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Summary

Wind energy plays a significant role as a sustainable source in facilitating the transition

to a carbon-free energy supply. As offshore wind farms continue to develop, more wind

turbines are being installed at deeper water depths, necessitating larger monopiles as

primary foundations. However, this presents technical challenges and environmental

concerns. To address these, high blow energy hydraulic hammers are being developed to

drive piles into the sediment. Yet, during this installation process, a substantial amount

of energy is radiated into the ocean environment through seawater and marine sediment,

posing potential risks to aquatic animals. To mitigate the impact of impulsive sound

generated by pile driving, regulatory bodies in many countries enforce noise thresholds

and mandate assessments of the environmental impact on animal habitats in relevant areas.

In recent decades, extensive research has focused on modeling the underwater noise

generated by offshore pile driving, utilizing various computational methods. Typically, a

two-step modeling approach is employed, beginning with a sound generation model based

on finite elements (FE) or finite differences, followed by a sound propagation model using

methods such as the normal-mode method or the parabolic equation method. The seabed

is often represented as an equivalent fluid with additional attenuation, despite pile-driving

sources emitting both compressional and shear waves. Detailed soil descriptions are crucial

for accurately capturing pile vibrations. Semi-analytical models offer valid predictions

in the near-field but lack accuracy at larger horizontal distances from the pile. Empirical

models struggle to accurately predict sound levels, particularly when considering different

soil conditions and noise mitigation systems. This work seeks to address this gap by

providing accurate noise prediction over large distances, incorporating detailed sediment

descriptions as the first challenge tackled.

Existing models primarily focus on specific aspects of pile driving noise with bubble

curtain systems, highlighting the need for a comprehensive and unified framework. Previ-

ous studies emphasize the importance of accurately describing the acoustic characteristics

of the bubbly layer and the vibro-acoustic interaction between the pile and the surrounding

water-soil for effective noise reduction. However, predicting noise reduction achieved by

mitigation systems relies heavily on past project experiences, as the formation of bubble

flow in offshore environments lacks detailed and accurate measurements. In this study, we

aim to capture the acoustic performance of a noise mitigation system and integrate it with

the noise prediction model for pile driving, addressing the second identified challenge.

The assessment of particle motions and seabed vibrations is often overlooked in evalu-

ating environmental impact, despite being critical for fish, invertebrates, and crustaceans

living in the benthic zone. As these species reside and feed near the ocean floor, changes in

particle motion and seabed vibrations can significantly impact their lives, sometimes more

so than changes in pressure. This work considers detailed modeling of the seabed for both

sound generation and propagation, focusing on particle motions and seabed vibrations as

critical indicators for benthic species.



xii Summary

The first objective of the thesis is to develop a computationally efficient method for

predicting the generation and propagation of underwater sound associated with impact

pile driving at large distances. This model comprises two modules: a sound generation

module accurately describing pile-water-soil interaction and sound emission near the pile,

and a sound propagation module ensuring high accuracy in wavefield propagation over

extended distances. The model significantly advances prediction accuracy, computational

efficiency, and flexibility in both near- and far-fields, capturing the vibroacoustic behavior

of the pile-water-soil system and accurately describing input wavefields for propagation

analysis.

The second objective is to integrate an air bubble curtain into the noise prediction

model for offshore pile driving, presenting a complete and efficient modeling approach.

This involves modeling the foundation pile, fluid layer, elastic half-space soil medium, and

the inhomogeneous bubbly layer of the air bubble curtain. The model includes a noise

prediction module for non-mitigated pile driving noise and a noise reduction module for

the air bubble curtain system. Boundary integral equations couple the wave field from

sound generation and propagation, considering wave attenuation through at the air bubble

curtain. This approach allows independent examination of sub-systems, offering flexibility

and computational efficiency in noise reduction prediction for various configurations of

the air bubble curtain system and pile system.

Finally, a modeling framework is presented for noise generated by impact pile driving,

considering range-dependent environments with and without the use of an air bubble

curtain system. The framework transforms the wave field into Source Level (SL) for

both fluid and soil sources, utilizing diverse mathematical models at accurate and feasible

distances. This approach allows examination of uncertainty in environmental and pile

parameters individually for each region, providing essential data for assessing the impact

of sound on marine life. Sound maps facilitate estimation of maximum impact distances

based on sensitivity thresholds of different marine animals inhabiting both the seawater

and benthic zones.
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Samenvatting

Windenergie speelt een significante rol als duurzame bron bij het faciliteren van de overgang

naar een koolstofvrije energievoorziening. Naarmate offshore windparken zich blijven

ontwikkelen, worden er steeds meer windturbines geïnstalleerd op grotere waterdiepten,

wat grotere monopiles als primaire funderingen vereist. Dit brengt echter technische

uitdagingen en milieukwesties met zich mee. Om deze aan te pakken, worden hydraulische

hamers met hoge slagenergie ontwikkeld om palen in het sediment te drijven. Tijdens

dit installatieproces wordt echter een aanzienlijke hoeveelheid energie uitgestraald in de

oceaanomgeving via zeewater en marien sediment, wat potentiële risico’s voor aquatische

dieren oplevert. Om de impact van impulsief geluid dat door heien wordt gegenereerd

te verminderen, handhaven regelgevende instanties in veel landen geluidsdrempels en

verplichten zij beoordelingen van de milieueffecten op dierenhabitats in relevante gebieden.

In de afgelopen decennia is uitgebreid onderzoek gedaan naar het modelleren van

het onderwatergeluid dat door offshore heien wordt gegenereerd, waarbij verschillende

rekenmethoden worden gebruikt. Meestal wordt een tweestaps modelleringbenadering

toegepast, te beginnen met een geluidsgeneratiemodel op basis van eindige elementen

(FE) of eindige verschillen, gevolgd door een geluidsvoortplantingsmodel met methoden

zoals de normalemode-methode of de paraboolvergelijkingsmethode. De zeebodem wordt

vaak weergegeven als een equivalent fluïdum met extra demping, ondanks het feit dat

heigeluiden zowel compressie- als schuifgolven uitzenden. Gedetailleerde bodemomschrij-

vingen zijn cruciaal voor het nauwkeurig vastleggen van paalvibraties. Semi-analytische

modellen bieden geldige voorspellingen in het nabije veld, maar missen nauwkeurigheid

op grotere horizontale afstanden van de paal. Empirische modellen hebben moeite om

geluidsniveaus nauwkeurig te voorspellen, vooral bij het beschouwen van verschillende bo-

demcondities en geluidsbeperkingssystemen. Dit werk probeert deze kloof te overbruggen

door nauwkeurige geluidspredictie over grote afstanden te bieden, waarbij gedetailleerde

sedimentomschrijvingen als eerste uitdaging worden aangepakt.

Bestaande modellen richten zich voornamelijk op specifieke aspecten van heigeluid

met bellenschermsysteem, wat de noodzaak benadrukt voor een alomvattend en verenigd

kader. Eerdere studies benadrukken het belang van een nauwkeurige beschrijving van de

akoestische eigenschappen van de bellenlaag en de vibro-akoestische interactie tussen de

paal en het omringende water-zand voor effectieve geluidsreductie. Het voorspellen van

geluidsreductie bereikt door mitigeringssystemen is echter sterk afhankelijk van eerdere

projectervaringen, aangezien de vorming van bellenvloeiing in offshore omgevingen gede-

tailleerde en nauwkeurige metingen mist. In deze studie streven we ernaar de akoestische

prestaties van een geluidsbeperkingssysteem vast te leggen en te integreren met het ge-

luidsvoorspellingsmodel voor heien, waarbij de tweede geïdentificeerde uitdaging wordt

aangepakt.

De beoordeling van deeltjesbewegingen en bodemvibraties wordt vaak over het hoofd

gezien bij het evalueren van de milieueffecten, ondanks dat deze van cruciaal belang zijn
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voor vissen, ongewervelden en kreeftachtigen die in de bentische zone leven. Omdat

deze soorten zich nabij de oceaanbodem bevinden en voeden, kunnen veranderingen in

deeltjesbeweging en bodemvibraties hun leven aanzienlijk beïnvloeden, soms meer dan

veranderingen in druk. Dit werk beschouwt gedetailleerde modellering van de zeebodem

voor zowel geluidsgeneratie als -voortplanting, waarbij de focus ligt op deeltjesbewegingen

en bodemvibraties als kritische indicatoren voor bentische soorten.

Het eerste doel van het proefschrift is het ontwikkelen van een rekenkundig efficiënte

methode voor het voorspellen van de generatie en voortplanting van onderwatergeluid

dat gepaard gaat met impactheien op grote afstanden. Dit model bestaat uit twee modules:

een geluidsgeneratiemodule die nauwkeurig de interactie tussen paal, water en bodem

beschrijft en geluidsemissie nabij de paal, en een geluidsvoortplantingsmodule die een

hoge nauwkeurigheid in golfveldvoortplanting over lange afstanden waarborgt. Het model

verbetert de voorspellingsnauwkeurigheid, rekenefficiëntie en flexibiliteit aanzienlijk in zo-

wel nabije als verre velden, waarbij het vibroakoestische gedrag van het paal-water-bodem

systeem wordt vastgelegd en invoergolfvelden voor voortplantingsanalyse nauwkeurig

worden beschreven.

Het tweede doel is om een luchtbellenscherm te integreren in het geluidsvoorspellings-

model voor offshore heien, waarbij een complete en efficiënte modelleringsaanpak wordt

gepresenteerd. Dit omvat de modellering van de funderingspaal, vloeistoflaag, elastische

half-ruimtegrondmedium en de inhomogene bellenlaag van het luchtbellenscherm. Het

model omvat een geluidsvoorspellingsmodule voor niet-gemeten heigeluid en een geluids-

reductiemodule voor het luchtbellenscherm. Grensintegrale vergelijkingen koppelen het

golfveld van geluidsgeneratie en -voortplanting, waarbij golfdemping door het luchtbel-

lenscherm wordt beschouwd. Deze aanpak maakt een onafhankelijke beoordeling van

subsystemen mogelijk, met flexibiliteit en rekenefficiëntie in geluidsreductievoorspelling

voor verschillende configuraties van het luchtbellenschermsysteem en het paalsysteem.

Ten slotte wordt een modelleringskader gepresenteerd voor geluid gegenereerd door

impactheien, waarbij omgevingen met variërende afstanden worden beschouwd, met en

zonder het gebruik van een luchtbellenscherm. Het kader transformeert het golfveld naar

Source Level (SL) voor zowel vloeistof- als bodembronnen, waarbij diverse wiskundige

modellen op nauwkeurige en haalbare afstanden worden gebruikt. Deze aanpak maakt

de beoordeling van onzekerheid in milieu- en paalparameters mogelijk voor elk gebied

afzonderlijk, wat essentiële gegevens levert voor het beoordelen van de impact van geluid op

het zeeleven. Geluidskaarten vergemakkelijken de schatting vanmaximale impactafstanden

op basis van gevoeligheidsdrempels van verschillende zeedieren die zowel de zeewater- als

bentische zones bewonen.
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Preface

I decided to pursue an academic career as a PhD student in 2017 while finalizing my

master’s thesis on "Modeling and Development of a Resonator-Based Noise Mitigation

System for Pile Driving." At the time, Apostolos was my supervisor, and I remember asking

him and Andrei whether I could continue as a PhD student in the group. Looking back, I

had just begun to develop an interest in underwater acoustics and Green’s functions, but I

had no idea that this curiosity would become a defining pivot in my life. To my surprise

(and relief), both of them agreed—and so began an incredible journey into the world of

underwater acoustics.

This thesis starts with the foundation of Green’s functions, exploring their formulations

across different media and various analytical solution approaches. Even today, I am still

amazed by their universality and elegance. The thesis then introduces a noise prediction

model capable of analysing noise and vibration propagation over large distances from a

monopile. While the model is quite accurate under the assumption of stratified marine

sediments, significant uncertainties remain, particularly in the soil properties—a reminder

of the challenges inherent in environmental modelling.

Another key aspect of this work is the modelling of noise mitigation systems. This

effort involved developing a multi-physics model for air-bubble curtain systems, integrating

multiple components to estimate the noise field when various mitigation strategies are

applied. Finally, to assess the impact of underwater noise on marine life, sound maps

are essential tools for evaluating noise exposure over large areas. This thesis presents a

methodology for generating such sound maps, combining multiple modules developed

throughout the research. I hope this section, in particular, will be of interest not only

to acousticians but also to marine biologists, regulators, and anyone concerned with the

impact of underwater noise on the environment.

I hope you find something intriguing in these pages—whether it’s the mathematical

beauty of Green’s functions, the practical challenges of noise modelling, or the broader

implications for marine life. If so, then this journey has been well worth it.

Yaxi Peng
Delft, February 2025
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1

1
Introduction

Offshore wind farms are being installed around the word to generate wind-power electricity.
The offshore wind energy can help reduce CO2 emissions and move towards renewable energy.
However, the installation of foundations of offshore wind turbines can generate high-intensity
impulsive noise, which has a significant impact on the marine environment. This chapter
introduces the research background and the motivation of this thesis. The state of the art of
underwater noise prediction for offshore pile driving is reviewed followed by the scope of this
work and the research methodology.
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W
ind energy is expected to contribute significantly to global renewable energy pro-

duction in the coming decades. The European Union (EU) currently possesses the

highest wind energy capacity worldwide [1–3], and its energy target for 2035 includes

achieving 350 GW, which equates to supplying 24% of its electricity demand [1]. Offshore

wind presents a significant opportunity for achieving carbon neutrality in the foreseeable

future. Geospatial analysis, as shown in Fig. 1.1, highlights wind resources across various

regions, with high capacity factors indicating abundant wind resources in many areas

globally. Numerous countries, particularly within the EU, have substantial offshore wind

resources. As illustrated in Fig. 1.2, the capacity of offshore wind energy has been steadily

increasing over the years. Wind energy plays a crucial role in progressing toward net zero

emissions.

Despite the positive outlook, several challenges must be addressed to accelerate the

installation of offshore wind power generators. These include limitations related to wind

resource quality and available turbine technologies, as well as significant concerns that

are associated with environmental factors, such as the suitability of seabed conditions

and regulations concerning competing uses and environmental protection [1–3]. The

potential impact of installing and operating wind farms on the environment needs thorough

assessment, and knowledge about the potential impact must be improved.

Figure 1.1: Average capacity factors reflect the quality of the wind resources available offshore around the world

[1].

1.1 Research Background and Motivation
1.1.1 Offshore wind farm and installation of monopiles
The majority of wind turbines are supported by bottom-founded structures, particularly in

shallower water depths, as illustrated in Fig. 1.3. In contrast, floating foundations become

a more economical solution in deeper waters. However, several complex challenges still

remainwhen it comes to floating platforms, such as the lifespan of the dynamic power cables

and the allowable motions of the systems, especially under harsh offshore environment.
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This study is mainly focused on the assessment of the potential impact of the installation

of the monopile foundations for offshore wind farms (OWF), which constitute the most

widely used foundation systems [4].

Figure 1.2: Cumulative installed capacity of offshore wind energy worldwide [5].

With the rapid expansion of offshore wind, impact pile driving activities are increasing

around the globe. Impulsive pile driving becomes a major noise source of concern [6].

Research regarding the underwater noise pollution has shown that anthropogenic ocean

noise related to impact piling can impair sound-sensitive animals’ ability to detect vital

sound cues, and can have detrimental physiological, behavioural, and ecological impacts

on marine animals [6, 7], fishes [8, 9] and aquatic invertebrates [10]. As the pile size grows

with the increasing water depth, the occurrence rate and spatial distribution of pile driving

noise are increasing accordingly. The noise pollution resulting from piling activities will

aggravate the adverse impacts on marine species. The spectrum of the anthropogenic

noise emission and hearing range of the fish and marine mammals are depicted in Fig. 1.4,

which indicates the wide-band noise exposures on the animals in terms of the frequency

content [11]. The issue of underwater noise pollution has drawn attention of the general

public, NGOs, and authorities. Thus, the prediction of the underwater noise prior to pile

driving activities becomes an indispensable part of environmental impact assessments

(EIA’s) including noise mitigation plans.

To better predict the offshore piling noise, many studies focused on the mechanisms

of noise generation and propagation over the last decade [13–29]. For impact piling, after

a single hammer strike, a compressional wave in the pile is generated which propagates

along the pile. Due to the Poisson’s effect in steel, the vertical compression induces radial

expansion of the pile, which causes sound to propagate into the water column and seabed

through a coupled fluid-soil–structure interaction. The downward-propagating radial

displacement wave within the pile, has a supersonic velocity (∼5015 m/s), surpasses the



1

4 1 Introduction

Figure 1.3: Foundations for offshore wind turbines: (a) Bucket/suction caisson: (b) gravity-based; (c) monopile; (d)

tripod on bucket/suction caisson; (e) jacket/lattice structure; (f) tension leg platform; and (g) spar buoy floating

concept [12].

speed of sound in water, as well as the velocities of compressional and shear waves in

the sediment. This results in the formation of an acoustic pattern as an axisymmetric

cone, often referred to as a Mach cone, within the surrounding medium. The emission

of sound during offshore pile driving exhibits significant reliance on factors such as pile

configuration, bathymetry, geoacoustic characteristics of the seabed, hammer type and

blow energy [30, 31].

1.1.2 Noise assessment
To unify the noise evaluation criteria for impact pile driving, dual exposure metrics are

applied widely, including the cumulative sound exposure level SEL and the peak sound

pressure level L𝑝,𝑝𝑘 [32–34]. Exposures exceeding either one of the thresholds would

possibly lead to auditory injury and increase the risk of causing impaired hearing in the

form of temporary threshold shift (TTS) and permanent threshold shift (PTS) [35–37].

However, estimating the effects of anthropogenic noise on fish, invertebrates, crus-

taceans and marine mammals [37–40] can be challenging. Not only the exposure levels

and peak pressure levels demonstrate the severity of the potential effects, frequency of

the exposure, duration, spatial and temporal pattern of sound pressure can be critical in

the impact assessment. Resent study has demonstrated that particle motion in water and

substrate vibration play critical roles in evaluating the adverse effects of noise on the

hearing and aquatic life of animals [41–43].

To address the importance of sound frequency, recent efforts in predicting and miti-

gating underwater noise effects have employed auditory weighting functions [35, 37]. To

emphasize noise at frequencies animals are more susceptible to, these weighting functions

essentially act as bandpass filters applied to noise exposure before calculating a single,

weighted sound pressure level (SPL) or sound exposure level (SEL). However, the accuracy

and validity of these marine mammal weighting functions are limited due to the lack of

comprehensive data showing the effects of noise frequency among the species. Further-

more, the current regulatory noise threshold for pile driving remains confined to SEL and

L𝑝,𝑝𝑘 , suggesting the need for improvement in future assessments.

There is also growing interest in examining the influence of particle motions on the

fish and other species that are known to be detectors of such motion [41, 42, 44]. Given
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that a substantial amount of energy is transmitted into the seabed during pile driving, it is

likely to be detectable by fish and aquatic invertebrates residing in or near the seabed [45].

Considering the significance of water particle motion and substrate vibrations for noise

effect on fish and invertebrates, regulators must pay proper attention to assessing their

impacts on numerous species. Additionally, addressing data gaps is essential to enhance

our understanding of the interactions between water particle motion, substrate vibrations,

and perception by aquatic animals [44, 45].

Figure 1.4: Hearing ranges of the fish and mammal species, and the spectrum of the anthropogenic noise [11].

1.1.3 Noise mitigation
To protect the marine ecosystem, regulators in many countries have imposed strict guide-

lines and rules for the noise emission thresholds in offshore construction activities. Govern-

ment and international organizations have been taking actions in forming the international

policies and strategic plans to understand anthropogenic underwater noise and improve

the mitigation and measures to reduce the noise more effectively [46–50]. Many noise

mitigation systems (NMS), (i.e. bubble curtains, hydro-sound damper, noise mitigation

screen, etc.) have been developed over the last decade to prevent exceeding the threshold

limits during pile installation [36, 51–54]. Noise mitigation strategy is required in the

phase of planning and assessment of the offshore wind farm project. Effective mitigation

measures can largely prevent and reduce the impact of pile driving noise. This requires

both, scientific knowledge of environmental impacts, generation and propagation of the

noise and the consideration of noise mitigation techniques. The fundamental principles of

noise mitigation for offshore pile driving can be divided into two main approaches. The
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first approach focuses on mitigation methods to minimize the noise generated directly

at the source, whereas in the framework of the second approach, measures are taken to

attenuate the sound as it travels through the water column [55, 56].

To reduce noise emissions originating from the source, ongoing developments have

been focusing on minimizing the noise generated by impact hammers as presented in

Table 1.1. One promising approach involves extending the duration of the ram impulse

by temporarily storing energy within the hammer components. This energy storage can

effectively alter the frequency spectrum of the energy, thereby decreasing noise emissions

[57]. New technologies employ various methods to extend the impulse duration. For

example, BLUE piling utilizes a water column, PULSE employs an adjustable fluid column

positioned between the hammer components, and the MENCK Noise Reduction Unit

(MNRU) incorporates an additional elastic hammer component situated between the impact

weight and the anvil [56, 57]. Besides the impact hammer, vibratory techniques are being

employed during the installation of the monopile, either as a replacement or in combination

with impact hammers. The emitted wave field is significantly altered with the change

in the installation method [30, 31, 56, 58]. Furthermore, the non-linear conditions at the

pile-soil interface can have a substantial impact on the dynamic response of the pile and

the wave field in the surrounding medium [59–62].

To mitigate the sound by the blockage of the noise transmission paths in the water

column, various technologies have been developed over the last decades, e.g., the air-bubble

curtain system, the hydro-sound damper system, the noise mitigation screen and resonator-

based noise mitigation systems as shown in Table 1.1 [51–53]. The primary mechanisms

employed by noise mitigation systems blocking the water-borne path can be categorized

into two main approaches. Firstly, they create an impedance mismatch in the transmission

path within the water column, which reduces noise through reflection, scattering, and

refraction of sound waves. Secondly, they dissipate and dampen energy through resonance

or local absorption. One example of such a system is the Air Bubble Curtain (ABC), which

achieves noise reduction through a substantial impedance mismatch between seawater

and the bubble-fluid mixture, as well as the resonance of bubbles [63]. Prior to monopile

installation, perforated hoses are strategically positioned on the seabed in a circular or

elliptical layout. Air is then injected from air-compressor vessels through risers connected

to the hoses, releasing freely rising air bubbles from nozzles and creating a layer of bubbly

mixture [64–68]. The noise mitigation screen (NMS) employs a shielding effect by using an

air-filled interspace to acoustically decoupled the double shell [56]. Similarly, the cofferdam

system consists of a single wall steel tube, which allows the pile be installed into the system

with radiating sound into the air instead of the seawater [69]. Hydro-Sound-Damper system

(HSD) consists of encapsulated balloons and PE foam elements connected to a ballasted

net, which can be lowered to the sea floor near the pile using winches [56, 70, 71]. Its main

mechanism involves the absorption and scattering of acoustic waves by the resonators

and material damping. Another system, an alternative to the HSD, is the open-ended

resonators’ system. This system differs from fully encapsulated resonators and employs

two fluids, air and water, to tune and broaden the range of resonant frequencies [52]. The

near-field systems discussed above, such as the NMS, HSD, and Helmholtz resonator-based

systems, can be used in combination with air bubble curtain systems deployed at relatively

far-field, including single big bubble curtains (SBC), double big bubble curtains (DBBC),
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and even triple big bubble curtains (TBBC), to enhance noise mitigation performance.

1.2 State-of-the-art in noise prognosis
1.2.1 Physics and modelling of pile driving noise emissions
Over the past decades, extensive research has focused on modelling the underwater noise

generated by offshore pile driving using various computational methods [58]. Most models

employ a two-step approach: first, a sound generation model based on either finite elements

(FE) [13, 14] or finite differences [21] is used; second, a sound propagation model transmits

the sound over larger distances, utilizing methods such as the normal-mode method [22, 23],

the wavenumber integration method [24], or the parabolic equation method [25]. Reinhall

and Dahl [13] were the first to systematically examine the noise generated by impact pile

driving. Their FE simulations demonstrated that sound waves in seawater originate from

the radial expansion of the pile surface, caused by compressional waves traveling down the

pile at supersonic speeds, radiating waves in the form of Mach cones. Fricke and Rolfes [26]

proposed a comprehensive physics-based noise prediction model, including soil modelling

as an elastic medium in the near-field and the impact hammer. Their results agreed well

with noise measurements, confirming the model’s validity and showing that the primary

damping mechanism for pile vibration is the radiation of shear waves into the soil, rather

than frictional sliding between the pile and soil. Several simplified models have replicated

the sound field from pile driving using the wavenumber integration technique [72] or

the parabolic equation method [13, 27]. These results generally showed good qualitative

agreement with more detailed FE simulations. Lippert and Estorff [24] presented a coupled

FE and wavenumber integration model, investigating the influence of sediment parameter

uncertainties through Monte-Carlo simulations. Different models’ numerical predictions

were broadly consistent with each other [24]. With few exceptions [26], the seabed is

usually approximated by an equivalent acoustic fluid with additional attenuation. However,

pile-driving sources located in the seafloor emit both compressional and shear waves

[73–75]. Accurate noise source characterization requires a detailed soil description to

capture pile vibrations correctly. Recent models [23, 28] have examined the influence

of pile inclination and three-dimensional effects, applicable to both raked and vertically

positioned piles in various environments.

In addition to the aforementioned models, several semi-analytical models have been

developed to predict underwater noise from pile driving [15–20]. Tsouvalas and Metrikine

[15] developed a model that adequately describes critical system components, such as the

hydraulic hammer, the pile, and the water, with the seabed represented by linear springs

and dashpots to account for soil elasticity and energy absorption. This model primarily

focuses on pile dynamics and near-field noise prediction, not very close to the seabed

surface. Subsequently, Tsouvalas and Metrikine [16, 76] developed a more comprehensive

pile-water-soil interaction model, including a three-dimensional description of the water-

saturated seabed as a layered elastic medium. Their work also investigated the significance

of seabed-water interface waves (Scholte waves), later confirmed by measurement data [55].

Although Scholte waves travel at relatively low speeds and attenuate quickly, they must be

accounted for to accurately describe pile vibrations and energy distribution [77–79]. The

primary noise transmission path is in the water column as Mach cones, with the secondary
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path primarily through Scholte waves propagating along the seabed-water interface [74, 75].

Examining these transmission paths is crucial for effectively blocking noise propagation

and optimizing noise mitigation systems. Deng et al. [19], similar to the semi-analytical

model by Tsouvalas [15], focused on the influence of non-axisymmetric impact loading and

the interaction between the anvil and the pile. In addition to these semi-analytical models,

Lippert et al. [80] developed a damped cylindrical spreading (DCS) model to estimate the

sound exposure level due to impact piling using an analytical approach. A linear mixed

model was then introduced [81] that accounts for sound propagation variability, later

extended with regression analysis for acoustic impact criteria [32].

1.2.2 Physics and modelling of noise mitigation systems
Overview of noise mitigation measures
As discussed briefly in section 1.1, various noise mitigation techniques have been devel-

oped for offshore pile driving. An overview of the existing noise mitigation measures is

summarized in Table 1.1, where the applicability and performance
1
of these systems are

evaluated.

Mitigating noise at the source is considered the most effective and primary approach,

achieved either through modifying the impact hammer or substituting it with a vibra-

tory shaker. Modified hammer components, such as Blue Piling and Pulse units, do not

completely change the waveform but prolong the pulse duration, shifting a portion of the

energy to lower frequencies. Vibratory installation techniques, such as Gentle Driving of

Piles (GDP), involve low-frequency axial and high-frequency torsional vibrations, reducing

noise emissions by shifting more soil vibration from axial to torsional motion [60]. The

models developed to predict noise emission from impact pile driving can still be suitable for

the modified impact hammer units by adjusting the forcing functions at the pile head. How-

ever, for vibratory pile driving, more advanced models are required as pile-soil interaction

becomes essential for noise generation [59, 60, 62].

Both the Noise Mitigation Screen (NMS) system and the cofferdam employ a shielding

effect to decouple pile vibration from pressure waves radiated into the seawater. However,

as monopile sizes and water depths increase, deploying such systems offshore becomes

challenging. Ground vibrations can excite the entire system, potentially radiating more

energy at lower frequencies, and sound may escape through the seabed, channelling back

into the water column. Resonator-based systems like HSD and the Helmholtz resonator

system offer flexibility in adjusting the range of resonance frequencies to suit specific

needs and can be customized for various water depths and pile dimensions [82]. Both

systems can be attached to the ballast net or gripper of the monopile, enabling fast and easy

deployment and making them less sensitive to the wave and current conditions. However,

for all near-field noise mitigation systems, especially in the presence of thicker soft clay

layers, it can be challenging to mitigate the sound as a significant amount of energy is

radiated through the sediment and at lower frequencies.

1
The noise reduction levels presented in this table are approximate and have been compiled from numerical

simulations and measurement data obtained across various pile configurations, blow energy levels, and offshore

environmental conditions (including variations in the bathymetry, currents and soil conditions). This variability

reflects the considerable uncertainties associated with the expected noise reduction levels.
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The air bubble system utilizes the impedance mismatch to reflect the incident wave field

and resonance of bubbles to absorb acoustic energy [83]. This system can be deployed at a

greater distance, up to 200 meters from the pile. Performance is adjustable through hose-

nozzle configurations, air volume injection rates, and hose geometry. It can also be used in

combination with other systems, such as modified impact hammers, HSD, and Helmholtz

resonator-based systems, to achieve better noise reduction. Although the bubble curtain

system is commonly used and it is effective, its performance is not entirely predictable.

This is due to the limited availability of publicly accessible measurement data and available

noise prediction models specifically designed for the bubble curtain system. The industry

is making efforts to understand the working mechanism of bubble curtains and improve

noise reduction performance. Additionally, there is increasing interest in investigating the

main mechanisms of noise attenuation with the use of bubble curtains and predicting their

acoustic performance when applied to offshore pile driving [63, 66–68].

Modelling of air-bubble curtain systems
The DBBC system is usually modelled as a fully absorbing impedance boundary condition

around the pile in the finite element models [84]. In the semi-analytical model by Tsouvalas

and Metrikine [63], the air-bubble curtain is considered as a more realistic homogeneous

medium with a constant thickness over the entire water depth and with frequency- and

depth -dependent wave speed. Based on the dynamic sub-structuring approach, the mod-

elling domain is divided into the pile, water, soil and bubbly mixture sub-domains [63]. The

technique allows the coupling of the complete system through the interface between the

structure, surrounding medium and the bubble curtains. Sertlek and Tsouvalas developed a

coupled mode theory model for the wave propagation through an air bubble curtain, which

is based on the orthogonality of the acousto-elastic modes [85]. To understand the bubble

dynamics within the bubble curtains, a Computational Fluid Dynamic (CFD) model was

proposed by Gottsche [65]. The bubble distribution and gas volume fraction are determined

with a CFD model. The noise radiation during pile driving is simulated by Finite Element

Analysis and an Effective Medium Approach in the near field, while a Parabolic Equation

model is employed in the far field. However, the bubble distribution is assumed constant

over the entire domain, which is not valid for accurate predictions. An integral approach

for deriving the local distribution of the air fraction was developed later by Bohne in 2019

[66]. The model presents a local distribution of the effective wavenumber, which can be

used in the acoustic model for determining the transmission characteristics of the bubble

curtain. The bubble formation process directly at the nozzle is later incorporated into the

model in [67], which is coupled to the fluid mechanism and allows the bubble generation

to a greater distance from the nozzle. Measurements have been conducted to examine the

hydraulic properties of the bubble curtain including the local void fractions and bubble

size distributions [86]. The hydrodynamic models [66, 67] emphasize the importance of

providing an accurate description of the acoustic characteristics of the bubbly layer when

modelling noise mitigation using the air-bubble curtain system. It is crucial to note that

the performance of air-bubble curtains can exhibit significant variations in the azimuthal

direction due to inherent differences in airflow circulation through the perforated pipes

situated on the seabed surface. Additionally, the rate of airflow through the nozzles signifi-

cantly influences bubble generation and development. Accurately determining the airflow

velocity is crucial, as the initial conditions at the nozzle are highly sensitive factors in
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the generation and development of the air-bubble curtain in water. Furthermore, the soil

conditions play a critical role in the effectiveness of the air-bubble curtain, considering

that a substantial amount of energy is transmitted through marine sediments. It is worth

noting that the existing models primarily focus on specific aspects of the modelling process

related to pile driving noise when using the bubble curtain system, which highlight the

need for a more comprehensive and unified modelling framework that accounts for all

these critical factors.

1.3 Scope of study
From the discussion above, it is clear that the prediction of the radiated sound field with

and without the noise mitigation systems is a critical step in assessing the environmental

impact of the underwater noise induced by offshore pile driving. Over the last decades,

many models have been developed for predicting unmitigated noise from impact pile

driving, which can be further classified into three categories: detailed FE models coupled to

the far-range sound propagation models, semi-analytical models and simplified empirical

models. Models of the first category require considerable computational efforts due to the

very fine meshes used for waves propagating at higher frequencies. The semi-analytical

models of the second category are valid in the near-field but not at a larger horizontal

distance from the pile. For the third group of empirical models, the sound levels cannot

be accurately predicted, especially when different soil conditions and noise mitigation

systems need to be considered.

To date, there is limited research in the underwater noise prediction modelling when

the noise mitigation systems are deployed. Previous works show the significance of the

accurate description of the acoustic characteristics of the bubbly layer and the vibro-acoustic

interaction between the pile and the surrounding water-soil in the noise reduction with

the use of an air bubble curtain. However, the prediction of noise reduction achieved by

mitigation systems is mainly estimated by accumulated experiences from past projects.

The formation of the bubble flow in offshore environment still lacks sufficient and accurate

offshore measurements. Several models have been developed for the air bubble curtain

system. The semi-analytical model developed by Tsouvalas and Metrikine [63] considers

the complete pile-water-soil system with an air-bubble curtain layer. However, the bubbly

layer is described as a homogeneousmediumwith invariant thickness along the water depth

by assuming the air bubbles rise solely vertically and are not drifting. The formation and

the break-up of the bubbles were modelled by Bohne et al in 2019 [66]. This study considers

the local distribution of the gas fraction within the bubble curtain and the formation of

the bubbly flow are influenced by the water depth, nozzle configuration and air volume

injection. The complex turbulent flow in bubble curtain is described with a bimodal bubble

size distribution in a follow-up work by Bohne [67]. However, all modelling efforts here

focus on specific aspects of the modelling process, and there is still a lack of a unified

modelling framework.

The aim of this thesis is to present a computationally efficient method for the prediction

of the generation and propagation of the sound field associated with impact piling at

large (from the pile) distances overcoming the limitations of earlier models. The complete

model consists of two modules: i) a sound generation module aiming at the accurate

description of the pile-water-soil interaction together with the sound emission in the



Table 1.1: Overview of existing noise mitigation systems for offshore pile driving [53, 56, 69] including concepts of various approaches shown for each system.

Noise Mitigation Measures Noise Mitigation Measures

Modified impact hammer unit: EQ-piling, PULSE
Mitigation Principle: prolongation of the pulse duration

Description:
- the frequency spectrum of radiated waves is modified

- the capacity and reliability to be improved

- compatible with certain types of hammers

- Δ SEL: 19-24 dB (EQ), ∼ 9dB (PULSE) [56]

© IQIP

Integrated monopile installer (Noise Mitigation Screen
System)
Mitigation Principle: impedance mismatch, using air to de-

couple the pile from the seawater

Description:
- reflection and scattering of the waves

- significant amount of energy

radiated through the soil-borne path

- complex and slow deployment and heavy structure

- Δ SEL: 13-16 dB, less than 40m water depth [56]

© Ørsted © IQIP

Vibro-hammer
Mitigation Principle: modification of the frequency and form

of the radiated waves

Description:
- the frequency spectrum of radiated waves are modified

- the drivability and reliability to be improved

- Δ SEL: 10-20 dB [56]

© GDP © CAPE Holland

Cofferdam system
Mitigation Principle: impedance mismatch, using air to de-

couple the pile from the seawater

Description:
- significant amount of energy

radiated through the soil-borne path

- complex and slow deployment and heavy structure

- Δ SEL: up to 23 dB, ∼ 15m water depth [56]

© K.E. Thomsen

ABC system
Mitigation Principle: impedance mismatch by air-bubble layer

and resonance of bubbles (depends on the frequency spectrum

of radiated noise)

Description:- reflection, scattering and refraction of the radi-

ated waves, resonance of the bubbles

- influenced by the environmental conditions;sound escape

through the soil-borne path at a larger distance above the

radius of the bubble curtain; adjustable by hose-nozzle con-

figuration and air compression volume rate

- Δ SEL: up to 18 dB by DBBC, 40m water depth [56]

© Hydrotechnik Lübeck

Helmholtz resonator-based system
Mitigation Principle: modification of the frequency and form

of the radiated waves

Description:
- the resonance of the Helmholtz system

- the tonable frequency spectrum of noise reduction

- significant amount of energy

radiated through the soil-borne path

- fast deployment and customizable system

- Δ SEL: 8 dB, up to ∼ 40m water depth [87]

© AdBM Technology

HSD system
Mitigation Principle: resonance of the encapsulated balloon

and material absorption

Description:
- absorption of the energy by the resonance, scattering, reflec-

tion and damping of the sound waves

- significant amount of energy radiated through the soil-borne

path

- fast deployment and customizable system

- Δ SEL: 10-13 dB, less than 45m water depth [56]

© K.-H. Elmer, OffNoise Solutions
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vicinity of the pile, and ii) a sound propagation module aiming at the propagation of the

wavefield at larger distances with high accuracy. The main contribution of this study is that

it advances the accuracy, computational efficiency and flexibility of the noise prediction

in both near- and far-fields. The vibroacoustic behaviour of the coupled pile-water-soil

system is described in the model in the near-field. It provides an accurate description of the

input wavefield in terms of both stresses and displacements at the pile proximity. This field

is subsequently fed into the sound propagation module. The contour integration technique

in the wavenumber domain, as adopted in the latter approach, enhances the mathematical

treatment of the Green’s function for an acousto-elastic layered half-space. The choice

of the branch cuts ensures both stability and convergence of the obtained solution. The

attenuation in multilayered soil is included by identifying the exact poles and branch cuts

in the complex wavenumber plane, which is especially important for noise predictions up

to a few kilometres provided that the bathymetry is constant. The accuracy of the model

predictions is demonstrated bymeans of comparison against measurement data up to 1500m

from the pile. Apart from the pressure waves in the water column and compressional and

shear waves in the seabed, the Scholte and Stoneley waves at the water-soil and soil-soil

interfaces are captured in both modules. Compared to the classical FE models coupled to the

propagation models, the model presented herein is computationally more efficient and can

be used in probabilistic analysis of noise prediction involving a large number of simulations

with less computational effort. Compared to the equivalent fluid-based, far-range sound

propagation model, the sound propagation module provides a more detailed description

of the elastic seabed. Finally, in the proposed modelling framework, the eigenproblems

of the shell and the surrounding acousto-elastic medium are solved independently, which

provides great flexibility in examining various configurations of the system. The response

of the pile and the acousto-elastic medium can then be derived for the coupled problem

using the given modal sets and the mode-matching method, which reduce the computation

time significantly. The present model allows to conduct an in-depth analysis of water- and

soil-borne noise transmission paths independently and can be used for the prediction of

noise reduction level by combining it with various noise mitigation systems, i.e., air bubble

curtain system, hydro-sound damper system and underwater Helmholtz resonators. This

unified modelling framework is the first novel contribution of this work.

This thesis also aims to present a complete and computationally efficient modelling

approach, which incorporates the air bubble curtain into the noise prediction model in

offshore pile driving. To the best of the author’s knowledge, no model to date includes

the complete system involving the foundation pile modelled as a linear elastic thin shell,

a fluid layer overlying an elastic half-space soil medium and the inhomogeneous bubbly

layer with the fluid dynamic and turbulent-flow characteristics of an air bubble curtain.

In this work, a two-step approach is used to predict the noise reduction by an air bubble

curtain. The complete model consists of two parts; the noise prediction model for the

non-mitigated field from pile driving which includes two modules, the sound generation

module in the vicinity of the pile, the sound propagation module to propagate the radiated

wave field at larger distances, and the noise reduction model capturing the transmission

characteristics of an air bubble curtain. The sound generation module is based on the

earlier work by Tsouvalas and Metrikine [16], and captures the pile-water-soil interaction

and propagate the radiated waves in the pile proximity. The sound propagation module
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describes the seabed as a layered elastic half-space and allows one to propagate the wave

field at larger distances [29, 68, 88]. The noise reduction module considers the sound

mitigation by the air bubble curtain and is based on the integral model developed by Bohne

et al. [67]. The local transmission functions of the bubble curtain including both depth- and

frequency-dependence are coupled to the sound propagation module. Boundary integral

equations are then employed to couple the wave field from the sound generation and

propagate it to larger distances from the pile with the use of the sound propagation module

considering the local attenuation at the air bubble curtain. The modelling approach ensures

an accurate description of the individual systems with the individual module being verified

by measurement data and results from the benchmark cases in literature.

The adopted modelling approach allows one to examine the sub-systems independently

and is the first one which is generated for a 3D configuration of the BBC system. Compared

to the FEM-models, this gives great flexibility and computational efficiency in the noise

reduction prediction for examining various configurations of the air bubble curtain system

and pile system. The model can be used for sensitivity studies and probabilistic analysis,

which usually involves a great number of simulations with less computational effort. The

influence of local air fraction, nozzle size and location of the air bubble curtain and the

configuration of the pile-water-soil system on the reduced noise can be examined. The

maximum noise reduction potentials at specific site can also be predicted by eliminating

the water-borne transmission path and allowing the transmission of energy through the

soil alone. The integration of the air-bubble curtain into the earlier mentioned modelling

framework is the second novel contribution of this thesis.

1.4 Thesis outline
The structure of this thesis is as follows.

Chapter 2 presents the derivation of the Green’s functions for the acousto-elastodynamic

problem, which provides the theoretical background of the study. The formulation of

the Green’s functions advance the mathematical and computational treatments of the

boundary value problem involving an three-dimensional acousto-elastic multilayered half-

space. By virtue of a method of displacement potentials, it is shown that there is an

elegant mathematical structure underlying this class of three-dimensional elastodynamic

problems which warrant further attention. To encompass arbitrarily distributed loads, ring-

load Green’s functions for stresses and displacements are generalized into complex-plane

line-integral representations.

In Chapter 3, a computationally efficient modelling approach is presented for predicting

underwater noise radiation from offshore pile driving. The complete noise prediction

model comprises two modules. First, a sound generation module is adopted to capture

the interaction between the pile, the fluid, and the seabed, aiming at modelling the sound

generation and propagation in the vicinity of the pile. Second, a sound propagation

module is developed to propagate the sound field at larger distances from the pile. To

couple the input wavefield obtained from the sound generation module, the boundary

integral equations (BIEs) are formulated based on the acousto-elastodynamic reciprocity

theorem. To advance the mathematical formulation of the BIEs, the Green’s tensor for

an axisymmetric ring load is derived using the contour integration technique. The model

advances the computational efficiency and flexibility of the noise prediction in both near-
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and far-fields from the pile. Finally, model predictions are benchmarked against a theoretical

scenario and validated using measurement data from a recent offshore pile-installation

campaign.

In Chapter 4, a probabilistic quantification framework is established to evaluate the

significance of the uncertainties and quantify its influence over the range. Considering

the uncertainties through statistical approaches, the sound levels with the probabilities of

occurrence are evaluated. An investigation is performed to highlight correlation between

the soil properties and the sound levels obtained. To examine the parameter uncertainties in

noise prediction through probabilistic modelling approach such as Monte-Carlo simulation.

The approach is significant to quantify the risk of the exceeding the upper bound of sound

levels.

In Chapter 5, the effectiveness of an air bubble curtain system is examined. The

focus is placed on the evaluation of noise transmission paths, which are essential for the

effective blockage of sound propagation. A coupled two-step approach for the prediction

of underwater noise is adopted, which allows one to treat the waterborne and soil-borne

noise transmission paths separately. The complete model consists of two modules: a noise

prediction module for offshore pile driving aiming at the generation and propagation of

the wave field and a noise reduction module for predicting the transmission loss in passing

through an air bubble curtain.

In Chapter 6, a multi-physics model for modelling noise mitigation using an air-bubble

curtain is developed. The complete modelling chain is introduced. The proposed approach

allows capturing the air transportation in the hose, bubble generation and development

through each nozzle, noise mitigation at the ABC and propagation in the field. The formula-

tion of the three-dimensional acousto-elastic boundary integral equation is also presented.

The method provides a foundation for evaluating the three-dimensional behaviour of the

air bubble curtain system. The model incorporates the azimuthal dependent behaviour of

the air-bubble curtain, which allows to examine the variation in the airflow circulation

through the hoses.

In Chapter 7, a framework is presented for modelling underwater noise from impact

pile driving, considering both scenarios with and without an air-bubble curtain system,

across large distances. The model incorporates range-dependent water depth and elastic

multilayered sediment. Additionally, sound mapping is implemented to estimate the

potential impact area of the radiated noise on various species, including analysis of the

broadband frequency spectrum.

In Chapter 8, the main findings of this thesis are summarized with an eye on future

developments in the field.
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2
Acousto-elastodynamic

Green’s Functions

To advance the mathematical and computational treatments of the boundary value problem
involving a three-dimensional acousto-elastic multilayered half-space, the derivation of the
Green’s functions for the acousto-elastodynamic problem is presented. By virtue of the method
of displacement potentials, it is shown that there is an elegant mathematical structure under-
lying this class of three-dimensional dynamic problems which warrant further attention. To
encompass arbitrarily distributed loads, ring-load Green’s functions for stresses and displace-
ments are transformed into complex-plane line-integral representations. This chapter delves
into numerical considerations, highlights assumptions of the various computational methods,
and lays the groundwork for subsequent chapters where the models undergo further verifica-
tion and application. As such, this chapter refrains from presenting novel findings. However,
the theoretical framework discussed and the numerical methods adopted are tailored to the
vibroacoustic problems at hand resulting at computational approaches which are considerably
faster than others typically applied in standard Finite Element or Boundary Element packages.
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T
he oceanic environment is a highly complex domain characterized by variations in

salinity, temperature, water depth, sediment composition, soil characteristics, geologi-

cal strata, and more. These variances in medium properties, bathymetry, and geological

features, lead to the changes in the density and speed of sound waves as they propagate

through the media. Nevertheless, the inherent heterogeneity of the medium can be re-

duced to a horizontally stratified waveguide problem, which can be effectively addressed

using both numerical and analytical methods as discussed in this chapter. This horizontal

stratification of the sediment layers is caused by natural geological processes and can

be considered realistic at least for close-range sound predictions. In Fig. 2.1, a simplified

representation of the oceanic environment is illustrated, under the assumptions of parallel

interfaces and homogeneous material properties within each layer.

Figure 2.1: Schematic depiction of the horizontally stratified marine environment.

2.1 Theoretical background
Sound propagation models based on normal mode method (NM) have been used in many

fields of underwater acoustics research during the last half century. The solutions can be

applied in the field of seismic wave propagation, acoustic monitoring in ocean environ-

ments, shipping noise, acoustics of renewable energy development, especially increasing

anthropogenic activities such as pile driving [89]. The primary feature of the normal mode

method is that it allows one to examine the individual contributions of different wave

forms in the total acoustic field.

The normal mode solutions to the sound propagation problem in a fluid layer overlying

a liquid half-space, called the Pekeris ocean environment after its originator, was developed
by Pekeris [90] as indicated in Fig. 2.2. Due to the difficulty in direct numerical evaluation

of the inverse Hankel transform over the wavenumber 𝑘𝑟 in 1960’s, the complex contour

integration was applied. To ensure the function to be integrated was single-valued in the

domain of integration, a branch cut was introduced [91–94]. The two most common cuts
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are called the Pekeris cuts [95] and the Ewing-Jardetzky-Press (EJP) cuts [94], the former

one is vertical and the latter one is hyperbolic as depicted in Fig. 2.5. The comparison of

the result of the complex contour integration using the two different cuts introduced has

been discussed by Barberger and Stickler [96, 97], but the discussion is restricted to the

fluid half-space with the source positioned in the water column and observation point

placed in the fluid layer away from the seabed, which can be used as a starting point of the

analysis in this chapter. Since our analysis aims to accurately predict the wave field in both

fluid and sediment close to the source, it is important to discuss in detail the differences

between the solutions when different branch cuts are introduced. By examining these

differences, we can better understand how the choice of branch cuts affects the accuracy

and convergence of the modelled wave fields near the source.

Figure 2.2: Schematic depiction of the Pekeric waveguide.

The pressure field of the Pekeris ocean environment shown in Fig. 2.2 can be computed

as a finite sum of modes and a complex wavenumber integral with the use of Ewing-

Jardetzky-Press (EJP) cut [93] when the complex contour integration method is adopted.

Stickler [97] stated that EJP can give significant contributions to the predicted transmission

loss to the range of at least one or multiple water depths. He also found that ”improper”

modes originating when the Pekeris cuts are introduced can adequately approximate the

contribution of the continuous spectrum as the EJP branch cuts. These "improper" modes

are characterized by violation of the radiation condition in the bottom half-space, meaning

their amplitudes grow exponentially with depth, which is mathematically considered

"improper" since each of these modes diverges with depth. These improper modes are

also referred to, somewhat inconsistently, as leaky modes in other publications [98, 99].

Bartberger stated that when the contributions of all terms are properly evaluated, the

solutions based on different branch cuts should theoretically yield the same results [96].

However, the above discussion was constrained by the restriction of the source position

primarily in the fluid and the observation point being distant from the source at the

frequencies of interest. In this thesis, where the focus lies on solutions near the source

and when the source is partially embedded in the sediment, the choice of branch cuts can
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significantly influence the accuracy of the evaluated solutions. This can potentially lead

to variations in the numerical results, highlighting the importance of carefully selecting

branch cuts for accurate wave field predictions in these specific scenarios.

A solution of the wave equation in acousto-elastic ocean environments was first devel-

oped by Press and Ewing [100]. They extended the Pekeris theory from two liquid layers

into the case of a fluid layer overlying a solid bottom as illustrated in Fig. 2.3. The normal

mode solution with solely the contribution of the superposition of modes presented by

Press and Ewing is approximate and holds for observation points at large radial positions

solely, which renders the contribution of the branch line integrals to the total solution in-

significant. The complete solution, including branch cuts for sources in an elastic half-space,

is discussed extensively in [101, 102]. Ewing considered a compressional wave source in the

solid substratum of the acousto-elastic half-space [101]. However, the study focused solely

on the contributions from residues, as it was concerned with large values of 𝑟 . Since the
contribution from EJP branch line integrals decays as 𝑟−2, these integrals were neglected
in the solution. The physical interpretation of these branch cuts and their contributions at

various frequencies and for sources located in the sediment are not extensively discussed.

Early work by Schmidt and Jensen [103] addresses multilayered viscoelastic media using a

wavenumber integration approach similar to that used by Ewing et al. [91], whose method

serves as a benchmark case for our model. The solution for Green’s function by Nealy et

al. [73] generalizes previous approaches by considering a point source in the elastic seabed

or on the acousto-elastic interface. Bakr [104] applies Boundary Integral Equation (BIE)

methods to analyze axisymmetric acoustic and elastic problems, further expanding on the

theoretical framework for understanding wave propagation in complex elastic media.

Figure 2.3: Schematic depiction of the acousto-elastic layerd half-space.

One alternative solution for replacing the branch line integrals is evaluation of the

”virtual modes” [105, 106]. The modes are called ”virtual” because they correspond to the

wavenumbers at which the integrand has local maximal contributions to the integral when

the ”real” modes are close to the integration path of the branch cut. Hence, the virtual

modes arise from the ”resonant” behaviour along the integration path. Another approach
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given by Westwood et al. [107] is to insert a thick layer as ”false bottom” which has the

same material properties as the original half-space while increasing the attenuation in

the half-space. This causes the branch points to extend further away from the real axis

in the complex wavenumber plane at large imaginary wavenumbers and the branch line

contributions to the total acoustic field become secondary. In this chapter, we focus on

comparing the complex wavenumber integration approaches with the two different choices

of branch cuts introduced; the alternative approximations of the branch line integrals are

out of consideration here.

The primary purpose of the present work is to compare multiple approaches to the

seismo-acoustic problem resulting from axisymmetric sources locating in the fluid layer

and/or seafloor. The structure of this chapter is outlined as follows. In Section 2.2, we

present the normal mode formulation with two different methods for the complete field,

including the build up of the Green’s tensors for axisymmetric sources with the observation

points located in fluid, seafloor and fluid-soil interface. In Section 2.3, we present the

numerical evaluation of the solutions based on the two approaches addressing the numerical

stability and investigate the physical interpretation of contributions from discrete modes

and branch cuts. A benchmark case using direct wavenumber integration method is

compared to the results from the normal mode method. Section 2.4 is dedicated to a

numerical analysis of axisymmetric cylindrical sources emitting compressional waves in

the fluid and combined shear sources in the sediment layer, which is a typical pressure

field radiated from offshore pile driving. A thin marine sediment layer is introduced at the

upper few meters of the seafloor to mimic the behaviour typically encountered in offshore

conditions. The conclusions are given in Section 2.5.

2.2 Cylindrically symmetric Green’s Functions
2.2.1 Propagation of P-SV waves
In this section, the solution of Green’s functions for ring load in acousto-elastic half-space,

as illustrated in Fig. 2.4, is derived and the boundary integral formulation is extended for

the acousto-elastic half-space.

Governing eqations
Cylindrical coordinates are employed, where 𝑟 represents the radial distance, and 𝑧 denotes
the depth from the sea surface. The sea surface is defined at 𝑧 = 𝑧0, the interface between
the fluid and sediment is located at a depth of 𝑧1, and the interfaces between the sediment

layers are situated at 𝑧 = 𝑧𝑗 , where 𝑗 ranges from 2 to 𝑁 . It is assumed that the seabed

extends to infinity in both radial and vertical direction. A ring source is situated at a depth

designated as 𝑧𝑠 , which can be either in the fluid or in the sediment. The fluid is modeled

as a three-dimensional inviscid compressible medium with constants 𝑐𝑓 and 𝜌𝑓 being the

wave speed and the density of the fluid. The soil is modeled as a three-dimensional elastic

continuum with the constants 𝜆𝑠𝑗 , 𝜇𝑠𝑗 , 𝜌𝑠𝑗 correspond to the Lamé coefficients and the

density of the solid, with the index 𝑗 = 1,2, . . . ,𝑁 specifying the soil layers including the

bottom soil half-space. The material dissipation (damping) in the soil is introduced in the

form of complex Lamé constants as 𝜆̃𝑠𝑗 = 𝜆𝑠𝑗 (1+ i𝛼1𝑗 sgn(𝜔)) and 𝜇̃𝑠𝑗 = 𝜇𝑠𝑗 (1+ i𝛼2𝑗 sgn(𝜔)).
The attenuation coefficients 𝛼1𝑗 and 𝛼2𝑗 are defined as (20𝜋 log10 𝑒)𝛼𝑝𝑗 and (20𝜋 log10 𝑒)𝛼𝑠𝑗 ,
with 𝛼𝑝𝑗 and 𝛼𝑠𝑗 being the compressional and shear damping coefficients in the unit of dB
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Figure 2.4: Geometry of the model of a ring load for the axisymmetric Green’s function.

per wavelength. The following partial differential equations govern the dynamic response

of the acousto-elastic media in time domain:

∇2𝑝𝑓 (𝑟,𝑧, 𝑡)−
1
𝑐2𝑓
𝑝̈𝑓 (𝑟,𝑧, 𝑡) = 0 , (2.1)

(𝜆𝑠𝑗 +2𝜇𝑠𝑗 )∇(∇ ⋅ 𝐮𝑠𝑗 )−𝜇𝑠𝑗∇× (∇×𝐮𝑠𝑗 ) = 𝜌𝑠𝑗 𝐮̈𝑠𝑗 . (2.2)

In Eq. (2.1), 𝑝𝑓 (𝑟,𝑧, 𝑡) is the pressure field of the fluid. In Eq. (2.2), 𝐮𝑠𝑗 = [𝑢𝑠𝑗 (𝑟,𝑧, 𝑡) 𝑤𝑠𝑗 (𝑟,𝑧, 𝑡)]𝑇
is the radial and vertical displacements of each soil layer.

The Helmholtz decomposition is applied to the fluid-soil domain by introducing the

displacement potentials 𝜙𝑓 , 𝜙𝑠𝑗 and 𝜓𝑠𝑗 as:

𝐮𝑓 = ∇𝜙𝑓 , (2.3)

𝐮𝑠𝑗 = ∇𝜙𝑠𝑗 +∇×∇× (0,𝜓𝑠𝑗 , 0) . (2.4)

Substitution of Eqs. (2.3) and (2.4) into Eqs. (2.1) and (2.2) yields [101]:

∇2𝜙𝑓 (𝑟,𝑧, 𝑡) =
1
𝑐𝑓
𝜕2𝜙𝑓
𝜕𝑡2

, (2.5)

∇2𝜙𝑠𝑗 (𝑟,𝑧, 𝑡) =
1
𝑐𝑝𝑗

𝜕2𝜙𝑠𝑗
𝜕𝑡2

, (2.6)

∇2𝜓𝑠𝑗 (𝑟,𝑧, 𝑡) =
1
𝑐𝑠𝑗

𝜕2𝜓𝑠𝑗
𝜕𝑡2

. (2.7)

In the equations above, 𝑐𝑝𝑗 and 𝑐𝑠𝑗 denote the speeds of the compressional and shear waves

in soil layer 𝑗 , respectively.
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The pressure release boundary condition is imposed at the sea surface. This assumption

is sufficiently accurate in the frequency range considered in this problem. At the fluid-soil

interface 𝑧 = 𝑧1, the vertical stress equilibrium and the vertical displacement continuity are

imposed, while the shear stress vanishes since no tangential stresses present in an ideal

fluid that is chosen to describe the acoustic behaviour of sea water. Given the full-contact

at the soil-soil interface, both stress equilibrium and displacement continuity are applied.

This set of boundary and interface conditions reads:

𝑝𝑓 (𝑟,𝑧0, 𝑡) = 0, (2.8)

𝜎𝑧𝑧1(𝑟,𝑧1, 𝑡)+𝑝𝑓 (𝑟,𝑧1, 𝑡) = 0, 𝑢𝑧,𝑓 (𝑟,𝑧1, 𝑡) = 𝑤𝑠1(𝑟,𝑧1, 𝑡), 𝜎𝑧𝑟1(𝑟,𝑧1, 𝑡) = 0, (2.9)

𝑤𝑠𝑗 (𝑟,𝑧𝑗 , 𝑡) = 𝑤𝑠𝑗−1(𝑟,𝑧𝑗 , 𝑡), 𝑢𝑠𝑗 (𝑟,𝑧𝑗 , 𝑡) = 𝑢𝑠𝑗−1(𝑟,𝑧𝑗 , 𝑡), 2 ≤ 𝑗 ≤ 𝑁 , (2.10)

𝜎𝑧𝑧𝑗 (𝑟,𝑧𝑗 , 𝑡) = 𝜎𝑧𝑧𝑗−1(𝑟,𝑧𝑗 , 𝑡), 𝜎𝑧𝑟𝑗 (𝑟,𝑧𝑗 , 𝑡) = 𝜎𝑧𝑟𝑗−1(𝑟,𝑧𝑗 , 𝑡), 2 ≤ 𝑗 ≤ 𝑁 . (2.11)

In Eq. (2.11), 𝜎𝑧𝑧𝑗 and 𝜎𝑧𝑟𝑗 designate the normal and tangential stresses in the soil layer

𝑗 . After applying the forward Fourier transform over time, the governing equations in

frequency domain are obtained. The Fourier transform pair used in this thesis is expressed

as:

𝑔(𝑡) = 1/2𝜋 ∫
+∞

−∞
𝐺(𝜔)𝑒i𝜔𝑡𝑑𝜔 and 𝐺(𝜔) = ∫

+∞

−∞
𝑔(𝑡)𝑒−i𝜔𝑡𝑑𝑡 (2.12)

in which 𝑔(𝑡) and 𝐺(𝜔) denote the physical quantities in the time and frequency domains,

respectively.

To propagate the axisymmetric wavefield generated by a ring load, Green’s tensors

for a fluid layer overlying a multilayered soil half-space are first derived for an arbitrary

source excitation. The Hankel transform and complex contour integration approach are

used to obtain a closed-form solution in the frequency domain. The Hankel transform pair

reads [108]:

̂𝑓𝜈 (𝑘𝑟 ) = ∫
∞

0
𝑓 (𝑟)𝐽𝜈 (𝑘𝑟𝑟)𝑟𝑑𝑟 and 𝑓 (𝑟) = ∫

∞

0
̂𝑓𝜈 (𝑘𝑟 )𝐽𝜈 (𝑘𝑟𝑟)𝑘𝑟𝑑𝑘𝑟 (2.13)

in which 𝑓 (𝑟) and ̂𝑓𝜈 (𝑘𝑟 ) denote the functions in the frequency and Hankel domains,

respectively. 𝐽𝜈 (𝑘𝑟𝑟) is the Bessel function of the first kind of order 𝜈 and 𝑘𝑟 is the

horizontal wavenumber of the medium. Transformation of Eqs. (2.8)−(2.11) using the zero

order Hankel transform, i.e. 𝜈 = 0, yields:

𝑝̂𝑓 (𝑘𝑟 , 𝑧0,𝜔) = 0, (2.14)

𝜎̂𝑧𝑧1(𝑘𝑟 , 𝑧1,𝜔)+ 𝑝̂𝑓 (𝑘𝑟 , 𝑧1,𝜔) = 0, 𝑢̂𝑧,𝑓 (𝑘𝑟 , 𝑧1,𝜔) = 𝑤̂𝑠1(𝑘𝑟 , 𝑧1,𝜔), 𝜎̂𝑧𝑟1(𝑘𝑟 , 𝑧1,𝜔) = 0,(2.15)
𝑤̂𝑠𝑗 (𝑘𝑟 , 𝑧𝑗 ,𝜔) = 𝑤̂𝑠𝑗−1(𝑘𝑟 , 𝑧𝑗 ,𝜔), 𝑢̂𝑠𝑗 (𝑘𝑟 , 𝑧𝑗 ,𝜔) = 𝑢̂𝑠𝑗−1(𝑘𝑟 , 𝑧𝑗 ,𝜔), 2 ≤ 𝑗 ≤ 𝑁 , (2.16)

𝜎̂𝑧𝑧𝑗 (𝑘𝑟 , 𝑧𝑗 ,𝜔) = 𝜎𝑧𝑧𝑗−1(𝑘𝑟 , 𝑧𝑗 ,𝜔), 𝜎̂𝑧𝑟𝑗 (𝑘𝑟 , 𝑧𝑗 ,𝜔) = 𝜎̂𝑧𝑟𝑗−1(𝑘𝑟 , 𝑧𝑗 ,𝜔), 2 ≤ 𝑗 ≤ 𝑁 . (2.17)

The displacement fields in the Hankel domain expressed in the form of Eqs. (2.3) and (2.4)

are subsequently substituted into the boundary and interface conditions, Eqs. (2.14)−(2.17)
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to give:

−𝜌𝑓𝜔2𝜙̂𝑓 (𝑘𝑟 , 𝑧0,𝜔) = 0, (2.18)

−𝜆𝑠1𝑘
2
𝑝1 𝜙̂𝑠1 +2𝜇𝑠1(

𝜕2𝜙̂𝑠1(𝑘𝑟 , 𝑧1,𝜔)
𝜕𝑧2

+
𝜕3𝜓̂𝑠1(𝑘𝑟 , 𝑧1,𝜔)

𝜕𝑧3
+𝑘2𝑠1

𝜕𝜓̂𝑠1(𝑘𝑟 , 𝑧1,𝜔)
𝜕𝑧

) (2.19)

−𝜌𝑓𝜔2𝜙̂𝑓 (𝑘𝑟 , 𝑧1,𝜔) = 0,

𝜕𝜙̂𝑓 (𝑘𝑟 , 𝑧1,𝜔)
𝜕𝑧

−
𝜕𝜙̂𝑠1(𝑘𝑟 , 𝑧1,𝜔)

𝜕𝑧
−
𝜕2𝜓̂𝑠1(𝑘𝑟 , 𝑧1,𝜔)

𝜕𝑧2
= 𝑘2𝑠1𝜓̂𝑠1(𝑘𝑟 , 𝑧1,𝜔), (2.20)

𝜇𝑠1(
𝜕𝜙̂𝑠1(𝑘𝑟 , 𝑧1,𝜔)

𝜕𝑧
+
𝜕2𝜓̂𝑠1(𝑘𝑟 , 𝑧1,𝜔)

𝜕𝑧2
+𝑘2𝑠1𝜕𝜓̂𝑠1(𝑘𝑟 , 𝑧1,𝜔)) = 0, (2.21)

𝜕𝜙̂𝑠𝑗 (𝑘𝑟 , 𝑧𝑗 ,𝜔)
𝜕𝑧

+
𝜕2𝜓̂𝑠𝑗 (𝑘𝑟 , 𝑧𝑗 ,𝜔)

𝜕𝑧2
+𝑘2𝑠𝑗 𝜓̂𝑠𝑗 (𝑘𝑟 , 𝑧𝑗 ,𝜔) =

𝜕𝜙̂𝑠𝑗−1(𝑘𝑟 , 𝑧1,𝜔)
𝜕𝑧

(2.22)

+
𝜕2𝜓̂𝑠𝑗−1(𝑘𝑟 , 𝑧𝑗 ,𝜔)

𝜕𝑧2
+𝑘2𝑠𝑗−1𝜓̂𝑠𝑗−1(𝑘𝑟 , 𝑧𝑗 ,𝜔), 2 ≤ 𝑗 ≤ 𝑁

𝜙̂𝑠𝑗 (𝑘𝑟 , 𝑧𝑗 ,𝜔)+
𝜕𝜓̂𝑠𝑗 (𝑘𝑟 , 𝑧𝑗 ,𝜔)

𝜕𝑧
= 𝜙̂𝑠𝑗−1(𝑘𝑟 , 𝑧𝑗 ,𝜔)+

𝜕𝜓̂𝑠𝑗−1(𝑘𝑟 , 𝑧𝑗 ,𝜔)
𝜕𝑧

,2 ≤ 𝑗 ≤ 𝑁 ,

(2.23)

−𝜆𝑠𝑗𝑘
2
𝑝𝑗 𝜙̂𝑠𝑗 +2𝜇𝑠𝑗 (

𝜕2𝜙̂𝑠𝑗 (𝑘𝑟 , 𝑧𝑗 ,𝜔)
𝜕𝑧2

+
𝜕3𝜓̂𝑠𝑗 (𝑘𝑟 , 𝑧𝑗 ,𝜔)

𝜕𝑧3
+𝑘2𝑠𝑗

𝜕𝜓̂𝑠𝑗 (𝑘𝑟 , 𝑧𝑗 ,𝜔)
𝜕𝑧

) = (2.24)

−𝜆𝑠𝑗−1𝑘
2
𝑝𝑗−1 𝜙̂𝑠𝑗−1 +2𝜇𝑠𝑗−1(

𝜕2𝜙̂𝑠𝑗−1(𝑘𝑟 , 𝑧𝑗 ,𝜔)
𝜕𝑧2

+
𝜕3𝜓̂𝑠𝑗−1(𝑘𝑟 , 𝑧𝑗 ,𝜔)

𝜕𝑧3

+𝑘2𝑠𝑗−1
𝜕𝜓̂𝑠𝑗−1(𝑘𝑟 , 𝑧𝑗 ,𝜔)

𝜕𝑧
), 2 ≤ 𝑗 ≤ 𝑁

𝜇𝑠𝑗 (
𝜕𝜙̂𝑠𝑗 (𝑘𝑟 , 𝑧𝑗 ,𝜔)

𝜕𝑧
+
𝜕2𝜓̂𝑠𝑗 (𝑘𝑟 , 𝑧𝑗 ,𝜔)

𝜕𝑧2
+𝑘2𝑠𝑗𝜕𝜓̂𝑠𝑗 (𝑘𝑟 , 𝑧𝑗 ,𝜔)) (2.25)

= 𝜇𝑠𝑗−1(
𝜕𝜙̂𝑠𝑗−1(𝑘𝑟 , 𝑧𝑗 ,𝜔)

𝜕𝑧
+
𝜕2𝜓̂𝑠𝑗−1(𝑘𝑟 , 𝑧𝑗 ,𝜔)

𝜕𝑧2
+𝑘2𝑠𝑗−1𝜕𝜓̂𝑠𝑗−1(𝑘𝑟 , 𝑧𝑗 ,𝜔)), 2 ≤ 𝑗 ≤ 𝑁 .

Fluid source
To derive the Green’s functions for an acoustic source, a pressure-type unit amplitude ring

source is placed at [𝑟𝑠 , 𝑧𝑠] in the fluid domain as shown in Fig. 2.4. The equation of motion

for the displacement potential 𝜙̃𝑔𝑓 ,𝑓 reads:

[∇2+𝑘2𝑓 ]𝜙̃
𝑔
𝑓 ,𝑓 (𝑟,𝑧; 𝑟𝑠 , 𝑧𝑠 ,𝜔) =

1
−𝜌𝜔2

𝛿(𝑟 − 𝑟𝑠 , 𝑧 −𝑧𝑠)
2𝜋𝑟

, 𝑟𝑠 ≥ 𝑅, 𝑧0 ≤ 𝑧𝑠 ≤ 𝑧1 (2.26)

in which the first subscript of the Green’s potential function denotes the location of the

receiver, and the second subscript denotes the location of the source with "𝑓 " being the

fluid domain. The homogeneous equations of motion for the displacement potentials 𝜙𝑠,𝑓
and𝜓𝑠,𝑓 in the soil are given by Eqs. (2.6) and (2.7). Applying the forward Hankel transform
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to Eqs. (2.6), (2.7) and (2.26), the wave equations are reduced to depth-separated wave

equations in the Hankel domain [104].

[
𝑑2

𝑑𝑧2
+𝑘2𝑧,𝑓 ]𝜙̂

𝑔
𝑓 ,𝑓 (𝑘𝑟 , 𝑧; 𝑟𝑠 , 𝑧𝑠 ,𝜔) =

1
−𝜌𝜔2 𝛿(𝑧 −𝑧𝑠)

𝐽0(𝑘𝑟𝑟𝑠)
2𝜋

, (2.27)

[
𝑑2

𝑑𝑧2
+𝑘2𝑧,𝑝𝑗 ]𝜙̂

𝑔
𝑗,𝑓 (𝑘𝑟 , 𝑧; 𝑟𝑠 , 𝑧𝑠 ,𝜔) = 0 , (2.28)

[
𝑑2

𝑑𝑧2
+𝑘2𝑧,𝑠𝑗 ]𝜓̂

𝑔
𝑗,𝑓 (𝑘𝑟 , 𝑧; 𝑟𝑠 , 𝑧𝑠 ,𝜔) = 0 . (2.29)

in which 𝑘𝑧,𝜉 =
√
𝑘2𝜉 −𝑘2𝑟 is the vertical wavenumber in the domain 𝜉 (=𝑓 ,𝑝𝑗 or 𝑠𝑗 ). The

boundary conditions of the acousto-elastic medium along the z-coordinate have been

specified in Eqs. (2.18)−(2.25) in the Hankel domain.

The solutions for the displacement potentials are the sum of a particular solution and

the general solution to the homogeneous equation:

𝜙̂𝑔𝑓 ,𝑓 (𝑘𝑟 , 𝑧; 𝑟𝑠 , 𝑧𝑠 ,𝜔) =
1

−𝜌𝜔2
𝑒−i𝑘𝑧,𝑓 |𝑧−𝑧𝑠 |

4𝜋i𝑘𝑧,𝑓
+𝐴𝑔1𝑒

i𝑘𝑧,𝑓 𝑧 +𝐴𝑔2𝑒
−i𝑘𝑧,𝑓 𝑧 , (2.30)

𝜙̂𝑔𝑗,𝑓 (𝑘𝑟 , 𝑧; 𝑟𝑠 , 𝑧𝑠 ,𝜔) = 𝐴
𝑔
4𝑗−1𝑒

i𝑘𝑧,𝑝𝑗 𝑧 +𝐴𝑔4𝑗𝑒
−i𝑘𝑧,𝑝𝑗 𝑧 , (2.31)

𝜓̂𝑔𝑗,𝑓 (𝑘𝑟 , 𝑧; 𝑟𝑠 , 𝑧𝑠 ,𝜔) = 𝐴
𝑔
4𝑗+1𝑒

i𝑘𝑧,𝑠𝑗 𝑧 +𝐴𝑔4𝑗+2𝑒
−i𝑘𝑧,𝑠𝑗 𝑧 . (2.32)

in which the coefficients 𝐴𝑔𝑖 (𝑖 = 1,2, ..., 4𝑁 +2) are undetermined complex amplitudes. Two

unknown amplitude coefficients in the potential function 𝜙̂𝑔𝑓 ,𝑓 indicating upward- and

downward-waves in the fluid, four unknown amplitude coefficients in the functions 𝜙̂𝑗 ,𝑓
and 𝜓̂𝑗 ,𝑓 indicating upward- and downward-propagating waves in each soil layer. When

𝑗 = 𝑁 , the amplitudes in front of the first term in both Eqs. (2.31) and (2.32) vanish to

ensure that the radiation condition at 𝑧 → ∞ is satisfied. By substituting the expressions

into the boundary and interface conditions shown in Eqs. (2.18) and (2.25), the final set of

linear algebraic equations with unknowns 𝐴𝑔𝑖 for 𝑖 = 1,2, ..., 4𝑁 +2 is obtained and given in

Appendix A. Once the amplitude coefficients are solved for every 𝑘𝑟 , the Green’s tensor
for a pressure-type ring source placed in the fluid domain is obtained.

Applying the inverse Hankel transform with the use of the following relationships of

the Bessel functions [108],

𝐽𝜈 (𝜉) = 1
2 (𝐻

(2)
𝜈 (𝜉)+𝐻 (1)

𝜈 (𝜉)), (2.33)

𝐻 (1)
𝜈 (−𝜉) = −𝑒−𝜈𝜋i𝐻 (2)

𝑣 (𝜉), 𝐻 (2)
𝜈 (−𝜉) = −𝑒𝜈𝜋i𝐻 (1)

𝜈 (𝜉), (2.34)

the Green’s tensor of the acousto-elastic medium in the frequency domain is obtained

as:

𝚽̃𝑔Ξ,𝑓 (𝑟,𝑧; 𝑟𝑠 , 𝑧𝑠 ,𝜔) = −
1
2 ∫

+∞

−∞
𝚽̂
𝑔
Ξ,𝑓 (𝑘𝑟 , 𝑧; 𝑟𝑠 , 𝑧𝑠 ,𝜔)𝐻

(2)
0 (𝑘𝑟𝑟)𝑘𝑟𝑑𝑘𝑟 (2.35)

in which 𝚽̂
𝑔
Ξ,𝑓 = [𝜙̂𝑔𝑓 ,𝑓 , 𝜙̂

𝑔
𝑗,𝑓 , 𝜓̂

𝑔
𝑗,𝑓 ]

𝑇
denotes the solutions of displacement potential functions

in Hankel domain, 𝚽̃𝑔Ξ,𝑓 are the corresponding potential functions in frequency domain.
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The pressure, displacements and stresses of the acousto-elastic medium are expressed

by the Green’s functions of displacement potentials, which are omitted here for the sake of

brevity [101, 109].

Soil source
For a radial or vertical ring load applied in the soil as shown in Fig. 2.4, the corresponding

jump condition is applied for the stresses at the plane of the source level 𝑧 = 𝑧𝑠 . The soil
layer containing the source is divided in two layers, above and below the soil source, to

obtain homogeneous equations of motion and the excitation included in the interface

conditions. This introduces extra four unknown amplitudes of 𝜙̂𝑔𝑗,𝑠𝑛 and 𝜓̂
𝑔
𝑗,𝑠𝑛 . Therefore,

the total number of unknown amplitude coefficients are 4N+2 for the fluid sources and

4N+6 for the soil sources. Because all soil layers are free of body-force sources in that case,

the solutions for the potential functions can be defined as:

𝜙̂𝑔𝑓 ,𝑠𝑛(𝑘𝑟 , 𝑧; 𝑟𝑠 , 𝑧𝑠 ,𝜔) = 𝐴
𝑔
1𝑒

i𝑘𝑧,𝑓 𝑧 +𝐴𝑔2𝑒
−i𝑘𝑧,𝑓 𝑧 , (2.36)

𝜙̂𝑔𝑗,𝑠𝑛(𝑘𝑟 , 𝑧; 𝑟𝑠 , 𝑧𝑠 ,𝜔) = 𝐴
𝑔
4𝑗−1𝑒

i𝑘𝑧,𝑝𝑗 𝑧 +𝐴𝑔4𝑗𝑒
−i𝑘𝑧,𝑝𝑗 𝑧 , (2.37)

𝜓̂𝑔𝑗,𝑠𝑛(𝑘𝑟 , 𝑧; 𝑟𝑠 , 𝑧𝑠 ,𝜔) = 𝐴
𝑔
4𝑗+1𝑒

i𝑘𝑧,𝑠𝑗 𝑧 +𝐴𝑔4𝑗+2𝑒
−i𝑘𝑧,𝑠𝑗 𝑧 . (2.38)

in which the coefficients 𝐴𝑔𝑖 (𝑖 = 1,2, ..., 4𝑁 +6) are undetermined complex amplitudes, the

subscript 𝑛 denotes the layer of the soil source. When 𝑗 = 𝑛, the soil layer 𝑗 is separated
into two sublayers at 𝑧 = 𝑧𝑠 , which denoted as 𝜙̂𝑠+𝑛 ,𝑠𝑛 and 𝜙̂𝑠−𝑛 ,𝑠𝑛 with "+" and "−" indicating
the layer above and below the source level. Same notation is used for the shear potentials

as 𝜓̂𝑠+𝑛 ,𝑠𝑛 and 𝜓̂𝑠−𝑛 ,𝑠𝑛 . Similar to the case of the fluid source, when 𝑗 = 𝑁 , the amplitudes

𝐴𝑔4𝑗−1 and 𝐴
𝑔
4𝑗+1 are set to zero in order to satisfy the radiation condition at 𝑧 → ∞.

For the radial load case, the following set of interface conditions hold at 𝑧 = 𝑧𝑠 in the

Hankel domain:

𝜎̂𝑔𝑧𝑟𝑠+𝑛 ,𝑠𝑛
(𝑘𝑟 , 𝑧𝑠 ,𝜔)− 𝜎̂𝑔𝑧𝑟𝑠−𝑛 ,𝑠𝑛 (𝑘𝑟 , 𝑧𝑠 ,𝜔) =

𝐽0(𝑘𝑟𝑟𝑠)
2𝜋

, (2.39)

𝜎̂𝑔𝑧𝑧𝑠+𝑛 ,𝑠𝑛
(𝑘𝑟 , 𝑧𝑠 ,𝜔) = 𝜎̂𝑔𝑧𝑧𝑠−𝑛 ,𝑠𝑛 (𝑘𝑟 , 𝑧𝑠 ,𝜔), (2.40)

𝑢̂𝑔𝛼𝑠+𝑛 ,𝑠𝑛
(𝑘𝑟 , 𝑧𝑠 ,𝜔) = 𝑢̃𝑔𝛼𝑠−𝑛 ,𝑠𝑛 (𝑘𝑟 , 𝑧𝑠 ,𝜔), 𝛼 = 𝑟,𝑧. (2.41)

Similarly, for the vertical load case, one obtains:

𝜎̂𝑔𝑧𝑧𝑠+𝑛 ,𝑠𝑛
(𝑘𝑟 , 𝑧𝑠 ,𝜔)− 𝜎̂𝑔𝑧𝑧𝑠−𝑛 ,𝑠𝑛 (𝑘𝑟 , 𝑧𝑠 ,𝜔) =

𝐽0(𝑘𝑟𝑟𝑠)
2𝜋

, (2.42)

𝜎̂𝑔𝑧𝑟𝑠+𝑛 ,𝑠𝑛
(𝑘𝑟 , 𝑧𝑠 ,𝜔) = 𝜎̂𝑔𝑧𝑟𝑠−𝑛 ,𝑠𝑛 (𝑘𝑟 , 𝑧𝑠 ,𝜔), (2.43)

𝑢̂𝑔𝛼𝑠+𝑛 ,𝑠𝑛
(𝑘𝑟 , 𝑧𝑠 ,𝜔) = 𝑢̃𝑔𝛼𝑠−𝑛 ,𝑠𝑛 (𝑘𝑟 , 𝑧𝑠 ,𝜔), 𝛼 = 𝑟,𝑧. (2.44)

Combining Eqs. (2.39)−(2.44) with Eqs. (2.18)−(2.25), and after substitution of the solutions

Eqs. (2.36)-(2.38) into the obtained set of equations, a linear algebraic system is formed

with unknowns 𝐴𝑔𝑖 for 𝑖 = 1,2, ..., 4𝑁 +6. Once the displacement potentials are determined

in the Hankel domain, the expressions for the Green’s tensors of displacement and stress

in the frequency domain can be obtained.
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Closed-form response in the freqency domain

The evaluation of the integrals given by Eq. (2.35) can be carried out in two ways: (1) by

the direct numerical wavenumber integration along the real axis of 𝑘𝑟 ; (2) by using the

complex contour integration technique.

(a) Ewing-Jardetzky-Press (EJP) cuts

(b) Pekeris cut

Figure 2.5: Visualization of normal mode solutions based on various choices of branch cuts for an acousto-elastic

halfspace. In the case of fluid halfspace, the second branch cut associated with the shear waves vanishes in both

approaches.

The first approach utilizes the direct numerical wavenumber integration (WNI) on the

real axis of horizontal wavenumbers 𝑘𝑟 from −∞ to +∞. This approach is straightforward

but requires extremely fine integration step when the integrand changes rapidly as function

of 𝑘𝑟 which often is the case when frequency is relatively high or the receiver at closer range
needs to be evaluated. The second approach is essentially an alternative mathematical

evaluation of the integrals in Eq. (2.35). Based on Cauchy’s theorem, we can write the

contour integral as (provided that the contour is closed over the lower half-plane of the
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complex 𝑘𝑟 plane)

∫
+∞

−∞
𝑓 (𝑘𝑟 )𝑑𝑘𝑟 +∫

𝐶∞
𝑓 (𝑘𝑟 )𝑑𝑘𝑟 +∫

branch cuts

𝑓 (𝑘𝑟 )𝑑𝑘𝑟 = −2𝜋i
𝑀
∑
𝑚=1

Res(𝑓 (𝑘𝑟 ),𝑘(𝑚)𝑟 ) (2.45)

in which Res(𝑓 (𝑘𝑟 ),𝑘(𝑚)𝑟 ) is the residue of a general function 𝑓 (𝑘𝑟 ) to a simple pole at

𝑘𝑟 = 𝑘(𝑚)𝑟 . The integrand, 𝑓 (𝑘𝑟 ), is a multi-valued function. By introducing branch cuts,

a single-valued representation of 𝑓 (𝑘𝑟 ) can be defined in the complex 𝑘𝑟 plane, which is

a necessary condition for the applicability of the contour integration method. The term

∫𝐶∞ 𝑓 (𝑘𝑟 )𝑑𝑘𝑟 represents the integral along an infinite semi-circle in the lower half of the

complex plane of 𝑘𝑟 . The term ∫
branch cuts

𝑓 (𝑘𝑟 )𝑑𝑘𝑟 corresponds to the integration along a

selected branch cut in the complex plane of 𝑘𝑟 , as illustrated in Fig. 2.5. A specific choice of

branch cut is typically made to ensure the single-valuedness of the function while avoiding

other singularities and maintaining mathematical consistency. Therefore, the solution

represented by the integral along the real axis of 𝑘𝑟 can be expressed as:

∫
+∞

−∞
𝑓 (𝑘𝑟 )𝑑𝑘𝑟 = −2𝜋i

𝑀
∑
𝑚=1

Res(𝑓 (𝑘𝑟 ),𝑘(𝑚)𝑟 )−∫
branch cuts

𝑓 (𝑘𝑟 )𝑑𝑘𝑟 −∫
𝐶∞
𝑓 (𝑘𝑟 )𝑑𝑘𝑟 (2.46)

The EJP solution is depicted in Fig. 2.5 (a). Assuming direct wavenumber integration

along the real axis from −∞ to +∞, the integration path along the semicircle 𝐶∞ also

extends to infinity. Its contribution diminishes with |𝑘𝑟 | → ∞. Therefore, the NM solution

with EJP cuts can be expressed as:

∫
+∞

−∞
𝑓 (𝑘𝑟 )𝑑𝑘𝑟 = −2𝜋i

𝑀
∑
𝑚=1

Res(𝑓 (𝑘𝑟 ),𝑘(𝑚)𝑟 )−∫
EJP cuts𝑘𝑝,𝑁

𝑓 (𝑘𝑟 )𝑑𝑘𝑟 −∫
EJP cuts𝑘𝑠,𝑁

𝑓 (𝑘𝑟 )𝑑𝑘𝑟

(2.47)

The total solution now consists of three terms: a) a sum of discrete modes corresponding

to the residues, which can be finite in the case of a fluid layer overlying an elastic half-space,

or infinite when dealing with a fluid layer overlying a multi-layered elastic half-space.

In both cases, each term in this sum is finite for all values of z; b) a hyperbolic branch

line integration associated with the branch point of compressional wavenumber 𝑘𝑝; c) a
hyperbolic branch line integration associated with the branch point of shear wavenumber

𝑘𝑠 . All terms in this method satisfy the radiation condition at infinite depth. Therefore, the

solution is evaluated by truncating the branch line integrations and discrete modes, which

allows us to accurately represent the complete wave field, regardless of the location of the

source and the observation point. A case study is introduced for a fluid layer overlying an

elastic half-space. The properties and dimensions of each layer are presented in Table 2.1.

Based on this case study, an illustration of the multi-valued characteristic functions for an

acousto-elastic half-space is shown in Fig. 2.6, where the branch points, EJP branch cuts,

and poles are depicted in the complex 𝑘𝑟 -plane. The same material properties used in this

case study are examined further in section 2.2.3.

By applying the complex contour integration technique, the expressions of the displace-

ment potential functions 𝚽̃
𝑔
Ξ,𝜉 in frequency domain are given as a summation over a finite
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Table 2.1: Basic input parameters for the validation study of the Green’s functions.

Parameter Depth 𝜌 𝑐𝐿 𝑐𝑇 𝛼𝑝 𝛼𝑠
- [m] [kg/m

3
] [m/s] [m/s] [𝑑𝐵/𝜆] [𝑑𝐵/𝜆]

Fluid 40 1000 1500 - - -

Bottom soil ∞ 1908 1725 370 0.88 2.77

number of poles supplemented by the Ewing-Jardetsky-Press (EJP) branch line integrations

∫𝛼+𝛽 𝑓 (𝑘𝑟 )𝑑𝑘𝑟 , i.e. :

𝚽̃
𝑔
Ξ,𝜉 (𝑟,𝑧; 𝑟𝑠 , 𝑧𝑠 ;𝜔) = −𝜋i

𝑀
∑
𝑚=1[

Res(𝚽̂
𝑔
Ξ,𝜉 (𝑘

(𝑚)
𝑟 , 𝑧; 𝑟𝑠 , 𝑧𝑠))𝐻 (2)

0 (𝑘(𝑚)𝑟 𝑟)𝑘(𝑚)𝑟 ]

+
1
2 ∫𝛼+𝛽

𝚽̂
𝑔
Ξ,𝜉 (𝑘𝑟 , 𝑧; 𝑟𝑠 , 𝑧𝑠)𝐻

(2)
0 (𝑘𝑟𝑟)𝑘𝑟𝑑𝑘𝑟

(2.48)

With this method, a complete expression for the normal mode solution to the multilayered

acousto-elastic ocean environment is derived using the Green’s tensors for ring sources

located either in the fluid or in the sediment.

Alternatively, the Pekeris branch cuts (vertical cuts) can be chosen, and they have been

widely adopted in solutions of many applications in underwater acoustics. However, it is

important to note that when vertical branch cuts are used, the integration along the parts

of the Pekeris branch cuts that correspond to high values of |ℑ(𝑘𝑟 )| is divergent. This can
lead to numerical instability, particularly in cases where the source is embedded in the

sediment or the observation points are close to the source. Because the complex contour is

smooth and continuous, and the semi-circle extended to the infinity connects to the branch

cuts in the lower half-plane of the complex 𝑘𝑟 , it also causes the integral along the infinite

semicircle to diverge at some of its parts. Consequently, the NM solution with Pekeris cuts

is expressed as:

∫
+∞

−∞
𝑓 (𝑘𝑟 )𝑑𝑘𝑟 =−2𝜋i

𝑀∗

∑
𝑚=1

Res(𝑓 (𝑘𝑟 ),𝑘(𝑚)𝑟 )−∫
Pekeris cuts𝑘𝑝,𝑁

𝑓 (𝑘𝑟 )𝑑𝑘𝑟

−∫
Pekeris cuts𝑘𝑠,𝑁

𝑓 (𝑘𝑟 )𝑑𝑘𝑟 −∫
Pekeris cuts𝐶∞

𝑓 (𝑘𝑟 )𝑑𝑘𝑟

(2.49)

where 𝑀∗
indicates a different set of modes, which includes the so-called "improper" or

leaky modes. These modes arise because the plane of searching for roots is modified due

to the choice of vertical branch cuts.

The solution with Pekeris cuts consists of four terms: a) an infinite sum of discrete

modes; b) a vertical branch line integration associated with the branch point of compres-

sional wavenumber 𝑘𝑝; c) a vertical branch line integration associated with the branch

point of shear wavenumber 𝑘𝑠 ; d) a semi-circle that goes to infinity in the lower half plane

of the complex 𝑘𝑟 . However, the evaluation of this solution requires truncation and simpli-

fication because the "improper" or leaky modes, along with the integrals, are numerically

unstable due to their divergent behaviour at large imaginary wavenumber. Therefore, the
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Figure 2.6: Visualization of characteristic function det(𝑘𝑟 ) as being the determinant of the coefficient matrix for

an acousto-elastic halfspace on the Riemann surfaces at f = 100Hz: branch points, EJP branch cuts, poles are

indicated in the 𝑘𝑟 complex plane. For the visualization purpose, vertical axis is defined as log(|det|), the branch
line is indicated by the hyperbolic curvature of the surface, in which a sharp jump can be observed between the

two Riemann surfaces. The four poles can be found at the peaks pointing down to the negative vertical axis,

which numerically resemble the zeros of det(𝑘𝑟 ).

expressions for the displacement potential functions in the frequency domain are simplified
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as:

𝚽̃
𝑔
Ξ,𝜉 (𝑟,𝑧; 𝑟𝑠 , 𝑧𝑠 ;𝜔) ≈ −𝜋i

𝑀∗

∑
𝑚=1[

Res(𝚽̂
𝑔
Ξ,𝜉 (𝑘

(𝑚)
𝑟 , 𝑧; 𝑟𝑠 , 𝑧𝑠))𝐻 (2)

0 (𝑘(𝑚)𝑟 𝑟)𝑘(𝑚)𝑟 ]

+
1
2 ∫𝛼∗+𝛽∗

𝚽̂
𝑔
Ξ,𝜉 (𝑘𝑟 , 𝑧; 𝑟𝑠 , 𝑧𝑠)𝐻

(2)
0 (𝑘𝑟𝑟)𝑘𝑟𝑑𝑘𝑟

(2.50)

where 𝛼∗ and 𝛽∗ indicate the truncated vertical branch line integration and the integral

along the 𝐶∞ is neglected to simplify the final solution. However, this simplification is

only valid when the source is located in the fluid, and for observation points in the fluid

that are at large distances from the source. The criteria for truncation of the solution with

both EJP and Pekeris cuts ensure that the ratio between the contribution of the branch

line integration and the cumulative branch line integration is less than 1𝐸−5 for the wave
field in the fluid. Since the response in the soil for the solution with Pekeris cuts exhibits

inherent divergence, this criterion is applied solely to the fluid response.

This study is focused on those common types of branch cuts as introduced above,

Pekeris cuts and Ewing-Jardetzky-Press (EJP) cuts. It is important to note that, in the case

of a fluid layer overlying a multi-layered half-space, an infinite number of poles are exposed

when using the complex contour integration method with the choice of EJP branch cuts.

From a computational perspective, the complex contour integration with either Pekeris

or EJP cuts requires truncation of integrals and summations. However, the use of Pekeris

cuts requires careful consideration of the upper truncation limits for the modes and branch

line integrals and the integral over the infinite half-plane. We have found that the results

are highly sensitive to the choices in this regard, particularly when calculating the wave

field close to the source or when the source is embedded in the sediment. In contrast, the

choice of EJP cuts appears to be less sensitive to the selection of the upper bounds of the

branch line integrals and the sum of modes, while also providing faster convergence of the

solution for the problems studied in this thesis. For these reasons, the author has decided

to adopt the use of EJP cuts for the computations in the subsequent chapters. The physical

interpretation and the numerical implications of these various choices are discussed further

in section 2.2.3.
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2.2.2 Root finding in complex plane for acousto-elastic wave
propagation

By definition of EJP cuts proposed by Press and Ewing, the branch cuts are chosen based

on the conditions of ℑ(𝑘𝑧,𝑝) = 0 and ℑ(𝑘𝑧,𝑠) = 0, which yields two hyperbolas associated

to the branch points 𝑘𝑝 and 𝑘𝑠 in the complex plane as shown in the Fig. 2.5 (a). Three

Riemann surfaces are specified in Table 2.2.

By use of Cauchy’s theorem and residue theorem, the full solution for the acoustic field

is derived as:

𝚽̃
𝑔
𝜉 (𝑟,𝑧;0,𝑧𝑠 ;𝜔) = −𝜋i

𝑀
∑
𝑚=1[

𝚽̂
𝑛𝑢𝑚
𝜉 (𝑘(𝑚)𝑟 ; 𝑧;𝑧𝑠)

det
′(𝑘(𝑚)𝑟 )

𝐻 (2)
0 (𝑘(𝑚)𝑟 𝑟)𝐻 (1)

0 (𝑘(𝑚)𝑟 𝑟𝑠)𝑘(𝑚)𝑟 ]

+
1
2 ∫𝐿𝛼

𝚽̂𝜉 (𝑘𝑟 ; 𝑧;𝑧𝑠)𝐻 (1)
0 (𝑘𝑟𝑟𝑠)𝐻 (2)

0 (𝑘𝑟𝑟)𝑘𝑟𝑑𝑘𝑟

+
1
2 ∫𝐿𝛽

𝚽̂𝜉 (𝑘𝑟 ; 𝑧;𝑧𝑠)𝐻 (1)
0 (𝑘𝑟𝑟𝑠)𝐻 (2)

0 (𝑘𝑟𝑟)𝑘𝑟𝑑𝑘𝑟

(2.51)

in which 𝚽̂
𝑛𝑢𝑚
𝜉 denotes the numerator of the solutions in wavenumber domain, det

′(𝑘(𝑚)𝑟 )
denotes the derivative of the characteristic equation as being the determinant of the

coefficient matrix.

Table 2.2: Riemann surface on the complex plane of horizontal wavenumber 𝑘𝑟 .

Surface 𝑘𝑝 𝑘𝑠
1 +

√
𝑘2𝑝 −𝑘2𝑟 +

√
𝑘2𝑠 −𝑘2𝑟

2 −
√
𝑘2𝑝 −𝑘2𝑟 +

√
𝑘2𝑠 −𝑘2𝑟

3 −
√
𝑘2𝑝 −𝑘2𝑟 −

√
𝑘2𝑠 −𝑘2𝑟

The full wave solutions corresponding to the Pekeris cuts are shown in Eq. (2.46), but

both normal modes and integration path differ from the EJP solutions. The numerical

evaluation of the two methods is discussed in section 2.2.3 in more detail. Based on the

contour integration of the wave number integrals, the solution in the acoustic domain is

derived. It consists of two components, a finite number of modes and branch line integrals

around EJP branch cuts based on our choice. In general, attenuation is introduced in

the bottom half-space of the seabed. The presence of a lossy bottom makes the acoustic

wavenumbers 𝑘𝑝 , 𝑘𝑠 complex. Because residue theorem allows us to derive the line integrals

of an analytical function over a closed curve; the contour C is chosen to be along the real

line from −∞ to∞ and then clockwise along a semicircle centered at 0 from −∞ to∞. Since

both 𝜙̂ and 𝜓̂ in this case are not single-valued functions, the branch cut integrals are also

needed for closing the contour. We have the following vertical wavenumbers to consider:

𝑘𝑧,𝑝 = ±
√
𝑘2𝑝 −𝑘2𝑟 (2.52)

𝑘𝑧,𝑠 = ±
√
𝑘2𝑠 −𝑘2𝑟 (2.53)
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Let us consider first the branch cut associated with the compressional wavenumber as

an example. We assume that:

𝑘𝑟 = 𝑥 + i𝑦, 𝑘𝑝 = 𝑎+ i𝑏 (𝑤𝑖𝑡ℎ 𝑎 > 0,𝑏 < 0) (2.54)

and

𝑘𝑧,𝑝 =
√
𝑘2𝑝 −𝑘2𝑟 = 𝑐+ i𝑑 (2.55)

By definition, we have 𝑘2𝑧,𝑝 = 𝑘2𝑝 −𝑘2𝑟 :

𝑐2−𝑑2+2i𝑐𝑑 = (𝑎2−𝑏2)− (𝑥2−𝑦2)+ (2i𝑎𝑏 −2i𝑥𝑦) (2.56)

Since we require ℑ(𝑘𝑧,𝑝) = 0, therefore, 𝑑 = 0. The above equation becomes:

𝑐2 = 0 (2.57)

That is to say the imaginary part of the right hand side is zero, so we obtain the hyperbola

defined as:

𝑦 =
𝑎𝑏
𝑥

(2.58)

For the real part, we require that:

𝑦2 ≥ 𝑥2−𝑎2+𝑏2 (2.59)

Based on this condition, both the upper and lower sides of the hyperbola are by definition

at ℑ(𝑘𝑧,𝑝) = 0.
The alternative way to evaluate the branch line integration is to change the integration

variable from 𝑘𝑟 to 𝑘𝑧,𝑝 and 𝑘𝑧,𝑠 . By doing so, the 𝑘𝑧,𝑝 or 𝑘𝑧,𝑠 on the branch line are real

everywhere, are positive on the upper edge, negative on the lower edge and are zero at the

branch point. Therefore, we can rewrite one EJP branch line integral for 𝑘𝑧,𝑝 into:

𝑓EJP(𝑟,𝑧,𝜔) = ∫
EJP

𝐹(𝑘𝑟 )𝑑𝑘𝑟

= ∫
0

+∞
𝐹(𝑘𝑧,𝑝)𝑑𝑘𝑧,𝑝 +∫

+∞

0
𝐹(−𝑘𝑧,𝑝)𝑑𝑘𝑧,𝑝

= −∫
+∞

0
𝐹(𝑘𝑧,𝑝)𝑑𝑘𝑧,𝑝 +∫

+∞

0
𝐹(−𝑘𝑧,𝑝)𝑑𝑘𝑧,𝑝

= ∫
+∞

0 (𝐹(−𝑘𝑧,𝑝)−𝐹(𝑘𝑧,𝑝))𝑑𝑘𝑧,𝑝

(2.60)

Given the direct integration, we can have

𝑓EJP(𝑟,𝑧,𝜔) = ∫
EJP

𝐹(𝑘𝑟 )𝑑𝑘𝑟 = ∫
𝑏

𝑎
(𝑢−𝑣

𝑑𝑦
𝑑𝑥

)𝑑𝑥 + i∫
𝑏

𝑎
(𝑢
𝑑𝑦
𝑑𝑥

+𝑣)𝑑𝑥 (2.61)

where 𝐹(𝑘𝑟 ) = 𝑢(𝑥,𝑦) + i𝑣(𝑥,𝑦) and 𝑑𝑧 = 𝑑𝑥 + i𝑑𝑦. If 𝑘𝑝 = 𝛼 + i𝛽(𝛽 < 0), then the y-x

relation can be written as 𝑦 = 𝛼𝛽
𝑥 , we have:

𝑑
𝑑𝑥

(𝑦) = −
𝛼𝛽
𝑥2

(2.62)

which define the branch cut as a hyperbolic line with 𝛼 and 𝛽 being the ℜ and ℑ part of

the wavenumber.
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Figure 2.7: Example of typical Complex contour integration for P-SV waves.

2.2.3 Comparison of various analytical approaches
In this section four methods of solution are discussed:

• Normal-mode with PML

• Direct Wavenumber Integration

• Complex Contour Integration with EJP cuts

• Complex Contour Integration with Pekeris cuts

The solution based on various analytical approaches including Normal Mode with

Perfectly Matched Layer, Direct Wavenumber Integration and Complex Wavenumber

Integration with EJP and Pekeris branch cuts are discussed in this section and the main

findings are summarized in Table 2.3.

Normal Mode with Perfectly Matched Layer
The perfectly matched layer (PML) was introduced by Berenger in 1994 [110] to truncate

the unbounded domain, and was improved for the problem of elastic waves with a complex

coordinate for the cylindrical and spherical coordinates [111]. It is an additional layer

below the bottom layer of the sediment, by applying a complex coordinate transformation,

the amplitudes of the waves decay as depicted in Fig. 2.8.
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Figure 2.8: Schematic depiction of the horizontally stratified marine environment.

The complex coordinate transformation is introduced as

𝑧̃ = ∫
𝑧

0
𝑒𝑧(𝑧′)𝑑𝑧′ = 𝐴(𝑧)+ iΩ𝑧(𝑧)/𝜔, 𝑧𝑁 < 𝑧 ≤ 𝑧𝑁+1 (2.63)

where 𝑒𝑧 = 𝑎𝑧 + i𝜔𝑧/𝜔 is the complex PML stretching variable in the frequency domain

and 𝑎𝑧 and 𝜔𝑧 are the real and positive function of vertical coordinate z. Using the complex

variable 𝑧̃ to replace the original z variables, the frequency domain equations corresponding

to Eqs. (2.31), (2.32, (2.37), and (2.38) can be rewritten as,

𝜙̂𝑔𝑁 ,𝜉 (𝑘𝑟 , 𝑧; 𝑟𝑠 , 𝑧𝑠 ,𝜔) = 𝐴
𝑔
4𝑗−1𝑒

i𝑘𝑧,𝑝𝑗 𝑧̃ +𝐴𝑔4𝑗𝑒
−i𝑘𝑧,𝑝𝑗 𝑧̃ , (2.64)

𝜓̂𝑔𝑁 ,𝜉 (𝑘𝑟 , 𝑧; 𝑟𝑠 , 𝑧𝑠 ,𝜔) = 𝐴
𝑔
4𝑗+1𝑒

i𝑘𝑧,𝑠𝑗 𝑧̃ +𝐴𝑔4𝑗+2𝑒
−i𝑘𝑧,𝑠𝑗 𝑧̃ . (2.65)

where 𝜉 = 𝑓 ,𝑠𝑛 with 𝑛 = 1,2, ...,𝑁 −1. The boundary and interface conditions for the 𝑧𝑗
with 𝑗 = 1,2, ...,𝑁 remains the same, with the rigid boundary condition imposed at the

bottom of the PML layer with the transformed boundary conditions in the Hankel domain

as,

𝑤̂𝑠𝑁 (𝑘𝑟 , 𝑧̃; 𝑟𝑠 , 𝑧𝑠 ,𝜔)|𝑧=𝑧𝑁+1 = 0, (2.66)

𝑢̂𝑠𝑁 (𝑘𝑟 , 𝑧̃; 𝑟𝑠 , 𝑧𝑠 ,𝜔)|𝑧=𝑧𝑁+1 = 0. (2.67)

The solution of the waveguide problem with PML is quite different from the solution

of the acousto-elastic layered halfspace, which consists of the infinite sum of discrete

modes including so-called leaky modes and PML modes. Leaky modes refer to modes that

represent a decaying wave field, irrespective of whether the waveguide is attenuated. PML

modes, on the other hand, approximate the branch line integrals along the EJP branch cuts

[99].
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Figure 2.9: Complex roots in NM-PML solution for a point source at the excitation frequency 30 Hz: roots

representing the propagating modes with relatively large real part and small imaginary part of the wavenumber

(upper); zoomed out complex 𝑘𝑟 plane including all roots truncated at the ℑ(𝑘𝑟 ) = −4.
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Figure 2.10: Complex roots and vertical branch line integration in Pekeris complex wavenumber solution for a

point source at the excitation frequency 30 Hz: complex 𝑘𝑟 plane(top); the enlarged complex 𝑘𝑟 plane (bottom).
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As indicated in Fig. 2.9, there are infinite number of roots. Therefore, the proper

truncation of the number of roots is required. The NM-solution is sensitive to the properties

chosen for the PML layer and numerical instability can occur at large depth in the soil

layer. The advantage of this approach is that the solution includes only an infinite sum of

normal modes.

Complex Wavenumber Integration with Pekeris branch cuts
The complex wavenumber integration solution with Pekeris cuts consists of number of

modes, two vertical branch line integrations and the integral over the infinite semi-circle

∫𝐶∞ as indicated in Fig. 2.10. Not all modes decay with 𝑧 → ∞ as shown in Fig. 2.11, part

of the branch lines also do not converge and so the integral over the infinite semi-circle

also diverges. In fact, the radiation condition does not necessarily need to be satisfied by

these individual components in the complex wavenumber plane as the contour integration

method require only the the radiation condition to be satisfied for the solution with the

wavenumber on the real axis of 𝑘𝑟 . However, the violation against the radiation condition

at 𝑧 → ∞ leads to the instability in the numerical solution of the complex wavenumber

integration with the Pekeris branch cuts since both branch cut integrals and integrals over

the infinite semi-circle diverge. The poles are shown in the complex wavenumber plane in

Fig. 2.10. Among the four mode shapes presented in Fig. 2.11, only the mode related to the

Scholte wave satisfies the radiation condition at 𝑧 → ∞, which is a type of surface wave

that propagates along the interface between acoustic and elastic medium.

Complex Wavenumber Integration with EJP branch cuts
The complex wavenumber integration solution with EJP cuts consists of number of modes

and two hyperbolic branch line integrations as indicated in Fig. 2.12. In this solution,

all modes and branch lines satisfy the boundary and interface conditions, and radiation

condition as shown in Fig. 2.13. The numerical example is given for the two eigenshape

functions based on the roots shown in Fig. 2.12. Most of the propagating and evanescent

modes correspond to the waves that are trapped in the water column and are located on

the principal Riemann surface. The pole associated with the Scholte wave is located on the

third Riemann surface.

Summary
The benchmark case depicted in Fig. 2.14 features a point source situated within a fluid

medium, operating at excitation frequencies of 30 Hz, 125 Hz, and 1 kHz. Green’s tensors

are presented based on normal mode (NM-PML), direct wavenumber integration (WNI),

EJP-complex wavenumber integration and Pekeris complex wavenumber approach.

As summarized in the Table 2.3, each of these analytical methodologies exhibits its

unique set of advantages and drawbacks. Notably, complex wavenumber integration with

EJP cuts emerges as the most robust and computationally faster solution for the problem

under consideration. Conversely, the NMmethod with PML and complexWNI with Pekeris

cuts manifest instability in dynamic responses within the sediment domain, even though

they are convergent for fluid responses.

Furthermore, the direct WNI method achieves convergence in solutions for waves

within both the fluid and sediment domains. However, fine integration steps are required
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Figure 2.11: Modes shapes based on the Pekeris complex wavenumber approach for a point source at the excitation

frequency 30 Hz.

to capture the integrand along the real 𝑘𝑟 axis, which leads to substantial computational

costs.
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Figure 2.12: Complex roots and hyperbolic branch line integration in EJP complex wavenumber solution for a

point source at the excitation frequency 30 Hz.

Figure 2.13: Modes shapes based on the EJP complex wavenumber approach for a point source at the excitation

frequency 30 Hz.
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Table 2.3: Overview of analytical approaches for wave propagation in acousto-elastic halfspace.

Method Description Schematic diagram

Normal
Mode
- PML

1. closed form solution by introducing the

PML layer;

2. infinite number of roots, the proper trun-

cation of the number of roots is required;

3. the solution is sensitive to the PML layer,

numerical instability can occur.

WNI 1. the solution consists of integration of 𝑘𝑟
along the real axis;

2. the proper truncation of the integration

path is required;

3. numerical instability can occur due to

the choice of the integration step and lim-

its.

C-WNI
with EJP

1. the solution consists of number of modes

and two hyperbolic branch line integra-

tions;

2. because all modes and branch lines sat-

isfy the boundary and interface conditions,

and radiation condition at 𝑧 →∞, the solu-

tion is numerically stable.

C-WNI
with
Pekeris

1. the solution consists of number ofmodes,

two vertical branch line integrations and

the integral along the infinite semi-circle;

2. because not all modes satisfy the radi-

ation condition (soil half-space), and part

of the integrals also do not satisfy the ra-

diation condition at 𝑧 → ∞, the solution is

numerically unstable.
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Figure 2.14: Comparison of Green’s tensors based on normal mode (NM-PML), direct wavenumber integration

(WNI), EJP-complex wavenumber integration and Pekeris complex wavenumber approach for a point source

at three excitation frequencies 30 Hz, 125 Hz and 1kHz as indicated in Fig. 2.15: the pressure and normal stress

for a fluid circular source; at 𝑓 = 30 Hz (left), 𝑓 = 125 Hz (middle), and 𝑓 = 1000 Hz (right). Grey thick line

indicates the results from the EJP-complex wavenumber approach, black dotted line indicates the Pekeris-complex

wavenumber approach, black dashed line indicates the WNI approach, and the black solid line represents the

results from the normal mode approach.
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2.2.4 Validation
In order to validate the Green’s tensors for a source located either in the fluid or in the soil,

a case study is performed and results are compared with the finite element model build in

the COMSOL Multiphysics
®

software [112].

Figure 2.15: Geometry of the model for ring load for the validation of the Green’s tensors: semi-analytical model

(sound propagation module) (left); finite-element model in COMSOL (right).

The material properties in both models and the configuration of the acousto-elastic

half-space for the sound propagation model are given in Table 2.1 in accordance with

Fig. 2.15. In the sound propagation module, the domain is modeled as an acoustic layer

overlying an elastic half-space with pressure release boundary at the sea surface and the

interface conditions at the seabed. The radiation conditions are satisfied at both 𝑟 → ∞
and 𝑧 → ∞. In the COMSOL model, the acousto-elastic waveguide is truncated at 200m

below the seabed by a low-reflecting boundary as indicated in Fig. 2.15, which is used to

reduce the computational domain to a practical size while ensuring the satisfaction of the

radiation condition within an accurate range. In practice, the low-reflecting boundary

works ideally for waves propagating in the normal direction to the boundary as it creates a

perfect impedance match for compressional and shear waves. The dissipation in the soil is

expressed by the frequency-dependent complex compressional and shear wave speeds in

both models. In Fig. 2.15, 𝑧𝑠,𝑓 and 𝑧𝑠,𝑠 define the depth of the loading level, 𝑟𝑠 is the radius
of the ring source, 𝑧1 is the depth of the water column, and 𝑧2 in the COMSOL model gives

the depth of the bottom low-reflecting boundary.

The predictions of the two models are compared for three load cases at three excitation

frequency of 30Hz, 125 Hz and 1 kHz, namely a circular source in the fluid, a ring load in

𝑟- and 𝑧-directions in the soil, named after R-ring and Z-ring load in the Fig. 2.16. The

response on the cylindrical surface at 𝑟 = 2m is shown in Fig. 2.16. The numerical results

from both models are in good agreement for various loading cases, which validates the

sound propagation module.
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Figure 2.16: Comparison of Green’s tensors from sound propagation model and FEM for a point source at three

excitation frequencies 30 Hz, 125 Hz and 1kHz as indicated in Fig. 2.15: the pressure and normal stress for a fluid

circular source; the radial displacement for a fluid circular source; the radial displacement for a R-ring load in the

soil; the radial displacement for a Z-ring load in the soil at 𝑓 = 30 Hz (top), at 𝑓 = 125 Hz (middle), and 𝑓 = 1000
Hz (bottom). Black thin line indicates the results from the sound propagation model, and the grey thick line

represents the numerical results from COMSOL model.
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2.3 Three dimensional Green’s Functions
To solve the three dimensional problems of wave propagation and to build dynamic Green’s

functions of transversely isotropic layered media, an efficient and robust approach for the

derivation of the three-dimensional dynamic Green’s functions is presented. By virtue of

the method of displacement potentials [113, 114], a three dimensional ring load in either

fluid domain or in the soil domain is introduced. The full solution is given in the complex

wavenumber integration with the EJP cuts as discussed in section 2.2.

Figure 2.17: Geometry of the model for ring load for the three dimensional Green’s function.

2.3.1 Eqations of motion
We introduce a cylindrical coordinate system denoted as (𝑟,𝜃,𝑧), wherein 𝑟 is the radial
distance, 𝑧 represents the depth from the sea surface, and 𝜃 denotes the angular coordinate.

Similar to the cylindrically symmetric Green’s function discussed in section 2.2, the

sea surface, the boundary between the fluid and the sediment, and the interfaces between

the sediment layers are defined as 𝑧 = 𝑧𝑗 , where 𝑗 spans from 0 to 𝑁 Both the fluid and

the soil are modelled as three-dimensional media with the same properties as defined in

the cylindrically symmetric case. Material dissipation within the soil is also introduced

in the same manner. It is assumed that the sediment extends infinitely in both radial and

vertical direction as shown in the Fig. 2.17. A three-dimensional ring source is positioned

at a depth 𝑧 = 𝑧𝑠 , which can reside within either the fluid or the sediment. The governing

partial differential equations that describe the three-dimensional dynamic response of the

acousto-elastic medium in the time domain are as follows:
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∇2𝑝𝑓 (𝑟,𝜃,𝑧, 𝑡)−
1
𝑐2𝑓
𝑝̈𝑓 (𝑟,𝜃,𝑧, 𝑡) = 0 , (2.68)

(𝜆𝑠𝑗 +2𝜇𝑠𝑗 )∇(∇ ⋅ 𝐮𝑠𝑗 )−𝜇𝑠𝑗∇× (∇×𝐮𝑠𝑗 ) = 𝜌𝑠𝑗 𝐮̈𝑠𝑗 . (2.69)

In Eq. (2.68), 𝑝𝑓 (𝑟,𝜃,𝑧, 𝑡) is the pressure field of the fluid. In Eq. (2.69), 𝐮𝑠𝑗 = [𝑢𝑠𝑗 (𝑟,𝜃,𝑧, 𝑡)
𝑣𝑠𝑗 (𝑟,𝜃,𝑧, 𝑡) 𝑤𝑠𝑗 (𝑟,𝜃,𝑧, 𝑡)]𝑇 is the radial, and vertical displacements of each soil layer.

The regular Helmholtz decomposition is applied to the displacement field as noted in

[113, 114],

𝐮𝑓 = ∇𝜙𝑓 , (2.70)

𝒖𝑠𝑗 = ∇𝜙𝑠𝑗 +∇× [𝜒𝑠𝑗𝒆𝑧 +∇× [𝜂𝑠𝑗𝒆𝑧]] , (2.71)

The acousto-elastic wave equations can be solved by finding the solutions to a set of

scalar potential wave equations in frequency domain by applying the fourier transform

[113, 114],

[∇2+𝑘2𝑓 (𝑧)]𝜙̃𝑓 (𝑟,𝜃,𝑧) = 0 (2.72)

[∇2+𝑘2𝑝𝑗 (𝑧)]𝜙̃𝑠𝑗 (𝑟,𝜃,𝑧) = 0 (2.73)

[∇2+𝑘2𝑠𝑗 (𝑧)]𝜒𝑠𝑗 (𝑟,𝜃,𝑧) = 0 (2.74)

[∇2+𝑘2𝑠𝑗 (𝑧)]𝜂̃𝑠𝑗 (𝑟,𝜃,𝑧) = 0 (2.75)

For the solutions of Eq. (2.72-2.75), it is convenient to employ an angular Fourier

decomposition in the form of:

𝜙̃𝑓 (𝑟,𝜃,𝑧) =
∞
∑
𝑚=−∞

𝜙𝑓 𝑚(𝑟,𝑧)𝑒i𝑚𝜃 (2.76)

𝜙̃𝑠𝑗 (𝑟,𝜃,𝑧) =
∞
∑
𝑚=−∞

𝜙𝑠𝑗 ,𝑚(𝑟,𝑧)𝑒
i𝑚𝜃

(2.77)

𝜒𝑠𝑗 (𝑟,𝜃,𝑧) =
∞
∑
𝑚=−∞

𝜒𝑠𝑗 ,𝑚(𝑟,𝑧)𝑒
i𝑚𝜃

(2.78)

𝜂̃𝑠𝑗 (𝑟,𝜃,𝑧) =
∞
∑
𝑚=−∞

𝜂𝑠𝑗 ,𝑚(𝑟,𝑧)𝑒
i𝑚𝜃

(2.79)

in which the 𝑚𝑡ℎ series coefficients Φ𝑚 = [𝜙𝑓 𝑚, 𝜙𝑠𝑗 ,𝑚, 𝜒𝑠𝑗 ,𝑚, 𝜂𝑠𝑗 ,𝑚] given by:

Φ𝑚(𝑟,𝑧) = ∫ +𝜋
−𝜋 Φ̃(𝑟,𝜃,𝑧)𝑒−i𝑚𝜃𝑑𝜃 (2.80)

with 𝜃 = [−𝜋,+𝜋].
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2.3.2 Hankel transform
Applying the Hankel transform pairs to the 𝑚𝑡ℎ angular order function 𝑓𝑚(𝑟,𝑧) and its

potential functions in Hankel domain with 𝑚∗,𝑡ℎ
order Bessel function as

̂𝑓 𝑚∗
𝑚 ,

𝑓𝑚(𝑟,𝑧) = ∫
∞

0
̂𝑓 𝑚

∗
𝑚 (𝑘𝑟 , 𝑧)𝑘𝑟 𝐽𝑚(𝑘𝑟𝑟)𝑑𝑘𝑟 (2.81)

̂𝑓 𝑚
∗

𝑚 (𝑘𝑟 , 𝑧) = ∫
∞

0
𝑓𝑚(𝑟,𝑧)𝑟𝐽𝑚(𝑘𝑟𝑟)𝑑𝑟 (2.82)

in which the subscript indicates the order of the Angular Fourier Transform (AFT), and the

superscript represents the order of the Hankel transform. For the potential functions in

the Hankel domain , Φ̂𝑚∗
𝑚 is abbreviated as Φ̂𝑚 for simplification.

The governing equations are transformed to the depth-dependent wave equations as:

𝑑2

𝑑𝑧2
𝜙̂𝑓 𝑚(𝑘𝑟 , 𝑧)+ (𝑘2𝑓 −𝑘

2
𝑟 )𝜙̂𝑓 𝑚(𝑘𝑟 , 𝑧) = 0 (2.83)

𝑑2

𝑑𝑧2
𝜙̂𝑗𝑚(𝑘𝑟 , 𝑧)+ (𝑘2𝑝𝑗 −𝑘

2
𝑟 )𝜙̂𝑗𝑚(𝑘𝑟 , 𝑧) = 0 (2.84)

𝑑2

𝑑𝑧2
𝜒𝑗𝑚(𝑘𝑟 , 𝑧)+ (𝑘2𝑠𝑗 −𝑘

2
𝑟 )𝜒𝑗𝑚(𝑘𝑟 , 𝑧) = 0 (2.85)

𝑑2

𝑑𝑧2
𝜂̂𝑗𝑚(𝑘𝑟 , 𝑧)+ (𝑘2𝑠𝑗 −𝑘

2
𝑟 )𝜂̂𝑗𝑚(𝑘𝑟 , 𝑧) = 0 (2.86)

The general solutions to Eqs. (2.83)−(2.86) read:

𝜙̂𝑓 𝑚(𝑘𝑟 , 𝑧) = 𝐴1(𝑘𝑟 )𝑒i𝑘𝑧,𝑓 𝑧 +𝐴2(𝑘𝑟 )𝑒−i𝑘𝑧,𝑓 𝑧 (2.87)

𝜙̂𝑗𝑚(𝑘𝑟 , 𝑧) = 𝐴4𝑗−1(𝑘𝑟 )𝑒i𝑘𝑧,𝑝𝑗 𝑧 +𝐴4𝑗 (𝑘𝑟 )𝑒−i𝑘𝑧,𝑝𝑗 𝑧 (2.88)

𝜒𝑗𝑚(𝑘𝑟 , 𝑧) = 𝐵2𝑗−1(𝑘𝑟 )𝑒i𝑘𝑧,𝑠𝑗 𝑧 +𝐵2𝑗 (𝑘𝑟 )𝑒−i𝑘𝑧,𝑠𝑗 𝑧 (2.89)

𝜂̂𝑗𝑚(𝑘𝑟 , 𝑧) = 𝐴4𝑗+1(𝑘𝑟 )𝑒i𝑘𝑧,𝑠𝑗 𝑧 +𝐴4𝑗+2(𝑘𝑟 )𝑒−i𝑘𝑧,𝑠𝑗 𝑧 (2.90)

For the numerical stability, the reference z coordinate can be shifted to the either upper or

lower boundaries of each layer, the solutions now read:

𝜙̂𝑓 𝑚(𝑘𝑟 , 𝑧) = 𝐴1(𝑘𝑟 )𝑒i𝑘𝑧,𝑓 (𝑧−𝐷1)+𝐴2(𝑘𝑟 )𝑒−i𝑘𝑧,𝑓 𝑧 (2.91)

𝜙̂𝑗𝑚(𝑘𝑟 , 𝑧) = 𝐴4𝑗−1(𝑘𝑟 )𝑒i𝑘𝑧,𝑝𝑗 (𝑧−𝐷𝑗+1)+𝐴4𝑗 (𝑘𝑟 )𝑒−i𝑘𝑧,𝑝𝑗 (𝑧−𝐷𝑗 ) (2.92)

𝜒𝑗𝑚(𝑘𝑟 , 𝑧) = 𝐵2𝑗−1(𝑘𝑟 )𝑒i𝑘𝑧,𝑠𝑗 (𝑧−𝐷𝑗+1)+𝐵2𝑗 (𝑘𝑟 )𝑒−i𝑘𝑧,𝑠𝑗 (𝑧−𝐷𝑗 ) (2.93)

𝜂̂𝑗𝑚(𝑘𝑟 , 𝑧) = 𝐴4𝑗+1(𝑘𝑟 )𝑒i𝑘𝑧,𝑠𝑗 (𝑧−𝐷𝑗+1)+𝐴4𝑗+2(𝑘𝑟 )𝑒−i𝑘𝑧,𝑠𝑗 (𝑧−𝐷𝑗 ) (2.94)

in which 𝑗 indicates the index of soil layer and 𝐷𝑗 and 𝐷𝑗+1 indicate the depth of the upper

and lower boundary of the soil layer 𝑗 .

2.3.3 Transformed displacement and stress fields
The transformed displacement [𝑢̂𝑟𝜉𝑚 , 𝑢̂𝜃𝜉𝑚 , 𝑢̂𝑧𝜉𝑚], pressure field 𝑝̂𝑓 and stress-field [𝜏̂𝑧𝑧𝑗𝑚 , 𝜏̂𝑧𝑟 𝑗𝑚 ,
𝜏̂𝑧𝜃𝑗𝑚 , 𝜏̂𝑟𝑟 𝑗𝑚 , 𝜏̂𝜃𝜃𝑗𝑚 , 𝜏̂𝑟𝜃𝑗𝑚 , ] (with 𝜉 = 𝑓 , 𝑗 and 𝑗 = 1,2, ...,𝑁 ) are obtained, the solutions are
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very convenient form to ensure the expression is in the same circumferential order,

𝑢̂𝑟𝑓 𝑚(𝑘𝑟 , 𝑧) = 𝑢̂
𝑚+1
𝑓 𝑚 (𝑘𝑟 , 𝑧)+ i𝑣𝑚+1𝑓 𝑚 (𝑘𝑟 , 𝑧) (2.95)

𝑢̂𝑧𝑓 𝑚(𝑘𝑟 , 𝑧) = 𝑤̂
𝑚
𝑓𝑚(𝑘𝑟 , 𝑧) (2.96)

𝑢̂𝜃𝑓 𝑚(𝑘𝑟 , 𝑧) = 𝑢̂
𝑚−1
𝑓 𝑚 (𝑘𝑟 , 𝑧)− i𝑣𝑚−1𝑓 𝑚 (𝑘𝑟 , 𝑧) (2.97)

𝑝̂𝑓 𝑚(𝑘𝑟 , 𝑧) = 𝑝̂𝑚𝑓𝑚(𝑘𝑟 , 𝑧) (2.98)

𝑢̂𝑧𝑗𝑚(𝑘𝑟 , 𝑧) = 𝑤̂
𝑚
𝑗𝑚(𝑘𝑟 , 𝑧) (2.99)

𝑢̂𝑟𝑗𝑚(𝑘𝑟 , 𝑧) = 𝑢̂
𝑚+1
𝑗𝑚 (𝑘𝑟 , 𝑧)+ i𝑣𝑚+1𝑗𝑚 (𝑘𝑟 , 𝑧) (2.100)

𝑢̂𝜃𝑗𝑚(𝑘𝑟 , 𝑧) = 𝑢̂
𝑚−1
𝑗𝑚 (𝑘𝑟 , 𝑧)− i𝑣𝑚−1𝑗𝑚 (𝑘𝑟 , 𝑧) (2.101)

𝜏̂𝑧𝑧𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜎̂
𝑚
𝑧𝑧𝑗𝑚(𝑘𝑟 , 𝑧) (2.102)

𝜏̂𝑧𝑟 𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜎̂
𝑚+1
𝑧𝑟 𝑗𝑚(𝑘𝑟 , 𝑧)+ i𝜎̂𝑚+1𝑧𝜃𝑗𝑚(𝑘𝑟 , 𝑧) (2.103)

𝜏̂𝑧𝜃𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜎̂
𝑚−1
𝑧𝑟 𝑗𝑚(𝑘𝑟 , 𝑧)− i𝜎̂𝑚−1𝑧𝜃𝑗𝑚(𝑘𝑟 , 𝑧) (2.104)

𝜏̂𝑟𝑟 𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜎̂
𝑚+1
𝑟𝑟 𝑗𝑚(𝑘𝑟 , 𝑧)+2𝜇(

𝑢̂𝑚𝑗𝑚(𝑘𝑟 , 𝑧)
𝑟

+ i𝑚
𝑣𝑚𝑗𝑚(𝑘𝑟 , 𝑧)

𝑟
) (2.105)

𝜏̂𝜃𝜃𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜎̂
𝑚+1
𝜃𝜃𝑗𝑚(𝑘𝑟 , 𝑧)−2𝜇(

𝑢̂𝑚𝑗𝑚(𝑘𝑟 , 𝑧)
𝑟

+ i𝑚
𝑣𝑚𝑗𝑚(𝑘𝑟 , 𝑧)

𝑟
) (2.106)

𝜏̂𝑟𝜃𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜎̂
𝑚+1
𝑟𝜃𝑗𝑚(𝑘𝑟 , 𝑧)+2𝜇(

𝑢̂𝑚𝑗𝑚(𝑘𝑟 , 𝑧)
𝑟

− i𝑚
𝑣𝑚𝑗𝑚(𝑘𝑟 , 𝑧)

𝑟
) (2.107)

in which the superscripts indicate the order of the Hankel transform as indicated in

Eqs. (2.81) and (2.82). Once Eqs. (2.70) and (2.71) are introduced the resulting expression

read:

𝑢̂𝑟𝑓 𝑚(𝑘𝑟 , 𝑧) = −𝑘𝑟 𝜙̂𝑓 𝑚(𝑧) (2.108)

𝑢̂𝑧𝑓 𝑚(𝑘𝑟 , 𝑧) = 𝜙̂
′
𝑓 𝑚(𝑧) (2.109)

𝑢̂𝜃𝑓 𝑚(𝑘𝑟 , 𝑧) = 𝑘𝑟 𝜙̂𝑓 𝑚(𝑧) (2.110)

𝑝̂𝑓 𝑚(𝑘𝑟 , 𝑧) = −𝜌𝑓𝜔2𝜙̂𝑓 𝑚(𝑧) (2.111)

𝑢̂𝑧𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜙̂𝑗𝑚(𝑧)+𝑘
2
𝑟 𝜂̂𝑗𝑚(𝑧) (2.112)

𝑢̂𝑟𝑗𝑚(𝑘𝑟 , 𝑧) = −𝑘𝑟 (𝜙̂𝑗𝑚(𝑧)+ 𝜂̂′𝑗𝑚(𝑧)− i𝜒𝑗𝑚(𝑧)) (2.113)

𝑢̂𝜃𝑗𝑚(𝑘𝑟 , 𝑧) = 𝑘𝑟 (𝜙̂𝑗𝑚(𝑧)+ 𝜂̂
′
𝑗𝑚(𝑧)+ i𝜒𝑗𝑚(𝑧)) (2.114)

𝜏̂𝑧𝑧𝑗𝑚(𝑘𝑟 , 𝑧) = −𝜆𝑘2𝑟 𝜙̂𝑗𝑚(𝑧)+ (𝜆+2𝜇)𝜙̂′′𝑗𝑚(𝑧)+2𝜇𝑘2𝑟 𝜂̂
′
𝑗𝑚(𝑧) (2.115)

𝜏̂𝑧𝑟 𝑗𝑚(𝑘𝑟 , 𝑧) = −𝜇𝑘𝑟 (2𝜙̂′𝑗𝑚(𝑧)+ 𝜂̂
′′
𝑗𝑚(𝑧)+𝑘

2
𝑟 𝜂̂𝑗𝑚(𝑧)− i𝜒 ′𝑗𝑚(𝑧)) (2.116)

𝜏̂𝑧𝜃𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜇𝑘𝑟 (2𝜙̂
′
𝑗𝑚(𝑧)+ 𝜂̂

′′
𝑗𝑚(𝑧)+𝑘

2
𝑟 𝜂̂𝑗𝑚(𝑧)+ i𝜒 ′𝑗𝑚(𝑧)) (2.117)

𝜏̂𝑟𝑟 𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜆𝜙̂
′′
𝑗𝑚(𝑧)− (𝜆+2𝜇)𝑘2𝑟 𝜙̂

′
𝑗𝑚(𝑧)−2𝜇𝑘2𝑟 𝜂̂

′
𝑗𝑚(𝑧) (2.118)

𝜏̂𝜃𝜃𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜆𝜙̂
′′
𝑗𝑚(𝑧)−𝜆𝑘

2
𝑟 𝜙̂𝑗𝑚(𝑧) (2.119)

𝜏̂𝑟𝜃𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜇𝑘
2
𝑟𝜒𝑗𝑚(𝑧) (2.120)
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In the equations above, a prime denotes an ordinary derivative with respect to coordinate

z.

It is convenient to define an alternative set of displacement and stress variables for the

soil as:

𝑢̂1𝑗𝑚(𝑘𝑟 , 𝑧) = 𝑢̂𝑟𝑗𝑚(𝑘𝑟 , 𝑧)− 𝑢̂𝜃𝑗𝑚(𝑘𝑟 , 𝑧) (2.121)

𝑢̂2𝑗𝑚(𝑘𝑟 , 𝑧) = 𝑢̂𝑧𝑗𝑚(𝑘𝑟 , 𝑧) = 𝑤̂
𝑚
𝑗𝑚(𝑘𝑟 , 𝑧) (2.122)

𝑢̂3𝑗𝑚(𝑘𝑟 , 𝑧) = 𝑢̂𝑟𝑗𝑚(𝑘𝑟 , 𝑧)+ 𝑢̂𝜃𝑗𝑚(𝑘𝑟 , 𝑧) (2.123)

𝜏̂22𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜏̂𝑧𝑧𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜎̂
𝑚
𝑧𝑧𝑗𝑚(𝑘𝑟 , 𝑧) (2.124)

𝜏̂21𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜏̂𝑧𝑟 𝑗𝑚(𝑘𝑟 , 𝑧)− 𝜏̂𝑧𝜃𝑗𝑚(𝑘𝑟 , 𝑧) (2.125)

𝜏̂23𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜏̂𝑧𝑟 𝑗𝑚(𝑘𝑟 , 𝑧)+ 𝜏̂𝑧𝜃𝑗𝑚(𝑘𝑟 , 𝑧) (2.126)

𝜏̂11𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜏̂𝑟𝑟 𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜎̂
𝑚+1
𝑟𝑟 𝑗𝑚(𝑘𝑟 , 𝑧)+2𝜇(

𝑢̂𝑚𝑗𝑚(𝑘𝑟 , 𝑧)
𝑟

+ i𝑚
𝑣𝑚𝑗𝑚(𝑘𝑟 , 𝑧)

𝑟
) (2.127)

𝜏̂33𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜏̂𝜃𝜃𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜎̂
𝑚+1
𝜃𝜃𝑗𝑚(𝑘𝑟 , 𝑧)−2𝜇(

𝑢̂𝑚𝑗𝑚(𝑘𝑟 , 𝑧)
𝑟

+ i𝑚
𝑣𝑚𝑗𝑚(𝑘𝑟 , 𝑧)

𝑟
) (2.128)

𝜏̂13𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜏̂𝑟𝜃𝑗𝑚(𝑘𝑟 , 𝑧) = 𝜎̂
𝑚+1
𝑟𝜃𝑗𝑚(𝑘𝑟 , 𝑧)+2𝜇(

𝑢̂𝑚𝑗𝑚(𝑘𝑟 , 𝑧)
𝑟

− i𝑚
𝑣𝑚𝑗𝑚(𝑘𝑟 , 𝑧)

𝑟
) (2.129)

2.3.4 Transformed loading conditions
The arbitrarily (non-uniformly or uniformly) distributed ring load on the plane 𝑧𝑠 can be

represented as a set of jump conditions across the interface [113, 114]:

𝜎𝑧𝑧(𝑟𝑠 ,𝜃,𝑧𝑠+)−𝜎𝑧𝑧(𝑟,𝜃,𝑧𝑠−) =
∞
∑
𝑚=−∞

𝑍̂𝑚𝑒i𝑚𝜃
𝐽𝑚(𝑘𝑟𝑟𝑠)

2𝜋
= 𝐹𝑣(𝑟𝑠 ,𝜃,𝑧𝑠) (2.130)

𝜎𝑧𝑟 (𝑟𝑠 ,𝜃,𝑧𝑠+)−𝜎𝑧𝑟 (𝑟,𝜃,𝑧𝑠−) =
∞
∑
𝑚=−∞

𝑅̂𝑚𝑒i𝑚𝜃
𝐽𝑚(𝑘𝑟𝑟𝑠)

2𝜋
= 𝐹ℎ(𝑟𝑠 ,𝜃,𝑧𝑠) (2.131)

𝜎𝑧𝜃(𝑟𝑠 ,𝜃,𝑧𝑠+)−𝜎𝑧𝜃(𝑟,𝜃,𝑧𝑠−) =
∞
∑
𝑚=−∞

𝑇̂𝑚𝑒i𝑚𝜃
𝐽𝑚(𝑘𝑟𝑟𝑠)

2𝜋
= 𝐹𝜃(𝑟𝑠 ,𝜃,𝑧𝑠) (2.132)

(2.133)

In the Fourier-Hankel domain, the transformed loading conditions read:

𝜏̂22𝑚(𝑘𝑟 , 𝑧𝑠+)− 𝜏̂22𝑚(𝑘𝑟 , 𝑧𝑠−) = 𝑍̂𝑚
𝐽𝑚(𝑘𝑟𝑟𝑠)

2𝜋
(2.134)

𝜏̂21𝑚(𝑘𝑟 , 𝑧𝑠+)− 𝜏̂21𝑚(𝑘𝑟 , 𝑧𝑠−) =
𝑌𝑚−𝑋̂𝑚

2
𝐽𝑚(𝑘𝑟𝑟𝑠)

2𝜋
(2.135)

𝜏̂23𝑚(𝑘𝑟 , 𝑧𝑠+)− 𝜏̂23𝑚(𝑘𝑟 , 𝑧𝑠−) =
𝑌𝑚+𝑋̂𝑚

2
𝐽𝑚(𝑘𝑟𝑟𝑠)

2𝜋
(2.136)

with 𝑋𝑚 and 𝑌𝑚 defined as:

𝑋̂𝑚 = 𝑅̂𝑚− i𝑇̂𝑚 (2.137)

𝑌𝑚 = 𝑅̂𝑚+ i𝑇̂𝑚 (2.138)
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2.3.5 Solutions of Green’s function
With the aid of the rearrangement Eqs. (2.122)−(2.129), the foregoing equations become

decoupled to two of algebraic equations; one related to the coupled P-SV waves,

𝑢̂1𝑚(𝑘𝑟 , 𝑧) = 2𝑘𝑟 (𝜙̂𝑚(𝑧)+ 𝜂̂′𝑚(𝑧)) (2.139)

𝑢̂2𝑚(𝑘𝑟 , 𝑧) = (𝜙̂′𝑚(𝑧)+𝑘
2
𝑟 𝜂̂𝑚(𝑧) (2.140)

𝜏̂21𝑚(𝑘𝑟 , 𝑧) = −2𝜇𝑘𝑟 (2𝜙̂′𝑚(𝑧)+2𝜂̂′′𝑚(𝑧)+𝑘
2
𝑠 𝜂̂𝑚(𝑧)+ 𝜂̂

′
𝑚(𝑧)) (2.141)

𝜏̂22𝑚(𝑘𝑟 , 𝑧) = −𝜆𝑘2𝑝𝜙̂𝑚(𝑧)+2𝜇(𝑘2𝑠 𝜂̂
′
𝑚(𝑧)+ 𝜙̂

′′
𝑚(𝑧)+ 𝜂̂

′′
𝑚(𝑧)) (2.142)

𝜏̂33𝑚(𝑘𝑟 , 𝑧) = −𝜆𝑘2𝑝𝜙̂𝑚(𝑧) (2.143)

𝜏̂11𝑚(𝑘𝑟 , 𝑧) = −𝜆𝑘2𝑝𝜙̂𝑚(𝑧)−2𝜇𝑘2𝑟 (𝜂̂
′
𝑚(𝑧)+ 𝜙̂𝑚(𝑧)) (2.144)

(2.145)

in which only the potential functions 𝜙̂𝑚(𝑧) and (𝜂̂𝑚(𝑧) are involved, and another set of

equations for the uncoupled SH wave propagation,

𝑢̂3𝑚(𝑘𝑟 , 𝑧) = 2i𝑘𝑟𝜒𝑚(𝑧) (2.146)

𝜏̂23𝑚(𝑘𝑟 , 𝑧) = 2i𝑘𝑟𝜇𝜒 ′𝑚(𝑧) (2.147)

𝜏̂13𝑚(𝑘𝑟 , 𝑧) = 𝜇𝑘
2
𝑟𝜒𝑚(𝑧) (2.148)

in which the potential functions 𝜒𝑚(𝑧) remains. By applying the loading, boundary and

interface conditions into both two subsystems the amplitude coefficients in Eqs. (2.91)−(2.94)
can be obtained.

2.3.6 Validation
To validate the Green’s tensors for a source located either in the fluid or in the soil, a case

study is performed, and the results are compared with the finite element model built in

COMSOL Multiphysics
®

software [112]. As illustrated in Fig. 2.18, the problem of wave

propagation in an acousto-elastic halfspace is examined. The domain consists of a fluid

layer with a water depth of 10m overlying an elastic halfspace with properties including

density, compressional and shear wave speeds, and attenuation coefficients, as listed in

Table 2.4. The ring load is positioned at 2m below the seabed and has the form shown in

Fig. 2.18. In this case, the source term can be expressed by𝑚= 1 and𝑚=−1 as summarized

in Table 2.5 to facilitate the loading conditions as indicated in the Fig. 2.18, which results

in the following expression for 𝐹ℎ, 𝐹𝑣 and 𝐹𝜃.

Table 2.4: Basic input parameters for the validation study of the Green’s functions.

Parameter Depth 𝜌 𝑐𝐿 𝑐𝑇 𝛼𝑝 𝛼𝑠
- [m] [kg/m

3
] [m/s] [m/s] [𝑑𝐵/𝜆] [𝑑𝐵/𝜆]

Fluid 10 1000 1500 - - -

Bottom soil ∞ 1908 1725 370 0.88 2.77
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(a) Analytical model (b) FE model

Figure 2.18: The loading condition of the model for the validation of the three dimensional Green’s function.

Table 2.5: Loading conditions for an inclined vertical ring load in Hankel-domain .

m 𝑅̂𝑚 𝑇̂𝑚 𝑍̂𝑚 𝑒i𝑚𝜃

+1 0 0
𝑟𝑠
2

2𝜋
𝐽+1(𝑘𝑟 𝑟𝑠) 𝑒i𝜃0

-1 0 0
𝑟𝑠
2

2𝜋
𝐽−1(𝑘𝑟 𝑟𝑠) 𝑒−i𝜃0

𝐹ℎ(𝑟𝑠 ,𝜃,𝑧𝑠) =
∞
∑
𝑚=−∞

𝑅̂𝑚𝑒i𝑚𝜃
𝐽𝑚(𝑘𝑟𝑟𝑠)

2𝜋
= 0 (2.149)

𝐹𝑣(𝑟𝑠 ,𝜃,𝑧𝑠) =
∞
∑
𝑚=−∞

𝑍̂𝑚𝑒i𝑚𝜃
𝐽𝑚(𝑘𝑟𝑟𝑠)

2𝜋
= 𝑓 (𝜃) (2.150)

𝐹𝜃(𝑟𝑠 ,𝜃,𝑧𝑠) =
∞
∑
𝑚=−∞

𝑇̂𝑚𝑒i𝑚𝜃
𝐽𝑚(𝑘𝑟𝑟𝑠)

2𝜋
= 0 (2.151)

The expression for the inclined load for 𝐹𝑣 is expressed as,

𝑓 (𝜃) = 𝑟𝑠 ⋅ 𝑐𝑜𝑠(𝜃) =
𝑟𝑠
2
(𝑒i𝜃 +𝑒−i𝜃) (2.152)

Therefore, the transformed load components 𝑋̂𝑚, 𝑌𝑚 and 𝑍̂𝑚 are obtained in Table 2.6.

For validation purposes, a COMSOL model is constructed with the same configuration,

incorporating a perfectly matched layer (PML) below the truncated elastic domain with a

layer of 40m depth for comparison with the elastic halfspace. The dynamic responses of
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Table 2.6: Transformed conditions for an inclined vertical ring load.

m 𝑋̂𝑚 𝑌𝑚 𝑍̂𝑚
+1 0 0

2𝜋
𝐽+1(𝑘𝑟 𝑟𝑠)

0 0 0 0

-1 0 0
2𝜋

𝐽−1(𝑘𝑟 𝑟𝑠)

both the fluid and the soil are evaluated and compared with the finite element solutions.

Figure 2.19 displays the pressure in the fluid 2m above the seabed and the displacement in

the soil at the source level, demonstrating a good agreement between the results of the

two analyses.

Figure 2.19: Comparison of the pressure field in the fluid and the displacement field between the FEM and the

semi-analytical model for the three dimensional Green’s function for 50 Hz.
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2.4 Boundary integraleqations inanacousto-elastic
half-space

2.4.1 Reciprocity theorem in elastodynamics
In this section, a boundary element method (BEM) model for acousto-elastic layered half-

space is developed and used in the analysis of axisymmetric disturbances radiated from a

cylindrical surface. The complete wave field characterized by the Green’s function for the

sources emitting both compressional waves and shear waves and the resulting amplitude

of the displacement potentials on the surface of disturbance at a radial distance of 𝑟𝑠 are
connected through the boundary integral equation. Based on the derived Green’s tensor,

the boundary integral is formulated as:

𝚽̃(𝒓,𝜔) = ∫
Γ(
𝜕𝚽̃0(𝒓0,𝜔)

𝜕𝑛
𝑮̃(𝒓,𝒓0,𝜔)−

𝜕𝑮̃(𝒓,𝒓0,𝜔)
𝜕𝑛

𝚽̃0(𝒓0,𝜔))𝑑Γ0,

𝑮̃(𝒓,𝒓0,𝜔) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝜙̃𝑔𝑓 ,𝑓 𝜙̃𝑔𝑓 ,𝑝1 𝜙̃𝑔𝑓 ,𝑠1 … 𝜙̃𝑔𝑓 ,𝑝𝑁 𝜙̃𝑔𝑓 ,𝑠𝑁
𝜙̃𝑔𝑝1,𝑓 𝜙̃𝑔𝑝1,𝑝1 𝜙̃𝑔𝑝1,𝑠1 … 𝜙̃𝑔𝑝1,𝑝𝑁 𝜙̃𝑔𝑝1,𝑠𝑁
𝜓̃𝑔𝑠1,𝑓 𝜓̃𝑔𝑠1,𝑝1 𝜓̃𝑔𝑠1,𝑠1 … 𝜓̃𝑔𝑠1,𝑝𝑁 𝜓̃𝑔𝑠1,𝑠𝑁
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝜙̃𝑔𝑝𝑁 ,𝑓 𝜙̃
𝑔
𝑝𝑁 ,𝑝1 𝜙̃

𝑔
𝑝𝑁 ,𝑠1 … 𝜙̃𝑔𝑝𝑁 ,𝑝𝑁 𝜙̃𝑔𝑝𝑁 ,𝑠𝑁

𝜓̃𝑔𝑠𝑁 ,𝑓 𝜓̃
𝑔
𝑠𝑁 ,𝑝1 𝜓̃

𝑔
𝑠𝑁 ,𝑠1 … 𝜓̃𝑔𝑠𝑁 ,𝑝𝑁 𝜓̃𝑔𝑠𝑁 ,𝑠𝑁

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

, 𝚽̃ =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝜙̃𝑓
𝜙̃𝑝1
𝜓̃𝑠1
⋮

𝜙̃𝑝𝑁
𝜓̃𝑠𝑁

⎫⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎭

(2.153)

in which 𝒓 = [𝑟,𝑧], 𝒓0 = [𝑟𝑠 , 𝑧𝑠], Γ denotes the surface of axisymmetric sources, 𝜙̃𝑔𝑝,𝑞 with
the index 𝑔 denotes the Green’s function. 𝑮̃(𝒓,𝒓0,𝜔) denotes the Green’s tensor for the
sources locating in fluid and soil domain emitting compressional or shear waves. The index

𝑝 represents the location of the receiver and the index 𝑞 represents the location and type

of the source. Especially, for the notation of 𝑞, the index 𝑓 indicates the fluid domain, the

index 𝑝𝑗 indicates the compressional source locating in the soil layer j and the index 𝑠𝑗
indicates the shear source locating in the soil layer j.

2.4.2 Boundary integral formulation
The direct boundary element method (BEM) is adopted to couple the boundary of an

acousto-elastic domain. The solution of the acousto-elastic wavefield employs Somigliana’s

identity in elastodynamics and Green’s third identity in potential theory [115, 116]. The

velocity, displacement and pressure/stresses on the cylindrical boundary surface 𝑟 = 𝑟𝑠 are
obtained from the sound generation module. The Green’s functions obtained in section 2.2

and 2.3 are the fundamental solutions of the boundary integral equations.

The fundamental solutions of Green’s displacement tensors 𝑈Ξ𝜉
𝛼𝛽 (𝐫, 𝐫𝑠 ,𝜔) are derived

from the potential functions [109] given the receiver point at 𝐫 = (𝑟,𝑧) (in medium Ξ) in
𝛼-direction due to a unit impulse at source 𝐫𝑠 = (𝑟𝑠 , 𝑧𝑠) (in medium 𝜉 ) in 𝛽-direction:

𝑈 𝑠𝜉𝛼𝛽(𝐫, 𝐫𝑠 ,𝜔) = ∇𝜙̃𝑔𝑗,𝜉 (𝐫, 𝐫𝑠 ,𝜔)+∇×𝑊 , (2.154)

𝑈 𝑓 𝜉𝛼𝛽 (𝐫, 𝐫𝑠 ,𝜔) = ∇𝜙̃𝑔𝑓 ,𝜉 (𝐫, 𝐫𝑠 ,𝜔). (2.155)

in which𝑊 = −𝜕𝜓𝑔𝑠𝑗 ,𝜉 (𝐫, 𝐫𝑠 ,𝜔)/𝜕𝑟 . The displacement potential functions of acousto-elastic

domain have been derived in Eq. (2.48). The Green’s stress tensors 𝑇Ξ𝜉
𝛼𝛽 (𝐫, 𝐫𝑠 ,𝜔) related
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to 𝑈Ξ𝜉
𝛼𝛽 (𝐫, 𝐫𝑠 ,𝜔) can be obtained through substitution of Eqs. (2.154) and (2.155) into the

constitutive equations [109].

Boundary integrals for sources located in the acoustic layer
Based on a set of acoustic sources in the form of pressure 𝑝̃𝑓 (𝐫𝐬,𝜔), radial displacement

𝑢̃𝑓 (𝐫𝐬,𝜔), and radial velocity fields 𝑣𝑟𝑓 (𝐫𝐬,𝜔) obtained from the sound generation modules

on the cylindrical surface in the water column, the pressure, velocity, and displacement

expressions read:

𝑝̃𝑓 ,𝑓 (𝐫,𝜔) = ∫
𝑆𝑓(

𝑝̃𝑔𝑓 ,𝑓 (𝐫, 𝐫𝑠 ,𝜔)𝑢̃𝑓 (𝐫𝑠 ,𝜔)− 𝑢̃
𝑔
𝑓 ,𝑓 (𝐫, 𝐫𝑠 ,𝜔)𝑝̃𝑓 (𝐫𝑠 ,𝜔))𝑑𝑆(𝐫𝑠), (2.156)

𝑣𝛼𝑓 ,𝑓 (𝐫,𝜔) = ∫
𝑆𝑓(

𝑣𝑔𝛼𝑓 ,𝑓 (𝐫, 𝐫𝑠 ,𝜔)
𝑣𝑟𝑓 (𝐫𝑠 ,𝜔)

i𝜔
+

1
𝜌𝜔2

𝜕𝑣𝑔𝛼𝑓 ,𝑓 (𝐫, 𝐫𝑠 ,𝜔)
𝜕𝑟

𝑝̃𝑓 (𝐫𝑠 ,𝜔))𝑑𝑆(𝐫𝑠),

𝛼 = 𝑧, 𝑟
(2.157)

𝑢̃𝛼𝑠,𝑓 (𝐫,𝜔) = ∫
𝑆𝑓(

𝑢̃𝑔𝛼𝑠,𝑓 (𝐫, 𝐫𝑠 ,𝜔)
𝑣𝑟𝑓 (𝐫𝑠 ,𝜔)

i𝜔
+

1
𝜌𝜔2

𝜕𝑢̃𝑔𝛼𝑠,𝑓 (𝐫, 𝐫𝑠 ,𝜔)
𝜕𝑟

𝑝̃𝑓 (𝐫𝑠 ,𝜔))𝑑𝑆(𝐫𝑠),

𝛼 = 𝑧, 𝑟.
(2.158)

in which 𝑆𝑓 and indicates the integration surface in the fluid domain at 𝑟 = 𝑟𝑠 . The

stress components 𝜎̃𝑧𝑧𝑠,𝑓 (𝐫,𝜔), 𝜎̃𝑟𝑟𝑠,𝑓 (𝐫,𝜔), and 𝜎̃𝑧𝑟𝑠,𝑓 (𝐫,𝜔) are obtained through the stress-

displacement relationships [104], in terms of the displacement components 𝑢̃𝛼𝑠,𝑓 .

Boundary integrals for sources located in theelastic layeredhalf-space

Based on a set of soil sources in the form of stresses [𝑡𝑛𝑟 (𝐫𝑠 ,𝜔), 𝑡𝑛𝑧 (𝐫𝑠 ,𝜔)] and displacements

[𝑢̃𝑟 (𝐫𝑠 ,𝜔), 𝑢̃𝑧(𝐫𝐬,𝜔)] obtained from the sound generation modules on the cylindrical surface

in the soil domain at 𝑟 = 𝑟𝑠 , the pressure, velocity, and displacement expressions read:

𝑝̃𝑓 ,𝑠(𝐫,𝜔) = ∫
𝑆𝑠(

𝑃 𝑓 𝑠𝑟 (𝐫, 𝐫𝑠 ,𝜔) ⋅ 𝑡𝐧𝑟 (𝐫𝑠 ,𝜔)+𝑃
𝑓 𝑠
𝑧 (𝐫, 𝐫𝑠 ,𝜔) ⋅ 𝑡𝐧𝑧 (𝐫𝑠 ,𝜔)

+𝐿𝑓 𝑠𝑝 (𝐫, 𝐫𝑠 ,𝜔) ⋅ 𝑢̃𝑧(𝐫𝑠 ,𝜔)+𝐿
𝑓 𝑠
𝑝 (𝐫, 𝐫𝑠 ,𝜔) ⋅ 𝑢̃𝑟 (𝐫𝑠 ,𝜔))𝑑𝑆

𝑠(𝐫𝑠),
(2.159)

𝑣𝛼𝑓 ,𝑠 (𝐫,𝜔) = 𝑖𝜔∫
𝑆𝑠(

𝑈 𝑓 𝑠𝛼𝑟 (𝐫, 𝐫𝑠 ,𝜔) ⋅ 𝑡
𝐧
𝑟 (𝐫𝑠 ,𝜔)+𝑃

𝑓 𝑠
𝛼 (𝐫, 𝐫𝑠 ,𝜔) ⋅ 𝑢̃𝛼(𝐫𝑠 ,𝜔)

+𝑈 𝑓 𝑠𝛼𝑧 (𝐫, 𝐫𝑠 ,𝜔) ⋅ 𝑡
𝐧
𝑧 (𝐫𝑠 ,𝜔))𝑑𝑆

𝑠(𝐫𝑠), 𝛼 = 𝑧, 𝑟,
(2.160)

𝑢̃𝛼𝑠,𝑠 (𝐫,𝜔) = ∑
𝛽=𝑟,𝑧

∫
𝑆𝑠(

𝑈 𝑠𝑠𝛼𝛽(𝐫, 𝐫𝑠 ,𝜔) ⋅ 𝑡
𝐧
𝛽 (𝐫𝑠 ,𝜔)−𝑇

𝐧,𝑠𝑠
𝛼𝛽 (𝐫, 𝐫𝑠 ,𝜔) ⋅ 𝑢̃𝛽(𝐫𝑠 ,𝜔))𝑑𝑆

𝑠(𝐫𝑠),

𝛼 = 𝑧, 𝑟.
(2.161)

𝐿𝑓 𝑠𝑝 (𝐫, 𝐫𝑠 ,𝜔) = 𝜌𝑓 𝑐2𝑓 (
𝜕𝑃 𝑓 𝑠𝑟
𝜕𝑟

+
𝑃 𝑓 𝑠𝑟
𝑟

+
𝜕𝑃 𝑓 𝑠𝑧
𝜕𝑧

) (2.162)
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in which 𝑆𝑠 indicates the integration surface in the soil domain at 𝑟 = 𝑟𝑠 , 𝐿𝑝 is defined

as the pressure operator using the strain-displacement relationships and Hooke’s law,

𝑃 𝑓 𝑠𝛼 (𝐫, 𝐫𝑠 ,𝜔) is the pressure Green’s function at the receiver location 𝐫 due to a unit load

along 𝛼-direction applied in the soil domain at 𝐫𝑠 , 𝛼 denotes also the direction of the

displacement at the receiver point. The derivation of the soil source in 𝛼 direction is

given in the section 2.2.1. As tangential stress vanishes in the fluid domain, the terms

𝑇 𝐧,𝑓 𝑠
𝑟𝑧 (𝐫, 𝐫𝑠 ,𝜔) and 𝑇

𝐧,𝑓 𝑠
𝑧𝑟 (𝐫, 𝐫𝑠 ,𝜔) vanish for the receiver in the fluid. Similarly, the stress

tensors are obtained through the constitutive relationships [104] from the displacement

functions and their derivatives.

Coupled acousto-elastodynamic boundary integral eqation
By utilizing Betti’s reciprocal theorem in elastodynamics [115] and Green’s theorem for

acoustic problem [116] as discussed in section 2.4.2 and 2.4.2 , the complete solution for

the acousto-elastic domain reads:

𝑢̃Ξ𝛼 (𝐫,𝜔) =𝑢̃
Ξ,𝑓
𝛼 (𝐫,𝜔)+ 𝑢̃Ξ,𝑠𝛼 (𝐫,𝜔)

= ∑
𝛽=𝑟,𝑧

∫
𝑆𝑠(

𝑈Ξ𝑠
𝛼𝛽 (𝐫, 𝐫𝑠 ,𝜔) ⋅ 𝑡

𝐧
𝛽 (𝐫𝑠 ,𝜔)−𝑇

𝐧,Ξ𝑠
𝛼𝛽 (𝐫, 𝐫𝑠 ,𝜔) ⋅ 𝑢̃𝛽(𝐫𝑠 ,𝜔))𝑑𝑆

𝑠(𝐫𝑠)

+∫
𝑆𝑓(

𝑈Ξ𝑓
𝛼𝑟 (𝐫, 𝐫𝑠 ,𝜔) ⋅ 𝑝̃(𝐫𝑠 ,𝜔)−𝑇

𝐧,Ξ𝑓
𝛼𝑟 (𝐫, 𝐫𝑠 ,𝜔) ⋅ 𝑢̃𝑟 (𝐫𝑠 ,𝜔))𝑑𝑆

𝑓 (𝐫𝑠), 𝐫 ∈ 𝑉

(2.163)

in which 𝐧 is the outward normal to the cylindrical boundary. The cylindrical surface

in both fluid and soil domains needs to be discretized when employing the direct BEM

associated with the acousto-elastic layered half-space Green’s functions. The rule of thumb

for using six elements per wavelength is adopted in the numerical integration of the line

integral with the trapezoidal scheme applied for the integration [117]. In the fluid domain,

the integration is based on the shortest wavelength of the compressional waves at the

frequency of interest. In the soil domain, the size of the element is governed by the shortest

shear wavelength in accordance with the maximum frequency of interest.

2.4.3 Boundary IntegralEqationmethod inthree-dimensional
field

Based on potential theory and Green’s third theorem, the boundary integral equation

formulated in the three-dimensional case reads:

𝒗𝑓𝛼 = ∫
𝑆(

∞
∑
𝑚=−∞

(𝑉̃ 𝑓 ,𝐺𝛼𝑚 (𝒓,𝒓0)
𝑉̃ 𝑓𝑟 (𝒓0)
𝑖𝜔

−
𝜕𝑉̃ 𝑓 ,𝐺𝛼𝑚 (𝒓,𝒓0)

𝜕𝑟
𝑝̃𝑓 (𝒓0)
−𝜌𝜔2 )𝑒i𝑚𝜃)𝑑𝑆

+ ∑
𝛽=𝑟,𝜃,𝑧

∫
𝑆𝑠(

∞
∑
𝑚=−∞

(𝑈 𝑓 𝑠𝛼𝛽𝑚(𝒓,𝒓0,𝜔) ⋅ 𝑡
𝒏
𝛽 (𝒓0,𝜔)−𝑇

𝒏,𝑓 𝑠
𝛼𝛽𝑚 (𝒓,𝒓0,𝜔) ⋅ 𝑢̃𝛽(𝒓0,𝜔))𝑒i𝑚𝜃)𝑑𝑆

𝑠
0(𝒓0)

(2.164)

Similarly to the expressions used in section 2.4.2, now the solution of the physical quantities

are expressed by the three potential functions. The angular Fourier decomposition is em-

ployed in the boundary integral equation formulation, which enables efficient computation.
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2.4.4 Validation
In order to validate the boundary integral formulations, two theoretical case studies are

performed. The first case study considers a point source to examine the validity of the

axisymmetric boundary integral equation formulation. The second case study focuses on a

three dimensional surface load to examine the integral solution in the more general three

dimensional configuration.

Axisymmetric BIE
Based on the results in section 2.2, the Green’s functions have been already verified. As

shown in Fig. 2.20, four scenarios are examined: (i) direct method: to generate the wavefield

at r = 200 m from the Green’s function of a source positioned either in the fluid or in the

soil; (ii)-(iv) boundary integral equation (BIE) method: to generate the wavefield at 𝑟 = 200
m through BIE with the input on the cylindrical boundary at (ii) 𝑟𝑠 = 5 m; (iii) 𝑟𝑠 = 20 m;

(iv) 𝑟𝑠 = 40m, which were obtained from the Green’s function for a point source positioned

either in the fluid or in the soil. The material parameters and geometry of the acousto-

elastic media are given in Table 2.7. As discussed in section 2.4.2, the sound propagation

Table 2.7: Basic input parameters for the validation study.

Parameter Depth 𝜌 𝑐𝐿 𝑐𝑇 𝛼𝑝 𝛼𝑠
- [m] [kg/m

3
] [m/s] [m/s] [𝑑𝐵/𝜆] [𝑑𝐵/𝜆]

Fluid 40 1000 1500 - - -

Upper soil 30 1888 1775 198 0.2 0.8

Bottom soil ∞ 1950 1976 370 1.0 2.5

Figure 2.20: Geometry of the model for the validation of the boundary integrals formulations for a point source

positioned: in the seabed as a r-load soil source (left); in the fluid domain as a pressure source (right).

module is based on a boundary integral equation, in which the input is obtained from the

source generation module. In this case, the sound generation module delivers the Green’s

function for a point source. The input is obtained on a cylindrical surface as indicated by

the dark grey surface shown in Fig. 2.20. The results are presented for three excitation

frequencies: 30Hz, 125Hz and 1kHz for both scenarios as shown in Fig. 2.21. In the presence
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Figure 2.21: Comparison for the results based on direct method (Green’s function) and boundary element method

for a ring load at three excitation frequencies 30 Hz, 125Hz and 1 kHz as indicated in the Fig. 2.20 : the radial

displacement for a fluid circular source at (a) 𝑓 = 30 Hz at (b) 𝑓 = 125 Hz at (c) 𝑓 = 1 kHz; the radial displacement

for a R-ring load in the soil at (d) 𝑓 = 30Hz at (e) 𝑓 = 125 Hz at (f) 𝑓 = 1 kHz. Black thin line indicates results

from BIE at 𝑟𝑠 = 5 m, red dashed line indicates results from BIE at 𝑟𝑠 = 20 m, blue dashed line indicates results

from BIE at 𝑟𝑠 = 40 m, and the grey thick line represents the results from the Green’s function (direct method).

of either fluid or soil source in the domain, the solutions show a good agreement between

two approaches, which validates the BIE formulation for the sound propagation model.

Figure 2.21 also shows that the BIE solutions agree well at different coupling radius 𝑟𝑠 ,
which indicates that the influence of the choice of 𝑟𝑠 is insignificant and the solutions are

stable. However, a sufficient area of the cylindrical surface at 𝑟 = 𝑟𝑠 needs to be coupled in

order to propagate the full waveforms. In this scenario, a value of 𝑧𝑏𝑜𝑡 = 80𝑚 is selected

for both cases to ensure that energy transmission is captured to an adequate depth on the

cylindrical surface.

Three-dimensional BIE
Similarly to the case study discussed above, the three-dimensional fluid layer overlying

an elastic half-space is modelled in COMSOL Multiphysics with a non-symmetric loading

condition. We introduce the function 𝐻(𝑟,𝜃,𝑧) as the transmission coefficient at 𝑟 = 𝑟𝑠 .
In practice, this function can be considered an idealized noise-cancelling screen based on

any noise mitigation system applied in the water column. A more detailed discussion on

the derivation of the transmission coefficients is provided in Chapters 6 and 7. As the 3D

case in COMSOL requires more computational effort due to the increased mesh, number of

degrees of freedom and resulted modelling integrations in the MUMP solver, the size of

the model is reduced compared to the previous case by decreasing the water depth and

soil depth examined. The comparison between the FEM model and semi-analytical model

based on the boundary integral equation formulation are shown in Figs. 2.24-2.26.

The 𝜃 dependent transfer function is defined in Fig. 2.23, which can be transformed

into the complex Fourier domain as 𝐻𝑚(𝑟,𝑧). The input parameters including the geometry
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Figure 2.22: Geometry of the model for the validation of the boundary integrals formulations for a surface load

positioned in the fluid domain.

Figure 2.23: Non-fully blocked idealized noise cancelling screen: 𝐻(𝑟,𝜃,𝑧) is the transmission coefficient and

𝐻𝑚(𝑟,𝑧) is transformed complex Fourier coefficient with m-th order.

Table 2.8: Basic input parameters for the validation study.

Parameter Depth 𝜌 𝑐𝐿 𝑐𝑇 𝛼𝑝 𝛼𝑠
- [m] [kg/m

3
] [m/s] [m/s] [𝑑𝐵/𝜆] [𝑑𝐵/𝜆]

Fluid 40 1000 1500 - - -

Bottom soil ∞ 1888 1775 198 0.2 0.8

of the domain and the material properties are given in Table 2.8. A surface load with

unit amplitude in both pressure and velocity as defined in 𝐻(𝑟,𝜃,𝑧) is placed at 𝑟𝑠 = 10m
throughout the entire water depth as indicated in the Fig. 2.22.

In the FE model, the soil half-space is substituted by a perfectly-matched layer to

account for the radiation condition at 𝑧 →∞. The comparison between the FEM model and

semi-analytical model based on the boundary integral equation formulation are shown in

Figs. 2.24 - 2.27. The Green’s tensors and Boundary Integral solutions are compared to the
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Figure 2.24: Comparison of Green’s tensors from the proposed model (left) and FEM (right) at excitation

frequencies 30 Hz (left) and 125 Hz (right) as indicated in Fig. 2.22for the mid of the water depth.

Figure 2.25: Comparison of Green’s tensors based on EJP-complex wavenumber integration and FEM (COMSOL)

at excitation frequencies 30 Hz (left) and 125 Hz (right) as indicated in Fig. 2.22: the pressure at 2m above the

seabed.

Figure 2.26: Comparison of Green’s tensors from the proposed model (left) and FEM (COMSOL, right) at excitation

frequencies 30 Hz (left) and 125 Hz (right) as indicated in Fig. 2.22: the normal stress of the soil 𝜎𝑧𝑧 at 1m below

the seabed.

numerical results from the FEM. As shown, the semi-analytical approach yields results in

excellent agreement with the FEM solutions. This demonstrates the accuracy and reliability

of the semi-analytical method in modelling complex wave propagation, as it effectively

captures the key characteristics of the problem while maintaining computational efficiency.
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Figure 2.27: Comparison of Boundary Integral Formulation from the proposed model (left) and FEM (right) at

excitation frequencies 30 Hz as indicated in Fig. 2.22. The pressure field in the fluid and the normal stress of the

soil 𝜎𝑧𝑧 for 𝜃 = 15◦ and 195◦ are shown.

2.5 Conclusions
To advance the mathematical and computational treatments of the boundary value problem

involving a three-dimensional acousto-elastic multilayered half-space, the derivation of the

fundamental Green’s functions for the acousto-elastodynamic problem is presented. Using

the method of displacement potentials, an elegant mathematical structure underlying this

class of 3D elastodynamic problems is revealed, warranting further attention. To handle

arbitrarily distributed loads, ring-load Green’s functions for stresses and displacements

are expressed through contour line integration. The complex wavenumber integration

technique adopted in the latter advances themathematical treatment of the Green’s function

for an acousto-elastic layered half-space. The choice of the branch cut ensures both stability

and convergence of the obtained solution. The attenuation in multilayered soil half-space

is included by identifying the exact poles and branch cuts in the complex wavenumber

plane, which is especially important for wave propagation in large distances.

The Green’s functions and boundary integral equation developed in this chapter will

find application in sound propagation analysis for pile driving noise. Given the substantial

energy radiated into the soil domain during pile driving, accurate description of the

frequency-dependent characteristics of wave attenuation, along with the geometry and

properties of the acousto-elastic halfspace, is crucial for an effective representation of the

ocean environment. The boundary integral equation model can also be utilized to couple

the frequency- and depth-dependent transmission coefficient of noise mitigation systems,

such as air bubble curtain systems, to derive the mitigated sound field. This approach

has broad applicability in various engineering disciplines, including underwater acoustics,

fluid-soil-structure interaction, and seismology. The mathematical tools developed in this

chapter will be used in the subsequent chapters when analysing sound emissions from

impact piling including the implementation of various noise mitigation systems.
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3
Near- and far-field noise

and vibration prediction due
to offshore pile driving

A computationally efficient modelling approach is presented for predicting underwater noise
radiation from offshore pile driving. The complete noise prediction model comprises two
modules. First, a sound generation module is adopted to capture the interaction between the
pile, the fluid, and the seabed, aiming at modelling the sound generation and propagation in the
vicinity of the pile. Second, a sound propagationmodule is developed using the dynamic Green’s
functions and the boundary integral equations (BIEs) formulated in Chapter 2 to propagate the
sound field at larger distances from the pile. The model advances the computational efficiency
and flexibility of the noise prediction in both near- and far-fields from the pile. Finally, model
predictions are benchmarked against a theoretical scenario and validated using measurement
data from a recent offshore pile-installation campaign.

This chapter is partly based on the journal article � [29]:

Peng, Y, et al. A Fast Computational Model for Near-And Far-Field Noise Prediction Due to Offshore Pile Driving.

The Journal of the Acoustical Society of America, vol. 149, no. 3, 2021. https://doi.org/10.1121/10.0003752
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T
he structure of this chapter is as follows. In Section 3.1, the governing equations

and model description are presented. In Sections 3.2 and 3.3, the solution method

is presented as a two-step approach that utilizes the sound generation module and the

sound propagation module. In Section 3.4, the numerical evaluation of the solutions is

presented based on the normal mode solution with complex wavenumber integration

addressing both numerical stability and convergence. The choice of the branch cuts and the

physical interpretation of contributions from discrete poles are also discussed. Section 3.5 is

dedicated to a numerical analysis of several benchmark cases, which proves the validity of

the model for the prediction of underwater noise from offshore pile driving. In Section 3.6,

the seabed vibration is discussed and the particle velocity is examined for an offshore pile

installation case. Finally, the conclusions are given in Section 3.7.

3.1 Model description and governing eqations
In this section, the description of the model and the governing equations of the fully

coupled vibroacoustic system are introduced. The geometry and material properties of

the system are given first, followed by the equations of motion of the vibrating shell, the

fluid, and the soil together with the boundary and interface conditions. Finally, a schematic

overview of the computational method is presented.

Figure 3.1: Schematic of the complete system (left) and the coupled model (right): 𝑟0 is the radial distance of the
coupled cylindrical surface; 𝑧0 is the level of the sea surface; 𝑧1 is the level of the seabed, 𝑧𝑗 is the bottom level of

the 𝑗 −1𝑡ℎ soil layer (j = 2,3 ... N); 𝐿 indicates the level of the bottom of pile tip; 𝐻 indicates the level of the rigid

boundary applied in the sound-generation module.

3.1.1 Description of the model
The total system consists of the pile structure, the hydraulic hammer, and the surrounding

fluid and soil media as shown in Fig. 3.1 (left). A symmetric cylindrical coordinate system

(𝑟, 𝜙, 𝑧) is introduced for the fluid and soil domains with the depth 𝑧 being positive down-

ward and 𝑟 being the radial distance from the 𝑧 axis. The geometry of the model is assumed
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to be horizontally stratified, with material properties in both the fluid and soil considered to

be range-independent. The displacement field is described as 𝐮𝜉 = [𝐮𝜉 ,𝐯𝜉 ,𝐰𝜉 ] with 𝜉 = 𝑓
or 𝑗 indicating the fluid layer or soil layer 𝑗 . Because of axial symmetry, the displacement in

the 𝜙 direction 𝑣𝜉 is trivially zero. Based on the assumption that the fluid and the soil inside

the pile do not significantly influence the vibration of the pile and the radiated energy

in the surrounding medium [15], the water column and the soil inside the pile are not

included in this model. This assumption is verified through a comparison of the temporal

evolution of the pressure field, sound exposure level, and peak levels at various distances

from the monopile, for models both with and without the inclusion of the fluid and soil

within the monopile [118–120].

The complete model consists of two modules, a sound generation module, and a sound

propagation module. The sound generation module comprises the pile modelled as a linear

elastic thin shell and the surrounding media modelled as a horizontally stratified acousto-

elastic waveguide [16, 55]. A rigid cylinder of the same radius as the pile and of height

𝐻 -𝐿 is placed below the pile tip which allows one to employ a closed-form semi-analytical

solution for the pile-seawater-soil vibrations in the generation module. By doing so, the

radiation of elastic waves from the tip of the pile into the deeper soil layers is omitted.

However, this assumption is not expected to influence the noise predictions and the elastic

wave propagation in the shallow soil layers close to the seafloor at distances close to the

pile. The hydraulic hammer and anvil are not modeled explicitly but substituted by an

external force exerted at the top of the pile (𝑧 = 0). The forcing function is obtained from

available measurement data or numerical models [14, 26]. The dynamic response of the

shell structure is described by a linear high-order shell theory [121]. The higher-order shell

theory is chosen to accommodate all combinations of pile sizes and excitation frequencies

as the high-order approximation are more accurate at higher frequency bands and do not

involve any extra computational cost in the solution approach adopted [55, 121]. The

pile occupies the domain 0 ≤ 𝑧 ≤ 𝐿, with the material and geometrical constants 𝐸, 𝜈 , 𝑅,
𝜌 and 𝑡 being the complex modulus of elasticity in the frequency domain, the Poisson

ratio, the radius of the mid-surface of the shell, the density and the thickness of the

shell, respectively. In both modules, the fluid is modelled as a three-dimensional inviscid

compressible medium with constants 𝑐𝑓 , 𝜌𝑓 being the wave speed and the density of the

fluid, which occupies the domain 𝑧0 ≤ 𝑧 ≤ 𝑧1 with 𝑅 ≤ 𝑟 ≤ 𝑟0 for the sound generation

module and 𝑟 ≥ 𝑟0 for the sound propagation module. The soil is modeled as a three-

dimensional elastic continuum occupying the domain 𝑧 ≥ 𝑧1. The constants 𝜆𝑗 , 𝜇𝑗 and 𝜌𝑗
correspond to the Lam𝑒́ coefficients and the density of the solid, with the index 𝑗 = 1,2, ...,𝑁
specifying the soil layers including the bottom soil half-space. The material dissipation

(damping) in the soil is introduced in the form of complex L𝑎́me constants 𝜆̃𝑗 and 𝜇𝑗
as 𝜆̃𝑗 = 𝜆𝑗 (1+ i ⋅ 𝛼1𝑗 ) and 𝜇𝑗 = 𝜇𝑗 (1+ i ⋅ 𝛼2𝑗 ). The attenuation coefficients 𝛼1𝑗 and 𝛼2𝑗 are
defined as (20𝜋 log10 𝑒)𝛼𝑝𝑗 and (20𝜋 log10 𝑒)𝛼𝑠𝑗 respectively, with 𝛼𝑝𝑗 and 𝛼𝑠𝑗 being the

compressional and shear damping coefficients in units of dB per wavelength.

3.1.2 Governing eqations
The following partial differential equations govern the dynamic response of coupled system

consisting of the shell structure and the acousto-elastic media in time domain:
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𝐋𝐮+ 𝐈𝐮̈ = −(𝐻(𝑧 −𝑧1)−𝐻(𝑧 −𝐿))𝐭𝑠 +(𝐻(𝑧 −𝑧0)−𝐻(𝑧 −𝑧1))𝐩𝑓 +𝐟𝑒 , (3.1)

∇2𝑝𝑓 (𝑟,𝑧, 𝑡)− 1
𝑐2𝑓
𝑝̈𝑓 (𝑟,𝑧, 𝑡) = 0 , (3.2)

(𝜆𝑗 +2𝜇𝑗 )∇(∇ ⋅ 𝐮𝑗 )−𝜇𝑗∇× (∇×𝐮𝑗 ) = 𝜌𝑗 𝐮̈𝑗 . (3.3)

In Eq. (3.1), 𝐮 = [𝑢𝑧(𝑧, 𝑡) 𝑢𝑟 (𝑧, 𝑡)]𝑇 is the displacement vector of the mid-surface of the shell

with 0 < 𝑧 < 𝐿. The operators 𝐋 and 𝐈 are the stiffness and modified inertia matrices of the

shell, respectively [16]. The stiffness operator is defined by the following matrix:

𝐿 = [
𝐿𝑧𝑧 𝐿𝑧𝑟
𝐿𝑟𝑧 𝐿𝑟𝑟]

(3.4)

The stiffness operator exhibits symmetry, meaning that 𝐿𝑖𝑗 = 𝐿𝑗𝑖 for 𝑖, 𝑗 = 𝑧, 𝑟 , and its

components are described by the following expressions:

𝐿𝑧𝑧 =
2𝐸ℎ

(1−𝜈2)
𝜕2

𝜕𝑧2
+

𝐸ℎ
𝑅2(1+𝜈)

𝜕2

𝜕𝜃2
(3.5)

𝐿𝑧𝑟 = 𝐿𝑟𝑧 =
2𝐸ℎ𝜈

𝑅(1−𝜈2)
𝜕
𝜕𝑧

(3.6)

𝐿𝑟𝑟 =
2𝐸ℎ

3𝑅2(1−𝜈2)(
𝜕4

𝜕𝑧4
+
ℎ2

𝑅2
𝜕4

𝜕𝜃4
+2ℎ2

𝜕4

𝜕𝑧2𝜕𝜃2)
(3.7)

The modified inertia operator is described as [121]:

𝐼 = [
𝐼𝑧𝑧 𝐼𝑧𝑟
𝐼𝑟𝑧 𝐼𝑟𝑟]

(3.8)

in which its terms are given by the following expressions:

𝐼𝑧𝑧 = −2𝜌ℎ+𝑎
𝜕2

𝜕𝑧2
−𝑏

𝜕4

𝜕𝑧2𝜕𝑡2
−𝑐

𝜕6

𝜕𝑧2𝜕𝑡4
(3.9)

𝐼𝑟𝑟 = 2𝜌ℎ+𝑑
𝜕2

𝜕𝑧2
+
𝑑
𝑅2

𝜕2

𝜕𝜃2
+𝑒

𝜕2

𝜕𝑡2
+𝑓

𝜕4

𝜕𝑧2𝜕𝑡2
+
𝑓
𝑅2

𝜕4

𝜕𝜃2𝜕𝑡2
(3.10)

𝐼𝑧𝑟 = 𝐼𝑟𝑧 = 0 (3.11)

where 𝑎 = 2𝜌ℎ3𝜈2/3(1−𝜈)2.
The coefficients are defined as follows:

𝑏 =
4𝜌2ℎ5𝜈2(3−5𝜈 −𝜈2)(1+𝜈)

45(1−𝜈)3𝐸
(3.12)

𝑐 =
2𝜌3ℎ7𝜈2(−17+56𝜈 −33𝜈2−28𝜈3+5𝜈4)(1+𝜈)2

315(1−𝜈)4𝐸2
(3.13)

𝑑 =
2𝜌ℎ3(7𝜈 −17)

(1−𝜈)
(3.14)

𝑒 =
4𝜌2ℎ3(422−424𝜈 −33𝜈2)(1+𝜈)

(1050−1050𝜈)𝐸
(3.15)

𝑓 =
2𝜌2ℎ5(32−96𝜈 +261𝜈2−197𝜈3)(1+𝜈)

7875(1−𝜈)2𝐸
(3.16)
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The term 𝐭𝑠 represents the boundary stress vector that takes into account the reaction

of the soil surrounding the shell 𝑧1 ≤ 𝑧 ≤ 𝐿,

𝐭𝐬 = [
𝜎𝑟𝑧,𝑠
𝜎𝑟𝑟,𝑠]

(3.17)

The term 𝐩𝑓 represents the fluid pressure exerted at the outer surface of the shell at

𝑧0 ≤ 𝑧 ≤ 𝑧1,

𝐩𝐟 = [
0
𝑝𝑓 ]

(3.18)

The functions 𝐻(𝑧−𝑧𝑖) are the Heaviside step functions. The vector 𝐟𝑒 = [𝑓𝑧(𝑧, 𝑡) 𝑓𝑟 (𝑧, 𝑡)]𝑇
represents the externally applied force on the surface of the shell. In Eq. (3.2), 𝑝𝑓 (𝑟,𝑧, 𝑡) is
the pressure field of the fluid. In Eq. (3.3), 𝐮𝑗 = [𝑤𝑗 (𝑟,𝑧, 𝑡) 𝑢𝑗 (𝑟,𝑧, 𝑡)]𝑇 is the vector including

the vertical and radial displacements of soil layer 𝑗 .
The Helmholtz decomposition is applied to the fluid-soil domain as:

𝐮𝑓 = ∇𝜙𝑓 , 𝐮𝑗 = ∇𝜙𝑗 +∇× (0,−
𝜕𝜓𝑗
𝜕𝑟

,0) (3.19)

Substitution of Eq. (3.19) into Eqs. (3.2) and (3.3) yields [101]:

∇2𝜙𝑓 (𝑟,𝑧, 𝑡) =
1
𝑐2𝑓

𝜕2𝜙𝑓
𝜕𝑡2

, (3.20)

∇2𝜙𝑗 (𝑟,𝑧, 𝑡) =
1
𝑐2𝑝𝑗

𝜕2𝜙𝑗
𝜕𝑡2

, (3.21)

∇2𝜓𝑗 (𝑟,𝑧, 𝑡) =
1
𝑐2𝑠𝑗

𝜕2𝜓𝑗
𝜕𝑡2

. (3.22)

In the equations above, 𝑐𝑝𝑗 and 𝑐𝑠𝑗 denote the complex-valued speeds of the compressional

and shear waves in soil layer 𝑗 , respectively.
The pressure release boundary condition is applied at the sea surface. When incident

waves interact with a rough sea surface, they scatter at various angles and experience

different travel times, resulting in time shifts and amplitude variations. The validity of this

assumption depends on the sea state, with low sea states showing minimal influence at

lower frequencies [122]. At the fluid-soil interface 𝑧 = 𝑧1, the vertical stress equilibrium
and the vertical displacement continuity are imposed, while the shear stress vanishes since

no shear stresses are present in a perfect fluid. For the sound generation module, the

interface at 𝑧 = 𝐻 is substituted by a rigid boundary at a great depth, whereas the bottom

soil is extended to infinity to mimic realistic ocean environments in the sound propagation

module. In the following examined cases, 𝐻 = 𝑧𝑁 . The choice of the 𝑧𝑁 (𝑧𝑁 ≥𝐻 ) in practice

is related to the depth of the soil layer, which is determined by the soil profiles provided by

the offshore geotechnical survey. The rigid cylinder below the pile is not expected to have

a significant influence on the energy distributions and the resulted pressure level in the

fluid. This assumption is confirmed in the sequel by direct comparison with the measured

data. To minimize the effect of the artificial reflection from the rigid boundary, the sound
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generation module is coupled to the sound propagation module at a very close distance to

the pile surface, so the influence of the rigid boundary becomes insignificant.

Given the full-contact at the soil-soil interface, both stress equilibrium and displacement

continuity are applied. This set of boundary and interface conditions reads:

𝑝𝑓 (𝑟,𝑧0, 𝑡) = 0, 𝑟 ≥ 𝑅, (3.23)

𝜎𝑧𝑧1(𝑟,𝑧1, 𝑡)+𝑝𝑓 (𝑟,𝑧1, 𝑡) = 0, 𝑢𝑧,𝑓 (𝑟,𝑧1, 𝑡) = 𝑤𝑠1(𝑟,𝑧1, 𝑡), 𝜎𝑧𝑟1(𝑟,𝑧1, 𝑡) = 0, 𝑟 ≥ 𝑅,(3.24)
𝑤𝑗 (𝑟,𝑧𝑗 , 𝑡) = 𝑤𝑗−1(𝑟,𝑧𝑗 , 𝑡), 𝑢𝑗 (𝑟,𝑧𝑗 , 𝑡) = 𝑢𝑗−1(𝑟,𝑧𝑗 , 𝑡), 2 ≤ 𝑗 ≤ 𝑁 , 𝑟 ≥ 𝑅, (3.25)

𝜎𝑧𝑧𝑗 (𝑟,𝑧𝑗 , 𝑡) = 𝜎𝑧𝑧𝑗−1(𝑟,𝑧𝑗 , 𝑡), 𝜎𝑧𝑟𝑗 (𝑟,𝑧𝑗 , 𝑡) = 𝜎𝑧𝑟𝑗−1(𝑟,𝑧𝑗 , 𝑡), 2 ≤ 𝑗 ≤ 𝑁 , 𝑟 ≥ 𝑅. (3.26)

In Eq. (3.26), 𝜎𝑧𝑧𝑗 and 𝜎𝑧𝑟𝑗 designate the normal and tangential stresses in the soil layer 𝑗 .
For 𝑟 < 𝑟0, a rigid surface is placed at 𝑧 = 𝐻 (in the sound generation module) as depicted

in Fig. 3.1 (right). At the pile-water interface, the pressure equilibrium and displacement

continuity are imposed. Under the assumption of no pile slip, a perfect contact condition is

applied at the pile-soil interface. For impact pile driving, the contact relaxation of pile-soil

interface allowing the relative vertical motion of the pile relative to the soil is insignificant

for the underwater noise and soil vibration. However, it gains importance when predicting

underwater noise in vibro-piling scenarios, as the interaction between the pile and soil

plays a significant role in capturing the quasi-steady state of the system [59, 62]. The set

of kinematic conditions at the interface of the shell and the surrounding media (𝑟 = 𝑅) are
given as:

𝑢𝑟 (𝑧, 𝑡) = 𝑢𝑓 (𝑅,𝑧, 𝑡), 𝑧0 ≤ 𝑧 ≤ 𝑧1
𝑢𝑟 (𝑧, 𝑡) = 𝑢𝑗 (𝑅,𝑧, 𝑡) and 𝑢𝑧(𝑧, 𝑡) = 𝑤𝑗 (𝑅,𝑧, 𝑡), 𝑧1 ≤ 𝑧 ≤ 𝐿, 1 ≤ 𝑗 ≤ 𝑁

(3.27)

Following the application of the forward Fourier transform, the governing equations in

the frequency domain are obtained. The Fourier transform pair utilized in this thesis is

expressed in Eq. (2.12). The transformed system of the equations of motion Eqs. (3.1)−(3.3)
reads:

𝐋𝐮̃+ 𝐈̃𝐮̃ = −(𝐻(𝑧 −𝑧1)−𝐻(𝑧 −𝐿))𝐭̃𝑠 +(𝐻(𝑧 −𝑧0)−𝐻(𝑧 −𝑧1))𝐩̃𝑓 +𝐟𝑒 , (3.28)

∇2𝑝̃𝑓 (𝑟,𝑧,𝜔)+
𝜔2

𝑐2𝑓
𝑝̃𝑓 (𝑟,𝑧,𝜔) = 0 , (3.29)

(𝜆𝑗 +2𝜇𝑗 )∇(∇ ⋅ 𝐮̃𝑗 )−𝜇𝑗∇× (∇× 𝐮̃𝑗 ) = −𝜌𝑗𝜔2𝐮̃𝑗 . (3.30)

The motion of the fluid and sediment are characterised by scalar potential as:

∇2𝜙̃𝑓 (𝑟,𝑧,𝜔)+
𝜔2

𝑐2𝑓
𝜙̃𝑓 (𝑟,𝑧,𝜔) = 0 , (3.31)

∇2𝜙̃𝑗 (𝑟,𝑧,𝜔)+
𝜔2

𝑐2𝑝𝑗
𝜙̃𝑗 (𝑟,𝑧,𝜔) = 0 , (3.32)

∇2𝜓̃𝑗 (𝑟,𝑧,𝜔)+
𝜔2

𝑐2𝑠𝑗
𝜓̃𝑗 (𝑟,𝑧,𝜔) = 0 , (3.33)

(3.34)
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The transformed boundary and interface conditions read:

𝑝̃𝑓 (𝑟,𝑧0,𝜔) = 0, 𝑟 ≥ 𝑅, (3.35)

𝜎̃𝑧𝑧1(𝑟,𝑧1,𝜔)+ 𝑝̃𝑓 (𝑟,𝑧1,𝜔) = 0, 𝑢̃𝑧,𝑓 (𝑟,𝑧1,𝜔) = 𝑤̃𝑠1(𝑟,𝑧1,𝜔), 𝜎̃𝑧𝑟1(𝑟,𝑧1,𝜔) = 0, 𝑟 ≥ 𝑅,
(3.36)

𝑤̃𝑗 (𝑟,𝑧𝑗 ,𝜔) = 𝑤̃𝑗−1(𝑟,𝑧𝑗 ,𝜔), 𝑢̃𝑗 (𝑟,𝑧𝑗 ,𝜔) = 𝑢̃𝑗−1(𝑟,𝑧𝑗 ,𝜔), 2 ≤ 𝑗 ≤ 𝑁 , 𝑟 ≥ 𝑅, (3.37)

𝜎̃𝑧𝑧𝑗 (𝑟,𝑧𝑗 ,𝜔) = 𝜎̃𝑧𝑧𝑗−1(𝑟,𝑧𝑗 ,𝜔), 𝜎̃𝑧𝑟𝑗 (𝑟,𝑧𝑗 ,𝜔) = 𝜎̃𝑧𝑟𝑗−1(𝑟,𝑧𝑗 ,𝜔), 2 ≤ 𝑗 ≤ 𝑁 , 𝑟 ≥ 𝑅.
(3.38)

𝑢̃𝑟 (𝑧,𝜔) = 𝑢̃𝑓 (𝑅,𝑧,𝜔), 𝑧0 ≤ 𝑧 ≤ 𝑧1 (3.39)

𝑢̃𝑟 (𝑧,𝜔) = 𝑢̃𝑗 (𝑅,𝑧,𝜔) and 𝑢̃𝑧(𝑧,𝜔) = 𝑤̃𝑗 (𝑅,𝑧,𝜔), 𝑧1 ≤ 𝑧 ≤ 𝐿, 1 ≤ 𝑗 ≤ 𝑁 (3.40)
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Figure 3.2: Diagram of the computational approach of the model and its components.
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3.1.3 An overview of the computational method
The diagram of the complete model is shown in Fig. 3.2, which presents the computational

model and the process of the simulation. As indicated in the diagram, variation of certain

input parameters, e.g., the penetration depth of the pile or the input forcing function,

requires solely part of the simulation to be re-evaluated, which significantly improves the

computation efficiency of the model for making it suitable for a large number of parametric

studies.

3.2 Sound generation module
The sound generation module is based on a three-dimensional cylindrically symmetric

vibroacoustic model developed by Tsouvalas and Metrikine [16]. The module captures the

dynamic interactions between the pile and the surrounding media. A modal decomposition

is applied both to the shell structure and the acousto-elastic waveguide. Based on the

mode-matching technique, the response of a coupled pile-water-soil system is obtained in

the frequency domain. The wavenumber spectrum associated with the evanescent waves

of the waveguide is significant for the vibro-acoustic interaction problem as shown in

[77]. A set of the response functions in terms of pressure, velocity, displacement and stress

tensors are obtained as input for the sound propagation model discussed in section 3.3.

The expressions for the fluid pressure, soil stresses and displacement are given as follows:

𝑝̃𝑓 (𝑟,𝑧,𝜔) =
∞
∑
𝑝=1
𝐶𝑝𝐻 (2)

0 (𝑘𝑝𝑟)𝑝̃𝑓 ,𝑝(𝑧) (3.41)

𝑢̃𝑗 (𝑟,𝑧,𝜔) =
∞
∑
𝑝=1

1√
𝐶𝑝
𝐻 (2)
1 (𝑘𝑝𝑟)𝑢̃𝑗 ,𝑝(𝑧) (3.42)

𝑤̃𝑗 (𝑟,𝑧,𝜔) =
∞
∑
𝑝=1

1√
𝐶𝑝
𝐻 (2)
0 (𝑘𝑝𝑟)𝑤̃𝑗 ,𝑝(𝑧) (3.43)

𝜎̃𝑧𝑧𝑗 (𝑟,𝑧,𝜔) =
∞
∑
𝑝=1

1
𝑘𝑝𝑟 (

𝑘𝑝𝜆𝑗 𝑢̃𝑗 ,𝑝(𝑧)+𝜌𝑠𝑗 𝑐
2𝐿
𝑑𝑤̃𝑗 ,𝑝(𝑧)
𝑑𝑧 ) (3.44)

𝜎̃𝑧𝑟𝑗 (𝑟,𝑧,𝜔) =
∞
∑
𝑝=1
𝜇𝑗
𝐶𝑝
𝑘𝑝𝑟

𝑑𝑢̃𝑗 ,𝑝(𝑧)
𝑑𝑧

−𝑘𝑝𝜇𝑤̃𝑗 ,𝑝(𝑧) (3.45)

𝜎̃𝑟𝑟𝑗 (𝑟,𝑧,𝜔) =
∞
∑
𝑝=1

1
𝑘𝑝𝑟 (

𝑘𝑝𝜌𝑠𝑐2𝐿
𝑢𝑗 ,𝑝(𝑧)

+𝜆𝑠
𝑑𝑤̃𝑗 ,𝑝(𝑧)
𝑑𝑧 ) (3.46)

with 𝜎̃𝐻0
𝑟𝑟𝑗 ,𝑝(𝑧) = 𝑘𝑝,𝑗𝜌𝑠,𝑗𝑐

2𝐿𝑢̃𝑗 ,𝑝(𝑧)+𝜆𝑗𝑑𝑤̃𝑗 ,𝑝(𝑧)/𝑑𝑧 and 𝜎̃𝐻1
𝑟𝑟𝑗 ,𝑝(𝑧) = −2𝜇𝑗 𝑢̃𝑗 ,𝑝(𝑧) in which the

complex-valued coefficients 𝐶𝑝 are determined by solving for the forced response of the

complete coupled system, 𝑝̃𝑓 ,𝑝(𝑧) are the eigenfunctions of the pressure for the mode 𝑝.

Upon an appropriate linear combination of the set of the pile-water and pile-soil

interface conditions at 𝑟 = 𝑅 and orthogonality properties of the acousto-elastic and the
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shell structure modes, the solution to the complete system reads,

∞
∑
𝑞=1
𝐶𝑞(

𝐿𝑞𝑝 +𝑘𝑞𝐻 (2)
1 (𝑘𝑞𝑅)Γ𝑞𝛿𝑞𝑝 −

∞
∑
𝑚=1

𝑅𝑚𝑞𝑄𝑚𝑝
𝐼0𝑚 )

=
∞
∑
𝑚=1

𝐹0𝑚𝑄𝑚𝑝
𝐼0𝑚

(3.47)

in which 𝑅𝑚𝑝 indicates the dynamic stiffness of the soil–fluid domain, 𝐹0,𝑚 is the modal

force, 𝑄𝑚𝑝 and 𝐿𝑝𝑞 are integrals over the pile-water and pile-soil interfaces as defined in

[16]. The following orthogonality relation holds:

Γ𝑝𝛿𝑝𝑞 = −∫
𝑧2

𝑧1 (
𝑣𝑓 ,𝑟,𝑞(𝑧)
𝑖𝜔𝑘𝑞

𝑝̃𝑓 ,𝑝(𝑧))𝑑𝑧

+∫
𝐿

𝑧2 (𝜁𝑠𝑘
2
𝑝
𝑢̃𝑗 ,𝑝(𝑧)𝑢̃𝑗 ,𝑞(𝑧)

𝑘𝑝𝑘𝑞
+𝜂𝑠𝑢̃𝑗 ,𝑞(𝑧)

𝜎̃𝑧𝑧𝑗 ,𝑝(𝑧)
𝑘𝑞

−𝑢̃𝑗 ,𝑞(𝑧)
𝜎̃𝑧𝑟𝑗 ,𝑞(𝑧)
𝑘𝑞 )𝑑𝑧

(3.48)

in which 𝜁𝑠 = 𝜌𝑠𝑗 [𝜌𝑠𝑐4𝑝𝑗 −(𝑐
2
𝑝𝑗 −2𝑐2𝑠𝑗)

2
]/𝑐2𝑝𝑗 , 𝜂𝑠 = 𝑐

2
𝑝𝑗 −2𝑐2𝑠𝑗/𝑐

2
𝑝𝑗 . The acousto-elastic modes

are normalized so that |Γ𝑝 | = 1. Equation (3.47) can be solved for the unknown complex-

valued coefficients of the layered medium, 𝐶𝑝 . Once these are known, the inverse Fourier
transform can provide the response of the complete system in the time domain.

Because the complete system is linear and the eigenvalue problems of the shell and

the acousto-elastic waveguide are solved independently, only part of the simulations is

required for a large number of predictions with various inputs. The sound generation

module allows various scenarios (i.e., various forcing functions, soil conditions, penetration

depths, etc.) to be investigated with significantly less computational effort compared to

the finite element or finite difference models since only part of the simulation needs to be

repeated when input parameters are varied.

3.3 Sound propagation module
The input to the sound propagation module is provided by the sound generation module

through a boundary integral formulation [109, 115, 116]. This section comprises two parts.

The first part describes the derivation of the Green’s functions, whereas the second part

discusses the formulation of the boundary integrals introduced in section 2.4.

The direct boundary element method (BEM) is adopted to couple the sound generation

and sound propagation modules. The solution of the acousto-elastic wavefield employs

Somigliana’s identity in elastodynamics and Green’s third identity in potential theory

[115, 116]. The velocity, displacement and pressure/stresses on the cylindrical boundary

surface 𝑟 = 𝑟𝑠 are obtained from the sound generation module. The Green’s tensors obtained

in section 2.2 are the fundamental solutions for the boundary integral equations. The

fundamental solutions of Green’s displacement tensors 𝑈Ξ𝜉
𝛼𝛽 (𝐫, 𝐫𝑠 ,𝜔) are derived from the

potential functions [109] given the receiver point at 𝐫 = (𝑟,𝑧) (in medium Ξ) in 𝛼-direction
due to a unit impulse at source 𝐫𝑠 = (𝑟𝑠 , 𝑧𝑠) (in medium 𝜉 ) in 𝛽-direction:

𝑈 𝑠𝜉𝛼𝛽(𝐫, 𝐫𝑠 ,𝜔) = ∇𝜙̃𝑔𝑗,𝜉 (𝐫, 𝐫𝑠 ,𝜔)+∇×𝑊 , (3.49)

𝑈 𝑓 𝜉𝛼𝛽 (𝐫, 𝐫𝑠 ,𝜔) = ∇𝜙̃𝑔𝑓 ,𝜉 (𝐫, 𝐫𝑠 ,𝜔). (3.50)
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in which𝑊 = −𝜕𝜓𝑔𝑠𝑗 ,𝜉 (𝐫, 𝐫𝑠 ,𝜔)/𝜕𝑟 . The displacement potential functions of acousto-elastic

domain have been derived in section 2.2. The Green’s stress tensors 𝑇Ξ𝜉
𝛼𝛽 (𝐫, 𝐫𝑠 ,𝜔) related to

𝑈Ξ𝜉
𝛼𝛽 (𝐫, 𝐫𝑠 ,𝜔) are obtained through substitution of potential functions given in section 2.2

into the constitutive equations [109]. By utilizing Betti’s reciprocal theorem in elastody-

namics [115] and Green’s theorem for acoustic problem [116] as discussed in section 2.4.2 ,

the complete solution for the acousto-elastic domain can be written as:

𝑢̃Ξ𝛼 (𝐫,𝜔) = 𝑢̃
Ξ,𝑓
𝛼 (𝐫,𝜔)+ 𝑢̃Ξ,𝑠𝛼 (𝐫,𝜔) = ∑

𝛽=𝑟,𝑧
∫
𝑆𝑠(

𝑈Ξ𝑠
𝛼𝛽 (𝐫, 𝐫𝑠 ,𝜔) ⋅ 𝑡

𝐧
𝛽 (𝐫𝑠 ,𝜔)−𝑇

𝐧,Ξ𝑠
𝛼𝛽 (𝐫, 𝐫𝑠 ,𝜔)⋅

𝑢̃𝛽(𝐫𝑠 ,𝜔))𝑑𝑆
𝑠(𝐫𝑠)+∫

𝑆𝑓(
𝑈Ξ𝑓
𝛼𝑟 (𝐫, 𝐫𝑠 ,𝜔) ⋅ 𝑝̃(𝐫𝑠 ,𝜔)−𝑇

𝐧,Ξ𝑓
𝛼𝑟 (𝐫, 𝐫𝑠 ,𝜔) ⋅ 𝑢̃𝑟 (𝐫𝑠 ,𝜔))𝑑𝑆

𝑓 (𝐫𝑠), 𝐫 ∈ 𝑉

(3.51)

in which 𝐧 is the outward normal to the cylindrical boundary. The cylindrical surface in

both the fluid and the soil domains need to be discretized when employing the direct BEM

associated with the acousto-elastic layered half-space Green’s functions. The rule of thumb

of using six elements per wavelength is adopted in the numerical integration of the line

integral with the trapezoidal rule applied for the integration [117]. In the fluid domain, the

integration is based on the shortest wavelength of the compressional waves, while in the

soil domain, the size of the element is governed by the shortest shear wavelength at the

maximum frequency of interest.

3.4 Numerical considerations
In this section, the numerical computation of the eigenvalues and the branch line integra-

tions are presented, which determine stability and convergence of the complete solution.

The case study examines an acousto-elastic layered half-space consisting of an upper

sediment layer and a bottom half-space. The geometry and material properties of the model

are summarized in Table 3.1.

Table 3.1: Basic input parameters for the case study.

Parameter Fluid Upper soil Bottom sediment

Depth [m] 39.9 1.5 ∞
𝜌 [kg/m

3
] 1000 1670 1950

𝑐𝑝 [m/s] 1500 1560 1979

𝑐𝑠 [m/s] - 94 349

𝛼𝑝 [𝑑𝐵/𝜆] - 0.55 0.27

𝛼𝑠 [𝑑𝐵/𝜆] - 1.36 1.09

3.4.1 Root-finding algorithm and poles
There are two challenges associated with the root-finding algorithm: (i) root-search in

the complex wavenumber plane; (ii) presence of the branch cuts due to the soil half-space.
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Regarding the first item above, when dissipation is included in the form of complex Lam𝑒́
constants, all roots become complex-valued.

This adds certain complexities in the root-searching in the complex 𝑘𝑟 -plane compared

to the search of the eigenvalues for the lossless seabed case, which solely takes place on

the real axis for poles related to propagating waves [116, 123]. Poles related to evanescent

waves migrate from their original position in the complex wavenumber plane, which leads

to the asymmetric distribution of the roots in the third and fourth quadrant of the complex

wavenumber plane. In contrast, for lossless seabed the symmetric feature requires the

search of roots in only one of the quadrants.

Another challenge is associated with the branch cuts which are necessary when the

bottom soil is modelled as amultilayered half-space. Compared to traditional root-searching

for the acousto-elastic waveguide, this requires the root-finding to be performed on the

correct Riemann surface across the branch cut to ensure the satisfaction of the radiation

condition at 𝑧 → ∞. The configuration of the acousto-elastic half-space speeds up the

root-searching since only a finite number of poles are required for the convergence of the

solution.

In the computation presented in the sequel, the marine sediment layer is modelled

by an almost fluidized thin soil layer at the upper part of the seabed, which is typically

encountered in many offshore environments. This adds another challenge in the root-

searching, which leads to a larger real part of the pole associated with Scholte waves at the
fluid-soil interface, which are the slowest propagating waves present in the media.

In Fig. 3.3, the complex-valued roots are obtained for two excitation frequencies 𝑓 = 50
and 500 Hz. As shown in the enlarged plots, by solving the characteristic equation for the

configuration summarized in Table 3.1, all poles are located at the intersections of the blue

and red lines, indicating ℜ(𝑑𝑒𝑡) = ℑ(𝑑𝑒𝑡) = 0. The poles can be categorized into two types.

One is related to the trapped modes, i.e., the first five modes shown in Fig. 3.4 (top) for

𝑓 = 50Hz, in which vibrations of the system are localized within one of the acousto-elastic

layers along with the depth or on one interface while decaying outside this finite area. The

other one is related to the leaky modes, as the sixth mode shown in Fig. 3.4, in which the

energy radiates into the surrounding media (oscillatory patterns through the depth) as

depicted in Fig. 3.4. As shown in Fig. 3.4, the trapped modes associated with Scholte and

Stoneley waves are well captured. The grey-shaded area indicates the 1.5m-thick marine

sediment layer, which plays a crucial role in channelling the energy radiated from the pile

between the water column and the seabed.

3.4.2 The branch cuts and branch line integrals
Due to the presence of the soil half-space, the branch cuts are introduced and branch line

integrations are required to obtain the exact Green’s functions [101]. The convergence

of the solutions is influenced by choice of branch cuts. The criteria for assessing the

convergence of the solution ensure that the ratio between the contribution of the branch

line integration and the cumulative branch line integration is less than 1E−5 to allow

high accuracy and convergence of the solution. The most commonly applied ones are the

Pekeris and Ewing-Jardetsky-Press (EJP) branch cuts [97, 101, 124, 125]. For a fluid layer

overlying an elastic half-space, the advantage of the EJP solution is that it only requires

truncating the branch line integrations. In contrast, the Pekeris solution needs to truncate
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Figure 3.3: Complex roots for an acousto-elastic layered half-space with the parameters specified in Table 3.3 at

50 Hz (top) and 500 Hz (bottom). The enlarged plots (within the box of the dashed-line) verify the accuracy of the

roots as the roots all locate at the intersections of the contour lines ℜ(𝑑𝑒𝑡) = 0 (blue line) and ℑ(𝑑𝑒𝑡) = 0 (red
line).

both the vertical branch line integrations and normal modes [96]. The latter one is valid

only when the observation point is located at a sufficiently shallow depth or a sufficiently

large range, which is due to the numerical instability of the solutions that may easily violate

the radiation condition along the z-direction. In contrast, the representation of the EJP

solution is convergent at all ranges and depths, which ensures smooth convergence of the

Green’s tensors. In Fig. 3.3, most of the poles related to the propagating waves trapped in

the water column and the poles associated with leaky waves that radiate energy into the
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Figure 3.4: Eigenfunctions of pressure and stress 𝜎𝑧𝑧 for an acousto-elastic layered half-space at 50 Hz for the

wavenumbers as indicated in Fig. 3.3 (a): (1) the trapped mode associated with the Scholte wave; (2) the trapped

mode associated with Stoneley wave; (3) the trapped mode in the marine sediment layer; (4) & (5) two trapped

modes in the fluid domain; (6) the leaky mode. The solid line indicates the real part of the eigenfunctions and the

dashed line represents the imaginary part.

surrounding media are located on the principal Riemann surface. The pole associated with

the Scholte wave is found on the third Riemann surface.

3.5 Numerical results and model validation
In this section, the solution of the complete model is examined for several benchmark cases:

(a) theoretical bench scenario from COMPILE workshop with numerical data from several

different numerical models [118]; (b) validation case with measurement data from a recent

offshore wind farm in the German North Sea. The material and geometrical parameters are

obtained from the literature [118] for case (a) and available geotechnical reports at the pile

installation site for case (b). The results were obtained on a quad-core 3.6 GHz processor

running the 64-bit Windows operating system. The total computation time for the solution

is the sum of 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑡CPU𝑓 ⋅ 𝑁𝑓 = 𝑡CPU𝑓 ,𝑔 ⋅ 𝑁𝑓 ⋅ 𝑁𝑔 , in which 𝑁𝑓 is the number of frequencies

considered, 𝑁𝑔 is the number of grid points considered in which output is required, 𝑡CPU𝑓
represents the average computation time per frequency and 𝑡CPU𝑓 ,𝑔 represents the average

computation time per output grid per frequency.

3.5.1 Theoretical benchmark case COMPILE I
In this section, the case examined is based on a generic theoretical benchmark case for

underwater noise prediction for offshore pile driving. At the COMPILE workshop in 2014,

seven different modeling approaches were presented [118]. As given in Table 3.2, the

model consists of a pile with a Young’s modulus of 210 GPa, a Poisson ratio of 0.3 and a

fluid layer overlying a soil half-space. The forcing function is reported in [118] and the

computation involves 3000 equally spaced frequencies ranging from ∼0.8333Hz to 2500Hz.
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The average computation time for the solution per output grid per frequency is 𝑡CPU𝑓 ,𝑔 = 0.02
s. In the models at the COMPILE workshop, the material damping in the pile is introduced

in the embedded section of the pile through compressional and shear wave speed, which is

different from the approach of introducing a frequency independent structural loss factor

for the shell structure used in this model.

Table 3.2: Basic input parameters for the COMPILE benchmark case [118].

Parameter Pile Parameter fluid soil

Length [m] 25 Depth [m] 10 ∞
Density [kg/m

3
] 7850 Density [kg/m

3
] 1025 2000

Outer diameter [m] 2 𝑐𝑝 [m/s] 1500 1800

Wall thickness [mm] 50 𝑐𝑠 [m/s] - 170

Final penetration depth [m] 15 𝛼𝑝 [𝑑𝐵/𝜆] - 0.469

Structural damping [-] 0.001 𝛼𝑠 [𝑑𝐵/𝜆] - 1.69

The zero-to-peak pressure level (L𝑝,𝑝𝑘) in dB re 1 𝜇P𝑎 and the sound exposure level

SEL in units of dB re 1 𝜇P𝑎2𝑠 are defined as [118]:

L𝑝,𝑝𝑘 = 20log10(
max|𝑝(𝑡)|

𝑝0 ), SEL = 10log10(
1
𝑇0 ∫

𝑇2

𝑇1

𝑝2(𝑡)
𝑝20

𝑑𝑡) (3.52)

in which 𝑇1 and 𝑇2 are the starting and ending of the predicted time signature with the

sound event in between and pulse duration 𝑇0 = 𝑇2−𝑇1 being 1 second and 𝑝0 = 10−6P𝑎 is
the reference underwater sound pressure.

The evolution of the pressure in time is shown in Fig. 3.5 for a point positioned 1 m

above the seabed at 750 m and 1500 m radial distances from the pile. The L𝑝,𝑝𝑘 and SEL

of receiver points at radial distances up to 750 m are shown in Fig. 3.5. As can be seen,

the predicted SEL and L𝑝,𝑝𝑘 at 750 m from the pile are 164.9 dB and 189.6 dB, respectively,
while the arithmetic mean values from COMPILE are 166.7 dB for the SEL and 191.2 dB
for the L𝑝,𝑝𝑘 . At 1500m, the predicted SEL and L𝑝,𝑝𝑘 are 160.2 dB and 181 dB, respectively,
while the arithmetic mean values from COMPILE are 161.3 dB for the SEL and 184 dB for

the L𝑝,𝑝𝑘 . Thus, the accuracy of the computation is less than ±2 dB for SEL and around

±3 dB for L𝑝,𝑝𝑘 when compared to the arithmetic mean values determined by the various

models at COMPILE workshop. As expected, the variation of SEL along the radial direction

is smoother while the prediction of the L𝑝,𝑝𝑘 is more oscillatory mainly because the latter

reflects a single peak of the pressure which can be influenced by many factors and is more

sensitive to the location of the observation point.

The comparison of the evolution of the pressure in time at a receiver position of r = 11

m and z = 5 m in the vicinity of the pile is shown in Fig. 3.6 for the comparison of different

modelling techniques. The results show that all models can predict the arrivals of the

primary Mach cones. The difference between this model and the models at the COMPILE

workshop are mainly due to the different modelling approaches of the seabed, the latter

modelled the seabed as equivalent fluid while this model describes the soil as an elastic

medium. The modelled pressure field in the time domain is found to be in a relatively

good agreement with the numerical results from the JASCO model compared to the other



3.5 Numerical results and model validation

3

73

Figure 3.5: COMPILE: comparison of SEL and L𝑝,𝑝𝑘 at several radial distances from the pile and 1 m above the

seabed (top); computed time histories of the pressure in the water at various radial distances at 1 m above the

seabed (bottom).

numerical models. Because the JASCO model uses a time-domain finite-difference model

for pile vibrations with the pile modelled as a cylindrical thin shell in the similar approach

as in this model.

Fig. 3.7 shows the pressure levels (dB re 1𝜇𝑃𝑎2/Hz) in one-third octave bands at various

radial distances from the pile. Assuming that the energy in all the defined bandwidths

(one-third octave) results from an effective source, the bandwidth energies add directly to

give the total energy in one frequency band. The derivation of the sound pressure level in

the unit of dB re 1 𝜇𝑃𝑎2𝑠−1 reads:

SPL1/3octave = 10log10
𝑛
∑
𝑖=𝑚(

|𝑝̃𝑖(𝜔)|2

𝑝20 ) (3.53)

As can be seen in Fig. 3.7, the spectrum shows that most of the energy is concentrated at

the critical frequency range (being 0.5𝑓𝑟 ∼ 0.8𝑓𝑟 ) associated with the ring frequency of the
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Figure 3.6: COMPILE scenario: comparison of the evolution of the pressure field at a receiver position of r = 11 m

and z = 5 m.
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Figure 3.7: COMPILE scenario: one-third octave band spectrum for a point positioned 1m above the seabed in the

fluid and at r = 750 m & 1500 m from the pile.

pile (𝑓𝑟 = 857 Hz), which is consistent with the characteristics of the pile dimension and

the noise spectrum discussed in [58].
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Table 3.3: Basic input parameters for the simulations at the offshore wind farm in the German North sea.

Parameter Pile Parameter Fluid Upper soil Bottom sediment

Length [m] 76.9 Depth [m] 39.9 1.5 ∞
Density [kg/m

3
] 7850 𝜌 [kg/m

3
] 1000 1670 1950

Outer diameter [m] 8 𝑐𝑝 [m/s] 1500 1560 1979

Wall thickness [mm] 90 𝑐𝑠 [m/s] - 94 349

Final penetration depth [m] 32.7 𝛼𝑝 [𝑑𝐵/𝜆] - 0.55 0.27

Maximum Blow Energy [kJ] 1750 𝛼𝑠 [𝑑𝐵/𝜆] - 1.36 1.09

Figure 3.8: Offshore Wind Farm scenario: Pressure field at a point located at 2 m above the seabed at various

radial distances from the pile: comparison of SEL and L𝑝,𝑝𝑘 , in which the black error bar indicating the lower

bound of sound levels from measurement and the hollow error bar represents the upper bound (top); computed

time histories of the pressure in the water (bottom).
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Figure 3.9: Offshore Wind Farm scenario: one-third octave band spectrum for a point positioned 2m above the

seabed in the fluid and at r = 1500 m from the pile.

3.5.2 Offshore wind farm in German North Sea
In this section, noise predictions using the developed model are compared with measured

noise data collected during installation of a foundation pile in the German North Sea

in 2018. The measurement of the hydro-sound emissions was conducted at horizontal

distances of 750 m and 1500 m from the pile and at a water depth of about 2 m above the

seabed. The material properties and the geometry of the model are given in Table 3.3. The

material of the pile is chosen to be standard steel with a Young’s modulus of 210 GPa and

a Poisson ratio of 0.3. The seabed consists of a thin marine sediment layer overlaying

a stiffer soil half-space. The upper thin layer corresponds to a water-saturated marine

sediment whereas the bottom layer corresponds to a very fine sand layer. The actual

penetration depth of the pile was around 32.7 m. The forcing function (in MN) is defined

as the smoothed exponential impulse:

𝐹(𝑡) =
{
𝐹𝐴 sin(𝐹𝐵(𝑡 − 𝑡0))𝑒−𝐹𝐶(𝑡−𝑡0), 𝑡0 < 𝑡 < 𝑡1

0, 𝑡 < 𝑡0 or 𝑡 > 𝑡1
(3.54)

in which 𝑡0 being 0.001s represents the start time and 𝑡1 being 0.05 s represents the end time

of the pulse. The other parameters in the forcing function are given as follows: 𝐹𝐴 = 503,
𝐹𝐵 = 149, 𝐹𝐶 = 150. This force correspondent generates approximately 1750 KJ blow energy

into the system, which is in line with the measured value. The computation involves 2000

frequencies at 0.625-Hz steps ranging from ∼0.625Hz to 1250Hz. The computation time for

the solution per frequency per output grid in average is 𝑡CPU𝑓 ,𝑔 = 0.022 s.
In Fig. 3.8 (bottom), the evolution of the pressure in time is shown for a point positioned

2 m above the seabed at 750 m and 1500 m radial distances from the pile. As can be seen,

the arrival of the pressure cones is at around 0.5s and 1s respectively after the impact of

the pile, which is in line with the expectations regarding the arrival time of the direct
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Figure 3.10: Offshore Wind Farm scenario: comparison of SEL and L𝑝,𝑝𝑘 for the pressure field at a point located

at 2 m above the seabed at various radial distances from the pile: 20-m pile penetration depth (top); 10-m pile

penetration depth, in which the black error bar indicating the lower bound of sound levels from measurement

and the hollow error bar represents the upper bound (bottom).

sound waves travelling with the speed of sound in the water at those distances. The L𝑝,𝑝𝑘
and the sound exposure level (SEL) of receiver points at radial distances up to 1500 m are

shown in Fig. 3.8 (top). As can be seen, the difference between the predicted SEL and the

averaged measured values are 1 dB and 0.5 dB at 750 m and 1500 m radial distances from

the pile respectively. The SEL indicates the averaged amount of energy radiated into the

surrounding media and L𝑝,𝑝𝑘 evaluates the impulsiveness of the pressure waves from the

pile. In practice, the hydrophones were not deployed exactly at 750m and 1500m from the

pile but with a deviation of up to 2 m, therefore both upper and lower bound of the SEL and

L𝑝,𝑝𝑘 from at 750m and 1500m horizontal distance from the pile and 2 m above the seabed

are used as the comparison with a measurement error of ±2 dB. The results verify the

validity of the complete model, which can provide predictions that lies within the accuracy

of the measurement equipment (± 1 or 2 dB). As can be seen in Fig. 3.9, the spectrum shows

that most of the energy is concentrated at low frequencies and up to around 400 Hz.

At around 10-m and 20-m pile penetration depth, the blow energy recorded was 550
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kJ and 1350 kJ, respectively. Based on the measurement data, SEL and L𝑝,𝑝𝑘 are obtained

for these two cases at 750 m and 1500 m from the pile. As can be seen in Fig. 3.10, the

predicted SEL and L𝑝,𝑝𝑘 are consistent with the recorded sound levels. For the pile with

10-m penetration depth, the deviation to the central measured data point is both 2 dB for

SEL and L𝑝,𝑝𝑘 at 750 m and is 1 dB for SEL and 3 dB for L𝑝,𝑝𝑘 at 1500 m. For the pile with

20-m penetration depth, the deviation to the central measured data point is 2 dB for SEL

and 1 dB L𝑝,𝑝𝑘 at 750 m and is 1 dB for SEL and 3 dB for L𝑝,𝑝𝑘 at 1500 m.

As indicated in Fig. 3.2, the variation of the penetration depth of the pile does not

influence the eigenvalues of the shell and acousto-elastic media. Therefore, the eigenvalue

problems do not need to be recomputed for each frequency. Instead, the modal analysis and

the final response of the coupled system solely needs to be solved, which largely reduces

the computation time as presented in Fig. 3.11. This reduction in the computation time, as

depicted by the two bars in Fig. 3.11, shows the advantage of the model when employed in

parametric studies.

Figure 3.11: Offshore Wind Farm scenario: activity plot for the computational time of individual blocks in the

model including CPU time per frequency and total execution time T, in which the first bar indicates the complete

simulation and the second bar represents the computation time for 10m- or 20m-pile penetration depth.

3.6 Particle motion in seawater and seabed vibra-
tion

3.6.1 Prediction of seabed vibration
The evolution of the radiated wave field in pressure and volumetric stress is depicted in

Fig. 3.12. Volumetric stress in the soil is defined by the equation:

𝜏𝑠 = −𝐾∇2𝜙 = −
𝜎𝑧𝑧 +𝜎𝑟𝑟 +𝜎𝜃𝜃

3
= −(𝜆+

2
3
𝜇)∇𝐮 (3.55)

Here, the displacement 𝐮 = [𝑢,𝑣,𝑤] and the normal stress tensors are denoted as 𝜎𝑧𝑧 , 𝜎𝑟𝑟 ,
and 𝜎𝜃𝜃. The choice of volumetric stress aligns with the pressure waves in the fluid.

Following the impact, compressional waves within the monopile propagate downwards

at supersonic speeds, inducing radial expansion and motion in the radial direction within

the seawater. The wave velocity within the monopile exceeds that of the pressure waves
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Figure 3.12: Offshore Wind Farm scenario: pressure in the fluid and Volumetric stress in the soil for various time

moments after the impact of the monopile.

in the fluid, resulting in the formation of a Mach cone, clearly identifiable in Fig. 3.12.

Reflected waves from the seabed give rise to secondary upward-travelling waves. Subse-

quently, pressure waves experience faster decay primarily due to cylindrical spreading and

energy transmission into the seabed. Additional attenuation may occur due to chemical

relaxation in the seawater, contingent upon factors such as pressure, temperature, and

salinity. However, these are not considered herein, as the impact is minor compared to

other damping mechanisms at the examined frequencies.

Soil behaviour is primarily influenced by shear and compressional waves. In this

scenario, a 1.5m-layer of fluidized marine sediment overlays a stiffer medium sandy soil.

In the volumetric stress plot, it is evident that shear waves exhibit higher amplitudes due

to their slower propagation compared to compressional waves within the soil. The decay

of these waves is attributed to both geometric spreading and material damping, with the

latter being dependent on the frequency and geometric characteristics of the soil.

Scholte waves characterized by the lowest speed, can be observed along the seabed-

water interface. These waves are identifiable by the poles illustrated in Fig. 3.3 and the

mode shape indicated in Fig. 3.4. They play a significant role in carrying energy near the

interface and are acknowledged by various models, including the elastic seabed model

[16, 55, 74]. Ground roll motion, a key property induced by these waves, is identified in
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the particle motion plot depicted in Fig. 3.13.

3.6.2 Prediction of particle motion
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Figure 3.13: Offshore Wind Farm scenario: particle velocity norm in the unit of m/s in both fluid and soil for

various time moments after the impact of the monopile.

In addition to the radiated wave field expressed by the pressure and stresses, the particle

motion is also an important indicator to describe the wave field. This movement of fluid and

soil particles holds particular relevance for underwater benthic communities, which inhabit

the seabed closely [126]. While many species can detect and utilize particle accelerations

and velocities, only a small group is capable of sensing acoustical pressure directly [44].

The evolution of the radiated wave field, as expressed by particle velocity norms in

the offshore wind farm case discussed in section 3.5.2, is illustrated in Fig. 3.13, with the

directionality of particle motion indicated by white arrows. It is evident that the primary

transmission path for noise is through water particles, highlighted by the Mach cone,

followed by vertically conical wave fronts dominated by shear waves. Regarding particle

motion, notably higher velocity amplitudes are observed in the vicinity of the seabed within

the water column, which constitutes vital habitats for most benthic species. We need to

note here that the amplitude of the Scholte waves maybe slightly overestimated by the

fact that a full bond is assumed between pile and soil in the linear model adopted in this

work. In reality, pile slips relative to the soil at the front of the stress pulse propagating
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downwards the pile which in fact may somewhat relax the amount of energy radiated in the

form of interface (and shear waves) reducing their amplitude. The degree of reduction of

this amplitude depends on the highly non-linear pile-soil interface dynamics and is not part

of the work examined here. Furthermore, both the amplitude and directionality of particle

motion undergo significant changes over short time intervals, potentially impacting marine

life such as benthic crustaceans and fishes.

3.7 Conclusions
A computationally efficient method is developed for noise predictions over large horizontal

distances in offshore pile driving. The complete model comprises a sound generation

module and a sound propagation module. The former aims at describing accurately the

pile-soil-water interaction and the wavefield generated at the surrounding acousto-elastic

domain in the vicinity of the pile. The latter aims to propagate this wavefield at larger

distances from the pile (up to a few kilometers) provided that bathymetry changes are

insignificant. The mathematical statement of the complete problem is presented and the

adopted method of solution is described in great detail. The direct boundary integral

equation (BIE) formulation is used to couple the two modules and propagate the wavefield

from the vicinity of the pile to larger distances. Numerical accuracy and solution stability

are discussed in great detail together with the different physical interpretations of the

various eigenmodes. One theoretical case study is examined to benchmark the model

by comparison with seven different modelling techniques. Noise predictions are then

performed for a pile-installation campaign in 2018 and the results are compared to the

measurement data for the pile driven at various penetration depths. The results show that

the model is able to capture the SEL within an accuracy of 2 dB and the L𝑝,𝑝𝑘 within an

accuracy of around 3 dB for distances up to 1500 m from the pile at various penetration

depths. The computational time is presented for each case study, which indicates the

efficiency of the model. For various configurations of the system, e.g. different penetration

depth, various forcing functions, various sizes of the pile, etc, it requires solely parts of the

model to be recomputed, which largely reduce the computational effort and later can be

used in probabilistic analysis of noise prediction.
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4
Uncertaintyqantification

in soil dynamic
characterization and its

effect on sound levels

Modelling the underwater sound emissions from pile driving is a challenging task due to
the large uncertainty in the identification of the input parameters, mainly the dynamic
properties of the marine sediment over a wide frequency range. To evaluate the significance
of the uncertainties and quantify its influence over the range, a probabilistic quantification
framework is established. A copula-based multivariate probabilistic model is then used
to analyse the dependencies between multiple soil variables. The developed probabilistic
framework is integrated to an existing computational model for the sound prediction. The
sound levels and their probability distributions were evaluated without the use of a noise
mitigation system. An investigation was conducted to highlight correlations between soil
properties and sound levels. Copula models were utilized to compute the input samples based
on the dependence between the input variables in the soil properties. After modelling the
sound levels using these input data samples, the uncertainties in the input parameters were
propagated to the simulation results. Consequently, the risk of the noise level exceeding a
certain threshold could be estimated. This study focuses on the influence of the dynamic
properties in the soil, however, this probabilistic modelling framework can be further developed
to include other input parameters involving uncertainties.

This chapter is partly based on the conference paper� [127]:

Peng, Y, et al. Uncertainty quantification of soil properties in offshore pile-driving noise predictions with the

air-bubble curtain system, UACE, Kalamata, Greece, 25-30 June 2023
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I
n this chapter, a probabilistic framework is developed to address the uncertainties in the

input parameters of the seabed in the prediction of underwater sound. The statistical

distribution of the parameters are first defined by fitting the proposed distributions to the

input data samples. After generating the input data samples, a series of simulations are

performed, which provides the sound levels related to the input data sets. The results will

allow defining the probability of exceeding a certain sound level. The correlations between

specific soil features and the sound levels are identified. The structure of this chapter is as

follows. In Section 4.1, the description of the near-source module is given together with

the governing equations and the method of the solution. In Section 4.2, the geoacoustic

modelling of the seabed is discussed with a focus on the uncertainties in determining the

dynamic properties of the marine sediment. In Section 4.3, the mathematical basis of the

complete model is established. In Section 4.4, a case study is analysed and discussion of

the results is presented. Finally, Section 4.5 gives an overview of the main conclusions of

the chapter.

4.1 Model description
Modelling underwater noise generated during the installation of offshore foundation piles

remains a challenging task, despite the development of numerous models in recent decades

[13, 14, 29, 30]. One reason for this challenge is the large amount of uncertainties involved in

the simulations. To address this issue, more detailed analytical models have been proposed,

including a three-dimensional description of the water-saturated seabed as a layered elastic

medium [15, 16]. Models which include elastic description of the seabed are considered

to be more accurate due to the fact that a significant part of the energy is released in the

soil during pile driving. Without such detailed description the sources of sound cannot be

adequately captured. Despite the advances in the modelling of the seabed, uncertainties

stemming from data obtained from offshore geotechnical surveys cannot be eliminated. In

addition, soil properties obtained on the basis of standard Cone Penetration Tests (CPTs) are

incomplete and cannot fully characterise the seabed for acoustic simulations. A first attempt

to consider uncertainties in seabed properties was investigated through a probabilistic

approach, utilizing a finite element (FE) model for noise generation and a wavenumber

integration (WNI) model for sound propagation [24]. The model employs an equivalent

fluidized seabed and point sources in the sound propagation model to reduce computational

efforts for Monte Carlo simulations, with up to 800 runs. However, this model requires a

sufficiently large number of combinations of parameters of interest to account for random

combinations between various parameters in the seafloor, despite sampling techniques

[128] to avoid a fully random analysis. Gaussian distributions are used for all parameters, i.e.

soil density, compressional wave speed, damping, and layer thickness. The main drawback

of this model is the simplistic description of the seabed which does not account for shear

rigidity, oversimplifying the dynamics of the process in which large amount of energy is

transformed into shear waves.

For noise prediction modelling in offshore pile driving, uncertainty mainly arises from

the data used for vibroacoustic simulations as well as assumptions in the models. To reduce

uncertainty in model assumptions, more detailed underwater noise prediction models can

be employed, such as the coupled pile-water-soil model including a three-dimensional

description of the water-saturated seabed. Both FE models and semi-analytical models
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can be adopted; however, computational efficiency is significant as statistical modelling

usually requires simulation of a large number of cases. Assumptions in most acoustic

models involve constant bathymetry and soil properties that remain invariant over the

radial and azimuthal directions. Uncertainties due to assumptions can be evaluated together

with dynamic soil properties of the seabed based on offshore geotechnical surveys, which

often provide the basis for determining whether such assumptions are valid in acoustic

simulations within the range of interest. Range- and azimuth-dependent models should

be adopted when considering sound propagation modelling over large distances or when

abrupt changes in water depth and soil stratification and material properties are observed

in the foundation site to be evaluated. This discussion focuses on uncertainties stemming

from the dynamic properties of the soil and the stratification of soil layers.

To address variability in input parameters and quantify uncertainties, probabilistic

and statistical approaches have gained popularity in various engineering fields [129–134].

Uncertainty Quantification (UQ) is often used to determine how uncertain input parameters

can influence simulation results [129]. In underwater noise prediction for offshore pile

driving, the main uncertainties arise from soil properties and soil stratifications, assum-

ing spatial variation in range and azimuthal directions is insignificant within the range

of interest [127, 135, 136]. In this modelling framework, based on offshore geotechnical

surveys obtained in OWFs, the distribution of each uncertain input parameter can be

determined. To narrow down uncertain input parameters, soil stratifications can be statis-

tically determined through analysis of variance (ANOVA). In most offshore geotechnical

surveys, downhole cone penetration tests (CPT) are performed, providing cone resistance,

friction ratio, and other parameters for estimating dynamic soil properties. Seismic cone

penetration tests (SCPT) are also performed at some foundation sites, where shear wave

velocities can be directly estimated, reducing uncertainty related to some of the parameters.

Depending on the type of correlations between the remaining uncertain properties, input

samples are generated using the Copula model. This approach efficiently defines input

datasets based on dependence through ranking coefficients, eliminating the need for joint

probabilistic distributions between the input variables, which are unknown for the acoustic

simulations. The input samples are then fed into the numerical model to obtain the output

sound metrics of interest. Based on the results from the model, the cumulative density

function of the predicted sound levels can be derived, which indicates the probability of

exceeding a certain noise threshold. The use of Copula can reveal the dependence between

the input parameters, but also the one between the output sound level and each variables

in the system, such as the compressional and shear wave speed, density, and damping of

the sediment, etc. The model is further described in the next sections.

4.2 Geoacoustic modelling of the seabed
Offshore geotechnical surveys often consist of borehole drilling, geotechnical logging,

in-situ testing, and sampling. The geotechnical log can provide a vertical profile of the

sediment strata and bathymetry measurement. It includes the soil behaviour type index 𝐼𝑐 ,
which is used to distinguish different soil types over the depth of examination. Moreover,

data from multiple investigation locations can be presented for various selected tools. For

example, the P and S Suspension Logger (PSSL) can provide recordings for shear wave

velocities and compressional velocities by exciting flexural waves as well as compressional
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waves through acoustic dipole sources. Assumptions regarding laterally homogeneous

conditions in the marine sediment are required during data processing.

The typical in-situ tests include the cone penetration test (CPT), which produces

parameters such as cone resistance, sleeve friction, friction ratio, and pore pressure [137–

139]. Friction-cone, piezocone, and other penetrometers allow additional measurements

for parameters such as shear wave velocity, compressional wave velocity, permeability,

and other properties [138, 139]. Based on a large amount of data from in-situ tests, the

correlation between shear wave speed, compressional wave speed, and density with the

cone resistance and sleeve friction of the soil is obtained [140]. The seismic cone penetration

test (SCPT) measures the travel time between a seismic wave source and an array of

geophones or accelerometers at a certain depth below the seabed to obtain the shear and

compressional wave velocities at certain depths in the sediment [138]. Ground conditions

can induce uncertainties in the postprocessed data, such as wave attenuation or absorption

and wave interferences through reflection and refraction [141]. Under practical constraints,

the CPT or SCPT at certain locations often has to be terminated at a shallow depth to

prevent further damage to the equipment.

In the following subsections, various geotechnical models for the derivation of com-

pressional and shear wave speeds, density, and attenuation coefficients are discussed,

presenting the correlation between these parameters and the CPT results. Based on the

compressional and shear wave speeds and density, the Young’s modulus, Poisson’s ratio,

or Lam𝑒́ constants can be obtained, which are important for solving soil dynamic and

acoustic problems. As the seafloor around the world exhibits considerable variability, no

standard formula can be universally applied to all oceans. Therefore, the uncertainties in

these equations or statistical correlations must be considered among the reasons for the

uncertainties discussed in this chapter.

4.2.1 Shear wave speed
Shear waves are important in underwater sound propagation, especially for evaluating pile

driving sound emissions. The large part of the sound sources are embedded in the seabed,

and all marine sediments possess dynamic rigidity to transmit shear waves. Compressional

waves can also convert to shear waves and Stoneley waves as they are reflected at interfaces

between different sediment layers. Based on data obtained from the CPT, many different

correlations can be found for the derivation of shear wave speed. Hegazy and Mayne

proposed the following expressions between shear wave speed and CPT data for clays,

sand, and other soil types [137].

Clays:𝑉𝑠 = 14.13𝑞0.359𝑐 𝑒−0.4730 (4.1)

𝑉𝑠 = 3.18𝑞0.549𝑐 𝑓 0.025𝑠 (4.2)

Sands:𝑉𝑠 = 13.18𝑞0.192𝑐 𝜎0.179
𝑣𝑜′ (4.3)

𝑉𝑠 = 12.02𝑞0.319𝑐 𝑓 −0.0466𝑠 (4.4)

All: 𝑉𝑠 = (10.1 log1 0𝑞𝑐 −11.4)1.67(𝑓𝑠/𝑞𝑐 ⋅ 100)0.3 (4.5)

They extended the formulation in 2006 with the development of a global statistical correla-

tion for the shear wave velocity with the normalised cone resistance 𝑞𝑐𝑁 and soil behaviour
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index 𝐼𝑐 as [142]:

𝑉𝑠 = 0.0831𝑞𝑐𝑁
𝜎𝑣0′
𝑃𝑎

0.25
𝑒1.786𝐼𝑐 (4.6)

The soil behaviour type index 𝐼𝑐 expressed below:

𝐼𝑐 = ((3.47− log10 𝑞𝑐1𝑁 )
2+(log10 𝐹 +1.22)2)

0.5
(4.7)

𝐹 =
𝑓𝑠

𝑞𝑐 −𝜎𝑣𝑜
100% (4.8)

𝑞𝑐1𝑁 =
𝑞𝑐 −𝜎𝑣𝑜
𝜎′
𝑣𝑜

(4.9)

in which 𝜎𝑣𝑜 is the in-situ vertical stress (primarily due to the weight of the soil above the

point of interest), and 𝜎′
𝑣𝑜 is the effective vertical stress adjusted for pore water pressure 𝑢,

i.e. 𝜎′
𝑣𝑜(𝑧) = 𝜎𝑣𝑜(𝑧)−𝑢(𝑧).

Robertson and Cabal [143] present a correlation incorporating net cone resistance

applicable to a wide range of soil types:

𝑉𝑠 = (𝛼𝑣𝑠
𝑞𝑡 −𝜎𝑣𝑜
𝑃𝑎 )

0.5
(4.10)

in which 𝛼𝑣𝑠 = 100.55𝐼𝑐+1.68, 𝑞𝑡 is the corrected cone resistance, 𝜎𝑣𝑜 is the total in situ vertical

stress and 𝑃𝑎 is atmospheric pressure [𝑘𝑃𝑎].

4.2.2 Density
The saturated density can be obtained from the density of the seawater 𝜌𝑤 , density of the

grain 𝜌𝑔 and the sediment porosity 𝑛 as,

𝜌𝑠 = 𝑛𝜌𝑤 +(1−𝑛)𝜌𝑔 (4.11)

However, the values and variation of parameters with depth are not always available.

Consequently, the estimation of density is often achieved through statistical correlations of

Cone Penetration Test (CPT) data or in relation to the shear wave velocity 𝑉𝑠 . Numerous

statistical equations offer potential correlations between Vs and density. Burns and Mayne

[138] presented the following correlation based on collected data:

𝜌𝑠 = 6.87
(𝑉𝑠)0.227

(𝜎′
𝑣0)0.057

103

𝑔
(4.12)

in which the shear wave speed 𝑉𝑠 is given in m/s and 𝜎′
𝑣0 is the effective overburden stress

in the unit of kPa, g is the gravitational constant.

With additional data, Mayne [144] presented a correlation between the unit weight

and the shear wave speed 𝑉𝑠 and depth of the sediment 𝑧 as,

𝜌𝑠 = (8.31 log10(𝑉𝑠)−1.61 log10(𝑧))
103

𝑔
(4.13)
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However, as the shear wave speeds are estimated from the CPT data, the further estimation

of the density from this parameters can result in more uncertainties and less reliability.

Alternatively, Mayne et al. [145] derive the density of sand, silt and clay soils as:

𝜌𝑠 = 1.95𝜌𝑤(
𝜎′
𝑣0
𝑃𝑎

)0.06(
𝑓𝑡
𝑃𝑎

)0.06 (4.14)

with atmospheric pressure 𝑃𝑎 given in kPa. For very soft clay, organic soils, and peat,

Lengkeek and Brinkgreve proposed a new formulation for estimating the density of these

soil types based on CPT data,

𝜌𝑠 = 𝜌𝑠𝑎𝑡,𝑟𝑒𝑓 −𝛽
log( 𝑞𝑡,𝑟𝑒𝑓𝑞𝑡 )

log(𝑅𝑓 ,𝑟𝑒𝑓𝑅𝑓
)

(4.15)

in which 𝜌𝑠𝑎𝑡,𝑟𝑒𝑓 is the reference unit weight, 𝑞𝑡,𝑟𝑒𝑓 is the reference cone resistance, 𝑅𝑓 ,𝑟𝑒𝑓
is the reference friction ratio, 𝛽 is a measure for the inclination of the equal unit weight

contours. These fitting reference parameters are chosen for the considered soil data and is

applicable for the range of firm sandy soil to clay, organic soil and peat.

4.2.3 Compressional wave speed
Quantifying the compressional wave speed is crucial for examining sound generation

and propagation in the ocean environment, particularly when sources are embedded in

the seafloor and low-frequency sound energy can be refracted through the sediment and

channelled back into the seawater. Hamilton links shear and compressional wave speeds

(both in km/s) for both silt-clay soils and sandy soils [146],

𝑉𝑠 = 21.05−24.617𝑉𝑝 +7.215𝑉 2
𝑝 , for water-saturated sand (4.16)

𝑉𝑠 =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

3.884𝑉𝑝 −5.757 for 1.512 < 𝑉𝑝 < 1.555
1.137𝑉𝑝 −1.485 for 1.555 < 𝑉𝑝 < 1.650

0.470𝑉 2
𝑝 −1.136𝑉𝑝 +0.991 for 1.650 < 𝑉𝑝 < 2.150

0.780𝑉𝑝 −0.962 for 2.150 < 𝑉𝑝

for silt-clay sediment

(4.17)

Hamilton later extended the studies of the compressional wave speed as a function of

depth 𝐷 (in km) based on additional data [147, 148], with a primary focus on deep-sea

applications.

𝑉𝑝 =
{

1.806(1000𝐷)0.015 for for water-saturated sand

1.511+1.304𝐷−0.741𝐷2+0.257𝐷3
for for silt-clay sediment

(4.18)

The results from this analysis reveal variations in the ratio of compression to shear wave

speed and Poisson’s ratio in marine sediments. For silt-clays, the ratio of compression to

shear wave speed decreases from approximately 13 at the seafloor to about 2.6 at a depth

of 1000 meters. For sand, this ratio decreases from 31 at the seafloor to 6.4 at a depth of 20

meters. Poisson’s ratios vary from above 0.49 at the seafloor to about 0.41 at 1000 meters

for silt-clay and 0.48 at a depth of 20 meters for sand [147].
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4.2.4 Attenuation
In situ measurements of compressional and shear wave attenuation are challenging, lead-

ing to significant uncertainty and reduced reliability in modelling underwater sound

propagation, particularly when substantial energy is radiated in the marine sediment.

Hamilton [146, 149, 150] and Kibblewhite [151] compiled attenuation coefficients to ad-

dress this issue. Hamilton’s analysis assumed a linear relationship between attenuation

and frequency, whereas extensive research has demonstrated a nonlinear dependence of

attenuation on frequency [152–159].

Attenuation 𝑘𝑝 [dB/m/kHz] 𝑘𝑠 [dB/m/kHz] Reference

Sand 0.093 7.88 [149, 150]

0.2 16.4 [150, 160]

Clay 0.087 1.4 [160]

0.326 18.95 [150, 160]

Mud (clay-silt) 0.075 0.512 [150, 160]

0.242 17.3 [149, 150]

Sandy clay 0.01 - [160]

0.203 - [150]

Sandy silt 0.013 0.5 [160]

0.35 5.29 [150, 160]

Table 4.1: Typical values of compressional- and shear-wave attenuation coefficients for marine sediment.

Published data on compressional wave attenuation [146, 149–151] show significant

scatter at low frequencies. This variability indicates uncertainties and differences in regions,

sediment types, layering, sediment depth, measurement frequencies, and other factors

affecting attenuation. Shear-wave attenuation presents even more challenges due to

the relatively limited data compared to compressional-wave attenuation, especially at

lower frequencies, as extrapolation from high-frequency data lacks adequate validation.

Shear-wave attenuation shows a rapid decrease within the upper sediment layer and

a sharp increase at greater depths. Detailed compilations of compressional and shear-

wave attenuation data are provided in [141, 146, 150, 160]. Typical values of attenuation

coefficients are listed in Table 4.1.

It is suggested by Hamilton that attenuation, measured in dB/m, exhibits a linear

dependence on frequency and can be expressed as [146, 149, 150],

𝛼𝑚,𝜉 = 𝑘𝜉 ⋅ 𝑓 (4.19)

in which 𝜉 = 𝑝,𝑠 indicates the compressional or shear waves. For the attenuation coefficient

expressed in the unit of dB/𝜆,

𝛼𝜆,𝜉 = 𝑘𝜉 ⋅
𝑐𝜉

1kHz
(4.20)
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The complex wave speed can be used to account for the absorption losses in the layer as:

𝐶𝑝 =
𝑐𝑝

1− i𝜂𝛼𝑝
=
𝑐𝑝 ⋅ (1+ i𝜂𝛼𝑝)
1−𝜂2𝛼2𝑝

(4.21)

𝐶𝑠 =
𝑐𝑠

1− i𝜂𝛼𝑠
=
𝑐𝑠 ⋅ (1+ i𝜂𝛼𝑠)
1−𝜂2𝛼2𝑠

(4.22)

with 𝜂 defined as (40𝜋 log10 𝑒)−1. Thus, by substituting the wave speed, the solution for

the Green’s function as discussed in Section 2 can be obtained for describing the wave

propagation in attenuating medium, which leads to complex eigenvalues of the propagating

modes. This adds certain complexity for finding the complete set of the roots.

When 𝜂2𝛼2𝑝 << 1, the complex wave speed 𝑐 = 𝑐𝑟 +𝑐𝑖 can be expressed as:

𝐶𝑝 ≈ 𝑐𝑝(1+ i𝜂𝛼𝑝) (4.23)

𝐶𝑠 ≈ 𝑐𝑠(1+ i𝜂𝛼𝑠) (4.24)

thus, 𝑐i = 𝜂𝛼 ⋅ 𝑐𝑟 Now, the amplitude of the compressional wave with attenuation can be

expressed as:

𝐴 = exp(−i𝑘𝑥) = exp(−i
𝜔
𝐶𝑝
𝑥) = exp(−i𝜔𝑥

𝑐𝑟 − i𝑐𝑖
𝑐2𝑟 −𝑐2𝑖

) (4.25)

Since 𝑐2𝑟 >> 𝑐2𝑖 , the above expression can be expressed as:

𝐴 = exp(−i𝑘𝑥) ≈ exp(−i𝜔𝑥
𝑐𝑟 − i𝑐𝑖
𝑐2𝑟

) = exp(−i𝜔𝑥 ⋅ (
1
𝑐𝑟

−
i𝑐𝑖
𝑐2𝑟

)) = exp(−i
𝜔
𝑐𝑟
𝑥 −

𝑐𝑖𝜔𝑥
𝑐2𝑟

)) (4.26)

Therefore, the transmission loss can be expressed as:

𝛼′ = TL = 20𝑙𝑜𝑔10(
𝐴
𝐴0

) = 20 log10(exp(
𝑐𝑖𝜔𝑥
𝑐2𝑟

)) (4.27)

with 𝐴0 = 𝑒𝑥𝑝(−i𝑘𝑟𝑥). By substituting 𝑐𝑖 = 𝜂𝛼 ⋅ 𝑐𝑟 ,

𝛼′ = 20log10(exp(
𝜂𝛼 ⋅𝜔𝑥
𝑐𝑟

)) = 20 log10(exp(
𝜂𝛼 ⋅𝜔𝑥
𝑐𝑟

)) = 20 log10(exp(
𝜂𝛼 ⋅ 2𝜋𝑥
𝜆

))

= 20log10(exp(
𝜂𝛼 ⋅ 2𝜋𝑥
𝜆

)) = 𝜂𝛼
𝑥
𝜆
⋅ 40𝜋 log10 𝑒 = 𝛼

𝑥
𝜆

(4.28)

With 𝑥 = 𝜆, the attenuation can be obatined as 𝛼𝑝,𝑠 in the unit of 𝑑𝐵/𝜆. Alternatively, the
material dissipation in the sediment can be expressed in the form of complex Lam𝑒́ constant
𝜆,𝜇 as 𝜆̂ = 𝜆(1+ i ⋅ 𝛼𝑝) and 𝜇̂ = 𝜇(1+ i ⋅ 𝛼𝑠).

4.2.5 Conclusions
As can be seen, there is a variety of empirical formulae to obtain the dynamic soil parameters

required in acoustic simulations. More importantly, the collected data from standard CPT

or SCPT tests do not allow for a full dynamic characterisation of the seabed. The water-

saturated nature of the marine sediments add to the complexity making the behaviour

strongly frequency dependent. Thus, it becomes clear that deterministic estimation of the
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sound levels contains large uncertainties and should be largely avoided. Any reasonable

prediction of the sound levels to be expected during pile installation can only be reliable

when it is accompanied by its statistical distribution. This will be the matter of discussion

in the upcoming sections.

4.3 Statistical soil modelling
In this section, the probabilistic analysis of the soil samples is performed to determine the

soil stratification based on the best-fit probability distribution and to generate the input

data samples for the acoustic simulations based on the Copula model.

Figure 4.1: Diagram of the Uncertainty Quantification modelling process in soil dynamic properties and its

components.

The steps are illustrated in the diagram shown in Fig. 4.1 and are as follows:

• Identifying sound metrics of interest,

• Identifying the uncertainties in the problem inputs, such as the material properties,

pile configurations, soil parameters, bathymetry, soil stratifications,

• Narrowing down of the uncertain variables,
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• Generating the input data samples based on the distribution of the uncertain param-

eters,

• Running simulations using the numerical model to propagate uncertainties to the

output variables,

• Determining how the uncertainties affect soundmetrics obtained from the underwater

noise predictions.

The consideration of input parameter uncertainty is crucial in numerical modelling tech-

niques, especially in underwater acoustic modelling [161]. Depending on the nature and

degree of uncertainty, as well as its impact on the physical quantities of interest, various

methods can be employed, such as interval arithmetic or Monte Carlo methods [129].

Assigning input parameters to the materials involved is essential for solving vibro-acoustic

problems. However, numerous uncertainties arise, particularly concerning dynamic proper-

ties, due to measurement challenges and the high spatial variation in marine environments

[146, 162].

The lack of, or difficulties, in performing geotechnical investigations in these envi-

ronments makes it challenging to accurately define characteristics such as shear or com-

pressional velocity, attenuation, density, and other features, as discussed extensively in

section 4.2. In this section, a method to identify uncertainties and generate input data sam-

ples based on the distribution of uncertainties in the parameters will be presented, relying

on experimental results obtained from an offshore wind farm (OWF) in the German North

Sea. The geometry of the model and the material properties for the case study examined

in this section are provided in Table 4.2. Following underwater acoustic simulations, the

uncertainties will be propagated, and sound metrics will be determined.

Table 4.2: Input parameters for the case study. Values that are not provided will be treated with appropriate

distributions.

Parameter Fluid Upper soil Bottom sediment

Depth [m] 39.9 1.5 ∞
𝜌 [kg/m

3
] 1000 - -

𝑐𝑝 [m/s] 1500 - -

𝑐𝑠 [m/s] - - -

𝛼𝑝 [𝑑𝐵/𝜆] - 0.55 0.27

𝛼𝑠 [𝑑𝐵/𝜆] - 1.36 1.09

4.3.1 Statistical analysis of the soil stratifications
As the initial step in determining uncertainties in input parameters, soil stratification

must be evaluated for underwater sound propagation models. Soil behaviour type index

can be employed to differentiate between different soil layers. However, for underwater

sound propagation modelling, it is convenient to group sediments into a few marine

sediment layers based on their acoustic characteristics and geotechnical properties of the

soil stratification.
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The objective of the analysis is to determine whether at least one of the considered

groups of soil properties within each layer obtained from the CPT exhibits a significant

difference compared to the others. In statistics, the division of layers can be accomplished

by grouping data exhibiting similar means and minimum standard deviations. Analysis of

variance (ANOVA) is utilized in this process to evaluate two or more sets of data groups so

to determine the soil stratification for the acoustic simulations. Depending on the number

of independent variables involved in the measured data samples, ANOVA can be single,

double, or triple factor.

Based on shear-wave velocities and density derived from the CPT, the p-values obtained

from ANOVA analysis provide a statistical measure to determine whether significant

differences exist between the means of each data group [163, 164]. Interpreting the p-

value helps identify possible combinations of layers. By comparing the p-values to the

significance level (commonly set at 0.05), it is determined whether there is strong evidence

against the null hypothesis, which posits that all layers are equal. The criterion for choosing

cases for soil stratification is based on the minimum p-value obtained.

The sum of squares (SS) is first evaluated to determine the F-ratio, which can be divided

into two parts: one referring to model variability and the other to random error.

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑆𝑚𝑜𝑑𝑒𝑙 +𝑆𝑆𝑒𝑟𝑟𝑜𝑟 (4.29)

𝑎
∑
𝑖=1

𝑏
∑
𝑗=1

(𝑋𝑖𝑗 − ̄̄𝑋)2 =
𝑏
∑
𝑗=1
𝑎(𝑋̄𝑗 − ̄̄𝑋)2+

𝑎
∑
𝑖=1

𝑏
∑
𝑗=1

(𝑋𝑖𝑗 −𝑋̄)2 (4.30)

in which 𝑋𝑖𝑗 is the 𝑖𝑡ℎ observation of the 𝑗 𝑡ℎ layer, ̄̄𝑋 is the mean of all layers, 𝑋̄𝑗 is the
mean of the 𝑗 𝑡ℎ layer, 𝑎 is number of elements and b is the number of groups. The F-ratio

is defined as:

𝐹 =
𝑆𝑆𝑚𝑜𝑑𝑒𝑙/(𝑏 −1)
𝑆𝑆𝑒𝑟𝑟𝑜𝑟/(𝑁 −1)

(4.31)

Once the F-ratio is obtained, specific tables allow for the evaluation of the probability of

the null hypothesis, which is then referred to as the p-value. The soil stratification for this

analysis consists of two predefined layers: the upper layer, characterized by a softer sand-

clay mixture, and the bottom layer, classified as medium to dense sandy soil. In practice, a

trade-off must be made when choosing the number of layers, balancing the fit between the

data and the soil layers, and the computational cost of the analysis. ANOVA analysis is

conducted to determine the optimal thickness of each layer, with the best scenario based on

CPT data. The selection of layer depth is made based on the minimum p-value, as shown

in Table 4.3. It can be observed that even a 1-meter variation in soil thickness results in

noticeable changes in p-values.

Alternatively, the soil behaviour type index 𝐼𝑐 can be directly used to classify marine

sediment into different layers. This index is calculated using cone tip resistance, sleeve

friction, and pore water pressure. The 𝐼𝑐 value assists in identifying various soil types, such

as sands, silts, and clays. However, proper criteria must be defined to compare the choice

of layering when multiple sediment types are recognized by 𝐼𝑐 . The method presented

in this section serves as a statistical approach for choosing soil stratification and can be

applied in various applications involving the modelling of sound transmission through

marine sediment.
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Soil stratification Depth of two layers [m] 𝜇 𝜎 F 𝐹𝑐𝑟𝑖𝑡 p-value

Layering 1 0-21 288.50 32.12 86.67 4.03 1.401e-12

21-55 431.38 62.24

Layering 2 0-22 292.60 36.29 84.19 4.03 2.23e-12

22-55 433.20 62.24

Table 4.3: Typical values of ANOVA analysis for the soil stratification of two layers.

4.3.2 Statistical analysis of the soil properties
Once the layers have been defined, the identification of the critical parameters need to

be performed and their distributions of the parameters need to be determined. In this

section a practical framework for determining the optimal parameters for the distributions

considered is presented. The coefficients of the distributions are obtained throughmaximum

likelihood estimation (MLE) [129].

Maximum Likelihood estimators
The maximum likelihood estimator is used to estimate properties of a selected distribution.

The uncertainty of whether this chosen distribution could fit the data of our analysis

should be considered in order to generate the input data samples at the following steps

in the statistical analysis. The maximum likelihood estimator is used to quantify how

the choice of the distribution can affect the results or the conclusions of the analysis. In

order to choose the most suitable distribution representing the available data, the Akaike

information criterion (AIC) is employed [129, 163].

The likelihood is a function of the distribution coefficients, represents the joint proba-

bility of the 𝑛 recordings, and is obtained by multiplying their probability density function:

𝐿(𝜃|𝑥) = Π𝑁𝑖=1𝑓 (𝑥𝑖|𝜃) (4.32)

The distribution has a set of parameters denoted as 𝜃 to describe it. Themaximum likelihood

estimate assumes that the prior distribution on 𝜃 is uniform and then finds the values of 𝜃
that maximize the likelihood function, Π𝑛𝑖=1𝑓 (𝑥𝑖|𝜃). Assuming the normal distribution, N

samples are considered for the following analysis,

Π𝑁𝑖=1𝑓 (𝑥𝑖|𝜃) = Π𝑁𝑖=1
1√
2𝜋𝜎2

exp(−
(𝜇−𝑥𝑖)2

2𝜎2 )

= (
1√
2𝜋𝜎2)

𝑁
exp(−Π𝑁𝑖=1

(𝜇−𝑥𝑖)2

2𝜎2 )

(4.33)

To maximize this function, we set its derivative equal to zero. First we take the logarithm

(we can do this because the likelihood is non-negative):

logΠ𝑁𝑖=1𝑓 (𝑥𝑖|𝜃) = −
𝑁
2
log𝜎2−

𝑁
2
log2𝜋 −−Π𝑁𝑖=1

(𝜇−𝑥𝑖)2

2𝜎2 (4.34)

The derivative with respect to 𝜇 equals:

𝑑
𝑑𝜇

Π𝑁𝑖=1𝑓 (𝑥𝑖|𝜃) = −Π𝑁𝑖=1
(𝜇−𝑥𝑖)2

2𝜎2 (4.35)
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Solving Eq. (4.35) for 𝜇 yields,

𝜇 =
1
𝑁
Π𝑁𝑖=1𝑥𝑖 (4.36)

The derivative with respect to 𝜎2
yields:

𝑑
𝑑𝜎2Π

𝑁
𝑖=1𝑓 (𝑥𝑖|𝜃) = −

𝑁
2𝜎2 −

1
2𝜎4Π

𝑁
𝑖=1(𝜇−𝑥𝑖)

2
(4.37)

Setting the derivative to zero and solving for 𝜎2
yields [129],

𝜎2 =
1
𝑁
Π𝑁𝑖=1(𝜇−𝑥𝑖)

2
(4.38)
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Figure 4.2: Probabilistic density function for the shear wave speed and density within the upper and bottom

sediment layers for various theoretical distributions.
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Normal distribution
As discussed above, the normal distribution is one of the most widely adopted distributions.

Its probability and cumulative density functions are defined as,

⎧⎪⎪
⎨⎪⎪⎩

𝑓 (𝑥|𝜇,𝜎2) = 1√
2𝜋𝜎2

exp(−
(𝑥−𝜇)2
2𝜎2 )

𝐹(𝑥|𝜇,𝜎2) = 1√
2𝜋𝜎2

∫ 𝑥−∞ exp(−
(𝑠−𝜇)2
2𝜎2 𝑑𝑠)

(4.39)

The coefficients of the distribution that best describe N samples are obtained,

{
𝜇 = 1

𝑁 Π
𝑁
𝑖=1𝑥𝑖

𝜎2 = 1
𝑁 Π

𝑁
𝑖=1(𝜇−𝑥𝑖)2

(4.40)

Gumbel distribution
The probability density function and the cumulative distribution function are shown below

[165],

{
𝑓 (𝑥|𝜇,𝛽) = 1

𝛽 exp(−𝑧−𝑒
−𝑧) ,𝑧 = 𝑥−𝜇

𝛽
𝐹(𝑥|𝜇,𝛽) = exp(−𝑒−𝑧)𝐹−1(𝑝) = 𝜇−𝛽 ⋅ ln(−ln(𝑝))

(4.41)

The derivation of the maximum Likelihood estimates of 𝜇 and 𝛽 are given in details in

[165] with as the numerical solutions of the following equations:

𝜇 = −𝛽
(
ln𝑛− ln

𝑛
∑
𝑖=1

exp−
𝑥𝑖
𝛽 )

(4.42)

and

𝑥̄ = 𝛽 +
∑𝑛
𝑖=1 𝑥𝑖 exp−

𝑥𝑖
𝛽

∑𝑛
𝑖=1 exp−

𝑥𝑖
𝛽

(4.43)

Lognormal distribution
The probability density function and cumulative of lognormal distribution are defined as

⎧⎪⎪
⎨⎪⎪⎩

𝑓 (𝑥|𝜇,𝜎2) = 1√
2𝜋𝜎2

exp(−
(𝑥−𝜇)2
2𝜎2 )

𝐹(𝑥|𝜇,𝜎2) = 1√
2𝜋𝜎2

∫ 𝑥−∞ exp(−
(𝑠−𝜇)2
2𝜎2 𝑑𝑠)

(4.44)

The the maximum Likelihood estimates of coefficients 𝜇𝐿𝑁 and 𝜎𝐿𝑁 are obtained as ,

{
𝜇 = 1

𝑁 Π
𝑁
𝑖=1 ln(𝑥𝑖)

𝜎2 = 1
𝑁 Π

𝑁
𝑖=1(ln(𝑥𝑖)−𝜇)2

(4.45)

The probability density functions of the shear wave speed and density for various soil layers

are presented in Fig. 4.2, illustrating the Normal, Gumbel, and lognormal distributions.
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Akaike Information criterion
The Akaike Information criterion (AIC) estimates the goodness of fit for the probabilistic

model for a given data set, and is given as [166]:

AIC = 2𝑘−2ln(𝐿(𝜃|𝑥)) (4.46)

in which k is the standard deviation of the distribution, and 𝐿 is the maximized value of

the likelihood function for the model as defined in Eq. (4.32). When AIC becomes lower

and the Likelihood is higher, a better fit to the actual data sets can be expected for the

given distributions. Based on the chosen soil stratifications presented in section 4.3.1,

the AIC evaluation was performed, and the results for the two soil layers are presented

for the considered distribution types. As shown in Table 4.4, the normal distribution

provides the lowest AIC. This suggests that the normal distribution is the most suitable

model for characterizing the soil properties in the given stratification and offers a better

representation of the data set for both upper and bottom soil layers.

The type of distributions 𝑉𝑠 𝜌 𝑉𝑝
Upper soil layer

Normal 1208 1302 1401

Gumbel 1313 1399 1408

LogN 1319 1323 1400

Bottom soil layer

Normal 1201 1268 1335

Gumbel 1250 1340 1368

LogN 1256 1285 1348

Table 4.4: Typical values of AIC for the data set examined for the density, compressional and shear wave speeds.

Quantile plot
Another visual approach to verify the assumption of a distribution is quantile plots. Quantile

plots are a powerful tool for visually assessing the goodness of fit of a data set to a theoretical

distribution, also known as a quantile-quantile (Q-Q) plot [167]. It can be used to compare

the distribution of a data set with a theoretical distribution (such as a normal distribution)

as shown in Fig. 4.3. The purpose of a Q-Q plot is to assess whether the data follows a

specified distribution or to check for similarities between the distributions of two different

data sets. In a Q-Q plot, the quantiles of a given data set are compared to the quantiles of a

chosen theoretical distribution. The closer the points are to the straight line representing

the theoretical distribution, the better the fit.

4.3.3 Generation of input data samples
The Copula model, based on the rank methods, is used to investigate the dependence

between several random variables [129, 130, 132, 168]. Other common models such as the

bivariate joint distribution modelling can also be used for representing the relationship

between several variables, however, the main constraint of such an approach is that one
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Figure 4.3: QQ plots for compressional speed data points within the upper and bottom sediment layers against

theoretical normal distribution.

needs to specify the joint probability density function (pdf) or cumulative distribution

function (cdf) directly. The main advantage provided by the Copula approach is that the

selection of an appropriate model for the dependence between data sets, represented by

the copula, can then proceed independently from the choice of the distributions. Copula

models are often preferred when dealing with complex dependencies, thus it is chosen

here for quantification of the uncertainties in the noise prediction for offshore pile driving,

in which complex marine environment and uncertainties in the measurement data are

required to be considered. The copula 𝐶(𝑢,𝑣), joins random variables X and Y if the joint

CDF can be written as below [129, 130, 168]:

𝐹𝑋𝑌 (𝑥,𝑦) = 𝐶{𝐹𝑋 (𝑥),𝐹𝑌 (𝑦)}, 𝑥,𝑦 ∈ R (4.47)

in which 𝐹𝑋 (𝑥) and 𝐹𝑌 (𝑦) are the marginal distribution of any pair of variables (X,Y). For a

given copula, we can define the joint PDF as

𝑓 (𝑥,𝑦) = 𝑐{𝐹𝑋 (𝑥),𝐹𝑌 (𝑦)}𝑓𝑋 (𝑥), 𝑥,𝑦 ∈ R (4.48)

where the copula density 𝑐(𝑢, 𝑣) is defined as
𝜕2
𝜕𝑢𝜕𝑣𝐶(𝑢,𝑣). The relationships between vari-

ables can be characterized by different measures, such as Pearson correlations, Spearman

rank correlations, and Kendall’s tau, which in turn determine the type of copula to use,

such as the normal (Gaussian) copula or the t-copula. The following analysis will utilize the

normal copula, which is appropriate for systems that do not exhibit strong tail dependence.

In practice, the best estimate (BE) input parameters for predicting noise from pile driving

are obtained from the given system parameters or measured geotechnical properties. This

approach emphasizes the importance of the mean values, while extreme cases are less

dominant in the uncertainty quantification (UQ) process. In contrast, the t-copula is more

suitable for analysing systems where outliers or extreme values might be present, posing a
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high risk. For example, when one variable approaches infinity, the probability of the other

variable doing the same approaches zero [129].

To construct a copula model, the marginal distributions of each variable are considered

separately, as discussed in section 4.3.2. A copula is then used to describe the dependence

structure between these variables. Simple numerical techniques are presented for selecting

an appropriate model, estimating its parameters, and checking its goodness-of-fit. The

Spearman rank coefficients are chosen to address monotonic correlations, investigating

whether high values of one variable are paired with high or low values of another. Given

N samples of X and Y, the rank function (𝑅𝑖, 𝑆𝑖) is defined by taking the rank of 𝑥𝑖 or 𝑦𝑖 and
returning the rank of that sample among the N samples, as follows:

𝑅𝑖 = rank of 𝑥𝑖 in sample X, 𝑆𝑖 = rank of 𝑦𝑖 in sample Y (4.49)

in which 𝑅𝑖 and 𝑆𝑖 are the pair of rank of the original data samples, x and y indicate the

index of the parameters in the sediment. The Spearman correlation coefficient can then be

defined as,

𝜌𝑁 (𝑋,𝑌 ) =
∑𝑁
𝑖=1(𝑅𝑖−𝑅̄)(𝑆𝑖−𝑆)√

∑𝑁
𝑖=1(𝑅𝑖−𝑅̄)2∑

𝑁
𝑖=1(𝑆𝑖−𝑆)2

∈ [−1,1] (4.50)

where

𝑅̄ =
1
𝑁

𝑁
∑
𝑖=1
𝑅𝑖 =

𝑁 +1
2

=
1
𝑁

𝑁
∑
𝑖=1
𝑆𝑖 = 𝑆 (4.51)

which can also be expressed in the form [130],

𝜌𝑁 =
12

𝑁(𝑁 +1)(𝑁 −1)

𝑁
∑
𝑖=1
𝑅𝑖𝑆𝑖−3

𝑁 +1
𝑁 −1

(4.52)

With the definition of Spearman correlation, a correlation matrix R𝑆 for a collection of

random variables X = (𝑋1, ...,𝑋𝑝)𝑇 is given as [129],

R𝑆,𝑖𝑗 = 𝜌𝑁 (𝑋𝑖,𝑌𝑗 ) (4.53)

Based on the soil stratification and its probabilistic distribution demonstrated in this

analysis, the correlation matrix for the complete system for UQ can be derived as:

𝑅𝑐𝑝 ,𝑐𝑠 ,𝜌 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜌1,1 𝜌1,2 𝜌1,3 0
𝜌2,1 𝜌2,2 𝜌2,3
𝜌3,1 𝜌3,2 𝜌3,3 ⋯

⋱ ⋮
𝜌4,4 𝜌4,5 𝜌4,6
𝜌5,4 𝜌5,5 𝜌5,6

0 𝜌6,4 𝜌6,5 𝜌6,6 ⋯
𝑅𝑁𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.54)

in which 𝑐𝑝,𝑖, 𝑐𝑠,𝑖,𝜌𝑖 indicating the compressional- and shear wave speeds and density

within the sediment layer 𝑖. When the correlation coefficient vanishes or have a very small



4

100 Uncertainty qantification

Cp, 1 Cs, 1 s, 1 Cp, 2 Cs, 2 s, 2

C p
,1

C s
,1

s,
1

C p
,2

C s
,2

s,
2

Correlation Matrix

0.0

0.2

0.4

0.6

0.8

1.0

Cp, 1 Cs, 1 s, 1 Cp, 2 Cs, 2 s, 2

C p
,1

C s
,1

s,
1

C p
,2

C s
,2

s,
2

Correlation Matrix

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.4: Correlation matrix: (left) based on the marginal distributions of parameters, (right) based on the raw

samples, parameters obtained from the CPT data analysis.
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Figure 4.5: Example for the generation of soil samples for (left) the upper soil layer; (right) the bottom soil layer,

and their bivariate distribution for the compressional and shear velocity.

value, it indicates that the variables are independent. In this analysis, the independence of

parameters between the soil layers is assumed.

An example of this correlation matrix is presented in Fig. 4.4, showing the correlations

between each variable considered in this analysis. The left matrix indicates the correlation

within each layer based on the chosen marginal distribution. The assumption of inde-

pendence between sediment layers results in zero values for the correlation coefficients.

The right figure uses raw samples obtained directly from the CPT data analysis to verify

the assumptions and local input parameter distributions used in this study. The compari-
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son between the two matrices indicates a good representation of the chosen probabilistic

distribution between the variables and validates the assumptions made.

Once the correlation matrix is obtained, sampling from the multivariate copula can

be performed. The sampling results are shown in Fig. 4.5. The left figure shows results

based on chosen probabilistic distributions, while the right figure presents the raw data

sample obtained from the CPT analysis. The close comparison between the two scenarios

indicates a good fit between the chosen marginal distributions and the distribution of the

raw CPT data. This example focuses on compressional and shear wave speeds, with their

marginal distributions depicted via histograms on both the x and y axes. As illustrated in

Fig. 4.4, the bottom sediment layer exhibits a stronger correlation compared to the upper

soil layer. This is because soil at greater depths tends to be stiffer, particularly in the sandy

soil considered for this example, leading to less variability in the samples for the bottom

sediment parameters.

The generated samples will serve as input parameters for the noise prediction modelling

of impact pile driving, as described in section 4.4. Other parameters, such as pile diameter,

length, penetration depth, hammer force, blow energy, material properties of the pile, water

depth, and sound speed in the water column, are assumed constant. It should be noted that

other parameters can also contribute to uncertainties in the prediction results. However,

this analysis focuses on the uncertainties due to soil conditions, as the measurement

data obtained from the geotechnical survey are the most critical factors. The other input

parameters are relatively well-defined or can be varied with a limited number of samples,

which can be assessed through a sensitivity analysis.

4.4 Numerical results
In this section, the input parameters based on the samples generated in section 4.3 are used

for noise prediction in impact pile driving. The case under examination is based on data

collected from an offshore wind farm in the German North Sea in 2018, as discussed in

section 3.5.2 [29]. The forcing function, presented in Eq. (3.54), is a smoothed exponential

impulse that results in approximately 1750 kJ of input energy into the pile. The material

properties and geometry of the model are detailed in Table 4.5. For the monopile’s material

properties, the Young’s modulus of the steel is 210 GPa, and the Poisson’s ratio is 0.3, used

as default values. The seabed consists of an upper sediment layer overlaying a bottom

soil half-space. The modelling of the seabed properties, which is indicated in Table 4.2, is

performed via statistical modelling of the soil samples generated through the copula model

in section 4.3.

The statistical seabed modelling is performed following the procedure described in

section 4.3. Firstly, the main uncertainties in the system are identified as the compres-

sional wave speed, shear wave speed, and sediment density. Next, the best fit for the soil

stratification and the combination of local probabilistic distributions are determined. It

should be noted that, in principle, using more layers can lead to a better fit for the soil

stratification. However, a balance must be sought for considering the high computational

efforts involved with more layers. The analysis is performed with two soil layers and depth

of the soil layers chosen by the ANOVA, and the same statistical modelling framework can

be extended to configurations with more than two layers.

Using the copula model, input samples for the identified random variables are generated
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Table 4.5: Input parameters for the UQ simulations at the offshore wind farm in the German North sea.

Parameter Pile

Length [m] 76.9

Density [kg/m
3
] 7850

Outer diameter [m] 8

Wall thickness [mm] 90

Final penetration depth [m] 32.7

Maximum Blow Energy [kJ] 1750

Figure 4.6: Comparison of probabilistic density function of SEL (left) and L𝑝,𝑝𝑘 (right) at 750m from the pile and 2

m above the seabed.

and presented as scatter plots in Fig. 4.5. The distribution of shear wave speed and the

density are presented by the normal distributions in Fig. 4.2. The compressional wave speeds

are obtained through the correlation formula presented in section 4.2.3. The correlation

matrices are shown in Fig. 4.4, assuming independence between soil layers. Simulations

based on the generated samples are performed, propagating the uncertainties in the input

parameters to the output sound metrics. The peak pressure level (𝐿𝑝,𝑝𝑘) and sound exposure
level (SEL) at receiver points up to 750 meters radially and 2 meters above the seabed

are obtained, as shown in Fig. 4.6. The cumulative probabilistic density functions are

presented in Fig. 4.7. In the case presented, the number of samples performed is 𝑛 = 200
is sufficient to capture the distribution of the raw data samples and correlation between

various variables as indicated in Fig. 4.4. However, a larger number of simulations could

improve the determination of a proper sound distribution and enhance insights into the

correlation between soil parameters and the resulting sound levels.

The probabilistic density functions presented in Fig. 4.6 are compared to the measure-

ment data, indicated by the dark orange area, with an accuracy of ±2 dB to account for

standard deviations due to measurement errors. The comparison between the distribution

of the predicted sound metrics and the measured sound data highlights the importance of

uncertainty quantification, as significant influences of input parameter uncertainties are

evident in the simulation results. Such analysis allows one to evaluate the probability of

the resulting noise level exceeding certain thresholds defined in regulations, as expressed
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Figure 4.7: Comparison of (left) cumulative probabilistic density function of SEL and (right) L𝑝,𝑝𝑘 at 750m from

the pile and 2 m above the seabed, with the three distributions.

in the cumulative probabilistic function shown in Fig. 4.7. The fit to other probabilistic

distributions demonstrates how well the modelled results correspond to normal, Gumbel,

or lognormal distributions. These results are crucial in indicating whether proper noise

mitigation strategies are necessary and determining the required noise reduction levels to

lower the risk of exceeding noise thresholds.

4.5 Conclusions
This chapter focuses on investigating uncertainties in soil modelling and their impact on

sound propagation. The framework presented includes several statistical and probabilistic

intermediate steps. The primary focus of this chapter is to investigate uncertainties in

soil modelling and probabilistically quantify their effects on sound metrics. The ultimate

goal is to correlate soil parameters with resulting noise levels to provide more reliable

noise predictions and prevent harmful impacts on marine mammals. This work is divided

into two main parts: uncertainties in soil and their correlation with sound emissions. The

methodology presented here aims to overcome limitations of previous works [29] on soil

property uncertainty and its significant effects on sound propagation.

Dynamic soil properties, particularly when part of the sound source is embedded in the

seabed during pile driving, are identified as the most challenging parameters to determine

in acoustic modelling. Sediment conditions significantly influence both sound generation

and propagation. Data from geotechnical surveys are typically used to derive sediment

layer properties for offshore pile driving noise predictions. However, uncertainties in these

derived input parameters arise from measurement inaccuracies and empirical formulas.

Therefore, better estimations of sound levels and more accurate correlations between input

parameter uncertainties and resulting outputs are required.

The framework also addresses uncertainties in the marine environment and the result-

ing variability in sound levels. It accounts for inevitable variations in soil properties by

conducting multiple simulations representing different, yet realistic, environments, yielding

the most likely outcomes. These results offer insights into the potential challenges of an

environment based on the predicted sound levels. Despite approximations, comparisons

with experimental measurements demonstrate good agreement and validate the method’s
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efficacy. With defined probability functions, it is possible to estimate the critical sound

levels in the environment under consideration. While some assumptions need verification

and simplifications may require correction, the framework presented in this thesis provides

a simple, flexible, and accurate tool for evaluating the risks of excessive sound levels in the

targeted environment.
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5
Study of Sound Escape with

the Use of an Air Bubble
Curtain

Underwater noise pollution generated by offshore pile driving has raised serious concerns over
the ecological impact on marine life. To comply with the strict governmental regulations on
the threshold levels of underwater noise, bubble curtains are usually applied in practice. This
chapter examines the effectiveness of an air bubble curtain system in noise reduction when
foundation piles are driven offshore with the use of impact hammers. The focus is placed on
the evaluation of the noise transmission paths, which are essential for the effective blockage of
sound propagation. Green’s functions developed in Chapter 2 are applied through the boundary
integral formulation to account for the waterborne and soilborne wave transmission paths
to large distances. The complete model consists of two modules: a noise prediction module
for offshore pile driving aiming at the generation and propagation of the wave field up to the
position of the air-bubble curtain, as presented in Chapter 3 and a noise reduction module
for predicting the sound transmission loss when sound waves pass through the air bubble
curtain. With the proposed model, underwater noise prognosis is examined in the following
cases: (i) free-field noise without the air bubble curtain, (ii) waterborne path fully blocked at
the position of the air bubble curtain while the rest of the wave field is propagated at the target
distance, (iii) similarly to (ii) but with a non-fully blocked waterborne path close to the seabed,
and (iv) air bubble curtain modelled explicitly using an effective medium theory. The results
provide a clear indication of the amount of energy that is channelled through the seabed and
through possible gaps in the water column adjacent to the seabed. The model allows for a large
number of simulations and for a thorough parametric study of the sound emissions when a
bubble curtain is applied offshore.

This chapter is partly based on the journal article � [68]:

Peng, Y, et al. Study of the Sound Escape with the Use of an Air Bubble Curtain in Offshore Pile Driving. Journal
of Marine Science and Engineering, vol. 9, no. 2, 2021. https://doi.org/10.3390/jmse9020232
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T
he structure of this chapter is as follows. In Section 5.1, the governing equations and

model description are presented. In Section 5.2, the noise predictionmodel is introduced

for the non-mitigated field which comprises the sound generation and propagation modules.

In Section 5.3, the derivation of the transmission coefficients based on the effective medium

theory is presented through an air-bubble curtain. In Section 5.4, the validation study of

the effective wavenumber approach is discussed by comparing the results to those available

in literature. In Section 5.5, the validation study of the complete model is presented using

data from a recent offshore installation campaign. Finally, important conclusions are

summarized in Section 5.6.

5.1 Model description and mathematical statement
In this section, the description of the model and the governing equations of the pile-water-

soil and air bubble curtain system are introduced. The geometry and material properties of

the system are given. The equations of motion of the vibrating shell, the fluid, the soil and

the turbulent gas-liquid mixture are presented.

5.1.1 Description of the model
As shown in Fig. 5.1 (left), the system is composed of the foundation pile, the vibratory

shaker or the hydraulic hammer, the air-bubble curtain and the surrounding seawater

and sediment. It is assumed that the geometry of the domain and the boundary and

interface conditions are cylindrically symmetric. The complete model consists of two

modules as shown in Fig. 5.1(right): the noise prediction module aiming at describing

the vibro-acoustic behaviour of the pile-soil-water system without the presence of the

air-bubble curtain [29], and the noise reduction module used to describe the air bubble

curtain. The noise reduction module is integrated to the noise prediction module through

depth- and frequency-dependent transfer functions, aiming to capture the insertion loss of

the air-bubble curtain.

Figure 5.1: Schematic of the complete system (left) and the coupled model (right).



5.1 Model description and mathematical statement

5

107

The pile is modelled as an elastic thin shell described by a linear high-order shell theory

[121]. The shell is then coupled to a fluid layer overlying a layered elastic waveguide

through the mode matching technique [16, 55]. At the top of the pile 𝑧 = 0, the load

induced by the hammer is described by a vertical force. The length of the pile is 𝐿 and the

material constants 𝐸, 𝜈 , 𝑅, 𝜌 and 𝑡 are the complex modulus of elasticity in the frequency

domain, the Poisson ratio, the radius of the mid-surface of the shell, the density and the

thickness of the shell, respectively. The seawater is described as an ideal, linearly elastic

fluid with 𝑐𝑓 being the sound speed and 𝜌𝑓 being its density. The soil is modelled as a

linear elastic continuum with 𝑐𝑝,𝑗 , 𝑐𝑠,𝑗 being the compressional and shear wave speeds, 𝜌𝑠,𝑗
being the density of the soil with the index 𝑗 = 1,2, ...,𝑁 specifying the soil layers including

the bottom soil half-space. The frequency-dependent attenuation coefficients 𝛼1𝑗 and 𝛼2𝑗
are defined as (20𝜋 log10 𝑒)𝛼𝑝𝑗 and (20𝜋 log10 𝑒)𝛼𝑠𝑗 respectively, with 𝛼𝑝𝑗 and 𝛼𝑠𝑗 being the

compressional and shear damping constants per layer in units of dB per wavelength. The

sea surface is positioned at 𝑧 = 𝑧0, the seabed at 𝑧 = 𝑧1 and the various interfaces between

soil layers at 𝑧 = 𝑧𝑘 with 𝑘 = 2, ...,𝑁 . At the location of the air bubble curtain,i.e. at 𝑟 = 𝑟𝑏𝑐 ,
the transmission coefficients of the air bubble curtain are derived and introduced in the

noise prediction model through a boundary integral formulation.

5.1.2 Governing eqations
The set of partial differential equations describing the linear vibrations of the complete

pile-water-soil system and the complex turbulent two-phase flow are given as:

𝐋𝐮+𝐈𝐮̈ = −(𝐻(𝑧−𝑧1)−𝐻(𝑧−𝐿))𝐭𝑠 +(𝐻(𝑧−𝑧0)−𝐻(𝑧−𝑧1))𝐩𝑓 +𝐟𝑒𝛿(𝑧), 0 < 𝑧 < 𝐿 (5.1)

∇2𝑝𝑓 (𝑟,𝑧, 𝑡)−
1
𝑐2𝑓
𝑝̈𝑓 (𝑟,𝑧, 𝑡) = 0, 𝑧0 < 𝑧 < 𝑧1, 𝑅 < 𝑟 < 𝑟𝑏𝑐 −𝑏(𝑧), 𝑟 > 𝑟𝑏𝑐 +𝑏(𝑧) (5.2)

(𝜆𝑠𝑗 +2𝜇𝑠𝑗 )∇(∇ ⋅ 𝐮𝑠𝑗 )−𝜇𝑠𝑗∇× (∇×𝐮𝑠𝑗 ) = 𝜌𝑠𝑗 𝐮̈𝑠𝑗 , 𝑧𝑗 < 𝑧1 < 𝑧𝑗+1, 𝑅 < 𝑟 < ∞ (5.3)

∇⋅(𝜖𝑓 𝜌𝑓 𝐮̄𝑓 ×𝐮̄𝑓 +𝜖𝑓 𝜌𝑓 𝛿𝐮𝑓 ×𝛿𝐮𝑓 ) = 𝜖𝑔𝜌𝑔𝑔, 𝑧0 < 𝑧 < 𝑧1, 𝑟𝑏𝑐−𝑏(𝑧) < 𝑟 < 𝑟𝑏𝑐+𝑏(𝑧) (5.4)

∇ ⋅ (𝜖𝑓 𝜌𝑓 𝐮̄𝑓 ) = 0, 𝑧0 < 𝑧 < 𝑧1, 𝑟𝑏𝑐 −𝑏(𝑧) < 𝑟 < 𝑟𝑏𝑐 +𝑏(𝑧) (5.5)

𝜕𝑛(𝑣𝑝)
𝜕𝑡

+∇ ⋅ (𝑛(𝑣𝑝)𝐮𝑔 ) = ∫
∞

𝑣𝑝
𝑟1(𝑣𝑝 , 𝑣𝑞)𝑛(𝑣𝑞)𝑑𝑣𝑞 −∫

𝑣𝑝

0
𝑣𝑞𝑟1(𝑣𝑝 , 𝑣𝑞)𝑑𝑣𝑞

𝑛(𝑣𝑞)
𝑣𝑝

+
1
2 ∫

∞

𝑣𝑝
𝑟2(𝑣𝑝 , 𝑣𝑝 −𝑣𝑞)𝑛(𝑣′)𝑛(𝑣𝑝 −𝑣𝑞)𝑑𝑣𝑞 −∫

∞

𝑣𝑝
𝑟2(𝑣𝑝 , 𝑣𝑝 −𝑣′𝑞)𝑛(𝑣𝑞)𝑛(𝑣𝑝)𝑑𝑣𝑞 ,

𝑧0 < 𝑧 < 𝑧1, 𝑟𝑏𝑐 −𝑏(𝑧) < 𝑟 < 𝑟𝑏𝑐 +𝑏(𝑧)

(5.6)

in which 𝑏(𝑧) is the half-width of the bubbly layer, 𝑟𝑏𝑐 is the centre position of the air-

bubble curtain. In Eq. (5.1), 𝐋 and 𝐈 are the stiffness and modified inertia matrices of

the shell, 𝐮 is the displacement vector of the mid-surface of the shell, 𝐻(𝑧 − 𝑧𝑖) are the
Heaviside step functions, 𝐩𝑓 represents the fluid pressure exerted at the outer surface of

the shell within the water column and 𝐟𝑒𝛿(𝑧) is the forcing vector representing the load
applied at the top of the pile with 𝛿(𝑧) being the Dirac delta function. In Eq. (5.2), 𝑝𝑓 (𝑟,𝑧, 𝑡)
represents the pressure of the fluid with 𝑟𝑏𝑐 being the radius of the air bubble curtain and

𝑏(𝑧) being the half-width of the air-bubble curtain which is a function of water depth. In



5

108 5 Study of Sound Escape with the Use of an Air Bubble Curtain

Eq. (5.3), 𝐮𝑠𝑗 is the displacement vector of the soil layer 𝑗 . The governing equations for

bubble flow include the momentum balance for the gas-fluid mixture, as shown in Eq. (5.4)

[169], the conservation of fluid mass in Eq. (5.5), and the population balance for turbulent

bubbly flow in Eq. (5.6) [170]. In Eqs. (5.4)−(5.5), 𝜖𝑓 and 𝜖𝑔 are fluid and gas fractions,

respectively, g is the gravitational constant, 𝐮̄𝑓 is the mean liquid flow velocity while 𝛿𝐮𝑓
is its fluctuation. In Eq. (5.6), 𝑛(𝑣𝑝) is the bubble number density with 𝑣𝑝 and 𝑣𝑞 being the

bubble volumes,𝑟1(𝑣𝑝 , 𝑣𝑞) represents the breakup kernel function, which quantifies the rate

at which bubble fragments with volume 𝑣𝑞 are generated per unit time and volume due to

the breakup of bubbles with volume 𝑣𝑝 . On the other hand, 𝑟2(𝑣𝑝 , 𝑣𝑞) is a coalescence kernel
function, predicting the likelihood of two bubbles with volumes 𝑣𝑝 and 𝑣𝑞 coalescing.

At the pile-water interface, the pressure/stress equilibrium and displacement continuity

are satisfied at both pile-water and pile-soil interface; the latter under the assumption of a

perfect contact condition of no pile slip:

𝑢𝑟 (𝑧, 𝑡) = 𝑢𝑓 (𝑅,𝑧, 𝑡), 𝑧0 ≤ 𝑧 ≤ 𝑧1
𝑢𝑟 (𝑧, 𝑡) = 𝑢𝑠(𝑅,𝑧, 𝑡) and 𝑢𝑧(𝑧, 𝑡) = 𝑤𝑠(𝑅,𝑧, 𝑡), 𝑧1 ≤ 𝑧 ≤ 𝐿

(5.7)

In Eq. (5.7), 𝑢𝑟 and 𝑢𝑧 are the radial and vertical displacements of the shell, 𝑢𝑓 is the radial

displacement of the fluid, and 𝑢𝑠 , 𝑤𝑠 are the radial and vertical displacements of the soil.

At the sea surface 𝑧 = 𝑧0, the pressure release boundary condition is applied with no

surface roughness. At the fluid-soil interface 𝑧 = 𝑧1, the continuity of both the vertical

displacement and normal to the interface traction are applied. A rigid boundary condition

is applied in the sound generation module at a great depth 𝑧 = 𝑧𝑁 . In the sound propagation

module, the seabed is described as a horizontally stratified elastic half-space. At the soil-soil

interfaces, both stress equilibrium and displacement continuity are applied. This set of

boundary and interface conditions read:

𝑝𝑓 (𝑟,𝑧0, 𝑡) = 0, 𝑟 ≥ 𝑅 (5.8)

𝜎𝑧𝑧1(𝑟,𝑧1, 𝑡)+𝑝𝑓 (𝑟,𝑧1, 𝑡) = 0, 𝑢𝑧,𝑓 (𝑟,𝑧1, 𝑡) =𝑤𝑠1(𝑟,𝑧1, 𝑡), 𝜎𝑧𝑟1(𝑟,𝑧1, 𝑡) = 0, 𝑟 ≥ 𝑅 (5.9)

𝑤𝑠𝑗 (𝑟,𝑧𝑗 , 𝑡) = 𝑤𝑠𝑗−1(𝑟,𝑧𝑗 , 𝑡), 𝑢𝑠𝑗 (𝑟,𝑧𝑗 , 𝑡) = 𝑢𝑠𝑗−1(𝑟,𝑧𝑗 , 𝑡), 2 ≤ 𝑗 ≤ 𝑁 , 𝑟 ≥ 𝑅 (5.10)

𝜎𝑧𝑧𝑗 (𝑟,𝑧𝑗 , 𝑡) = 𝜎𝑧𝑧𝑗−1(𝑟,𝑧𝑗 , 𝑡), 𝜎𝑧𝑟𝑗 (𝑟,𝑧𝑗 , 𝑡) = 𝜎𝑧𝑟𝑗−1(𝑟,𝑧𝑗 , 𝑡), 2 ≤ 𝑗 ≤ 𝑁 , 𝑟 ≥ 𝑅 (5.11)

In Eqs. (5.8)−(5.11), 𝑢𝑧,𝑓 are the vertical displacement components of the fluid, 𝑤𝑠𝑗 and 𝑢𝑠𝑗
are the vertical and radial displacement components in the 𝑗th soil layer and 𝜎𝑧𝑧𝑗 and 𝜎𝑧𝑟𝑗
are the normal and tangential stress components in the 𝑗th soil layer, respectively. Equa-
tions (5.1)−(5.11) including the radiation conditions of 𝑟 → ∞ describe fully the dynamics

of the total system in the time domain.

5.2 Noise predictions of non-mitigated field
The noise prediction model for the non-mitigated field consists of two modules. The noise

source for offshore pile driving is firstly characterized by the sound generation module,

which is based on a three-dimensional vibroacoustic noise prediction model developed

earlier by Tsouvalas and Metrikine [16]. The prediction from the sound generation module

has been verified against the data available in the literature from various measurement
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campaigns and one theoretical benchmark [31]. This module describes the dynamic re-

sponse of the coupled pile-water-soil system. The eigenvalue problems of the shell and

acousto-elastic waveguide are solved first. Next, the mode matching technique is applied

to couple the pile to the surrounding fluid-sediment layers. A set of response functions at

the location of the bubble curtain 𝑟 = 𝑟𝑏𝑐 are generated in the frequency domain, which

involves pressure, velocity, displacement and stress tensors. As the system is linear and

divided into sub-systems, only part of the simulation needs to be evaluated for examining

various scenarios including varying forcing functions, pile configurations, and soil con-

ditions. This way the computational efforts are reduced significantly compared to finite

element or finite difference models.

Figure 5.2: Schematic of the ring source at 𝑟 = 𝑟𝑏𝑐 in the configuration of acousto-elastic layered half-space.

The sound propagation module is based on Green’s functions for ring sources located on

the cylindrical surface at 𝑟 = 𝑟𝑏𝑐 as depicted in Fig. 5.2. By applying the contour integration

technique (see details in Chapter 2), the expressions for displacement potential functions

𝚽̃
𝑔
Ξ,𝜉 (𝑟,𝑧; 𝑟𝑏𝑐 , 𝑧𝑠 ;𝜔) in frequency domain are given as a summation over a number of poles

supplemented by the Ewing-Jardetsky-Press (EJP) branch line integrations [101]:

𝚽̃
𝑔
Ξ,𝜉 (𝑟,𝑧; 𝑟𝑏𝑐 , 𝑧𝑠 ;𝜔) = −𝜋𝑖

𝑀
∑
𝑚=1[

Res(𝚽̂
𝑔
Ξ,𝜉 (𝑘

(𝑚)
𝑟 , 𝑧; 𝑟𝑏𝑐 , 𝑧𝑠))𝐻 (2)

0 (𝑘(𝑚)𝑟 𝑟)𝑘(𝑚)𝑟 ]

+
1
2 ∫𝛼+𝛽

𝚽̂
𝑔
Ξ,𝜉 (𝑘𝑟 , 𝑧; 𝑟𝑏𝑐 , 𝑧𝑠)𝐻

(2)
0 (𝑘𝑟𝑟)𝑘𝑟𝑑𝑘𝑟

(5.12)

in which Res(𝑓 (𝑘(𝑚)𝑟 )) indicates the residue of the function 𝑓 (𝑘𝑟 ) at the pole 𝑘(𝑚)𝑟 , 𝐻 (2)
0 is
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the zero order Hankel function of the second kind, 𝑀 indicates the number of poles with

𝑚 being the index, 𝛼 and 𝛽 represent the branch cuts related to the branch point 𝑘𝑝𝑁 and

𝑘𝑠𝑁 with 𝑘𝑝𝑁 and 𝑘𝑠𝑁 being the compressional and shear wavenumbers, respectively.

The fundamental solutions of Green’s displacement tensors 𝑈Ξ𝜉
𝛼𝛽 (𝐫, 𝐫𝑠 ,𝜔) are derived

from the potential functions [109] given the receiver point at 𝐫 = (𝑟,𝑧) (in medium Ξ) in
𝛼-direction due to a unit impulse at source 𝐫𝑠 = (𝑟𝑏𝑐 , 𝑧𝑠) (in medium 𝜉 ) in 𝛽-direction:

𝑈 𝑠𝜉𝛼𝛽(𝐫, 𝐫𝑠 ,𝜔) = ∇𝜙̃𝑔𝑠𝑗 ,𝜉 (𝐫, 𝐫𝑠 ,𝜔)−∇×(
𝜕𝜓𝑔𝑠𝑗 ,𝜉 (𝐫, 𝐫𝑠 ,𝜔)

𝜕𝑟 ), (5.13)

𝑈 𝑓 𝜉𝛼𝛽 (𝐫, 𝐫𝑠 ,𝜔) = ∇𝜙̃𝑔𝑓 ,𝜉 (𝐫, 𝐫𝑠 ,𝜔). (5.14)

The direct boundary element method (BEM) is adopted to couple the noise prediction

model for non-mitigated field and noise reduction model for the air-bubble curtain as

discussed further in section 5.3. The solution of the acousto-elastic wavefield employs

Somigliana’s identity in elastodynamics and Green’s third identity in potential theory

[109, 115, 116]. The response functions from the noise prediction model are coupled to the

sound propagation module through a boundary integral formulation on the cylindrical

boundary surface at 𝑟 = 𝑟𝑏𝑐 . By utilizing Betti’s reciprocal theorem in elastodynamics [115]

and Green’s theorem for acoustic problem [116], the complete solution for the acousto-

elastic domain reads [29]:

𝑢̃Ξ𝛼 (𝐫,𝜔) =𝑢̃
Ξ,𝑓
𝛼 (𝐫,𝜔)+ 𝑢̃Ξ,𝑠𝛼 (𝐫,𝜔)

= ∑
𝛽=𝑟,𝑧

∫
𝑆𝑠(

𝑈Ξ𝑠
𝛼𝛽 (𝐫, 𝐫𝑏𝑐 ,𝜔) ⋅ 𝑡

𝐧
𝛽 (𝐫𝑏𝑐 ,𝜔)−𝑇

𝐧,Ξ𝑠
𝛼𝛽 (𝐫, 𝐫𝑏𝑐 ,𝜔) ⋅ 𝑢̃𝛽(𝐫𝑏𝑐 ,𝜔))𝑑𝑆

𝑠(𝐫𝑏𝑐)

+∫
𝑆𝑓
𝐻(𝑧,𝜔)(𝑈

Ξ𝑓
𝛼𝑟 (𝐫, 𝐫𝑏𝑐 ,𝜔) ⋅ 𝑝̃(𝐫𝑠 ,𝜔)−𝑇

𝐧,Ξ𝑓
𝛼𝑟 (𝐫, 𝐫𝑠 ,𝜔) ⋅ 𝑢̃𝑟 (𝐫𝑏𝑐 ,𝜔))𝑑𝑆

𝑓 (𝐫𝑏𝑐), 𝐫 ∈ 𝑉

(5.15)

in which 𝐧 is the outward normal to the cylindrical boundary, 𝐻(𝑧,𝜔) is the transmission

coefficient function of the air bubble curtain with depth- and frequency dependence as

discussed in section 5.3. The details of the derivation of Eq. (5.15) are given in chapter 2.

5.3 Modelling the air bubble curtain
In this section, the noise reduction module for capturing acoustic properties of the air

bubble curtain is derived. The local wavenumber distribution is based on a fluid dynamic

model developed by Bohne et al. [67], in which a turbulent two-phase bubble flow is well

captured especially in the vicinity of the nozzle where a high gas fraction is present. Based

on the distribution of the local effective wavenumbers over the entire water depth, the

depth- and frequency-dependent transmission coefficients are obtained by a simplified

one-dimensional acoustic wave propagation approach developed by Commander and

Prosperetti [64]. The noise reduction module is coupled to the free-field noise prediction

model through the boundary integral formulation given by Eq. (5.15).
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5.3.1 Local effective wavenumber in a bubble curtain
To obtain the local effective wavenumber of the air-bubble curtain, the model developed

by Bohne et al. [67] is used. The governing equations based on momentum balance of the

gas-liquid mixture, the conservation of mass of the liquid phase and population balance

of a turbulent flow are already introduced in Eqs. (5.4)−(5.6). The bimodal bubble size

distribution is introduced by Lethr et al. [170] with observations of small and large bubbles

especially in the vicinity of the nozzle as depicted in Fig. 5.3. The detailed derivation is

given in [67, 171] and is omitted here for the sake of brevity. The initial conditions for the

bubble formation process are given as:

𝑢𝑙𝑧𝑚0 =

√
−2𝑀0(2𝜆2+1)

𝛾𝑏20𝜌𝑓 𝜋(2𝜖𝑔𝑚10𝜆2+2𝜖𝑔𝑚20𝜆2−2𝜆2−1)
(5.16)

𝑏0 =

√
𝑚̇0(𝜆2+1)

𝜆2𝜋𝜌𝑔0(𝜆2+1)(𝜖𝑔𝑚10𝑢𝑟𝑒𝑙1(𝑣10)+𝜖𝑔𝑚20𝑢𝑟𝑒𝑙2(𝑣20))+𝜆2𝑢𝑙𝑧𝑚0𝜋𝜌𝑔0(𝜖𝑔𝑚10+𝜖𝑔𝑚20)
(5.17)

𝜖𝑔𝑚10 = 0.005 (5.18)

𝜖𝑔𝑚20 = 0.495 (5.19)

𝑣20 =
4
3
𝜋(1.1447𝑎prim)3 (5.20)

𝑣10 =
𝑣20
30

(5.21)

with the initial centerline velocity 𝑢𝑙𝑧𝑚0, the half width of the bubble curtain 𝑏0, the initial
gas fraction of the small bubble 𝜖𝑔𝑚10, the initial gas fraction of the large bubble 𝜖𝑔𝑚20, the
initial arithmetic mean bubble volume of the small bubbles 𝑣10, the initial arithmetic mean

bubble volume of the large bubbles 𝑣20. 𝑢𝑟𝑒𝑙1(𝑣1) and 𝑢𝑟𝑒𝑙2(𝑣2) are the relative velocities
between the upward rising air bubbles and the mean flow of the fluid, which are functions

of the local mean bubble size of each gas phase [172, 173]. 𝑚̇0 is the initial gas mass flow,

𝑀0 is the initial momentum of the mixture, 𝑑prim and 𝑎prim are the diameter and radius of

the primary bubble, respectively, which are quantified at the nozzle as [171, 174],

𝑀0 = 𝑞𝑛𝜌𝑔𝑛𝑢𝑔𝑛+
2𝑞𝑛
𝑢𝑔𝑛

(𝜌𝑓 −𝜌𝑔𝑛)𝑔 ⋅ (6.2𝑑𝑛) (5.22)

𝑑prim =
1
2[

1.3𝜌𝑓 (𝑞𝑛/𝑑prim)2+𝜋𝑑𝑛𝜎+15𝜂𝑞𝑛/𝑑prim
(𝜌𝑓 −𝜌𝑔𝑛)

6
𝜋 ]

1/3
(5.23)

in which 𝑢𝑔𝑛 is the gas velocity in the nozzle, 𝑞𝑛 is gas volume rate in the nozzle, 𝜌𝑔𝑛 is
the density of gas in the nozzle. In Eq. (5.23), 𝑑prim is solved for by an iterative method.

Derived from the Eqs. (5.4)−(5.6) and assuming Gaussian distributions of the mean fluid

velocity and gas fractions, the resulting set of equations read:

𝑑
𝑑𝑧

(𝐦(𝐮,𝑧)) = 𝐪(𝐮,𝑧) (5.24)

In Eq. (5.24), 𝐮 = [𝑢𝑙𝑧𝑚,𝑏,𝜖𝑔𝑚1, 𝜖𝑔𝑚2, 𝑣1, 𝑣2]𝑇 represents the vector of six unknowns, in which

𝑢𝑙𝑧𝑚 is the centerline velocity, 𝑏 is the half width of the bubble curtain, 𝜖𝑔𝑚1 is the gas
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fraction of the small bubble, 𝜖𝑔𝑚2 is the gas fraction of the large bubble, 𝑣1 is the arithmetic

mean bubble volume of the small bubbles and 𝑣2 is the arithmetic mean bubble volume of

the large bubbles. To solve the set of first order partial differential equations, the forward

Euler method is used for integration along the z-coordinate with the initial condition

given in Eqs. (5.16)−(5.20). Once the set of Eq. (5.24) are solved, 𝐮 are obtained as depth-

dependent fluid dynamic properties, which will be used later in Eq. (5.44) to determine the

local effective wavenumber and subsequently in Eq. (5.56) to determine the transmission

coefficient functions of the air-bubble curtain.

Figure 5.3: Schematic representation of the vertical mean liquid flow: a) velocity field; b) velocity field and the gas

fraction in the x,z-plane of the bubble curtain. The dashed line denotes the estimated boundary of the flow field.

The red box marks the region in which the formation process is examined [67].

The elements of the integral fluxes 𝐦(𝐮,𝑧) = [𝑚1,𝑚2,𝑚3,𝑚4,𝑚5,𝑚6]𝑇 read:

𝑚1(𝐮,𝑧) = 2𝜋𝛾𝜌𝑓 𝑢2𝑙𝑧𝑚(
𝑏2

4
−𝜖𝑔𝑚1

𝜆2𝑏2

2(2𝜆2+1)
−𝜖𝑔𝑚2

𝜆2𝑏2

2(2𝜆2+1))
(5.25)

𝑚2(𝐮,𝑧) = 2𝜋𝜌𝑓 𝑢𝑙𝑧𝑚(
𝑏2

4
−𝜖𝑔𝑚1

𝜆2𝑏2

2(2𝜆2+1)
−𝜖𝑔𝑚2

𝜆2𝑏2

2(2𝜆2+1))
(5.26)

𝑚3(𝐮,𝑧) = 2𝜋𝜌𝑔 (𝑧)𝜖𝑔𝑚1(𝑢𝑙𝑧𝑚
𝜆2𝑏2

2(2𝜆2+1)
+
𝑔Δ𝜌
3𝜇

(
𝑣1
0.21

)(
2
3
)
𝜆2𝑏2

2 ) (5.27)

𝑚4(𝐮,𝑧) = 2𝜋𝜌𝑔 (𝑧)𝜖𝑔𝑚2(𝑢𝑙𝑧𝑚
𝜆2𝑏2

2(2𝜆2+1)
+
𝑔Δ𝜌
3𝜇

(
𝑣1
0.68

)(
2
3
)
𝜆2𝑏2

2 ) (5.28)

𝑚5(𝐮,𝑧) = 2𝜋𝜌𝑔 (𝑧)𝜖𝑔𝑚1𝑣1(𝑢𝑙𝑧𝑚
𝜆2𝑏2

2(2𝜆2+1)
+
𝑔Δ𝜌
3𝜇

(
𝑣1
0.21

)(
2
3
)
𝜆2𝑏2

2 ) (5.29)

𝑚6(𝐮,𝑧) = 2𝜋𝜌𝑔 (𝑧)𝜖𝑔𝑚2𝑣2(𝑢𝑙𝑧𝑚
𝜆2𝑏2

2(2𝜆2+1)
+
𝑔Δ𝜌
3𝜇

(
𝑣1
0.68

)(
2
3
)
𝜆2𝑏2

2 ) (5.30)

with Δ𝜌 being the difference between the density of fluid and air, 𝜇 = 10−3𝑁 ⋅ 𝑠/𝑚2
being

the viscosity of the fluid, 𝛾 = 1 being the amplification factor.
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Similarly, the elements of the integral source terms 𝐪(𝐮,𝑧) = [𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6]𝑇 are:

𝑞1(𝐮,𝑧) = 𝜋𝑔𝜌𝑓 𝜆2𝑏2(𝜖𝑔𝑚1+𝜖𝑔𝑚2) (5.31)

𝑞2(𝐮,𝑧) = 2𝜋𝛼𝜌𝑓 𝑢𝑙𝑧𝑚𝑏 (5.32)

𝑞3(𝐮,𝑧) = 𝑍2𝜌𝑔 (𝑧)𝜋𝜆2𝑏2𝜖𝑔𝑚2−
0.9024 ∗ 𝑟2(𝜖𝑔𝑚1, 𝜖𝑔𝑚2, 𝑣2, 5𝑣1)𝜌𝑔 (𝑧)𝜖𝑔𝑚1𝜖𝑔𝑚2𝜋𝜆2𝑏2

𝑣2

−
3.1043𝜋

2
𝑟2(𝜖𝑔𝑚1, 𝜖𝑔𝑚2, 𝑣1, 𝑣1)𝜌𝑔 (𝑧)𝜖2𝑔𝑚1𝜆

2𝑏2
(5.33)

𝑞4(𝐮,𝑧) = −𝑍2𝜌𝑔 (𝑧)𝜋𝜆2𝑏2𝜖𝑔𝑚2+
0.9024 ∗ 𝑟2(𝜖𝑔𝑚1, 𝜖𝑔𝑚2, 𝑣2, 5𝑣1)𝜌𝑔 (𝑧)𝜖𝑔𝑚1𝜖𝑔𝑚2𝜋𝜆2𝑏2

𝑣2

+
3.1043𝜋

2
𝑟2(𝜖𝑔𝑚1, 𝜖𝑔𝑚2, 𝑣1, 𝑣1)𝜌𝑔 (𝑧)𝜖2𝑔𝑚1𝜆

2𝑏2

(5.34)

𝑞5(𝐮,𝑧) = −𝑍1𝑣1𝜌𝑔 (𝑧)𝜋𝜆2𝑏2𝜖𝑔𝑚1−
0.9024 ∗ 𝑟2(𝜖𝑔𝑚1, 𝜖𝑔𝑚2, 𝑣2, 5𝑣1)𝜌𝑔 (𝑧)𝜖𝑔𝑚1𝜖𝑔𝑚2𝜋𝜆2𝑏2

𝑣2
𝑣1

+
0.3463𝜋

2
𝑟2(𝜖𝑔𝑚1, 𝜖𝑔𝑚2, 𝑣1, 𝑣1)𝜖2𝑔𝑚1𝜆

2𝑏2+
3.1043𝜋

2
𝑟2(𝜖𝑔𝑚1, 𝜖𝑔𝑚2, 𝑣1, 𝑣1)𝜌𝑔 (𝑧)𝜖2𝑔𝑚1𝜆

2𝑏2𝑣1
(5.35)

𝑞6(𝐮,𝑧) = −2𝑍2𝑣2𝜌𝑔 (𝑧)𝜋𝜆2𝑏2𝜖𝑔𝑚2+1.8048𝑟2(𝜖𝑔𝑚1, 𝜖𝑔𝑚2, 𝑣2, 5𝑣1)𝜌𝑔 (𝑧)𝜖𝑔𝑚1𝜖𝑔𝑚2𝜋𝜆2𝑏2

+
0.4250𝜋

2
𝑟2(𝜖𝑔𝑚1, 𝜖𝑔𝑚2, 𝑣2, 𝑣2)𝜌𝑔 (𝑧)𝜖2𝑔𝑚2𝜆

2𝑏2+
3.1043𝜋

2
𝑟2(𝜖𝑔𝑚1, 𝜖𝑔𝑚2, 𝑣1, 𝑣1)𝜌𝑔 (𝑧)𝜖2𝑔𝑚1𝜆

2𝑏2

(5.36)

with 𝑟2 is the function of the air fraction and arithmetic mean bubble volume of the small

and large bubbles as given in [67]. The density of the gas is a function of height from the

nozzle based on an ideal gas law.

As the vertical distances from the nozzle increase, both the gas fraction ratio and the

arithmetic mean bubble volume of large bubbles drop significantly and approach zero, and

part of the components in the vector 𝐪 are modified as follows:

𝑞3(𝐮,𝑧) = 𝑞4(𝐮,𝑧) = 0 (5.37)

𝑞5(𝐮,𝑧) = −𝑍1𝑣1𝜌𝑔 (𝑧)𝜋𝜆2𝑏2𝜖𝑔𝑚1+
0.3463𝜋

2
𝑟2(𝜖𝑔𝑚1, 𝜖𝑔𝑚2, 𝑣1, 𝑣1)𝜖2𝑔𝑚1𝜆

2𝑏2 (5.38)

𝑞6(𝐮,𝑧) = −𝑍2𝑣2𝜌𝑔 (𝑧)𝜋𝜆2𝑏2𝜖𝑔𝑚2+0.9024𝑟2(𝜖𝑔𝑚1, 𝜖𝑔𝑚2, 𝑣2, 5𝑣1)𝜌𝑔 (𝑧)𝜖𝑔𝑚1𝜖𝑔𝑚2𝜋𝜆2𝑏2

+
0.4250𝜋

2
𝑟2(𝜖𝑔𝑚1, 𝜖𝑔𝑚2, 𝑣2, 𝑣2)𝜌𝑔 (𝑧)𝜖2𝑔𝑚2𝜆

2𝑏2
(5.39)

while the other components remain the same.

Once the depth-dependent vector 𝐮 is known, the local bubble number density distri-

bution are obtained by subdividing them into a fraction of large bubbles and a fraction of

small bubbles

𝑛(𝐮, 𝑟,𝑧,𝑎) = 𝑛1(𝐮, 𝑟,𝑧,𝑎)+𝑛2(𝐮, 𝑟,𝑧,𝑎) (5.40)
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with the equilibrium bubble radius 𝑎 and the bubble number density 𝑛(𝐮, 𝑟,𝑧,𝑎). The bubble
number density distribution for the small bubble fraction 𝑛1(𝐮, 𝑟,𝑧,𝑎) is approximated by

a lognormal distribution and the large bubble fraction 𝑛2(𝐮, 𝑟,𝑧,𝑎) by an exponential

distribution [170],

𝑛1(𝐮, 𝑟,𝑧,𝑎) =
𝜖𝑔1(𝑟,𝑧)
𝑣21

2
𝜋

𝑣1
3𝑣(𝑎)

exp(−
2
9
𝑙𝑛(𝑒9/8

𝑣(𝑎)
𝑣1

)) (5.41)

𝑛2(𝐮, 𝑟,𝑧,𝑎) =
𝜖𝑔2(𝑟,𝑧)
𝑣22

exp(−
𝑣(𝑎)
𝑣2

) (5.42)

The gas fraction for both small and large bubbles is range- and depth-dependent as:

𝜖𝑔𝑖(𝑟,𝑧) = 𝜖𝑔𝑚𝑖(𝑧)exp(−
𝑟2

𝜆2𝑏2
) (5.43)

The local effective wavenumber is written as:

𝑘𝑚(𝜔,𝑟,𝑧) =
𝜔2

𝑐𝑓 2
+4𝜋𝜔2

∫
∞

0

𝑎𝑛(𝐮, 𝑟,𝑧,𝑎)
𝜔2
0(𝑧,𝑎)−𝜔2+2𝑖𝛽(𝑧,𝑎)𝜔

𝑑𝑎 (5.44)

with the angular frequency 𝜔. The natural angular frequency 𝜔0(𝑧,𝑎) and the damping

constant 𝛽(𝑧,𝑎) are defined as [64]:

𝜔0(𝑧,𝑎) =

√
𝑝𝑔 (𝑧)
𝜌𝑓 𝑎2

(3−
2𝜎

𝑝𝑔 (𝑧)𝑎
) (5.45)

𝛽(𝑧,𝑎) =
𝛾0−1
10𝛾0

⋅
𝑝𝑔 (𝑧)
𝜌𝑓𝐷

+
2𝜇
𝜌𝑓 𝑎2

(5.46)

in which 𝜎 = 0.073𝑁/𝑚 is the surface tension of the water, 𝛾0 = 1.41 is the ratio of specific

heats and 𝐷 = 1.9×10−5𝑚2/𝑠 is the gas thermal diffusivity.

5.3.2 Local transmission coefficients of a bubble curtain
To obtain the sound transmission characteristics of a bubble curtain, amodel for determining

the depth- and frequency-dependent transmission coefficient of an air bubble curtain is

developed, which is based on the approach of Commander and Prosperetti [64]. Consider

an incident sinusoidal plane wave as shown in Fig. 5.4, the field is solely r-dependent and

the bubbly mixture occupies the region 𝑟𝑏𝑐 −𝑏 < 𝑟 < 𝑟𝑏𝑐 +𝑏 with 𝑟𝑏𝑐 being the location

of the air bubble curtain and 𝑏 being the half width varying with height from the nozzle

as discussed in section 5.3.1. The water column and air bubble curtain are divided into

M regions along the vertical coordinate. At each vertical domain, a one-dimensional

problem is considered with an input incident wave and properties of the layers. The

transmission coefficients are determined per z-coordinate and is constant within the vertical

step size of the integration. The bubble layer is divided into 𝑁𝑏𝑐 layers as depicted by the

grey area in Fig. 5.4. The assumption of plane wave propagation is justified because the

thickness of each intermediate bubble-fluid mixture layer is extremely small compared

to the wavelength of waves at the frequencies of interest. Consequently, the effect of
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amplitude decay due to geometrical spreading is negligible. The bubble population is

modelled using a lognormal distribution for small bubbles and an exponential distribution

for large bubbles. The gas fraction for both small and large bubbles is approximated by

an exponential distribution in the radial direction from the centreline of the air-bubble

layer. This distribution is considered valid because the number of bubbles rapidly decreases

near the interface between the bubbly layer and the seawater. The primary focus is on

the energy transmission through the air-bubble curtain, and the back-scattering effect is

not considered in this model. The reflection of waves between the monopile and the first

bubble curtain, as well as between multiple bubble curtains, is not considered in the sound

propagation. The actual transmission loss calculated by the full 2D model using coupled

mode theory, including the backscattering effect, may yield different results, particularly

at lower frequencies. This is due to the increased complexity in wave interactions at these

frequencies, where the backscattering from the water column and the sediment layers

can have a significant impact on sound propagation. The coupled mode approach, which

accounts for mode coupling between different layers, is crucial for capturing these effects

accurately [85]. However, these assumptions allow for the derivation of local transmission

coefficients and the application of the Boundary Element Method (BEM) approach, thereby

simplifying the solutions for the transfer coefficients of the bubbly layer.

The solutions of the pressure fields in three regions are expressed as [116]:

𝑃𝐿(𝑟,𝜔) = 𝑃𝑖+𝑃𝑟 = 𝐴1 exp(−i𝑘𝑟)+𝐴2 exp(i𝑘𝑟), 𝑟 < 𝑟𝑏𝑐 −𝑏 (5.47)

𝑃𝐵𝐶,𝑗 (𝑟,𝜔) = 𝑃 ′𝑡𝑗 +𝑃
′
𝑟𝑗 = 𝐵1𝑗 exp(−i𝑘𝑚𝑗 𝑟)+𝐵2𝑗 exp(i𝑘𝑚𝑗 𝑟), 𝑟𝑏𝑐 −𝑏 < 𝑟 < 𝑟𝑏𝑐 +𝑏 (5.48)

𝑃𝑅(𝑟,𝜔) = 𝑃𝑡 = 𝐶1 exp(−i𝑘𝑟), 𝑟 > 𝑟𝑏𝑐 +𝑏 (5.49)

In Eqs. (5.47)−(5.49), the local effective wavenumber 𝑘𝑚𝑗 is obtained by Eq. (5.44) at layer 𝑗 ,
𝑃𝐿, 𝑃𝐵𝐶,𝑗 and 𝑃𝑅 are the left-, air-bubble curtain and the right-pressure field, respectively.

𝑃𝑖 is the incident plane wave propagating in the positive r-direction in the fluid, 𝑃𝑟 is the
reflected wave travelling in the negative r-direction in the fluid, similarly, 𝑃 ′𝑡𝑗 and 𝑃 ′𝑟𝑗 are
the forward- and backward propagating waves in the bubbly mixture of layer 𝑗 , 𝑃𝑡 is the
transmitted wave in the fluid on the right side of the bubbly mixture. The solutions assume

a time dependence exp(i𝜔t).

Figure 5.4: Schematic representation of the simulated regions: water column on the left side, layers of bubbly

mixture and water column on the right side. The figure shows one of the M domains along the vertical coordinate.
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At the interface between the bubbly mixture and seawater, and between bubbly layers,

the continuity of the pressure and normal velocity is required as [64]:

𝑝𝑓 = 𝑝𝑚1, 𝑝𝑓 = 𝑝𝑚𝑁𝑏𝑐 , 𝑝𝑚𝑗 = 𝑝𝑚(𝑗+1), 𝑗 = 1, ..,𝑁𝑏𝑐 −1 (5.50)

𝑣𝑟,𝑓 = 𝑣𝑟,𝑚1, 𝑣𝑟,𝑓 = 𝑣𝑟,𝑚𝑁𝑏𝑐 , 𝑣𝑟,𝑚𝑗 = 𝑣𝑟,𝑚(𝑗+1), 𝑗 = 1, ..,𝑁𝑏𝑐 −1 (5.51)

In Eq. (5.50), 𝑝𝑓 and 𝑣𝑟,𝑓 is the pressure and the radial velocity in the fluid and 𝑝𝑚 and 𝑣𝑟,𝑚
is the pressure and the radial velocity in the bubbly mixture. The radial velocity is defined

as:

𝑣𝑟,𝑖 =
1

i𝜔𝜌𝑖
𝜕𝑝𝑖
𝜕𝑟

(5.52)

with the subscript 𝑖 being 𝑓 or 𝑚 represents the fluid layer or bubbly layer. In the work

of Commander and Prosperetti [64], the density of the bubbly mixture was approximated

by the density of water. However, in Eq. (5.52), the density of the bubbly mixture is

characterized by the depth-dependent gas and fluid fraction coefficients as derived by

solving Eq. (5.24) as discussed in section 5.3.1.

The set of 2N+2 interface conditions reads:

𝑃𝐿(𝑟𝑏𝑐 −𝑏,𝜔) = 𝑃𝐵𝐶,1(𝑟𝑏𝑐 −𝑏,𝜔), 𝑣𝑟,𝑓 (𝑟𝑏𝑐 −𝑏,𝜔) = 𝑣𝑟,𝑚1(𝑟𝑏𝑐 −𝑏,𝜔) (5.53)

𝑃𝐵𝐶,𝑗 (𝑟𝑏𝑐,𝑗 ,𝜔) = 𝑃𝐵𝐶,𝑗+1(𝑟𝑏𝑐,𝑗 ,𝜔), 𝑣𝑟,𝑚𝑗 (𝑟𝑏𝑐,𝑗 ,𝜔) = 𝑣𝑟,𝑚(𝑗+1)(𝑟𝑏𝑐,𝑗 ,𝜔) (5.54)

𝑃𝐵𝐶,𝑁𝑏𝑐 (𝑟𝑏𝑐 +𝑏,𝜔) = 𝑃𝑅(𝑟𝑏𝑐 +𝑏,𝜔), 𝑣𝑟,𝑓 (𝑟𝑏𝑐 +𝑏,𝜔) = 𝑣𝑟,𝑚𝑁𝑏𝑐 (𝑟𝑏𝑐 +𝑏,𝜔) (5.55)

in which 𝑟𝑏𝑐,𝑗 = 𝑟𝑏𝑐 −𝑏 +2𝑏(𝑗 − 1/2)/𝑁𝑏𝑐 , 𝑗 = 1, ...,𝑁 . By substituting the expressions in

Eqs. (5.47)−(5.49) into the interface conditions at 𝑟 = 𝑟𝑏𝑐 ±𝑏 and 𝑟 = 𝑟𝑏𝑐,𝑗 , and assuming an

incident wave of unit amplitude 𝐴1 = 1, the amplitude coefficients 𝐴2, 𝐵1𝑗 , 𝐵2𝑗 and 𝐶1 are

obtained.

Next, the solutions are generalized by the depth-dependent acoustic properties of

the air-bubble curtain including the half-width 𝑏(𝑧) and effective medium wavenumber

𝑘𝑚(𝜔,𝑧). The local transfer coefficient of the bubbly layer is defined by:

𝐻(𝑧,𝜔) = 𝐶1 (5.56)

The transfer coefficient function in Eq. (5.56) is coupled to the noise prediction model

through boundary integral equation in Eq. (5.15). The local transmission loss (dB/m) is

obtained as:

𝑇𝐿(𝑧,𝜔) = 10log |𝐶1|2 (5.57)

5.4 Validation study of the effective wavenumber
model

For the validation of the integral model for the effective wavenumber, the modelling results

are compared to the numerical solutions by Bohne et al. [67] and measurement data from

the experiment by Milgram [171]. The input parameters of the air bubble curtain system

are given in the Table 5.1.
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Table 5.1: Basic input parameters of the air bubble curtain system.

Parameter Air bubble curtain

Water depth [m] 50

Density of the fluid [kg/m
3
] 1000

Nozzle diameter [mm] 50

Air flow rate [m
3
/s] 0.024, 0.283 and 0.590

Spreading coefficient [m] 0.6

Amplification factor [-] 1

Entrainment coefficient [-] 0.18

The experiment took place at a lake with a water depth 𝑇 of 50m at a local sinkhole

spring in Florida, which fits the typical bathymetry of offshore pile-driving environments

(shallow water up to 40∼50 m water depth) with the application of an air bubble curtain

system. Three air flow rates involving 0.024, 0.283 and 0.59 m
3
/s at atmospheric pressure

are examined. In Fig. 5.5, the comparison of centerline velocities and half width of the

bubbly layer are shown for the numerical results from literature and measured data set

from the experiments [67, 171]. The numerical evaluation of both centerline velocity and

half width of the bubble curtain show a relatively good agreement with the experiment,

the small deviation from Bohne’s model can be due to different numerical integration

scheme and entrainment coefficient to achieve better fitting to the measured data set. As

can be seen in Fig. 5.5 (left), the velocities decrease slowly as the distance from the nozzle

increases. The maximum velocities are observed in the vicinity of the nozzle. In Fig. 5.5

(right), the width of the bubble plume is found to increase linearly with height above the

nozzle, which is also in line with the observation of cone shaped bubbly mixture in offshore

pile installation campaign with the application of the bubble curtain system.

In Fig. 5.6, the mean bubble volume and gas fraction ratio of both small and large

bubbles are presented. Different fluid dynamic behaviors are observed for the large and

small bubbles with the varying height from the nozzle. As the height from the nozzle

increases, large bubbles break up into smaller ones as the gas fraction ratio of the small

bubble increases while the volume of the large bubbles approaches the one of the small

bubbles. The module captures the bubble formation process especially in the vicinity of

the nozzle and forms the basis for calculation of more accurate acoustic properties of the

air bubble curtain.

To validate the derivation of the transmission coefficients of the air bubble curtain, the

modeled results are compared to the measured transmission loss obtained in the freshwater

lake experiment [175]. The water depth T is 9.7m. The case with air flow rate being 0.0019

m
2
/s, nozzle interval Δ𝑦𝑛 = 25 cm and nozzle size being 𝑑𝑛 =1.4 mm is evaluated. For the

comparison of the different models and experiment data set, the overall transmission loss

is defined as:

𝑇𝐿𝑏𝑐(𝜔) = −10log[

𝑁𝑧
∑
1
|𝐶1|2

Δ𝑧
𝑇 ] (5.58)

In Eq. (5.58), the rule of thumb for using six elements per wavelength is applied for the

vertical step size Δ𝑧.
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Figure 5.5: Comparison between centreline velocities and half width of the bubbly layer from the model, numerical

results from Bohne et al. [67] and measured values from experiments [171]: (left) centreline velocities; (right)
half width of the bubbly layer. The solid lines represent the computed results from the model, the dashed lines

indicate the numerical results from the literature and the circles show the values measured experimentally. Three

air flow rates involving 0.024 (black lines), 0.283 (dark grey lines) and 0.59 (light grey lines) m
3
/s.
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Figure 5.6: Computed depth-dependent variables for the case of the air flow rate being 0.024 m
3
/s: (left) the

arithmetic mean bubble volumes; (right) gas fraction ratio (

𝜖𝑔𝑚𝑖
𝜖𝑔𝑚1+𝜖𝑔𝑚2 ) varying over the depth, in which the

black solid line indicates the results for small bubbles and grey dashed line represents the results for large bubbles.

As shown in Fig. 5.7, the air bubble curtain model improves its performance as for

the higher frequencies the transmission loss is close to the measured data and it does not

require any assumption of the bubble size distribution coefficients [67]. As indicated by

the black solid line, the model is more in line with the measurement data compared to
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Figure 5.7: Comparison of the transmission loss between the modelling results (the black solid line) and the data

from the measurement [175] (the line with circles) and the numerical air bubble curtain model [67] without the

assumption of the bubble size distribution coefficients (the black dashed line). The light grey area indicates the

frequencies of interest in offshore pile driving(< 500 Hz).

other numerical model for frequencies below 500 Hz, which is mainly due to the choice of

the initial condition and control parameters including the spreading coefficients and the

entrainment factor. Frequencies below 500 Hz are also important in offshore pile driving.

5.5 Validation study of the complete model includ-
ing the air-bubble curtain

In this section, the model predictions are validated against measurement data collected from

an offshore wind farm constructed in 2018 (hereafter referred to as project A). In Table 5.2,

the material and geometrical parameters are estimated from the available geotechnical

reports at the pile installation site.

Table 5.2: Basic input parameters for the validation case for project A.

Parameter Pile Parameter Fluid Marine sediment Bottom soil

Length [m] 75 Depth [m] 40.1 1.5 ∞
Density [kg/m

3
] 7850 Density [kg/m

3
] 1000 1621.5 1937.74

Outer diameter [m] 8 𝑐𝐿 [m/s] 1500 1603 1852

Wall thickness [mm] 90 𝑐𝑇 [m/s] - 82 362

The penetration depth [m] 30.5 𝛼𝑝 [𝑑𝐵/𝜆] - 0.91 0.88

Maximum Blow Energy [kJ] 2150 𝛼𝑠 [𝑑𝐵/𝜆] - 1.86 2.77

5.5.1 Maximum noise reduction level
To predict the maximum noise reduction levels that can be achieved by the air-bubble

curtain at the pile installation site, three scenarios are considered to distinguish the water-
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and soil-borne noise transmission paths:

• scenario 1 - noise prediction without the presence of air-bubble curtain (base case);

• scenario 2 - elimination of the water-borne path at the position of the air-bubble

curtain leaving the propagation of the waves through the soil unaffected;

• scenario 3 - same as scenario 2 but with an additional 1m gap at the lowest part of

the seawater column in which the noise presumably leaks.
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Figure 5.8: Prediction of the noise from the pile driving: (top) computed time histories of the pressure in the

water at various radial distances at 2 m above the seabed, in which scenario 1 is indicated by the black solid line;

scenario 2 indicated by the black dashed line; scenario 3 indicated by the grey solid line; scenario 4 indicated by

the grey dashed line (to be discussed in section 5.5.2); (bottom) comparison of SEL and L𝑝,𝑝𝑘 at 750m radial

distance from the pile and 2 m above the seabed with the comparison between the scenario 1 and arithmetic mean

measured data.

In scenario 2, the noise sources in the water column are effectively cancelled (100%

cancellation of the water-borne path) while the field in the soil is propagated undisturbed
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in the exterior (to the air-bubble curtain) domain. This allows one to estimate the maximum

noise reduction potential that a noise mitigation system can achieve with a theoretical

efficiency of 100% in blocking the water-borne path. The difference between the results

of the non-mitigated noise field (scenario 1) and the ones at which the water-borne path

is fully or partially blocked (scenarios 2 and 3) give an estimate of the maximum noise

reduction that can be achieved by eliminating the entire noise transmission path in the

fluid and provide a clear indication of the influence of the zone of flow establishment in

the vicinity of the nozzles (Region I depicted in the Fig. 5.3). Considering the possibility to

eliminate the water-borne noise sources at any distance of interest, i.e. 10m, 50m, etc., the

distance has been chosen here equal to the one of which the outer air-bubble curtain was

placed ( 145m from the pile surface).
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Figure 5.9: Variation of the fluid dynamic properties over the depth: (a) centerline velocity [m/s] (the black solid

line); (b) the half width [m] (the grey solid line); (c) the overall gas fraction [-](the dark grey dashed line).

The Peak Level (L𝑝,𝑝𝑘) in the unit of dB re 1 𝜇𝑃𝑎 is determined by the absolute maximum

of the sound pressure following a single hammer blow:

L𝑝,𝑝𝑘 = 20log(
𝑝𝑝𝑘
𝑝0 ) (5.59)

In Eq. (5.59), 𝑝𝑝𝑘 is the zero-to-peak sound pressure and 𝑝0 = 10−6 Pa is the reference

underwater sound pressure level. The SEL in units of dB re 1 𝜇𝑃𝑎2𝑠 is defined as:

SEL = 10log(
1
𝑇0 ∫

𝑇2

𝑇1

𝑝2(𝑡)
𝑝20

𝑑𝑡) (5.60)



5

122 5 Study of Sound Escape with the Use of an Air Bubble Curtain

with 𝑇1 and 𝑇2 being the starting and ending of the predicted time signature with the sound

event in between and 𝑇0 = 1 sec.

The peak pressure level (L𝑝,𝑝𝑘) and sound exposure level (SEL) of receiver points at

radial distances up to 750m are obtained here for the non-mitigated field (scenario 1) as
shown in Fig. 5.8 (a). Through an indirect method, the noise reduction level achieved

by the Noise Mitigation Systems can be examined by comparing the sound levels of the

non-mitigated and mitigated fields. In Fig. 5.8 (b), the evolution of the pressure field in

time is shown for a point positioned 2m above the seabed at various radial distances from

the pile for scenarios 1-3. The numerical results for the three scenarios and the comparison

to the measurement are summarized in Table 5.3. The measured SEL and L𝑝,𝑝𝑘 are derived

from the data collected from four hydrophones located at four difference angles as shown

in Fig. 5.11. The range of the sound levels is given in Table 5.3 with their arithmetic mean

values indicated in the parenthesis. The deviation of the sound levels in the measured data

can be due to the existence of the currents and angular-dependent bathymetry changes in

the offshore environment.

The maximum noise reduction level of ∼ 30.0 dB in terms of SEL and ∼ 35.0 dB in terms

of L𝑝,𝑝𝑘 can be achieved respectively when the air-bubble curtain blocks the entire water-

borne path (scenario 2). With the consideration of 1-m gap due to the bubble formation

process in the vicinity of the nozzle (scenario 3), the predicted ideal noise reduction level

by an air bubble curtain reduce to ∼ 20.9 dB for SEL and ∼ 21.4 dB for L𝑝,𝑝𝑘 .

The energy flux is given at the location of the outer bubble curtain 𝑟 = 𝑟𝑏𝑐,2 = 145𝑚 in

Fig. 5.10. Close to the seabed the amount of the energy is relatively high compared with

the entire water depth and soil depth, which indicates that a great amount of energy could

channel from the vicinity of the seabed back into the water column due to the thin air

bubble layer close to the seabed. This also explains the difference in the noise reduction

level of SEL and L𝑝,𝑝𝑘 between Δ1−2 and Δ1−3.

Table 5.3: The summary of predicted noise reduction levels and experiment data from the pile installation

campaign.

Levels Measured Δ1−𝑚 Modeled Modeled Modeled Δ1−2 Δ1−3
[dB] with DBBC scenario 1 scenario 2 scenario 3

SEL 165∼168 (167) 12∼15 (13) 180 150 158.8 30.0 20.9

L𝑝,𝑝𝑘 184∼187 (186) 12∼15 (13) 199 165 177.6 35.0 21.4

5.5.2 Validation of the noise reductionwith the model of the
air bubble curtain

In this section, the validation of the complete model including the double air bubble curtains

is performed. The model is based on the configuration of an offshore pile installation

campaign in 2018. The installation was executed for the pile using double big bubble

curtain (DBBC), which are especially often used for large water depths (> 30m). Within the

same offshore wind farm, another installation was executed for the pile without using any

noise mitigation system, which has been used for the validation of the noise prediction

model in [29]. The input parameters of the air bubble curtain system are given in Table 5.4,
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Figure 5.10: The energy flux at the location of the outer bubble curtain r = 𝑟𝑏𝑐,2 = 145𝑚 over the fluid and soil

domain.

while the material and geometrical parameters are those summarized already in Table 5.2.

The locations of both the inner and outer bubble curtains, as well as the nozzle diameter

and spacing, are determined from measured data. The air flow rate is derived from the

compressible flowmodel. The spreading and entrainment coefficients are based onmodeling

assumptions. The layout of the DBBC system is shown in Fig. 5.11, 𝑟𝑏𝑐,1 and 𝑟𝑏𝑐,2 are the
radius of the bubble curtain with the width being 𝑏𝑏𝑐,1(𝑧) and 𝑏𝑏𝑐,2(𝑧), respectively.

Table 5.4: Basic input parameters of the air bubble curtain system.

Parameter Air bubble curtain

location of the inner bubble curtain 𝑟𝑏𝑐 [m] 105

location of the outer bubble curtain 𝑟𝑏𝑐 [m] 145

Nozzle diameter 𝑑𝑛 [mm] 1.5

Nozzle spacing 𝑦𝑛 [m] 0.30

Air flow rate 𝑞𝑎𝑡𝑚 [m
3
/s/m] 0.0087

Spreading coefficient 𝜆 [-] 0.1

Entrainment coefficient 𝛼 [-] 0.18

Based on the configuration of the bubble curtain system, the fluid dynamic and acoustic

properties of the system are obtained first by the noise reduction module. Figure 5.9 shows

the variation of the centreline velocity, width and total gas fraction of the bubble curtain

over the depth. The transmission loss of the bubble curtain is derived as discussed in
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section 5.3.2. As shown in Fig. 5.12 (left), the mitigation is less effective at low frequencies

(<100 Hz). The variation of the damping coefficients along the entire water depth in Fig. 5.12

(right) shows that the attenuation is depth-dependent and reduces in the vicinity of the

nozzle especially for the higher frequencies due to the zone of the flow establishment in

the bubble formation process.

Figure 5.11: Layout of DBBC system.

Next, the noise source for the impact pile driving is generated by the noise prediction

model for non-mitigated field and is propagated first to the location of the inner air-bubble

curtain at 𝑟 = 𝑟𝑏𝑐,1. The direct BEM is used to couple the noise prediction model for

non-mitigated field and noise reduction model for the air-bubble curtain as discussed in

section 5.3. The wavefield is then propagated to the location of the outer air-bubble curtain

at 𝑟 = 𝑟𝑏𝑐,2 and is coupled to the noise reduction model for the outer air-bubble curtain

through the BEM. The direct BEM gives us great flexibility to couple the non-mitigated

field to a single or double air-bubble curtains.

The calculated SEL and L𝑝,𝑝𝑘 are summarized in Table 5.5 compared to the measure-

ment data collected during the pile installation campaign. The sound reduction predicted

including the modeling of double air bubble curtains are ∼ 20 dB for SEL and ∼ 21 dB for

L𝑝,𝑝𝑘 at a distances of 750m.

The summary of the noise prognosis for the offshore campaign is given in Table 5.5 in

terms of the SEL and the L𝑝𝑒𝑎𝑘 . The difference between the noise reductions for scenario 2
and 3 is due to the 1-m gap in the fluid, which can lead to the channelling of great energy

in the vicinity of the seabed back into the water column as indicated in Fig. 5.10. The noise

reduction for SEL achieved by DBBC is slightly lower than the reduction by scenario 3,
since scenario 3 leads to a more conservative estimation by assuming the full blockage of
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Figure 5.12: Prediction of the acoustic properties of the air bubble curtain: (left) the spectrum of transmission

loss at three depths, in which the black solid line represents the results at 1-m above the nozzle, the grey solid

line indicates the results at 5-m from the nozzle and the grey dashed line indicates the results at 20-m from the

nozzle; (right) transmission loss for three different frequencies over the depth, in which the black solid line, the

grey solid line, the grey dashed line represent f = 20,150, 300 Hz, respectively.

the transmission in the fluid domain except the 1-m gap close to the seabed. Because the

air-bubble curtain system has a much higher transmission loss at higher frequencies, the

system works more efficiently in reducing the impulsiveness of the incoming waves as

evaluated by L𝑝,𝑝𝑘 . The currents and other environmental factors can play an important

role in the noise mitigation as indicated by the deviation (3±2 dB) in the measured SEL

and L𝑝,𝑝𝑘 from different hydrophones. The deviation of 2 dB is considered as measurement

error from the set-up of the test equipments, including the hydrophones and calibrators.

The prediction of SEL by scenario 4 including the DBBC (Δ1−𝐷𝐵𝐵𝐶 =20 dB) and the scenario
3 (Δ1−3 =21 dB) are around 4 and 3 dB above the upper bound of the measured data (Δ1−𝑚
=15+2=17 dB), respectively. The noise reduction L𝑝,𝑝𝑘 from the measurement data is much

lower compared to both scenario 3 and the scenario 4 (DBBC), which indicates that both

scenarios lead to conservative predictions. Further investigations regarding the sensitivity

of the parameters of air-bubble curtain system and the influence of currents and other

environmental factors are needed to provide a better estimation of the sound pressure

levels and to optimize the use of the air-bubble curtain system.

Table 5.5: The summary of the noise prognosis for the offshore pile installation.

Noise Reduction Levels [dB] ΔSEL ΔL𝑝,𝑝𝑘

Measurement Δ1−𝑚 12 ±2∼15±2 (13±2) 12 ±2∼15 ±2 (13±2)
Maximum noise reduction Δ1−2 30 35

Estimation of noise reduction Δ1−3 21 21

Computed noise reduction Δ1−𝐷𝐵𝐵𝐶 20 21
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5.6 Conclusions
This chapter establishes a computationally efficient approach for noise reduction prediction

in offshore pile driving with the application of a single or double air-bubble curtain system.

The complete model consists of two modules: the noise prediction module that describes

the vibroacoustic behaviour of the pile-soil-water interaction and propagates the wave field

at larger distance from the pile, and the noise reduction module that describes the acoustic

properties of an air bubble curtain. The solution approach is presented with the complete

mathematical statement of the coupled vibroacoustic pile-water-soil system including the

dynamics of the air-bubble cloud. The direct boundary integral equation (BIE) formulation

is used to couple the three modules and propagate the wavefield from the vicinity of the

pile to the location of the inner and outer bubble curtains and to the larger distances.

The validation of the local effective wavenumber model is performed by comparison to

available numerical solutions and reported experimental data sets. Noise predictions are

then performed for a pile-installation campaign with the use of DBBC in 2018 and the

results are compared to measurement data. The maximum noise reduction level of an ideal

noise mitigation system is studied by eliminating the water-borne transmission path. The

results indicate the maximum potential of the noise mitigation systems applied in the water

column. The model can later be used for optimization of the air-bubble curtain system in

order to improve the deployment strategy of the system. The modelling approach can be

applied for modelling different noise mitigation techniques, which provides possibilities to

examine the optimal combination of various noise mitigation techniques and position of

the deployment of the system.
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6
A Three dimensional

multi-physics model of an
air-bubble curtain

Assessment and mitigation of underwater noise are usually required to ensure that sound
levels stay below the noise thresholds. The air-bubble curtain system is one of the most
widely applied noise mitigation techniques. To advance the modelling approach for predicting
underwater noise radiation in offshore pile driving, a three-dimensional multi-physics approach
is introduced for modelling an air-bubble curtain system.

This chapter is partly based on the journal article � [176]:

Peng, Y, et al. A multi-physics approach for modelling noise mitigation using an air-bubble curtain in impact pile

driving. Frontiers in Marine Science, vol. 10, 2296-7745, 2023. https://doi.org/10.3389/fmars.2023.1134776
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T
o examine the performance of an air-bubble curtain system, a multi-physics model

is further developed in this chapter as extension of the model introduced in Chapter 5.

In Chapter 5, a semi-analytical model [68] is presented where the hydrodynamic module

for describing the bubble formation process is coupled to the vibroacoustic model for noise

prediction from pile driving through a boundary integral formulation. The results indicate

that an accurate description of the acoustic characteristics of the bubbly layer is critical for

modelling noise mitigation using the air-bubble curtain system. However, the performance

of the air-bubble curtains can vary significantly in azimuth direction due to the inherent

variations in the airflow circulation through the perforated pipes positioned on the seabed

surface. As the air flow rate through the nozzles can have a significant impact on bubble

generation and development through the water column, there is a need to determine the

flow velocity of the air in the perforated pipes which are positioned on the seabed surface

[67].

In this chapter, a multi-physics model is developed for modelling noise mitigation

using the air-bubble curtain system. The complete model consists of four modules: (i) a

compressible flow model to account for the transport of compressed air in the perforated

hose; (ii) a hydrodynamic model for capturing the characteristics of bubble clouds in

varying development phases through depth and range; (iii) an acoustic model for predicting

the sound insertion loss of the air-bubble curtain; and (iv) a vibroacoustic model for the

prediction of underwater noise from pile driving which is coupled to the acoustic model in

(iii) through a three-dimensional boundary integral formulation. The flow of the modelling

activity is shown in Fig. 6.1. The structure of the Chapter is as follows. In Section 6.1, the

description of the compressible flow model is given together with the governing equations.

The description of the hydrodynamic and acoustic models is given in Section 6.2. Section 6.3

introduces the mathematical formulation for capturing the three-dimensional behavior of

the air-bubble curtain system. In Section 6.4, a sensitivity study is performed to examine

the acoustic characteristics of the bubble curtain. In Section 6.5, the validation study based

on an offshore installation campaign is presented. Finally, Section 6.6 gives an overview of

the main conclusions.
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Figure 6.1: Activity flow of the complete model: 1) definition of the input of the model; 2) modelling of the

pneumatic system; 3) modelling of the air-bubble curtain system; 4) modelling of the mitigated sound field with

the use of DBBC.
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6.1 Compressible flow model
In this section, the pneumatic model is presented for modelling the transport of compressed

air from the air-injection vessel to the perforated hose positioned on the seabed surface.

The governing equations are given and the field test is presented for examining the pressure

variation along the hoses for various airflow rates.

6.1.1 Description of the model
An engineering model is developed using compressible flow theory to predict the opera-

tional parameters of a given hose-nozzle configuration used for bubble curtain generation.

The total amount of air that is being delivered by the series of compressors is used as the

main input and given as a volumetric flow rate at free air delivery conditions (FAD
1
). The

other input parameters consist of the density of seawater and air, water depth, and the

geometrical characteristics of the feeding and perforated hose configuration. The results

of the numerical model give the pressure distribution along the hose together with the

average axial flow velocities and mass flow rates at each nozzle location. The total required

upstream pressure considering the feeding hose can also be assessed.

The model considers a straight, horizontal hose with a constant diameter and uniform

spacing of identical nozzles. In reality, the perforated pipes have a certain curvature, i.e.

𝜅 = 1/𝑅, which in our case is small enough so that the straight configuration is justified.

The air is injected from two sides of the hose. Hence, the model assumes symmetry and

only half of the total length is required to characterize the flow and pressure distribution;

this is represented through a zero flow boundary condition to make sure that all the air

is depleted at 180deg from the injected position. This assumption is based on the ideal

operation and deployment of the air bubble curtain, which enables the simplification of

the modeling approach using a one-dimensional compressible flow model. The hose is

discretized into a fixed number of segments according to the total length 𝐿 and the nozzle

spacing 𝑆 as shown in the schematic of Fig. 6.2. A regular polygonal approximation will

closely resemble a circle and is visually indistinguishable for most practical purposes.

Figure 6.2: Schematic of the discretized model of the hose with nozzles for air transportation.

1
FAD conditions are defined at p = 101325Pa, T = 293.15K
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6.1.2 Governing eqations
For each segment 𝑖, isentropic compressible flow theory in combination with the state

equation of the ideal gas is used to obtain the mass flow rate 𝑚̇𝑛𝑧,𝑖, across the nozzle with
diameter 𝑑 and density 𝜌𝑖 according to the following equations [177]:

𝑚̇𝑛𝑧,𝑖 = 𝐶𝑑
𝜋𝑑2

4 (
2𝛾
𝛾 −1

𝑃𝑖𝜌𝑖[1−(
𝑃ℎ𝑠𝑡
𝑃𝑖 )

𝛾−1
𝛾

](
𝑃ℎ𝑠𝑡
𝑃𝑖 )

2
𝛾

)

0.5
(6.1)

𝑃𝑖
𝑃ℎ𝑠𝑡

= (1+
𝛾 −1
2
𝑀2
𝑖 )

𝛾
𝛾−1

(6.2)

𝑀𝑖 =
𝑈𝑖√
𝛾𝑅𝑇

(6.3)

where the discharge coefficient 𝐶𝑑 = 0.55m is used for each nozzle [178], 𝛾 = 1.402 is the air

adiabatic constant, 𝑅 = 287 J/kg/K is the specific air gas constant, 𝑇 = 291 K (18◦C) is the
air temperature, 𝑃ℎ𝑠𝑡 is the hydrostatic pressure outside the hose, 𝑃𝑖 is the pressure inside
the hose at each nozzle location, 𝑀𝑖 and 𝑈𝑖 are the Mach numbers and air velocities across

the nozzles respectively. Conservation of mass is applied to the control volume of each

segment to obtain the upstream mass flow rates 𝑚̇𝑖 as a function of the flow rates through

the nozzle and from the downstream segment.

𝑚̇𝑖 = 𝑚̇𝑛𝑧,𝑖+𝑚̇𝑖+1 (6.4)

Assuming that the velocity and fluid properties are constant across sections normal to the

flow (i.e. no radial gradients), one-dimensional, isothermal compressible flow in pipes with

a constant area is used to calculate the upstream pressure of each hose segment including

friction. The pressure losses in each segment of length 𝑙𝑖 and hose diameter 𝐷 include the

friction factor 𝑓 which is obtained by the Colebrook–White equation [179] according to

the Reynolds number Re and hose roughness 𝜖 as described in the following equations:

(𝑃2𝑖 −𝑃
2
𝑖+1) =

𝑚̇2
𝑖 𝑅𝑇

(𝜋𝐷2
4 )2(

2ln
𝑃𝑖
𝑃𝑖+1

+𝑓𝑖
𝑙𝑖
𝐷) (6.5)

1√
𝑓𝑖
= −2log(

𝜖
3.7𝐷

+
2.51

Re𝑖
√
𝑓𝑖)

(6.6)

6.1.3 Field tests campaign
A series of medium-scale tests were performed in Sliedrecht, the Netherlands in July 2022.

The main objective of the tests is to provide measurements from the pneumatic system

used to generate the bubble curtain in order to gain insights into the pressure distribution

along the length of the hoses for different volumetric flow rates of injected air. The tests

comprise several configurations with different hose sizes, hose lengths, spacing between

nozzles, and nozzle diameters. In this section, the test results for one configuration with

varying air flow rates are presented to show the effect on the pressure distribution.

The measurements of the flow rate, pressure, and temperature sensors are continuously

recorded during the entire measurement campaign. For each time trace of both flow and
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Figure 6.3: Comparison between simulation and experimental results for configuration tested at a water depth of

2.0m. L=45m, D=12.4mm, d=1.0mm, s=15cm. Top: Experimental results (left). Pressure distribution along hose

length (right). Bottom: Pressure vs airflow rate (left). Comparison Model vs experiments (right).

Table 6.1: Test configuration for the wet experiments.

Configuration Value Unit

Hose diameter 0.0124 m

Nozzle spacing 0.15 m

Nozzle diameter 0.001 m

Air Flow rate 76.7 to 200 m
3
/hr

Hose length 45 m

pressure measurements, several intervals under steady conditions were identified. The

statistical values for each interval were calculated and reported for each pressure sensor

located at certain distance from the feeding air as seen in Fig. 6.3.

The test configuration for one of the field tests is presented in Table 6.1 with varying flow

rates from 76.7m
3
/hr to 200m

3
/hr. This particular configuration has the closest similarity

to the current practice setup from the scaled parameters. As shown in Fig. 6.3 (A) and

(B), for each flow rate, the pressure decreases nonlinearly with the distance between the

pressure sensor and the air injection point. The pressure amplitude against the volume of

air per unit time is also presented in Fig. 6.3 (C) for sensors at different horizontal distance
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from the air injection point. The experimental results are compared to the model as shown

in Fig. 6.3 (B-D) , which indicates the numerical and field test results agree reasonably

well for pressure measurements below 3 bar. However, when it comes to higher pressures

above 4 bar, the simulation shows lower pressure at the feeding point for all flow rate

cases as the pressure is underestimated. The discrepancy can be due to the impact of

the non-linear decrease of pressure closer to the air feeding point. The error bar on the

top of each bar indicates the deviation from the mean value in the pressure during the

recording at a constant flow rate. The nonlinear pressure drop indicates that the airflow

circulation leads to the variation of the pressure and air flow through the nozzles in the

azimuth, which has a significant impact on the performance of the air bubble curtain system

along the circumference. By comparing the various airflow rates in the given hose-nozzle

configuration, pressure at each location of the sensor increases nonlinearly with the airflow

rate. The field test verifies the influence of the volumetric flow rate of the injected air on

pressure distribution along the hose, which indicates that the performance of the air-bubble

curtain varies strongly along the circumference.

6.2 Hydrodynamic andacousticmodel forair-bubble
curtain

The hydrodynamic model aims to capture the characteristics of bubble generation and

development. The model is introduced already in Chapter 5 and describes a turbulent

two-phase bubble flow, in which the bubble plume is developed from a nozzle and followed

by the breakup and coalescence of bubbles. The modelling of the bubble formation is based

on an existing model developed in [66, 67]. Based on the airflow velocity through each

nozzle derived from the hydraulic model, the input for the hydrodynamic model can be

determined for a single bubble curtain configuration. The resulting set of equations reads,

𝑑
𝑑𝑧

𝐦(𝐮,𝑧) = 𝐪(𝐮,𝑧) (6.7)

In Eq. (6.7), 𝐮 = [𝑢𝑙𝑧𝑚,𝑏,𝜖𝑔𝑚1, 𝜖𝑔𝑚2, 𝑣1, 𝑣2]. The model output after solving the set of

equations include the half-width of bubble curtain b, gas fraction 𝜖𝑔𝑚1 and 𝜖𝑔𝑚2, flow
velocity 𝑢𝑙𝑧𝑚, and mean bubble volume 𝑣1 and 𝑣2, which vary with the depth 𝑧. The

expressions for the vector of the integral fluxes 𝑚(𝐮,𝑧) and the integral source term 𝑞(𝐮,𝑧)
are presented in detail in [67, 68] and are omitted here for the sake of simplicity.

The acoustic model as discussed in Chapter 5 includes the depth- and frequency-

dependent transmission coefficients of each bubble curtain configuration. The model is

based on a simplified one-dimensional acoustic wave propagation approach developed

in [64]. Given the bubble characteristics obtained from the hydrodynamic model, the

distribution of the local effective wavenumbers 𝑘𝑚(𝜔,𝑧, 𝑟) is determined over the entire

water depth as described in [68]. The transmission coefficients 𝐻(𝑧,𝜔) are then determined

per z-coordinate and are constant within the vertical step size Δ𝑧 of the integration. The
transfer coefficient function is coupled to the noise prediction model through boundary

integral equation. The average transmission loss over the water column (dB/m) is obtained
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as [66, 68]:

TL(𝜔) = 10log(
𝑀
∑
𝑖=1

|𝐻(𝑧𝑖,𝜔)|2
Δ𝑧
𝑇

) (6.8)

in which T is the height of the bubble curtain, Δ𝑧 is the integration step in the water

column and 𝑀 is the total number of vertical steps.

6.3 A three-dimensional noise prediction model
The performance of the air-bubble curtains can vary significantly in azimuth due to the

inherent variations in the airflow circulation through the perforated pipes positioned

on the seabed surface. This section presents a new model which is based on a multi-

physics approach and considers the three-dimensional behaviour of the air-bubble curtain

system. The complete model employs three modules including the hydrodynamic model

for capturing the characteristics of bubble clouds in varying development phases through

depth; the acoustic model for predicting the sound insertion loss of the air-bubble curtain;

and a vibroacoustic model for the prediction of underwater noise from pile driving which is

coupled to the acoustic model through a three-dimensional boundary integral formulation.

The three dimensional Green’s function and the boundary integral model are described in

detail in Chapter 2. The model allows for a comparison of various mitigation scenarios

including the perfectly deployed air bubble curtain system, i.e. no azimuth-dependent field,

and an imperfect system due to possible leakage in the bubbly sound barrier along the

circumference of the hose.

In this section, the proposed method provides a foundation for evaluating the three-

dimensional behaviour of the air bubble curtain system. The formulation of the problem

for incorporating the azimuthal dependent behaviour of the air-bubble curtain is presented.

Underwater noise prognosis is performed using realistic data from an offshore installation

campaign in 2018, a non-fully blocked waterborne path with gaps in pre-defined angles is

examined as a sample problem. The prediction results are compared to the free-field noise

prediction and the scenario with full-blocked water borne path at the position of the air

bubble curtain. The proposed modelling approach can be easily extended by incorporating

a realistic transmission coefficient of the bubbly layer through the azimuthal coordinate.

A numerical approach is proposed for evaluating the noise emission from the impact

pile driving with the use of the air-bubble curtain system. The hydrodynamic and the

acoustic models have been described in Chapter 5. In this section, we focus on the coupled

dynamic problem in an axisymmetric acousto-elastic medium with non-axisymmetric

boundary conditions at the position of the bubble curtain.

Based on potential theory and Green’s third theorem, the boundary integral equation

for three-dimensional case reads:

𝒖̃Ξ
𝛼 = ∫

𝑆𝑓(
𝑈Ξ𝑓
𝛼𝑟 (𝒓,𝒓𝑠) ⋅ 𝑝̃(𝒓𝑠)𝐻̃ (𝒓𝑠)−𝑇Ξ𝑓

𝛼𝑟 (𝒓,𝒓𝑠) ⋅ 𝑢̃
𝑓
𝑟 (𝒓𝑠)𝐻̃ (𝒓𝑠))𝑑𝑆

𝑓 (𝒓𝑠)

+ ∑
𝛽=𝑟,𝜃,𝑧

∫
𝑆𝑠(

𝑈Ξ𝑠
𝛼𝛽 (𝒓,𝒓𝑠 ,𝜔) ⋅ 𝑡

𝒏
𝛽 (𝒓𝑠)−𝑇

𝒏,Ξ𝑠
𝛼𝛽 (𝒓,𝒓𝑠 ,𝜔) ⋅ 𝑢̃𝛽(𝒓𝑠))𝑑𝑆

𝑠
𝑠 (𝒓𝑠)

(6.9)
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Figure 6.4: Schematic of the complete system (left) and the coupled model (right).

in which Ξ = 𝑓 or 𝑠 indicates the location of the source in fluid or soil, respectively, 𝐻̃ (𝒓𝑠) is
the angular and frequency dependent transmission coefficient of the bubble curtain, 𝑢̃𝑓𝑟 (𝒓𝑠),
𝑝̃(𝒓𝑠), 𝑡𝒏𝛽 (𝒓𝑠), 𝑢̃𝛽(𝒓𝑠) are the source terms obtained from the noise prediction module while

generating the non-mitigated field from pile driving [29]. In the case of the axisymmetric

non-mitigated field, the boundary integral equation is reduced to

𝒖̃Ξ
𝛼 = ∫

𝑆𝑓(
𝑈̃Ξ𝑓
𝛼𝑟 (𝒓,𝒓𝑠) ⋅ 𝑝̃(𝑟𝑠 , 𝑧𝑠)𝐻̃ (𝒓𝑠)−𝑇 ,Ξ𝑓𝛼𝑟 (𝒓,𝒓𝑠) ⋅ 𝑢̃𝑓𝑟 (𝑟𝑠 , 𝑧𝑠)𝐻̃ (𝒓𝑠))𝑑𝑆

𝑓 (𝒓𝑠)

+ ∑
𝛽=𝑟,𝜃,𝑧

∫
𝑆𝑠(

𝑈Ξ𝑠
𝛼𝛽 (𝒓,𝒓𝑠 ,𝜔) ⋅ 𝑡

𝒏
𝛽 (𝑟𝑠 , 𝑧𝑠)−𝑇

𝒏,Ξ𝑠
𝛼𝛽 (𝒓,𝒓𝑠 ,𝜔) ⋅ 𝑢̃𝛽(𝑟𝑠 , 𝑧𝑠))𝑑𝑆

𝑠
𝑠 (𝒓𝑠)

(6.10)

For a general formulation, we expand the boundary displacement and the tractions in

Eq. (6.9) using the Fourier series, i.e.:

∞
∑
𝑚=−∞

𝒖̂Ξ
𝛼𝑚(𝑟,𝑧)𝑒

i𝑘𝜃 =

∞
∑
𝑚=−∞

∫
𝐿𝑓
𝑅𝑏𝑐(𝑈

Ξ𝑓
𝛼𝑟,𝑚(𝒓

′, 𝒓′𝑠) ⋅ 𝑝̂
∗
𝑚(𝑧𝑠)−𝑇

,Ξ𝑓
𝛼𝑟,𝑚(𝒓

′, 𝒓′𝑠) ⋅ 𝑢̂
𝑓 ∗
𝑟𝑚(𝑧𝑠))𝑑𝐿

𝑓 (𝑧𝑠)

+
∞
∑
𝑚=−∞

∑
𝛽=𝑟,𝜃,𝑧

∫
𝐿𝑠
𝑅𝑏𝑐(𝑈

Ξ𝑠
𝛼𝛽,𝑚(𝒓,𝒓

′
𝑠 ,𝜔) ⋅ 𝑡

𝒏
𝛽 (𝑧𝑠)−𝑇

𝒏,Ξ𝑠
𝛼𝛽,𝑚(𝒓

′, 𝒓′𝑠 ,𝜔) ⋅ 𝑢̂𝛽𝑚(𝑧𝑠))𝑑𝐿
𝑠
𝑠(𝑧𝑠)

(6.11)

in which 𝐿 is the line of the boundary in (r,z) plane, 𝑅𝑏𝑐 is the radius of the bubble curtain
system, the coordinate 𝒓′ = (𝑟 ′, 𝑧′) and 𝒓′𝑠 = (𝑟 ′𝑠 , 𝑧′𝑠) is in the (𝑟-𝑧) plane. The Green’s tensor
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is defined as,

𝑈ΞΦ
𝛼𝛽,𝑚(𝒓

′, 𝒓′𝑠) =
1
2𝜋 ∫

2𝜋

0
𝑈ΞΦ
𝛼𝛽 (𝒓,𝒓𝑠)𝑒

i𝑚𝜃𝑑𝜃 (6.12)

𝑇ΞΦ
𝛼𝛽,𝑚(𝒓

′, 𝒓′𝑠) =
1
2𝜋 ∫

2𝜋

0
𝑇ΞΦ
𝛼𝛽 (𝒓,𝒓𝑠)𝑒

i𝑚𝜃𝑑𝜃. (6.13)

In view of periodicity of 𝑈ΞΦ
𝛼𝛽 and 𝑇ΞΦ

𝛼𝛽 and 𝑒i𝑘𝜃 with the period of 2𝜋

𝑈ΞΦ
𝛼𝛽,𝑚(𝒓

′, 𝒓′𝑠) = 𝑈̄
ΞΦ
𝛼𝛽 (𝒓

′, 𝒓′𝑠)𝑒
i𝑚𝜃𝑠

(6.14)

𝑇ΞΦ
𝛼𝛽,𝑚(𝒓

′, 𝒓′𝑠) = 𝑇̄
ΞΦ
𝛼𝛽 (𝒓

′, 𝒓′𝑠)𝑒
i𝑚𝜃𝑠

(6.15)

where 𝑈̄ΞΦ
𝛼𝛽 and 𝑇̄ΞΦ

𝛼𝛽 are defined as,

𝑈̄ΞΦ
𝛼𝛽 (𝒓

′, 𝒓′𝑠) =
1
2𝜋 ∫

2𝜋

0
𝑈ΞΦ
𝛼𝛽 (𝒓,𝒓𝑠)𝑒

i𝑚𝜃𝑑𝜃 (6.16)

𝑇̄ΞΦ
𝛼𝛽 (𝒓

′, 𝒓′𝑠) =
1
2𝜋 ∫

2𝜋

0
𝑇ΞΦ
𝛼𝛽 (𝒓,𝒓𝑠)𝑒

i𝑚𝜃𝑑𝜃 (6.17)

The reduced boundary integral equation (BIE) for the three-dimensional boundary condi-

tions is obtained as [180, 181]:

𝒖̂Ξ
𝛼𝑚(𝑟,𝑧) =

∫
𝐿𝑓
𝑅𝑏𝑐(𝑈̄

Ξ𝑓
𝛼𝑟,𝑚(𝒓

′, 𝒓′𝑠) ⋅ 𝑝̂
∗
𝑚(𝑧𝑠)− 𝑇̄

,Ξ𝑓
𝛼𝑟,𝑚(𝒓

′, 𝒓′𝑠) ⋅ 𝑢̂
𝑓 ∗
𝑟𝑚(𝑧𝑠))𝑑𝐿

𝑓 (𝑧𝑠)

+ ∑
𝛽=𝑟,𝜃,𝑧

∫
𝐿𝑠
𝑅𝑏𝑐(𝑈̄

Ξ𝑠
𝛼𝛽,𝑚(𝒓,𝒓

′
𝑠 ,𝜔) ⋅ 𝑡

𝒏
𝛽 (𝑧𝑠)− 𝑇̄

𝒏,Ξ𝑠
𝛼𝛽,𝑚(𝒓

′, 𝒓′𝑠 ,𝜔) ⋅ 𝑢̂𝛽𝑚(𝑧𝑠))𝑑𝐿
𝑠
𝑠(𝑧𝑠)

(6.18)

The angular Fourier decomposition is employed in the boundary integral equation for-

mulation, which enables more efficient computation. The source terms are obtained by

solving the vibro-acoustic model for the prediction of underwater noise from pile driving

as described in [29].

6.4 Sensitivity analysis
In this section, a parametric study based on the axisymmetric model is presented to

examine the sensitivity of the acoustic characteristics of the air-bubble curtain system to

the air volume injection rate, size of the bubble curtain, nozzle size of the hose, and DBBC

configurations (see Fig. 6.5). As shown in Table 6.2, 13 scenarios are built-up by varying

the nozzle spacing and size and various flow velocities due to different air injection ratio

and size of the bubble curtain. The base case nozzle configuration consists of a nozzle

spacing of 0.3m, a nozzle diameter of 2mm, and a flow velocity of 100m/s. To examine

configurations for DBBC, three sets of analyses are performed for the varying radii of the

outer BBC keeping the inner one at a fixed position, i.e., at 50m, 75m and 100m. For each

configuration, three predictions are performed for the lower, upper and median values of

the air flow rate.
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Figure 6.5: Schematic depiction of the non-uniform pressure distribution in the hose.

Table 6.2: Varying input parameters of the bubble curtain system.

Case Nr. Varying Value Unit

parameters

1 Nozzle spacing 0.2 m

2 Nozzle spacing 0.3 m

3 Nozzle size 1 mm

4 Nozzle size 2 mm

5 Nozzle size 3 mm

6 Flow velocity 30 m/s

7 Flow velocity 50 m/s

8 Flow velocity 80 m/s

9 Flow velocity 100 m/s

10 Flow velocity 150 m/s

11 Flow velocity 200 m/s

12 Flow velocity 250 m/s

13 Flow velocity 300 m/s

6.4.1 Air volume injection rate
The air is injected into the perforated hose through two risers connecting to the air

compressors and is distributed equally into two semi-circles. Based on this deployment

approach, the model adopts equal volumetric flow rates as the input for two semi-circles of

the hoses. As shown in Fig. 6.6, the increase in the air volume injection rate can lead to an

increase in the flow velocity at each nozzle along half of the hose length, while the other
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half has the same performance.

The air volume injection can significantly impact the bubble curtain formation charac-

teristics along the main hose. For the bubble curtain with a radius of 75m, the variation in

the flow velocity along the hose length, for a given volume injection rate, is relatively small.

However, when the air volume injection is varied, differences up to ∼20m/s (Δ𝑢) in the

computed flow velocities at the nozzles are obtained. Subsequently, this can significantly

change the initial kinetic energy at the nozzle and, thus, influence the air-bubble cloud

formation process. The same naturally holds for bubble curtains of larger radii but those

suffer additionally from a significant drop in the flow velocity at positions away from the

air feeder lines.
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Figure 6.6: Computed flow velocities at the nozzles along the hose length for varying air volume injection rate for

two different cases of bubble curtain radii, i.e. 75m and 150m.

6.4.2 Size of the bubble curtain
As shown in Fig. 6.7, with the increase of the size of the BBC, the mean and lower bound

of the flow velocity decreases, while the maximum of the velocity which appears in the

vicinity of the air injection inlet remains within a small range. As the air is released from

a nozzle, the pressure within the hose drops instantly, which leads to a decrease in the

kinetic energy in the airflow. Considering the variation of the flow velocity due to both

various air injection rates and the radius of the bubble curtain, the various flow velocities

from 30m/s to 300m/s at the nozzle are considered in the analysis as shown in Table 6.2.

With the hydrodynamic model, the bubble formation process at the nozzle is predicted.

To investigate the transmission of the bubble curtain over depth, the local distribution

of the sound speed at 300Hz is depicted in Fig. 6.8. The effective wave speed reduces up

to 200m/s in the vicinity of the centreline. The darker zones indicate a large impedance

mismatch between the seawater and air-seawater bubbly mixture, which widens as the

flow velocity increases from left to right. Accordingly, this results in an increase in the

transmission loss of the bubble curtain system as shown in Fig. 6.9 from cases 6 to 13.

Based on the deployed set of hoses, higher air injection rates can increase the acoustic

performance of the bubble curtain. With an increase in the size of the bubble curtain, the
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Figure 6.7: Computed flow velocities at the nozzles along the hose length for the varying radius of the bubble

curtain.

efficiency of the bubble curtain can drop at positions away from the air-feeding lines due

to the significant expected drop in the flow velocity.

6.4.3 Nozzle configuration
Typical nozzle sizes and spacing usually stay within a limited range in practice. In this

analysis, a series of theoretical cases are built up. In cases 1 to 5, the nozzle configuration

is investigated with the nozzle spacing being 0.2m and 0.3m and the nozzle size being

1mm to 3mm. Together with the variation in the flow velocities, the input for the varying

parameters is shown in Table 6.2. To examine the impact of the aforementioned parameters

on the acoustic insertion loss of the air-bubble curtain, the acoustic model is used to

determine the transmission loss for each scenario. Figure 6.9 (A) indicates that, within the

typical nozzle configuration range, the acoustic insertion loss of the bubble curtain is more

sensitive to nozzle size when flow velocity is constant, especially in the critical frequency

range of ∼60Hz to 200Hz.

6.4.4 Configuration of the DBBC
The sensitivity analysis is performed to examine the configuration of the DBBC, in which

the scope of the operational constraints are considered. Three sets of the radii of the outer

BBC are used, i.e., at 50m, 75m and 100m, while the inner one is at a fixed position. For

each configuration, three predictions are performed for the median values of the air flow

rates at the nozzle. The base case is set as the radius of the inner and outer BBC being 75m
and 150m, respectively. The volumetric airflow rate in the hose is set as 0.5m3

/min/m.

As can be seen in Fig. 6.10, the noise reduction levels in both SEL and L𝑝,𝑝𝑘 increase

with the radius of the inner bubble curtain shown by the blue, red and black lines. It is also

clear that given a fixed position of the inner bubble curtain, there is an optimum distance

in which the outer one could be placed. This may seem as counterintuitive in the first place

as one would expect that a larger distance is always favourable. However, a longer pipe

can result in larger pressure and air flow velocity drops away from the air-feeding lines
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Figure 6.8: Comparison of the effective wave speed for various flow velocities of (top) 30m/s, (bottom) 300m/s for

the frequency 300Hz.

which result in a suboptimal performance of the system on average.

The red and blue markers indicate the configuration of the base case with the volumetric
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airflow rate being 0.4 and 0.6m
3
/min/m, respectively. The bars and the marker indicate

the predictions are performed for the same configuration and at the lower, higher and

median values of the air flow rates at the nozzle using axisymmetric model. The comparison

indicates that the increase in the mass flow rate by 0.1m3
/min/m in the hose can lead to

up to ∼1dB for both SEL and L𝑝,𝑝𝑘 . However, the increase in the noise level cannot be

obtained linearly from the volumetric airflow rate being 0.4m
3
/min/m to 0.5m

3
/min/m or

0.5 m
3
/min/m to 0.6m

3
/min/m. As discussed in section 6.1.3, the pressure increases with

the mass airflow rate, which leads to the nonlinear acoustic characteristics of the bubble

curtain with increasing air flow rates. By comparing the noise levels for the lower, median
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Figure 6.10: OWF foundation: comparison of the sound pressure levels for varying diameter of the outer bubble

curtain with the radius of the inner bubble curtain being 50m (black line), 75m (red line) and 100m (blue line).

SEL (top). L𝑝,𝑝𝑘 (bottom). Sound levels are given at 750m from the centre axis of the pile and at 2m above the

seabed surface.

and higher values of the air flow rates at the nozzle, a deviation of 1 dB can be expected

as can be read from Fig. 6.10. As observed from the field test, the pressure decreases

nonlinearly with the distance between the sensor and the air feeding point, which leads to

the variation in the airflow at the nozzle. The performance of the air-bubble curtain system

relies strongly on both the volumetric airflow rates and the geometrical configuration of

the DBBC.

6.4.5 Summary of the analysis
Due to the uneven distribution of the air flow velocity along the main hose, the acoustic

insertion loss of the air-bubble curtain depends strongly on the air injection rate and the

size of the bubble curtain. Within the critical frequency spectrum of interest in this project,

the nozzle size and spacing seem to have less impact on the acoustic performance of the

bubble curtain. However, the flow velocity through each nozzle can drop significantly

away from the air-feeding points especially for longer pipes. This, in turn, can result in

a strong azimuth-dependent acoustic field, i.e., the noise reduction achieved at different

azimuthal positions may vary significantly due to the inhomogeneous air-bubble cloud
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formed.

6.5 Validation
In this section, the case examined is based on an offshore wind farm (OWF) foundation

installation campaign in 2018 [29, 68]. The material properties and the geometry of the

model are summarised in Table 6.3. The forcing function is defined as the smoothed

exponential impulse as shown in Fig. 6.11 (A), which results in approximately 2000kJ input

energy into the pile. The seabed at this foundation consists of a thin marine sediment

layer overlaying a stiff bottom soil half-space. The configuration of the DBBC system is

presented in Table 6.4. The inner bubble curtain is positioned at 105m from the pile and

the outer bubble curtain is positioned at 145m from the pile.

6.5.1 Axisymmetric model
The validation study for the cylindrically symmetric noise prediction model is examined

first to ensure the model’s accuracy in predicting sound propagation. This validation

case involves comparing the model’s predictions with field data from OWF foundation

installation.

The variation in the flow velocity through the nozzles is shown in Fig. 6.11 (top), which

is due to the drop of the pressure during the transportation of the air. In Fig. 6.12 (bottom),

the evolution of the pressure field in time is shown for the point positioned 2m above the

seabed at 750m radial distances from the pile. The arrival of the pressure cones at around

0.5s after the impact of the pile is in line with the expectations regarding the arrival time

of the direct sound waves travelling with the speed of sound in the water at the distance of

750m from the pile. As can be seen in the one-third octave band for both the unmitigated

(the black line) and mitigated (the grey line) fields in Fig. 6.12 (top), the performance of the

bubble curtain is more efficient at higher frequency bands approximately above 500Hz.

The overall SEL and L𝑝,𝑝𝑘 for both unmitigated and mitigated fields are summarised in

Table 6.5. The zero-to-peak pressure level (L𝑝,𝑝𝑘) in dB re 1 𝜇P𝑎 and the sound exposure

level SEL in units of dB re 1 𝜇P𝑎2𝑠 are defined as:

L𝑝,𝑝𝑘 = 20log(
max |𝑝(𝑡)|

𝑝0 ), SEL = 10log(
1
𝑇0 ∫

𝑇2

𝑇1

𝑝2(𝑡)
𝑝20

𝑑𝑡) (6.19)

in which 𝑇1 and 𝑇2 are the starting and ending of the predicted time signature with the

Table 6.3: Basic input parameters for the validation case.

Parameter Pile Parameter Fluid Marine sediment Bottom soil

Length [m] 75 Depth [m] 40.1 1.5 ∞
Density [kg/m

3
] 7850 Density [kg/m

3
] 1000 1621.5 1937.74

Outer diameter [m] 8 𝑐𝐿 [m/s] 1500 1603 1852

Wall thickness [mm] 90 𝑐𝑇 [m/s] - 82 362

The penetration depth [m] 30.5 𝛼𝑝 [𝑑𝐵/𝜆] - 0.91 0.88

Maximum Blow Energy [kJ] 2150 𝛼𝑠 [𝑑𝐵/𝜆] - 1.86 2.77
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Figure 6.11: OWF foundation: (top) input forcing function in time and frequency domain; (bottom) flow velocity

through each nozzle along the hose with the solid line indicating the air flow at the inner BBC and the dash line

being the outer one.

Table 6.4: Basic input parameters of the air-bubble curtain system.

Parameter Value

location of the inner bubble curtain 𝑟𝑏𝑐 [m] 105

location of the outer bubble curtain 𝑟𝑏𝑐 [m] 145

Nozzle diameter 𝑑𝑛 [mm] 1.5

Nozzle spacing 𝑦𝑛 [m] 0.30

Air flow rate 𝑞𝐹𝐴𝐷 [m
3
/min/m] 0.5

Spreading coefficient 𝜆 [-] 0.1

sound event in between and pulse duration 𝑇0 = 𝑇2−𝑇1 being 1 second and 𝑝0 = 10−6P𝑎 is
the reference underwater sound pressure.

The sound field without noise mitigation systems is predicted by the model developed

in [29]. The prediction lies within the accuracy of the measurement equipment of the

deviation within 1 or 2dB from the measured sound levels. The measured sound levels
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Figure 6.12: OWF foundation: (top) evolution of the pressure field for the mitigated field with the use of DBBC

system at 750m (black line) and 1500m (grey line) from the pile; (bottom) one-third octave band of the pressure

field at 750m for both unmitigated field (black line) and mitigated field (grey line).

Table 6.5: Noise mitigation assessment at the foundation. All values are given at a distance of 750m and 1500m

from the pile. SEL are given in the unit of dB re 1𝜇 𝑃𝑎2𝑠 and L𝑝,𝑝𝑘 in the unit of dB re 1𝜇 Pa.

Scenarios @750m SEL L𝑝,𝑝𝑘
Noise prediction for the unmitigated field 182 201

Noise prediction for the mitigated field with DBBC system 166±1 185±1
Measurement sound levels 165 168 184 187

Modelled noise reduction Δ𝑠 15 ±1 15±1
Measured noise reduction Δ𝑚 14 ∼17 14 ∼17

Scenarios @1500m SEL L𝑝,𝑝𝑘
Noise prediction for the unmitigated field 178 196

Noise prediction for the mitigated field with DBBC system 164±1 181±1
Measurement sound levels 163 164 185

Modelled noise reduction Δ𝑠 14 ±1 15 ±1
Measured noise reduction Δ𝑚 14 ∼ 15 11
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indicate a range of 14 to 17dB noise reduction at 750m achieved by the DBBC system for

both SEL and L𝑝,𝑝𝑘 . At a further distance, the 1500m away from the pile, the noise reduction

of 14 to 15dB can be achieved for SEL and 11 dB for L𝑝,𝑝𝑘 . The modelling of the DBBC

system showed an average noise reduction of 15dB for both SEL and L𝑝,𝑝𝑘 at 750m, and

14dB for SEL and 15dB for L𝑝,𝑝𝑘 at 1500m. Due to variations in flow velocity through the

nozzle at different azimuthal directions, a deviation of ±1dB in the noise reduction levels

can be expected. The upper and lower bounds of the sound levels show that the range of

prediction is within the measured data range, which indicates a great agreement between

the noise prediction and the measured data at various horizontal distances from the pile,

and verifies the validity of the complete model.

6.5.2 Three-dimensional model
To examine the maximum noise reduction potential and the influence of a gap in the

azimuthal direction of the air-bubble curtain, the following two scenarios are considered

by using the three-dimensional model:

• scenario 1 - elimination of the water-borne path at the position of the air-bubble

curtain leaving the propagation of the waves through the soil unaffected;

• scenario 2 - same as scenario 1, but with an additional gap throughout the seawater

column, in which noise presumably leaks due to the malfunctioning of the air-bubble

curtain.

Figure 6.13: Schematic depiction for the gap in the ideal noise barrier caused by the malfunction of the noise

mitigation system.

Similarly to the discussion in the section 5.5.1, in scenario 1,the noise sources in the

water column are completely eliminated while the waves emitted from the soil source

propagate in the exterior domain, representing an ideal noise blockage in the water column.

The scenario 2 includes an additional gap, as illustrated in Fig. 6.13. This gap is incorporated

into the model to simulate the impact of a malfunctioning air-bubble curtain. The transfer

function accounting for this gap is detailed in Fig. 2.23 in the section 2.4.4 in the azimuthal
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Figure 6.14: Azimuthal dependent SEL and L𝑝,𝑝𝑘 for partially blockage of the water borne path with a thin gap

over the entire water depth: the red solid line indicates the SEL and the red dashed line reads the L𝑝,𝑝𝑘 for the fully
blockage of the water borne transmission path; the black solid and dashed lines are SEL and L𝑝,𝑝𝑘 for partially
blockage case.

direction. The scenario 2 simulates real-world imperfections that might lead to noise

leakage. The comparison between the two scenarios provides insight into the curtain’s noise

reduction potential and how sensitive it is to any malfunctions of the bubble curtain.The

problem is solved using a three-dimensional acousto-elastic boundary integral formulation,

as discussed in section 6.6. The maximum noise reduction potential is determined by

comparing the difference between the results from the unmitigated sound field and the

one from scenario 1. The difference between the scenario 1 and scenario 2 allows for an

examination of the influence of the gap in the air-bubble curtain.

As shown in Fig. 6.14, modelling perfect noise mitigation at the position of the outer

bubble curtain results in maximum noise reduction levels of 32 dB for SEL and 36 dB for

L𝑝,𝑝𝑘 . When a gap in the bubble curtain exists, the SEL deviates by up to 1 dB at a receiver

positioned at 𝜃 = 0◦ and by up to 6 dB for L𝑝,𝑝𝑘 . The variation of L𝑝,𝑝𝑘 in the azimuthal

direction is much larger, while the variation in SEL is less significant. Since most of the

energy is channelled through the seabed, the influence of a small gap over the water depth

is less critical, leading to an increase of 2 to 3 dB in SEL.

6.6 Conclusions
This chapter presents a multi-physics model for modelling the noise emission for offshore

pile driving with the use of a DBBC system. The mathematical statement of the complete

problem is given and the adopted method of solution is described for each module. The

compressible flow model is developed to predict the operational parameters for bubble

curtain generation from the hose and the nozzle. Nonlinear characteristics of the pressure

distribution are observed both in the model results and in the field test. The pressure
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amplitude increases with volumetric airflow rates and decreases with the distance from the

air injection point. The field test reveals the inherent variation in the airflow circulation,

which leads to the varying performance of air-bubble curtain in azimuth direction. The

hydrodynamic model aims to capture the fluid and bubble dynamic properties during the

development of bubble curtains. The transmission coefficients derived from the acoustic

module are coupled to the existing noise prediction model for the unmitigated field from

pile driving. The sensitivity study has been performed to examine the critical parameters

for the performance of the air-bubble curtain system. Both volumetric airflow rates and the

configuration of the DBBC play significant roles in the efficiency of the air bubble curtain

system. Results are presented for an offshore pile installation campaign in the German

North Sea. The comparison between the measured data and model predictions provides

the validation case of the model. The modelling approach couples four sub-modules and

facilitates more accurate representation of the noise mitigation system. The multi-physics

model allows for the examination of the optimal hose-nozzle and DBBC configurations

under the operational constraints.

With the use of a multi-physics model for each subsystem, a three-dimensional bound-

ary integral formulation is developed for the solution of the three-dimensional coupled

vibro-acoustic problem in offshore pile driving. The developed model allows to examine

the performance of the air-bubble curtains that can vary significantly in azimuth due to

the inherent variations in the airflow circulation through the perforated pipes positioned

on the seabed surface or other environmental conditions. The ideal perfect noise blockage

is examined for an offshore pile driving, which provides the maximum noise reduction

potential. When a small gap is included through the BIE, it leads to a deviation of up to

1 dB for SEL and 6 dB for L𝑝,𝑝𝑘 as compared to the fully-blockage case. The measured

levels indicate there is up to 3 dB variation in azimuth during the installation with the

use of DBBC system. To further investigate this phenomenon, the insertion loss of the

bubble curtain system should be calculated based on the configuration of the system. The

proposed formulation can be further implemented for arbitrary boundary conditions in-

cluding three-dimensional wave field from pile driving or transmission losses varying in

the circumference.
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7
Sound maps for impact pile

driving

The installation of foundation piles in offshore wind using traditional hydraulic impact
hammers raises concerns about the impact of underwater noise on marine life. To address
this issue, the offshore wind industry investigates noise mitigation techniques, such as air
bubble curtain system, hydro-sound damper system and other resonator-based noise mitigation
systems, to reduce sound levels and expedite installation. Modelling underwater noise requires
various approaches for sound propagation in the vicinity of the pile and sound propagation
at large distance with varying bathymetry. A modelling framework for propagating the
underwater sound in a range-dependent environment is introduced in this Chapter. Sound
maps can be used for regulators and other experts to assess the noise impact on the environment.

This chapter is partly based on the book chapter� [182]:

Sertlek, O., Peng, Y., Tsouvalas, A. (2024). Modelling Pile-Driving Sound and Mitigation in Realistic Environments.

In: Popper, A.N., Sisneros, J., Hawkins, A.D., Thomsen, F. (eds) The Effects of Noise on Aquatic Life. Springer,
Cham. https://doi.org/10.1007/978-3-031-10417-6-149-1
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W
ith more offshore wind farms being constructed at greater water depths, the impact

of anthropogenic noise is escalating due to the increased number of offshore founda-

tions for wind turbines. To ensure the sustainability of offshore wind energy, underwater

noise generated during pile installation ismonitored and regulated. Various noisemitigation

systems are implemented to lessen the impact of impulsive noise. Regulatory bodies impose

standards, particularly in Germany, focusing on dual sound metrics such as SEL05 and L𝑝,𝑝𝑘
at a given distance from the pile [36]. Environmental impact assessments are mandatory

before offshore foundation construction to minimize threats to marine and other species [6].

These assessments require evaluation not only of dual sound metrics within 750m of the

pile but also of sound impact across broader areas, necessitating the generation of sound

maps indicating noise impact on habitats of resident species. Assessment typically involves

evaluating various sound sources, including shipping noise, seismic airgun noise, and other

anthropogenic noise [183]. Quantitative assessment of sound exposure thresholds informs

impact studies, which often focus on evaluation of species quantities within effect zones

and cumulative exposure to successive pile driving events. While acoustic modelling for

shipping noise and seismic airguns is well-developed, focus on pile driving noise and its

spatial propagation in the ocean environment is limited.

Noise modelling for environmental impact assessments often employs simplifiedmodels

because most noise sources are situated in the water column or below the sea surface [184,

185]. For modelling offshore pile driving noise, simplified models like cylindrical spreading

models are common for evaluating marine species’ effect zones [81]. Other models based

on parabolic equation and wavenumber integration approach often approximate the seabed

as an equivalent fluid medium [161, 186, 187]. However, these models lack accuracy when

specific soil conditions need to be considered or when the majority of the energy is radiated

in the soil in the form of elastic wave as is the case in pile driving operations. Detailed

modelling of the seabed, which involves considering both shear and compressional waves,

is often disregarded in shipping and airgun noise models because the acoustic sources are

located in the seawater column. These models typically treat the seabed as an equivalent

fluid. However, this modelling assumption is usually inadequate for impact pile driving,

where a significant amount of energy is radiated from the pile embedded into the seabed

to a considerable depth.

This chapter introduces a methodology to create sound maps in the case of impact

piling including mitigation and considering the complex nature of the sound generation

mechanism introduced in earlier chapters. The model consists of sub-models, including

source field generation and sound propagation in range-dependent shallow water environ-

ments. The sound source model utilizes a three-dimensional axisymmetric pile–soil-water

model for impact pile installation in layered media, as described in Chapter 3. Modelling ap-

proaches for mitigating the field using air bubble curtain systems are described in Chapter 6.

The sound propagation model used for generating sound maps is a normal mode model

designed to simulate propagation loss in range-dependent acousto-elastic half spaces with

varying bathymetry. This chapter concludes with a theoretical case study of underwater

noise emission from an impact pile installation in the North Sea with and without the use

of an air-bubble curtain system. Numerical simulations employing the adopted modelling

framework can be utilized by marine biologists to assess the environmental impact of

underwater sound on marine species.



7.1 Model description

7

151

7.1 Model description
The ocean environment including the pile driving noise sources with and without the use

of noise mitigation systems is depicted in Fig. 7.1. Complex environmental conditions,

i.e. currents, surface waves, geographical configurations, and varying bathymetry, often

impact sound propagation and the efficacy of various noise mitigation systems employed

in offshore pile driving. By subdividing the modelling approach into subsystems, a more

detailed noise generation model can be employed in the vicinity of the noise source, where

range-dependence is less dominant, and the domain can be modelled as a horizontally

stratified acousto-elastic half space. For large-range sound propagation modelling, due to

the spatial scale of the model, the normal mode model adopts the adiabatic approximation

for range dependency. Other approaches such as the mode-flux theory and wavenumber

integration approaches, though not discussed here, can be adopted as alternative approaches

for modelling the propagation loss when layered elastic properties can be disregarded,

especially when considering higher frequencies.

Figure 7.1: Schematic plot for range-dependent ocean environment, where it consists of multiple sound sources,

marine life, seawater, marine sediment and sound recording system. © Delft Cymatics.

The primary objective of environmental impact assessment is to determine the received

noise level (RL) based on the sound source level (SL) and propagation loss level (PL). The

relationship between the two is expressed as follows [183, 188, 189]:

RL = SL−PL (7.1)

Thus, a multi-model approach is typically necessary to separately model the noise source

and sound propagation, as indicated in the adopted approach in Fig. 7.2. In Section 7.2, the

modelling approach for the sound source level (SL) is outlined, including the transformation

of the sound source level for both fluid and soil sources. In Section 7.3, the normal-mode

propagation modelling approach is utilized to determine propagation losses (PL), providing

a description for the range-dependent environment in the far field. In Section 7.4, a case

study is conducted to generate sound maps based on an offshore wind farm in the North

Sea. The main conclusions of this chapter are presented in Section 7.5.



7

152 7 Sound maps for impact pile driving

7.2 Sound source modelling
A semi-analytical model is used for evaluating the noise emission from the impact pile

driving with or without the use of the air-bubble curtain system. The dynamic response of

coupled system, consisting of the shell structure and the acousto-elastic media, is solved

first through the noise generationmodule in the vicinity of the pile as described in Chapter 3.

A set of the response functions in terms of pressure, velocity, displacement and stress

tensors are obtained as input for the sound propagation model to propagate the wave field

at larger distances as discussed in section 3.3.

The input to the sound propagation module is provided by the sound generation module

through a boundary integral formulation [109, 115]. The solution of the acousto-elastic

wavefield employs Somigliana’s identity in elastodynamics and Green’s third identity

in potential theory [115, 116]. The velocity, displacement and pressure/stresses on the

cylindrical boundary surface 𝑟 = 𝑟𝑠 are obtained from the sound generation module. The

cylindrical surface in both the fluid and the soil domains need to be discretized when

employing the direct BEM associated with the acousto-elastic layered half-space Green’s

functions. The boundary integral equation formulated in the three-dimensional case is

given as:

𝒖̃Ξ
𝛼 = ∫

𝑆𝑓(
𝑈Ξ𝑓
𝛼𝑟 (𝒓,𝒓𝑠) ⋅ 𝑝̃(𝒓𝑠)𝐻̃ (𝒓𝑠)−𝑇Ξ𝑓

𝛼𝑟 (𝒓,𝒓𝑠) ⋅ 𝑢̃
𝑓
𝑟 (𝒓𝑠)𝐻̃ (𝒓𝑠))𝑑𝑆

𝑓 (𝒓𝐵𝐶)

+ ∑
𝛽=𝑟,𝜃,𝑧

∫
𝑆𝑠(

𝑈Ξ𝑠
𝛼𝛽 (𝒓,𝒓𝑠 ,𝜔) ⋅ 𝑡

𝒏
𝛽 (𝒓𝑠)−𝑇

𝒏,Ξ𝑠
𝛼𝛽 (𝒓,𝒓𝑠 ,𝜔) ⋅ 𝑢̃𝛽(𝒓𝑠))𝑑𝑆

𝑠
𝑠 (𝒓𝐵𝐶)

(7.2)

in which 𝐻̃ (𝒓𝑠) is the angular dependent transmission coefficient of the bubble curtain. In

the case of unmitigated sound field, 𝐻̃ (𝒓𝑠) = 1. The displacements and stresses/pressure on

the cylindrical surface at 𝒓 = 𝒓𝑠 , 𝑢̃
𝑓
𝑟 (𝒓𝑠), 𝑝̃(𝒓𝑠), 𝑡𝒏𝛽 (𝒓𝑠), 𝑢̃𝛽(𝒓𝑠), are the source terms obtained

from the noise prediction module generating the non-mitigated field from pile driving [29].

The solution allows for solving the dynamic problem in an axisymmetric acousto-elastic

medium with non-axiymmetric sources at the position of the bubble curtain. The angular

Fourier decomposition is employed in the boundary integral equation formulation, which

enable the acceleration of computation. The complete modelling chain for the derivation

of the transfer function 𝐻̃ (𝒓𝑠) of the bubble curtain has been described in Chapter 6.

7.3 Sound propagation in range-dependent environ-
ments

A crucial aspect involves appropriately assessing the soundscape by modelling the spa-

tial and spectral distribution of sound radiated during pile driving. Predicting the Sound

Exposure Level (SEL) from pile-driving activities necessitates intensive computations for

multiple sources and receiver points across a broad frequency band, accounting for the

hearing range and swimming depths of marine animals. To propagate the wave field at

larger distances, up to hundreds of kilometres away from the noise sources, a detailed mod-

elling approach is often required to capture variations in bathymetry, sediment properties,

and wave speeds in range-dependent environments. Various modelling approaches, such as

normal mode methods (NM) [190], parabolic equation approaches [186, 187], wavenumber
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integration methods (WNI) [116], ray tracing [191], and energy flux approaches [122, 192],

have been applied in long-range sound propagation studies [193]. Depending on prevailing

environmental conditions and the frequency range of interest, different approaches are

preferred. In recent decades, propagation models have been commonly applied to analyse

shipping noise, seismic airgun noise, and predict sound from sonars. With the growing de-

mand for renewable energies, pile driving noise has begun to contribute to the soundscape,

necessitating specific tailored approaches for modelling long-range sound propagation,

particularly for low-frequency waves and sources embedded in the seabed. These factors

trigger more energy exchange and interaction with the sediment.

Figure 7.2: Geometry of the model for the simulation of the pile-driving noise: 1) noise generation model aiming

at the sound source; 2) sound propagation model focuses on the coupling of the sound source model to the

range-dependent propagating model.

In this section, a sound propagation model based on a normal mode approach in the

range-dependent offshore environment is utilized to propagate the wave field generated

from the detailed noise source model up to 750m away from the pile. This model describes

the elastic properties of the seabed, allowing for the capture of energy emitted in the

sediment layers. With the application of noise mitigation systems, such as air bubble

curtain systems, this effect becomes significant, as a large amount of energy can tunnel

under the air-bubble curtain and leak back into the water column.

As illustrated in Fig. 7.2, the sound source model generates fluid and soil sources at

the cylindrical surface 𝒓 = 𝒓𝑠 up to a closer radial distance from the pile, where the sound

propagation model is coupled to the noise generation model. The sound sources in both

the fluid and sediment are computed by the sound source model, which determines the

amplitude of the pressure sources and the soil volumetric source at the coupling distance

from the pile. This coupling depth encompasses the entire water column and extends to a

certain depth below the penetration depth of the pile to ensure convergence of the result.

As discussed in Chapter 3, the direct Boundary Element Method (BEM) is often used

to accurately propagate fluid and soil sources to the exterior field. However, the Green’s

function used in this approach is applicable to stratified fluid and elastic media. To propagate

the wave field in a range-dependent environment, different solutions are required, as

the analytical solution discussed in Chapter 2, which involves wavenumber integration,

cannot be directly employed. Models such as coupled normal mode (NM), adiabatic mode

approximation, and Parabolic Equation (PE) models are most practical for solving sound
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propagation in range-dependent bathymetry [161]. However, the range-dependent NM

and PE solutions are computationally intensive. The solutions have been widely applied for

underwater sound propagation when the source is solely located within the water column.

To overcome computational problems in shallow waters, mode-flux model and adiabatic

NM model (KRAKEN) are both essential tools to model sound propagation. The energy flux

model brings together the accuracy of the adiabatic range-dependent normal mode and the

speed of Weston’s flux theories for the shallow water propagation problems [194]. As a

hybrid method based on the normal mode and flux theories[122], the model considers the

bathymetric variations, range-dependent sediment properties, the sea surface and seabed

influences. The accuracy of the model is verified against a detailed multi-model comparison

based on the propagation loss calculations of various methods (adiabatic mode theory,

coupled modes, ray tracing, parabolic equation, and flux theory) [122] and compared with

the measurements for the shipping [192] and explosions [195].

Figure 7.3: Example of range segmentation for the coupled-mode formulation in KRAKEN [161].

The normal mode model used in this chapter is based on KRAKENC [190], including the

elastic properties of the sediments and adiabatic approximation for the range dependency.

KRAKEN as depicted in Fig. 7.3 is a normal mode program designed for range-varying

underwater acoustic environments. KRAKENC is an extended version of KRAKEN that

calculates complex eigenvalues, enabling the computation of leaky modes and accounting

for material attenuation in elastic media. The results generated by the KRAKEN model

provide a field represented as an array, considering a specified range and a series of source

depths. The adiabatic approximation was initially introduced by Pierce in [196], with the

derivation of the solution further detailed in [190, 197, 198]. This approximation, used in

the KRAKENC model, assumes that there is no transfer of energy between different modes,

allowing the contributions of partially coupled matrices to be neglected. This simplification

significantly reduces computational costs.

To characterize the noise sources generated from pile driving, particularly when a

pile is embedded to a significant depth in marine sediment, it is essential to accurately

model the sources in both fluid and elastic media due to the substantial energy exchange

between the water column and seabed. With the source modelling discussed in section 7.2,

the pressure and velocity fields in the water column and the stress and displacement

fields in the sediment can be obtained. In the fluid domain, the amplitude of the noise

sources is characterized by the pressure as shown in Eq. (7.3). In the sediment, where both
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compressional and shear waves exist, the source amplitude must be properly quantified.

The stress tensor in the elastic medium can be expressed as the sum of a volumetric stress

tensor and a deviatoric component. The volumetric stress tensor can be considered as

the equivalent pressure in the elastic medium and is used in this analysis to quantify the

amplitudes of the soil source as shown in Eq. (7.4).

The volumetric source level at 𝒓 = 𝒓𝑠 in both the water column and the soil domain is

defined as follows:

𝑃𝑓 (𝑧𝑖,𝜃𝑛,𝜔) = 𝑝̃𝑓 (𝑟𝑠 ,𝜃𝑠 , 𝑧𝑠 ,𝜔), 𝑖 = 1, ...,𝑁𝑓 ;𝑛 = 1, ...,𝑁𝜃 (7.3)

𝑃𝑠(𝑧𝑗 ,𝜃𝑛,𝜔) = −𝐾∇2𝜙̃(𝑟𝑠 ,𝜃𝑠 , 𝑧𝑠 ,𝜔) = −(𝜆+
2
3
𝜇)∇𝑢̃𝑠(𝑟𝑠 ,𝜃𝑠 , 𝑧𝑠 ,𝜔), 𝑗 = 1, ...,𝑁𝑠 ;𝑛 = 1, ...,𝑁𝜃

(7.4)

In which 𝑁𝑓 and 𝑁𝑠 indicate the total number of sources in fluid and soil, respectively.

The pressure 𝑝̃𝑓 in the water column and the displacement tensors in the soil are obtained

from the noise generation model through a boundary element integration as presented in

Eq. (7.2). The source level for each fluid and soil source is defined as follows:

SL𝑓 ,𝜃𝑛 ,𝑗 = 10log10(
|𝑃𝑓 (𝑧𝑖,𝜃𝑛,𝜔)|2

𝑝̃2
ref

)
, 𝑖 = 1, ...,𝑁𝑓 ; 𝑛 = 1, ...,𝑁𝜃 (7.5)

SL𝑠,𝜃𝑛 ,𝑗 = 10log10(
|𝑃𝑓 (𝑧𝑗 ,𝜃𝑛,𝜔)|2

𝑝̃2
ref

)
, 𝑗 = 1, ...,𝑁𝑠 ; 𝑛 = 1, ...,𝑁𝜃 (7.6)

For each source, the sound propagation model is conducted within an angular slice, assum-

ing no energy channelling between different slices. This assumption is valid when there is

no substantial energy exchange in the azimuthal direction, such as when the transitions

between slices are relatively smooth. The source level definition also eliminates phase

information, as only energy is propagated. Since acoustic modelling is performed over

large distances, the influence of phase differences between the sources is insignificant

compared to the amplitude due to the energy carried by the waves.

The received sound level is then given by (𝜉 = 𝑓 ,𝑠),

RL𝜉,𝑟,𝑧,𝜃𝑛 = SL𝜉,𝜃𝑛 ,𝑗 −PL𝜉,𝑟,𝑧,𝜃𝑛 ,𝑗 , 𝑛 = 1, ...,𝑁𝜃 (7.7)

The final received sound level is the sum of all sources as,

RL𝑟,𝑧,𝜃𝑛 = 10log10

𝑁𝑓 +𝑁𝑠

∑
𝜉

10
RL𝜉,𝑟,𝑧,𝜃𝑛

10 , 𝑛 = 1, ...,𝑁𝜃 (7.8)

The broad-band SEL can be expressed by the summation of received sound levels from

all frequency of interest,

SEL(𝑟,𝑧,𝜃𝑛) = 10 log10

𝑁𝑓

∑
𝜔𝑐

10
RL𝑟,𝑧,𝜃𝑛 (𝜔)

10 , 𝑛 = 1, ...,𝑁𝜃 (7.9)
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Figure 7.4: The radial slicing of bathymetry as input of sound mapping (on the left panel). Selected water depth

profiles from the same area (on the right panel). Propagation losses obtained for the configuration with the fluid

source positioned at 10m water depth.

Range-dependent propagation modelling using KRAKEN can be employed to generate

sound maps, offering insights into the Sound Exposure Level (SEL) during offshore wind

farm constructions. Sound maps can be computed based on a series of radial slices between

the source location and receiver point, as depicted in Fig. 7.4. Notably, the bathymetry

slices reveal that range-dependent differences are typically minor in the close distance

from the sources, where a range-independent modelling approach is applied.

7.4 Numerical implementation
In this section, the case study is considered of an offshore wind farm in the North Sea,

employing a double bubble curtain system (DBBC). The procedure for generating the sound

map is illustrated in Fig. 7.5. The selection of the offshore wind farm location is based on

potential sites outlined in the EMODNET Human Activities data portal [199], as depicted in

the bathymetry map in Fig. 7.6. The pile parameters reflect monopile properties detailed in

Chapter 3 [29]. Specifically, the pile dimensions are: pile length of 76.9 m, diameter of 8 m,

and wall thickness of 90 mm. The water depth at the piling location is 39.9 m. The seabed

composition comprises a thin marine sediment layer atop a stiff bottom soil half-space.
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All soil and fluid layers are assumed horizontally stratified. The maximum blow energy

applied is 1750 kJ and the force signature is similar to that considered in section 3.5.2.

Initially, the pressure field is modelled using the noise generation model for sound

sources up to a radial distance of 750 m from the pile. The Source Level (SL) is determined

based on the wave field at 750 m and calculated for multiple receiver depth locations with

a resolution of 0.1 m. It is worth noting that this resolution may need refinement following

convergence tests for improved accuracy. Beyond the 750 m range, assuming a vertical

line source, sound propagation is computed using the normal mode method with adiabatic

approximation. The sound pressure level is then averaged over the depth.
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Figure 7.5: Activity flow for generating a sound map of impact pile installation with and without noise mitigation

systems. The process includes: (1) defining input parameters such as soil conditions, bathymetry, environmental

conditions, pile and hammer type, configuration, and air flow rate for the air-bubble curtain; (2) modeling

underwater sound generated by impact pile driving; (3) modeling sound propagation up to a distance with

constant bathymetry and soil layering; (4) modeling the air-bubble curtain system when noise mitigation is

applied; and (5) propagating sound in a range-dependent environment and generating sound maps by integrating

the results.

The approach taken in this analysis to handle range dependency involves discretizing
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the range-dependent domain into multiple segments, as illustrated in figure 7.3. When

transitioning between these segments, the acoustic modes couple adiabatically, indicating

no significant energy transfer to higher or lower modes. Additionally, the analysis computes

the sound field on an azimuthal slice basis, assuming negligible energy transition between

different azimuthal slices. While these modelling assumptions may impact the results, they

align with standard practices in underwater acoustics and have been demonstrated to offer

a reasonable approximation of the Sound Exposure Level (SEL) at considerable distances

from the acoustic source.

Figure 7.6: Bathymetry map and the location of the foundation in this analysis.

In the process of creating soundmaps, the sound propagationmodel calculates underwa-

ter acoustic propagation for selected radial slices obtained from the bathymetry, as depicted

in Fig. 7.4. The SEL is then computed for each radial slice with a 3-degree angular resolu-

tion, with each slice corresponding to distinct bathymetry and range-dependent sediment

properties.

Figure 7.7 illustrates a sound map generated using the approach described above,

depicting both the mitigated and unmitigated sound fields. Both scenarios show greater

energy propagation toward deeper water areas. The mitigated wave field is assessed under

the assumption of employing a Double Bubble Curtain (DBBC) system with standard

configuration. Specifically, the inner bubble curtain is positioned 75m from the pile, the

outer bubble curtain is situated 150m from the pile, and the flow rate is set at 0.5 𝑚3
/s/m.

In this analysis, the DBBC system is modelled using the complete modelling chain outlined

in Chapter 6. The sound map is calculated across a broadband Sound Exposure Level (SEL)

spectrum, covering the frequency bandwidth of interest.

Figure 7.8 illustrates a sound map generated for a single-frequency excitation at 125
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Hz based on the force amplitude of a single impact piling strike, applied to the same pile

at a different location where more abrupt bathymetry changes are present. The deep

trench, represented by the dark orange shades in the bathymetry map, clearly allows more

propagating modes to carry energy, extending the sound field further. In contrast, sound

propagation is significantly less efficient in the thinner shallow areas compared to the

deeper water regions.

Figure 7.7: Sound map based on a single impact piling strike with (right) and without noise mitigation system

(left).

7.5 Conclusions
This chapter introduces a comprehensive framework for modelling underwater noise

generated by impact pile driving, with and without the implementation of an air bubble

curtain system. The framework accounts for various environmental factors, such as elastic

multilayered sediments and range-dependent water depth, crucial for accurately predicting

sound propagation during offshore wind farm constructions [35, 37]. The utilization of

sound mapping facilitates the estimation of maximum impact distances based on different

sensitivity thresholds of marine animals. Additionally, these sound maps can be weighted

according to marine animals’ hearing sensitivities and swimming depths across a broad

frequency spectrum, providing valuable input for biologists.

In summary, the following procedure outlines the steps involved in generating sound

fields during offshore wind farm constructions:

• Modelling underwater sound for impact pile driving in the near-field.
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Figure 7.8: Effect of trench effect: sound mapping based on the bathymetry (left) for the simulation pile-driving

noise. The sound pressure is averaged over the depth. SEL is calculated for a single-frequency excitation at 125

Hz (right).

• Modelling the air bubble curtain system when such a noise mitigation system is

applied.

• Modelling sound propagation up to a distance of constant bathymetry and soil layer-

ing using a high-fidelity sound propagation model that considers range-independent

elastic properties, including particle motion and pressure.

• Transformation of the wave field into Source Level (SL) for both fluid and soil sources.

• Propagation of SL and prediction of the propagation loss (PL) in the range-dependent

elastic half-space beyond 750 m.

• Generation of sound maps by combining modelling results for individual radial slices

and sources over the water column and the seabed.

The proposed approach advocates the utilization of a diverse suite of mathematical

models at distances that are both accurate and feasible to implement. Uncertainty in

environmental and pile parameters can be examined individually for each region. The

pile-driving source model can generate outputs for sound pressure, particle velocity, and

acceleration in the water column, as well as stresses and displacements in the sediment

layers, essential for assessing the impact of sound on fish and invertebrates. More detailed

propagation modelling tools for longer distances could be employed in future research.

Additionally, the sound propagation modelling approach for the air bubble curtain could

be enhanced by considering detailed backscattering effects and adhering to continuity

conditions for acousto-elastic waveguides.
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8
Conclusions and

recommendations

8.1 Conclusions
Environmental noise resulting from offshore impact pile driving has raised concerns re-

garding its potential threat to marine mammals and fishes. Although alternative wind

turbine foundations, such as floating turbines, are under development, the industry still

faces many technical challenges. Given that monopiles are the primary foundation type,

the installation of larger foundation piles leads to the radiation of more energy at lower

frequencies. Predicting the noise levels prior to installation becomes crucial for environ-

mental impact assessments. Understanding the risk of noise levels before construction

enables the preparation of noise mitigation plans that can be adjusted based on potential

risks.

The main strategies to mitigate underwater noise from offshore impact pile driving fall

into two categories: controlling the noise at the source and blocking noise transmission

paths. The former is achieved through alternative piling technologies such as vibratory pile

driving or by elongating the pulse of the impact hammer. Predicting the noise when the

piles are installed by means of vibratory tools requires modelling the pile-soil interface with

a non-linear model to capture friction interaction and pile-soil slip. This thesis focuses on

modelling impact pile driving with the assumption of a non-slip condition between the pile

and the soil. Elongating the pulse could shift the frequency spectrum of the radiated waves

by directing more energy towards lower frequencies, potentially reducing the amplitude of

the radiated acoustic waves. However, this alternative piling technology usually requires

combination with other noise mitigation systems either in the near-field or the far-field. In

many cases, various combinations of near-field and far-field noise mitigation systems are

necessary to meet noise thresholds set by regulators.

Chapter 2 delved into the mathematical formulation necessary for addressing acousto-

elastic problems in offshore environments. By deriving fundamental Green’s functions and

boundary integral equations, this chapter provided a robust framework for analysing noise

propagation, particularly in scenarios involving complex soil layers and large distances. The

Green’s function in the chapter tailored to the ocean environment with the description of
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the soil as a layered elastic half-space, allowing for soil decompositions and outgoing waves

satisfying the radiation condition of the problem. A robust root-finding algorithm based

on the argument principle was used, considering the searching domain crossing various

branch lines on different Riemann planes. The methodology is universally applicable in

different engineering problems given a smoothed characteristic function. The formulation

of the Green’s function laid the basis for the derivation of the fundamental solution for

Green’s tensor to be employed in the boundary integral equation (BIE). The BIE formulation

allows coupling between the near-source model and the sound propagation model. The

Green’s function and BIE formulation are extended into three dimensions, allowing for

angular dependence in the sound source model. The same approach is later adopted to

include the transmission coefficient of the air-bubble curtain and can also be applied for

other noise mitigation systems at various radial distances from the pile.

Building upon this theoretical foundation, Chapter 3 introduces a computationally effi-

cient method for predicting the wave field radiated from impact pile driving over extensive

horizontal distances. By combining accurate descriptions of pile-soil-water interactions

with far-field sound propagation modelling, this chapter presented a framework that can

achieve high precision and stability in underwater noise predictions. The methodology

involves a two-step approach: firstly, solving the coupled interaction problem of the pile

vibration in the acousto-elastic waveguide, then propagating the wave field to the far-field

using the BIE. Furthermore, the validation of these predictions against real-world data

underscored the reliability and effectiveness of the developed methodology.

The prediction of the sound level due to offshore pile driving involves considerable

uncertainties, especially in the input of such a model. The influence of the soil condition,

blow energy, hammer force, and environmental conditions such as surface waves and

currents can affect the predicted noise level to varying extents. Among all uncertainties

discussed here, the soil is considered the most uncertain component in noise prediction

as the dynamic properties of the sediment are often missing, and certain assumptions are

required. Thus, Chapter 4 shifted focus towards understanding the uncertainties inherent

in soil modelling and their impact on noise propagation. Through an exploration of statis-

tical and probabilistic methods, this chapter aimed to establish correlations between soil

parameters and resulting sound levels. By identifying these uncertainties, the uncertainties

in the soil parameters are quantified through a statistical framework. The methodology

provides more robust and reliable noise predictions, crucial for mitigating potential harm

to marine ecosystems.

Efforts to address noise pollution were further advanced in Chapter 5, where a com-

putational approach for predicting noise reduction using air-bubble curtain systems was

introduced. By coupling detailed noise prediction models with the air bubble curtain system,

this chapter demonstrated the noise mitigation potential using such a system in offshore

pile driving activities. The model includes the consideration of the development of the

air-bubble curtain over depth through an initial phase hydrodynamic model. Based on the

output of the hydrodynamic model, the acoustic properties of such a bubble mixture layer

can be obtained through an effective medium approach. The optimization of mitigation

strategies and deployment configurations promises to further enhance the effectiveness of

noise reduction efforts in marine environments.

In practice, the air bubble curtain system comprises multiple components, including
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the injection of air volume from the air compressor vessel (ACV), the transportation of

air along the riser and hoses positioned on the seabed, and the release and development

of the bubble-water mixture over the entire water depth. Without a comprehensive un-

derstanding of the multiphysics process involved in generating the air bubble curtain

system, accurately estimating its acoustic properties becomes challenging. In an effort to

address this knowledge gap, Chapter 6 introduces a multi-physics model for noise emis-

sion during offshore pile driving, integrating various subsystems to depict the complex

interactions accurately. This complete modelling chain encompasses the compressible

flow model for air transportation from the ACV to the hoses, the hydrodynamic model

considering two-phase turbulent flow and the various phases of bubble formation, and the

depth- and frequency-dependent acoustic model based on properties derived from earlier

steps. Through sensitivity analysis, this chapter highlights critical parameters influencing

air bubble curtain system performance, offering insights into optimal configurations and

operational constraints crucial for noise mitigation strategies.

Lastly, Chapter 7 presents a comprehensive method for modelling underwater sound

generation and propagation in range-dependent ocean environments. This final chapter

outlines a framework for modelling sound maps generated by impact pile driving, with

and without the implementation of an air bubble curtain system. Considering various

environmental conditions, such as elastic multilayered sediments and range-dependent

water depth, this framework is essential for accurately predicting sound propagation during

offshore wind farm constructions. Sound mapping is valuable in estimating maximum

impact distances based on different marine animals’ sensitivity thresholds, providing

important input for biologists. This chapter advocates using diverse mathematical models

at distances that are both accurate and feasible to implement, allowing examination of

uncertainty in environmental and pile parameters for each region. The pile-driving source

model outputs sound pressure, particle velocity, and acceleration in the water column, as

well as stresses and displacements in sediment layers, essential for assessing the impact of

sound on marine life. Future research could employ more detailed propagation modelling

tools at longer distances and enhance the sound propagation modelling approach for air

bubble curtains by considering detailed backscattering effects and continuity conditions

for acousto-elastic waveguides.

In conclusion, this thesis represents a significant contribution to advancing the un-

derstanding of noise pollution in offshore environments due to impact pile driving and

offers practical solutions for mitigating its adverse effects. By bridging theoretical devel-

opments with practical applications, these findings hold implications for environmental

management, sustainable offshore development, and the preservation of marine ecosys-

tems. Moving forward, continued research and innovation in this field promise to further

enhance the ability to safeguard marine life while harnessing the potential of offshore

renewable energy.
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8.2 Recommendations
Based on the key findings of this thesis, several recommendations for future research, noise

regulators, and industry practices are outlined below.

The development and application of the Green’s function in Boundary Integral Equation,

as presented in Chapter 2, offer significant potential for modelling wave fields in various

engineering domains, extending beyond offshore environments. This methodology can be

adapted for acoustic problems in the atmosphere and interior spaces, as well as vibration

issues in onshore settings.

Expanding the modelling framework to incorporate additional noise mitigation strate-

gies, such as resonator-based systems in the near field and combinations of various

mitigation methods, would enhance its versatility. Further investigation into alterna-

tive hammers, like Pulse units for prolonging impulsive durations, could also be explored

using the current modelling framework.

In terms of environmental impact assessment, there is a need to focus on a broader

range of noise metrics beyond the conventional dual sound metrics, including SEL and

L𝑝,𝑝𝑘 . Parameters such as particle motions and the kurtosis index, which are more sensitive

indicators for many underwater species, should be considered, as they respond more

directly to motion rather than pressure variations. In many countries, noise thresholds

vary significantly, often overlooking the influence of the frequency content of the emitted

sound on various species. As pile sizes increase and offshore wind farms are built in

deeper waters, standard dual sound metrics may no longer adequately reflect the impact on

marine mammals and fish populations. Tailored noise thresholds, such as particle motions

and kurtosis, could be adopted to better quantify environmental impacts. The developed

modelling framework in this thesis allows for prediction of a wide range of sound metrics

which can be chosen upon collaboration with marine biologists.

The industry should explore innovative mitigation techniques by combining different

noise reduction systems, including alternative piling methods to decrease sound levels at

the source and noise mitigation systems employed in the seawater at various distances

from the pile. New vibratory installation technologies, such as Gentle Pile Driving (GDP)

[60], are under development, aiming to achieve better installation efficiency and reduce

emitted sound levels. The industry should also optimize existing noise mitigation systems

for various environmental conditions, including soil variations and the presence of waves

and currents. Conducting uncertainty quantification on expected noise levels is crucial to

mitigate the risks of exceeding noise thresholds and ensure effective noise management

practices. This thesis explores a method to incorporate uncertainties into sound prediction,

however, further investigation is required.
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By substituting the expressions into the boundary and interface conditions shown in Eqs.

(2.8)-(2.11), the final set of linear algebraic equations with unknowns𝐴𝑔𝑖 for 𝑖 = 1,2, ..., 4𝑁 +2
reads:

1
−𝜌𝜔2

𝑒−i𝑘𝑧,𝑓 (𝑧𝑠−𝑧0)

4𝜋i𝑘𝑧,𝑓
+𝐴𝑔1𝑒

i𝑘𝑧,𝑓 𝑧 +𝐴𝑔2𝑒
−i𝑘𝑧,𝑓 𝑧0 = 0 (A.1)

𝑒−i𝑘𝑧,𝑓 (𝑧1−𝑧𝑠)

4𝜌𝜔2𝜋
−𝐴𝑔1 i𝑘𝑧,𝑓 𝑒

−i𝑘𝑧,𝑓 𝑧1 +𝐴𝑔2 i𝑘𝑧,𝑓 𝑒
𝑘𝑧,𝑓 𝐷1i = −𝐴𝑔3 i𝑘𝑧,𝑝1𝑒

−i𝑘𝑧,𝑝1𝑧1 +𝐴𝑔4 i𝑘𝑧,𝑝1 ⋅

𝑒𝑘𝑧,𝑝1𝑧1i−𝐴𝑔5𝑘
2
𝑧,𝑠1𝑒

−i𝑘𝑧,𝑠1𝑧1 −𝐴𝑔6𝑘
2
𝑧,𝑠1𝑒

𝑘𝑧,𝑠1𝑧1i+𝑘2𝑠1(𝐴
𝑔
5𝑒

−i𝑘𝑧,𝑠1𝑧1 +𝐴𝑔6𝑒
𝑘𝑧,𝑠1𝑧1i)

(A.2)

𝑒−i𝑘𝑧,𝑓 (𝑧1−𝑧𝑠)i
4𝜌𝜔2𝜋𝑘𝑧,𝑓

+𝐴𝑔1𝑒
−i𝑘𝑧,𝑓 𝑧1 +𝐴𝑔2𝑒

𝑘𝑧,𝑓 𝑧1i = −
1
𝜌𝜔2(−𝜆1𝑘2𝑝1[𝐴

𝑔
3𝑒

−i𝑘𝑧,𝑝1𝑧1

+𝐴𝑔4𝑒
𝑘𝑧,𝑝1𝑧1i

]+2𝜇1[−𝐴
𝑔
3𝑘

2
𝑧,𝑝1𝑒

−i𝑘𝑧,𝑝1𝑧1 −𝐴𝑔4𝑘
2
𝑧,𝑝1𝑒

𝑘𝑧,𝑝1𝑧1i+𝐴𝑔5𝑘
3
𝑧,𝑠1𝑒

−i𝑘𝑧,𝑠1𝑧1 i

−𝐴𝑔6𝑘
3
𝑧,𝑠1𝑒

𝑘𝑧,𝑠1𝑧1ii+𝑘2𝑠1(−𝐴
𝑔
5𝑘𝑧,𝑠1𝑒

−i𝑘𝑧,𝑠1𝑧1 i+𝐴𝑔6𝑘𝑧,𝑠1𝑒
𝑘𝑧,𝑠1𝑧1ii)])

(A.3)

−2i𝐴𝑔3𝑘𝑧,𝑝1𝑒
−i𝑘𝑧,𝑝1𝑧1 +2i𝐴𝑔4𝑘𝑧,𝑝1𝑒

i𝑘𝑧,𝑝1𝑧1 −2𝐴𝑔5𝑘
2
𝑧,𝑠1𝑒

−i𝑘𝑧,𝑠1𝑧1 −2𝐴𝑔6𝑘
2
𝑧,𝑠1𝑒

i𝑘𝑧,𝑠1𝑧1

+𝑘2𝑠1(𝐴
𝑔
5𝑒

−i𝑘𝑧,𝑠1𝑧1 +𝐴𝑔6𝑒
i𝑘𝑧,𝑠1𝑧1) = 0

(A.4)

−𝐴𝑔4𝑗+3i𝑘𝑧,𝑝𝑗+1𝑒
−i𝑘𝑧,𝑝𝑗+1𝑧𝑗+1 +𝐴𝑔4𝑗+4i𝑘𝑧,𝑝𝑗+1𝑒

i𝑘𝑧,𝑝𝑗+1𝑧𝑗+1 −𝐴𝑔4𝑗+5𝑘
2
𝑧,𝑠𝑗+1𝑒

−i𝑘𝑧,𝑠𝑗+1𝑧𝑗+1

−𝐴𝑔4𝑗+5𝑘
2
𝑧,𝑠𝑗+1𝑒

i𝑘𝑧,𝑠𝑗+1𝑧𝑗+1 +𝑘2𝑠𝑗+1(𝐴
𝑔
4𝑗+5𝑒

−i𝑘𝑧,𝑠𝑗+1𝑧𝑗+1 +𝐴𝑔4𝑗+6𝑒
i𝑘𝑧,𝑠𝑗+1𝑧𝑗+1

)

= −𝐴𝑔4𝑗−1i𝑘𝑧,𝑝𝑗 𝑒
−i𝑘𝑧,𝑝𝑗 𝑧𝑗+1 +𝐴𝑔4𝑗 i𝑘𝑧,𝑝𝑗 𝑒

i𝑘𝑧,𝑝𝑗 𝑧𝑗+1 −𝐴𝑔4𝑗+1𝑘
2
𝑧,𝑠𝑗 𝑒

−i𝑘𝑧,𝑠𝑗 𝑧𝑗+1

−𝐴𝑔4𝑗+1𝑘
2
𝑧,𝑠𝑗 𝑒

i𝑘𝑧,𝑠𝑗 𝑧𝑗+1 +𝑘2𝑠𝑗(𝐴
𝑔
4𝑗+1𝑒

−i𝑘𝑧,𝑠𝑗 𝑧𝑗+1 +𝐴𝑔4𝑗+2𝑒
i𝑘𝑧,𝑠𝑗 𝑧𝑗+1

), 𝑗 = 1, ..,𝑁

(A.5)
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𝐴𝑔4𝑗+3𝑒
−i𝑘𝑧,𝑝𝑗+1𝑧𝑗+1 +𝐴𝑔4𝑗+4𝑒

i𝑘𝑧,𝑝𝑗+1𝑧𝑗+1 −𝐴𝑔4𝑗+5i𝑘𝑧,𝑠𝑗+1𝑒
−i𝑘𝑧,𝑠𝑗+1𝑧𝑗+1 +𝐴𝑔4𝑗+6i𝑘𝑧,𝑠𝑗+1𝑒

i𝑘𝑧,𝑠𝑗 𝑧𝑗+1

= 𝐴𝑔4𝑗−1𝑒
−i𝑘𝑧,𝑝𝑗 𝑧𝑗 +𝐴𝑔4𝑗𝑒

i𝑘𝑧,𝑝𝑗 𝑧𝑗 −𝐴𝑔4𝑗+1i𝑘𝑧,𝑠𝑗 𝑒
−i𝑘𝑧,𝑠𝑗 𝑧𝑗 +𝐴𝑔4𝑗+2i𝑘𝑧,𝑠𝑗 𝑒

i𝑘𝑧,𝑠𝑗 𝑧𝑗 , 𝑗 = 1, ..,𝑁
(A.6)

−𝜆𝑗+1𝑘2𝑝𝑗+1(𝐴4𝑗+3𝑒−i𝑘𝑧,𝑝𝑗+1𝑧𝑗+1 +𝐴4𝑗+4𝑒i𝑘𝑧,𝑝𝑗+1𝑧𝑗+1)+2𝜇𝑗+1(−𝐴4𝑗+3𝑘2𝑧,𝑝𝑗+1 ⋅

𝑒−i𝑘𝑧,𝑝𝑗+1𝑧𝑗+1 −𝐴4𝑗+4𝑘2𝑧,𝑝𝑗+1𝑒
i𝑘𝑧,𝑝𝑗+1𝑧𝑗+1 +𝐴4𝑗+5𝑖𝑘3𝑧,𝑠𝑗+1𝑒

−i𝑘𝑧,𝑠𝑗+1𝑧𝑗+1 −𝐴4𝑗+6i𝑘3𝑧,𝑠𝑗+1 ⋅

𝑒i𝑘𝑧,𝑠𝑗+1𝑧𝑗+1 +𝑘2𝑠𝑗+1(−𝐴4𝑗+5𝑖𝑘𝑧,𝑠𝑗+1𝑒
−i𝑘𝑧,𝑠𝑗 𝑧𝑗+1 +𝐴4𝑗+6i𝑘𝑧,𝑠𝑗+1𝑒

i𝑘𝑧,𝑠𝑗+1𝑧𝑗+1))

= −𝜆𝑗𝑘2𝑝𝑗 (𝐴4𝑗−1𝑒−i𝑘𝑧,𝑝𝑗 𝑧𝑗+1 +𝐴4𝑗𝑒i𝑘𝑧,𝑝𝑗 𝑧𝑗+1)+2𝜇𝑗 (−𝐴4𝑗−1𝑘2𝑧,𝑝𝑗 𝑒
−i𝑘𝑧,𝑝𝑗 𝑧𝑗+1

−𝐴4𝑗𝑘2𝑧,𝑝𝑗 𝑒
i𝑘𝑧,𝑝𝑗 𝑧𝑗+1 +𝐴4𝑗+1i𝑘3𝑧,𝑠𝑗 𝑒

−i𝑘𝑧,𝑠𝑗 𝑧𝑗+1 −𝐴4𝑗+2i𝑘3𝑧,𝑠𝑗 𝑒
i𝑘𝑧,𝑠𝑗 𝑧𝑗+1+

𝑘2𝑠𝑗 (−𝐴4𝑗+1i𝑘𝑧,𝑠𝑗 𝑒
−i𝑘𝑧,𝑠𝑗 𝑧𝑗+1 +𝐴4𝑗+2i𝑘𝑧,𝑠𝑗 𝑒

i𝑘𝑧,𝑠𝑗 𝑧𝑗+1)), 𝑗 = 1, ..,𝑁

(A.7)

𝜇𝑗+1(−2i𝐴
𝑔
4𝑗+3𝑘𝑧,𝑝𝑗+1𝑒

−i𝑘𝑧,𝑝𝑗+1𝑧𝑗+1 +2i𝐴𝑔4𝑗+4𝑘𝑧,𝑝𝑗+1𝑒
i𝑘𝑧,𝑝𝑗+1𝑧𝑗+1 −2𝐴𝑔4𝑗+5𝑘

2
𝑧,𝑠𝑗+1𝑒

−i𝑘𝑧,𝑠𝑗+1𝑧𝑗+1

−2𝐴𝑔4𝑗+6𝑘
2
𝑧,𝑠𝑗+1𝑒

i𝑘𝑧,𝑠𝑗+1𝑧𝑗+1 +𝑘2𝑠𝑗−1(𝐴
𝑔
4𝑗+5𝑒

−i𝑘𝑧,𝑠𝑗+1𝑧𝑗+1 +𝐴𝑔4𝑗+6𝑒
i𝑘𝑧,𝑠𝑗+1𝑧𝑗+1)) =

𝜇𝑗 (−2i𝐴
𝑔
4𝑗−1𝑘𝑧,𝑝𝑗 𝑒

−i𝑘𝑧,𝑝𝑗 𝑧𝑗+1 +2i𝐴𝑔4𝑗𝑘𝑧,𝑝𝑗 𝑒
i𝑘𝑧,𝑝𝑗 𝑧𝑗+1 −2𝐴𝑔4𝑗+1𝑘

2
𝑧,𝑠𝑗 𝑒

−i𝑘𝑧,𝑠𝑗 𝑧𝑗+1

−2𝐴𝑔4𝑗+2𝑘
2
𝑧,𝑠𝑗 𝑒

i𝑘𝑧,𝑠𝑗 𝑧𝑗+1 +𝑘2𝑠𝑗 (𝐴
𝑔
4𝑗+1𝑒

−i𝑘𝑧,𝑠𝑗 𝑧𝑗+1 +𝐴𝑔4𝑗+2𝑒
i𝑘𝑧,𝑠𝑗 𝑧𝑗+1)), 𝑗 = 1, ..,𝑁

(A.8)
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