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ABSTRACT
In this paper we focus on the relative position and orientation estima-
tion between rigid bodies in an anchorless scenario. Several sensor
units are installed on the rigid platforms, and the sensor placement
on the rigid bodies is known beforehand (i.e., relative locations of
the sensors on the rigid body are known). However, the absolute po-
sition of the rigid bodies is not known. We show that the relative
localization of rigid bodies amounts to the estimation of a rotation
matrix and the relative distance between the centroids of the rigid
bodies. We measure all the unknown pairwise distances between
the sensors, which we use in a constrained least squares estimator.
Furthermore, we also allow missing links between the sensors. The
simulations support the developed theory.

Index Terms— Rigid body localization, anchorless network,
sensor networks, relative orientation estimation, relative positioning.

1. INTRODUCTION

Automated systems (e.g., underwater vehicles, drones, robots) are
designed to closely follow a desired sequence of way points or a tra-
jectory. The knowledge of the current position, that is, localization
is crucial for navigating such automated systems. Global positioning
system (GPS) is one of the most popular earth-referenced position-
ing systems used for localization and navigation. However, in many
cases of interest, e.g., in underwater applications or indoor environ-
ments, the GPS signals are either unavailable or seriously impaired.
In such environments, sensor networks provide effective localization
solutions.

Localization can be either absolute (e.g., using spatial reference
points — anchors) or relative (i.e., without any reference— anchor-
less). Often, sensors with known absolute positions (i.e., anchors)
are deployed in the area nearby the trajectory of the robot for ab-
solute localization. Localization is a well-known problem and has
been extensively studied in the past; see [1], [2] for an overview. In
emergency situations, an existing infrastructure (e.g., anchors) might
not be available or there might not be enough time to set up one.
Relative localization in such an anchorless scenario is solved using
multi-dimensional scaling [3], [4]. However, relative rigid body lo-
calization with prior sensor placement information on the rigid bod-
ies using range measurements has not been studied before.

In this paper, the goal is to localize multiple rigid platforms an
anchorless scenario, that is, to localize one robot with respect to the
other. In particular, we estimate the relative orientation and transla-
tion of one platform with respect to the other. The state-of-the-art
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(NLDA). In particular, we would like to thank Henry Dol from TNO and
Eric Theunissen from NLDA for their contributions.

orientation estimation relies on an inertial measurement unit (IMU),
i.e., a system of sensors comprising of an accelerometer and a gyro-
scope, which are able to compute the linear and angular motion of
the robot. Unfortunately, due to errors in the measurements, an IMU
will have drift in velocity and attitude, and thus in the position. Ad-
ditional expensive sensors can be used to correct these drift errors,
but cannot avoid it completely. Thus, whenever GPS signals are not
available, or the IMU’s drift becomes too large, there is a need for
other methods that increase the localization accuracy. Therefore, the
proposed framework can be also used as an add-on to correct for the
IMU’s drift errors.

Recently, it was shown in [5] and [6], that a rigid platform can
be localized and tracked using distance measurements. That is, the
position and orientation of a rigid body can be estimated using a
few sensors installed on the platform and some anchors. Here, we
propose an extension of [5] to an anchorless network, where for the
sake of exposition we assume only two rigid bodies. More specifi-
cally, we estimate the relative angles and translation between them
rather than the absolute angles and translation as in [5]. In order to
solve the anchorless problem, we adopt a multi-dimensional scaling
(MDS)-like approach by making use of only the noisy range mea-
surements among the sensors on the rigid bodies. We propose a con-
strained least squares estimator, which solves an optimization prob-
lem on the Stiefel manifold and an algorithm to compute the relative
distance between the centroids of the two rigid bodies. We also ac-
count for the missing links (hence, distance measurements) between
the sensors. Missing links might occur due to the body geometry and
non-availability of a line-of-sight path. Simulations are provided to
support the developed theory.

2. PROBLEM FORMULATION

2.1. Modeling

Without loss of generality, consider two rigid bodies, each equipped
with N sensors, e.g., installed at the factory. The relative locations
of the sensors on the body are assumed to be known. However, the
absolute position of the body, or the relative position of one body
with respect to the other is not known. The rigid body experiences
rotations and translations in each dimension; see the illustration in
Fig.1.

Let us introduce the 3-dimensional Stiefel manifold [7], denoted
by

V3,3 = {Q ∈ R3×3|QTQ = QQT = I3}. (1)

The absolute initial position of a sensor n ∈ {1, · · · , N} belonging
to the body i ∈ {1, 2} in that reference frame is determined by a
3×1 coordinate vector denoted by cn,i. Thus, the information about
the sensor topology, namely, how the sensors have been placed on
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Fig. 1: Illustration of two rigid bodies each equipped with N = 10
sensors undergoing a rotation and translation.

each body is determined by Ci = [c1,i, · · · , cN,i] ∈ R3×N and it
is assumed to be perfectly known.

We can express the absolute position of the nth sensor belonging
to the body i by sn,i ∈ R3 using the rigid body transformation [6]:

sn,i = Qicn,i + ti, n = 1, 2, . . . , N, i = 1, 2, (2)

where Qi ∈ V3,3 and ti ∈ R3 are the rotation matrix and translation
vector, respectively. The former tells us how the sensor constellation
has been rotated in the reference frame while the latter provides the
translation of the zero vector in R3. To consider all the sensors on
the body, the N -tuple of vectors {sn,i}Nn=1 is stacked into a matrix
Si = [s1,i, . . . , sN,i] ∈ R3×N which can be expressed as

Si = QiCi + ti1
T
N =

[
Qi ti

] [ Ci

1T
N

]
, i = 1, 2. (3)

Finally, the absolute position of all the 2N sensors can be de-
fined with the 3× 2N matrix S = [S1 |S2] as

S =
[

Q1 |Q2

]︸ ︷︷ ︸
Q̃∈R3×6

[
C1 03×N

03×N C2

]
︸ ︷︷ ︸

C̃∈R6×2N

+
[

t1 |t2
]︸ ︷︷ ︸

t̃∈R3×2

[
1T
N 0T

N

0T
N 1T

N

]
︸ ︷︷ ︸

B̃∈R2×2N

=
[

Q̃ t̃
]︸ ︷︷ ︸

Θ

[
C̃

B̃

]
︸ ︷︷ ︸

Ce

with Θ ∈ R3×8 and Ce ∈ R8×2N as the unknown transforma-
tion matrix and the known augmented topology matrix, respectively.
In [6], the aim was to estimate the absolute sensor positions, that
is, to estimate the transformation matrix Θ using a few reference
nodes (i.e., anchors) based on distance measurements between all
the sensor-anchor pairs. In contrast, here we focus on determining
the relative sensor positions. This is reminiscent of the multidimen-
sional scaling problem, where we estimate only the relative positions
of the sensors (i.e., only the constellation of sensors) because of the
absence of reference nodes.

The proposed relative rigid body localization problem can be
addressed by computing two quantities: the relative translation t ∈
R, which is the Euclidean distance between the two centroids of the

rigid bodies and the relative rotation matrix Q ∈ V3,3. These can
respectively be expressed as

t = (1/N2)‖(S2 − S1)1N‖22 = ‖t2 − t1‖22 ∈ R, (4a)

Q = QT
1 Q2 ∈ V3,3. (4b)

An advantage of formulating the problem in this way is that we re-
duce the number of unknowns from 6N corresponding to S1 and
S2 to 10 unknowns (9 corresponding to Q and 1 corresponding to
t). This gain is because we exploit the rigidity of the body and the
prior knowledge of the sensor placements. Note that the absolute
sensor positions cannot be recovered, unless a few anchors (at least
3 anchors) are available.

2.2. Measurement model

Assuming that there exists a line-of-sight (LOS) path between all the
sensor pairs, each cross-body measurement between the nth and the
mth sensor contaminated by additive noise is given as

ym,n = ρm,n + vm,n n = 1, · · · , N, m = 1, · · · , N (5)

where ρm,n = ‖sn,2− sm,1‖2 is the pairwise distance, and the con-
sidered noise process is i.i.d. zero-mean Gaussian with variance σ2.
These observations are considered to be valid as long as the body
motion can be neglected during the ranging procedure. The above
model is non-linear in sn,2, sm,1 (thus, in Q and t). One way to sim-
plify this problem is to linearize it, by squaring the measurements,
i.e.,

y2m,n = ρ2m,n + nm,n (6)

with E{nm,n} = σ2 and E{(nm,n − E{nm,n})} = 4ρ2m,nσ
2 +

2σ4) [6]. As can be observed, linearization introduces a bias in
the estimates since the noise is not zero-mean any more. If σ2 is
known and high, this bias could be removed. However, for sim-
plicity, we will not consider any noise in the following derivations,
unless otherwise stated. To begin with, let us assume that we can
measure all the unknown N2 distances (i.e., there are no missing
links). The distances among nodes that belong to the same body are
perfectly known, and are not measured. Distances can be collected
in a 2N × 2N matrix defined as

Y =

[
Y1 Yx

YT
x Y2

]
, (7)

where the known distance matrices Y1 and Y2 are along the block
diagonal, and the noisy cross-body distance matrix Yx is located in
the off-diagonal corners. Due to the knowledge of the sensor topol-
ogy, the distance matrices Y1 and Y2 can be computed for i = 1, 2
as [Yi]m,n = ‖cn,i − cm,i‖2, m, n = 1, · · · , N . However,
the cross-body pairwise distances, that is, the entries of the matrix
Yx are measured, hence are noisy. We can collect all the cross-body
measurements in (6) in a matrix as

Y�2
x := Yx �Yx = ψ11

T
N + 1Nψ

T
2 − 2ST

1S2 (8)

with ψi =
[
‖s1,i‖22, · · · , ‖sN,i‖22

]T ∈ RN×1.
In practice, due to the body geometry, there might be some miss-

ing links (i.e., some part of one body will not face the other one).
These missing measurements are taken into account via a connectiv-
ity matrix W ∈ RN×N extending (8) to

Y�2
x �W = Wdiag(ψ1) + diag(ψ2)W− 2(ST

1S2)�W, (9)

3167



where the entries of W are zero if the corresponding link is missing
and one otherwise. More general structures for W could be consid-
ered, but here we propose a simplified connectivity matrix, namely

W =

[
1M1T

M 1M1T
N−M

1N−M1T
M 0N−M0T

N−M

]
. (10)

3. PROPOSED ESTIMATORS

In what follows, we will develop estimators for Q and t from the
distance measurements Yx.

3.1. Relative rotation matrix estimator

To start with, let us decouple the rotation from the translation. We
realize this, as proposed in [8], by eliminating the first two terms in
(9) through an orthogonal projection Pw ∈ RN×N onto the orthog-
onal complement of W, such that PwW = WPw = 0. Let W̃ be
an orthonormal basis for the column span of W, i.e.,

W̃ =

[
1M 1M

1N−M 0N−M

]
. (11)

Then, the projection matrix Pw = IN − W̃(W̃TW̃)−1W̃T sim-
plifies to

Pw =

[
ΓM 0M0T

N−M

0N−M0T
M ΓN−M

]
, (12)

where ΓL = IL − L−11L1T
L ∈ RL×L is the symmetric centering

operator.
Pre- and post-multiplying left and right hand sides of (9) by Pw

and scaling with a factor of −1/2, we get

Ỹx = −1

2
Pw(Y�2

x �W)Pw = (PwST
1︸ ︷︷ ︸

S̃T
1

S2Pw︸ ︷︷ ︸
S̃2

)�W. (13)

We now highlight the parts of S1 and S2 related to the visi-
ble (non-visible) measurements and missing links, namely, Si =
[Si,v |Si,nv], i = 1, 2 with entries

Si,v = QiCi,v + ti1
T
M ∈ R3×M , (14a)

Si,nv = QiCi,nv + ti1
T
N−M ∈ R3×(N−M). (14b)

In this way, (13) can be split into the product of two matrices:

S̃i =
[

Si,vΓM Si,nvΓN−M

]
=
[

S̃i,v S̃i,nv

]
, (15)

where S̃i,v and S̃i,nv are, respectively, the centered sensor submatri-
ces

S̃i,v = QiCi,v + (ti − xi,v)1T
M ∈ R3×M , (16a)

S̃i,nv = QiCi,nv + (ti − xi,nv)1T
N−M ∈ R3×(N−M). (16b)

Here Ci,v and Ci,nv contain the firstM and the lastN−M columns
of the sensor topology matrix C, respectively, and xi,v and xi,nv are
the centers of the sensor subconstellations.

By plugging (15) into (13) we get

Ỹx =

[
S̃T
1,vS̃2,v S̃T

1,vS̃2,nv

S̃T
1,nvS̃2,v 0N−M0T

N−M

]
. (17)

We stress the fact that the relative rotation matrix that we are seeking
appears in each of the three non-zero entries. Thus, an algorithm

that would exploit all the information gathered from the observation
matrix Ỹx would increase the performance in terms of the root mean
squared error (RMSE). Alternatively, an easier way to solve it is to
select only one of these submatrices, let us say the first one. We can
do this by a selection matrix

Φ =
[

IM 0M×(N−M)

]
∈ RM×N .

Next, we apply an additional projection ΓM to get rid of all the other
terms that do not depend on Q (i.e., we decouple Qi from ti for
i = 1, 2). Pre- and post-multiplying (17), respectively, with ΓMΦ
and ΦTΓM , we obtain

Ȳx = ΓMΦỸxΦ
TΓM

=
[

ΓMCT
1,v 0M

] [ QT
1Q2 ∗
∗ ∗

] [
CT

2,vΓM

0T
M

]
= ΓMCT

1,vQT
1Q2C2,vΓM .

(18)

So far we have considered a noiseless scenario. If we re-
introduce the noise and apply similar operations we obtain anN×N
colored noise matrix N̄. The noisy measurement matrix Ȳx can then
be written as

Ȳx = C̄T
1,vQC̄2,v + N̄, (19)

where we have introduced the auxiliary matrices

C̄1,v = C1,vΓM ∈ R3×M , (20a)

C̄2,v = C2,vΓM ∈ R3×M . (20b)

The linear model (19) can be simplified to an orthogonal Pro-
crustes problem (OPP) as detailed next. In order to use the OPP
theory, we need to get rid of either C̄1,v or C̄2,v, e.g., by multiply-
ing the right-hand side of (19) by C̄†2,v = C̄T

2,v(C̄2,vC̄T
2,v)−1.

By doing so, we obtain

Y̌x = C̄T
1,vQ + Ň, (21)

where we defined the following matrices

Y̌x = ȲxC̄
†
2,v ∈ RM×3,

Ň = N̄C̄†2,v ∈ RM×3.

To arrive at (21), we implicitly assume that the wide matrix C̄2,v is
of full row-rank, i.e., rank(C̄2,v) = 3. This, in turn, implies that
the sensors span the whole R3 vector space and this can be guaran-
teed by avoiding sensor placements that would lead to singularities.
However, due to the projection operation (20) rank(C̄2,v) = M−1,
which means we need at least M = 4 sensors on the body. The Q
can be estimated using OPP as

Q̂OPP = argmin
Q

‖Y̌x − C̄T
1,vQ‖2F

subject to Q ∈ V3×3.
(22)

The solution to the above problem can be found by simply perform-
ing a singular value decomposition (SVD) [9], i.e., Q̂OPP = UVT,
where C̄1,vY̌x =: UΣVT.
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Fig. 2: RMSE of (2a) relative angles and (2b) relative distance.

3.2. Relative translation estimator

We will now determine the relative displacement between the two
rigid bodies, i.e., t. One way to find t, although, not very efficient, is
to apply the classical MDS algorithm. In that case we would resolve
all the sensor positions (we solve for 6N unknowns) to then compute
the centroids of the two bodies. This can then be used to obtain t.

To derive a simpler estimator for t = ‖t1−t2‖22, let us consider
‖Yx‖2F (without W to begin with), which can be expressed as:

‖Yx‖2F = 1T
NY�2

x 1N .

Using (8) and after some straightforward algebraic operations we
can show that

‖Yx‖2F = N

N∑
n=1

(‖sn,1‖22 + ‖sn,2‖22)− 2N2tT1t2

= N

N∑
n=1

(‖cn,1‖22 + ‖cn,2‖22) +N2‖t1 − t2‖22,

and the exact expression for t is

t̂ =
1

N2
‖Yx‖2F −

1

N

(
N∑

n=1

(‖cn,1‖22 + ‖cn,2‖22)

)
.

With missing links instead, we obtain

t̂ ' 1

M(2N −M)
‖Yx�W‖2F−

1

N

(
N∑

n=1

(‖cn,1‖22 + ‖cn,2‖22)

)
.

Note that the approximation error reduces quadratically as M tends
to N (i.e., when there are no missing links).

4. NUMERICAL RESULTS

We consider a rectangular-based pyramid and a cone as two rigid
bodies. Each rigid body hasN = 10 sensors installed on it as shown
in Fig. 1. In the reference frame, the known topology matrices C1

and C2 are respectively given by

C1 =

 2 0 0 −2 0 0 1 −1 0 0
0 2 0 −2 0 0 0 0 1 −1
0 0 4 0 0 0 2 2 2 2

 m

and

C2 =

 2 2 0 −2 −2 0 1 1 −1 −1
1 −1 0 1 −1 0 1 −1 1 −1
0 0 4 0 0 0 2 2 2 2

 m.

Both the centers of gravity are set to the origin, so that the rel-
ative displacement between the centroids is equal to the distance
between the rigid bodies. The two rigid bodies experience a ro-
tation of {ψ1, θ1, φ1} = {20◦,−25◦, 30◦} and {ψ2, θ2, φ2} =
{40◦, 135◦,−75◦}, respectively. By applying the angular trans-
formation it is then possible to compute the rotation matrices Q1,
Q2, and Q, from the knowledge of the Euler angles. We use t1 =
[1,−5, 4]T m and t2 = [−3, 1, 7]T m. The simulations are averaged
over Nmc = 104 independent Monte-Carlo experiments.
The performance of the proposed estimators is provided in terms of
root mean squared error (RMSE) versus the standard deviation σ, of
the ranging noise. The RMSE for the relative translation is defined
as √√√√ 1

Nmc

Nmc∑
n=1

|t̂n − t|22,

where t̂n is the estimated relative translation during the n-th exper-
iment. This is shown in Fig. 2b for different numbers of available
links (i.e., for different values of M ).

The second performance metric shown in Fig. 2a is related to the
RMSE of the relative rotation estimator, which is defined as√√√√ 1

Nmc

Nmc∑
n=1

‖F(Q̂OPPn)− F(Q)‖22,

with Q̂OPPn the estimates during the n-th experiment. Here, F :
V3,3 → R3 is a non-linear mapping used to compute Euler angles
from a rotation matrix. As before, we compute the RMSE of the
relative rotation for different numbers of available links (i.e., for dif-
ferent values of M ). As we already stated in the remark before, for
M = 3, due to rank deficiency, the algorithm breaks down. This can
be seen in Fig. 2a.

5. CONCLUSIONS

We have proposed a framework for relative localization of two rigid
bodies in an anchorless network in this paper. To realize this, we use
sensor units that are installed on the rigid platforms, and exploit the
known sensor placement on the rigid bodies. We have shown that
the relative localization of rigid bodies amounts to the estimation
of a rotation matrix (related to the relative angles between the rigid
bodies in each dimension) and the relative distance between the cen-
troids of the rigid bodies. Based on distance measurements, we have
proposed a constrained least squares estimator for estimating the rel-
ative orientation. Furthermore, we have also modeled the missing
distance measurements between the sensors across rigid bodies. The
simulations show the performance of the proposed estimators.
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