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 a b s t r a c t

We develop a novel deep learning approach for solving partial integro-differential equations (PI-
DEs) in high dimensions, involving diffusion and drift terms. To showcase its practicality and 
versatility, the methodology is presented for the specific challenge of pricing European basket op-
tions written on assets that follow jump-diffusion dynamics. The option pricing problem is formu-
lated as a partial integro-differential equation, which is approximated via a new implicit-explicit 
minimizing movement time-stepping approach, involving approximation by deep, residual-type 
Artificial Neural Networks (ANNs) for each time step. The integral operator is discretized via two 
different approaches: (a) a sparse-grid Gauss–Hermite approximation following localised coordi-
nate axes arising from singular value decompositions, and (b) an ANN-based high-dimensional 
special-purpose quadrature rule. Crucially, the proposed ANN is constructed to ensure the appro-
priate asymptotic behavior of the solution for large values of the underlyings and also leads to 
consistent outputs with respect to a priori known qualitative properties of the solution. The per-
formance and robustness with respect to the dimension of these methods are assessed in a series 
of numerical experiments involving the Merton jump-diffusion model, while a comparison with 
the deep Galerkin method and the deep BSDE solver with jumps further supports the merits of 
the proposed approach.
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$d$


$\{\alpha _i\}_{i=1}^d$


$K$


$t=T$


\begin {equation*}\biggl (\sum _{i=1}^d \alpha _i S^i_T - K \biggr )^+,\end {equation*}


$\alpha _i>0$


$\sum _{i=1}^d \alpha _i = 1$


$S^i$


$x_i =S_T^i/K$


\begin {equation}\label {payoff_function_ic} \mathrm {Payoff}(x) = u_0(x) := \biggl (\sum _{i=1}^d \alpha _i x_i - 1 \biggr )^+.\end {equation}


$A(\alpha )$


$w(t,x)$


$v(t,x)$


$\mathbb R_+^d$


$(S^1,\dots ,S^d)$


$d$


$i$


$t$


\begin {equation}S_t^{(i)} = S_0^{(i)} \exp \biggl ( b_i t + \sigma _i W_t^{(i)} + \sum _{k=1}^{N_t}Z_{k}^{(i)}\biggr ),\quad t \in \mathbb T = (0,T],\ i \in \mathbb I=\{1,\dots ,d\}, \label {Xeqn2-2}\end {equation}


$W^{(i)}$


$\sigma _i>0$


$N$


$\lambda >0$


$T>0$


$Z_k^{(i)}$


$(Z_k^{(1)},\dots ,Z_k^{(d)})$


$\mu _J$


$\Sigma _J$


$b_i$


\begin {align}\label {eq:martingale} b_i = r - \frac 12 \sigma _i^2 - \lambda \Big ( \exp \Big \{ \mu _{J_i}+\frac 12 \sigma _{J_i}^2 \Big \}-1 \Big ),\end {align}


$r$


\begin {equation}\label {merton_PIDE} \begin {aligned} \frac {\partial u}{\partial t} - \frac {1}{2} \sum _{i,j=1}^d \sigma _i\rho _{ij}\sigma _jx_ix_j\frac {\partial ^2u}{\partial x_i\partial x_j} + \sum _{i=1}^d b_ix_i\frac {\partial u}{\partial x_i} + ru - I_\varphi [u] &=0 \\ u(0,x) &=\ u_0(x), \end {aligned}\end {equation}


$t\in \mathbb T$


$x\in [0,\infty )^d$


$\rho _{ij}$


$i$


$j$


\begin {equation}I_\varphi [u] = \lambda \int _{\mathbb R^d} \big ( u(t,x\e ^z)-u(t,x) \big ) \varphi (\dz ), \label {Xeqn4-5}\end {equation}


$\varphi (\cdot )$


$\mu _J$


$\Sigma _J$


$u(t,0)=0$


$I[u(t,0)]=0$


$t>0$


$t = T- \cdot $


$u$


\begin {equation}\begin {aligned} \label {eq:PIDE} \frac {\partial }{\partial t} u(t,x) + \mathcal {A}u(t,x) &=0, \quad (t,x)\in \mathbb T \times [0,\infty )^d\\ u(0,x)&= u_0(x), \quad x \in [0,\infty )^d, \end {aligned}\end {equation}


$\mathcal A$


\begin {equation}\mathcal {A} u(t,x) = -\sum _{i,j=1}^d a_{ij}(x)\frac {\partial ^2 u}{\partial x_i \partial x_j} + \sum _{i=1}^d b_i(x)\frac {\partial u}{\partial x_i} + ru - I_\nu [u], \label {Xeqn6-7}\end {equation}


$a_{ij}(x) = a_{ji}(x)$


$i,j\in \mathbb I$


\begin {equation}I_\nu [u] = \lambda \int _{\mathbb R^d} \big ( u(t,x\e ^z)-u(t,x) \big )\nu (x,\dz ), \label {Xeqn7-8}\end {equation}


$\nu $


$a_{ij}$


$\nu $


$a_{ij},b_j\in W^{1,\infty }([0,\infty )^d)$


$T=0$


$t = T- \cdot $


\begin {equation*}\mathcal A u = \mathcal Lu + f[u]\end {equation*}


$\mathcal L, f$


\begin {align}\mathcal Lu &= -\sum _{j=1}^d\frac {\partial }{\partial x_j}\biggl ( \sum _{i=1}^d a_{ij}(x)\frac {\partial u}{\partial x_i}\biggr )+ru, \\ f[u] &= \sum _{i=1}^d\biggl (b_i(x)+\sum _{j=1}^d\frac {\partial }{\partial x_j}a_{ij}(x)\biggr )\frac {\partial u}{\partial x_i} - I_\nu [u].\end {align}


$\mathcal L$


$f[\cdot ]$


$\int _{\mathbb R^d} u(t,x)\nu (x,\dz )$


$\mathbb {T}\times \Omega $


$\mathbb {T}=(0,T]$


$\Omega =[0,x_{\mathrm {max}}]^d$


$x_{\max }>0$


$\partial \Omega $


$(0,T]$


$n$


$(t_{k-1},t_k]$


$t_k = k\tau ,\ k=0,1,\dots ,n$


$\tau = T/n$


$u^0:=u_0(\cdot )$


$u^k\approx u(t_k,\cdot )$


$p$


$\beta _j, \gamma _j$


\begin {equation}\label {eq:implicit_explicit} \frac {\beta _p u^k-\sum _{j=0}^{p-1}\beta _j u^{k-j-1}}{\tau } + \mathcal L u^k + \sum _{j=0}^{p-1}\gamma _jf[u^{k-j-1}]=0,\end {equation}


$k=p,p+1,\dots ,n$


$p$


$p=1$


\begin {equation}\frac {u^k-u^{k-1}}{\tau } + \mathcal L u^k + f[u^{k-1}]=0, \label {Xeqn10-12}\end {equation}


$p=2$


\begin {equation}\frac {\frac {3}{2}u^k-2 u^{k-1} + \frac {1}{2} u^{k-2}}{\tau } + \mathcal L u^k + 2f[u^{k-1}]-f[u^{k-2}]=0. \label {Xeqn11-13}\end {equation}


$\tau $


\begin {equation}\label {minimizing_movement} \mathcal {C}[u]:= \frac {1}{2}\Big \|\beta _p u-\sum _{j=0}^{p-1}\beta _ju^{k-j-1}\Big \|_{L^2(\Omega )}^2 + \tau \int _\Omega \mathcal {E}[u] \ud x + \tau \sum _{j=0}^{p-1} \gamma _j \int _\Omega f[u^{k-j-1}]u\, \d x\to \min ,\end {equation}


\begin {equation*}\mathcal {E}[u] := \frac {1}{2}\sum _{i,j = 1}^d \Big (\alpha _{ij}(x)\frac {\partial u}{\partial x_i}\frac {\partial u}{\partial x_j} + ru^2\Big ),\end {equation*}


$\partial \Omega $


$u$


$|x|\to \infty $


$u$


$|x|\to \infty $


$t\geq 0$


\begin {equation}\label {decomp} u(t,x) = w(t,x) + v(t,x),\end {equation}


$w(t,x)\geq 0$


$v(t,x)$


\begin {equation}u(t,x) \geq \biggl (\sum _{i=1}^d \alpha _i x_i - \e ^{-rt}\biggr )^+ = u_0(x) + (1-\e ^{-rt})H\biggl (\sum _{i=1}^d \alpha _i x_i - \e ^{-rt}\biggr ) =: v(t,x), \label {Xeqn14-16}\end {equation}


$H(\cdot )$


$\sum _{i=1}^d \alpha _ix_i$


\begin {equation}\label {limit_inf} \lim _{\sum a_i x_i \rightarrow \infty }u(t,x) =\biggl (\sum _{i=1}^d \alpha _i x_i - \e ^{-rt}\biggr )^+ = \sum _{i=1}^d \alpha _i x_i - \e ^{-rt}.\end {equation}


$\lim _{\sum a_i x_i \rightarrow \infty }w(t,x)=0$


$\Omega =[0,x_{\max }]^d$


$x_{\max }$


$w$


\begin {equation}\label {eq:decomposition} \tilde v(t,x;\eta ) = \biggl (\sum _{i=1}^d \alpha _i x_i - 1\biggr )^+ + (1-\e ^{-rt})\mathrm {Sigmoid}\Big (\sum _{i=1}^d \alpha _i x_i - \e ^{-rt};\eta \Big ),\end {equation}


$\mathrm {Sigmoid}(x;\eta ) := \big (1+\e ^{-\eta x}\big )^{-1}$


$\eta >0$


$\lim _{\eta \rightarrow \infty }\tilde v(t,x;\eta ) = v(t,x)$


$\eta $


$\tilde v(t,x;\eta )$


$x$


$\eta $


$\eta $


$\mathbb {R}^d_+$


\begin {equation*}\biggl (\sum _{i=1}^d \alpha _i x_i - \e ^{-rt}\biggr )^+\quad \text { is parallel to }\quad \sum _{i=1}^d \alpha _i x_i.\end {equation*}


$x^{\prime }$


$x$


\begin {equation}\label {eq:approx_large_moneyness} u(t,x^{\prime }) \approx u(t,x) + \sum _{i=1}^d \alpha _i (x_i^{\prime }-x_i),\end {equation}


$\sum _{i=1}^d a_i x_i$


$\mathcal {R}$


$\mathbb {R}^d_+$


$\sum _{i=1}^d \alpha _i x_i < x_r$


$x_i \leq x_{\mathrm {max}},\ i\in \mathbb I$


$x_r \leq x_{\mathrm {max}}$


$\partial \mathcal R$


$\mathcal R$


$\sum _i \alpha _i x_i = x_r$


$x_i \leq x_{\mathrm {max}}$


$i\in \mathbb I$


$y=(y_1,y_2,\dots ,y_d)$


$x \in \mathbb {R}^d_+$


$y_i = q(x)x_i$


\begin {equation}\label {projection} q(x) = \begin {cases} x_{\mathrm {max}}/\mathrm {max}\{x_i\},& \text {if } \ \mathrm {max}\{x_i\} \geq \mathrm {max}\biggl (\sum _{i=1}^d \alpha _i x_i,x_r\biggr )x_{\mathrm {max}}/x_r\\ x_r/\mathrm {max}\biggl (\sum _{i=1}^d \alpha _i x_i,x_r\biggr ),& \text {otherwise.} \end {cases}\end {equation}


$0 \leq q(x) \leq 1$


$x\in \mathbb R^d_+$


$q(x) x \in \mathcal R$


$x\in \mathbb R^d_+$


$\mathcal R$


\begin {equation}u(t,x) \approx u(t,y(x)) + \sum _{i=1}^d \alpha _i(x-y(x)), \quad \text {for each } \ x \in \mathbb R^d_+. \label {Xeqn19-21}\end {equation}


$x$


$x_r$


$y = (y_1,y_2)$


$x_r$


$U^k$


$t_k$


$t_k$


$U^k$


$t_k$


$y$


\begin {align*}S^0 &= \tanh (W^{\mathrm {in}} y + b^{\mathrm {in}}), \\ \text { DGM layer}\\ |\quad G^\ell &= \tanh (V^{g,\ell } y + W^{g,\ell } S^{\ell -1} + b^{g,\ell }),\ \ell = 1,\dots , L \\ |\quad Z^\ell &= \tanh (V^{z,\ell } y + W^{z,\ell } S^{\ell -1} + b^{z,\ell }),\ \ell = 1,\dots , L \\ |\quad R^\ell &= \tanh (V^{r,\ell } y + W^{r,\ell } S^{\ell -1} + b^{r,\ell }),\ \ell = 1,\dots , L \\ |\quad \! H^\ell &= \tanh (V^{h,\ell } y + W^{h,\ell }( S^{\ell -1} \odot R^{\ell }) + b^{h,\ell }),\ \ell = 1,\dots , L \\ \lfloor \quad S^{\ell } &= (1-G^{\ell })\odot H^{\ell } + Z^{\ell }\odot S^{\ell -1},\ \ell = 1,\dots , L\\ \tilde v(t_k,y) &= \biggl (\sum _{i=1}^d \alpha _i y_i - 1\biggr )^+ + (1-\e ^{-rt_k})\ \mathrm {Sigmoid}\Big (\sum _{i=1}^d \alpha _i y_i-\e ^{-rt_k};\eta \Big ),\\ w^k(y;\theta ) &= \mathrm {Softplus}\big (W^{\mathrm {out}}S^L;\delta \big ),\end {align*}


$L$


$\odot $


$\theta $


\begin {equation}\theta = \{W^{\mathrm {in}},b^{\mathrm {in}}, (V^{*,\ell },W^{*,\ell },b^{*,\ell })_{\ell =1,\dots ,L}^{*\in \{g,z,r,h\}},W^{\mathrm {out}}\}, \label {Xeqn20-22}\end {equation}


\begin {equation}U(t_k,x;\theta ) = w^k(y;\theta ) + \tilde v(t_k,y) + \sum _{i=1}^d \alpha _i (x_i - y_i), \label {Xeqn21-23}\end {equation}


$y\equiv y(x)$


$y_i$


$t=t_k$


$64$


$\theta $


$t_k$


$\theta $


\begin {equation}\label {continuous_cost} \begin {aligned} \mathscr {C}_k(\theta ) := \mathcal {C}[U(t_k,\cdot ,\theta )] &= \ \frac {1}{2} \Big \| \beta _p U(t_k,\cdot ,\theta )-\sum _{j=0}^{p-1}\beta _jU(t_{j(k)},\cdot ,\theta ^{j(k)}) \Big \|_{L^2(\Omega )}^2 \\ &\quad + \tau \int _\Omega \mathcal {E}[U(t_k,x,\theta )] \, \d x + \tau \sum _{j=0}^{p-1} \gamma _j \int _\Omega f[U(t_{j(k)},x,\theta ^{j(k)})]U(t_k,x,\theta )\, \d x, \end {aligned}\end {equation}


$j(k):=k-j-1$


$\mathcal {C}$


$\mathscr {C}$


$\theta ^k$


$\theta ^k$


$\theta ^{k-1},\dots , \theta ^{k-p}$


$p$


$v(t_{j(k)},\cdot )$


$U(t_{j(k)},\cdot ,\theta ^{j(k)})$


$\mathscr {C}$


$N$


$\{x^i\}_{i=1}^N$


$\Omega = [0,x_{\mathrm {max}}]^d$


\begin {align}\label {eq:cost_functional} \widetilde {\mathscr {C}}_k(\theta ) :=\frac {(x_{\mathrm {max}})^d}{N} \sum _{i=1}^N \biggl \{ \frac {1}{2}\Big [\beta _p U(t_k,x^i,\theta ) - \sum _{j=0}^{p-1}\beta _jU(t_{j(k)},x^i,\theta ^{j(k)})\Big ]^2 + \tau \mathcal {E}[U(t_k,x^i,\theta )] + \tau \sum _{j=0}^{p-1} \gamma _j f[U(t_{j(k)},x^i,\theta ^{j(k)})]U(t_k,x^i,\theta ) \biggl \},\end {align}


$j(k):=k-j-1$


$\theta ^k$


$\widetilde {\mathscr {C}}_k(\theta )$


$N_k$


$\theta ^k$


$w^0(x;\theta ^{0}) = 0$


$x\in [0,x_r]^d$


\begin {equation*}U(t_k,x;\theta ) = (1-\delta _{k0})w^k(y;\theta ) + \tilde v(t_k,y) + \sum _{i=1}^d \alpha _i (x_i - y_i),\end {equation*}


$\delta _{ij}$


$w^0(x;\theta ^{0}) = 0$


$t=0$


$w^0$


$t_1$


\begin {equation*}f^0(x) = \epsilon \exp \biggl [-\frac {1}{2\zeta ^2(x)}\biggl (\sum _{i=1}^d\alpha _ix_i-1\biggr )^2 \
\biggr ],\end {equation*}


$\epsilon >0$


$\zeta (x)$


$\zeta _1,\zeta _2$


$\sum _{i=1}^d \alpha _i x_i > 1$


$\theta ^0$


\begin {equation*}w^0(x;\theta ^0)\to \min _\theta \big \|w^0(x;\theta )-f^0(x)\big \|^2_{L^2([0,x_r]^d)}.\end {equation*}


$w^0(x;\theta ^0)$


$I_\nu [u]$
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$I_\nu [U(t_{j(k)},x,\theta ^{j(k)})]$


$x$
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$j(k)=k-j-1$


$h(z)=u(x\e ^z)-u(x)$


$\lambda $


$t$


$u$


$U(t_{j(k)},x,\theta ^{j(k)})$


$j=0,\dots ,p-1$


$Z\sim \mathcal N (\mu _J,\Sigma _J)$


$\Sigma _J$


$d$


$\Sigma _J$


\begin {equation}\Sigma _J = A\Lambda A^{\mathsf {T}} = A \Lambda ^{1/2}\Lambda ^{1/2}A^{\mathsf {T}}=BB^{\mathsf {T}}, \label {Xeqn23-26}\end {equation}


$B=A\Lambda ^{1/2}$


$Z - \mu = \sqrt {2}B Y$


\begin {align}\int _{\mathbb {R}^d}h(z)\nu (\dz ) &= \lambda \pi ^{-d/2} \int _{\mathbb {R}^d} h( \mu + \sqrt {2}By) \exp (-y^{\mathsf {T}}y) \dy \nonumber \\ &\approx \lambda \pi ^{-d/2} \sum _{\mathbf i \in \Theta _q}h(\mu + \sqrt {2}By^{\mathbf i})W^{\mathbf i},\end {align}


$y^{\mathbf i}=(y^{i_1},\dots ,y^{i_d})^{\mathsf {T}}$


$W^{\mathbf {i}} = \prod _{k=1}^d w^{i_{k}}$


${\mathbf i}=(i_1,\dots ,i_d$


$y^{i_k}$


$\Theta _q\subset \mathbb {N}^d$


$q$


$\mathbb R^2$
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$\mathbb R^2$


$\int h(z)\nu (\dz )$


$h$


$\int h(z)\nu (\dz )$


$h(z)=u(x\e ^z)-u(x)$


$x$


$t_k$


$\mathcal I^k(x;\phi )$


$\phi $


$\phi ^k$


\begin {equation}\label {opt_integral} \min _{\phi \in \Phi } \mathbb E \biggl [\mathcal I^k(x;\phi ) - \sum _{j=1}^{p-1}\gamma _jI_\nu [U(t_{j(k)},x;\theta ^{j(k)})]\biggr ]^2,\end {equation}


$x$


$x$


$h_{j(k)}(x,z):= U(t_{j(k)},x\e ^{ z},\theta ^{j(k)})-U(t_{j(k)},x,\theta ^{j(k)})$


$\{z^r\}_{r=1}^M$


$\mathbb {R}^d$


$\phi ^k\in \Phi $


\begin {equation}\label {eq:integral_min} \min _{\phi \in \Phi } \mathbb E \biggl [\mathcal I^k(x;\phi ) - \frac {\lambda }{M}\sum _{r=1}^M\sum _{j=1}^{p-1}\gamma _jh_{j(k)}(x,z^r)\biggr ]^2;\end {equation}


$x$


$t^k$


$\{x^i\}_{i=1}^N$


\begin {equation}\label {eq:cost_function_integral_term} \frac {(x_{\mathrm {max}})^d}{N}\sum _{i=1}^N \biggl [\mathcal I^k( x^i;\phi ) - \frac {\lambda }{M}\sum _{r=1}^M \sum _{j=1}^{p-1} \gamma _j h_{j(k)}(x^i,z^r)\biggr ]^2.\end {equation}


$U^k$


$t^k$


$\phi ^k$


$\theta ^k$


$d$


$x_1, x_2,\dots ,x_d$


\begin {equation*}\sigma _i=0.5,\ \rho _{ij} = \delta _{ij} + 0.5(1-\delta _{ij}),\ \ i,j\in \mathbb {I},\ t \in \mathbb T=(0,T],\end {equation*}


$\delta _{ij}$


\begin {equation*}\lambda = 1, \ \mu _{J_i}=0,\ \sigma _{J_i}=0.5,\ \rho _{J_{ij}} = \delta _{ij} + 0.2(1-\delta _{ij}),\ i,j\in \mathbb {I}.\end {equation*}


\begin {equation*}\Sigma _{ij}=\sigma _i\sigma _j\rho _{ij} \quad \text { and } \quad \Sigma _{J_{ij}}=\sigma _{J_i}\sigma _{J_j}\rho _{J_{ij}}.\end {equation*}
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$\lim _{x\rightarrow \infty } I_{\varphi }(x) = x\mathbb E {[\e ^z-1]}$
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1.  Introduction

The numerical approximation of solutions to initial/boundary value problems involving partial differential equations (PDEs) in 
high dimensions remains a formidable challenge. A fast growing methodological shift in addressing this challenge is the use of 
machine learning frameworks such as Deep Galerkin Method [2], the Physics-Informed Neural Network methodology [3,4], and 
related methods involving the minimization of physical energies of the underlying PDE systems [5–7,7,8], etc. When the models can 
be posed as backward-forward stochastic control problems, fast methodologies such as see also the deep BSDE method [9] have been 
successfully applied. The situation is far less clear in the context of high dimensional partial integro-differential equations (PIDEs), 
whereby the presence of an additional integral term creates a number of new numerical challenges, compared to high-dimensional 
PDEs.

A central problem in Mathematical Finance is the fast and accurate computation of arbitrage-free prices of financial derivatives, 
especially for advanced stochastic models and for multi-asset derivatives. A basket option is a contractual agreement between two 
parties, the buyer and the seller, to buy or sell a derivative whose value fluctuates over time based on the prices of a set of underlying 
assets (the “basket”). In this work, we consider the problem of pricing European basket call options over 𝑑 underlying assets using 
weights {𝛼𝑖}𝑑𝑖=1. The strike price, denoted by 𝐾, is the price at which the basket can be bought at the maturity of the option contract, 
i.e. at 𝑡 = 𝑇 . The payoff of a European basket call option is provided by

( 𝑑
∑

𝑖=1
𝛼𝑖𝑆

𝑖
𝑇 −𝐾

)+
,

where 𝛼𝑖 > 0 and ∑𝑑
𝑖=1 𝛼𝑖 = 1. The value 𝑆𝑖 of each asset is associated to the variable 𝑥𝑖 = 𝑆𝑖

𝑇 ∕𝐾, referred to in the literature as the 
moneyness of the stock. The payoff function of a basket call option is then provided by

Payoff(𝑥) = 𝑢0(𝑥) ∶=
( 𝑑
∑

𝑖=1
𝛼𝑖𝑥𝑖 − 1

)+
. (1)

Models for asset prices that incorporate random jumps are essential in capturing the real-world behavior of financial markets. 
These models acknowledge that financial asset prices do not always move smoothly; instead, they may present abrupt changes due to 
unexpected events. Incorporating random jumps into asset price models helps to obtain a better description of the real-world behavior 
of the markets. Indeed, they allow to capture the fat-tails and skews present in asset log-returns under the “real-world” measure, while 
they exhibit a volatility smile or skew under the “risk-neutral” measure. We refer the reader to Eberlein and Kallsen[10], Cont and 
Tankov[11] or Schoutens[12] for more details and references on models with jumps in finance.

A popular model that incorporates random jumps is the, so-called, Merton [13] model, which belongs to the family of Lévy jump-
diffusion models, i.e. jump-diffusion models with stationary and independent increments. In the Merton model, asset prices follow a 
superposition of a geometric Brownian motion and a Poisson process with randomly distributed jumps, allowing for both continuous 
diffusion, as in the Black–Scholes model, and discrete random jump movements, realised by a multivariate normal distribution for 
the jump size. The intensity and the magnitude of the jumps are determined by parameters that can be estimated from market data, 
e.g. option prices of single- and multi-asset options. The Merton model strikes a nice balance between superior fit of empirical data 
(compared to classical diffusion models) and relative simplicity (compared to other jump diffusion models), and allows us to showcase 
the potential of the numerical method developed in the present work. Other popular jump-diffusion models in the literature are the 
Kou[14] model and affine jump-diffusions, see e.g. Bates[15] or Duffie et al. [16]. Empirical evidence from option markets that verify 
the potential of jump-diffusion models appear, for example, in He et al. [17] and Kindermann and Mayer[18], and more recently in 
Chen and Huang[19] using data from bitcoin markets.

The industry standard for pricing European single-asset options in Lévy and affine jump-diffusion models are transform methods, 
such as Fourier or COS; see e.g. [20–22]. These methods, however, suffer from the curse of dimensionality and can typically not be 
applied for the valuation of basket options in dimensions higher than 8 or 10; see [23,24] for the state of the art in this direction.

An alternative and general method for pricing options in Lévy and affine models is to solve the associated second-order partial 
integro-differential equation (PIDE), where the initial (terminal) condition is determined by the payoff function (1) of the option. The 
PIDE is derived by the Fundamental Theorem of Asset Pricing and the Feynman–Kac lemma, which relates the discounted expectation 
of the payoff with an initial (terminal) value problem of the form described in the following section.  Once again, finite difference 
and finite element discretizations for the solution of the option pricing PIDEs suffer from the curse of dimensionality and cannot be 
used in dimensions higher than 6 or 8; see e.g. Griebel and Hullmann[25], Hepperger[26] and Reichmann and Schwab[27].

In this work, we address the challenge of computing the fair prices of financial derivatives by discretizing the PIDE using a novel 
implicit-explicit minimizing movement approach involving Artificial Neural Networks (ANNs). The use of ANNs aims to address the 
curse of dimensionality typically encountered in standard grid-based methods, while simultaneously offering improved performance 
compared to standard or Quasi Monte Carlo approaches.

The classical minimizing movement method of De Giorgi, see Ambrosio[28], provides discretization of gradient flows in the 
calculus of variations, by considering a suitable minimization functional for each time step. This is an extension of the classical 
Ritz/Dirichlet minimization principle for elliptic, self-adjoint problems, which is considered in E and Yu[5], Liao and Ming[6] in the 
context of ANNs. In Georgoulis et al. [7], Park et al. [8] the energy minimization functional, duped “minimizing movement method” 
of De Giorgi is used to define ANN approaches for the numerical solution of Fokker-Planck type equations which arise as first order 
optimality conditions of certain energies, which are used as ANN cost functionals. A canonical example is the minimizing movement 
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method for the Dirichlet energy corresponding to the backward Euler time-stepping for the heat equation. In this work, we develop a 
significant extension of the “deep minimizing movement” methods from [7,8] to approximate PIDE problems, with specific focus on 
those arising from basket option pricing in jump-diffusion models. To achieve this, we have to address two new challenges compared 
to [7,8]: a) the presence of “skew-symmetric” first order differential operators, not naturally arising through energy minimization, 
and b) the presence of integral operators. We resolve these two challenges simultaneously by the introduction of implicit-explicit 
time-stepping and the introduction of reduced complexity quadratures. To that end, we develop a minimizing movement approach 
for the family of implicit-explicit versions of Backward Differentiation Formulae (BDF) methods, which include and generalize the 
implicit-explicit Euler scheme of [7,8], and further they are capable of including skew-symmetric/transport and integral terms, treated 
explicitly. This choice is made due to the 𝐴(𝛼)-stability properties of BDF methods, in conjunction with the favourable computational 
cost in this context, since the expensive (due to the ANN architecture) spatial operator is evaluated only once for each time-step. 
This reduces the computational cost of optimization significantly, when compared to “monolithic” space-time ANN discretizations, 
whereby the cost functionals minimize the complete space-time residuals directly. The introduction of time-stepping has two crucial 
advantages: a) the ANNs represent time instances of the solution and not the total space-time solution, (which can be a far stiffer 
problem numerically in many cases), and b) the training of the ANN for each time instance can benefit from the trained parameters 
of the previous time instance as starting points.

A further computational challenge stems from the complexity of the integral operator due to the jumps in the asset price process. 
To that end, we devise and compare two different approaches to address the curse of dimensionality there: (a) a sparse-grid Gauss–
Hermite approximation following localised coordinate axes arising from singular value decompositions, and (b) an ANN-based high-
dimensional special-purpose quadrature rule. Moreover, in order to improve the overall performance and accuracy of the method, 
we introduce a decomposition of the solution into two parts: the option price is expressed as the sum of a non-negative unknown 
component 𝑤(𝑡, 𝑥), termed in the literature the time value of the option, and a known lower-bound function 𝑣(𝑡, 𝑥), termed in the 
literature the intrinsic value of the option. Finally, a domain truncation method is introduced to enhance the accuracy of the numerical 
schemes. This involves projecting the option prices onto a bounded subset of ℝ𝑑

+ and efficiently approximating the solution for extreme 
moneyness values by exploiting estimates within this bounded domain.

The above numerical methodology is tested through a comprehensive series of numerical experiments, showing the competitive-
ness of the approach against Quasi Monte Carlo in both low and high dimensional settings. In addition, we provide a basic comparison 
of the proposed method against the popular deep Galerkin method (DGM) Sirignano and Spiliopoulos[2], the deep BSDE solvers with 
jumps Han et al. [9] and Gnoatto et al. [29], showcasing the competitiveness of the proposed methodology.

The remainder of this work is structured as follows. In Section 2, we introduce the PIDE for option pricing in jump-diffusion 
models, present the implicit-explicit minimizing movement method and discuss the decomposition of the solution into a lower bound 
and an unknown function, as well as the truncation of the domain and the extension of the solution to extreme cases. In Section 3, we 
describe the architecture of the neural network and the training procedure, and then present two methods for the efficient computation 
of the integral operator. In Section 4, we test the performance of the methods using the Merton model, in scenarios with 5 and 15 
underlying assets. Finally, Section 5 concludes this work.

2.  Option pricing in jump-diffusion models

2.1.  An illustrative example: The Merton model

Let (𝑆1,… , 𝑆𝑑 ) denote 𝑑 financial assets, where each one follows the, so-called, Merton model, see Merton[13], whereby the 
dynamics of the 𝑖th stock at time 𝑡 are provided by

𝑆(𝑖)
𝑡 = 𝑆(𝑖)

0 exp
(

𝑏𝑖𝑡 + 𝜎𝑖𝑊
(𝑖)
𝑡 +

𝑁𝑡
∑

𝑘=1
𝑍(𝑖)

𝑘

)

, 𝑡 ∈ 𝕋 = (0, 𝑇 ], 𝑖 ∈ 𝕀 = {1,… , 𝑑}, (2)

where 𝑊 (𝑖) denotes a standard Brownian motion, 𝜎𝑖 > 0 denotes the diffusion volatility, 𝑁 denotes a Poisson process with parameter 
𝜆 > 0, 𝑇 > 0 is a finite time horizon, and 𝑍(𝑖)

𝑘  are random variables controlling the jump sizes. The random vector (𝑍(1)
𝑘 ,… , 𝑍(𝑑)

𝑘 )
follows a multivariate normal distribution with mean 𝜇𝐽  and variance-covariance matrix Σ𝐽 . Moreover, assuming that we are already 
working under an equivalent martingale measure, the drift parameter 𝑏𝑖 is determined by the martingale condition, and equals 

𝑏𝑖 = 𝑟 − 1
2
𝜎2𝑖 − 𝜆

(

exp
{

𝜇𝐽𝑖 +
1
2
𝜎2𝐽𝑖

}

− 1
)

, (3)

where 𝑟 denotes the risk-free interest rate.
There are three mechanisms that generate dependence between the assets in this example. The assets can have correlated diffusion 

terms, as well as correlated jump sizes. Moreover, the assets share the timing of the jumps, as the jumps occur according to a 
common Poisson process. These dependencies have a direct impact on the arbitrage-free price of an option. Indeed, according to the 
Fundamental Theorem of Asset Pricing (FTAP) and using the Feynman–Kac formula, the arbitrage-free price of an option with payoff 
given by (1) satisfies the following PIDE:

𝜕𝑢
𝜕𝑡

− 1
2

𝑑
∑

𝑖,𝑗=1
𝜎𝑖𝜌𝑖𝑗𝜎𝑗𝑥𝑖𝑥𝑗

𝜕2𝑢
𝜕𝑥𝑖𝜕𝑥𝑗

+
𝑑
∑

𝑖=1
𝑏𝑖𝑥𝑖

𝜕𝑢
𝜕𝑥𝑖

+ 𝑟𝑢 − 𝐼𝜑[𝑢] = 0

𝑢(0, 𝑥) = 𝑢0(𝑥),

(4)
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for 𝑡 ∈ 𝕋  and 𝑥 ∈ [0,∞)𝑑 , where 𝜌𝑖𝑗 denotes the diffusion correlation between assets 𝑖 and 𝑗. The integral operator is provided by

𝐼𝜑[𝑢] = 𝜆∫ℝ𝑑

(

𝑢(𝑡, 𝑥e𝑧) − 𝑢(𝑡, 𝑥)
)

𝜑(d𝑧), (5)

with 𝜑(⋅) denoting the probability density function of the multivariate normal distribution with mean 𝜇𝐽  and variance-covariance 
matrix Σ𝐽 . Obviously, 𝑢(𝑡, 0) = 0 and 𝐼[𝑢(𝑡, 0)] = 0, for each 𝑡 > 0. The initial condition in (4) is derived from the terminal condition 
of the classical PIDE for option pricing, i.e. from the payoff function in (1), by employing the change of variable 𝑡 = 𝑇 − ⋅.

2.2.  General form of the PIDE for option pricing

Motivated by (4), we consider the following general problem: find the arbitrage-free price 𝑢 of an option with payoff (1), that 
satisfies the PIDE

𝜕
𝜕𝑡
𝑢(𝑡, 𝑥) +𝑢(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ 𝕋 × [0,∞)𝑑

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ [0,∞)𝑑 ,
(6)

where the operator  belongs to the following family:

𝑢(𝑡, 𝑥) = −
𝑑
∑

𝑖,𝑗=1
𝑎𝑖𝑗 (𝑥)

𝜕2𝑢
𝜕𝑥𝑖𝜕𝑥𝑗

+
𝑑
∑

𝑖=1
𝑏𝑖(𝑥)

𝜕𝑢
𝜕𝑥𝑖

+ 𝑟𝑢 − 𝐼𝜈 [𝑢], (7)

where 𝑎𝑖𝑗 (𝑥) = 𝑎𝑗𝑖(𝑥), for 𝑖, 𝑗 ∈ 𝕀, and

𝐼𝜈 [𝑢] = 𝜆∫ℝ𝑑

(

𝑢(𝑡, 𝑥e𝑧) − 𝑢(𝑡, 𝑥)
)

𝜈(𝑥, d𝑧), (8)

with the integration performed over a finite jump measure 𝜈. The coefficients 𝑎𝑖𝑗 and 𝜈 are to be derived from the diffusion and 
the jump terms of the stochastic processes governing the asset prices, respectively, while the drift term will be determined again 
by the martingale condition; see (3). This class of models includes Lévy jump-diffusions, such as the Kou[14] model, and affine 
jump-diffusions, see e.g. Bates[15] or Duffie et al. [16]; see also Runggaldier[30] for a general overview of jump-diffusion models 
in finance. In what follows, it is sufficient to assume that 𝑎𝑖𝑗 , 𝑏𝑗 ∈ 𝑊 1,∞([0,∞)𝑑 ), using standard Sobolev space notation. The initial 
condition in (6) has the meaning that the price of an option with maturity time 𝑇 = 0 (present) is determined by its payoff function. 
(This, again, is the result of employing the change of variable 𝑡 = 𝑇 − ⋅.)

In order to design energy minimization-type cost functionals below, we rewrite the differential part of the PIDE operator in 
divergence form:

𝑢 = 𝑢 + 𝑓 [𝑢]

with , 𝑓 given by

𝑢 = −
𝑑
∑

𝑗=1

𝜕
𝜕𝑥𝑗

( 𝑑
∑

𝑖=1
𝑎𝑖𝑗 (𝑥)

𝜕𝑢
𝜕𝑥𝑖

)

+ 𝑟𝑢, (9)

𝑓 [𝑢] =
𝑑
∑

𝑖=1

(

𝑏𝑖(𝑥) +
𝑑
∑

𝑗=1

𝜕
𝜕𝑥𝑗

𝑎𝑖𝑗 (𝑥)
)

𝜕𝑢
𝜕𝑥𝑖

− 𝐼𝜈 [𝑢]. (10)

In the decomposition above,  is a self-adjoint operator, while the remainder term 𝑓 [⋅] comprises of both symmetric and non-
symmetric components; in particular, the second part of the integral operator, ∫ℝ𝑑 𝑢(𝑡, 𝑥)𝜈(𝑥, d𝑧), is symmetric. We chose to retain this 
in the remainder term for stability reasons of the proposed numerical framework below.

2.3.  Implicit-explicit minimizing movement method

We will exploit now the divergence form of the PIDE in order to determine a minimizing movement approach, from which a 
respective cost functional will arise.

We will first describe the method for the PIDE defined on 𝕋 × Ω with 𝕋 = (0, 𝑇 ] and Ω = [0, 𝑥max]𝑑 , 𝑥max > 0. In the next sections, 
we will also discuss specific modelling issues related to option pricing problems, which are, in turn, incorporated in order to extend 
the solution domain of the method.  Let us, for the moment, prescribe homogeneous Dirichlet boundary conditions on 𝜕Ω; this will 
be revisited in the next subsection.

We consider a subdivision of the time interval (0, 𝑇 ] into 𝑛 equally spaced time intervals (𝑡𝑘−1, 𝑡𝑘] with 𝑡𝑘 = 𝑘𝜏, 𝑘 = 0, 1,… , 𝑛, for 
𝜏 = 𝑇 ∕𝑛. Let 𝑢0 ∶= 𝑢0(⋅), then we seek approximations 𝑢𝑘 ≈ 𝑢(𝑡𝑘, ⋅) by involving values of the 𝑝 previous time steps.

In this context, we consider implicit-explicit backward differentiation formulae (BDF); we refer to Akrivis et al. [31] for their 
numerical analysis. More specifically, for given parameter sets 𝛽𝑗 , 𝛾𝑗 , we consider the time-stepping methods

𝛽𝑝𝑢𝑘 −
∑𝑝−1

𝑗=0 𝛽𝑗𝑢
𝑘−𝑗−1

𝜏
+ 𝑢𝑘 +

𝑝−1
∑

𝑗=0
𝛾𝑗𝑓 [𝑢𝑘−𝑗−1] = 0, (11)
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for 𝑘 = 𝑝, 𝑝 + 1,… , 𝑛, along with special treatment of the first 𝑝 timesteps (e.g., by another, perhaps one-step, method). In particular, 
for 𝑝 = 1 we get the implicit-explicit Euler scheme

𝑢𝑘 − 𝑢𝑘−1

𝜏
+ 𝑢𝑘 + 𝑓 [𝑢𝑘−1] = 0, (12)

and for 𝑝 = 2 the BDF-2 scheme
3
2 𝑢

𝑘 − 2𝑢𝑘−1 + 1
2 𝑢

𝑘−2

𝜏
+ 𝑢𝑘 + 2𝑓 [𝑢𝑘−1] − 𝑓 [𝑢𝑘−2] = 0. (13)

A crucial observation, following from the minimizing movement point of view, is that (11) (upon multiplication by 𝜏 and integra-
tion by parts) is the Euler–Lagrange equation of the convex minimization problem:

[𝑢] ∶= 1
2
‖

‖

‖

𝛽𝑝𝑢 −
𝑝−1
∑

𝑗=0
𝛽𝑗𝑢

𝑘−𝑗−1‖
‖

‖

2

𝐿2(Ω)
+ 𝜏 ∫Ω

[𝑢]d𝑥 + 𝜏
𝑝−1
∑

𝑗=0
𝛾𝑗 ∫Ω

𝑓 [𝑢𝑘−𝑗−1]𝑢 x. → min, (14)

whereby

[𝑢] ∶= 1
2

𝑑
∑

𝑖,𝑗=1

(

𝛼𝑖𝑗 (𝑥)
𝜕𝑢
𝜕𝑥𝑖

𝜕𝑢
𝜕𝑥𝑗

+ 𝑟𝑢2
)

,

denotes the respective Dirichlet energy.

2.4.  Decomposition of the solution

In the above discussion, we assumed, for simplicity, homogeneous Dirichlet boundary conditions on the domain of the truncated 
boundary 𝜕Ω. In the option pricing context, however, one expects non-zero values of 𝑢 as |𝑥| → ∞. Fortunately, the modelling asserts 
that these values of the solution 𝑢 as |𝑥| → ∞ are asymptotically known. In particular, the value of the option at time 𝑡 ≥ 0 can be 
expressed as

𝑢(𝑡, 𝑥) = 𝑤(𝑡, 𝑥) + 𝑣(𝑡, 𝑥), (15)

whereby 𝑤(𝑡, 𝑥) ≥ 0 denotes the time value of the option, while 𝑣(𝑡, 𝑥) denotes the intrinsic value of the option, given by

𝑢(𝑡, 𝑥) ≥
( 𝑑
∑

𝑖=1
𝛼𝑖𝑥𝑖 − e−𝑟𝑡

)+
= 𝑢0(𝑥) + (1 − e−𝑟𝑡)𝐻

( 𝑑
∑

𝑖=1
𝛼𝑖𝑥𝑖 − e−𝑟𝑡

)

=∶ 𝑣(𝑡, 𝑥), (16)

where 𝐻(⋅) is the Heaviside function.
Crucially, for large values of the moneyness, i.e. of ∑𝑑

𝑖=1 𝛼𝑖𝑥𝑖, the price of the option illustrates an asymptotic behavior

lim
∑

𝑎𝑖𝑥𝑖→∞
𝑢(𝑡, 𝑥) =

( 𝑑
∑

𝑖=1
𝛼𝑖𝑥𝑖 − e−𝑟𝑡

)+
=

𝑑
∑

𝑖=1
𝛼𝑖𝑥𝑖 − e−𝑟𝑡. (17)

Therefore, the decomposition (15) implies that lim∑

𝑎𝑖𝑥𝑖→∞ 𝑤(𝑡, 𝑥) = 0, which justifies the use of homogeneous Dirichlet boundary 
conditions on the domain Ω = [0, 𝑥max]𝑑 for 𝑥max large enough, if we solve for 𝑤 instead.

On a technical note, in order to avoid any issues due to the lack of smoothness of the Heaviside function, we mollify the lower-
bound term by setting

𝑣̃(𝑡, 𝑥; 𝜂) =
( 𝑑
∑

𝑖=1
𝛼𝑖𝑥𝑖 − 1

)+
+ (1 − e−𝑟𝑡)Sigmoid

(

𝑑
∑

𝑖=1
𝛼𝑖𝑥𝑖 − e−𝑟𝑡; 𝜂

)

, (18)

with Sigmoid(𝑥; 𝜂) ∶=
(

1 + e−𝜂𝑥
)−1, 𝜂 > 0. Obviously, lim𝜂→∞ 𝑣̃(𝑡, 𝑥; 𝜂) = 𝑣(𝑡, 𝑥). Moreover, the parameter 𝜂 influences the smoothness of 

the gradient of 𝑣̃(𝑡, 𝑥; 𝜂) with respect to 𝑥. In particular, smaller values of 𝜂 result in smoother approximations. Hence, the parameter 
𝜂 should be chosen appropriately, to strike a balance between the precision of the lower bound approximation and the desired level 
of smoothness.

2.5.  Domain truncation

Motivated by the discussion above, we now provide a framework for the truncation of the spatial domain and the extension to 
values in ℝ𝑑

+ that reflects the natural setting of the problem. To that end, recall (17) and observe that
( 𝑑
∑

𝑖=1
𝛼𝑖𝑥𝑖 − e−𝑟𝑡

)+
 is parallel to 

𝑑
∑

𝑖=1
𝛼𝑖𝑥𝑖.

Consequently, for 𝑥′ associated with a higher moneyness level than 𝑥, we may establish a connection between the option prices inside 
the truncated domain and those of “far away” values using the following expression:

𝑢(𝑡, 𝑥′) ≈ 𝑢(𝑡, 𝑥) +
𝑑
∑

𝑖=1
𝛼𝑖(𝑥′𝑖 − 𝑥𝑖), (19)
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Fig. 1. A two-dimensional example for the domain truncation. The green boundary defines the projection surface for the option price in extreme 
moneynesses.

for ∑𝑑
𝑖=1 𝑎𝑖𝑥𝑖 sufficiently large.

Let  denote a subset of ℝ𝑑
+ such that 

∑𝑑
𝑖=1 𝛼𝑖𝑥𝑖 < 𝑥𝑟 and 𝑥𝑖 ≤ 𝑥max, 𝑖 ∈ 𝕀, for a given 𝑥𝑟 ≤ 𝑥max. The boundary 𝜕 of  consists of 

the points which satisfy ∑𝑖 𝛼𝑖𝑥𝑖 = 𝑥𝑟 and 𝑥𝑖 ≤ 𝑥max for 𝑖 ∈ 𝕀.
We define the projection 𝑦 = (𝑦1, 𝑦2,… , 𝑦𝑑 ) of 𝑥 ∈ ℝ𝑑

+ as 𝑦𝑖 = 𝑞(𝑥)𝑥𝑖, with

𝑞(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑥max∕max{𝑥𝑖}, if max{𝑥𝑖} ≥ max
(

∑𝑑
𝑖=1 𝛼𝑖𝑥𝑖, 𝑥𝑟

)

𝑥max∕𝑥𝑟

𝑥𝑟∕max
(

∑𝑑
𝑖=1 𝛼𝑖𝑥𝑖, 𝑥𝑟

)

, otherwise.
(20)

Clearly, 0 ≤ 𝑞(𝑥) ≤ 1 for all 𝑥 ∈ ℝ𝑑
+ and 𝑞(𝑥)𝑥 ∈ . Employing the approximation (19), we introduce a formula that expresses the 

option prices for each 𝑥 ∈ ℝ𝑑
+ in relation to the option price within the bounded domain :

𝑢(𝑡, 𝑥) ≈ 𝑢(𝑡, 𝑦(𝑥)) +
𝑑
∑

𝑖=1
𝛼𝑖(𝑥 − 𝑦(𝑥)), for each 𝑥 ∈ ℝ𝑑

+. (21)

Fig. 1 illustrates the proposed domain truncation in a two-asset scenario. In this example, 𝑥 has a higher moneyness than 𝑥𝑟, resulting 
in 𝑦 = (𝑦1, 𝑦2) of moneyness 𝑥𝑟, by following the projection procedure.

The significance of the domain truncation lies in getting estimates of the option price for large values of the moneyness, even 
within the confines of a solution in a bounded domain. This is crucial considering the random discontinuities in asset prices that we 
have taken into account.

3.  Deep implicit-explicit minimizing movements and network architecture

In this section, we detail the representation of the solution through a deep artificial neural network (ANN) and discuss the network 
parameter optimization process. A key attribute of the methodology presented below is that the approximate solution 𝑈𝑘 is computed 
at each timestep 𝑡𝑘 by a deep ANN with a specific architecture; this has been proposed, for instance, by Georgoulis et al. [7], see also 
the deep BSDE method of Han et al. [9], and is in contrast to other popular ANN-type methods for PDEs, such as the deep Galerkin 
method (DGM) of Sirignano and Spiliopoulos[2] or the physics-informed neural networks (PINNs) by Lagaris et al. [3], Raissi et al. [4], 
whereby a single ANN approximating the solution over a space-time cylinder is employed. A practical advantage of using a single 
deep ANN architecture for each time instance 𝑡𝑘 is that the approximation is computed by retraining the same architecture from one 
timestep to the next, thereby reducing the training time due to the availability of good “starting” parameter values, i.e., the values 
from the previous time-step.

3.1.  Network architecture

The approximate solution 𝑈𝑘, for each timestep 𝑡𝑘, is represented by a modified version of the deep ANN of residual type by 
Sirignano and Spiliopoulos[2]; the architecture of each layer follows [2] and, for this reason, is henceforth designated as “DGM 
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Fig. 2. Flowchart of the deep neural network modeling the solution of the PIDE for a time instance 𝑡 = 𝑡𝑘.

layer”. The network implements the decomposition and boundary modeling described in the previous subsections. More specifically, 
for an input 𝑦, we set

𝑆0 = tanh(𝑊 in𝑦 + 𝑏in),

 DGM layer
| 𝐺𝓁 = tanh(𝑉 𝑔,𝓁𝑦 +𝑊 𝑔,𝓁𝑆𝓁−1 + 𝑏𝑔,𝓁), 𝓁 = 1,… , 𝐿

| 𝑍𝓁 = tanh(𝑉 𝑧,𝓁𝑦 +𝑊 𝑧,𝓁𝑆𝓁−1 + 𝑏𝑧,𝓁), 𝓁 = 1,… , 𝐿

| 𝑅𝓁 = tanh(𝑉 𝑟,𝓁𝑦 +𝑊 𝑟,𝓁𝑆𝓁−1 + 𝑏𝑟,𝓁), 𝓁 = 1,… , 𝐿

| 𝐻𝓁 = tanh(𝑉 ℎ,𝓁𝑦 +𝑊 ℎ,𝓁(𝑆𝓁−1 ⊙𝑅𝓁) + 𝑏ℎ,𝓁), 𝓁 = 1,… , 𝐿

⌊ 𝑆𝓁 = (1 − 𝐺𝓁)⊙𝐻𝓁 +𝑍𝓁 ⊙ 𝑆𝓁−1, 𝓁 = 1,… , 𝐿

𝑣̃(𝑡𝑘, 𝑦) =
( 𝑑
∑

𝑖=1
𝛼𝑖𝑦𝑖 − 1

)+
+ (1 − e−𝑟𝑡𝑘 ) Sigmoid

(

𝑑
∑

𝑖=1
𝛼𝑖𝑦𝑖 − e−𝑟𝑡𝑘 ; 𝜂

)

,

𝑤𝑘(𝑦; 𝜃) = Sof tplus
(

𝑊 out𝑆𝐿; 𝛿
)

,

with 𝐿 denoting the number of hidden layers and ⊙ denoting the Hadamard product. The trainable parameters 𝜃 of the model are

𝜃 = {𝑊 in, 𝑏in, (𝑉 ∗,𝓁 ,𝑊 ∗,𝓁 , 𝑏∗,𝓁)∗∈{𝑔,𝑧,𝑟,ℎ}𝓁=1,…,𝐿 ,𝑊 out}, (22)

and the output of the network is given by

𝑈 (𝑡𝑘, 𝑥; 𝜃) = 𝑤𝑘(𝑦; 𝜃) + 𝑣̃(𝑡𝑘, 𝑦) +
𝑑
∑

𝑖=1
𝛼𝑖(𝑥𝑖 − 𝑦𝑖), (23)

recalling the definition of 𝑦 ≡ 𝑦(𝑥) (and of the 𝑦𝑖’s) in (20). Fig. 2 shows a flowchart of the adopted ‘global’ ANN architecture, while 
Fig. 3 presents the architecture of a single DGM layer.

The choice of the architecture appears to be of significance, as it performs consistently better than a standard fully connected net-
work in our experiments: the residual connections allow the network to learn incremental updates to the identity function, stabilising 
the training process for the networks required in our application. Our selected configuration, consisting of two residual layers with a 
node width of 64. 
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Fig. 3. The architecture of a DGM layer.

The computation of the parameters 𝜃 which provide the approximate solution at 𝑡𝑘 is performed using (14), i.e., we seek 𝜃
minimizing the cost functional

𝒞𝑘(𝜃) ∶= [𝑈 (𝑡𝑘, ⋅, 𝜃)] =
1
2
‖

‖

‖

𝛽𝑝𝑈 (𝑡𝑘, ⋅, 𝜃) −
𝑝−1
∑

𝑗=0
𝛽𝑗𝑈 (𝑡𝑗(𝑘), ⋅, 𝜃𝑗(𝑘))

‖

‖

‖

2

𝐿2(Ω)

+ 𝜏 ∫Ω
[𝑈 (𝑡𝑘, 𝑥, 𝜃)] x. + 𝜏

𝑝−1
∑

𝑗=0
𝛾𝑗 ∫Ω

𝑓 [𝑈 (𝑡𝑗(𝑘), 𝑥, 𝜃𝑗(𝑘))]𝑈 (𝑡𝑘, 𝑥, 𝜃) x. ,

(24)

using the notation 𝑗(𝑘) ∶= 𝑘 − 𝑗 − 1 for brevity. Let us point out that, due to the network architecture, although  is convex with 
respect to its argument, 𝒞  is not, in general. The minimizer is denoted by 𝜃𝑘. Due to the multistep nature of the BDF methods, we 
observe that 𝜃𝑘 also depends on 𝜃𝑘−1,… , 𝜃𝑘−𝑝. As discussed above, special care has to be taken for the first 𝑝 time steps (e.g., by 
employing an one-step method) to initiate the iteration.
Remark 1. We note the practical significance of mollifying the solution lower bound as per (18). Indeed, 𝑣(𝑡𝑗(𝑘), ⋅) is contained in 
𝑈 (𝑡𝑗(𝑘), ⋅, 𝜃𝑗(𝑘)) and it is differentiated in space within 𝒞 . 

3.2.  Training

As is typical in ANN-based methods for PDEs, the cost function (24) is discretized by a Monte Carlo sampling procedure. In 
particular, considering 𝑁 uniformly sampled points {𝑥𝑖}𝑁𝑖=1 in Ω = [0, 𝑥max]𝑑 , the discretized cost functional is given by 

𝒞𝑘(𝜃) ∶=
(𝑥max)𝑑

𝑁

𝑁
∑

𝑖=1

{

1
2

[

𝛽𝑝𝑈 (𝑡𝑘, 𝑥𝑖, 𝜃) −
𝑝−1
∑

𝑗=0
𝛽𝑗𝑈 (𝑡𝑗(𝑘), 𝑥𝑖, 𝜃𝑗(𝑘))

]2
+ 𝜏[𝑈 (𝑡𝑘, 𝑥𝑖, 𝜃)] + 𝜏

𝑝−1
∑

𝑗=0
𝛾𝑗𝑓 [𝑈 (𝑡𝑗(𝑘), 𝑥𝑖, 𝜃𝑗(𝑘))]𝑈 (𝑡𝑘, 𝑥𝑖, 𝜃)

}

, (25)

using again 𝑗(𝑘) ∶= 𝑘 − 𝑗 − 1 for brevity. For notational simplicity, we still denote by 𝜃𝑘 the computed minimizer of 𝒞𝑘(𝜃). In practice, 
we update the model parameters using the ADAM optimizer for 𝑁𝑘 training epochs and we denote by 𝜃𝑘 the result of the optimization 
(even if it may not have converged).

3.2.1.  Initialization
The initial condition (6) implies that 𝑤0(𝑥; 𝜃0) = 0 for all 𝑥 ∈ [0, 𝑥𝑟]𝑑 , which may result in practical difficulties in the training 

process, since it leads to vanishing weights. In order to address this, we use the mathematically equivalent form

𝑈 (𝑡𝑘, 𝑥; 𝜃) = (1 − 𝛿𝑘0)𝑤𝑘(𝑦; 𝜃) + 𝑣̃(𝑡𝑘, 𝑦) +
𝑑
∑

𝑖=1
𝛼𝑖(𝑥𝑖 − 𝑦𝑖),

with 𝛿𝑖𝑗 being the Kronecker delta. In other words, we impose 𝑤0(𝑥; 𝜃0) = 0 strongly at 𝑡 = 0, resulting in the network weights becoming 
independent of the initial condition of the PIDE.

Nevertheless, it is of interest to initialize 𝑤0 in order to get a good starting point for adapting the network for approximating the 
solution at 𝑡1 and beyond. In that respect, we employ the following smooth function that goes to zero for small and large asset prices:

𝑓 0(𝑥) = 𝜖 exp
[

− 1
2𝜁2(𝑥)

( 𝑑
∑

𝑖=1
𝛼𝑖𝑥𝑖 − 1

)2 ]

,
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Fig. 4. Sparse sampling in ℝ2 using the Gauss–Hermite quadrature for normally distributed random variables with correlation equal to 1
2
.

for 𝜖 > 0 small, with 𝜁 (𝑥) taking two possible positive values 𝜁1, 𝜁2 according to the criterion 
∑𝑑

𝑖=1 𝛼𝑖𝑥𝑖 > 1 and we compute 𝜃0 such 
that

𝑤0(𝑥; 𝜃0) → min
𝜃

‖

‖

‖

𝑤0(𝑥; 𝜃) − 𝑓 0(𝑥)‖‖
‖

2

𝐿2([0,𝑥𝑟]𝑑 )
.

Once computed, we employ 𝑤0(𝑥; 𝜃0) in the BDF iteration.

3.3.  Computation of the integral operator

Each evaluation of the cost (loss) function requires the numerical calculation of the integral term 𝐼𝜈[𝑢] in 𝑓 [𝑢]. Approximating the 
integral operator 𝐼𝜈 requires special treatment due to the complexity implied by this operator. To that end, we calculate the integral 
operator using two methods. The first one employs a sparse-grid integration technique based on the Gauss–Hermite quadrature, 
while the second one involves training a specialized neural network for computing the integral values. The latter method is more 
time-efficient, whereas the former gives, in general, more accurate results.

The integral term appears in an explicit fashion with respect to the timestepping, therefore we are required to evaluate the values 
𝐼𝜈 [𝑈 (𝑡𝑗(𝑘), 𝑥, 𝜃𝑗(𝑘))] at 𝑥 for known ANN solution approximations 𝑈 (𝑡𝑗(𝑘), 𝑥, 𝜃𝑗(𝑘)), 𝑗 = 0,… , 𝑝 − 1, again for 𝑗(𝑘) = 𝑘 − 𝑗 − 1.

3.3.1.  Sparse Gauss–Hermite quadrature
In the Merton model, the integral can be expressed as the expected value, with respect to a Gaussian measure, of the function 

ℎ(𝑧) = 𝑢(𝑥e𝑧) − 𝑢(𝑥) multiplied by the Poisson parameter 𝜆; for brevity, for the remainder of this discussion we suppress the dependence 
on 𝑡, and 𝑢 signifies any of the 𝑈 (𝑡𝑗(𝑘), 𝑥, 𝜃𝑗(𝑘)) for 𝑗 = 0,… , 𝑝 − 1. In addition, the amplitude of the random jumps is determined by a 
multivariate normal random variable, 𝑍 ∼  (𝜇𝐽 ,Σ𝐽 ). Therefore, Σ𝐽  introduces directional features.

The construction of a 𝑑-dimensional quadrature rule employing sparse grid interpolation of the integrand, benefits by following 
the “natural direction” of Σ𝐽 . To that end, we first perform the Singular Value Decomposition (SVD) of the covariance matrix to 
express the integration in terms of the Gauss–Hermite quadrature by modulating and rotating the original axes, viz.,

Σ𝐽 = 𝐴Λ𝐴𝖳 = 𝐴Λ1∕2Λ1∕2𝐴𝖳 = 𝐵𝐵𝖳, (26)

where 𝐵 = 𝐴Λ1∕2. The change of variables 𝑍 − 𝜇 =
√

2𝐵𝑌  transforms the integrand such that the multidimensional Gauss–Hermite 
quadrature can produce a sparse grid of representative points. More specifically, we have

∫ℝ𝑑
ℎ(𝑧)𝜈(d𝑧) = 𝜆𝜋−𝑑∕2

∫ℝ𝑑
ℎ(𝜇 +

√

2𝐵𝑦) exp(−𝑦𝖳𝑦)d𝑦

≈ 𝜆𝜋−𝑑∕2
∑

𝐢∈Θ𝑞

ℎ(𝜇 +
√

2𝐵𝑦𝐢)𝑊 𝐢, (27)

with 𝑦𝐢 = (𝑦𝑖1 ,… , 𝑦𝑖𝑑 )𝖳 representing a node of the sparse grid, and 𝑊 𝐢 =
∏𝑑

𝑘=1 𝑤
𝑖𝑘  the associated weight for a multi-index 𝐢 = (𝑖1,… , 𝑖𝑑). 

Here, 𝑦𝑖𝑘  are chosen to be the roots of Hermite polynomials, and the index space Θ𝑞 ⊂ ℕ𝑑 is selected in such a way that the resulting 
quadrature exactly integrates polynomials up to a desired degree 𝑞; cf. Bungartz and Griebel [32]. Fig. 4 presents an example of a 
sparse grid of points in ℝ2 for integrating a function of two correlated normally distributed random variables.
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3.3.2.  Approximation of the integral using an ANN
We further develop an alternative approach for the evaluation of the integral operator, by introducing a second artificial neural 

network for this purpose. The introduction of a second ANN is inspired by Gnoatto et al. [29], however, we introduce a neural 
network that directly learns the values of the integral ∫ ℎ(𝑧)𝜈(d𝑧), while in [29] they learn the values of a martingale stemming from 
stochastically integrating ℎ with respect to the compensated Poisson measure of jumps.

The neural network we now consider will serve as an estimator of the values of the integral ∫ ℎ(𝑧)𝜈(d𝑧) with ℎ(𝑧) = 𝑢(𝑥e𝑧) − 𝑢(𝑥)
for each value of 𝑥. The approximate neural network value at time 𝑡𝑘 is denoted by 𝑘(𝑥;𝜙), where 𝜙 is the set of trainable parameters. 
In order to determine 𝜙𝑘, we solve the optimization problem

min
𝜙∈Φ

𝔼
[

𝑘(𝑥;𝜙) −
𝑝−1
∑

𝑗=1
𝛾𝑗𝐼𝜈 [𝑈 (𝑡𝑗(𝑘), 𝑥; 𝜃𝑗(𝑘))]

]2
, (28)

with the expectation taken over 𝑥.
As usual, we discretize the integral in (28) by Monte Carlo sampling before performing the optimization, i.e., we approxi-

mate an unbiased and minimum variance estimator of the integral operator with respect to 𝑥. To that end, setting ℎ𝑗(𝑘)(𝑥, 𝑧) ∶=
𝑈 (𝑡𝑗(𝑘), 𝑥e𝑧, 𝜃𝑗(𝑘)) − 𝑈 (𝑡𝑗(𝑘), 𝑥, 𝜃𝑗(𝑘)), we consider normally distributed points {𝑧𝑟}𝑀𝑟=1 in ℝ𝑑 according to the distribution that governs 
the size of the jumps, and seek to find the optimizer 𝜙𝑘 ∈ Φ that minimizes

min
𝜙∈Φ

𝔼
[

𝑘(𝑥;𝜙) − 𝜆
𝑀

𝑀
∑

𝑟=1

𝑝−1
∑

𝑗=1
𝛾𝑗ℎ𝑗(𝑘)(𝑥, 𝑧𝑟)

]2
; (29)

again, the expectation is over 𝑥. At the time step 𝑡𝑘 and given a set of uniformly distributed points {𝑥𝑖}𝑁𝑖=1, we obtain a discrete 
approximation of (29):

(𝑥max)𝑑

𝑁

𝑁
∑

𝑖=1

[

𝑘(𝑥𝑖;𝜙) − 𝜆
𝑀

𝑀
∑

𝑟=1

𝑝−1
∑

𝑗=1
𝛾𝑗ℎ𝑗(𝑘)(𝑥𝑖, 𝑧𝑟)

]2
. (30)

Concluding, in order to estimate the solution 𝑈𝑘 of the PIDE at time 𝑡𝑘, we need to determine the values of the integral operator. 
To approximate these values, we employ the supplementary ANN.

At each time step, we begin by optimizing the parameters 𝜙𝑘 of the ANN for the integral by minimizing (30), followed by 
the independent optimization for 𝜃𝑘 based on (25). Fortunately, the training associated with (30) is computationally inexpensive, 
introducing no significant overhead to the overall scheme.

4.  Numerical examples

We shall now test the performance of the proposed methodology by pricing a European basket call option in the Merton model. 
Also, we provide a simple comparison with two popular and successful machine learning-driven solvers. More specifically, we consider 
a basket of 𝑑 equally weighted assets with moneyness values 𝑥1, 𝑥2,… , 𝑥𝑑 . The model parameters are chosen to be the following:

𝜎𝑖 = 0.5, 𝜌𝑖𝑗 = 𝛿𝑖𝑗 + 0.5(1 − 𝛿𝑖𝑗 ), 𝑖, 𝑗 ∈ 𝕀, 𝑡 ∈ 𝕋 = (0, 𝑇 ],

where 𝛿𝑖𝑗 denotes the Kronecker delta again. Moreover, the parameters of the jump distribution are
𝜆 = 1, 𝜇𝐽𝑖 = 0, 𝜎𝐽𝑖 = 0.5, 𝜌𝐽𝑖𝑗 = 𝛿𝑖𝑗 + 0.2(1 − 𝛿𝑖𝑗 ), 𝑖, 𝑗 ∈ 𝕀.

Note that the elements of the covariance matrices are given in terms of the standard deviations and correlations as follows:
Σ𝑖𝑗 = 𝜎𝑖𝜎𝑗𝜌𝑖𝑗  and Σ𝐽𝑖𝑗 = 𝜎𝐽𝑖𝜎𝐽𝑗 𝜌𝐽𝑖𝑗 .

Let us point out that we have intentionally selected large values for the volatilities and asset correlations, in order to test the perfor-
mance of the method in challenging scenarios. Below, we present numerical experiments for dimensions 𝑑 = 5 and 𝑑 = 15.

4.1.  5 correlated assets – Integration using Gauss–Hermite quadrature

The first numerical example concerns the valuation of a European basket call option consisting of 5 correlated assets. The maturity 
is chosen to be in one year, i.e. 𝑇 = 1. Initially, we use the Gauss–Hermite quadrature to compute the integral operator. Results for both 
the implicit-explicit Euler and the BDF-2 schemes are provided. For the Euler scheme, we consider a time-step of 𝜏 = 0.01, while the 
BDF-2 scheme uses a larger time-step of 𝜏 = 0.04. We present the option prices for moneyness values in the interval [0, 3], considering 
the scenario where all assets share the same moneyness. Fig. 5 corresponds to the implicit-explicit Euler scheme, and Fig. 6 to the 
BDF-2 scheme. For comparison reasons, we also provide an extended Quasi Monte Carlo (QMC) estimation of the solution. We can 
observe that both methods work very well compared to the QMC simulation, and the difference to the Quasi Monte Carlo is only 
visible for deep in-the-money options, with moneyness level above 2. Indeed, the absolute error is on the order of 10−3.  The implicit-
explicit Euler method, which run for 192 min, appears slightly more accurate than the BDF-2 scheme, due to the 4 times smaller 
time-step used. As expected, the computational cost of the implicit-explicit Euler method is greater than BDF-2, being approximately 
1.8 times slower. 
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Fig. 5. Basket option prices (top right), differences between price and payoff (bottom right) and differences between the proposed method and 
quasi Monte Carlo (left), using the implicit-explicit Euler scheme and the Gauss–Hermite quadrature for the integral, for 𝑑 = 5.

Fig. 6. Basket option prices (top right), differences between price and payoff (bottom right) and differences between the proposed method and 
quasi Monte Carlo (left), using the BDF-2 scheme and the Gauss–Hermite quadrature for the integral, for 𝑑 = 5.

4.2.  5 correlated assets – Integration using an ANN

Next, we present the corresponding results using the second ANN instead of the Gauss–Hermite quadrature to estimate the integral 
operator. Figs. 7 and 8 depict the recovered option prices for the implicit-explicit Euler and the BDF-2 schemes, respectively. Again, 
we compare the results using a greedy Quasi Monte Carlo simulation. We can observe that the ANN computation of the integral 
operator also works very well, and the absolute error remains in the order of 10−3.  The ANN method though results in a computation 
of basket options prices that is roughly 1.7 times faster (113 min) than the corresponding method with the Gauss–Hermite quadrature.

Fig. 9 illustrates a comparison of the two approaches employed for the computation of the integral operator in the case of the 
5-asset European basket option for moneynesses in [0, 3] at 𝑡 = 0.01. We can see that the two methods yield similar approximations 
of the integral operator. Let us point out that the Gauss–Hermite quadrature tends to outperform the ANN for extreme moneyness 
values (small or large) due to its sampling-independent nature. More specifically, the quadrature captures the asymptotic behavior 
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Fig. 7. Basket option prices (top right), differences between price and payoff (bottom right) and differences between the proposed method and 
quasi Monte Carlo (left), using the implicit-explicit Euler scheme and an ANN for the calculation of the integral, for 𝑑 = 5.

Fig. 8. Basket option prices (top right), differences between price and payoff (bottom right) and differences between the proposed method and 
quasi Monte Carlo (left), using the BDF-2 scheme and an ANN for the calculation of the integral operator, for 𝑑 = 5.

of the integral for large 𝑥, aligning with the expected jump sizes, i.e.: lim𝑥→∞ 𝐼𝜑(𝑥) = 𝑥𝔼[e𝑧 − 1]. On the other hand, the ANN-based 
approach tends to yield smoother approximations, particularly for commonly sampled moneyness levels.

In addition, the performance of each of the two integration methods proposed emerges as a key performance factor, since integra-
tions amounts to a significant percentage of the overall cost per time-step. To that end, we compare the average duration per iteration 
and the relative absolute difference between the methods for 𝑑 = 2, 5, and 8. The results are presented in Table 1. 

The ANN-based approach performs significantly faster across all the tested dimensions, without effective detrimental effect in 
the accuracy. More importantly, its computational time scales nicely with 𝑑. On the other hand, the runtime of the Gauss–Hermite 
quadrature grows significantly with dimension, which indicates that it is not immune to the curse of dimensionality. In conclusion, 
while Gauss–Hermite quadrature provides a robust and reliable approach for low-dimensional problems, its computational burden 
rapidly becomes prohibitive when increasing spatial dimension above a certain threshold. The ANN-based quadrature approach, 
appears to admit better scalability with respect to spatial dimension. Thus, the latter is the only feasible option for high-dimensional 
problems, with a practical dimensional limit for the Gauss–Hermite quadrature appearing around 𝑑 = 8 in our test cases.
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Fig. 9. Estimates of the integral operator for 𝑡 = 0.01.

Table 1 
Computational cost and relative absolute differences 
between the two integration methods across the var-
ious dimensions.

𝑑
 Runtime per Iteration (sec)

Rel. Abs. Diff.
 Gauss–Hermite  ANN-based

2 0.0746 0.0100 2.63𝐸−2
5 0.1223 0.0238 9.62𝐸−2
8 1.0192 0.0388 1.45𝐸−1

4.3.  15 correlated assets – Integration using an ANN

We further test our numerical methodology in a rather challenging high-dimensional option pricing scenario. In particular, we 
consider the case of a 15-asset European basket call option, as described earlier, with the maturity time being one year, i.e. 𝑇 = 1. We 
employ time steps of 𝜏 = 0.01 for the implicit-explicit Euler method and 𝜏 = 0.03 for the BDF-2 scheme, respectively. Fig. 10 presents 
the pricing results for the implicit-explicit Euler scheme, whereas Fig. 11 provides the corresponding results for the BDF-2 scheme. 
Both methods are performing very well once again, and the important observation is that the absolute error remains relative small, 
although the dimension of the problem is now three times higher.  The BDF-2 scheme with triple size timestep is 1.7 times faster than 
the implicit-explicit Euler method.

4.4.  Hyperparameters and performance

We report the hyperparameters, the computational setup, and the computational run times of the implementation. The neural 
networks used consist of 2 DGM layers with a width of 26 neurons each. The weights are initialized via the Xavier initialization. 
The optimization is driven by the Adam optimizer using a fixed learning rate 𝛼 = 3 ⋅ 10−4. During the initialization phase (𝑡 = 0), 
the neural networks (for the solution and for integration where applicable) are trained for a total of 215 epochs, using 215 sampled 
points at each epoch. A combination of uniform sampling for the moneyness and then sampling from the Dirichlet distribution is used 
during this step, providing a better initial start for the subsequent training steps. For the first time step (𝑡 = 𝜏), we perform 214 and 
215 epochs for the 5-asset and 15-asset cases, respectively. Subsequently, 212 (5-assets) and 213 (15-assets) epochs are performed for 
the following time steps. At each iteration, a total of 212𝑑 points are sampled in ℝ𝑑

+. We have used scrambled Sobol sequences, cf.
Sobol’ [33], Owen[34], for the sampling, which provide low-discrepancy quasi-random samples. The algorithms have been executed 
on a computational node of the DelftBlue supercomputer. In particular, we used 12 CPU cores (Intel XEON E5), 64GB RAM, and an 
NVIDIA Tesla V100S with 32GB RAM.
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Fig. 10. Basket option prices (top right), differences between price and payoff (bottom right) and differences between the proposed method and 
quasi Monte Carlo (left), using the implicit-explicit Euler scheme and an ANN for the calculation of the integral, for 𝑑 = 15.

Fig. 11. Basket option prices (top right), differences between price and payoff (bottom right) and differences between the proposed method and 
quasi Monte Carlo (left), using the BDF-2 scheme and an ANN for the calculation of the integral operator, for 𝑑 = 15.

4.5.  Basic comparison with other ML solvers

In an effort to position the proposed method above in terms of computational cost, as well as comment on its benefits, we now 
provide a basic comparison against two popular alternative methods: the deep BSDE solver with jumps by Gnoatto et al. [29] and the 
deep Galerkin method by Sirignano and Spiliopoulos[2]; in the latter method, we incorporate the ANN approximation of the integral 
operator implicitly.

For the Deep BSDE solver, we adapt the code provided by Gnoatto et al. [29] on GitHub,1 which prices European basket call 
options under a jump-diffusion model with uncorrelated assets. To ensure fair comparison, we also consider uncorrelated assets for 
the other two methods.  We run the pricing schemes for European basket call options with 2, 5, and 8 underlying assets, using the 

1 https://github.com/AlessandroGnoatto/DeepBsdeSolverWithJumps
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Table 2 
Comparison of pricing methods for European basket call options of 𝑑 = 2, 5, 8 assets under a jump–
diffusion model.
𝑑  MC  Deep IMEX  Deep BSDE  DGM (+1 layer)  DGM (+2 layers)

2
 Value 0.2286 0.2269 0.2275 0.2168 0.2267
 Abs. Error  – 1.74𝐸−3 1.16𝐸−3 1.19𝐸−2 1.95𝐸−3
 Runtime (min) 179 373 83 498 658

5
 Value 0.1647 0.1633 0.1661 0.1509 0.1669
 Abs. Error  – 1.41𝐸−3 1.36𝐸−3 1.38𝐸−2 2.14𝐸−3
 Runtime (min) 533 885 376 1330 1634

8
 Value 0.1409 0.1393 0.1399 0.1498 0.1447
 Abs. Error  – 1.61𝐸−3 1.01𝐸−3 8.89𝐸−3 3.80𝐸−3
 Runtime (min) 822 1593 789 3521 4822

parameters: 𝑇 = 1, 𝐾 = 1, 𝜎𝑖 = 0.5, 𝑟 = 0.05, 𝜆 = 1, 𝜇𝐽𝑖 = 0, 𝜎𝐽𝑖 = 0.5. For the deep BSDE solver, we solve for the initial moneyness 
value of 𝑥𝑖 = 1, while the other two methods it is possible to price the option for an array of initial values at once.

Due to library incompatibilities with NVIDIA drivers, we have been unable to execute a CUDA-accelerated version of the deep 
BSDE solver. To facilitate a fair computational time assessment we, thus, compare CPU runtimes for all methodologies. We expect 
that CUDA execution would likely result in speedups of 10 times or more for all methods in a similar fashion. Moreover, to ensure a 
robust Monte Carlo (MC) estimation, we run 10 million iterations, leading to a standard deviation of std = 1.147 ⋅ 10−4. Thus, we feel 
it is appropriate to consider the Monte Carlo solution as the ground truth.

Before providing the results of the basic comparison, we highlight the key differences on how these methods approach the solution 
space. The MC method solves for a single time-space point, providing an estimate for a specific set of initial conditions at maturity. 
The deep BSDE solver provides solutions across multiple time steps but for fixed spatial values, i.e., fixed initial asset or moneyness 
values. In contrast, both DGM and the deep IMEX scheme, proposed in this work, provide solution that can be evaluated across the 
entirety of a space-time domain. This broader coverage makes DGM and deep IMEX more versatile but, as expected, they are also 
more computationally intensive. For instance, a key advantage of being provided with a complete solutions across the space-time 
domain, allows for straightforward calculation of Greeks. The latter is more challenging in local solvers, such as MC or deep BSDE.  We 
note that both deep IMEX and DGM are implemented with the same network architecture given in Section 3.1. To ensure, however, 
comparable accuracy, we test two different configurations for the DGM method: one with an additional layer and another with two 
additional layers, compared to the deep IMEX architecture. The results, including option values, absolute errors against the “ground 
truth” provided by MC, and runtimes, are summarized in Table 2. This basic comparison shows that the proposed deep IMEX approach 
is competitive with both MC and deep BSDE methodologies in terms of error and in terms of runtime. In contrast, however, to MC 
and BSDE, the proposed method produces a complete space-time solution.

The accuracy of the proposed scheme is stable across all tested dimensions (𝑑 = 2, 5, 8) and comparable to the deep BSDE solver. 
While it is computationally more expensive than the point-wise MC and deep BSDE methods, its relative cost scaling is favourable, 
particularly against the deep BSDE solver, where the runtime multiple drops from 4.5× (for 𝑑 = 2) to 2× (for 𝑑 = 8). Moreover, deep 
IMEX appears to be more economical than DGM in terms of runtime and parameter cardinality.

5.  Conclusions

This work develops a novel deep learning method for PIDEs, focused on the particular challenge of pricing of European basket 
options in models that follow jump-diffusion processes. To address the intricacies of the problem, we introduce a decomposition 
technique, expressing the option price as the sum of an unknown component (time value) and a known lower-bound function (intrinsic 
value). The incorporation of a domain truncation method further enhances the accuracy of our numerical schemes. By projecting 
option prices onto a bounded subset and efficiently approximating solutions for extreme moneyness values within this truncated 
domain, we arrive at an accurate and reliable approximation of the underlying solution to the PIDE problem. The combination of 
the deep implicit-explicit minimizing movement methodology, the decomposition of the solution, and the domain truncation method 
form a robust toolkit for enhancing the accuracy and efficiency of option pricing methods in advanced financial models, by providing 
a complete solution at every point of the space-time domain. As such, it is trivially possible to infer further quantities, such as Greeks, 
from the computed space-time solution. A basic comparison with popular and successful approaches further showcases the practical 
relevance of the proposed method. We conclude by noting that the methodology presented above is also applicable to other PIDE 
problems.
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