arit.c: Integer arithmetic tests for char, short, int and long long types.

• if.c: Integer and boolean comparison operators.

• float.c: Testing of floating point library.

• func.c: Tests involving pointers and structures.

• global.c: Tests involving global integers, arrays and structures.

• call.c: Function calls.

• func pointer.c: Function calls using function pointers.

• loop.c: Basic while loops.

• misc.c: Others tests.

During preliminary testing of the benchmark additional errors were found. The
verification tests have been updated to catch these errors. Unfortunately, some bench-
marking errors are not possible to define as a unit test. Some errors, such as scheduling
and register allocation errors, only occur in complex programs. Translating these errors
to simple unit tests is not possible because they depend on the higher-level structure of
the program.

In addition, the Powerstone benchmark [34] has been used as an additional verifica-
tion step. The benchmarks consist of a number of programs that test certain functional-
ity. In addition to performance evaluation, the benchmarks are also useful to check the
executable correctness of the generated binaries.

The following benchmarks were used for evaluation:

• adpcm: codec for voice compression.

• bcnt: Bitwise shift and operations on 1K array.

• blit: Graphics application.

• compress: UNIX compression utility.

• crc: Cyclic redundancy check.

5.2. VERIFICATION 41

• DES: Encryption algorithm.

• engine: Engine control application.

• fir: Finite Impulse Response filter algorithm.

• g3fax: Group 3 fax decode.

• jpeg: Image compression algorithm.

• matrix: Matrix multiplication.

• pocsag: Communication protocol for paging applications.

• qurt: Square root calculation using floating-point operations.

• ucbqsort: Quicksort algorithm.

• v42: Modeom encoding/decoding.

These benchmarks were run using both Modelsim and xSTsim. A number of prob-
lems were found during verification with the Powerstone benchmark. The following
benchmark has not been used because the benchmark is faulty:

• fir: Algorithm does not execute correctly. The algorithm also fails on a reference
workstation. This indicates that the benchmark itself is faulty.

Other benchmarks produce an incorrect result when verifying using Modelsim. How-
ever, these benchmarks do produce the expected result when simulation with xSTsim.

• jpeg: The jpeg benchmark returns an incorrect result. Manual analysis of the
benchmark does not show any errors in scheduling or instruction selection. The
algorithm has been further verified by testing subsets of the jpeg algorithm. All the
individual subsets work as expected and produce the expected results. The jpeg
benchmarks works by executing these subsets 600 times. The code is demonstrated
in Listing 5.1.

for (i = 0; i < 600; i++)

huff_dc_dec (&Data)

for (i = 0; i < 600; i++)

huff_ac_dec (&Data);

for (i = 0; i < 600; i++)

dquantz_lum (&Data);

for (i = 0; i < 600; i++)

j_rev_dct (&Data);

Listing 5.1: jpeg code example

When the for loop range is changed to a smaller number, such as 500, the bench-
mark produces the expected result. This indicates a possible simulation error where
a part of the data memory is overwritten during execution.

42 CHAPTER 5. VERIFICATION AND RESULTS

Benchmark W2 W4 W8

adpcm 2.206.300 2.115.820 2.118.040

bcnt 39.540 38.200 35.640

blit 1.164.280 1.204.140 1.204.120

compress 4.034.600 3.886.340 3.872.920

crc 1.323.160 1.290.540 1.290.560

des 2.755.280 2.423.420 2.186.540

engine 22.820.980 18.119.680 18.119.680

g3fax 55.537.540 56.645.740 56.680.260

matrix 717.100 615.060 615.040

pocsag 2.453.040 1.987.140 1.954.860

qurt 1.378.430 1.331.560 1.331.660

ucbqsort 9.568.680 9.457.160 9.454.600

v42 106.505.820 103.197.300 97.380.520

Table 5.1: LLVM-based compiler performance in ns

Because these benchmark are not running correctly we will not consider them for
measuring the performance of the LLVM-based compiler.

5.3 Benchmark results

The Powerstone benchmark suite has been used to evaluate the performance of the
LLVM-based compiler. We measure the execution time of the generated binaries and
also the compile-time for each binary. We have only used the Powerstone benchmarks
that produce a correct result when simulating with Modelsim.

5.3.1 General performance

General performance of all the compilers that target the ρ-VEX processor are shown in
Tables 5.1, 5.2 and 5.3. The absolute performance of the compilers is displayed in Figure
5.2.

5.3.1.1 HP-VEX performance

In Table 5.2 the absolute performance of the HP-VEX compiler is given. As expected
the HP-VEX compiler generates the best performing binaries. Table 5.4 shows that the
HP-based compiler binaries are on average twice as fast as the LLVM-based compiler
binaries. The HP-VEX compiler is unable to generate working binaries for the adpcm

and g3fax benchmark when targeting a 8-issue ρ-VEX processor. The reason for these
errors is not immediately clear.

The HP-VEX compiler generates excellent performing binaries because it has a supe-
rior scheduling techniques for finding and extracting ILP in source code. The HP-VEX
compiler uses a trace-based scheduling technique that enables better ILP extraction. In
addition to this, the HP-VEX compiler also seems to do more optimization. Even when

5.3. BENCHMARK RESULTS 43

Figure 5.2: Absolute performance

compiling with -O0 flag, the compiler already performs certain optimizations that are
not available for the LLVM-based compiler. For example, compare the output for the
following simple C program:

int main() {

int a = 3, b = 2, c;

c = a + b;

return c;

}

Listing 5.2 displays the output of the HP-VEX compiler and Listing 5.3 shows the
output of the LLVM-based compiler. The output shows immediatly that the HP-VEX
compiler has eliminated the add operation and has copied the final value of the operation
straight to the return register. The LLVM compiler does not perform these kinds of
optimizations at -O0.

add $r0.3 = $r0.0, 5 ## Move to return register

;;

return

;;

Listing 5.2: HP compiler output

44 CHAPTER 5. VERIFICATION AND RESULTS

Benchmark W2 W4 W8 Comment

adpcm 763.120 613.520 ERR Infinite loop

bcnt 16.860 11.100 11.080

blit 341.620 301.360 301.360

compress 2.893.080 2.421.420 2.400.140

crc 486.980 347.040 347.040

des 1.485.980 930.360 779.980

engine 15.785.220 13.720.900 13.719.860

g3fax 24.821.120 22.678.220 ERR Infinite loop

matrix 255.940 251.260 251.220

pocsag 889.160 676.680 667.880

Quicksort 743.480 633.520 692.840

ucbqsort 6.621.460 5.604.720 5.603.460

v42 57.672.780 53.910.400 53.910.260

Table 5.2: HP-based compiler performance in ns

add $r0.2 = $r0.0, 2

add $r0.3 = $r0.0, 3

;;

add $r0.3 = $r0.2, $r0.3 ## Move to return register

;;

return

;;

Listing 5.3: LLVM compiler output

Figure 5.3 shows the relative performance of LLVM-based binaries compared to HP-
VEX binaries. As expected HP-VEX binaries perform better then LLVM-based binaries.
Inspection of the generated assembly files indicates that the HP-VEX compiler is able
to fill significantly more functional units than the LLVM-based compiler. Furthermore,
the LLVM-based compiler is overly aggressive in inserting nop instructions to reduce
structural and data hazards.

5.3.1.2 GCC performance

Table 5.3 shows the absolute performance of the GCC-based compiler. Figure 5.4 shows
the relative performance of LLVM-based binaries compared to GCC-based binaries. The
GCC based compiler is unable to compile a significant number of Powerstone bench-
marks.

Performance of the LLVM-based compiler shows mixed results. Some benchmarks
perform significantly better, such as matrix and ucbqsort, but compress performs
worse. Manual inspection of this benchmark does not show an obvious reason for de-
creased performance except for the overly aggressive nop insertion of the LLVM machine
scheduler.

5.3. BENCHMARK RESULTS 45

Figure 5.3: HP-LLVM relative performance

Benchmark W4 Comment

adpcm ERR Wrong result

bcnt ERR Infinite loop

blit ERR Wrong result

compress 3.433.960

crc 1.409.960

des ERR Error load

engine ERR Error load

g3fax 62.666.300

matrix 1.090.420

pocsag 2.058.700

qurt ERR Wrong result

ucbqsort 31.075.420

v42 ERR Wrong result

Table 5.3: GCC-based compiler performance in ns

5.3.1.3 Issue-width

Close inspection of the absolute performance reveals some interesting facts related to
the issue-width of the processor. Increasing the issue-width from 2-issue to 4-issue leads
to a significant increase in performance. Further increasing the issue-width to 8-issue
machine does not lead to an increase in performance. This is shown in Figure 5.5. For
some benchmarks such as bcnt the LLVM-based compiler is able to find extra parallelism
but for most benchmarks the performance increase is non-existent.

Manual inspection of the assembly files that are generated shows that both compilers

46 CHAPTER 5. VERIFICATION AND RESULTS

Figure 5.4: GCC-LLVM relative performance

Benchmark VEX W2 VEX W4 VEX W8 GCC W4

adpcm -65% -71% ERR ERR

bcnt -57% -71% -69% ERR

blit -71% -75% -75% ERR

compress -28% -38% -38% -12%

crc -63% -73% -73% 7%

des -46% -62% -64% ERR

engine -31% -24% -24% ERR

g3fax -55% -60% ERR 13%

matrix -64% -59% -59% 52%

pocsag -64% -66% -66% -16%

qurt -46% -52% -48% ERR

ucbqsort -31% -41% -41% 225%

v42 -46% -48% -45% ERR

Table 5.4: Relative performance of LLVM-compiler binaries

are able to generate instruction packets that use a higher number of functional units.
These large instruction packets do not lead to an increase in performance because they
are not contained inside loop structures. The amount of times large instruction packets
are executed is limited.

Some benchmarks, such as blit and g3fax, perform worse when using a higher issue-
width. Analysis shows that the machine scheduler adds unnecessary nop instructions that
cause a decrease in performance.

5.3. BENCHMARK RESULTS 47

Figure 5.5: Relative performance for increasing issue-width

5.3.1.4 Compiler optimizations

Unfortunately it was not possible to compare the compilers for different optimization
levels. The LLVM-based compiler needs a runtime library for most benchmarks when
compiling with optimizations turned on. This requires us to port the complete LLVM-
based runtime library to the ρ-VEX processor. For this thesis only the floating-point
library has been ported. Porting the complete runtime library falls outside the scope of
this thesis.

5.3.2 Generic binary performance

The performance of generic binaries has been tested by generating three sets of binaries
for a 4-issue ρ-VEX processor: Regular binary, Generic binary without optimizations
and Generic binary with optimizations. These simulations were performed with the
xSTsim architectural simulator. The relative performance of generic binaries compared
to regular binaries is displayed in Figure 5.6.

Figure 5.6 shows that the optimization for generic binaries provides for more effi-
cient generic binaries for most benchmarks. The matrix benchmark in particular shows
excellent increase in performance. The adpcm and bcnt benchmark however shows a sig-
nificant decrease in performance. Closer inspection of the generated binaries shows that
some benchmarks start spending a lot of time executing spill code to save registers to the
stack. This is related to the optimization being too aggressive for MachineBasicBlocks
with a lot of virtual registers. The optimization causes virtual registers to remain live
from the moment they are defined to the end of the MachineBasicBlock. The optimiza-
tion should be optimized to only keep the virtual register live for the duration of the
next instruction packet. This would reduce virtual register usage and would also reduce

48 CHAPTER 5. VERIFICATION AND RESULTS

Figure 5.6: Generic-Regular performance

Benchmark Regular No opt Difference With opt Difference

adpcm 176.327 187.135 -6% 194.492 -9%

blit 100.328 102.007 -2% 100.325 0%

bcnt 3.358 3.811 -12% 5.643 -40%

compress 385.797 392.115 -2% 391.920 -2%

crc 107.528 108.950 -1% 108.820 -1%

g3fax 5.124.268 5.124.433 0% 4.874.923 5%

matrix 51.238 61.572 -17% 51.238 0%

pocsag 174.128 177.103 -2% 164.661 6%

Table 5.5: Generic binary performance

spill code that is introduced.

Some benchmarks show an increase in performance when compiling using the generic
binary optimization. This shows how aggressive the register allocator can be in trying
to reduce register pressure. Even though the ρ-VEX processor has 64 general-purpose
registers available the compiler will always try to keep the register usage down to a
minimum.

[32] stated that performance should increase if more registers are used for generic
binaries. The amount of different registers that are used by each benchmark have been
tracked and are displayed in Table 5.6. The table shows that the optimization is able
to increase the register usage for each benchmark. The adpcm benchmark already uses a
large amount of registers and it is not possible to increase this by much. This probably
causes the excessive spill code that is generated for this benchmark.

5.3. BENCHMARK RESULTS 49

Benchmark Regular No-opt Opt

adpcm 49 49 56

blit 18 18 33

bcnt 14 14 59

compress 27 27 60

crc 19 19 27

g3fax 18 18 19

matrix 18 18 36

pocsag 24 24 31

Table 5.6: Register usage

More problematic is the fact that the optimization breaks certain benchmarks. Table
5.5 only shows the benchmarks that were able to execute properly. The large number
of virtual registers that are used in certain benchmarks are causing unforeseen prob-
lems during the compilation process. For instance, during compilation of the compress

benchmark the register allocator tried to use the PC register as a physical register. This
was quickly fixed but indicates the kind of problems that are introduced.

5.3.3 Compile-time

The compile time has been measured on a virtual machine running Ubuntu 12.04. The
virtual machine has one processor and 1024MB RAM allocated. The host system uses
a 1.7GHz Intel Core i5 processor. The compile-time has been measured by compiling
each benchmark 100 times. The Linux time command has been used to measure the
execution time.

The HP-VEX and GCC compiler are able to generate assembly files from the input
C source code. The LLVM compiler uses a two-phase compilation where Clang is used to
compile to LLVM IR and the LLVM static compiler (LLC) is used to compile to assembler.
This two-phase compilation will have a negative effect on the performance because extra
files need to be read and written from the main memory. This could be avoided by
passing the output of Clang straight to LLC but this was not possible to achieve in a
timely manner.

The compile-time of each benchmark is given in Table 5.7 and depicted in Figure
5.7. The GCC-based compiler outperforms both the HP-VEX and LLVM-based com-
piler in nearly every benchmark. The HP-VEX compiler offers no timing report, which
makes it impossible to determine which part of compilation is causing the delay. The
lower performance could be related to the extra optimization that the HP-VEX compiler
performs.

The LLVM-based compiler is slower in nearly every benchmark compared to the
GCC-based compiler. This could be related to the extra time that is required to write
the LLVM IR files to the disk.

50 CHAPTER 5. VERIFICATION AND RESULTS

Benchmark HP VEX GCC LLVM

adpcm 6,41 6,55 5,68

bcnt 1,72 2,02 2,91

blit 2,26 2,12 3,72

compress 8,82 7,19 9.12

crc 2,54 2,30 3,28

engine 5,60 3,64 4,14

g3fax 5,00 3,95 6,58

matrix 1,97 1,88 2,92

pocsag 6,60 4,28 5,49

qurt 2,74 3,46 3,33

ucbqsort 8,41 3,60 4,54

Table 5.7: Compile-time in seconds

Figure 5.7: Compile-time in seconds

5.4 Conclusion

In this section we have shown how the operation of the LLVM-based compiler has been
verified and how well binaries execute that were generated with the LLVM-based com-
piler.

The benchmarks and verifications have shown that the LLVM-based compiler still
contains bugs. Not all benchmarks are able to execute using the Modelsim simulator
but all benchmarks are able to execute using the xSTsim simulator. The reason for the
failing benchmarks remain unclear. It is possible that the compiler generates code that
is not scheduled properly but analysis of the jpeg benchmark indicated the possibility
of other issues.

We have shown that the LLVM-based compiler exceeds the performance of the GCC-

5.4. CONCLUSION 51

based compiler but the compiler is still outperformed by the HP-VEX compiler. As
expected the HP-VEX compiler generates binaries that perform very well. This is related
to the trace-based scheduling techniques that are employed to extract a high level of ILP
[15]. In addition, the HP-VEX compiler also performs certain optimizations that are not
available to the LLVM-based compiler at -O0.

Additionally, the benchmarks have also shown that the LLVM-based compiler is the
only compiler able to generate correct code for all selected benchmarks. Surprisingly,
even the HP-VEX compiler generates incorrect binaries for certain benchmarks. The
code quality of the GCC-based compiler is bad with four benchmarks failing to execute.

Furthermore, we have shown that the generic binary optimization allows generic
binaries to operate at speeds that are nearly equal to the regular binaries. The generic
binary optimization does introduce spill code in benchmarks that already use a large
number of physical registers. The current optimization is too aggressive for the adpcm

benchmark and introduces excessive amount of spill code that degrades performance.
The optimization should be fine tuned to consider this situation. More problematic is
the fact that the used optimization breaks certain benchmarks.

52 CHAPTER 5. VERIFICATION AND RESULTS

Conclusion 6
The previous chapters discussed how the LLVM-based backend has been implemented.
This chapter summarizes the results and presents opportunities for future research.

6.1 Summary

In Chapter 2, we discussed the background of the ρ-VEX processor and the basics of the
LLVM compiler framework. The ρ-VEX processor is a VLIW type processor that uses
RISC like instructions to operate. We have presented the basic design of the processor,
the instructions that are supported, register properties, and the run-time architecture
has been discussed. This information will be used during implementation of the LLVM-
based compiler.

We discussed the basic working of the LLVM compiler framework. Building a ρ-VEX
backend for the LLVM compiler is feasible because the current version of the LLVM
compiler already targets a VLIW processor.

Finally, we also discussed how the LLVM compiler will be verified. The verification
step is extremely important to determine whether the binaries that are generated work
correctly.

Chapter 3 discussed how the LLVM-based compiler was implemented. Using the
tablegen description we described all the instructions that are supported by the ρ-VEX
processor. We have also shown how LLVM IR code is transformed into a DAG that
represents the original program. With LLVM specific functions this DAG is transformed
into a DAG that contains only operations that are supported by the target processor.
During the instruction selection phase the DAG is transformed into a new DAG that
contains target specific operations.

The finished DAG is transformed into a sequential list of instructions. This instruc-
tion list is used for the remaining passes. The remaining passes are used to map virtual
registers to physical registers, emit prologue and epilogue functions, and to perform
VLIW packetization.

Certain features that are required for the ρ-VEX processor are not available in the
LLVM compiler. Features such as a machine description file are new to LLVM and we
have shown what changes have been made to the LLVM compiler to support machine
description files. In addition, we have shown how the backend has been updated to pro-
vide support for the ρ-VEX generic binary format. Support for floating point operations
has been added by porting the LLVM floating point library to the ρ-VEX processor.

Chapter 4 discussed the optimizations that have been implemented to improve perfor-
mance of the ρ-VEX binaries. The rvexMachineScheduler pass is used to handle struc-
tural and data hazards. Temporary instruction packets are generated and are filled with
instructions that have been selected using cost-based scheduling algorithms to reduce

53

54 CHAPTER 6. CONCLUSION

register pressure. The pass enables ρ-VEX binaries to execute correclty and to perform
better than binaries that have not been scheduled using the rvexMachineScheduler.

The branch analysis optimization is used to erase unnecessary goto statements from
the code. In addition, hooks have been provided that allow the LLVM BranchFolding

pass to further optimize branches that are used in ρ-VEX binaries.

The generic binary optimization allows binaries with generic binary support to per-
form on par with regular binaries. The performance of generic binaries will only degrade
once the register pressure becomes too high and spill code needs to be inserted.

The immediate value optimization allows more efficient use of available instructions
of the ρ-VEX processor.

Finally, in Chapter 5 we have shown how the operation of the LLVM-based compiler
has been verified and how well binaries execute that have been generated with the LLVM-
based compiler.

The benchmarks and verifications have shown that the LLVM-based compiler still
contains bugs. Not all benchmarks are able to execute using the Modelsim simulator but
all benchmarks are able to execute using the xSTsim simulator. The exact reason for
the failing benchmarks remain unclear. It is also possible that the compiler generates
code that is not scheduled properly but analysis of the jpeg benchmark indicated the
possibility of other issues.

We have shown that the LLVM-based compiler exceeds the performance of the GCC-
based compiler but the compiler is still outperformed by the HP-VEX compiler. As
expected the HP-VEX compiler generates binaries that perform very well. This is related
to the trace based scheduling techniques that are employed to extract a high level of ILP
[15]. In addition, the HP-VEX compiler also performs certain optimizations that are not
available to the LLVM-based compiler at -O0.

Additionally, the benchmarks have also shown that the LLVM-based compiler is the
only compiler able to generate correct code for all selected benchmarks. Surprisingly,
even the HP-VEX compiler generates incorrect binaries for certain benchmarks. The
code quality of the GCC-based compiler is bad with four benchmarks failing to execute.

We have also shown that the generic binary optimization allows generic binaries to
operate at speeds that are nearly equal to the regular binaries. The generic binary op-
timization does introduce spill code in benchmarks that already use a large number of
physical registers. The current optimization is too aggressive for the adpcm benchmark
and introduces excessive amount of spill code that degrades performance. The optimiza-
tion should be fine tuned to consider this situation. More problematic is the fact that
the used optimization breaks certain benchmarks.

6.2 Main contributions

In this thesis, we have presented the design of an LLVM-based ρ-VEX compiler. We
have shown how the compiler is built, what optimizations have been implemented and
the performance of binaries that have been generated with the LLVM-based compiler.

The main contributions to the ρ-VEX project are:

• LLVM-based ρ-VEX compiler: A backed has been implemented for the LLVM

6.3. FUTURE WORK 55

compiler that targets the ρ-VEX processor. The target supports all ρ-VEX opera-
tions. In addition, a floating-point library has been ported to the ρ-VEX processor
and support for 64-bit operations has been added.

• Parameterization of LLVM-based compilers: Compilation parameters can
be altered using configuration files. The configuration files make it possible to
change the issue width, functional units, instruction latency and generic binary
support.

• Support for generic binaries: The ρ-VEX backend supports generic binaries.
Generic binaries are able to execute on any ρ-VEX processor, irrespective of issue-
width.

• Scheduling optimizations: A machine scheduler has been implemented that
performs scheduling optimizations. The scheduler is aware of the target issue-
width and schedules instruction packets accordingly.

• Generic binary register allocation optimization: Optimizations have been
added that enable generic binaries to perform nearly as well as binaries that are
generated for a specific issue-width.

6.3 Future work

Future areas of research for the LLVM-based ρ-VEX could involve the following subjects:

• Fix compilation bugs: The current version of the LLVM-based compiler shows
possible erors in a number of benchmarks. These bugs need to be fixed to produce
a more stable version of the LLVM-based compiler.

• Optimization level support: Currently, we have not considered using higher
optimization levels. Brief tests with higher optimization levels indicated massive
increases in performance. Unfortunately, the compiler started using runtime library
functions that have not yet been ported to the ρ-VEX processor.

• Optimize scheduling: The scheduling algorithms that are used by the LLVM-
based compiler can be further optimized. In [35], a technique was presented to
optimize the scheduling for VLIW processors. The algorithm uses information
about the instruction delay to reorder the instructions. This leads to an increase
in pipeline utilization and code that performs better. Scheduling could also be
improved by integrating the register allocation and instruction scheduling phase as
discussed in [33].

• Enhance parameterization: At the moment only issue-width, instruction
stages, and instruction delay can be customized through the configuration files.
In the future, more configuration options can be added such as the number of
registers available or scheduling parameters.

56 CHAPTER 6. CONCLUSION

• LLVM JIT: The LLVM compiler supports Just-In-Time compilation through the
LLVM interpreter. Implementing the interpreter for the ρ-VEX processor could
produce interesting results where binary properties can be modified during runtime.
For example, the interpreter could look for code with higher degree of ILP. If
suitable code is found the program will be executed on an 8-issue ρ-VEX processor.
If suitable code is not found the issue-width could be reduced to 2- or 4-issue code
and the idle functional units can be shut down to preserve energy.

• Trace-based scheduling: Currently, the LLVM compiler uses a basic block sched-
uler. Introducing a trace-based scheduler could further improve performance of
binaries for VLIW type processors.

Bibliography

[1] J. L. Hennessy and D. A. Patterson, Computer Organization and Design. Morgan
Kaufmann, 2009.

[2] R. Seedorf, F. Anjam, A. Brandon, and S. Wong, “Design of a pipelined and pa-
rameterized vliw processor: -vex v2.0,” 6th HiPEAC Workshop on Reconfigurable
Computing (WRC 2012), 2012.

[3] J. A. Fisher, The VEX System, pdf.

[4] T. van As, “ρ-vex: A reconfigurable and extensible vliw processor-vex: A reconfig-
urable and extensible vliw processor,” Master’s thesis, Technical university Delft,
Mekelweg 4, 2628 CD, Delft, The Netherlands, 2008.

[5] P. Faraboschi, G. Brown, J. Fisher, G. Desoll, and F. Homewood, “Lx: a technology
platform for customizable vliw embedded processing,” in Computer Architecture,
2000. Proceedings of the 27th International Symposium on, 2000, pp. 203–213.

[6] J. A. Fisher, “Very long instruction word architectures and the eli-512,” SIGARCH
Comput. Archit. News, vol. 11, no. 3, pp. 140–150, Jun. 1983. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1067651.801649

[7] R. M. Tomasulo, “An efficient algorithm for exploiting multiple arithmetic units,”
IBM Journal of Research and Development, vol. 11, no. 1, pp. 25–33, Jan 1967.

[8] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel,
“The microarchitecture of the pentium 4 processor,” Intel Technology Journal Q1,
2001.

[9] J. L. Hennessy and D. A. Patterson, Computer Architecture, A Quantitative Ap-
proach, Fifth edition. Morgan Kaufmann, 2012, ch. Chapter Three: Intstruction-
Level Parallelism and Its Exploitation, p. 244.

[10] N. Sakran, M. Yuffe, M. Mehalel, J. Doweck, E. Knoll, and A. Kovacs, “The im-
plementation of the 65nm dual-core 64b merom processor,” in Solid-State Circuits
Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International,
Feb 2007, pp. 106–590.

[11] D. W. Wall, “Limits of instruction-level parallelism,” WRL Research Report, p. 73,
November 1993.

[12] M. Lam, “Software pipelining: An effective scheduling technique for vliw
machines,” SIGPLAN Not., vol. 23, no. 7, pp. 318–328, Jun. 1988. [Online].
Available: http://doi.acm.org/10.1145/960116.54022

[13] B. D. de Dinechin, “From machine scheduling to vliw instruction scheduling,” 2004.

57

http://dl.acm.org/citation.cfm?id=1067651.801649
http://doi.acm.org/10.1145/960116.54022

58 BIBLIOGRAPHY

[14] R. Colwell, R. Nix, J. O’Donnell, D. Papworth, and P. Rodman, “A vliw architecture
for a trace scheduling compiler,” Computers, IEEE Transactions on, vol. 37, no. 8,
pp. 967–979, Aug 1988.

[15] P. G. Lowney, P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein,
R. P. Nix, J. S. O’donnell, and J. C. Ruttenberg, “The multiflow trace scheduling
compiler,” JOURNAL OF SUPERCOMPUTING, vol. 7, pp. 51–142, 1993.

[16] J. A. Fisher, P. Faraboschi, and C. Young, Embedded computing: A VLIW Approach
to Architecture, Compilers and Tools. Elsevier, 2005.

[17] VEX Toolchain, HP Inc. [Online]. Available: http://www.hpl.hp.com/downloads/
vex/

[18] GCC, the GNU Compiler Collection, Free Software Foundation, Inc. [Online].
Available: http://gcc.gnu.org

[19] V. A. Chris Lattner, “Llvm: A compilation framework for lifelong program analysis
& transformation,” Proceedings of the International Symposium on Code Generation
and Optimization, 2004.

[20] L. Codrescu, E. Plondke, W. Anderson, C. Maule, C. Koob, M. Zeng, A. Ingle,
C. Tabony, and suresh venkumahanti, “Qualcomm hexagon dsp: An architecture
optimized for mobile multimedia and communications,” IEEE Micro, vol. 99, no. 1,
p. 1, 5555.

[21] L. T. Simpson, “Porting llvm to a next generation dsp,” LLVM Developers’ Meeting,
2011.

[22] C. Erhardt, “Design and implementation of a tricore backend for the llvm compiler
framework,” Master’s thesis, Friedrich-Alexander-Universita t Erlangen-Nürnberg,
2009.

[23] L. Antani, H. Ansari, and A. Parameswaran, “Tricore port for gcc - an analysis,”
Master’s thesis, Indian Institute of Technology, Bombay Mumbai, Unknown.

[24] R. Seedorf, “Fingerprint verification on the vex processor,” Master’s thesis, Techni-
cal university Delft, 2011.

[25] LLVM, “Auto-vectorization in llvm.” [Online]. Available: http://llvm.org/docs/
Vectorizers.html

[26] ——, “Dragonegg - using llvm as a gcc backend.” [Online]. Available:
http://dragonegg.llvm.org

[27] Clang. Clang - features and goals. [Online]. Available: http://clang.llvm.org/
features.html

[28] C. Lattner, “The llvm compiler framework and infrastructure (part 1),” Presenta-
tion.

http://www.hpl.hp.com/downloads/vex/
http://www.hpl.hp.com/downloads/vex/
http://gcc.gnu.org
http://llvm.org/docs/Vectorizers.html
http://llvm.org/docs/Vectorizers.html
http://dragonegg.llvm.org
http://clang.llvm.org/features.html
http://clang.llvm.org/features.html

BIBLIOGRAPHY 59

[29] J. L. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, and T. Gross, “Design of a high
performance vlsi processor,” Stanford, CA, USA, Tech. Rep., 1983.

[30] R. Garner, A. Agrawal, F. Briggs, E. Brown, D. Hough, B. Joy, S. Kleiman, S. Much-
nick, M. Namjoo, D. Patterson, J. Pendleton, and R. Tuck, “The scalable processor
architecture (sparc),” in Compcon Spring ’88. Thirty-Third IEEE Computer Society
International Conference, Digest of Papers, Feb 1988, pp. 278–283.

[31] B. Parhami, Algorithms and Design Methods for Digital Computer Arithmetic. Ox-
ford University Press, 2012.

[32] A. Brandon and S. Wong, “Support for dynamic issue width in vliw processors using
generic binaries,” EDAA, 2013.

[33] D. G. Bradlee, S. J. Eggers, and R. R. Henry, “Integrating register allocation and
instruction scheduling for riscs,” SIGPLAN Not., vol. 26, no. 4, pp. 122–131, Apr.
1991. [Online]. Available: http://doi.acm.org/10.1145/106973.106986

[34] J. Scott, L. H. Lee, J. Arends, and B. Moyer, “Designing the low-power m*core
architecture,” in Proc. IEEE Power Driven Microarchitecture Workshop, 1998.

[35] M. Vahedi, “Iterative instruction scheduling for a vliw processor,” Master’s thesis,
Technical University Delft, 2013.

http://doi.acm.org/10.1145/106973.106986

60 BIBLIOGRAPHY

LLVM Quickstart guide A
In this section we will describe how the LLVM-based compiler can be used for projects.
This guide assumes that clang andvex llv executables are available. Furthermore, we
also require the availability of the VEX assembler and VEX linker.

All the source code that is required for this guide is contained in the source.zip

archive. This archive contains the following folders:

• config: Configuration files for vex llc. Different configuration files exist for 2-issue,
4-issue, and 8-issue machines.

• benchmarks: Folder containing the powerstone benchmark suite.

• tests: Folder containing the LLVM verification tests.

• float: Folder containing the floating point library used during compilation.

Each folder contains a Makefile that automates the build process. The current
version of the Makefiles are used to compile c sourcecode into ρ-VEX assembler.

A.1 Compilation

The following code uses clang to compile input c sourcecode into LLVM IR code.

clang -emit -llvm -S -m32 -O0 -fno -stack -protector input.c -o output.ll

The compiler flags are used as follows:

• -emit-llvm: Emits the LLVM IR code.

• -s: Emit human readable assembler.

• -m32: int is 32-bits.

• -O0: No optimizations.

• -fno-stack-protector: Do not emit a stack-protector. The current run-time
library does not support stackprotection.

vex llc is used as follows:

vex_llc input.ll -march=rvex -mcpu=rvex -vliw -config =../ config/rvex_W4_2 -←↩
enable -misched=true -relocation -model=static -o output.s

61

62 APPENDIX A. LLVM QUICKSTART GUIDE

The compiler flags are used as follows:

• -march: Select the architecture to compile for.

• -mcpu: Select the subtarget of the architecture.

• -config: Path to configuration file.

• -enable-misched: Enables the machine scheduler that is required for correct
scheduling of ρ-VEX operations.

• -relocation-model: Current version of ρ-VEX processor has no support for dy-
namic binaries.

A executable can be generated using rvex-as and rvex-ld as follows:

rvex -as --issue 4 --borrow 1 ,3.0 ,2.3 ,1.2 ,0. --config 9335 -h input.s -o ←↩
output.o

rvex -ld output.o _start.o -o output

The assembler flags are used as follows:

• -issue: Select issue width of final binary.

• -borrow: Borrowing scheme used for large immediate values.

• -config: Describes which functional units support Multiply, Branch and Load
instructions.

• -h: Flag toggles generic binaries.

The linker is used to build the final executable using a startup file and all the object
files.

A.2 Simulation

Simulation can be performed using xSTsim or with Modelsim.

xstsim -r-VEX -1.1.3 --ips='"[r-VEX c]"' --c.trace =5 --c.trace_regs =2 --←↩
accuracy =0 --c.target_exec ='"test"'

The flags that are used for xSTsim are described in the xSTsim documentation.

For simulation with modelsim hex files are required. These can be generated with
the rvex-elf2vhd tool as follows:

rvex -elf2vhd --hex test

The elf2vhd tool can be used to generate hex and vhd files with the following flags.

• -hex: Generates hex files.

A.2. SIMULATION 63

• -vhd: Generates vhd files.

The vhd can only be used for 4-issue width ρ-VEX processors because the instruction
memory datatype is fixed to 128-bits. The hex files can be used for all issue widths an
can also be used to load the instruction and data memory of physical hardware.

64 APPENDIX A. LLVM QUICKSTART GUIDE

LLVM Development guide B
This section describes how to build LLVM from source. The following software is re-
quired:

• Compiler: A compiler is obviously required to build LLVM. On Linux LLVM can
be compiled with LLVM and GCC. Mac users can build LLVM using LLVM.

• CMAKE: CMAKE is required to generate the build files for LLVM.

• git: Required to get the source files

The source files can be downloaded from the following repository:

git@github.com:zerokill/lbd.git

B.1 Building LLVM from source

CMAKE is used to generate the build scripts for LLVM. On Mac systems the following
command is used to generate a xcode project that can build LLVM:

mkdir build

cd build

cmake -G "Xcode" ../lbd/ -DLLVM_TARGETS_TO_BUILD ="rvex"

• ../lbd/: Points to the LLVM source directory

• -DLLVM TARGETS TO BUILD: Selects the target architectures that should be sup-
ported. Multiple architectures are possible.

LLVM can be build using the following command:

make vex_llc

65

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Motivation
	Problem statement
	Previous works

	Goals
	Methodology
	Thesis overview

	Background
	VEX System
	Architecture
	ISA
	Run-time architecture

	LLVM Compiler infrastructure
	Current frontends
	LLVM IR
	Code generation
	Scheduling
	Current backends

	Verification
	Conclusion

	Implementation
	Tablegen
	Register definition
	Pipeline definition
	Other specifications

	Code generation
	Instruction transformation
	Instruction lowering
	Instruction selection
	New instructions
	Floating-point operations
	Scheduling
	Register allocation
	Hazard recognizer
	Prologue and epilogue insertion
	VLIW Packetizer

	New LLVM features
	Generic binary support
	Compiler parameterization

	Conclusion

	Optimization
	Machine scheduler
	Branch analysis
	Generic binary optimization
	Problem statement
	Implementation

	Large immediate values
	Problem statement
	Implementation

	Conclusion

	Verification and Results
	Simulation environment
	Verification
	Benchmark results
	General performance
	Generic binary performance
	Compile-time

	Conclusion

	Conclusion
	Summary
	Main contributions
	Future work

	Bibliography
	LLVM Quickstart guide
	Compilation
	Simulation

	LLVM Development guide
	Building LLVM from source

