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Democratizing EEG: Embedding Electroencephalography in a Head-Mounted 
Display for Ubiquitous Brain-Computer Interfacing

Evangelos Niforatosa , Tianhao Hea, Athanasios Vourvopoulosb, and Michail Giannakosc 

aDepartment of Sustainable Design Engineering, Delft University of Technology, Delft, Netherlands; bBioengineering Department, Institute 
for Systems and Robotics (ISR-Lisboa), Instituto Superior Tecnico (IST), Universidade de Lisboa, Lisbon, Portugal; cDepartment of Computer 
Science, Norwegian University of Science and Technology, Trondheim, Norway 

ABSTRACT 
Open hardware and the need for ecologically valid measurements drive the Electroencephal-
ography (EEG) democratization movement—EEG has been steadily transcending the boun-
daries of clinical research, making its way into interdisciplinary fields. In Human-Computer 
Interaction (HCI), EEG is used to measure cognitive workload and infer cognitive processes 
for building cognition-aware systems. We describe and evaluate our BCIglass prototype 
where EEG electrodes are embedded in the frame of a mainstream Head-Mounted Display 
(HMD) to create a skull-peripheral topology. We devised a lab study with 34 participants 
who completed seven established cognitive tasks. Then, we conducted a pilot field study 
with one participant to test BCIglass in everyday-life settings. Our findings demonstrate that 
BCIglass captures EEG activity in a manner comparable to a research-grade EEG-cap system. 
Our topology infers the cognitive task at hand, and the underlying cognitive process(es) by 
proxy, with an accuracy of �80% and only three electrodes at the skull periphery. Embed-
ding EEG electrodes in lightweight HMDs represents a promising approach in the quest to 
achieve ubiquitous brain-computer interfacing in real-world settings.

KEYWORDS 
Electroencephalography; 
head-mounted displays; 
smart glasses; brain- 
computer interfaces; 
neuroergononics   

1. Introduction

Electroencephalography (EEG) has been a fundamental diag-
nostic method in clinical neurology for almost a century, 
yielding numerous applications also in the field of HCI 
(Afergan et al., 2014; Cutrell & Tan, 2008; Fang et al., 2023; 
Ghiani et al., 2015; Grimes et al., 2008; Huang et al., 2014; 
Kar & Hazarika, 2023; Kosch et al., 2018; 2020; Lee et al., 
2014; Mondellini et al., 2023; Nacke et al., 2011; Narsimha 
Reddy et al., 2023; Schneegass et al., 2020; Szafir & Mutlu, 
2012; Vi & Subramanian, 2012). Originally, EEG was limited 
to confined clinical lab settings with sedentary subjects while 
adhering to strict clinical standards that often required bulky 
and niche equipment. EEG is highly susceptible to noise 
artifacts of external (e.g., electromagnetic interference from 
electronic devices and the power grid) and internal origins 
(e.g., physiological activity generated by muscle, eye, or car-
diovascular signals). Inevitably, this sensitivity complicates 
the logistics of an EEG study, leading to lengthy and fatigu-
ing sessions that often require Sisyphean patience from 
those participating, producing results with limited ecological 
validity. Gradually, EEG has become more pervasive, making 
its way into typical research labs by overcoming the neces-
sity of following clinical policies. Hardware miniaturisation, 
lower cost, and improvements in noise reduction techniques, 
greatly increased the availability of EEG. In the past 

�15 years, there have been initiatives to make EEG more 
ubiquitous by moving it out of the lab and into everyday 
life. These initiatives are driven by the need to obtain more 
naturalistic EEG measurements, such as when at work or at 
home, and have been supported by the grassroots move-
ments of open hardware and “Do-It-Yourself” (DIY) (e.g., 
OpenBCI).1 Exemplary approaches attempt to move EEG in 
the wild by concealing it in a baseball cap (Lin et al., 2008) 
or behind the ear as an earpiece (Bleichner & Debener, 
2017). Advancements in the field of EEG signal processing 
enable the real-time removal of noise artifacts generated by 
muscle contractions and body movement such as facial 
expressions, speech, walking or even jumping2 (see 
“Artifacts Subspace Reconstruction” algorithm (Kumaravel 
et al., 2021; Mullen et al., 2015; Tsai et al., 2022)). In this 
paper, we propose and evaluate a sparse EEG electrode top-
ology embedded in the form factor of a modern Head- 
Mounted Display, as a medium for moving EEG outside the 
lab and into the users’ everyday-life settings. We deem this 
is the necessary step before activating the HMD to incorpor-
ate relevant input (e.g., Augmented Reality—AR overlays), 
effectively creating a “closed-loop” system (Figure 1).

Head-Mounted Displays (HMDs), or “smart glasses,” 
bear an unprecedented potential to alter the way we produce 
and consume information, revolutionizing our everyday 
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lives. Either reading the latest news headlines, revisiting our 
grocery list, or seeking information online and navigating 
when on the go (Rehman & Cao, 2016), a great number of 
daily tasks can be revamped by the unique form factor of 

HMDs. Situated in front of our eyes and around our skull, 
HMDs are directly interposed between what we can see and 
hear, thus influencing our perceptual and cognitive capaci-
ties. HMDs bear significant benefits for augmenting our 
cognitive capacities, such as enhancing procedural learning 
(Tang et al., 2003), improving spatial cognition for the eld-
erly (Kim & Dey, 2009), and supporting decision-making in 
challenging environments (Fedosov et al., 2016). In fact, 
EEG has been utilized for mitigating HMD implications, 
such as for estimating visual discomfort (Mai et al., 2017). 
In this work, we merge EEG and HMDs to pave the way for 
cognition-aware systems (Dingler & Niforatos, 2021) by pro-
ducing the following contributions:

� We introduce a sparse BCIglass prototype with a con-
cealed EEG-electrode topology embedded in the frames 
of a modern and lightweight HMD.

� We used a total of seven (7) cognitive tasks able to 
induce a wide spectrum of cognitive processes and cogni-
tive workload reflected in objective, subjective, and 
physiological measures.

� We showcase how our BCIglass prototype can implicitly 
infer the cognitive processes involved in seven different 
cognitive tasks.

� We demonstrate how our BCIglass prototype captures 
EEG activity in a similar manner to a higher-resolution 
EEG system by utilizing the compound EEG measure of 
Engagement Index.

� We train a set of classifiers that predict the type (class) 
of the cognitive task at hand with an improved accuracy- 
over-electrode ratio for our BCIglass prototype.

� We share early findings from a pilot deployment of the 
BCIglass prototype with one participant in the wild.

2. Background

The idea of embedding EEG in headwear and eyewear is not 
new. Lin et al. introduced a Brain-Computer Interface (BCI) 
prototype that encases a wireless EEG device in a typical 
baseball hat (Lin et al., 2008). The motivation was to 
develop a BCI system that monitors the physiological state 
of drivers in real time to detect and warn about increasing 
drowsiness levels. Bleichner and Debener, motivated by EEG 
signal acquisition in natural daily-life settings, introduced a 
flex-printed sensor array equipped with EEG electrodes that 
is worn around the human ear (Bleichner & Debener, 2017). 
The authors showcased how their ear-EEG prototype was 
able to record meaningful continuous EEG signals, ERPs 
and neural oscillations. In-ear EEG approaches (e.g., (Kaveh 
et al., 2020)) have also proliferated for measuring alpha 
band fluctuations during speech (Ala et al., 2022), measuring 
sleep quality (Henao et al., 2022), and detecting epileptic 
discharges in patients suffering from Alzheimer’s disease 
(Musaeus et al., 2023). A recent study assessed focus by 
comparing between conventional cap-based EEG and mobile 
in-and around-the ear EEG systems (Cr�etot-Richert et al., 
2023). However, ear-EEG approaches are by default limited 
to a location in-and around-the ear, with a low number of 

Figure 1. We evaluated our BCIglass prototype (5 electrodes) by comparing it 
to the research-grade Enobio 20 system (20 electrodes) in a lab study with 34 
participants.
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electrodes which in turn reduce the quality and the signal 
types they can detect and the applications they can support 
(Kaongoen et al., 2023).

2.1. EEG in eyewear and head-mounted displays

Kim et al. introduced an experimental hybrid-BCI smart 
glasses prototype with protruding EEG electrodes, which also 
utilizes eye-tracking, to remotely control domestic appliances 
(Kim et al., 2015). By capturing event-related potentials and 
eye-gaze patterns, they were able to achieve an overall average 
accuracy of 70.83% in remotely controlling a TV. Various 
commercial eyewear products claim to utilize EEG (or 
EOG—electrooculography) at the contact points with the 
skull to provide so-called “neurofeedback.” For example, 
Narbis sunglasses3 utilize three electrodes, two at the back of 
the temples of the device touching the left and right mastoids, 
and one at the tip of a protruding arm that touches the top of 
the skull, for tracking concentration. When concentration is 
low, the Narbis electrochromic lenses start darkening for 
inviting the user to focus more. Lowdown Focus by Smith,4

and powered by MUSE, employs a more socially acceptable 
design equipping a plastic pair of sunglasses with silicon elec-
trodes at the edges of the temples that touch the left and right 
mastoid processes (Krigolson et al., 2017). A companion 
mobile application connects to the Lowdown Focus sun-
glasses for collecting the readings to track and increase one’s 
concentration levels. JINS MEME5 is perhaps the most prom-
inent eyewear that employs near-skull contact for providing 
neurofeedback. JINS MEME utilizes two electrodes embedded 
in the bridge of the eyewear that touches the nasal bone to 
detect concentration levels by measuring the duration and 
the number of eye blinks via EOG (Uema & Inoue, 2017).

2.2. Applications

The combination of eyewear with EEG yields promising 
niche applications in the intersection of HCI and 
Ubiquitous Computing with several domains such as health-
care, learning, and lifestyle (Chwalek et al., 2021). e-Glass is 
an EEG-enabled eyewear that employs an OpenBCI board 
and a set of electrodes across the inner side of the frame for 
detecting epileptic seizures (Sopic et al., 2018). The 
PhysioHMD prototype adopts a bulky “mask” design that 
occludes part of the face for hosting a wide range of physio-
logical sensors, including EEG electrodes, capturing also 
facial expressions (Bernal et al., 2018). Several Virtual 
Reality (VR) headsets utilize their extensive contact with the 
skull to embed among other sensors also EEG electrodes for 
measuring brain activity (e.g., LUCY6 and Neurable7 (Jantz 
et al., 2017)). In recent years, the combination of EEG with 
HMDs has been mostly driven by the field Augmented 
Reality (AR). A systematic literature review on wearable 
EEG devices reports a limited number of instances where 
EEG electrodes are actually embedded in eyewear and light-
weight HMD frames (Kaongoen et al., 2023). Instead, EEG 
has been extensively combined with AR headsets mainly in 
the form of an EEG cap (Angrisani et al., 2023; Arpaia 

et al., 2022; Jang et al., 2023; Zhao et al., 2020). Typically, 
EEG and HMD combination aims to enhance user experi-
ence and utility by providing real-time brain activity feed-
back, driving more immersive and adaptive environments, 
or powering specialized applications. For example, an EEG 
cap has been combined with the HoloLens 28 AR headset to 
investigate Steady-State Visual Evoked Potentials (SSVEP) in 
AR to support smart home, ambient assisted living, gaming 
and other applications (Zhao et al., 2020). Similarly, Arpaia 
et al. benchmark three different AR headsets (Epson 
Moverio, Oculus Rift, and HoloLens 2) in their ability to 
induce SSVEPs captured via an EEG cap (Arpaia et al., 
2022). The combination of EEG caps and AR headsets has 
also been explored for authentication purposes. Jang et al. 
effectively combine HoloLens 2 with an EEG cap to deliver 
rapid serial visual presentation (RSVP) of images and cap-
ture the evoked Event-Related Potentials (ERPs), respectively 
(Jang et al., 2023). A recent literature review by Angrisani 
et al. highlights the increasing trend of combining EEG caps 
with AR for SSVEP and similar applications (Angrisani 
et al., 2023). However, due to their bulk and lack of EEG- 
electrode integration in the HMD frame, all these 
approaches are limited to indoor settings, while they suffer 
from low social acceptability.

In the context of this work, we use the term “social 
acceptability” to refer to a combination of factors that would 
encourage (or discourage) a user to wear and interact with 
an HMD in public (Koelle et al., 2015). Factors that influ-
ence social acceptability are societal norms and perception, 
user comfort and ergonomics, context of use, culture, and 
impact on social interaction (Koelle et al., 2015). For an 
overview of the challenges hindering the adoption and use 
of HMDs in public, see (Gugenheimer et al., 2019). Despite 
the fact that we do not measure social acceptability directly, 
our assumption is that a slimmer HMD form factor (e.g., 
eyewear), concealing embedded EEG electrodes, is by default 
more socially acceptable than a full face HMD or AR head-
set (e.g., HoloLens 2) and/or an EEG cap. To avoid confu-
sion, we resort to using the term “lightweight” to describe 
HMDs with high social acceptability potential. The EEGlass 
prototype conceals five EEG electrodes in a typical frame of 
a pair of glasses at its touchpoints with the skull 
(Vourvopoulos et al., 2019). The authors showed that a 
skull-peripheral EEG topology was able to capture brain 
activity related to resting-state but also motor preparation 
and execution. However, the trials included only one partici-
pant with no cognitive measures, no task-performance base-
line, and no cognitive-state inference.

Here, we build on the work of Vourvopoulos et al. and 
introduce a prototype merger (BCIglass) between a modern 
HMD (Vuzix Blade) and an open-source EEG platform 
(OpenBCI). We then investigate how effectively the 
BCIglass prototype can capture EEG activity, infer cognitive 
processes, and predict the cognitive task at hand, by com-
paring it with a high-resolution EEG-cap system (Enobio 
20) in a lab study with 34 participants. Finally, we test the 
BCIglass prototype in real-life settings with one participant.

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 3



3. BCIglass

Our prototype is a merger between the Vuzix Blade9 HMD and 
the 8-channel Cyton10 biosensing board by OpenBCI (250 Hz 
sampling rate). OpenBCI is a popular and affordable open hard-
ware and software platform for the collection and analysis of 
biosignals (e.g., EEG, heart rate, etc.), inspired by the grassroots 
movement of DIY (Vourvopoulos & Bermudez I Badia, 2016). 
The Cyton board is equipped with 8 biopotential input channels 
(for hosting up to 8 electrodes), a 3-axis accelerometer, local 
storage, and wireless communication modules. No additional 
electronic components are used. Evidently, our prototype elec-
trode topology is imposed by the HMD’s form factor and lim-
ited to its contact points with the skull. Thus, our HMD 
topology utilizes three flat Ag/AgCl electrodes (plus two for ref-
erence and ground) based on the 10-10 system (see Figure 2(a)) 
for measuring EEG activity: one electrode placed inwards above 
the HMD bridge touching the skull at the glabella (between the 
eyebrows), and two electrodes at the inner-back side of the 
HMD temples, touching the left and right mastoid processes, 
behind the left and right ear, respectively (see Figure 1(a)). 
Commercial EEG devices, such as the Mindwave Neurosky, 
have shown that a single electrode placed over the frontal lobe 
area (Fpz) is able to inform a BCI in controlling the speed of a 
robot (Katona et al., 2016). Due to the HMD form factor, the 
Nz electrode is placed by default lower than the Fpz electrode 
location. However, due to volume conduction over the scalp, 
we expect we will be able to capture sufficient EEG activity 
from the Nz electrode too. The reference and ground electrodes 
are placed at the inner part of the HMD bridge, touching the 
left and right sides of the nasal bone, respectively. The reasons 
we opted for the Vuzix Blade HMD are:

1. Form factor. The temples (aka. “arms”) are slightly 
curved inwards to secure a stable grip around the skull. 
This ensures continuous contact between the electrodes 
and the skull even when motion is involved.

2. Lightweight. Good balance between a lightweight frame 
design (90 g) with increased social acceptability and 
available space for embedding the EEG electrodes.

3. Display and tinted lenses. Good display visibility renders 
the perception of stimuli presented on the display more 
probable, thus being instrumental in designing a closed- 
loop system in the future. In this study, the Vuzix Blade 
HMD was deactivated and no AR stimuli were 
projected.

4. Operating system. Android OS enables quick prototyp-
ing and deployment of experimental mobile/wearable 
applications.

5. On-board camera and sensors. Equipped with a front- 
facing camera (1080p), integrated speakers, and add-
itional sensors (e.g., inertia measurement unit) for activ-
ity recognition.

6. Connectivity. Bluetooth and Wi-Fi connectivity.
7. Electromagnetic compatibility (EMC). Vuzix devices have 

been systematically tested to ensure that they emit little 
to no electromagnetic field. Thus, they are eligible for 
use in healthcare and medical settings (see IEC 60601- 
1-2:2014 international standard).11

However, due to the close proximity of the OpenBCI 
electrodes to the internal Vuzix Blade circuitry, and its 
potential to influence the EEG signal, we deemed purposeful 
to investigate the electromagnetic fingerprint of the Vuzix 
Blade HMD. To this end, we used the GQ EMF-39012 elec-
tromagnetic field (EMF), electrical field (EF) and Radio 
Frequency Field (RFF) meter to measure the EMF generated 
by an active Vuzix Blade in very close proximity. The GQ 
EMF-390 is equipped with a 3-axis EMF sensor (0.5 Hz– 
150KHz), an EF sensor (0–1000 V/m) and an RFF sensor 
(10 MHz–10 GHz). First, we used the EMF meter to find a 
location with relatively low ambient EMF and establish a 
baseline. Then, with the Vuzix Blade powered on, we used 

Figure 2. EEG electrode topologies for both systems and experimental apparatus.
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the GQ EMF-390 to measure EMF, RF and RFF from the 
inner side of the frame and at the locations of all BCIglass 
electrodes. With the exception of the TP9, which displayed 
high periodic RFF, no other electrode displayed notable 
EMF, EF and RFF measurements (see Figure 3(a)). A closer 
inspection of the RFF time series shows periodic peaks 
resembling a connectivity signal pattern with a max. peak of 
382 mW=m2: Indeed, the GQ EMF-390 meter classifies the 
RF activity as “Wi-Fi/Phone” (see Figure 3(a)). A synchron-
ous RF power spectrum analysis showcases that Vuzix Blade 
periodically emits in the 2.4 GHz band reserved for Wi-Fi 
connectivity (see Figure 3(b)). Even so, the usable EEG fre-
quency spectrum spans between 1 and 100 Hz, and thus 
BCIglass EEG measurements should not be affected by Wi- 
Fi connectivity. Ultimately, our aim with the BCIglass proto-
type is to deliver a closed-loop EEG/BCI platform that is 
lightweight, robust to motion, unobtrusive, and socially 
acceptable, thus suitable for use in everyday-life settings. 
Here, we investigate the effectiveness of our prototype in lab 
settings and we make the first step towards introducing it 
into the wild.

4. Materials and methods

Initially, we evaluated the effectiveness of our BCIglass 
prototype in stationary lab settings, by comparing it against 
a system with a dense electrode topology (Enobio 20). We 
pose the following Research Questions (RQs) as a first 
important step towards introducing EEG into the wild by 
merging it with HMDs:

RQ1. How effective are the employed cognitive tasks in 
inducing a wide spectrum of cognitive workload?

This is an internal validity RQ: We employ a total of 
seven (7) cognitive tasks based on cognitive interventions 
commonly performed in the fields of psychology, cognitive 
science, and neuroscience (see Section 4.3). To confirm how 
challenging these tasks will be for our participants, we 
devised a series of objective and subjective measures that 
characterise cognitive performance (e.g., scores, completion 
times) and subjective workload (e.g., NASA TLX (Hart & 
Staveland, 1988)). We also utilized physiological measures, 
such as electrodermal activity (EDA) and skin temperature 
(ST) as additional indicators of stress and cognitive work-
load (Abdelrahman et al., 2017; Setz et al., 2009). We expect 
that the diversity of the cognitive tasks that we employ will 
require different levels of cognitive processing (multiple cog-
nitive processes), resulting in systematic variations in cogni-
tive performance and cognitive workload. In turn, this will 
be reflected in participants’ objective, subjective and physio-
logical measures across the cognitive tasks.

RQ2. Can the BCIglass electrode topology capture and infer 
the cognitive processes elicited during cognitive tasks?

The diversity of the employed cognitive tasks will result in 
invoking a variety of cognitive processes that in turn produce 
different relative EEG band power (Başar et al., 2001; Buzs�aki 
& Draguhn, 2004). Thus, by detecting and measuring the EEG 
band power, we can roughly estimate the type of the underly-
ing cognitive process(es). First, we expect that our BCIglass 
electrode topology will be able to capture reductions in Alpha 
relative band power as an indicator of cognitive workload in 

Figure 3. We used the GQ EMF-390 meter to measure Electromagnetic Field (EMF in 0–500 mG at 0.5 Hz–150 KHz), Electrical Field (EF in 0–1000 V/m) and Radio 
Frequency Field (RFF in mW=m2 at 10 MHz–10 GHz), generated by an active Vuzix Blade HMD, across the BCIglass electrode topology. Our results indicate that the 
BCIglass EEG signal quality should remain unaffected by the operation of the Vuzix Blade HMD.
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cognitively demanding tasks, when comparing it to a baseline 
(Klimesch et al., 1993). Working memory function is related 
with Theta and Alpha band-power fluctuations (Klimesch, 
1999), which we expect to capture during high memory work-
loads (Mecklinger et al., 1992). Decision-making is reflected by 
the Theta band, especially in oddball paradigms during willed 
attention tasks (Rajan et al., 2019), and it is known to increase 
linearly with increasing interference between incongruent stim-
uli (Hanslmayr et al., 2008). In contrast, we do not expect that 
our BCIglass topology will capture significant differences across 
tasks for the Beta band, since it is more frequently associated 
with motor preparation and execution (Crone et al., 1998). 
However, we expect that Delta band-power fluctuations will be 
more pervasive throughout most cognitive tasks, since the 
Delta band characterizes increased attention to internal proc-
essing during mental tasks (Harmony et al., 1996).

RQ3. How does the BCIglass electrode topology compare 
against a higher-resolution EEG-cap topology in capturing 
EEG activity and classifying the cognitive task at hand?

Our expectation is that our BCIglass electrode topology will 
capture EEG activity in a similar fashion to the Enobio 20 
topology due to the propagation of EEG signals over the scalp. 
In other words, even with fewer electrodes situated only at the 
periphery of the skull, the EEG activity captured by our proto-
type will not differ substantially from that captured by a 
higher-resolution EEG device (Enobio 20). As additional evi-
dence, we expect that both topologies will result in composite 
brain-activity measures, such as the Engagement Index, that 
will display significant correlations with subjective workload 
measures (e.g., NASA TLX) (Kamzanova et al., 2014; Pope 
et al., 1995). Finally, we expect that the BCIglass topology will 
capture EEG activity in sufficient quality to enable the predic-
tion of the type of cognitive task at hand as a proxy of the 
underlying cognitive process(es) when using prominent classi-
fication algorithms for BCIs (Lotte et al., 2018).

4.1. Participants

We recruited a total of 34 healthy and right-handed partici-
pants (17 female and 17 male) from the premises of our 
University with no history of neurological disorders, and an 
average age of 30.18 years (SD¼ 4.528). Most of our partici-
pants were University employees (N¼ 25) such as doctoral 
candidates, postdocs and professors, followed by University 
undergraduates (N¼ 7), and private employees (N¼ 2). 
Participants with vision acuity below 20/20 were asked 
beforehand to wear prescription contact lenses during the 
trials. All participants provided their informed consent after 
which the trials commenced. At the end of the study, partic-
ipants were debriefed and compensated for their time with a 
cinema ticket card of 20 credits.

4.2. Apparatus

Our experimental setup (see Figure 2(b)) was optimized for 
comparing between two EEG systems/topologies: Our BCIglass 
prototype as the experimental system and the Enobio 2013

(Neuroelectrics, Barcelona, Spain j 20 Ag/AgCl gel electrodes 

at 500 Hz sampling rate) as the baseline system, for comparing 
between the two distinct electrode topologies (see Figure 2(a)). 
We used two laptop computers, (1) an “experiment laptop” 
and (2) a “control laptop.” The experiment laptop was con-
nected to a USB mouse for collecting participants’ responses 
in the form of right & left mouse clicks. The experiment lap-
top ran a custom Presentation14 stimulus software and the 
Neuroelectrics Instrument Controller (NIC) software for col-
lecting the EEG data from the Enobio 20 (via USB). The con-
trol laptop collected the EEG data from the BCIglass prototype 
(via a BLE dongle) running the “OpenBCI_GUI” application. 
A dedicated Wi-Fi router was used to create a local area net-
work where both laptops could connect and transmit data 
with minimum latency. Using the aforementioned software, 
both laptops transmitted EEG data over the same network by 
utilizing the Lab Streaming Layer15 (LSL) transmission control 
protocol. The control laptop was also running the LSL “Lab 
Recorder” software for collecting, syncing, and storing the data 
streams from the BCIglass prototype, the Enobio 20, and the 
“Presentation” software (event markers). We also used the 
Empatica E4 physiological wristband to collect physiological 
data such as Heart Rate (HR), Electrodermal Activity (EDA), 
and skin temperature (ST), along with 3-axes acceleration 
measurements.

4.3. Cognitive tasks and baselines

In total, we devised seven (7) cognitive tasks grouped in 
three classes: (a) one 2-back task, (b) two Backward 
Masking tasks, and (c) four Stroop tasks (see Figure 4 and 
Table 1). The purpose of the cognitive tasks was the elicit-
ation of cognitive processes, related to working memory, 
(willed) attention, conscious/unconscious processing, and 
cognitive workload, in an attempt to investigate how these 
can be captured by our BCIglass prototype in comparison to 
a higher-resolution EEG system (Enobio 20). All cognitive 
tasks were delivered via the “Presentation” (Neurobehavioral 
Systems, CA, USA) software, a stimulus delivery and experi-
ment control program for neuroscience. We also recorded 
resting-state brain activity for the period of 4 minutes during 
“eyes open” and “eyes closed” (2 min each). For an overview 
of the cognitive tasks, see Figure 4 and Table 1.

4.4. Procedure

4.4.1. Preparation
Participants arrived individually to the lab where we 
informed them about the purpose of our experiment. Next, 
they took their dedicated spot in front of the experiment 
laptop (see Figure 2(b)), provided their informed consent, 
and completed the demographics questionnaire. After meas-
uring their skull circumference, we fixated a fitting EEG cap 
on participants’ heads, and helped them to wear the 
BCIglass prototype as a typical pair of glasses. We applied 
electrode gel component and ten20 conductive paste to 
Enobio 20 and the BCIglass electrodes, respectively. We con-
nected the Enobio 20 via USB to the experiment laptop, and 
tested electrode impedance with the NIC software. We 
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connected the BCIglass prototype via the BLE dongle to the 
control laptop, and tested electrode impedance with the 
OpenBCI_GUI app. For both systems, electrode impedance 
was maintained below 20 kX by applying additional elec-
trode gel component and conductive paste when required. 
Participants also wore the Empatica E4 physiological wrist-
band on their left wrist. This study was approved by the 
Norwegian Centre for Research Data (NSD/ref. nr.: 963870).

4.4.2. Training and main session
For each participant, we devised a different experimental 
plan following the Latin square counterbalancing technique 
for cancelling out sequential (carry-over) effects (Bradley, 
1958). This ensured that all combinations of cognitive task 
classes occurred in a certain order and for an equal number 
of times. We only counterbalanced between the three task 
classes and not within (see Table 1), since the Backward 
masking and Stroop task classes were designed for gradually 
increasing difficulty. First, we offered our participants a 
training session where they completed all the cognitive tests 
in the order of their experimental plan. All cognitive tasks 
could be completed by left and/or right mouse clicks. After 
the training session was over, the actual study commenced. 
The EEG acquisition stage began with a 4-minute period for 

acquiring resting state data. The resting state data was 
acquired during two 2-minute periods with eyes open and 
eyes closed, respectively. We instructed our participants to 
remain silent while either fixating their eye-gaze on a black 
cross displayed on the screen, or when having their eyes 
closed. During the actual session, the participants repeated 
the same tasks they had performed in the training session 
and in the same order (see Figure 1(c)). The main session 
differed only in that participants were asked to fill in a 
NASA-TLX form after the completion of each cognitive task 
(seven in total). In the NASA-TLX forms, participants 
reported on their subjective workload in the tasks they had 
just completed. The main session concluded when all seven 
(7) tasks and NASA TLX forms were completed.

4.4.3. Post-session
After all equipment was carefully removed, participants were 
debriefed about their experience regarding the mounted equip-
ment (BCIglass and Enobio 20), the cognitive tasks they had 
completed, and any insight they would like to share. We 
thanked our participants and we provided them with the com-
pensation. The trials took place in October–November 2020 
and during the COVID-19 pandemic. We followed all hygiene 
regulations by sanitizing our wearable equipment and the lab 

Figure 4. All seven (7) cognitive tasks used in our experiment. The n-back task has been employed in literature as a working-memory test (Jaeggi et al., 2010; Kane 
et al., 2007). The Backward masking task is a visual task with a visual stimulus presented to a subject only to be immediately followed by another visual “stimulus” 
that masks the previous stimulus. Backward-masking tasks are used to quantify the amount of time that information takes to pass through the sensory memory 
and serve as a measure of cognitive-processing efficiency (Verney et al., 2004). The Stroop task involves the presentation of a colour word (e.g., “red”) but in incon-
gruent font colour (e.g., green). During a Stroop task, time–frequency analyses have shown that theta oscillations increased linearly with increasing stimulus inter-
ference (incongruence) (Hanslmayr et al., 2008).

Table 1. Average scores and response times for all cognitive tasks followed by Standard Deviations (SD) in parentheses.

Cognitive task Trials (N) Task progression Performance score (%) Subjective workload (%) Response time (ms)
Class Fig.

2-back 1 4(a) 22 Time 75.882 (20.760) 48.926 (16.772) 721.834 (222.643)
Backward1 2 4(b) 32 Time 99.019 (3.980) 30.345 (12.992) 403.576 (59.149)
Backward2 2 4(c) 32 Time 69.607 (33.951) 58.146 (16.910) 669.672 (349.912)
Stroop1 3 4(d) 20 Participant 99.558 (1.894) 20.424 (11.396) 834.322 (169.943)
Stroop2 3 4(e) 20 Participant 99.411 (2.046) 23.319 (12.726) 979.435 (144.246)
Stroop3 3 4(f) 20 Participant 99.852 (.857) 23.132 (15.578) 981.566 (270.916)
Stroop4 3 4(g) 20 Participant 91.911 (11.282) 36.904 (16.874) 1648.295 (442.673)
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space after each session (Simmons & Luck, 2020). Participants 
were also asked to wear masks during the experiment, follow-
ing our University’s policy for COVID-19.

4.5. EEG data analysis

All EEG signals were processed in MATLABVR (The 
MathWorks, Natick, MA) with the EEGLAB toolbox (Delorme 
& Makeig, 2004). After importing the data together with the 
channel info, a high-pass filter at 1 Hz was used to remove the 
“baseline drift,” followed by line-noise and harmonics removal 
at 50 Hz. Furthermore, bad channels were rejected, and the 
data was subsequently re-referenced to average to achieve high 
signal-to-noise ratio (SNR). Any potential missing channels 
had been interpolated to minimize a potential bias in the re- 
referencing stage. Next, an Independent Component Analysis 
(ICA) was performed for removing eye blinking, and move-
ment artifacts (Makeig et al., 1996). For the independent com-
ponents (IC) labeling, we performed manual artifact 
recognition by inspecting the different components both in the 
time and frequency domain, and also by using the ICLabel 
plugin from EEGLAB. The ICLabel plugin includes a trained 
classifier for EEG independent component analysis which 
examines the probability of a component falling in the seven 
categories: brain, muscle, eye, heart, line noise, channel noise, 
and other. The ICLabel classifier is trained by using crowd- 
sourced data labeling or crowd labeling (Pion-Tonachini et al., 
2017). Data-epoching was performed for eyes-open vs. eyes- 
closed baselines, followed by time/frequency decomposition 
between 1–30 Hz with a 3-cycle wavelet (a Hanning-tapered 
window was applied (Kabe & Sako, 2020)). For extracting the 
EEG bands, the Welch’s method for Power Spectral Density 
(PSD) of the power spectrum was used (Welch, 1967). This 
included 
the average relative spectral power (lV2=Hz) across the fol-
lowing frequency bands during the cognitive tasks: Delta (1– 
4 Hz), Theta (4–7 Hz), Alpha (8–12 Hz), and Beta (12–30 Hz) 
over the total power. In addition, PSD from resting-state 
Alpha was computed during eyes-open and eyes-closed ses-
sions before the trials (see Figure 7). We also 
calculated the Engagement Index (EI) across all cognitive tasks, 
for all three electrodes of our prototype, and the Cz and Pz 
electrodes of Enobio 20, respectively. The EI is computed as 
EI ¼ Beta=ðAlphaþ ThetaÞ and is known for correlating with 
participants’ self-reported task engagement (Kamzanova et al., 
2014; Pope et al., 1995). Finally, we used custom Python 
scripts to synchronize physiological input recorded by 
Empatica E4 with the EEG data and for producing aggregates 
and simple features (e.g., means and peaks).

5. Statistical analyses and results

We performed all the necessary pre-tests, such as Shapiro- 
Wilk tests of normality, Levene’s tests of homogeneity of 
variance, and Mauchly’s tests of sphericity before carrying 
out typical inferential statistical tests (e.g., Analysis of 
Variance, t-tests, etc.). We omit the pre-tests for the sake of 
brevity. Unless specified otherwise, the null hypothesis (H0) 

of the statistical tests performed here assumes no significant 
differences observed, and the p-value was adjusted to .05 to 
control for Type I error rate. Post-hoc pairwise tests for 
multiple comparisons apply the Bonferroni correction 
against Type I errors. Depending on the statistical test at 
hand, we report averages and standard deviations (paramet-
ric) or median values (non-parametric).

5.1. Cognitive task analytics (RQ1)

With a series of Spearman’s rank-order correlations, we 
sought to confirm the effectiveness of our cognitive tasks in 
inducing cognitive workload to our participants. In turn, the 
induced cognitive workload serves as proof of the underlying 
cognitive process(es) in the respective cognitive task(s). We 
found a significant strong negative correlation between partic-
ipants’ average subjective workload (%) and their average per-
formance score (%) across all tasks (rsð238Þ ¼ −:573, 
p < :001). This indicates that the higher the subjective work-
load that participants reported in a cognitive task, the worse 
they performed at it. Particularly, for the time-driven tasks 
(2-back, Backward1, and Backward2), we found (a) a signifi-
cant negative correlation between participants’ average 
response times (ms) and their average performance scores 
(%) (rsð97Þ ¼ −:372, p < :001), and (b) a significant positive 
correlation between average response times (ms) and average 
subjective workload (%) (rsð97Þ ¼ :379, p < :001). These cor-
relations suggest that the slower participants responded in the 
time-driven tasks, the lower their average performance scores 
and the higher their average subjective workload.

For the participant-driven tasks, a significant negative cor-
relation was found between participants’ average response times 
(ms) and average performance scores (%) 
(rsð133Þ ¼ −:333, p < :001), but not between response times 
and subjective workload (rsð133Þ ¼ :123, p ¼ :159). This sug-
gests that the longer participants took to respond, the better 
they performed on average in the participant-driven tasks. 
These findings show that participants acted more consciously 
in participant-driven tasks in contrast to time-driven tasks, 
where the next stimulus was presented automatically. Further 
confirming our cognitive task manipulations, we found (a) a 
significant negative correlation of average EDA peaks (designat-
ing stress (Setz et al., 2009)) with average performance score 
(rsð221Þ ¼ −:218, p < :01), and (b) a significant negative one 
with average subjective workload (rsð221Þ ¼ −:318, p < :001). 
In line with these results, average Skin Temperature (ST) peaks 
(designating cognitive workload (Abdelrahman et al., 2017)) 
correlated significantly (a) negatively with average performance 
score (rsð221Þ ¼ −:174, p < :01), and (b) positively with sub-
jective workload (rsð221Þ ¼ −:234, p < :001). These results 
may suggest that the higher the physiological stress levels and 
cognitive workload our participants experienced, the lower their 
average performance and the higher their subjective workload.

A one-way repeated-measures analysis of variance 
(ANOVA) with participants’ average subjective workload (%) 
as dependent variable, and task type as independent variable, 
displayed a significant main effect for task type after a 
Greenhouse-Geisser correction (Fð3:124, 103:080Þ ¼ 55:446, 
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p < :001, g2
p ¼ :627). Post-hoc pairwise tests using the 

Bonferroni correction revealed significant differences in partic-
ipants’ average workload scores (%) with the Backward2 
(masked) task (M ¼ 58:146%, SD ¼ 16:910%) rated signifi-
cantly more demanding as opposed to all other tasks 
(Backward1: p < .001 j Stroop1: p < .001 j Stroop2: p < .001 
j Stroop3: p < .001 j Stroop4: p < .001), except for the 2-back 
task (p ¼ .072, see Table 1 and Figure 5). On average, 

participants systematically rated the Stroop4 task 
(M ¼ 36:904%, SD ¼ 16:874%) as the one generating the 
highest workload among all other Stroop tasks (Stroop1: p <
.001 j Stroop2: p < .001 j Stroop3: p < .001). On average, 
participants in Backward2, 2-back, and Stroop4 tasks reported 
exhibiting substantially higher subjective workload. Including 
Backward1 task, the same trend is observed when investigating 
cognitive task differences in performance scores, response 

Figure 5. The 2-back, Backward1 (unmasked), Backward2 (masked), and Stroop4 were the most cognitively demanding tasks.
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times, and physiological measures (EDA and ST peaks (Setz 
et al., 2009)). These findings showcase that the employed cog-
nitive tasks induced a wide spectrum of cognitive workload as 
reflected in participants’ varying levels of performance, sub-
jective workload, and physiological responses (RQ1).

5.2. Cognitive process inference (RQ2)

Next, we explored whether the BCIglass prototype was able to 
infer the cognitive process(es), elicited by the cognitive task at 
hand, by analysing the EEG bands and relative band power. 
To do so, we investigated how the EEG relative band power 
differed for the Delta, Theta, Alpha and Beta bands, for all 
three electrodes of our BCIglass prototype, across all cognitive 
tasks, and in comparison to the baseline EEG measurements 
(eyes open and eyes closed). We used the average Power 
Spectral Density (PSD in lV2=Hz) as a measure of relative 
band power to perform any comparisons (see Figure 6).

5.2.1. Delta band (1–4 Hz)
Three non-parametric Friedman tests displayed significant 
differences in the median Delta PSD captured by electrodes 
Nz (v2

r ð8Þ ¼ 23:071, p < :01, W ¼ :093), TP9 (v2
r ð8Þ ¼

27:286, p < :01, W ¼ :110), and TP10 (v2
r ð8Þ ¼ 24:241, p 

< :01, W ¼ :098) among the cognitive tasks and baselines. 
For an overview of the post-hoc pairwise comparisons 
between cognitive tasks, see Table 2. Post-hoc pairwise com-
parisons using Wilcoxon signed-rank tests for the Nz elec-
trode showed that the median Delta PSD in the 2-back task 
(Mdn¼ 3.155) was systematically higher than in the eyes- 
closed (Mdn ¼ 1:514jZ ¼ −3:469, p < :01) baseline and the 
Stroop1 task (Mdn ¼ 1:541jZ ¼ −2:841, p < :01). The same 
procedure showed that the median Delta PSD in the 
Backward1 task (Mdn¼ 2.866) was systematically higher 
than in the eyes-closed baseline (Mdn ¼ 1:514jZ 
¼ −2:606, p < :01), the Stroop1 task (Mdn ¼ 1:541jZ 
¼ −2:156, p < :05), and the Stroop3 task (Mdn ¼ 2:053 
jZ ¼ −1:999, p < :05). Similarly, the median Delta PSD in 
the Stroop4 task (Mdn¼ 2.093) was found significantly 
higher than in the eyes-closed baseline (Mdn ¼ 1:514 
jZ ¼ −2:587, p < :05). Interestingly, the median Delta PSD 
in the Backward2 task (Mdn¼ 1.948) did not vary signifi-
cantly when compared with the median Delta PSD in any 
other task such as the eyes-closed baseline (Mdn ¼
1:514 jZ ¼ −1:391, p ¼ :164).

We investigated if these results were consistent for the 
TP9 electrode too. Post-hoc pairwise comparisons using 
Wilcoxon signed-rank tests for the TP9 electrode showed 
that the median Delta PSD in the 2-back task (Mdn¼ 2.549) 
was significantly higher than in the eyes-open (Mdn ¼
1:711jZ ¼ −2:077, p < :05) and eyes-closed (Mdn ¼ 1:514j
Z ¼ −3:625, p < :001) baselines and the Stroop1 task 
(Mdn ¼ 1:204jZ ¼ −2:528, p < :05). The same procedure 
unveiled that the median Delta PSD in Backward1 task   

Figure 6. BCIglass average Power Spectral Density (PSD) across all bands, elec-
trodes, and tasks including baselines. For an overview of the significant differen-
ces among cognitive tasks, see Tables 2–4.
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(Mdn¼ 2.434) was significantly higher than in the eyes- 
closed baseline (Mdn ¼ 1:514jZ ¼ −2:528, p < :05), but no 
significant difference was observed between the median 
Delta PSD in Backward2 task (Mdn¼ 1.886) and in any 
other task or baseline such as the eyes-closed baseline 
(Mdn ¼ 1:514jZ ¼ −1:176, p ¼ :240). However, the same 
procedure revealed that the median Delta PSD in the 
Stroop4 task (Mdn¼ 2.058) was systematically higher than 
in the eyes-open (Mdn ¼ 1:712j Z ¼ −2:116, p < :05) and 
eyes-closed (Mdn ¼ 1:514jZ ¼ −:705, p < :01) baselines and 
in the Stroop1 task (Mdn ¼ 1:204jZ ¼ −2:234, p < :05).

Finally, we looked into the measurements of the TP10 
electrode. A series of post-hoc pairwise comparisons using 
Wilcoxon signed-rank tests for the TP10 electrode showed 

that the median Delta PSD in the 2-back task (Mdn¼ 2.587) 
was significantly higher than in the eyes open 
(Mdn ¼ 1:464jZ ¼ −2:332, p < :05) and eyes closed 
(Mdn ¼ 1:389jZ ¼ −3:175, p < :01) baselines. Similarly, the 
median Delta PSD in the Backward1 task (Mdn¼ 2.666) was 
found substantially higher than in the eyes-open 
(Mdn ¼ 1:464jZ ¼ −2:214, p < :05) and eyes-closed 
(Mdn ¼ 1:389jZ ¼ −2:567, p < :05) baselines. Interestingly, 
the same procedure did not reveal any significant differences 
between the median Delta PSD in the Backward2 task 
(Mdn¼ 1.752) and in any other task or baseline such as the 
eyes closed (Mdn ¼ 1:389jZ ¼ −1:195, p ¼ :232). However, 
the tests showed that the median Delta PSD in the Stroop4 
task (Mdn¼ 2.154) was systematically higher than in the 

Table 2. All significant differences between cognitive tasks in median PSD (lV2=Hz) for Delta band, as captured by all three BCIglass 
electrodes.

Electrode (BCIglass)
Band High Median PSD Low Median PSD Wilcoxon (Z) p-Value

Delta (1–4 Hz) Nz 2-back (3.155) > Eyes-closed (1.514) −3.469 < 0.01
> Stroop1 (1.541) −2.841 < 0.01

Backward1 (2.866) > Eyes-closed (1.514) −2.606 < 0.01
> Stroop1 (1.541) −2.156 < 0.05
> Stroop3 (2.053) −1.999 < 0.05

Stroop4 (2.093) > Eyes-closed (1.514) −2.587 < 0.05
TP9 2-back (2.549) > Eyes-open (1.711) −2.077 < 0.05

> Eyes-closed (1.514) −3.625 < 0.001
> Stroop1 (1.204) −2.528 < 0.05

Backward1 (2.434) > Eyes-closed (1.514) −2.528 < 0.05
Stroop4 (2.058) > Eyes-open (1.712) −2.116 < 0.05

> Eyes-closed (1.514) −.705 < 0.01
> Stroop1 (1.204) −2.234 < 0.05

TP10 2-back (2.587) > Eyes-open (1.464) −2.332 < 0.05
> Eyes-closed (1.389) −3.175 < 0.01

Backward1 (2.666) > Eyes-open (1.464) −2.214 < 0.05
> Eyes-closed (1.389) −2.567 < 0.05

Stroop4 (2.154) > Eyes-open (1.464) −1.999 < 0.05
> Eyes-closed (1.389) −2.822 < 0.01

The 2-back, Backward1, and Stroop4 cognitive tasks generated substantially higher median Delta PSD, as opposed to eyes-open/closed 
baselines and less-demanding internal-processing tasks (e.g., Stroop1).

Table 3. All significant differences between cognitive tasks in median PSD (lV2=Hz) for Theta band as captured by the Nz and TP9 
BCIglass electrodes.

Electrode (BCIglass)
Band High Median PSD Low Median PSD Wilcoxon (Z) p-Value

Theta (4–8 Hz) Nz 2-back (.284) > Eyes-open (.194) −2.018 < 0.05
> Eyes-closed (.226) −2.077 < 0.05

Backward1 (.399) > Eyes-open (.194) −3.116 < 0.01
> Eyes-closed (.226) −3.175 < 0.01
> Stroop3 (.223) −2.234 < 0.01
> Stroop4 (.240) −2.802 < 0.01

TP9 Backward1 (.330) > Eyes-open (.129) −2.998 < 0.01
> Eyes-closed (.181) −2.587 < 0.05
> Stroop4 (.247) −2.548 < 0.01

Stroop2 (.348) > Eyes-open (.129) −2.587 < 0.05
> Eyes-closed (.181) −2.352 < 0.05

The 2-back and Backward1 cognitive tasks generated substantially higher median Theta PSD, as opposed to eyes-open/closed baselines, 
and less-demanding decision-making, willed-attention and working-memory tasks (e.g., Stroop3).

Table 4. All significant differences between cognitive tasks in median PSD (lV2=Hz) for Alpha band as captured by the TP9 BCIglass 
electrode.

Electrode (BCIglass)
Band High Median PSD Low Median PSD Wilcoxon (Z) p-Value

Alpha (8–13 Hz) TP9 Backward1 (.110) > Backward2 (.051) −3.018 < 0.01
Stroop2 (.093) −2.606 < 0.01
Backward1 (.110) > Stroop4 (.063) −3.153 < 0.01
Stroop2 (.093) −2.410 < 0.05

The Backward2 and Stroop4 cognitive tasks generated substantially lower median Alpha PSD, as opposed to less cognitively demanding 
tasks (e.g., Stroop2).
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eyes-open (Mdn ¼ 1:464jZ ¼ −1:999, p < :05) and eyes- 
closed (Mdn ¼ 1:389jZ ¼ −2:822, p < :01) baselines. These 
results demonstrate that the Delta band power, as measured 
by the BCIglass prototype, displayed significant fluctuations 
almost among all cognitive tasks, indicating varying levels of 
increased attention to internal processing (Harmony et al., 
1996) (RQ2).

5.2.2. Theta band (4–7 Hz)
Three non-parametric Friedman tests displayed significant dif-
ferences in the median Theta PSD (lV2=Hz) captured by elec-
trodes Nz (v2

r ð8Þ ¼ 17:127, p < :05, W ¼ :069) and TP9 
(v2

r ð8Þ ¼ 20:912, p < :01, W ¼ :084), but not in the median 
Theta PSD captured by TP10 (v2

r ð8Þ ¼ 15:045, 
p ¼ :058, W ¼ :061). For an overview of the post-hoc pairwise 
comparisons between cognitive tasks, see Table 3. Post-hoc 
pairwise comparisons using Wilcoxon signed-rank tests for the 
Nz electrode showed that the median Theta PSD in the 2-back 
task (Mdn ¼ .284) was systematically higher than in the eyes- 
open (Mdn ¼ :194jZ ¼ −2:018, p < :05) and eyes-closed 
(Mdn ¼ :226jZ ¼ −2:077, p < :05) baselines. The same pro-
cedure unveiled that the median Theta PSD in Backward1 task 
(Mdn ¼ .399) was substantially higher than in the eyes-open 
(Mdn ¼ :194jZ ¼ −3:116, p < :01) and eyes-closed 
(Mdn ¼ :226jZ ¼ −3:175, p < :01) baselines, but also higher 
than in the Stroop3 task (Mdn ¼ :223j Z ¼ −2:234, p < :01) 
and surprisingly the Stroop4 task 
(Mdn ¼ :240jZ ¼ −2:802, p < :01). Interestingly, the same 
tests displayed no difference in the median Theta for 
Backward2 task (Mdn ¼ .228) when compared with any other 
task or baseline, such as eyes closed 
(Mdn ¼ :226, jZ ¼ −1:568, p ¼ :117). We also investigated if 
these results were consistent for the TP9 electrode too. A series 
of post-hoc pairwise comparisons using Wilcoxon signed-rank 
tests for the TP9 electrode displayed no significant differences 
in the median Theta PSD for the 2-back task (Mdn ¼ .278) 
when compared with the median Theta PSD in any other task 
or baseline, such as eyes closed 
(Mdn ¼ :181jZ ¼ −1:627, p ¼ :104). In contrast, the same 
tests displayed a significantly higher median Theta PSD for 
Backward1 task (Mdn ¼ .330), as opposed to the eyes-open 
(Mdn ¼ :129jZ ¼ −2:998, p < :01) and eyes-closed (Mdn ¼
:181jZ ¼ −2:587, p < :05) baselines, but also higher than the 
median Theta PSD for Stroop4 task (Mdn ¼ :247j
Z ¼ −2:548, p < :01). However, the same procedure did not 
display any significant difference between the median Theta 
PSD for the Backward2 task (Mdn ¼ .185) and the median 
Theta PSD for any other task or baseline, such as eyes closed 
(Mdn ¼ jZ ¼ −:764, p ¼ :445). Interestingly, the same tests 
revealed that the median Theta PSD for the Stroop2 task 
(Mdn ¼ .348) was systematically higher than in the eyes-open 
(Mdn ¼ :129jZ ¼ −2:587, p < :05) and eyes-closed baselines 
(Mdn ¼ :181jZ ¼ −2:352, p < :05). These results showcase 
that cognitive tasks involving decision-making in oddball para-
digms with willed attention (i.e., Backward1) (Rajan et al., 
2019) and working memory (i.e., 2-back) (Klimesch, 1999; 
Mecklinger et al., 1992) evoked stronger Theta band-power 
fluctuations than other tasks, as measured by the BCIglass 

prototype. However, we did not observe a linear increase in 
Theta PSD with increasing stimulus interference (i.e., Stroop 
tasks) (Hanslmayr et al., 2008) (RQ2).

5.2.3. Alpha band (8–12 Hz)
Three non-parametric Friedman tests revealed significant 
differences in the median Alpha PSD (lV2=Hz) captured by 
electrode TP9 (v2

r ð8Þ ¼ 15:656, p < :05, W ¼ :063) among 
the cognitive tasks and baselines, but no significant differen-
ces in the median Alpha PSD captured by the Nz (v2

r ð8Þ ¼
13:376, p ¼ :100, W ¼ :054) and the TP10 (v2

r ð8Þ ¼ 10:323, 
p ¼ :243, W ¼ :042) electrodes. For an overview of the post- 
hoc pairwise comparisons between cognitive tasks, see Table 
4. Post-hoc pairwise comparisons using Wilcoxon signed- 
rank tests for the TP9 electrode unveiled that the median 
Alpha PSD in the Backward2 task (Mdn ¼ .051) was signifi-
cantly lower than in the Backward1 (Mdn ¼ :110 j
Z ¼ −3:018, p < :01) and the Stroop2 (Mdn ¼ .093 j
Z ¼ −2:606, p < :01) tasks. The same procedure revealed a 
substantially lower median Alpha PSD in the Stroop4 task 
(Mdn ¼ .063) when compared with the Backward1 
(Mdn ¼ :110 j Z ¼ −3:153, p < :01) and the Stroop2 (Mdn 
¼ .093 j Z ¼ −2:410, p < :05) tasks. Interestingly, the 
median Alpha PSD in the 2-back task did not differ signifi-
cantly from the median Alpha PSD (Mdn ¼ .1072) in any 
of the other tasks or baselines captured by the TP9 electrode 
such as in the eyes-closed (Mdn ¼ .103 j Z ¼ −:412, 
p ¼ :681) baseline. These findings display a systematically 
lower Alpha PSD in tasks designed to induce high cognitive 
workload (i.e., Backward2, Stroop4) (Klimesch et al., 1993). 
Interestingly, this trend was only observed in the Alpha 
band power captured by the TP9 electrode of the BCIglass 
prototype (RQ2).

5.2.4. Beta band (12–30 Hz)
Three non-parametric Friedman tests revealed no significant 
differences in the median Beta PSD captured by electrodes 
Nz (v2

r ð8Þ ¼ 12:604, p ¼ :126, W ¼ :053), TP9 (v2
r ð8Þ ¼

11:804, p ¼ :160, W ¼ :049), and TP10 (v2
r ð8Þ ¼ 13:076, 

p ¼ :109, W ¼ :054) among all cognitive tasks and baselines. 
These results were somewhat expected since the Beta band 
is evoked mostly in motor execution/preparation tasks 
(Crone et al., 1998; Vourvopoulos et al., 2019) (RQ2).

5.3. EEG topology comparison (RQ3)

Initially, we compared the resting-state Alpha power 
between the two systems/topologies when the participants 
performed a simple “eyes-open/eyes-closed” task. It is well 
known that Alpha EEG activity is dominant in healthy indi-
viduals during an eyes-closed resting condition, and is sup-
pressed with visual stimulation (Adrian & Matthews, 1934; 
Jasper, 1936). As anticipated, we detected an increase in 
relative Alpha band power during eyes-closed with the 
Enobio 20 system, but also with all the BCIglass electrodes 
(see Figure 7). This is a key finding since it enables us to 
validate the BCIglass system with standard methodological 
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approaches in a dominant EEG feature such as relative rest-
ing-state Alpha. In fact, resting-state Alpha is used in inves-
tigating major psychiatric disorders (e.g., Attention-Deficit/ 
Hyperactivity Disorder—ADHD, addiction, schizophrenia, 

depression, anxiety, Obsessive Compulsive Disorder—OCD, 
autism, Post-Traumatic Stress Disorder—PTSD, see 
(Newson & Thiagarajan, 2018) for an overview), as well as 
in mindfulness and meditation studies (Başar et al., 2001; 

Figure 7. An increase in the relative Alpha band power is observed between the eyes-open and eyes-closed resting-state conditions for both systems. This enables 
us to validate the BCIglass prototype against standard methodological approaches in a dominant EEG feature such as relative resting-state Alpha.
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Klimesch, 1999), hence increasing the potential use cases of 
a ubiquitous BCIglass system.

For brevity, we utilised the composite measure of the 
Engagement Index (EI) known for correlating with partici-
pants’ self-reported task engagement (Kamzanova et al., 
2014; Pope et al., 1995). The Cz and Pz electrodes are 
located over the central and parietal lobes based in the 10- 
10 system (see Figure 2(a)). We opted for a middle scalp 
location as a compromise between the predominantly pos-
terior distribution of Alpha band power and the frontal lobe 
involvement in working memory (Rypma & D’Esposito, 
1999). First, a series of non-parametric Spearman’s rank- 
order correlations were conducted between the three electro-
des of our prototype (Nz, TP9, TP10) and the two selected 
electrodes of Enobio 20 (Cz, Pz) to determine if there is a 
relationship in the average EI measured by the two systems/ 
topologies. Across all cognitive tasks and baselines, we found 
significant and positive correlations in average measured EI 
between the Nz and Cz electrodes (rsð242Þ ¼ :177, p < :01), 
between the TP9 and Cz electrodes (rsð242Þ ¼ :215, p < :01) 
and between the TP10 and Cz electrodes (rsð242Þ ¼
:214, p < :01), as well as between the TP9 and Pz electrodes 
(rsð242Þ ¼ :128, p < :05). From the outset, these results may 
imply that both systems/topologies might be aligned when it 
comes to measuring a composite EEG product such as EI 
across all cognitive tasks, including the baselines (see 
Figure 8).

Next, we investigated for both systems the relationship 
between EI and subjective measures of effort and workload, 
such as the constructs that comprise the NASA TLX index. 
For this, we performed a series of non-parametric 
Spearman’s rank-order correlations with EI measured by the 
three electrodes of our prototype (Nz, TP9, TP10) and by 

the two selected electrodes of Enobio 20 (Cz, Pz). 
Interestingly, for our prototype we discovered three signifi-
cant and negative correlations between average EI measured 
by: (1) the Nz electrode and average subjective physical 
demand (rsð242Þ ¼ −:177, p < :01), (2) the TP10 electrode 
and average subjective physical demand (rsð242Þ ¼
−:141, p < :05), and (3) the TP10 electrode and average sub-
jective effort (rsð242Þ ¼ −:139, p < :05). Conversely, we dis-
covered one significant and positive correlation between 
average EI measured by the Cz (Enobio 20) electrode and 
average subjective physical demand (rsð242Þ ¼ :158, p < :05). 
These findings showcase that average EI measured by both 
systems correlates with subjective measures of effort and 
physical demand (Kamzanova et al., 2014; Pope et al., 
1995) (RQ3).

As a measure of “agreement” between the two systems/ 
topologies, we compared how similar are the EI distributions 
of measurements, produced by the electrodes of our 
BCIglass topology, with the EI distributions produced by the 
(selected) electrodes of Enobio 20. To do so, we performed 
a series of pairwise related-samples Friedman’s two-way 
analyses of variance by ranks for each electrode pair, com-
prised of one electrode for our prototype (Nz, TP9, TP10) 
and one of the selected ones for Enobio 20 (Cz, Pz). The 
null hypothesis (H0) of the specified statistical test assumes 
that the distributions between two samples of the same 
population—EI measurements by BCIglass and Enobio 20 
for the same participants—are the same (Pereira et al., 2015; 
Siegel, 1956). The analyses unveiled that the BCIglass Nz 
electrode measured EI in a different fashion than the Enobio 
20 Cz (v2

r ð1Þ ¼ 11:174, p < :01) and Pz (v2
r ð1Þ ¼ 16:926, 

p < :001) electrodes did, respectively. Interestingly, comparisons 
between the EI distributions of TP9 with Cz (v2

r ð1Þ ¼

Figure 8. Engagement Index for each task as recorded by the BCIglass (Nz, TP9 & TP10) and Enobio 20 (Cz, Pz) electrodes.
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:810, p ¼ :368) and with Pz (v2
r ð1Þ ¼ :000, p ¼ 1:0) as well as, 

comparisons between the EI distributions of TP10 with Cz 
(v2

r ð1Þ ¼ 2:793, p ¼ :95) and with Pz (v2
r ð1Þ ¼ :264, p ¼ :607), 

respectively, retained the H0. Thus, except for the Nz electrode, 
the TP9 and TP10 electrodes of our BCIglass electrode top-
ology, measure EI in the same way as the Cz and Pz electrodes 
of an EEG-cap electrode topology. These findings demonstrate 
that our experimental BCIglass electrode topology can capture 
EEG activity induced by a wide variety of cognitive tasks simi-
larly to a higher-resolution EEG-cap topology (RQ3).

Finally, we trained a series of classifier models to predict 
the cognitive task at hand, using the PSD as features, for 
both electrode topologies, including data captured from all 
electrodes for both systems (i.e., three plus two for reference 
and ground for BCIglass, and 20 for Enobio 20). Note that 
our aim here is not to create a general model but rather 
compare between the two systems and electrode topologies 
(RQ3). As described in Section 4.5, the EEG data had first 
been pre-possessed by applying the respective filters, re- 
referencing, and ICA techniques to extracting the PSD for 
all bands across all cognitive tasks. To classify the cognitive 
task at hand, we trained (a) Support Vector Machine 
(SVM), (b) K-nearest neighbour (KNN), (c) 4-layer 
Convolutional Neural Network (CNN), and (d) Extreme 
Gradient Boosting (XGBoost) models, based on prominent 
classification algorithms for BCIs (Lotte et al., 2018). We 
performed an 80–20 data split between training and valid-
ation, and computed average accuracy scores from 20 differ-
ent random trials in each case. We trained the 
aforementioned models both within participants (one 
model/participant) and across participants (one model for 
all). The reason why we did not perform K-fold cross-valid-
ation is that sometimes the dataset is too small to cast into 
higher K-fold, and smaller K values usually lead to insuffi-
cient training data and influence the accuracy scores. 
Instead, we performed a grid search on the accuracy values 
that yielded a K¼ 1 value.

� SVM. We used the svm classifier from scikit – learn.16

We initialized it with Radial Basis Function kernel (RBF) 
by setting kernel¼“rbf” and mapped inputs into higher 
dimensions to fit a non-linear boundary for decisions. 
The regularization parameter, C, was set to 1.0 to balance 
the trade-off between a low training error and a low test-
ing error. The gamma parameter, which influences the 
extent of influence of a single training example, was set 
to “scale,” meaning it uses 1=ðnfeatures � X:varðÞÞ as its 
value.

� KNN. We used the KNeighborsClassifier from scikit-learn 
to create a k-Nearest Neighbors (k-NN) classifier.17

Based on our preliminary benchmark, we found that the 
score was the best when initialized with one neighbor by 
setting nneighbors ¼ 1. This means the classification deci-
sion is based on the single closest training example. We 
set the weights parameter to “distance,” which adjusts the 
influence of each neighbor based on their distance, giving 
closer neighbors more influence on the classification 
decision. We then left all other parameters as default.

� CNN. We assembled a sequential model architecture 
using Keras.18 The network starts with a Conv1D layer, 
equipped with 344 filters, a kernel size of 1, and is ini-
tialized with the “he uniform“ initializer. It is regulated 
by L2 normalization to reduce overfitting. Batch normal-
ization is then applied to maintain stability in the activa-
tions. A pooling method is then used to reduce the 
dimensionality of the parameters and control overfitting 
further. Two dense layers are then applied, each activated 
by a rectified linear unit (ReLU) with a follow-up drop-
out function in rate of 0.25. The dropout helps remove 
weak connections and further prevents overfitting. The 
final output layer has 7 units in the first trial and 3 units 
in the second with a softmax activation function for clas-
sification. The network was compiled with the Adam 
optimizer, utilizing a learning rate of 0.01, and 
categorical crossentropy was chosen as the loss function. 
We trained the network with 15 epochs and a batch size 
of 256. Since we have a relatively small dataset, a shallow 
network (i.e., 4-layer CNN) could further reduce the risk 
of overfitting. For a detailed architecture of the CNN 
model, see Table 5.

� XGBoost. We used the off-the-shelf version of the 
XGBoost classifier.19 The workflow of XGBoost (Extreme 
Gradient Boosting) begins with initializing a series of 
decision trees. Each new tree is built to correct the errors 
made by the previous trees and enhance the model’s 
overall accuracy. The network utilizes a tree learning 
algorithm to handle sparse data and a weighted quantile 
sketch for efficient approximate tree learning. In the 
XGBoost classifier configuration, we set max depth as 6, 
and learning rate (or eta) to 0.3. We used gbtree as our 
booster, with subsample and colsample bytree both at 1.0. 
The gamma parameter was 0, min child weight was 1, 
and both reg alpha and reg lambda were 0.

Initially, we attempted to train classifiers that classify all 
seven distinct cognitive tasks but both systems (BCIglass & 
Enobio 20) performed poorly (see Table 6). The best average 
classification accuracy achieved for all seven cognitive tasks 
was 22.31% for the BCIglass topology and 30.89% for the 
Enobio 20, when training/testing an SVM with RBF kernel 
and a 4-layer CNN, respectively (see Tables 6). Due to 
scarce data, we instead resorted to predicting the type of the 
cognitive task at hand: (1) 2-back class (2) Backward 

Table 5. The architecture of the 4-layer Convolutional Neural Network (CNN) 
trained to classify the type (class) of the cognitive task at hand on Power 
Spectral Density (PSD).

Nr. Layer (type) Output Shape Param. #

1 conv1dðConv1DÞ (None, 1, 344) 688
batch normalizationðBatchNoÞ (None, 1, 344) 1376
max pooling1dðMaxPooling1DÞ (None, 1, 172) 0

2 dense(Dense) (None, 1, 4,096) 707,584
dropout(Dropout) (None, 1, 4096) 0

3 dense 1ðDenseÞ (None, 1, 2,048) 8,390,656
dropout 1ðDropoutÞ (None, 1, 2048) 0

4 dense 2ðDenseÞ (None, 1, 3) 6147
Total params: 9,106,451

Trainable params: 9,105,763
Non-trainable params: 688
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Masking class, and (3) Stroop class (see Table 7). For both 
systems, the highest accuracy in predicting the cognitive task 
class was achieved when training classifiers across partici-
pants. The best average classification accuracy achieved was 
79.79% for the BCIglass topology and 88% for the Enobio 
20, when training/testing a 4-layer CNN and an XGBoost 
model, respectively. With a low spatial electrode resolution, 
at the periphery of the skull, our BCIglass topology achieved 
a cognitive task type classification accuracy of �8% lower 
than that of a higher-resolution EEG-cap topology (RQ3). In 
other words, the BCIglass topology yields an improved task- 
type classification accuracy-over-electrode ratio (79.79%=
ð3þ 1gnd þ 1ref Þ ¼ 15:958 %/electrode) when compared to 
Enobio 20 (88 %=20 ¼ 4:4 %/electrode).

5.4. Pilot study in the wild

We conducted a limited pilot study with one participant 
(N¼ 1, female, 32 years old) in the wild to investigate 
whether the BCIglass is capable of capturing EEG activity 
that indicates cognitive processes outside the lab. The par-
ticipant was recruited from the premises of our University 
with no history of neurological disorders. In a brief session, 
we instructed the participant on how to use the BCIglass 
(e.g., apply conductive paste) and the required software (e.g., 
“OpenBCI_GUI”) to collect their EEG activity data. The par-
ticipant tested the BCIglass in their free time when at home, 
and in activities that require composite levels of attention, 
visual processing, memory recall, decision-making, emo-
tional processing, and motor control: (1) correcting exams 
(1 hour) (Davis et al., 2011), (2) PC gaming (1 hour) (K€uhn 
et al., 2011; Moisala et al., 2017), and (3) watching a movie 
(1 hour) (Nie et al., 2011). The “correcting exams” activity 

involved manually grading physical exam copies for 1 hour, 
while checking a computer screen displaying the solutions. 
The “PC gaming” activity involved playing the “EVE 
Online”20 space simulation game for 1 hour, and while per-
forming low intensity tasks (e.g., asteroid mining). The 
“watching movie” activity involved watching 1 hour of the 
“Saving Private Ryan (1998)”21 war movie, known for its 
graphic and realistic portrayal of war. Upon delivering the 
BCIglass to the participant, we captured 2-min resting state 
baselines (eyes open) with Vuzix Blade on/off. We captured 
the 2-min resting state baselines twice in a counterbalanced 
order (i.e., on–off–off–on) to cancel out any carry-over effects.

First, we empirically assessed whether an active Vuzix 
Blade HMD has an influence on the EEG signal recorded by 
the BCIglass prototype during the 2-min resting states. A pair-
wise related-samples Friedman’s two-way analysis of variance 
by ranks displayed no significant difference in the average 
relative power for all electrode-band pairs between Vuzix 
Blade on (�Ron ¼ 1:58) and off (�Roff ¼ 1:42) states 
(v2

r ð1Þ ¼ :667, p ¼ :414). Thus, by maintaining the H0, we 
showcase that the BCIglass captures EEG activity in the same 
fashion and irrespective of whether Vuzix Blade is powered 
on or off (see Figure 8). This finding confirms our earlier 
hypothesis in that any EMF produced by the Vuzix Blade 
HMD will lie far above the usable EEG spectrum (1–100 Hz) 
to affect it.

Next, we extracted the power spectral density (PSD) for 
each of the EEG bands (Delta, Theta, Alpha and Beta) dur-
ing the three activities (correcting exams, PC gaming and 
watching a movie), and we computed the percent (%) 
change for each band (Equation 1) when compared to an 
initial (eyes-open) resting-state session which served as a 
baseline. Here, we performed only minimal pre-processing 

Table 6. First attempt (7 classes): Average validation & testing Accuracy (a), Precision (P) and Recall (R) in classifying the cognitive task at hand (7 cognitive 
tasks/classes) for both topologies with different models—data captured from all electrodes included for both systems.

Within Participants Across Participants

7 Classes
Enobio 20 BCIglass Enobio 20 BCIglass

Classifier A (%) P (%) R (%) A (%) P (%) R (%) A (%) P (%) R (%) A (%) P (%) R (%)

SVM (RBF) 17.62 14.29 11.11 8.47 8.86 6.05 21.22 18.29 14.49 22.31 13.30 10.41
KNN (K¼ 1) 15.86 13.48 8.89 10.67 10.39 7.26 22.67 17.67 12.59 14.70 14.29 8.81
CNN (4 layers) 6.82 7.14 5.11 5.38 4.94 4.63 30.89 26.19 7.58 20.00 13.21 4.64
XGBoost 12.67 14.29 8.17 12.50 12.05 6.90 27.76 28.57 6.37 16.42 13.89 3.91

SVM with RBF kernel displayed the highest accuracy (22.31%) for BCIglass with Power Spectral Density (PSD) as features, 8.58% lower than Enobio 20 using a 
4-layer CNN. Both systems performed poorly due to scarce data to reliably classify 7 distinct cognitive task classes. Significant differences are highlighted in 
bold font for a p-value <.05.

Table 7. Second attempt (3 classes): Average validation & testing Accuracy (a), Precision (P) and Recall (R) in classifying the cognitive task type at hand (grouping 
7 cognitive tasks to 3 types/classes: Backward Masking, 2-back and Stroop tasks) for both topologies with different models—data captured from all electrodes 
included for both systems. 

Within Participants Across Participants

3 Classes
Enobio 20 BCIglass Enobio 20 BCIglass

Classifier A (%) P (%) R (%) A (%) P (%) R (%) A (%) P (%) R (%) A (%) P (%) R (%)

SVM (RBF) 64.71 69.57 42.11 64.85 62.50 42.86 42.31 37.50 30.77 40.21 38.71 37.50
KNN (K¼ 1) 88.02 78.57 84.62 59.58 51.61 47.06 79.85 75.86 68.75 59.20 57.14 43.24
CNN (4 layers) 56.92 54.55 43.90 62.07 58.06 48.65 50.00 45.16 36.84 79.79 77.78 65.63
XGBoost 84.23 82.14 74.19 53.79 53.57 37.50 88.00 82.31 75.00 67.00 62.07 52.94

A 4-layer CNN displayed the highest accuracy for BCIglass with Power Spectral Density (PSD) as features, 8.21% lower than Enobio 20 using XGBoost. Significant 
differences are highlighted in bold font for a p-value <.05.
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to extract the PSD within the limits of the EEG bands, thus 
band-passing between 1 and 40 Hz. We opted for this to 
maintain ecological validity and simulate the real-time ana-
lysis that can be performed in real-world applications (e.g., 
excluding ICA).

Percent ChangePSD ¼
PSDtask − PSDbaseline

PSDbaseline

� �

� 100 (1) 

In terms of EEG band power change (%), we observe dif-
ferences across the three activities in median electrode 

Figure 9. We empirically confirm that the Vuzix Blade operation does not influence the BCIglass measurements. The previously detected EMF (max. 382 mW=m2 at 
2.4–2.5 GHz) lies way above the usable EEG spectrum (1–100 Hz) to have any effect.
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power (see Figure 9(b)) but also in spatial distribution (see 
Figure 10). Specifically, during “correcting exams,” we 
observe that, for all BCIglass electrodes, relative Alpha (Mdn 
¼ 227%) and Beta (Mdn ¼ 102%) band power are mostly 
higher compared to “PC gaming” and “watching a movie” 
(see Figure 9(b)). The Alpha band is typically suppressed 
during visual stimulation, such as when gaming or watching 
a movie (Adrian & Matthews, 1934; Jasper, 1936). The 
increased relative Beta band power observed in “correcting 
exams” can be attributed to motor preparation and execu-
tion such as hand movement (e.g., browsing through exam 
pages, checking solutions) (Crone et al., 1998). Interestingly, 
we observe an increase in relative Theta band power in the 
“watching a movie” condition that could be ascribed to 
increased emotional processing (Messerotti Benvenuti et al., 
2017). The relationship between Alpha, Beta and Theta 
bands has been studied in the context of various cognitive 
and psychological states (Hanslmayr et al., 2008; Klimesch 
et al., 1993; Mecklinger et al., 1992; Rajan et al., 2019). In 
general, modulation of the Alpha, Beta and Theta ratio is 
often associated with cognitive functioning and may indicate 
a state of relaxation and focused attention (Harmony et al., 
1996), plus it is often used in neurofeedback (Jurewicz et al., 
2018; Zoefel et al., 2011). Thus, our BCIglass prototype 
appears to be capable of capturing EEG activity related to 
everyday-life activities performed in the wild. However, fur-
ther research is required to reliably prove the capabilities of 
BCIglass in the wild.

6. Discussion

Our findings suggest that a sparse EEG-electrode topology, 
constrained at the periphery of the skull, can detect cogni-
tive workload, can infer cognitive processes and can measure 
EEG activity almost in a similar manner to a higher-reso-
lution topology of a research-grade system (Enobio 20). 
Early results from a limited pilot study in the wild indicate 
that all these may be possible in the complex settings of 
everyday life. Moreover, the BCIglass prototype achieved an 
improved accuracy-over-electrode ratio in predicting the 
class of the cognitive-task at hand in comparison to Enobio 
20. These are encouraging findings in the quest of designing 
cognition-aware systems for everyday use.

6.1. Internal validity of cognitive tasks and hints to 
ecological validity

Although our cognitive tasks were based on paradigms 
extensively used in cognitive psychology and neuroscience, 
we had no empirical evidence about their effectiveness in 
inducing cognitive workload and invoking cognitive proc-
esses (RQ1). To establish this, we utilized objective, subject-
ive, and physiological measures of (cognitive) performance, 
workload, and stress. From the outset, we confirmed known 
phenomena in literature, such as strong relationships among 
high subjective workload (Young et al., 2015), physiological 
stress (Setz et al., 2009), and physiological cognitive 

Figure 10. Power Spectral Density (PSD) change (%) distribution from resting-state baseline (eyes-open) for Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–13 Hz) and 
Beta (13–30 Hz) bands across three 1-h tasks performed in the wild: (a) correcting exams, (b) PC gaming, and (c) watching a movie.
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workload (Abdelrahman et al., 2017), all linked to lower 
cognitive performance (Hart & Staveland, 1988). Overall, the 
employed measures converge in that the top four most cog-
nitively demanding tasks (out of seven) were the Backward2 
and Backward1 (visual processing), the 2-back (working 
memory), and the Stroop4 (stimulus interference) tasks. 
Thus, we were able to devise cognitive tasks with relatively 
granular cognitive workload levels. These findings corrobor-
ate the internal validity of our cognitive tasks and hint at 
their ecological one:

� The 2-back task may represent the complexity of task 
switching and attention shifting between tasks on an 
HMD (e.g., responding to a notification), in the real 
world (e.g., correcting exams), and internal tasks (e.g., 
trying to recall the exam solutions) (Putze et al., 2016; 
Vortmann et al., 2019; Vortmann & Putze, 2021).

� The Backward Masking task(s) may represent the task of 
identifying the sought after information or interface 
element (e.g., finding a skill button when gaming).

� The Stroop task(s) could represent situations of conflict-
ing stimuli causing confusion (e.g., choosing from differ-
ent icons when gaming).

6.2. Capturing cognitive workload and inferring 
cognitive processes

The Alpha band PSD, as captured by the TP9 electrode of 
BCIglass, revealed significant reductions in the Backward2 
and Stroop4 tasks, indicating substantial cognitive workload 
(Grimes et al., 2008; Kosch et al., 2018). Besides, the Alpha 
band is linked to working memory performance and mental 
arithmetic tasks (Başar et al., 2001; Klimesch, 1999; 
Klimesch et al., 1993). We observed no significant Alpha 
PSD reductions for any BCIglass electrode in the 2-back 
task, as expected during a working memory task (Klimesch, 
1999). However, the Nz and TP9 electrodes captured signifi-
cant fluctuations in the Theta band PSD for the 2-back and 
Backward1 tasks. In fact, Theta fluctuations are also linked 
with working memory performance (Klimesch, 1999; 
Mecklinger et al., 1992), problem-solving and decision-mak-
ing in oddball paradigms (e.g., Backward1 and Backward2) 
(Rajan et al., 2019). Interestingly, the BCIglass topology cap-
tured systematic Theta band PSD fluctuations also for the 
less cognitively demanding tasks, such as Stroop2 which dis-
played higher Theta band PSD than the baselines (eyes open 
& closed)—perhaps an indication of stimulus interference 
(Hanslmayr et al., 2008). Expectedly, the Delta EEG band 
displayed the highest number of systematic PSD variations 
for the top three out of four most cognitively demanding 
tasks, and for all three BCIglass electrodes. These variations 
were particularly striking when compared with not only the 
baselines, but also with less cognitively demanding tasks 
(e.g., Stroop 1, 2 & 3). We believe this is an indication of 
increased willed attention to internal processing, at least in 
the Backward1, 2-back, and Stroop4 tasks (Harmony et al., 
1996).

Surprisingly, no significant fluctuations were observed 
both in Delta and Theta PSDs for the Backward2 (masked) 
task, although displaying substantially high reductions in 
Alpha band PSD. Prior work has shown that the EEG bands 
can predict the effectiveness of perceptual masking, and by 
lowering the intensity of the stimulus, we can reduce the 
probability of perceiving it to 0 (Schubert et al., 2009). We 
believe that the stimulus presentation in the Backward2 task 
was too weak (short) to be perceived (166 ms) by the major-
ity of our participants, as it was subsequently overwritten by 
the mask presentation (“XXX”). Backward2 task resulted in 
the lowest average performance score and highest average 
subjective workload across all cognitive tasks (see Figure 8
and Table 1). Interestingly, we observe that BCIglass cap-
tured relative Alpha band suppression in the wild too, and 
in activities that involve visual processing, such as playing a 
game or watching a movie (Adrian & Matthews, 1934; 
Jasper, 1936). Notably, the BCIglass captured increased rela-
tive Beta band when correcting exams, indicating the 
increased motor preparation and execution for coordinated 
hand movement (Crone et al., 1998). Capturing naturalistic 
Beta band fluctuations in the wild is a particularly interest-
ing finding, since no cognitive task that we performed in 
the lab involved motor preparation and execution (see 
Section 5.2.4). These findings indicate that even sparse and 
decentralised EEG-electrode topologies can capture cognitive 
workload and can infer cognitive processes linked to work-
ing memory, decision-making, problem-solving, and internal 
processing by utilizing the (relative) PSD power of EEG 
bands—not only in lab settings, but potentially in the wild 
too (RQ2).

6.3. Similar measurements, improved classification 
accuracy per electrode

Interestingly, we discovered that the higher the Engagement 
Index (EI), as measured by the Nz and TP10 (BCIglass) elec-
trodes, the lower the subjective physical demand (NASA- 
TLX). The reversed trend was unveiled for the Cz (Enobio 
20) electrode, where higher EI displayed a relationship with 
also higher subjective physical demand. We also found the 
higher the EI, as measured by the TP9 (BCIglass) electrode, 
the lower the subjective physical demand. These findings are 
in line with prior literature on the relationship of EI with 
subjective measures of workload (Kamzanova et al., 2014; 
Pope et al., 1995), though in a reversed fashion for our 
prototype. This phenomenon could be attributed to the 
sparse and decentralized electrode topology of our proto-
type. In fact, we found that the TP9 and TP10 electrodes 
(BCIglass) measured EI in a similar way to the Cz and Pz 
(Enobio 20). However, we did not observe the same trend 
when comparing EI distributions captured by the Nz-Cz 
and Nz-Pz electrode pairs. We suspect that the Nz 
(BCIglass) electrode was subjected to increased noise inter-
ference from face-muscle artifacts. The Nz electrode is 
placed further away from the Cz and Pz electrodes, right 
above the nasion (nose) and in close proximity to the proce-
rus and corrugator muscles which produce significant EMG 
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activity, hindering EEG measurements from that location on 
the skull. These findings suggest that our experimental 
BCIglass topology captured the compound measure of EI in 
the same fashion with the Enobio 20, for the selected elec-
trodes (RQ3). Surprisingly, the sparse topology of the 
BCIglass did not seem to drastically affect the classification 
accuracy of cognitive tasks types, achieving a 79.79% accur-
acy with a 4-layer CNN model, as opposed to an 88% accur-
acy for the Enobio 20 with an XGBoost model. This 
potentially indicates that deep learning approaches, and spe-
cifically CNNs, are particularly effective in classifying cogni-
tive tasks based on PSD from scarce electrode topologies 
(Fridman et al., 2018). Fewer electrodes, placed surrepti-
tiously in contact with the skull, promote the design of 
lightweight and potentially socially acceptable cognition- 
aware systems that are fit for everyday-life use.

6.4. Moving EEG into the wild is a prerequisite to 
cognition-aware systems

Vuzix devices meet the respective electromagnetic compli-
ance (EMC) standards, and thus are suitable for use in 
healthcare and medical settings. However, due to our covert 
setup (EEG electrodes attached inside the HMD frame), and 
the notorious sensitivity of the EEG signals, we still investi-
gated whether any electromagnetic field (EMF) produced by 
the Vuzix blade can influence the recorded BCIglass EEG 
signals. Measurements with a dedicated EMF meter dis-
played that only the TP9 electrode was susceptible to high 
EMF. A deeper look revealed that Vuzix blade produces a 
notable EMF in the range of 2.4–2.5 GHz (for Wi-Fi con-
nectivity), but far above the usable EEG frequency spectrum 
to have any effect on it. Even so, a pilot study in the wild 
enabled us to empirically investigate the EEG signals cap-
tured by BCIglass when the Vuzix Blade is active. A post- 
hoc analysis displayed that the BCIglass captures EEG activ-
ity in the same fashion and irrespective of whether Vuzix 
Blade is powered on or off. This is an encouraging finding 
in moving EEG into the wild with BCIglass.

BCIglass could pave the way for cognition-aware systems, 
where cognitive workload and cognitive processes are moni-
tored for delivering meaningful and timely interventions 
(Heger et al., 2010). These interventions could vary from 
simply selecting the right moment to display an email notifi-
cation to delivering intrusive warnings when detecting drow-
siness during driving (Lin et al., 2008). In fact, the increased 
connectivity of modern HMDs (BLE, Wi-Fi, 5 G) facilitates 
system interoperability—the communication among different 
information systems (e.g., (Y. Kim et al., 2015)). In the 
aforementioned example, the intrusive warning could be 
delivered via a driver-assistance system that vibrates the 
steering wheel or disengages cruise control when receiving a 
command from a BCIglass system. By further capitalizing on 
system interoperability, BCIglass could also serve biometric 
authentication purposes by classifying features extracted 
from the PSD of EEG bands (Ashby et al., 2011; Zhang 
et al., 2018) and enabling one to access a personal space 
(e.g., unlocking a smart-home lock) or system (e.g., online 

banking portal). Additional sensors embedded in the frames 
of a modern HMD could be utilized for developing more 
sophisticated assistive systems. For example, BCIglass could 
detect moments of low attention in important contexts (e.g., 
in a meeting) to drive the capture of video via an on-board 
camera and microphone. The video could later be displayed 
on the HMD for augmenting memory recall in a “closed- 
loop” memory-augmentation system.

Despite the recent uptake of mobile in-and around-the 
ear EEG systems (Ala et al., 2022; Cr�etot-Richert et al., 
2023; Henao et al., 2022; Kaveh et al., 2020; Musaeus et al., 
2023), their confined topology in placing EEG electrodes 
exclusively over the temporal lobe may reduce the quality 
and the EEG signal they can measure (Kaongoen et al., 
2023). Taking into account the proliferation of AR headsets 
and EEG-powered AR applications (Angrisani et al., 2023; 
Arpaia et al., 2022; Jang et al., 2023; Zhao et al., 2020), 
embedding concealed EEG electrodes in lightweight HMDs 
appears to be a promising avenue. Ultimately, HMDs could 
be the medium for moving EEG into the wild, while facili-
tating the design of systems that augment our perceptual 
and cognitive capacities (Dingler & Niforatos, 2021).

6.5. Limitations

The main part of this study was conducted in a research lab 
and in stationary settings. We deemed this was necessary to 
fully determine the feasibility and effectiveness of our con-
cept. Prior work has attempted to introduced EEG in 
uncontrolled settings involving physical motion (e.g., cycling 
(Kohli & Casson, 2015) or when driving (Lin et al., 2008)), 
but so far have utilized an EEG-cap topology by concealing 
EEG electrodes in helmets (Kohli & Casson, 2015), baseball 
caps (Lin et al., 2008), or using a typical EEG cap (Casson, 
2019). A limited follow-up pilot study in the wild enabled 
us to explore the real-life potential of BCIglass too. In fact, 
the BCIglass was able to capture relative band power in a 
variety of everyday life activities, displaying a capability we 
did not recreate in the lab—capturing Beta band power in a 
motor execution/preparation task. We expect that the on- 
board sensors of an HMD (e.g., accelerometers) will help us 
identify opportune moments for EEG sampling in the wild 
(e.g., when a user is stationary). We also expect that EMG 
artifacts stemming from muscle contractions may have influ-
enced our results. Although we applied the typical proce-
dures for removing EMG and EOG artifacts, the very 
position of the Nz electrode between the eyebrow muscles 
(procerus and corrugator muscles) hinders its capacity to 
detect EEG activity, when compared with the TP9 and TP10 
electrodes. Nevertheless, the Nz electrode was still able to 
capture significant fluctuations in the Delta and Theta band 
PSDs linked to cognitive workload and cognitive processes 
due to effective EEG signal post-processing.

Contrary to popular belief, the prospects of capturing 
meaningful EEG signals in real-time and on the go are 
rather positive. For example, the Artifacts Subspace 
Reconstruction (ASR) algorithm is particularly effective in 
removing EEG noise artifacts in real time, generated by 
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muscle contractions and body movement such as facial 
expressions, speech, walking or even jumping (Kumaravel 
et al., 2021; Mullen et al., 2015; Tsai et al., 2022). Our first 
attempt to classify the actual cognitive task at hand was not 
successful for both systems. Both the BCIglass and the 
Enobio 20 performed poorly when attempting to classify 
seven (7) different cognitive tasks, with Enobio 20 achieving 
8.58% better classification accuracy than BCIglass. We attri-
bute this to the scarce data available to effectively train the 
selected classifier models. Indeed, in a second attempt, we 
thematically merged the seven different cognitive tasks into 
three overall cognitive task types. This time, both systems 
performed substantially better (BCIglass: 79.79% j Enobio 
20: 88%), with Enobio 20 achieving 8.21% better classifica-
tion accuracy than BCIglass. This stable difference in classifi-
cation accuracy (�8%) between the two systems, when 
classifying seven and three cognitive tasks/types, indicates 
that classification accuracy can be further increased for both 
systems with more data. Finally, our experimental setup 
involved the fixation of two EEG systems on the heads of 
our participants, plus a face mask.22 As reported, the sub-
stantial head-mounted equipment involved, instilled fatigue 
in our participants. This potentially influenced our results 
and did not permit longer trials to collect more data. 
Nevertheless, we could still effectively measure EEG activity 
owed to the selected cognitive tasks with both systems 
(BCIglass and Enobio 20).

6.6. Future work

Our next step is to confirm the ability of the BCIglass proto-
type to capture not only EEG bands but also Event-Related 
Potentials (ERPs) in longer trials. Previous ERP studies have 
identified the temporal–parietal sites TP9 and TP10, as two 
important electrodes in detecting faces through P1, N170, 
and P2 components (Itier & Taylor, 2002). Thus, we will 
test whether we can confirm these findings by capturing the 
ERPs triggered by the perception of faces with our BCIglass 
prototype. ERPs have also been used for obtaining implicit 
input to systems. For example, Nijholt et al. proposed the 
use of EEG signals for controlling aspects of game inter-
action such as triggering special abilities (Nijholt et al., 
2009). Thus, ERPs induced by AR overlays, and captured by 
the BCIglass, could serve as a low-cost alternative of eye- 
gaze interaction with HMDs. We believe the cognitive tasks 
we devised are ecological enough so as to generate cognitive 
workload and elicit cognitive processes that manifest in 
everyday-life settings. In fact, the limited pilot study in the 
wild unveiled a facet of BCIglass we did not investigate in 
the lab: capturing motor execution/preparation EEG activity. 
By deploying our 4-layer CNN model on the BCIglass proto-
type and by utilizing the ASR algorithm, we will measure 
cognitive workload and infer cognitive processes in the wild 
and in real time, while collecting ground truth via the on- 
board sensors (e.g., HMD camera). In fact, we can further 
improve cognitive task classification by applying auto-regres-
sive modelling to predict EEG signal time series (Nai-Jen & 
Palaniappan, 2004; Wright et al., 1990). Finally, we are also 

looking into experimental approaches that utilize deep learn-
ing for spatial up-sampling of EEG electrodes, as a remedy 
for our sparse BCIglass topology (Svantesson et al., 2021).

7. Conclusion

Open hardware initiatives and the need for ecologically-valid 
measurements have set sail to democratize EEG by moving 
it out of the lab and into the users’ everyday life. Prior 
approaches have attempted to conceal EEG electrodes in 
helmets, caps, earpieces, and some even in a (bulky) pair of 
sunglasses. In this paper, we showcased how a modern and 
lightweight Head-Mounted Display (HMD) can be the 
medium for moving EEG into the wild, in an ergonomic 
and effective manner. We embedded EEG electrodes into 
the frame of a Vuzix Blade HMD, at the touchpoints with 
the skull, creating an covert topology that imposes consider-
able challenges but also numerous opportunities. We experi-
mentally demonstrated how the BCIglass prototype with a 
limited number of electrodes, situated at the periphery of 
the human skull, can capture EEG activity in a comparable 
manner to a higher resolution EEG-cap topology and EEG 
system (Enobio 20). In fact, the BCIglass prototype not only 
showcases the potential of capturing cognitive workload, but 
it can also implicitly infer cognitive processes linked to 
working memory, decision-making, problem-solving, and 
internal processing in a diverse set of established cognitive 
tasks. By training a 4-layer CNN, the BCIglass topology 
achieved a better accuracy-over-electrode ratio in classifying 
cognitive tasks than Enobio 20. A limited pilot study in the 
wild indicated the potential of the BCIglass to capture EEG 
activity in everyday-life settings too. Ultimately, we posit 
that BCIglass bears the potential to revolutionize a wide 
range of research and application areas, such as cognition- 
aware systems, assistive technologies, and human-machine 
interaction.
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