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Editorial 

This is the first issue of abi-annual publication in 
which recent research contributions of the Me­
chanical Engineering Systems and Control Group 
at Delft University are presented. The aim of the 
publication is to provide a means for fast publica­
tion of recent results of current research projects. 
It also serves to encourage post-graduate students 
and research associates to contribute to the 
written literature in an early stage of their 
research projects, and to get acquainted with the 
mechanisms of writing papers and dealing with 
reviews of their papers. This publication involves 
an account of some of the projects that are 
currently under study in our group, without 
aimi~g at co~pleteness. Next issues therefore will 
amphfy the pIcture of our group. We hope that 
this publication will contribute to creating fruitful 
communications with other groups and researchers 
on subjects on common research interests . 
The research in our group aims at theory and 
applications of dynamic modelling, system identifi­
cat ion and con trol system design. The applications 
involved include electromechanical servo systems 
(robots, elect ri cal drives, wind power systems), 
and multivariabie process control (power systems, 
chemical separation processes). In these projects a 

vi 

certain merging of system theory research and 
application-oriented projects takes place. We try 
to be involved only in those applications in which 
the achievements of recent theoretical results in 
model reduction, system identification and robust 
con trol will contribute to relevant engineering. 
results. 
The present issue especially contains results of 
projects oriented towards theoretical results. The 
very stimulating educational climate of the Dutch 
Graduate Program on Systems and Control 
certainly has contributed significantly to some of 
the results presented here, and consequently these 
efforts are gratefully acknowledged. 
This issue also contains some contributions which 
have resulted from collaborative research projects 
performed in cooperation with industrial research 
partners. Such cooperative projects are experi­
enced to be of paramount importance to our 
group. 
The next issue will set tIe the balance between 
theory and applications by providing a number of 
contributions from various applied projects. 

Okko Bosgra 
P aul Van den Hof 

Editors 



A family of reduced order modeIs, 
based on open-loop balancing 

Peter Heubergcr 

Selected Topics in Identification, 
Modelling and Control; Vol. I, 1990 

',o r 

Lab. Measurement and Co nt rol, Dept. Mechanical Engineering and Marine Tech., 
Delft Unive1'sity of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands. ' 

Abstract . In thispaper we generalize' a well-known model reduction method, calléd 
bálanced truncation , to awhole family of reducedórder modeis, which are all based 
on the semi'-{;anonical form of a balanced realization. This f~ily will be parame~rized ' 

by one real valued parameter, i.e. fOll',G'EIR} . Several members of this family , as 
balanced truncatioll alid singular perturbations, are al ready weU known in the , 
literature. The generalized approach presented covers both the continuous and discrete 
time case. Further conditions are given under which one can guarantee stability and 
minimali ty of the reduced order modeis, and a bound is given fQr the Loo-norm of the 
error transfer function . It is 'shown that this frequency error can be much smaller than 
obtained with the standard methoqs. 

" , 

Keywords. Model reductionj ,balanced realizationsj singuiar ' perturbationsj frequency , 
.. errorj 

1 JNTROD UCTION 

~/Iodel ~·eduction methods based on balanced 
realizations play an important role in various 
fj elds of system and control ' techniques. , The firs:t 
contribution in this area,Ï$ due to Moore(1981), 
who introduced the truncation of balanced 
realizations of continuous timè systeins, ' which 
under weak conditions results in a balanced 
realization for the reduced order model, that is 
again stabie and minimal. The sa.megoe~ for the 
discrete t ime case, but the reduced model is not 
balanced . any more. For these model reduction 
metllods there is also a bound on the frequency 
error available. 
Pern ando and Nicholson (1982,1983), AI-Saggaf 
and Pranklin (1988) and Liu and Anderson(1989) 
in troducedthe singular perturbation approach to 
requce balanced modeis, which lead to reduced 
order models with the same nice properties. We 
will generalize these methods to a one parameter 
family of reduced order models and give the 
collcli ti ons under which these are stabie and 
mini ma!. Further, we will give a bound for the 
rreq uency error and show by means of some 
examples that the generalized method we prop<!;e 
can lead , to much smaller frequency errors than 
the Iknown l methods .. 
T he article is outlined as follows: In section 2 we 
will bri efly repeat the main notions of balanced 
reali zations and their relation with the Rankel 
singul ar values. Sections 3 and 4 deal with the 
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currently existing methods in contimious and 
discrete time respectively. In section 5 we extend 
these methods to a generalized form, and the main 
properties of this method are given ,in theorem 5.4. 
We conclude with some examples in, section 6,. 
Throughout this paper we only consider finite 
dimensional linear , time invariant asymptotically 
systems, -which in the sequel will be abbreviated 
with -FDLTS systems- ,with state space 
realizations: 

In continuous time: 

x(t) = Ax(t) + Bu(t) 
y(t) = Cx(t) + Du(t) 

In discrete time: 

xk+l = AXk + BUk 
Yk = CXk + DUk 

(Ua) 
(l.lb) 

(l.lc) 
(l.ld) 

The quadruple [A,B,C,D] is called a realization of 
. the transfer function , 

-1 
O(p) = C[pI-A] B+D (1.2) 

where p is a complex variabie. We use O(s) (p=s) 
for continuous time systems and O(z) (p=z) for 
discrete time systems. 
We will make an extensive use of the 
w-transformation to switch bet ween continuous 
time and discrete time: . This is the bilinear 



transformation that maps the imaginary axis into 

the unit circle by w: s -+ z=~±!. 
This transformation preserves stability and Hankel 
singular values. A thorough treatment is given in 
Glover (1984). We use the term w-transformation 
for the transformation s-+z as weIl as for Z-+Sj it ' 
will be clear from the context which one is used. 

2 BALANCING TRANSFORMATIONS 

In this section we explain the notion of balanced , 
realizations, which was introduced by Moore 
(1981). Since this is a weU known concept in the 
literature we will treat it only very briefly, giving 
the most important definitions and properties. In 
words one may say that a balanced realization of a 
system has the , property that the amount of 
controllability of a certain element of the state 
vector is equal to the amount of observability of 
this element. As shown in for instance (Enns, 
1984; Glover, 1984) we can consider the Gramians 
of a system as ' a tooI to measure the 
controllability and observability of a realization. 
This is used in the balanced realization approach. 

For a realization [A,B,C,D] of a FDLTS system 
G(p) the controllability and observability Gramian 
are defined as follows: ' 

Continuous time: 

J
oo T 

P = 0 eAtBBTeA tdt 

J
oo T 

Q = 0 eA tCTCeAtdt 

Discrete time: 

p = ,~ AiBBTATi 
i=O 

Q = ~ A TieTcAi 
i = 0 

(2.1a) 

(2.1b) 

(2.1.c) 

(2.1.d) 

It is weIl known that these GTamians satisfy the 
following Lyaponov equations: 

Continuous time: 

AP ± PAT ± BBT = 0 

AT Q ± QA ± CT C = 0 

Discrete time: 

APAT ± BBT = P 
ATQA ± CTC = Q 

(2.2a) 
(2.2b) 

(2.2c) 
(2.2d) 

A minimal realization [A,B,C,D] of a FDLTS 
system G(p) is called (internally) balanced W.r.t. E 
if . 

P = Q = E = diag{ 0'1,0'2,' •• ,O'n} (2.3) 

with O'i~O'i+l, i=1,2,' .. ,n-1 and O'n>O. 
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The set {O'i} is the set of the non-zero Hankel 
singular values of the system G(p}, which are the 
singular values of the Hankel operator of G(p) 
(Glover, 1984). In the sequel we will consicler 
reduced order ,models of McMillan degree k<n and 
we will use the following partitioning of [A,B,C,D] 
and 'E, conformabIe with k and n: 

A= [~!~ ~~~], B= [~~] , 
C=[C1 C2], E= [~1~2] 

(2.4) 

wher~ AllElRkxk etc. 

An interpretation of the Gramians of a realization 
is given in (Glover, 1984) and applied on a 
balanced realization this interpretation shows that 
the amount of energy to reach a state xoo=x(oo) 

from x(O)=O is ' equal to ~E-lXoo. Thus if the i th 
singular value O'i is very small it will take a large 
amount of energy to reach the state xo=ei, the ith 
unit vector, and therefore this state is almost ' 
unreachable. The interpretation of the 
observability Gramian shows that, with u(t):O 
t~O, the amount of energy in the output on the 

interval [0,(0) is given by x(O) T Ex(O). Hence initial 
states x(O)=ei, with smal I O'i make a small 
conti'ibution to the output and are therefore 
almost unobservable. The equality of the energies 
leads to the term 'balancing'. 

These realizations were introduced by Moore 
(1981) in the context of model reduction and they 
are of major importance in various applications. 
Laub (1980) gave an algorithm to calculate these 
realizations. It has also been shown (Gray and 
Verriest, 1987; Mullis and Roberts, 1976; 
Prabhakara, 1989) that these realizations are 
numerically superior to others, both with respect 
to parameter sensitivity and roundoff errors in 
simulation. 

3 CONTINUOUS TIME MODEL REDUCTION 

Based on the concept of balancing, Moore (1981) 
proposed a model reduction method for continuous 
time systems, which eliminates the states that are 
weakly observable and controllabIe. The singular 
values of the system provide a measure for 
determining how observable and controllabIe a 
certain state is, resulting in neglecting the states 
that correspond to the smallest singular values. 
This results in the following model reduction 
procedure. 

DEFINITION3.1. Let O(s) be a FDLTS system and 
[{\,B,C,D] a balanced realization of G w.r.t. E, 

partitioned aécording to (2.4). Then G(S)=CBk(G), 
the Continuous Balanced Reduced Model of order 
k, is defined as 

G(s) = D ± Cl[sI-All]-lBl (3.1) 
o 



The rationale behind this procedure is to replace 
Ol by 0, for i=k+1, .. ,n, and to retain the resulting 
system. This will generally lead to satisfactory 
results if the discarded singular values are 
relatively small. The next proposition gives the 
condition to retain stability and minimality. 

PaoPosITION 3.2. [Moore, 1981; Pernebo and 
Silverman, 1983]. If O"k>O"k+t, then [All,B1,Ct,DI 
is balanced w.r.t. 1:1 and is a stabie, minima 
realization. <> 

One would like to have an exact measure of the 
error created by this procedure, but there is no 
such measure known. One can however bound the 
1,00 norm of the error. 

PaOPOSITION 3.3. [Glover, 1984; Enns, 1984]. 
Under the conditions of definition 3.1 and 
proposition 3.2, the error of the approximation is 
bounded in the 100- norm: 

IIG(S)-CBk(G(s))lIoo ~ 2· (O"k+l+' . . +O"n) 
and for k=n-1, this bound is tight. 

(3.2) 

<> 

In general this model reduction method produces 
very good results, and is numerically efficient and 
stabie. Only if the poles of the original system 
G(s) are close to the imaginary axis, then the 
balancing procedure tends to have numerical 
problems. A favorable feature of the method is the 
stability and minimality of the approximations. 

A problem we have not discussed so far is the 
nonuniqueness of the balanced realizations. In 
(Ober, 1987; Ober and McFarlane, 1988) canonical 
forms are derived for balanced realizations. 

Another favorable property of this method is 
the consistency, which means that 

CBr(CBk(G(S)) = CBr(G(s)), if r~k, in ot her 
words on ce we have a kth order reduced model, we 
can use this model to construct lower order 
approximations. This is a situation which will 
of ten occur in practical applications, where one is 
searching the lowest order approximation that 
would fulfil the designers specifications. 

Fernando and Nicholson (1982), AI-Saggaf and 
Franklin (1988) and Liu and Anderson (1989) 
combined the balanced model reduction method 
with the method of singular perturbational 
approximations, resulting in the following model 
reduction method. 

DEFINITION 3.4. Let G(s) be a FDLTS system and 
[A ,B,C,D] a balanced realizatiori of G w.r.t. 1:, 
partitioned according to (2.4). We define 

G(S)=CSBk(G), the Continuous Singular 
Peliurbationa/ Ba/anced Reduced Model of order k, 

by 

where, 

G = D + ê[sI-Á]-lB 

Á = Au - A12A2~A21 
13 = B1 - A12A2~B2 

(3.3a) 

(3.3b) 

(3.3c) 
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ê = Cl - C2A2~A21 
D = D - C2A2~B2 

(3.3d)' 

(3.3e) 
<> 

The rationale behind this approximation method is 
as follows: Let x(t),u(t) and y(t) be respectively 
the state-, input- and output vector of the 
realization [A,B,C,D] and let x(t) be partitioned 

conformably as x(t)= [~~mJ. The state space 
equations are: 

Xl(t) = AUX1(t) + A12X2(t) + B1u(t) 

X2(t) = A21Xl(t) + A22X2(t) + B2U(t) 

y(t) = C1Xl(t) + C2X2(t) + Du(t) 

(3.4a) 

(3.4b) 

(3.4c) 

Assume that X2 is a very fast stabie state, such 

that (3.4b) can be approximated by X2=0: 
This results in an algebraic state equation, which 
can be transformed to: 

X2(t) = -A2~[A21Xl(t) + B2U(t)] 

Substitution of (3 .5a) in (3.4a,c) leads to: 

Xl(t) = ÁX1(t) + Bu(t) 

y(t) = êXl(t) + Du(t) 

(3.5a) 

(3.5b) 

(3.5.c) 

The feasibility of this method is shown by the 
following two propositions, which have similar 
counterparts in CB. . 

PaOPosITION 3.5. [Fernando and Nicholson, 1982; 

Liu and Anderson, 1989] . [Á,13,ê,D] given by (3.3) 
is balanced w.r.t. ~1 and is a stabie, minimal 
realization. <> 

PaOPOSITION 3.6. [Al-Sag~af and Franklin, 1988; 
Liu and Anderson, 1989J.The error of the 
approximation (3.3) is bounded in the Loo - norm: 

IIG(s)-CSBk(G(s))lloo ~ 2( O"k+l+' .. +O"n) (3.6) 
and for k=n-1, this bound is tight . <> 

REMAB.K 3.7. Note that in definition 3.4 we 
explicitly pose the condition O"kfO"k+l. This is 
necessary to guarantee the stability of A22 and 

thus the existence of A2~ (Pernebo and Silverman, 
1983). 
This method replaces the 'fast' dynamical 
equations with algebraic ones, causing the static 
gain of CSBk(G) to he equal to the static gain of 
G. Again this method is consistent, so if r~k , then 

CSBr(CSBk(G(S)) = CSBr(G(s)). 
It should be stressed here that proposition 3.5 and 
3.6. are valid without any condition on X2(t). This 
shows that CSB will be a good reduction method if 
the discarded singular values are small. 
An important difference with CB is the bet ter 
approximation of the low frequency components of 
the original system. <> 



4 DISCRETE TIME MODEL REDUCTION 

So far we · only dealt with model reduction of 
continuous time systems, based on balanced 
realizations. In this section we deal with the 
discrete time version, where we make a distinction 
bet ween the balanced truncation, as proposed by 
Pernebo and Silverman (1983) and the result of 
combining CB and the Llrtransformation, proposed 
by AI-Saggaf and Franklin (1988). 

The discrete truncation is creat.ed in the same way 
as CB: 

DÈFINITION 4.1'. Let G(z) be a FDLTS system and 
[A,B,C,DJ a balanced realization of G W.r.t. E, 
partitioned according to (2.4). Then 

G(s)=17JBk(G), the Discrete Truncated Balanced 
Reduced !v[odel of order k, is defined by: . 

G(z) = D + Cl[zI-AllrlBl. (4.1) 
<> 

Pernebo and Silverman (1983) show that this 
approximation is again minimal and stabie, . but 
contrary to the continuous time case this does not 
apply for the ot her subsystem [A22,B2,C2,D]. Also 
the given approximation will generally not be 
balanced, nor hav~ {O"l,'" ,O"k} as its singular 
values. Nevertheless the same bound for the 
Loo-norm of the approximation error holds true. 

PROPOSITION 4.2. [Al-Saggaf and Franklin, 1987J. 
The error of the approximation (4.1) is bounded in 
the Loo-norm: 

IIG(s)-GSBk(G(s))ll
oo 

~ 2(O"k+l+" '+O"n) (4.2) 
with strict inequality if O"kfO"n. <> 

Notice that this proposition implies that jf 
lTk>lTk+l we have a strict bound in (4.2)., contrary 
to(3.2) and (3.6). ' 

AI-Saggaf and Franklin (1987) propose a method, 
that is slightly different from the above, but which 
is consistent with the continuous time method by 
applying the Llrtransformation. We know that 
under this transformation Gramians are invariant 
(Glov:er, . 1984), which shows that the 
transformation of a continuous realization, which 
is balanced with respect to E, is a discrete 
realization, balanced with respect to E. Since we 
implicitly asstime stability we are assured that the 
Llrtransformation is well defined. The reduction 
method they propose thus consists of the following 
steps: ' , 

PROCEDURE 4.3. 
1· Given a G(z) create a realization 

[Ad,Bd,Cd,Dd] of G, balanced W.t.t. E. 

2 Tra.nsform this realization ' with the 
Llrtransforrriation to [Ac,Bc,Cc,Dc]. 
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3 Retrieve [Ac,Bc,êc,Dc] with definition 3.1. 

4 Transform this realization with the 

Llrtransformation to [Ád,Bd,êd,DdJ. <> 

Clearly this procedure guarantees that the 
proper ties of CB are valid for this method, so the 
approximation · is minimal, stabie and balanced 
w.r.t. El (2.4), if O"k>O"k+l, and the method is 
consistent. In calculating this procedure we do not 
have to go through all these steps. The following 
proposition shows how the calculation can be done 
without actual~y using the Llrtransformation. 

PROPOSITION 4.4. [Al-Saggaf and Franklin, 1987J 
Let G(z) be a FDLTS system with realization 
fAcl,Bd,Cd,DdJ,partitio~ed according to(2.4) and 
balanced W.r.t. E, wIth O"k>O"k+i. Further, let 

[Ád,Bd,êd,Dd] be the kth order approximation, 
calculated with procedure 4.3. Then: 

Ád = All-A!2[HA22J-lA2l 

Bd = Bl -Al2[HA22J-lB2 

ê d = Cl - C2[HA22]-lA2l 

Dd = D - C2[I+A22]-lB2 

( 4.3a) 

(4.3b) 

(4.3c) 

(4.3d) 
<> 

We will refer to this procedure as discrete 
balanced model reduction: . 

DEFINITION4.5. Let G(z) be a FDLTS system and 
[A,B,C,DJ a balanced realization of G w.r.t. E, 

partitioned according to (2,4). Then G(s)=1JBk(G), 
the Discrete Balanced Reduced Model of order k, is 
defined as 

G(z) = D + ê[zI-Á]B 

with [Á,B,ê,DJ defined by (4.3). 

( 4.4) 

<> 

The discrete analog of CSB has been reported by 
[Fernando and Nicholson '83], however , without 
the adaptation of the D-matrix, which was added 
in (AI-Saggaf and Franklin, 1988; Liu and 
Anderson, 1989). It is in fact the result of the 
previous procedure if CB is replaced by csa. It is 
again a combi nat i on of balancing and singular 
perturbational model reduction. 

DEFINITION 4.6. Let G(z) be a FDLTS system and 
[A,B,C,D] a balanced realization of G w.r.t. E, 
partitioned according to (2.4). We define 

G(z)='MBk(G), the Discrete Singular 
Perturbational Balanced Reduced Model of order k, 

by G(z) = D + ê[zI-ÁJ-lB . (4.5a) 
• 1 

where, A = All + A12[I-A22]- A21 (4.5b) 

B = BI + A12[I~A22rlB2 (4.5c) 

ê = Cl + C2[I-A22r1 A2l (4.5d) 

D = D + C2[I-A22]-lB2. (4.5e) 
<> 



Again all the properties of CSB carry over to 1JSB 
which is stated in the following corollary. 

C0R:0LL~R.Y 4.7. Let [A,B,C,D] be a balanced 
reahzatlOn W.r.t . E of a FDLTS system G(z), with 

O"k>O'k+l. Let G(Z)='PBk(G) or G(Z)=1JSBk(G) with 
real!zat!on .given by (4.3) or (4.5) . Then this 
reahzatlOn IS stabie, minimal and balanced w.r.t. 
El, Furthermore the approximation error is 
bounded in. the Loo-norm by 

IIG(z)-G(z)lloo~ 2'(O'k+l+" '+0'0) (4.6) 

and if k=n-1 the bound is achieved. 0 

Liu and Anderson (1989) propose to use 
combinations of the standard methods to get 
bet ter results on frequency error and DG-error 
(static gain). Such a combination consists of two 
or more steps, for instance using CB to reduce from 
order n to kl and CSB to reduce further to order 
k2. In the ~ext section we propose a generalized 
method, WhICh can make these errors considerably 
smaller and can be accomplished in only one step. 

5 A FAMILY OF MODEL REDUCTION 
METHODS BASED ON BALANCING 

In this paragraph we combine the results of the 
previous two paragraphs and define a generalized 
model reduction method, that has the five 
methods -CB, CSB, 'PB, 1JJB, 1JS~ as special cases. 
First we will give the rationale of the method that 
we propose, af ter which we will formally define it . 

The idea behind this framework is, among others, 
due to Santiago and Jamshidi (1986) and is based 
on a genera! partitioning of a transfer function 
matrix. 
Let G(p) be a finite dimensional linear time 
invariant system (not necessarily stabie) with a 

realization [A,B,C,D] , G(p) = D + C[pl-AtlB. 
Let O<k<n and let A,B,C be partitioned 
conformably as in (2.4). We can rewrite G(p) in 
the following partitioning: 

G(p) = D(p) + ë(p)[pl-Ä(pW1B(p) (5.1a) 

with Ä(p) = All + A12 [pl-A22]-1 A21 
B(p) = Bi + A12 [pl-A22]-lB2 

ë(p) = Cl + C2 [pl-A22]-1 A21 

D(p) = D + C2 [pl-A22tlB2 

(5.1b) 

(5.1c) 

(5.1d) 

(5.1e) 

We use no specific time domain here, implying 
that we can either use p=s or p=z. All model 
reduction methods we considered so far can in fact 
directly be obtained from this partitioning by 

approximating [Ä(p ),B(p ),ë(p ),D(p)] by 

[Ä(Po),B(Po),ë(Po),D(po)] with Po a fixed 
parameter. Take po=oo and p=s then we have CB; 
Po=1 and p=z results in 1JSB etc. 
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The approach presented here is to define the 
family of reduced order models by letting Po vary 
over IR and to find the restrictions, that have to be 
satisfied in order to guarantee stabie and minima! 
reduced order modeis. 
Note that from the above partitioning of G(p) one 
would expect that Po should be chosen on the 
imaginary axis or the unit circle, which in general 
would lead to complex valued reduced order 
systems. However we will show that it does make 
sense to choose Po real. 
Santiago and Jamshidi (1986) propose this idea to 
define a model reduction method for systems with 
unstable poles, which in continuous time comes 
down t~: 

1 find a Po such that A-Pol is stabie 

2 apply CB on [A-PoI,B,C,D] 

3 shift the resulting Á back to Á+pol. 

It will be clear that the result of this procedure 
depends highlyon the choice of Po and can change 
the number of unstable poles, which in 
applications as control design is not advisable . 

. They also indicate that different values of Po 
Il!lght lea~ to bet ter results for systems with 
dIfferent tIme scales. In the next definition we 
formalize this reduction method. 

DEFINITION 5.1. Let G(p) be a FDLTS system and 
[A,B,C,D] a balanced rea!ization of G w.r.t. E 
with O'k>O'k+l, partitioned according to (2.4) . Let 

aEIR such that ~0'(A22). We define G(p)=ÇB~(G), 
the General Balanced Reduced Model with order k 
and reduction parameter a. as 

G(p) = Î> + ê[pI-Átl13 

where Á = All + A12[aI-A22]-lA21 

13 = Bi + Ad aI-A22tlB2 

ê = Cl + C2[ aI-A22tl A21 

Î> = D + C2[ aI-A22tlB2. 

(5.2a) 

(5.2b) 

(5.2c) 

(5.2d) 

(5.2e) 
o 

As stated before, we defined no time domain 
writing G(p) where p can be both p=s or p=z: 
The following proposition shows how definition 5.1 
covers the model reduction methods defined 
previously. ' 

PR.OPOSITION 5.2. Let G(p) be a FDLTS system. If 

p=s: CBk=ÇB~, CSBk=Ç~, 
p=z: 'PBk= ÇBkl, 1JSBk=ÇB~~ 1JJBk=ÇB~. 0 

PR.OOF: Follows directly from substitution of the 
values of a in definition 5.1 and comparing the 
result with the definitions of the 'standard' model 
reduction methods. 0 

The next lemma shows the effect of the 
urtransformation on the different reduction 
methods. 



LEMMA 5.3. [Heuberger, 1990] Let G(p) be a 
FD LTS system . 

1. If p=s and Gd(Z) = W(G(8)) then 

w(ÇB~(G))=ÇBe(Gd) with (3 = i+~· 
2. If p=z and Gc(s) = w(G(z)) then 

w(ÇB~(G))=ÇBe(Gd with (3 = ~~. <> 

The next theorem is the main result of this paper. 
It gives the conditions under which (JB will lead to 
stabie and minimal reduced order models and 
gives a bound for the approximation error. 

THEOR.EM 5.4. 
Consider the situation as formulated in definition . 
5.1. Let ARcIR, the admissible region; be given by: 

AR=[O,oo] if G continuous, 
AR=[~,-1]U [ 1,00] if G is discrete .. 

(5.3a) 
(5.3b) 

Then 

1 
2 

rÄ,B,ê,D] is stabie and minimal for Il'EAR. 
The error of the approximation is bounded: 

IIG-Glloo~' 2(Oht+·· ' (Tn) for Il'EAR with strict 

inequality if 11' is in the interior of AR. 
<> 

PROOF: Appendix A. 

REMARK 5.5: 
1. In this section we used a real valued parameter 
Il', which in fact indexes the family of reduced 
order modeis. It is straightforward to show that 
one can get a similar result if Il' is allowed to be 
complex. In this case the admissible region AR, as 
defined in (5.3) is {1l'E{, real( 1l')~0} for continuous 
time systems and {1l'E{, IIl'I ~1} for discrete time 
systems. Note ' that in general this leads to 
complex valued reduced order systems, which is 
the reason we did not focus on this. 
2. The reduction . parameter Il' connects the 
standard methods in a continuous way. This is 
understood best if we consider the continuous time 
case, where Il'=oo coincides with CB and 1l'=0 with 
CSB. Variation of Il' from 0 to 00 gives a continuous 
transition from a match on the very low to the 
very high frequencies, ' with the result that in the 
interval (0,00) these two goals are more or less 
weighted against each other with weight factors 
depending on the choice of Il'. 
Hence the freedom in the choice of Il' can be used 
to optirnize the frequency characteristics of the 
approximant according to the designers 
specifications, in the bandwidth which is of 
importance. This is a major advantage over the 
standard methods that only leave the choice 
bet ween matching either the very high or very low 
frequency behavior. 
3. From practical experiments we have the very 
strong impression that there exists only onevalue 
of Il' for which the Loo-norm of the error transfer 
functions reaches a minimum. If one would define 
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a function f(ll') = IIG(p)-GB~(G) 1 1 then this 00 
function will have only one global minimum ' 
f( Il'min) and no local minima. If we consider the 
continuous time then f( Il') will reach 2 maxima on 
the boundary of the adrnissible region, i.e. 1l'=0 
and Il'=oo, and . have no other local maxima. 
However we have not yet succeeded in finding a 
value for Il'min and f( Il'min). 
4. Liu and Anderson (1989) propose to combine 
the standard methods in order to improve the 
frequency characteristics of the reduced order 
model. They use for . instance the combination of 
CB and CSB and show through some examples how 
the error bound improves. We believe that a 
'good' choice of Il' can do an even better job in 
just one reduction step without using several 'one 
at . a step' reductions. As mentioned ' before we 
have not yet succeeded in finding rules for the 
optima! value of Il', but the improvement can be 
quite impressive, as will be shown in the next 
section. <> 

6 EXAMPLES 

.EXAMPLE 1 

As a first example of the influence of the 
parameter Il', we consider a simple 3rd order 
system, which was used in (Enns, 1984). The 
transfer function is: 

G( ) - (8+0.8~ (8+2) 
S - (8+1. 5 )(8 +1 . 48+1) 

The singular values of this system are 

{<1t,<12,<13} ={0.6985, 0.1599, 0.0053}. 

We approximate G(s) with Ist order reduced 
modeis, applying different values of Il'. As to be 
expected the result shows that for 1l'=0 (CSB) the 
approximation has the same static gain as G(s), 
while for Il'=oo (CB) the high frequency behavior is 
matched. This is shown in Fig. land Fig 2. 
Figure 1 shows the Bode plot of the original model 
and the approximations with 1l'=0,1,00. In Fig. 2 
the frequency errors are shown for the same values 
of Il'. It is dear that the response for Il'=I is more 
or less in bet ween the responses of the 
approximations with 1l'=0 and 11'=00. 
Figure 3 depicts the Loo-norm of the error transfer 
function as a function of Il', to be precise it is a 

plot of the function f(ll') = I IG(s)-{/B~(G) 11 . 00 
The form of this function is typical for what we 
found with all kind of different systems,which 
lead to the impression mentioned in remark 5.5-3. 



EXAMPLE 2 

We consider the example used by Liu and 
Anderson (1989) and create 2nd order 
approximations of 

G( ) - (sH) 
s - (s+1)(s+3) (8+5)(8+10) 

with singular values 

{(/1,(/2,(/3,(/4} = 
{1.5938x10-2, 2.7243xlO-3, 1.272xl0-4, 8.006xlO-6} 

The theoretical bound is 2(0"3+0"4) = 2.7024x10-4. 
Liu and Anderson use a mixture of one at a step 
standard reductions (CB and CSB) to compare the 
frequency errors and the errors at DC (s=O). This 
means they first reduce to order 3 and then from 
order 3 to 2. This is denoted by CB/CSB if the 
first method used is CB and the second method is 
CSB. We calculated the optimal a with respect to 
the frequency error to be a=11.83. This results in 
a far bet ter frequency error, as can be seen in 
Table 1. 

T ABLE 1. Freguency Errors of the Reductions 
x 10-4 

CB CSB CBjCSB CSBjCB yB 
IIG-Glloo 2. 4802 2.3692 2.5248 2.6402 1.3415 

DC-err 2.384 0.0 0.1601 2.5441 0.9810 

While the ' DC-error is still acceptable,the 
frequency error is almost half of what can be 
achieved by the other methods. 
In Fig. 4 the frequency errors of the 
approximation are shown on the whole frequency 
scale, and it shows that yB makes a trade-off 
bet ween matching high and low frequencies. It 
should be pointed out however that the frequency 
error of CSB is only large for the high frequencies, 
which may be of no interest. In Fig. 5 we depicted 
the frequency error as a function of a, and it 
shows a similar curve as Fig. 3 , with only one 
global minimum. 
It is also interesting to consider the Hankel norm 
of the approximation error, where the theoretical 
bound is 1T3=1.272xlO-4. This is given in Table 2, 
from which we conclude that for this example yB 
is also superior to the othermethods in the 
Hankel norm. 

T ABLE 2. Hankel norm of Reduction Errors 
x 10-4 

CB CSB CB/CSB CSBjCB yB 
IIG-GIIH 2.4291 1. 8646 2.5874 1.9722 1.3177 
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For Table 2 we used again "a=11.83 for yB, but this 
is not the optimal value of a for the Hankel norm. 
In Fig. 6 the Hankel norm of the reduction error is 
shown as a function of the reduction parameter 
and it reaches a minimum 1.2931xlO-4 in a=13.28, 

. which is near the theoretical underbound. This 
shows that, for the optimal value of a, yB results 
in a very good approximation with respect to the 
Hankel norm. In Fig. 6 we see again that there is 
only one global minimum. 

7 CONCLUSIONS 

It has been shown how the standard model 
reduction techniques, based on internally balanced 
realizations fit in naturally within a general 
framework of a one parameter family of reduced 
order modeIs. For this family we have given 
conditions under which stability and minimality of 
the resulting approximations are assured and we 
have given a bound for the Loo-norm of the error 
transfer functions, which is never wor se than the 
bounds, that are known for the standard methods. 
This general framework leads to an extra freedom 
-the so called reduction parameter- to design 
reduced order modeis, which makes a considerable 
reduction possible of the frequency error in the 
bandwidth one wishes to consider. Optimal values 
of the reduction parameter are not yet known, but 
practical experience indicates that such optima 
always exist, both one with much better frequency 
behavior than the results of the standard methods 
as weIl as with lower Hankel norm of the error 
transfer function. Further research on this subject 
is therefore highly recommended. 
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APPENDIX A Proof of theorem 5.4. 

Part 1 - Stability 

Let G he discrete. 
Proposition 5.2 shows that the case lal=l is bne of 
the standard methods for which stability was 
already proved (see corollary. 4.7). 

So let lal>l. From Pernebo and Silverman (1983) 
we know that A22 is stabIe, so t4O"(A22) and thus 
Á is weIl defined. Now suppose that G is not 
stabIe, so: 

3xEIR, ÀE{ ,XfO, IÀI~l with Áx=ÀX. (Al) 

We will show that this leads to a contradiction 

(Al) =} [All + A12[aI - AI22]"lA2~X = ÀX 

=} [All Ad [[al _ A22)-lA21Jx = Àx (A2) 

[A21 A22J [[ aI-A!2]"1 A21] 

= [1+ A22[ aI-A22]"1] A21 

= a[aI - A22)-lA21 (A3) 

Combining (A2) and (A3) gives: 

Let y= [Yl] = [ I ] x Y2 [aI-A22J-1A21 ' 

then (A4) becomes: Ay = [~ ~]Y. 

(A4) 

(A5) 

(A6) 

Note that ydOfY2 since Yl=XfO and if Y2=0 then 
(A2) shows Allx=ÀX but All is stabIe (Pernebo 
and Silverman ,1983), so Y2fO. 

Now IIAyl12 ~ IIAllsllyl12 ~ Ilyll2' where 11 lis denotes 
the spectral norm (Pernebo and Silverman, 1983). 

with equality iff IÀI=lal=l, since ydOf.y 
and lal,IÀI~l. . 

Thus we can conclude that lal=l, which is in 
contradiction with the assumption I al> l. 

This shows that G is stabIe for I al~l. 
The stability of the continuous time equivalent 
follows from lemma 5.3., because the function 

a -I :;~ maps [-oo,-l)U[l,oo) into [0,00). This proves 

the stability of G for aEAR. 
o 



Part 1 - Minimality 

Consider the continuous time case. The case 0'=0 
is covered in proposition 3.5. · Pernebo and 
Silverman (1983) proved the minimality of 

{À,B,ê} for the discrete time case, with 0'=00, 
which with lemma 5.3 shows the correctness for 
the continuous time case for 0'=1. The correctness 
for 0'=00 (continuous time) is given in proposition 
3.2. 

Now let 0<0'<00 and define: 

---- b. -1-1 [A,B,C,D] = [a-lA,a 2B,a 2C,D]. (A7) 

It is easy to see that this realization is still 
balanced w.r. t. ~ and stab.le. We just showed that 
the reduction of such a system with 0'=1 gives a 

stabie minimal approximation [À,B,ë,Ö] with: 

À = Àll + Àl2 [I-À22rlÀ2l 

= a-I [All + A12 [aI-A22t1 A21] = a-I Á. 

13 = BI + À12 [I-À22t1B2 

= a-t [Bl + A12 [aI-A22t1B2] = a-tB 

ë = ë 1 + ë 2 [I-À22t 1 À21 
= a-t[Ci + C2 [aI-A22]-lA21] = a-tê 

" -1 " -1 " 
Bec.ause {a-1A,a 2B,a 2C } is minimal the 
Popov-Belëvitch-Hautus test (Kailath, 1980) 

shows immediately the minimality of [À,B,ê,D]. 
Consequently we have proven the minimality for 
continuous time systems for O~~oo. 
The minimalityof the discrete counterpart follows 
from lemma 5.3. 

o 

Part 2. 
Let E(p) be the difference transfer function: 

E(p)=G(p)-G(p), with G(p) = 9B~(G). 
n 

Our aim is to proof that IIE(p) 11 ~ 2~ Ol with . 00 k+1 
strict inequality if a is in the interior of AR. The 
cases with G discrete and 0'=-1,1,00 are proven by 
AI-Saggaf and Franklin (1987,1988). The 

w-transformation then gives the corresponding 
bounds for G continuous and 0'=0,1,00. 

Now let G(s) be a continuous time system,· 0<0'<00 

and G(s)=9B~(G) . Define G(s)=G(as) and 

G(s)=G(as). Note that (A7) defines a stabie 

realization of a, still balanced with respect to ~ 

and that G(s) has a realization 
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1 " -1 " -1 " " [0'- A,a 2B,a 2C,D]. It is straightforward that 

G(s) = GB~(a) and hence: 

IIG(s)-O(s)lIoo = 
=IIG( as)-G( as) 1100 

= lIa(s)-G(s)lIoo 
< 2(O"k+1+···+O"n). 

This completes the prooi- for G continuous and 
0<0'<00 and thus also for 0<0'<00. Lemma 5.3 and 
the properties of the w-transförmation now gives 
the pro of for G discrete and a~-l or a~l and 
hence we have proven part 2. 

o 

This completes the proof of theorem 5.4. 
o 
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INTRODUCTION THE WEIGHTED MIXED 
SENSITIVITY PROBLEM 

It is expected that Hoo control theory could lead to 
robust controller design, due to the absolute 
bound the Hoo norm gives on the singular values of 
a transfer function matrix. A method which has 
frequently been suggested in literature for both 
handling performance and robustness 
(Kwakernaak, 1983; Maciejowski, 1989; Verma 
and Jonkheere, 1984; Francis, 1988) is the 
Weighted Mixed Sensitivity Problem (WMSP). In 
this problem the performance of a controlled 
system is measured by its tracking properties 
involving the sensitivity matrix of the system. The 
robustness properties of the controlled systemare 
measured by the singular values of the 
complementary sensitivity matrix thereby 
specifying how much multiplicative output 
uncertainty the controlled systerri can tolerate 
before instability occurs. In this paper the 
influence of weightings and plant dynamics on the 
controller dynamics will be investigated, giving 
insight in the (robustness) properties of controllers 
evolving from the WMSP. 

In the following the con trol set uI? in figure 1 is 
used, in which the controller K(s) is in cascade 
with the plant G(s) and measures the tracking 

In this paper the WMSP will be described in more 
detail, by describing the control set up, the Hoo 
mixed sensitivity criterion and the evolving · 
standard plant. Then the controller satisfying an 
Hoo norm bound on the WMSP-<:riterion will be 
derived and analyzed with respect to the locatiori 
of its pol es and zeros, in relation to the poles and 
zeros of weightings and plant. Finally the 
conclusions of this study are presented. 
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. error ( = y - w, where (, wand y possibly are 
vectors. The following transfer function matrices 
are defined: 

Sensitivity Matrix: 
S(s) = (I + G(s)K(s))-t . 
Complementary Bensitivity Matrix: 
T(s) = (I +G(s)K(S))-lG(s)K(s) 
Control Sensitivity Matrix: 
C(s) = K(s)(1 + G(s)K(S))-l 

Z1 

z3 

z2 

(1) 

(2) 

(3) 

Figure 1 Control setup and oost functions 

Typically the sensitivity matrix is used to measure 
the tracking and disturbance rejection properties . 



of the controlled system, whereas the 
complementary sensitivity matrix is used for 
measuring the "singular value stability margin" of 
the controlled system for multiplicative output 
uncertainty (Doyle and Stein, 1981 and Safonov et 
al, 1981). The control sensitivity matrix is a 
measure for the control effort necessary to yield a 
certain performance. By using weighting functions 
the frequency dependence of the specifications on 
(1) - (3) for the set up in, figure 1 can be handled 
yielding the Hm Weighted Mixed Sensitivity 
Problem of finding controllers such that: 

WIS 

11 Twzll < Î ~ m < Î (4) 

W 3C m 

In (4) the controller is a,bsorbed in Twz so actually 
Twz is a function of K(s) . From this the following 
design problem can be stated: 

Weighted Mixed Sensitivity Design Problcm 

Find stabilizing controllers K(s) such that: 

IITwz(K)lI m < Î 

where the design parameter Î is chosen such 
that a stabilizing controller exists _ 

DERlVATION OF THE CENTRAL 
Hm CONTROLLER 

The formulae of Glover and Doyle 
stabilizing controllers satisfying an 
bound use a ' general standard 
state space form as in (5) below: 

[1988] ' for 
Hm norm 
plant in 

1 

:ie = Ax + Blw + B2u 

SP z = C IX + D IIW + D 12U and u = Ky 

y = C 2X + D 21W + D 22U 
(5) 

where A I: IRnxn, w I: IRml, u I: IRm2, z I: IRpl and y I: 
IRp2. 
Now the A, Bi, Cj and Dij matrices for the 
specific plant in (4) become (assuming G(s) = 
Cg( sI-Ag) -IBg strictly proper): 

Ag 0 0 0 

-BwlCg AWI 0 0 
A Bw2Cg 0 Aw2 0 

0 ' 0 0 AW3 
0 Bg 

BWI 0 
BI = 0 B2 = 0 

0 BW3 
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o 
C2 = [-Cg 

o 
o 0 0 ] 

Cw2 

o 

DWI] 0] 
Dil = 0 D I2 = 0 

o DW3 

D21 = [ I 1 D22 = [ 0 1 (6) 

The matrices Awi, Bwi, Cwi and Dwi represent the 
weighting filters W i. Below the assumptions made 
in, Glover and Doyle (1988) are restated together 
with their specific implications for the WMSP: 
Al (A, B2, C2) is stabilizable ,and detectable 

11: The weightings W), W 3, and W 3 must be 
stabIe since they are not observable and 
the plant G(s) must be stabilizable and 
detectable 

A2 rank D 12 equals number of measurements y 
(P2), rank D21 equals number of controls u 
(m2) 
12: DW3 must be of full rank m2 

A3 A sealing of u and y, together with a unitary 
transformation of wand z, enables to assume 
without loss of generality that (by A2) 

DI2 ~ [:], D" ~ [0 IJ and 

D _[DIlIl 11-

, D II 2 I 

p1-m2 

13: DW3 = I 

Dil 12] m1-p2 
DI1 22 p2 

m2 

A4 D22 = 0 (satisfied if G( s) is strictly proper) 

[ 

A-jwI B2] 
A5 rank Cl ' D12 = n + m2 V w I: IR 

[ 

A-jwI BI] , , 
A6 rank C D = n + P2 V W I: IR , 2 21 

A7 Ag is stabIe, ,this assumption facilitates the 
derivations below but is not essential. ' 

The , solution to an algebraic Ricatti equation 
(ARE) will be denoted via its Hamiltonian matrix, 
as 

-P ] * * -A * , P = P , Q = Q where 

* ' 
this implies that X = X and 

[ Q
A -- AP*] ['XI] [' I] = X [A-PX '], 

Re "\i[ A-PX 1 < 0 



Now following the formulae in Glover, Doyle 1988 
the controller satisfying the WMSP can be 
derived. Define: 

* [-121 0] R = Dl' DI' - 0 0 

(7) 

Define XID and Y ID as solutions to the foHowing 
ARE's (assuming that solutions exist): 

Xoo = 

me{ [-~I'CI _:,]-

[-CI~ ~ 11 -Cl ~ ~ ,,] R -I [~:::~: :::]1 

RiC{[-AXID' -PXID]l 

QX!D AXID 

YID = 

{[-A' 0] Ric -
-BIBI' A 

~:] } 

13 

(8) 

Here the (2,1) block is a zero matrix which implies 
that Y ID = 0 by lemma 3.1. General conditions for 
the occurrence of zero XID and Y ID are given in this 
lemma. 

Lemma 3.1 
YID is zero if D21 is of full rank and Aym is 
stabie and by duality XID is zero if the DI 
block is of fuH rank and AXID is stabie. 

• 
Proof See the appendix 

The central HID controller in state-space can easily 
be derived if Y ID is zero and equals: 

Ahe+B2eCle Bie 

where 

Ac = 

C Ie o 

Ag-BpXg -BpXWI -BpXW2 BgCW3-BpXW3 

o Aw I 0 0 

Be = 

o 

o 
o 

Ce = [-BgBg' 0 0 BW3Bw3'J 

De = [Ol 

where: 
XID = [Xg XWI Xw2 Xw3J 

Bp = [BgBg' 0 0 BgBw3'J 

Bw = [BW3Bg' 0 0 BW3BW3'J 

(9) 



POLES AND ZEROS OF THE 
CENTRAL CONTROLLER 

Now that the central HID controller for the WMSP 
has been stated explicitly in section 3 the analysis 
of the influence of weighting functions and plant 
dynamics on the controller dynamics can be stated 
explicitly too. This is done in two lemmas 
regarding the poles and zeros of the cent ral HID 
controller for the WMSP, . 

Lemma 4.1 Poles of the centra! HID controller 
All the poles of the Sensitivity weight W I 
become poles of the central HID controller 

-Proof 
From (9) it is easy to verify that the eigenvalues 
of AWI are eigenvalues of Ac and thus become 
poles of the central HID controller. _ 

Lemma 4.2 Zeros of the centra! HID controller 
If Ag is stabie (by A 7) all plant poles and the 
poles of the control weighting W 3 become 
zeros of the central HID controller if the number 
of outputs of the controller does not exceed its 
number of inputs. _ 

Proof 
The (transmission) zeros of a system are defined 
by the >. ( ( (if >. is not a pole of G(s)) for which: 

rank ÀI-A I B < n + min(ni,no) 

-C D 

where ni is the number of controller inputs and no 
is the number of controller outputs. 
The controller zeros then can be determined as the 
values >. for which: . ' . . 

[ 
>'I-Ahc-B2cClc BoiC] 

rank < n + min(ni,no) 
-CIC 

Since the rank remains unchanged by adding rows 
multiplied by constants to other rows the rank can 
also be evaluated from: 

[ 
>'I-Ahc BoiC] 

rank 
-C Ic 

À I-Ag 

o 
0 

>'I-Awl 

0 

0 

-CIC 

0 0 0 

0 0 Bw! 

>'I-Aw2 0 0 

0 ÀI-Aw3 0 

o 
If now the rank of the matrix given above is 
evaluated by rows, noting that the number of 
controller outputs is assumed to be less or equal to 
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the number of controller inputs, it is easily 
verified that the zeros of the controller equal the 
poles of the plant and the control weighting W 3. 

-Lemma 4.2 states that all stabie plant poles 
become controller zeros. The following ' lemma 
strengthens this to po Ie zero cancellation. 

lemma 4.3 Pole zero cancellation 
All stabie poles of the the plant to . be 
controlled are canceled by controller zeros. 

-
Proof 
To determine the cancellation of all stabie plant 
poles by controller zeros the transfer KG has to be 
regarded. 

K(Ac,Bc,Cc,Dc)G(Ag,Bg,Cg,Dg) = 

Ag BgCc 0 

o Ac Bc = 

Cg 0 0 

Cg 0 

Ag 0 

0 
Ag+BgC lc 

Aw 

Cg Cg 

o 

o 
Bw 

0 

0 

0 

Bw 

0 

= 

where clearly the modes of the plant (eigenvalues 
of Ag) are uncontrollable, and thus are canceled 
by the controller zeros. _ 

Remark 1 
The assumption that the plant to be controlled 
is stabie can be removed and then lemma 4.2 
changes to: all the stabie plantpoles are 
canceled by controller zeros. 

-Remark 2 
Note that for 'Y -! ID the HID controller becomes 
the H2 optimal controller for the WMSP and 
that the lemmas 3.1, 4.1 and 4.2 also hold for 
a H2 solution to the WMSP. 

-



CONCLUSIONS 

By deriving the Central Hm controller following 
Glover and Doyle (1988) for the Weighted Mixed 
Sensitivity Problem, explicit relations bet ween 
controller poles and zeros and the poles and zeros 
of plant aild weightings have been stated. The 
most important result is that a Hm controller for 
the WMSP cancels all stabie plant poles, 
regardless of the weightings which are introduced 
to specify performance and robustness. Therefore 
it can not be expected that controller designs 
which result from the HIIÎ Mixed Sensitivity 
Problem have good robustness and performance 
properties in the face of varying system poles. 

APPENDIX 
ZERO SOLUTIONS TO Hm ARE's 

Proof of lemma 3.1 
Suppose Du is of full rank then by A3 D21 can be 
assumed to be the identity, so: 

D21 = I (A.1) 
The (2,1) block in the Hamiltonian for Y mis: 

Hym(2,1) . 

= -BIBI' + B1[D. l'R--lD. lJB l' 

= -Bl[I - D. 1'R--ID. lJB 1' 
This obviously yields a zero block if 

(A.2) 

D. 1'R--ID. 1 = 1 (A.3) 
Now since D21 = I the left hand si de of (A.3) can 
be written as: 

[ 

DuDu'-,2I 
[Du' IJ (A.4) 

. Du' 

Using the formulae for inversion of block matrices 
in Patel and Munro (1982) we obtain: 

[ 

ll'-I+ll'- 1DUXDu'll'-1 -ll'-IDUX] [Dll] 
[Du' IJ 

-XD 11' ll' -1 X 1 

(A.5) 

where ll' = DuDu'-,2I and X = (I - DU'll'-IDU)-1 
equation (A.5) is equivalent to: 

DU'll'-IDll + (I - DU'll'-IDU)X(I - DU'll'-lDu) 

(A.6) 
Now substituting X in (A.6) shows that the bloci< 
(A.3) holdsand thus Hym(2,1) equals zero. 
The ARE associated with the Hamiltonian Hym 
then takes the following form: 

YmAym + Aym'Ym - XPX = 0 

where Aym and P follow from (8). Since it is 
assumed that Aym is stabie, Y m obviously equals 
zero, which completes the proof. 
The proof that Xm is zero if D 12 is of full rank 
follows by duality • 
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Modal reduction guided by Hankel singular value intervals 
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Lab. Measurement and Control, Dept. Mechanical Engineering and Marine Techn., 
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Abstract. For extremely high-dimensional lightly damped systems, that are of ten 
represented in modal form, modal reduction is an efficient model reduction method. In 
these situations other methods such as balanced reduction, requiring additional 
computations, become very complicated. Modal realizations of lightly damped systems 
enable straightforward estimation of the system-invariant Hankel singular values 
(HSV's), that indicate the input-Dutput importance of states in a balanced realization. 
In addition HSV intervals including the exact HSV's are determined based on such 
modal realizations; eigenvalue perturbation theory (Gersgorin, Weyl) is applied to the 
(non-diagonaI) product of reachability and observability Grarnian. An HSV-Drdering 
of sets of modes is established and modal reduction is performed by truncating mode 
sets in the lower HSV intervals. In case sets of modes are too large, scaling and 
partially balancing transformations are used to split the associated HSV intervals. 

Keywords. large-scale systems, model reduction, modal reduction, balanced 
reduction, Gersgorin eigenvalue regions, Hankel singular value intervals. 

o NOTATION applications, can only he designed af ter some 
model simplification. In most high-dimensional 
lightly damped systems vibration modes play a 
crucial role as they enable a physical 
interpretation and are all dynamically decoupled. 
This has made mode select ion (modal reduction) 
one of the most important model-Drder reduction 
methods for extremely large systems. In the 
analysis of flexible mechanical structures 'for 
instance, one usually represents the infinite­
dimensional system bY ' a modal subsystem and all 
modes outside a certain frequency range are 
simply neglected. In this way responses to forces 
with known frequency contents can be computed 
efficiently. If we are mainly interested in the 
motion of specific points in the structure, select ion 
of modes based on their input-Dutput con tri but ion 
seems more appropriate than mere truncation of 
modes outside a certain frequency range. 

I z I ,z modulus, complex conjugate of zE( 

Ilzll Euc1idean norm of ZE(n 

Ol, 
E 
1?k 
A-T 

À(A) 
A=AH>O 

À A , 

nxm complex matrix Z 

transpose of Z 

Hermitian adjoint of Z (=[Z]T) 
reachability, observability Gramian 
i 'th Hankel singular value (HSV) 
E=diag(ol), with Ol ~ 01+1 
dominance measure of vibration mode k 

inverse transpose of AE(nxn 

set of n eigenvalues of AE{nxn 

Hermitian, and positive definite AE(nxn 

diagonal, off-diagonal part of matrix 

AEe
xn

; A=A+A 
i 'th absolute row sum (DEFINITION 1) . 
i 'th absolute column sum (DEFINITION 2) 
GerSgorÏn's eigenvalue. indusion regions, 
(TH EO REM 1, CORROLARY 1) 

diag(Ai) block diagonal matrix with AiE(nixni 

(Ä,B,C,D), (A,B,C,D)N(Ä,B,C,D) balanced, 
similar state-space realizations 

1 INTRODUCTION 

Controllers for extremely high-dimensional 
systems as encountered in large space structure 
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The residual system (the difference bet ween 
original and reduced system) is completely defined 
by the truncated modes and is always of lower 
order than the original systemj this may facilitate 
stability robustness analysis in robust control 
applications. 

Model reduction methods that try to recover the 
input-Dutput behaviour are numerous, but mostly 
involve additional computations (assumed we start 
out from a modal realization). Reductioll methods 
that hinge on small norms of the residual system 
(being particularly attractive in robustness 
analysis of controlled systems) are optimal Hankel 
norm reduction (Glover, 1984) andbalanced 
reduction (Enns, 1984). 



However, the residual systems are of higher order 
and exact norm calculations become laborious. 
Besides the pol es of the reduced-order model do 
not correspond to poles of the original model and 
available reduction procedures for balanced 
reduction and particularly ' for optimal Rankel 
norm reduction are computationally demanding 
compared to modal reduction procedures. 

In this contribution modal reduction is discussed 
within a 'balancing' setting in order to obtain 
input-output dominance measures of modes or sets 
of modes. It is well-known that from lightly 
damped vibration modes accurate estimates of the 
HSV's can be obtained (Gregory, 1984). In 
addition we present methods ' to bound the exact 
HSV's (leading to HSV intervals) and to associate 
sets of modes with theseHSV intervals. These sets 
have a definite HSV-ordering and modal reduction 
is achieved by truncating mode sets associated 
with the lower HSV intervals. 

In section 2 balancing theory is reviewed, and 
similarity bet ween truncated state-space 
realizations is discussed. 

In section 3 a modal realization is analysed for its 
correspondence with a balànced realization by 
means of closed-form solutions of the reachability 
and observabili ty Gramians. The diagonal 
elements of these Gramians provide HSV 
estimates that are used as a measure for the 
input-output importance of vibration modes. It is 
shown that if damping goes to zero these estimates 
converge to the exact HSV's. Besides, truncatibn 
of a modal and balanced realization based on these 
HSV's becomes identical; provided poles do not 
occur repeatedly. 

For systems with non-vanishing damping a 
new procedure is introduced. 

In section 4 eigenvalue 'perturbation theory is used 
to establish bounds on the · HSV's . based on. the 
HSV estimates derivéd for each mode. Theorems 
of Gersgorin and Weyl are discussed in detail. 
HSV intervals can be found that cluster subsets of 
modes. Sets of modes with a definite 
HSV-,-ordering are treated ' as entities in the 
proposed truncatiop. . procedure. Although this 
method is not restricted to arbitrarily lightly 
damp(:)d systems, increased damping may lead to 
impracticably large mode sets and eventually all 
ordering of mode sets will . be lost. 

In section 5 scaling and partially balancing 
transformations are eXJ?lored that give bet ter 
bounds on the HSV's li.e. smaller . and , possibly 
more HSV intervals), thus providing additional 
ordering of modes. . 

In section 6 a general procedure is presented to 
find a sufficient number of HSV intervals, on 
which the reduction can be based. A characteristic 
example is given to illustrate the efficiency of the 
procedure. 
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2 BALANCED REDUCTION 

Truncation of a balanced realization is now one of 
the most popular methods for model-order 
reduction. In a balanced realization states are 
equally reachable (from input) and observable (at 
output) and their input-output importance is 
measured by associated HSV's. Lines of thought 
that led to this concept can be foundin Moore 
(1981). 

For a minimal state-space realization of a 
time-invariant and stabie system, 

:ie = A x + B u y = C x + D u (1) 

with state vector x( t )ElRn
, input vector u( t )ElRffi

, 

output vector y(t)EIRP, and A,B,C, and D real 
constant matrices, the associated reachability and 
observability Gramians Pand q are defined as, 

P = foOOexp(At)BBTexp(tAT) dt ' (2a) 

Q = foOOexp(ATt)CTCexp(tA) dt (2b) 

The HSV's are fully stated by Pand Q, and 
are system invariants: 

J. 
Ui = [Ài(P QW (3) 

. with UI ~ U2 ~ ••• ~ Un > O. 
State-space reali zat ion (1) can be transformed 

into a balanced (sometimes called 'internally 
balanced') realization, 

X = Á x + B u y = ex + D u (4) 
satisfying: 

v v_I v_T v vT v . 
: =~ P~ = ~ =~ QT = ~ = d ~ ag( Ui) (5) 
A =T-IAT, B =T- J B, . C = CT 

with t the balancing transformation matrix. 

Partitioning ~=diag(~1,~2) and(Á,H,C,D) 
conformably, the reduced-order model, 

x = Állx + H1u Y = C1X + D u (6) 
is again stabie and balanced with both reduced­
order Gramians equal to ~1 (the partitioning 
should be chosen such that~1 contains HSV's 
significantly larger those in ~2). Thus balanced 
reduction retains the input-output important part 
of the dynamics, but as opposed to modal 
reduction, the reduced system does not recover 
poles of the original system in general; . 

À(Á) :f. P(Áll ), À(Á22 )} for Á12 and Á21 non-zero. 
The Gramians are usually solved from the 

(continuous time) reachability and observability 
Lyapunov equations, 

AP+PAT+BBT=O (7a) 

AT Q + Q A + CT C = 0 (7b) 
For complex realizations similar to (A,B,C,D) in 

(1) ['IT should be replaced by ['IH in the formulas 
above. Calculation of the balancing transformation 
(Laub e.a., 1987) requires relatively large 
computation power which may cause pro bi ems for 
extremely high-:-dimensional systems. 



In the sequel it is shown how fuU balancing 
transformation can be avoided if the Gramians are 
block-diagonal or nearly block-diagonal. 

PR.OPOSITION 1 
Let state-space system (A,B,C,D) of order n 
be truncated to (All ,Bl,Cl,D) of order nl. 
Similarity transformations T = diag(Tl,T2) 

wUh TIECnlxnl do not affect the truncation 
result. 

ProoI" 
Truncation af ter transformation yields 

(Tï1AllTl,Tï1Bl,C1Tl,D) N (All ,Bl,Cl,D) • 
PR.OPOSITION 2 

Let P = diag(Pl,P2) and Q= diag(Ql,Q2) be 
associated with state-space system (A,B,C,D) 
and pl,QIECnlxnl, P2,Q2ECn2xn2, then a 
blo ck- diagon al transformation matrix 

T =diag(Tl,T2) with T1E{nlxnl, T2E{n2xn2 
exists that balances (A,B,C,D). 
Moreover, if the HSV's related to P1Ql are all 
larger than those related to P2Q2, then direct 
and balanced truncation yield identical 

systems: (Au ,Bl,Cl,D) N (Au,Bl,Cl,D). 
Realization (A,B,C,D) wiJl be called 
'block-balanced '. 

ProoI" 
Since P=T-lPT- T=diag(TïlP1TïT,T2"lP2T2"T) 

- T . T T 
and Q=T QT=diag(Tl Q1Tl,T2Q2T2), Tl and 

T2 can be found independently to make Pand 

Q diagonal and equal. P roposition 1 says that 
this does not alter the truncation result . • 

As a direct consequence, each truncation of a 
realization with diagonal Gramians that satisfy 
Pij" qii ~ Pi+l,i+l· qi+l,i+l, yields identical 
reduced-order systems. 

For given realizations with almost (block-) 
diagonal Gramians, direct truncation may be such 
close to balanced truncation that additional 
balancing transformations would complicate the 
reduction unnecessarily. For lightly damped 
systems in · modal form, smaUness of the 
off-diagonal elements of the Gramians is explained 
in the next section and quantified in section 4. 

3 HSV ESTIMA TES 
FROM MODAL REALIZATIONS 

In literature it has been shown (Gregory, 1984; 
Jonckheere, 1984; BleUoch e.a., 1987) that 
differences bet ween a particular modal and 
balanced realization vanish if damping approaches 
zero and poles do not occur repeatedly. Besides 
from each mode with non-zero damping a HSV 
can be estimated. In the sequel closed- form 
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solutions of the Gramians Pand Q are presented 
for realizations with diagonal state-space matrices. 
For damping going to zero the diagonal elements 
of Pand Q tend to infinity whereas most 
off-diagonal elements remain finite (only repeated 
poles cause infini te off-diagonal elements) . 
Systems that have non-diagonalizable state-space 
matrices are treated in the appendix. 

Gramians of a modal realization 

Given a modal realization of a strictly proper and 
oscillatory system, 

n 

~i = Àilli+,Biu y = ~ Îi lli (n even) (8) 
i=l 

À2k-1 = Pk + jwk, 
a ·b .r 1xm 
fJ2k-l = ak + J k E 't- , 

À2k = Pk - jWk ,k~! n 
a ·b .r1xm 
fJ2k = ak - J k E 't-

·d .rpx 1 
Î2k-l = Ck + J k E 't- , 

.d .rpx 1 
Î2k = ck - J k E 't-

with II,Bili = bill, then closed-form solutions of 

the Lyapunov equations (7) are: 
H H 

,Bi ,Bj Îi Îj 
Pij = - --_-, qij = - ----

\+Àj Ài+Àj 
(9) 

(indices 'i' and 'j' denote first-order modes, 'k ' 
and 'I' denote vibration modes). Four types of 
denominators can be discerned, 

À2k-l+ );21-1 = Pk+P1 + j(Wk-W1) 

À2k + );21 = Pk+P1 - j(Wk-W1) 

À2k-l + );21 = Pk+P1 + j(Wk+W1) 

À2k + );21-1 = Pk+P1-j(Wk+W1)· 

(10) 

It can be shown that diag(Pii) = P = Q = diag( qii) 
and we define 

1?k = P2k 2k 
1I,B2 k1l 2 

= P2k-l 2k-l = 
21pk l 

IIÎ2 kll 2 

= q2k 2k = q2k-l 2k-l = -- (11) 
21pk l 

as a measure of the input-output contribution of 
vibration mode k (HSV estimates) . The 
off-diagonal elements of Pand Q are generally 
complex. 

The vanishing damping case 

From (11) we conclude that if mode k becomes 
undamped (Pk-lO) and remains reachable and 
observable, a pair of diagonal elements in Pand in 
Q tends to infinity (1?k-lOO) . If all ot her elements 
remain finite, ~ converges to HSV's 0"1 and 0"2, 

and mode k is clearly dominant . If the system has 
no repeated poles, arbitrarily small damping in 
any mode does not cause infinite off-diagonal 



elements (on the contrary if Wk=WJ. for k# and if 
Pk,Pl-lO then off-diagonal elements approach 
infinity too) 

If all modes become undamped and wk:f.WJ. for 
k#, then Pij and qij (i:f.j) are negligible compared 
to Pii and qii, and the balancing transformation 
relating both realizations tends to a permutation 
matrix times a diagonal sign matrix (a specific 
modal realization exists for which the balancing 
transformation tends to identity). 

In the next section approximation errors are 
assessed for generally damped systems. 

4 GENERALLY DAMPED SYSTEMS, 
HSV INTERVALS AND MODE SETS 

For non-zero damping, the exact HSV's are only 
approximated by 19k (11); for lightly damped 
systems these estimates will be 'better' than for 
weIl damped systems. This is made more precise 
in this section. Baséd on the Gramians of a given 
modal realization, intervals are derived that 
include the exact HSV's. 
Deviations of the Gramians from diagonal 
structure as given by (11), are accounted for 
quantitatively. This goes beyond error analysis in 
literature: Gregory (1984) considers modal 
reduction of a modaIly damped system appropriate 
if for any two vibration modes the foIlowing 
quotient is 'smalI' , 

max( (i' (j) . max( WOi,WOj) 
-------« 1 (12) 

I wocwo j I 
• .1. 

wlth Wo = (p2+w2) 2 the undamped frequency and 
(= I P I/wo the m.odal damping ratio. This involves 
low frequencies and damping ratios, and a large 
frequency separation; no information concerning 
the input matrix B or output matrix C is taken 
into account. BleIloch (1987) found a similar 
condition for generally damped systems. 

Our approach hinges on HSV intervals. We review 
two eigenvalue perturbation theories to establish 
these HSV intervals: a well-known theorem of 
Gersgorin to locate eigenvalues of complex 
matrices in disc-shaped regions and a theorem of 
Weyl to bound the real eigenvalues of Hermitian 
matrices individually. In these eigenyalue 
perturbation theories the matrix of · interest is 
decomposed into a part with known or 
'easy-to-find' eigenvalues and a'smalI' residual 
part that is treated as a perturbation. 

In balanced reduction the HSV's can be related to 
balanced states because the Gramians are both 
diagonal matrices. To link modal reduction to 
balanced reduction, both reachability and 
observability Gramian has to be sufficiently close 
to a diagonal or block-diagonal matrix. Several 
methods are introduced to evaluate the deviations 
from diagonal or block-diagonal form. 
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Eigenvalue perturbation theory of Gersgorin 

In Gersgorin's theory a matrix is decomposed into 
a diagonal matrix (with known eigenvalues) and a 
off-diagonal perturbation matrix, 

(13) 

DEFINITION 1 
n 

Ei(Z) == ~ I Zij I is absolute row sum i of Z. 
j=l 

DEFINITION 2 
n 

IIIj(Z) == ~ I Zij I is absolute column sum j of Z. 
i=l 

THEOREM 1, Gersgorin. 
All eigenvalues of Z E {nxn are located in the 
union of n discs 
n 

U {x E (: Ix-ziil ~ Ei(~)} == ~E(Z) 
i=l 
A region of k intersecting dis cs that is disjoint 
from all other discs contains exactly k 
eigenvalues of A. 

Proof 
This classic result can be found in most 
text books on matrix theory (see Horn and 
Johnson (1985) for a detailed discussion). _ 

Gersgorin disks are centered at the diagonal 
elements of A and their radii are fully defined by 
the absolute values of the off-diagonal elements of 

A. Since the eigenvalues of A and AH are the 
same, Gersgorin's theorem can be applied to rows 
as weIl as columns and an intersection yields 
better estimates in general, 

(14) 

n 

with ~III(Z) == U {x E (: I x-zii I ~ IIIi(~)}' 
i=l 

defining the column-based Gersgorin regions. 

Since we know that the eigenvalues of PQ are real 
nonnegative, only the intersections of the discs 
with the real axis are of interest. The square roots 
of the interval bounds determine the HSV 
intervals. If the off-diagonal absolute row or 
column sums of PQ are sufficiently smaIl 
theorem 1 provides accurate bounds on the exact 
HSV's, from which the feasibility of balanced 
truncation can be evaluated; we thus circumvent a 
complete eigenvalue solution (3) . 

The method discussed above to determine HSV 
bounds is based up on a decomposition (13) of the 
product of the GramianS that does not reflect our 
HSVestimates (11) obtained from separate modes. 
To ensure that the squared HSV estimates (19k2) 
are included in the eigenvalue intervals of PQ, we 
decompose PQ · as follows: 



PQ = ~Q + [~Ö + ~Q + ~ÖJ (15) 

in which the first term represents the squared 
HSV estimates and the bracketed expression 
defines the perturbation matrix. Although the first 
matrix is diagonal, the second is full in general. 
The following corollary based on Gersgorin's 
theorem can be . used in eigenvalue estimation 
problems with full perturbation matrices. 

COROLLARY 1 

Let Z = D + F E (nxn with D a diagona,l 
matrix. The eigenvaJues of Z are contained in 
tlJe union of n discs 
n n 
U { x E (: IX-Dd $ ~ Ifij I } == ~(D,F) 

i=l j=l 
Proot 

Use Gersgorin with disc centers di+fii, then 
shift center to di while enlarging the radius by 
I fii I to ensure inclusion of the original disco _ 

Again intersection of row-based and column-based 
discs yields sharper bounds on the eigenvalues: 

À(D+F) E ~(D,F) n 5fu(D,F) (16) 
n 

with 5fu(D,F) == U {z E (: I z-di I < IIIi(F)}, 
i=l 

defining the modified column-based Gersgorin 
regions. 

We mention that other eigenvalue inclusion 
regions similar to Gersgorin's have been derived in 
literature (see Hom and Johnson (1985) for 
Ostrowski's and Brauer's theorems). The elegant 
simplicity of Gersgorin's approach, however makes 
it well suited for the analysis of HSV's as will be 
demonstrated. 

Eigenvalue perturbation theory of Weyl 
for Hermitian matrices 

All eigenvalues of a Hermitian matrix are real and 
can be computed relatively easy. If the 
pertUl'bation matrix is Hermitian too, eigenvalue 
intervals can be derived using a theorem of Weyl. 

TIIEOR.EM 2, Weyl. 

For A = AH, B = BH E (nxn, C = A + B, and 
all eigenvalues arranged in increasing order, 
the eigenvaJues of C can be bounded 
individuall;:.: 
\(A)+\lB) $ \(C) $ \(A)+\(B) 

All intervaJs have width \(B)-\(B). 

Pro of Hom and Johnson (1985) _ 

This theorem can be useful for Hermitian' matrices 
that are close to a Hermitian matrix of which the 
eigenvalues are known or easy to find. The 
eigenvalue bounds of Pand Q, being Hermitian 
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(and positive definite) 
straightforward based on 
However PQ, having real 
Hermitian and we have 
eigenvalue problem in (3). 

LEMMA 1 

can be obtained 
decomposition (13). 
eigenvalues, is not 
to reformulate the 

Let P = pHp and Q = qHq be positive definite 
matrices. Then À(PQ) = À(pQpH) = À(qPqH) . 

Pro ot 
This is an immediate result of À(AB) = À(BA) 
for A and B square. _ 

HH.. '\'\ 
Now both pQp and qPq are Hermltlan and PQ 
is a Hermitian diagonal matrix with known 
eigenvalues ('11k2). The maximum and minimum 

eigenvalue of perturbation matrix pQpH_FQ or 

qPqH_FQ determine all eigenvalue intervals. The 
required factorization of P (or Q) however makes 
the eigenvalue estimation rather complicated. 

If all eigenvalues of the perturbation matrix 
are available even sharper bounds on the 
individual eigenvalues of PQ can be obtained. 

TJIEOREM 3, Weyl. 

For A = AH, B = BH E (nxn, C = A + B, and 
all eigenvaJues arranged in increasing order, 
the eigenvalues of C satisfy the following 
bounds: . 
À.(A)+À . . l(B) < À.(C) l$i$n, j=l,oo,i 

J J-J+ - J 

\(C) $ \(A)+\_Hn(B) l$i$n, j=i,oo,n 
SeJection of the sharpest bounds yieJds: 
\(C) E [j~~i{À/A)+\-Hl(B)} , 

.m~n {À}A)+\_Hn(B)} J 
J=J ,n 

Proof Hom and Johnson (1985) _ 

In general the simplicity in calculating HSV 
intervals is lost if a full eigensolution (Theorem 3) 
is required. 

Linking HSV intervals to mode sets 

Although we now have established HSV intervals 
containing a number of estimated HSV's that are 
coupled to separate modes, we cannot conclude 
that the underlying modal realization is close to a 
balanced realization. Situations may occur in 
which the product of two Hermitian matrices has 
relatively small off-diagonal elements, whereas the 
matrices itself have off-diagonal elements that are 
relative large. This can be shown by a simple 
example: 

P = [i ~], Q = [-i -~] and PQ = [_~ ~] 
This means that small HSV intervals associated 
with ei. modal realization do not allow conclusions 
on the approximately balancedness of this 



realization (i.e. off-diagonal elements in P ,and Q 
may still be large). ..' 

Eigenvalue perturbation analysis on Pand Q 
separately can · be used to check the smallness· of 
the off-diagonal elements of Pand Q. This 
procedure is heuristic since the eigenvalues of P 
and Q are not system invariants. 

An alternate solution is the replacement of the 
off-diagonal elements of Pand Q by their absolute 
values prior to multiplicatibn. This results in a 
larger perturbation matrix ensuring inclusion of 
the original HSV intervals. By this modification 
each separate HSV interval can only be caused by 
separate eigenvalue intervals of Pand Q. 

As stated in section 2 a minimum requirement for 
a truncation to be equal to a balanced truncation 
is that Pand Q are of the same block-diagonal 
structure. Although this requirement can never be 
met exactly for modal realizations of damped 
systems, Weyl's theorems can b~ used in 
evaluating the 'almost block-balancedness' 
(Proposition 2) of the modal realization. It is 
assumed that 'P and Q sufficiently close to 
block-diagonal matrices' leads to almost 
block-balancedness. Therefore let the off-diagonal 
blocks define the perturbation matrix and let the 
block-diagonal matrix be used for estimation of 
the eigenvalues of Pand Q, 

P=diil.g(Pll,P22)+.0.P, Q=diag( Q~1,Q22)+.0.Q 

with 6P= [ ~ 1~ ~ 12] and 6Q= [it~ ~12J. (17) 

Then as a result of theorem 2, the following 
conditions ensure that eigenvalues of . P (Q) 
est imated from PH (Qll) ' are also the largest 
eigenvalues of P (Q). . 

Àmin(Pll)-Àmax(P22) > Àmax(.0.P)-Àmin(.0.P) (18) 

Àmin(Qll)-Àmax(Q22) > Àrnax(6Q)-Àrnin(6Q) 

If (18) is satisfied the truncation result 
(All ,Bl,Cl,D) will generally deviate little from 

(Äll ,B1,è\,D), the balanced and truncated sYstem. 
In principle a similar analysis should be performed 
on PQ since there is no simple relationship 
bet ween À(PQ) on the one hand and À(P) and 
À(Q) on the other. However as we have seen 
Weyl's theorem can önly be applied to PQ af ter 
factorization of P or Q, and thus HSV interval 
analysis based on Weyl's theorems are less 
efficient than the approach based on Gersgorin's 
theorem. 

5 SCALING AND P ARTIALL Y 
BALANCING TRANSFORMATIONS 

In the previous section HSV intervals were derived 
based on a given modal realization. This 
realization is not unique and in this section it is 
shown how state transformations not destroying 
the modal structure can be utilized tü contract 
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and possibly split HSV intervals with more than 
one HSV. 

In principle finding two HSV intervals, each 
associated with a parallel-connected subsystem, is 
sufficient for the truncation purpose (Proposition 
1). Nor the retained part nor the truncated part 
has to be in modal form; they are only required to 
be dynamically uncoupled. This provides 
additional freedom of transformation. By exact 
balancing of sets of modes off-diagonal elements in 
the Gramians are zeroed and sharper HSV bounds 
ean be achieved. If sets of modes that are 
transformed in this way, are retained or truncated 
as an entity, the reduètion is still modal in 
essence. H, on the other hand, we allow truneation 
within transformed sets of modes, we have an 
intermediate form between modal and balanced 
truncation. 

Scaling transformations 

Since T-1ZT has the same . eigenvaluesas Z, 
simple transformations can be invoked to obtain 
sharper bounds on the eigenvalues. It is weIl 
known that Gersgorin's eigenvalue approximation 
may benefit from diagonal transformations. The 
advantage of diagonal transformations is that the 
approximate eigenvalues (the disk centers) do not 
alter while the disc radii can be manipulated. 
Formulas for eigenvalue regions based on 
Gersgorin's theory are quite simpie. 

COROLLARY 2, Gersgorin (Hom and Johnson, 1985) 

All eigenvalues of Z E {nxn are located in the 
union of n discs 
n 1 n _ 
U {XEC Ix-ziil ~ --' ~ s · lzïl} = '#E(S 1ZS) 

. 1 SI' . 1 J J 1= J= 
j# i 

wUh s1,s2, .. ,sn > 0 

Pro of 
A scaling transformation does not change the 
eigenvalues nor the diagonal elements; only the 
off-diagonal elements vary and· thus the 
absolute row sums. · Because only absolute 
values of the off-diagonal are of interest, a 
positive sealing is not restrictive. _ 

LEMMA 2 
Given Z = D+F, wUh D a diaganal, and F a 
full complex matrix with column-radii Ill(F), 
then all eigenvalues of Z are located in the 
unian of n discs 
nnI 
y {xE{:lx-djl ~ Sj.~ s.lfijl} = .9"1ll(D,S-lFS) 
J=l 1=1 I 

wUh S1,S2, .. ,Sn > O. 
Besides choosing one. sj>1 and all other si=1 

(i#j) enlarges disc radius j: Illj(S-1FS) > Illj(F) 
and yields equal or reduced disc radii i: 

llli(S-1FS) ~ Illi(F). 



Note that the absolute row sum discs show 
precisely the opposite behaviour. 

Proot 
The first part is just a generalization of the 
previous result as it does not take the diagonal 
elements as eigenvalue estimates; only the 
off-diagonal elements of F may change. The 
one-elementscaling results in row j divided by 
Sj, and column j multiplied by Sj. Column sum 
j is thus enlarged, while all others can only 
diminish. • 

A systematic way to find scaling parameters di 
that yield some sharper eigenvalue bounds is not 

. available to our best knowiedge. 
For matrices having real eigenvalues, we 

propose several procedures to find scalings likely 
to contract eigenvalue intervals of interest. 

PROPOSITION 3 
Let Z = D+F, with D a real diagonal matrix, 
F a full comJ2lex matrix, and MZ) all reaJ. 
Suppose 3fulD,F) is a set ot eigenvalue 

intervals and interval k is denoted . by 

~lll(D,F)k, then each 'disc' kj in 3fu(D,F)k 

can be enlarged individually by an amount 
min {dk.- gk-l '~k+l- dkJ 

s = J J>l 
kj lllk. (F) 

J 

with gk-l' ~k+l . respectively maximum of 

3fu(D,F)k-1, and minimum of 3fu(D,F)k+ 1. 

Pro ot 
As . a consequence of the previous lemma, 
enlargement of one disc radius can never result 
in any ot her enlarged disc; even the ot her discs 
within interval k will shrink. This means all 
scalings can be computed individually; the 

. minimum ensures interval k does not overlap 
interval k+1 nor k-l. • 

In most cases we are interested in tearing apart 
one specific eigenvalue interval, and mutually 
overlapping of all other intervals is of no concern 
because their mutual ordering remains valid. The 
following procedure exploits this additional 
freedom of sealing. 

PROPOSITION 4 

Suppose 3fu(D,F)k is an eigenvalue interval 

apart from all others and ~k' gk are its 
minimum and maximum value. Let k number 
all other intervals and ki, ki be the 
corresponding disc numbers. Then each disc kj 

in 3fu(D,Fl can be enlarged individually by 
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Pro ot 
This again results from the fact that all discs 
ki necessarily shrink if sk i = 1 and all s.k? 1. 

The maximum ensures a scaling greater than 
one is chosen . • 

In the previous methods no advantage is taken of 
the fact that enlargement of one disc allows a 
subsequent di se to be enlarged more. By updating 
the matrix and starting the procedure again most 
conservatism can be removed. In the next method 
a one-element-scaling is performed in each step. 

ALGORITUI( (i terati ve search for scalings) 

Suppose 3fu(D,F)k is an eigenvalue interval 

apart from all ot hers and ~k' gk are its 

IDJlllmUm respectively maximum values. 

3fu(D,Fl represents the union of all other 

eigenvalue intervals. 

1: Search di sc kj in 5fu(D,Fl that can be 
enlarged most: 

sk = mf [ lllk~ max { dkj- gk' ~k - dkj } ] 

2: Scale matrix F: 

F := S-lFS, S = diag(si)' Si = 1 for i 1= kj 

Si = S k for i = kj 

3: Calculate eigenvalue intervals 3fu(D,F). 

4: Stop if 3fu(D,F)k has been split or if no 

significant contraetion of intervals has been 
found; 
Otherwise go to 1. • 

Because smaller colurnn-based intervals are 
accompanied by larger row-based intervals, the 
row-based Gersgorin regions need not be 
recalculated if the scalings were based on column 
analysis. Scalings based eompletely on rows may 
improve the eigenvalue bounds by intersecting 
intervals from both analysis. 

Partially balancing transformations 

As mentioned earlier, balancing of a subsystem 
introduces zero off-diagonal elements in Pand Q, 
which will reduce the HSV-interval sizes in most 
cases. This partially balancing can best be applied 
to sets of modes that are responsible for the 
largest off-diagonal elements in the Gramians. 
Truncation of the transformed realization is only 
similar to a modal truncation if all modes involved 



• 

in the partially balancing transformation are 
retained or .truncated (Proposition 1). For 
moderately ' damped high-dimensional systems 
with large sets of modes, interval splitting can 
only be achieved by partially balancing 
transformations involving many modes. Taking 
these modes .together in modal set reduction may 
constr1\in the choice of the order reduction 
unacceptably. Dropping the requirement of 
modal-reduction-similar truncation we may design 
effective schemes for partly 'balanced, partly modal 
reduction. 

Note that separate balancing of vibration modes 
prior to truncation does not affect the modal 
reduction. For systems with a realization as in (8) 
the balancing transformation will be (2x2)-block­
diagonal and introduces zeros at the entries 
(2k-1 ,2k) and (2k,2k-1) in Pand Q. 

6 MODE SET SELECTION 
PROCEDURES 

In this section . it is shown how mode sets can be 
selected that are input-output most important. 
HSV intervals, sealing and partially balancing are 
used in a general procedure for selecting input­
output important mode sets or parts of mode sets. 

We start out from a modal realization with 
complex modal states that are scaled with respect 
to input and output contribution (8). Modes 
responsible for non-diagonalizable parts of the 
state-space matrix are treated as sets from the 
beginning (also see Appendix) . 

By. means of methods presented in section 4, 
HSV intervalsare calculated and scaling 
transformations (section .5) are applied to give 
maxiinum information on the HSV's (HSV 
intervals from different realizations should be 
interseeted) . Well spaeed HSV intervals indieate 
the suitability of (balanced) order-reduction. 

To make sure that the realization is close to a 
balanced realization the eigenvalue intervals of P 
and Q are evaluated. Based on these intervals 
together with the HSV intervals, an ordering of 
sets of modes is determined. 

If order-reduction can be achieved by truncation 
of partieular mode sets we ean stop here. 
Otherwise additional ordering can be fOl'ced by 
partially balaneing. 

This may involve modes that are responsible 
for large off-diagonal contributions to Pand Q, or 
mode sets that are sure to be retained or 
truncated. This lat ter procedure will not introduce 
'couplings' with the mode set(s) in the medium 
HSV range of which an additional ordering is 
sought, However, selecting mode pairs because of 
their contribution to the off-diagonal matrices of 
Pand Q generally couples the original mode sets, 
but is very effective in splitting HSV intervals. 
This can best be illustrated by means of a 
characteristic example. 
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EXAMPLE 

A linear time-invariant two-input-two-output 
system is eonstructed that has ten complex poles, 
is non-minimum phase and typieally lightly 
damped. The state-space matrix is diagonalizàble 
and input and output matrices are scaled in order 
to satisfy (8). Vibration mode numbers are 
indicated by {k} and mode sets are denoted by 
capitaIs. , 
A= diag(-0 . 0041-0.3823j ,-0 . 0041+0.3823j, {I} 

-0 . 0022-0 . 7580j ,-0 ,0022+0. 7580j, {2} 

B 

-0.0026-1. 0197 j ,-0 .0026+1. 0197 j, {3} 
-0.0084-1.8087 j ,-0.0084+1.8087 j , {4} 
-0 .0072-1.8474j ,-0 . 0072+1.8474j ) {5} 

0.00022 + 0.00475j 0.00052 + 0.23242j 
0.00022 - 0.00475j 0.00052 - 0.23242j 
0.00003 - 0.22813j 0.00028 + 0.42735j 
0.00003 + 0.22813j 0.00028 - 0.42735j 

--0.04800 - 0.00020j --0 .00982 + 0.00144j 
--0.04800 + 0.00020j--O.00982 - 0.00144j 

0.16178 + 0.00564j 0.11206 + 0.00737j 
0.16178 - 0.00564j 0.11206 - 0.00737j 
0.35035 - 0.00694j 0.43074 - 0.00542j 
0.35035 + 0.00694j 0.43074 + 0.00542j 

0.00445 + 0.00021j 
0.00445 - 0.00021j 

--0.20786 + O.OOOl1j 
--0.20786 - O.OOOl1j 

0.00043 + 0.04852j 
0.00043 - 0.04852j 

--0.00488 - 0.10270j 
--0.00488 + 0.10270j 

0.00058 - 0.17478j 
0.00058 + 0.17478j 

0.00231 - 0.23242j 
0.00231 + 0.23242j 

--0.00155 + 0.43756j 
--0.00155 - 0.43756j 

0.00698 + 0.00031j 
0.00698 - 0.00031j 

--0.16776 - 0.01000j 
--0.16776 + 0.01000j 

0.52705 - 0.00548j 
0.52705 + 0.00548j 

{l} 

{2} 

{3} 

{4} 

{5} 

{1} 

{2} 

{3} 

{4} 

{5} 

The HSV estimates associated with the vibration 
modes are (11): 

6.6621 
54.1092 

'IJ = 0.4559 
2.3160 

21.4060 

{I} 
{2} 
{3} 
{4} 
{5} 

Closed-form solutions (9) are used to calculate 
both Gramians. Application of (16) with 
PQ-decomposition (15) gives a first indication of 
the HSV bounds (Fi~. la, lower line; Table la). 
Figure lb (TabIe 1b) shows that the eigenvalue 
intervals of Pand Q support the division of modes 
into three sets (A,B,C): {3,4,1}, {5} and {2}. 
Moreover mode 1 is likely to be ·more important 
than modes 3 and 4; indeed the sealing 
transformation algorithm of section 4 is able to 
split mode set {3,4,1} within one iteration step 
into a least important mode set {3,4} and a 
moderately important mode(set) {I} . In Fig. la 
three steps of iteration are presented, all based on 
Gersgorin's absolute row. sums. Ordering of modes 
3 and 4 in set A could not be obtained by 
continuing the sealing transformation algorithm. 

Analysis based on column information gave 
similar results . . 



Application of Weyl's Theorem 3 did not 
improve above results. 

(1,2,3,4,5 modes, A,B,C,D mode sets) 

A B C D 
F;= 3 
;=;= 2 
F;= iteration 1 

3 4 5 2 
..L original 1 

A B C 
I I I I I 

0 10 20 30 40 50 1 60 
---1 A(PQ)2 

Fig. la. HSV estimates and intervals. 

A B C D 

f.=F= "" ---,- P T 
341 5 2 
LL J: ---L..- Q J. 

A B C D 
I I I I I 

0 10 20 30 40 50 60 
---1 A{P) , A{Q) 

Fig. lb. Eigenvalue intervals of Pand Q. 

We conclude that modal truncation of modes 
{3,4}, {3,4,1} or f3;4,1,5} will be close to an 
equivalent order-reduction by balanced truncation. 
For this simple example this is satisfactory, but 
for higher-dimensional systems HSV intervals and 
mode sets are generally much larger and then 
scaling transformations are not sufficient to split 
HSV intervals. To illustrate the procedure of 
partially balancing we try to split mode set {3,4}. 
A balancing transformation on modes {1,5,2} did 
not result in sufficiently smaller HSV intervals. 
Evaluation of the off-diagonal elements of Pand 
Q revealed large couplings bet ween modes 4 and 5 
(with relatively close poles). Balancing the 
associated 4x4-block reduced all HSV and 
eigenvalue intervals dramatically (Fig. 2a/bj Table 
2a/b). Note that the original modes 4 and 5 are 
now coupled and in order to preserve the 
reduction to be modal, modes {4,5} should be 
both truncated or both retained. We can now 
conclude that modal truncation of mode {3} or 
modes {3,4,1,5} will be close to an equivalent 
order-reduction by balanced truncation. If we do 
not strive towards pure modal truncation, 
truncation of the least important part of 
subsystem {4,5} can be considered. 

~B C D E 

~ : partially balanced I 
~ 4 5 2 

...L. original ! 

A ,B C 
1 , I I. 

0 10 20 30 40 50 1 60 
---1 A{PQ)2 

Fig. 2a. HSV estimates and intervals. 
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AB C 
'f 

3 4 1 
! . J, 

AB C 

o 
1 

10 

D 

5 

D 
1 

20 
1 

30 

P 

Q 

1 , 

40 50 

E 

=r 
2 

...L 

E 

---1 A (P) , A (Q) 
Fig. 2b. Eigenvalue intervals of Pand Q, 

partially balanced. 

T ABLE la HSV intervals 

original: 
.I. 

>'(PQ) 2 modes 
[0.0000 8.3355] {1,3,4} 
[20.1727 22.5720] {5} 
[53.8460 54.3711] {2} 

iteration 1: 
[ 0.00 4.22] {3,4} 
[ 6.57 6.76] {I} 
[10.54 28.38] {5} 
[54.07 54.14] {2} 

iteration 2: 
[ 0.00 4.12] {3,4} 
[ 6.57 6.75] {I} 
[ 8.37 44.79] {5} 
[54.08 54.14] {2} 

iteration 3: 
[ 0.00 4.12] {3,4} 
[ 6.57 6.75] {I} 
[ 8.34 44.92] {5} 
[54.08 54.14] . {2} 

TABLE lb Eigenvalue intervals 

A(P) modes A(Q) 
[ 0.0000 4.9359] {3 ,4} [ 0.3776 4.2124] 
[ 6.0917 7.2324] {I} [6.0423 7.2818] 
[18.4903 24.3217] {5} [19.1836 23.6285] 
[53.4265 54.7919] {2} [53.2043 55.0141] 

60 

T ABLE 2a HSV intervals (partially balanced) 

A(PQ)~ 
[ 0.0000 1.6282] 
[ 1.6768 2.4116] 
[ 4.4102 8.3256] 
[21.4226 21.7329] 
[53.8404 54 .3767] 

modes 
{3} 

{4 }/{5} 
{I} 

{5}/{4} 
{2} 

T ABLE 2b Eigenvalue int. (part. balanced) 

A(P) 
[ 0.3670 0.5449] 
[ 2.0135 2.1538] 
[ 6.0947 7.2294] 
[21.2261 21.9306] 
[53,4162 54.8022] 

modes 
{3} 

{4}/{5} 
{I} 

{5}/{4} 
{2} 

A(Q) 
[ 0.3753 0.5366] 
[ 1.8735 2.3047] 
[ 6.0561 7.2680] 
[21.0485 22.1081] 
[53.2012 55.0172] 



For this simple example modal and balanced 
reduction gave almost indistinguishable results. 
Note ho wever that our procedure is advised for 
high-dimensional systems that do not allow a 
thorough comparison with bal~ncing results. M?re 
general model reduction technIques can be apphed 
af ter a first moçlal reduction. 

7 CONCLUSION8. 

For generally lightly damped sy.stems,. modal 
realizations provide a good startmg pomt for 
estimation of the HSV's. HSV intervals derived by 
means of Gersgorin's eigenvalue perturbation 
theory seem very effective in evaluating the 
reducibility of .lightly dampèd systems, 
circumventing a (balancing) transformation of 
systems originally in modal form. Sets of modes 
naturally appear that have an input-Dutput 
importance quantified by HSV intervals and they 
are truncated or retained as a whoIe. Modal 
reduction by truncation of mode sets avoids 
problems with the orde~ing ~f modes. within these 
sets. Additional ordermg mformatlOn can be 
obtained by scaling transformations and . ~y 
balancing of subsystems. T~erefore aspeclfIc 
sealing procedure has been desIgned. By separately 
balancing (modal) subsystems, the advantages of 
modal and balanced truncation can be combined 
while avoiding full balancing transformations. 

APPENDIX 

For non-diagonalizable state-space matrices. the 
closed-form solutions to the Lyapunov equatlOns 
(7) are more complicated and it will be shown 
that the Gramians contain off-diagonal elements 
that reach infinity for damping coefficients going 
to zero. 

Since A is llOW block-diagonal (A=diag(Aii)), 
the Lyapunov equation c.an be solved per bl?~k . 
We point out the solutlOn for the reachablhty 
Gramian only. Partitioning Band P conformably, 
we may wri te: 

H H 
AiiPij + PijAjj + BiBj = 0 

with AiiECnixni Jordan blocks: 

To simplify the expressions we drop the 
block-matrix indices of Pij and write · BB for 

BiB/. Now P can be built up starting from the 
lower right element, 

bb ninj 
Pn'n' = - - , 

1 J Ài + Àj 
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. ... . 
i i 

following the arrows in .",.",. 

i i i 
"""'·"'x 

Row ni is found from, 

(Ài+Xj) Pni,m + Pni,m+l + bbni,m = 0 m<nj 
and column nj from, 

(Ài+Xj) p),nj + P)+l,n' + bb),nj = 0 
All other elements are sol~ed from 

(Ài+Xj) p),m + Pl+l,m + P),m+l + bbl,m = o. 

In all solutions we have a denominator term 

Ài+X j , that can only reach zer? for vani~hing 
damping if Ài=À·. Thus blocks m P assoclated 
with a Jordan brock or Jordan blocks in A with 
identical eigenvalues, contain elements 
approaching infinity for damping going tozero. 
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Abstract. Orthogonal functions are of importance in various fields of system and 
control theory. In this paper it is shown that every finite dimensional time invariant 
linear discrete time system gives rise to two sets of orthonormal functions, which are 
complete in '-2 and therefore can be considered as a basis for this space. Specific 
examples of these functions are the Laguerre polynomials and the discrete pulse 
functions. The derivation is based on the properties of discrete all-pass transfer 
functions. Through transformation of input and output signals of a system G in terms 
of these sets of orthonormal functions, new system descriptions are obtained and new 
possibilities arise for the construction of approximate identification methods. 
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1 INTRODUCTION 

Orthogonal functions and their application in 
system theory have been subject of research for 
maIiy years, cf. the early work of Wiener (1949) 
and Lee (1933). In the past decade their use for 
problems like system analysis, optimal con trol and 
system identification has been investigated by 
many . authors, cf. the work of Kin~ and 
Paraskevopoulos (1979), Paraskevopoulos (1985), 
Nurges and Yaaksoo (1981), Nurges (1987) and 
Wahlberg (1989) on Laguerre polynomials, the 
paper of Unbehauen and Rao (1988) on continuous 
time identification, and the references therein. 
There are many different sets of orthonormal 
functions and the choice of a specific set to attack 
a. certain problem in all these papers is more or 
less arbitrary, and the choice is of ten more 
tllotivated by the nice properties of a certain set 
than by the problem at hand. For orthogonal 
polynomials , like Legendre , Chebychev and 
Laguerre polynomials, in general the most 
important property is the so called shift structure 
(P araskevopoulos, 1985). 
It is to be expected that for a specific system and 
a. specific problem there will be a 'best' choice 
from the whole family of orthogonal sets to solve 
t.he problem. We are merely interested in the 
problem of system identification and the question 
arises if linear systems give rise to orthogonal 
functions in a natural way, in order to find an 
answer to the question if there exists a natural 
cOOl'di nate basis to represent aspecific system in 
terms of a small number of coefficients. The 
answer to this question is affirmative and in this 
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paper we will give the basis for the theory 
involved. 
We will show that every finite dimensional linear 
stabie discrete time system gives rise to a 
complete set of orthonormal functions, based on 
input or output balanced realizations, or 
equivalentlyon the singular value decomposition 
of the Hankel matrix of the system. These 
functions are generalizations of the Laguerre 
polynomials. The theory is based on the properties 
of discrete all-pass functions, analogous to the 
continuous time results of Glover (1984). 
These properties are given in section 2, and in 
section 3 we show how all-pass functions give rise 
to sets of orthonormal functions, which is 
extended to general transfer functions in section 4, 
In section 4 the completeness of these sets is 
proven and in section 5 some specific examples of 
these sets are · presented. In analogy with the 
Laguerre polynomials we can use these functions 
to transform time-series and arbitrary linear 
systems to what we will eaU the orthogonal 
domain, which is explained in section 6. In section 
7 two identifieation sehemes are proposed based on 
these sets of functions. The application of known 
identification methods on transformed data 
changes the properties of the identified modeis, 
thus leading tonew methods for approximate 
identification. These schemes ean be seen as a 
search for the 'best' set of orthogonal functions for 
the identification problem. 
In this paper we restrict ourselves to finite 
dimensional linear time invariant discrete time 
systems, abbreviated to FDLT systems and 
FDLTS systems if the system is asymptotically 



stabie. We will merely be dealing with state space 
des cri ptions: 

x(t+1) =Ax(t)+ Bu(t) 
y(t) =Cx(t)+Du(t) 

with AE{nxn, BE{nxrn, CE{pxn, DE{pxrn . 

The corresponding transfer function is: 

(1.1a) 
(1.1b) 

G(z)=C[zl- A]-lB + D. (1.1c) 

and [A,B,C,D] is called a realization of G. For a 
rea.lization we define the controllability matrix Me 
and the observability matrix Mo by: 

Me = [BI AB I A2B ... ] (1.2a) 

Mo = [C* I A *C* I A *2C*' .. ]* (1.2b) 

We denote by Ä the complex conjugate of . A and 

by A * the Hermitian transpose of A, so. A* = ÄT. 
It is weIl known that for minimal realizations Mo 
and Me have full rank n. 
We assume that the reader is familiar with the 
notions of Gramians, Rankel singular values and 
the w-transformation. A short treatment can be 
found in this issue (Heuberger, 1990a). . 

In this paper we use the notation f2 for square 
summabie time sequences: 

00 

e2 = {x:IN°-j( I.E x(i)x(i)* < co} (1.3) 
. 1 = 0 . 

When we deal.with Kronecker produets we use the 
operator Vec to transform a matrix into a vector: 

If X=(Xij)E{nxrn , then VeC(X)E{nrnXl 

Vec(X) :=(xll,xi2, . ,Xlrn,X21, .. 'xnrn) T (1.4) 

In section 6 weuse the concept of the behavior of 
a system, which we define as follows . 

DEFINITION 1.1. Let G(z) be a FDLTS system. We 
define the behavior B(G) by . . 

B(G)= {(u(t),y(t))I U(t)Ee2 and .{u(t),y(t)} is 
an input/output pair of G(z)) <> 

Note that in definition 1.1 tEINOj we eonsider 
{u(t),y(t),t~O} to be an input/output pair if there 
exists a realization of G and an initial condition 
x(O), sueh that {u(t),y(t),x(O)} obey the equations 
(1.1) . Note that in this definition the stability of 
G(z) implies that also y(t)Ee2' 

2. PROPERTIES OF DISCRETE ALL-PASS 
FUNCTIONS 

In this section we give a charaeterization of 
realizations of discrete all-pass functions. This is 
given in theorem 2.2, which is the discrete time 
version of theorem 5.1 in (Glover, 1984). . 
First we define all-pass transfer funetions, 
following Glover (1984) . 
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DEFINITION 2.1. A discrete transfer function 
matrix E(z) of a FDLT system, with dimensions 
pxm is called an all-pass function if : 

E(z)ET(l)=1 p~m (2.1a) z 

ÈT(~)E(z)=1 p~m (2.1b)<> 

The next theorem shows that all Hankel singular 
values of a square all-pass functJon are equal to 
unity and it gives conditions fot the existenee of a 
state space realization. 

TJlEOR.EM 2.2. (Heuberger,1990b). Given a 
realiza~ion [A,B,C,O], (not necessarily stabie) with 
AE{nxn ,BE{nxrn, CE{rnxn, then 
1. If · {A,B,C} is completely controllabie and 

. completely observable the following two 
statements are equivalent: 
(a) 3 DE{rnxm such that G(z)GT(~)= O'21, 

where G(z) := D + C[zl- A]-lB. 

(b) 3 P,Q E {nxn, sueh that 

P = P*, Q=Q* 
"\ 

(i) (2.2a) 

(ii) A*QA+C*C=Q (2.2b) 

(iii) APA*+BB*=P (2.2c) 

(iv) PQ=0"21 (2.2d) 

2. Without the condition on eon~rollability or 
observability: Given that the conditions under 
(1. b) are satisfied then 3 D satisfying 

(i) D*D+B*QB=O'21 ' 

(ii) DD* +CPC* =0'21 

(iii) C*D+A *QB= O 

(iv) BD* +APC* = 0. 
and any sueh D satisfies (1)(a) . 

REMAR.K 2.3. 

. (2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 
<> 

1. Note that if A is not stable then Pand Q 
cannot be seen as Gramians, since these are only 
defined for stabie realizations .. Nevertheless P and 
Q are unique solutions of (2.2b,c) if A has no 
eigenvalues on the unit circle. If A does have 
eigenvalues on the unit circle there may be an 
infinite number of solutions to (2.2b,e), some of 
which will satisfy (2.2d) iff (2.2a) is satisfied. 
2. If A is not stabie, the condition PQ=u21 does 
not imply minimality of the realization. Take for 
example A=I, B=C=O, then P=Q=I but {A,B,C} 
is neither observable nor controllabie. <> 

3 ORTRONORMAL FUNCTIONS 
GENERATED BY ALL- PASS FUNCTIONS 

In this section we use theorem 2.2 to show that a 
square stabie all- pass function gives ri se to an 
infinite set of orthonormal funetions. This 
derivation is based on the fact that the 



controllability Gramiall P of a realization of a 

FDLTS system is equal to P=MeM~, where Me is 
defined in (1.2a). Consider the rows of Me as 
discrete time functions, then the entries of Pare 
the inner products of these functions. So if P=I 
then these rows are mutually orthonormal in 
f2-sense. The next step is an embedding of an 
all-pass function . with McMillan degree n in one 
with degree kxn, which has a controllability 
matrix with kxn rows. If we let k-ioo this leads to 
an infinite number of rows or orthonormal 
funetions. 

If G(z)=C[zl-A]-lB+D is a square stabie all-pass 
function with McMillan degree n, then theorem 
2.2 shows that Pand Q, defined by (2.2) satisfy 
PQ=1. We ean always find a minimal realization 
with P=Q=I, using well known balancing 
techlliques (Laub, 1980; Moore, 1981; Enns, 1984). 

So AA * +BB* =1 (3.1a) 

alld A * A+C*C=I (3.1b) 

Stability and minimality imply that the 
controllability and observability matrix (1.2a,b) of 
the realization have an orthonormality property: 

MeM~ = P = I (3.2a) 

MbMo = Q = I (3.2b) 

Hence we can consider the rows of Me (and · Mb) 
as n mutually orthonormal discrete time functions. 

REMAR.K 3.1. Fot such a realization we can show 
that (3 .2a,b) gives us also the singular value 
decomposition of the Hankel matrix H 
eorresponding to G. It is weIl know that H=MoMe 
and beeause the Hankel singular values of Gare 
all equal to unity this gives the singular value 
decomposition of H: 

H=U~V*, U=Mo, ~=I, V=M~. (3.3)0 

The next step is to embed G in an all-pass 
function with larger McMillan degree. If G(z) is a 

square all-pass function then it is c1ear that Gk(z) 
is all-pass for kdN. The following lemma shows 

that we cau easily find a realization of G2(z) with 
the property (3.la,b). 

LEMMA 3.2. (Heuberger, 1990b). 

Let G(z)=C[zI-Al-IB+D be a square stabie 

all-pass function with AA*+BB*=ln and 

A * A+C*C=ln. Let G2(Z)=G2(z) then G2 has a 
stabie, minimal realization [A2,B2,C2,D2l with: 

A2=[~C 1] B2=[~D] C2=[DC Cl D2=D
2 

(3.4a) 
and . 

A2A; + B2B; = A;A2 + C;C2 = hn (3.4b)0 
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As a result of lemma 3.2 we can again consider 
the rows of the controllability and observability 
matrix of [A2,B2,C2,D2l as 2n orthonormal 
functions. Note that the first n 'controllability' 
funetions are the orthonormal 'controllability' 
functions of [A,B,C,DJ and that the last 11 
'observability' functions are the orthonormal 
'observability' functions of [A,B,C,DJ . The next 
theorem extends this property to arbitrary powers 
of G(z). 

TJlEOR.EII3.3. (Heuberger, 1990b). 

Let G(z)=C[zI-AJ-IB+D be a square stabie 

all-pass function with AA * +BB* =A * A+C*C=In. 

Let Gk(Z)=Gk(z) with kEIN, k>l. Then Gk has a 
stabie, minimql realization [Ak,Bk,Ck,Dkl with: 

A 0 
BC A 0 

Ak = BDC BC A 0 (3 .5a) 

and 

BD k-2 C·· BDC BC A 

B 
BD 

Bk = BD2 

BDk-l 

Ck =[D k-1C· .. D2C DC Cl 
Dk = Dk 

(3.5b) 

(3.5c) 

(3.5d) 

(3.6a) 

(3.6b)0 

By letting k-ioo theorem 3.3 aetually shows the 
construction of two infinite sequences of 
orthonormal fU11ctions, represented by the 
controllability and observability matrices of 
f Ak,Bk,Ck}. Note that the 'controllability' 
iunctions induced by Gk-l are the first kxn 
functions induced by Gk and the 'observability ' 
function of Gk-l are the last kxn 'observability ' 
functions of Gk .. 

REMAR.K 3.4. As mentioned in rem ark 3.1. the 
controllability and observability matrices of 
[Ak,Bk,Ck,DkJ define the singular value 
decomposition of the Hankel matrix of Gk. The 
structure of the realization (3.5) with the 
decomposition (3.3) shows that we have aetually 
extended the matrices U,V by adding extra 
columns, such that these extended matrices are 
still unitary. 0 

4 ORTHONORMAL FUNCTIONS FROM 
GENERAL TRANSFER FUNCTIONS 

In this section we use the results of the previous 
section in order to define sets of orthonormaJ 
functions based on an arbitrary FDLTS system G 



with McMillan degree n. This will be 
accomplished by splitting of an all-pass function 
and to use the method described in section 2. The 
line of thought is best understood by considering 
the Hankel matrix H of G. The singular . value 
decomposition of H is 

H=UI;V* (4.1a) 

U*U = VV* = I (4.1b) 
and I; is the diagonal matrjx with singular values. 

The unitarity of U and V implies that the 
columns of U and V can be seen as n orthonormal 
discrete time functions. We will extend one of 
these to an infinite number of orthonormal 
functions, such that we again have a recursive 
structure as in section 2. In general . it is not 
possible in general to èxtend U and V 
simultaneously, for aming at this recursive 
structure, because the Hankel singular values are 
not equal. We will consider the extension of V. 

If G(z) is an arbitrary FDLTS system then we can 
always construct a ' so called input balanced 
realization (Enns, 1984). This realization has the 

property AA * + BB* = I, A *I;2A + C*C = I;2, 
where I; is the diagonal matrix with Rankel 
singular-values. Let Me and Mo be as in (1.2) 

then MbMo=I;2 and MeM~=I. The Rankel matrix 
has a singular value decomposition (4.1) with 

U=MoE-1 and V=Mc, 

since H=MoMc=(MoE-l )EMc and U*U = yy* = I. 

We want to extend V=Me to a larger unitary 
matrix. This can be done with the thèory in the 
previous section if we can consider it as the 
controllability matrix of a realization of an 
all-pass function. Thus we want to expand {A,B} 

with new matrices {è,D} such that 

G(z)=è[zI-Ar1B+D is all-pass. Theorem 2.2 
shows that it is sufficient to require that. 

A* A+è*è=1. 
The following lemma shows that this is achieved 
through the singular value decomposition of A. . 

LEMMA 4.1. (Heuberger,1990b). Let AE{nxn, BE{nxm 

with A stabie, rank(B)=m~n and AA * +BB* =1. 

* Let A:;=UI;V be the svd of A and define 

F=UV* 

è=B*F. 

A*A+è*è=1. 

(4.2a) . 

(4.2b) 

then 1. 

2. 3 D=D* such that 

G(z)=è[zI-AJ-IB+D is all-pass 

BD=-FA*B 

Dè=-èA*F 

( 4.3a) 

(4.3b) 

(4.3c) 

( 4.3d)o 

30 

Note that in lemma 4.1. we did not require that 
{A,B} is part of an input balanced realization of a 

transfer function G, since AA * +BB* =1 does not 

. imply A * A+C*C=I;2. However if we do require 
this it follows, as stated before, that 

[B I AB I A 2B· .. J is exactly the matrix with the 
right hand side singular vectors of the Rankel 
matrix of G. 
The rank condition on B in lemma 4.1 is necessary 

to guarantee the existence of a Hermitian J5 that 
obeys (4.3), which we will need for the proof of 
the next theorem. . 

Lemma 4.1 thus shows how we can 'split off' an 
all-pass function from a FDLTS system. If we riow 
combine .the results of theorem 3.3 and lemma 4.1, 
we can extend the unitary matrix V (4.1) in a 
recursive way to an infinitely large unitary matrix. 
Another way of putting this is that we can create 
an infinite set of orthonormal functions, based on 
transfer functions. The exact form of the extension 
is given in the following theorem. 

TIIEOREM 4.2. (Heuberger,1990 b). Let AEPxn, 

stabie and BE{nxm with AA * + BB* =1 and 

rank(B)=m~n. Let A = UI;V* be a singular value 
decomposition of A. Define: 

Then 

F =UV* 

P =-F A * =-UEU* 

X =I-:A * A =I-VI;2y* 

Ae = 

A 
FX 
PFX 
p 2 FX 

o 
A 
FX · 
PFX 

o 
A 0 
FX A 0 .. 

( 4.4a) 

(4.4b) 

( 4.4c) 

( 4.5a) 

(4.5b) 

o 

PROOF: Lemma 4.1 shows that there exist C and . 

D such that G(z)=C[zI-AJ-IB+D is all-pass and 

BD=-F A *B=PB. Therefore BDk=pkB. Further 

C=B*F, so BC=BB*F=[I-AA *JF=F[I-A * AJ=FX. 

Substitution of the expressions for BDk and BC in 
theorem 3.3 gives Ae and Be. 0 

Theorem 4.2 shows how a pair {A,B}, which obeys 
the conditions of the tbeorem, gives rise to an 
infinite set of orthonormal functions, which are the 

rows of the matrix [Be I AeBe I A~Be ... J. 



If an arbitrary pair {A,B} is stabie and reachable 
there exist a sirnilarity transformation which 
transforms its Gramian into an identity matrix. 
The transformed pair then again gives rise to a set 
of orthonormal functions. Thus for any such pair 
{ A,B} we can define the set of orthonormal 
tunctions, which in the sequel we will denote by 
We{ A,B}. This is formalized in the following 
definition. . 

DEFINITION 4.3. EXTENSION PROCEDURE Let A({nxn, 

stabie, B({nxm, rank(B)=m~n, {A,B} reachable 

and P=P*>O the solution of APA * + BB* =P. Let 

W=..jf5, Ä=W-1AW and B=W-1B, leading to 

AA * +1313* =1 . Create with {A,13} the matrices Ae 
and Be as in tlleOfem 4.2. 
We define 'lPk-l{A,B} as the kth row of 

[Be I AeBe I A~Be ... ] (4.6a) 

and denote the set of these functions by 

we{A,B}:={ 1/Jb,1/Ji.··}* (4.6b)o 

With a small abuse of notation we will also use we 
to denote the matrix (4.6a). 

We can interpret We{A,B} as responses of a 

system Ge=fAe,Be,Ae,Be] as follows: Let BE{nxm 
and define the input vectors Ui(t)=Óit, i=1 to m. 
Apply this input to Ge, then the kth output will 
be 1/Jk-l- A more compact way of describing the 
functions in terms of signais, making full use of 
the structure, is presented in the following 
proposition. 

PR.OPOSITION 4.4. (Heuberger,1990b). Let {A,B} 
and F be as in theorem 4.2 and define for kElNU{O} 
the transfer function 

Hk(Z) = [[zl-Ar1F[I-ZA *]] \[zl-Ar1B (4.7a) 

Let Mi for iEINU{Ol denote the Markov parameters 
of Hk and define the matrix 

(4.7b) 

Then the rows of .J(k are the elements of we, 
number kxn+l to (k+l)xn. 0 

The simplest example of proposition 4.4 is the 

case k=O, then Ho(z)=z[zl-Ar1B, with 

vf4>= [B I AB I A 2B· .] which are the first n 
functions. Note that if BE{n, SO only one input, 
then .J(k gives the impulse responses of Hk(Z). 
This property will be of use for transformation of 
a finite time-series in terms of the elements of We, 
which will be covered in section 6. 
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REMAR.K 4.5. In this section we only dealt with the 
'input side' of a transfer function. An analogous 
procedure can he carried out on the output side 
with output balanced realizations, taking the first 
n orthogonal functions from the left hand side 
singular vectors of the Hankel matrix of G. What 
we established in this section is thus that given a 

FDLTS G(z) with Hankel matrix H=UEV*, we 
defined a method to extend the matrix V to an 
infinite matrix Ve by adding new columns or 
equivalently to extend U to U e. 0 

Completeness 

We have now defined a method to create an 
infinite sequence of orthonormal functions, based 
on a transfer function. Our goal is to use these 
functions to describe linear systems and to use 
them for system identification as is done for 
instance with Laguerre polynomials in (King and 
Paraskevopoulos, 1979; Nurges, 1987; Wahlberg, 

1989; Heuberger, 1990b). A necessary condition 
will be that these functions form a basis for the 
function space we wish to consider, which in our 
case is /2 (1.3). In other words we have to show 
that, under appropriate conditions on {A,B}, 
We{A,B} forms a complete orthonotmal basis for 
h This result is presented in the following 
theorem. 

THEOR.EM 4.6. (Heuberger, 1990b). 

Let AE{nxn, stabie, BE{nxm, rank(B)=m~n and 
{A,B} a reachable pair. Let we{A,B} be defined 
as in definition 4.3. Then this set of functions 
forms a complete orthonormal basis for /2, as 
defined by (1.3) 0 

The proof is based on WeW:= W:We=Ie. 
A simple example shows why the property that 

WeW:=Ie is not sufficient for completeness and 

why we need W!We=Ie. Consider the matrix f: 

01000 .. · 
00100 .. ' 

f=00010'" then f*f= [0 11 .] and fr*=I, 

and consider the rows of r as discrete time 
functions. It is dear that this constitutes an 
orthonormal set. All functions are also in /2, but 
we do not have a basis for /2 since the function 
(1 0 0 O· .. ) cannot be written as a converging sum 
of the other functions. This can be translated to 

the fact that f*fi=1. 

The rank condition on B in theorem 4.6 is 
necessary to omit situations like the oneabove. If 
B is for instance of the form B=[Bl 0] then Be will 
also be of this form, causing We to have zero 
columns. 



Theorem 4.6 shows that the set of orthonormal 
functions, based on a transfer function, that we 
introduced, . forms an orthonormal basis for the 
space e2• This shows that any e2-time series can be 
written as a converging sum of these functions. In 
section 6 we will apply this to input/output pairs 
{u(t),y(t)} of a linear system, with u,yEe2, and we 
will show how we can use these results in order to 
define an alternative description of a linear 
system. We first give some examples of the 
extension procedure. 

5 EXAMPLES OF ORTHONORMAL SETS 

In this section we will give 2 examples of weU 
known orthogonal sets of functions, the Laguerre 
polynomials and the discrete pulse functions, and 
we will show that they can be derived using the 
extension procedure outlined in the previous 
paragraphs, by choosing aspecific system as 
'generator'. 

1. Laguerre polynomials 

Let G(z) be a first order stabie SISO-system with 
an input balanced realization [A,B,C,DJ. Let A=f" 
I~î<l and B=.fi/ where 7]:=1-f,,2. Now follow the 
procedure outlined in theorem 4.2. The singular 

value decomposition of A is A= UEV* with 
U=V=1 and E=ç. Substitute this in (4.4), then 
we get: 

F=l, P=-ç, X=Tl (5.1a) 

and substitution in (4.5) results in: 

.fi/ 

Be = - ç.fiJ (5.1b) 
. f,,2.fiJ . 

o 
ç 0 
Tl. f", 0 

These are exactly the matrices that constitute the 
finite difference Laguerre polynomials 
(Paraskevopoulos, 1985). If we look at the 
generating transfer . functions, defined in 
proposition 4.4 

and substitute A=f", B=.fi/ then we get 

(5.1c) 

which are the generating Laguerre transfer 
functions (Nurges and Yaaksoo, 1981). This shows 
that with the extension procedure we generalized 
the construction of the Laguerre polynomials. 
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2. Pulse functions 

Let G(z) be a system with a finite impulse 
response. We can construct a realization 
[A,B,C,Dl of G with A=O,B=I, which in general 
will not be minimal but fulfils the conditions of 
theorem 4.2. A singular value decomposition of A 

is A=UEV* with U=V=I and E=O. Substitution 
in (4.4) and (4 .5) results in: 

F=X=I, P=O 

o 
I 0 

Ae= 0 I 0 
o 0 I 0 

I 
o 

Be = 0 
o 

I 0 
o I 

we=[BeIAeBeIA~Be"'] = 0 0 
o 0 

o 
1 0 
o 1 

(5.2a) 

(5.2b) 

(5.2c) 

So the extended set of functions are the pulse 
functions 7Pi(t)=Óit, which is in fact the usual 
basis for f2• 

These examples show that the extension procedure 
4.3 is quite natural and leads to a generalization 
of well-known orthonormal bases for f2. 

6 TRANSFORMATIONS 

In this section we use the orthonormal functions 
as a basis for f2 and expand time series in these 
functions. We will show that if this is applied to 
the input/output variables of a linear systeII1, this 
leads to another system description in terms of the 
coefficients of the expansion. Let {A,B} be stabie 

and reachable, AE{nxn, BE{nxm, rank(B)=m~n and 
let we{A,B} be defined by definition 4.3. 

1. Time series 

The set of functions we is complete in e2, so we 

can expand any C2-time series f( t) in these 
functions: 

00 

f(t) =k~O Fk1/Jk(t) 
00 

Fk = E f(t)7Pk(t) 
t=O 

where Fk E (P 

(6.1a) 

(6.1 b) 

In order to make full use of the structure we will 
group the orthogonal functions in groups of n 
functions and define : 

) [ * * *]* 'Pk( t := 7Pkn+b 7Pkn+2,' " 7Pkn+n . (6.2) 



This leads to: 
00 

f(t) = ~ Lk\o?k(t) 
k=O 

(6.3a) 

00 * Lk = ~ f(t)\o?k{t) 
'. t = 0 

(6.3b) 

where Lk E (pxn 

It is our goal . to use. this ~ransformation f?r 
identification purposes In whlch case we wIll 
actuaHyhave to calculate t.he ort~ono~mal 
coefficients {Lk}. In practIcal sItuatIOns, 
considering f( t) to be a , sequence of measured 
input and output signais, the nu mb er of points of f 
will be finite, f=[f(O),f(l),' .. ,f(N)]. . 
In (Heuberger, 1990b) it is shown that we can 
calculate the coefficients Lk by leading the inverse 
sequence [f(N)J(N-l),· .. J(o)] through t~e 
generating transfer functions Hk(Z), defined In 
l4.7a), and that Lk will be the output of this filter 
up on the last entry (f(o)). Because of the simple 
structure of {Hk(Z)} this calculation of the 

, coefficients can be done using a simple cascade 
like network (Heuberger, 1990b ) as is the case 
with , the Laguerre polynomials (King and 
P araskevopoulos, 1979). 

2. Systems 

Now suppose we have at hand an arbitrary pxm 
FDLTS system G(z) and let {u(t),y(t)} bè an 

input/output pair of G" with u€L~. The stability 

ensures that y(L~ and thus we can transform these 
signals with any set ll1e{A,B}. We do not assu~e 
any connection between G and {A,B}, but we wIlI 

assume that B ((nx1. Let Uk, Y k denote the 
orthogonal coefficients (6.3) of u(t) and y(t), 

UkE(mxn, YkÈ(pxn. The next theorem shows that 
these coefficientsare also connected through a 
line'ar system. We first define the transformation 
of a behavior. 

DEFINITION 6.1. Let {A,B} be a stabie, reachable 

pair, AE{nxn, BE{nxm with rank(B)=m~n and let 
G(z) be aFDLTS system. Let B(G) and we{A,B} 
be defined according to defini tion 1.1 res'p'ecti vely 
definition 4.3. We define the transform wlB(G)) of 
thebehavior B(G) by: 

w(8(G))= {(Vec(Uk),Vec(Yk)) 13 (u(t),y(t))E8(G) 
with Uk and Y k the orthonormal 
coefficients of u and 'y as defined by 
(6.3).} . , (6.4)0 

Note that the completeness of We implies that this 
is a bijective transformation. 

TIIEOR.EM 6.2. (Heuberger, 1990b). Let {A,B} be a 

stabie, reachable pair, AE{nxn, BE{nx1. 
Further, let G(z) be a pxm FDLTS system with 
McMillan degree ng and let w(8(G)) be defined 
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according to definition 6.1. . 
Then there exists a FDLTS system Go wlth 
dimension (pngxmng) and McMillan degree ng, 
such that 
a 8(Go)=w(8(G)) . 
b For every eigenvalue of A that IS a pole of G, 

the system Go will have a pole in z=O. . 0 

COR.OLLAR.Y 6.3. (Heuberger, 1990b). Given the 
conditions of theorem 6.2, if the eigenvalues of A 
coincide with the poles of G(z), then the system 
Go(z) will only have poles in z=o. These poles are 
not coupled and Go(z) will thus have only two non 
zero Markov parameters. 0 

The conditions of this corollary are for instanee 
fulfilled if A is the system matrix of a realization 
of G(z). One might say that in this situation all 
dynamic behavior is covered by the 
transformation. 

In Fig. 1 we visualize the bijective system 
transformation which is induced by the 
transformation of the time series. 

u(t) . y(t) 
~ G(z) Time domain ~ 

Transformation with ~e{A,B} 

1 1 ~ 

Fig. 1 Transformation of a system, applying the 
set ' W e{ A,B} of orthonormal functions. 

REMAR.K 6.4. . 
1. For the case that the orthonormal ,functior:s 
are the ' Laguerre polynomials then theorem 6.1 ' IS 
given by Nurges and Yaaksoo (1~81). . 
2. It is important to emphaslze here that the 
input/output dimension of th~ transformed s~s~em 
is larger than the dimensIOn of the ongmal 
system. 
3. In Heuberger (1990b) two conjectures are given 
which state that G and Go have the same Hankel 
norm and the same Loo norm. 

7. APPLICATION TO IDENTIFICATION 

In analogy with the Laguerre ' polynomials (King 
and Paraskevopoulos, 1979;Nurges, 1987; 
Wahlberg, 1989; Heuberger, 1990b) .we can. use the 
generalized orthonormal . functIOns In an 
identification setting. This approach can be of 
great use if we have some knowledge about the 
system at hand, for i!1stance when ~i&e!1modes are 

,(partially) known or If we have an InItlal &uess of 
the system from theoreticalor expenmental 
modeling. In that case we can create an {A,B} 



pair which reflects our knowledge and use 
We.{A,B} in an identification setting. In this 
section two identification methods are given, that 
use the generalized orthonormal functions. Both 
methods combine the use of the orthonormal 
functions with fairly simple estimation techniques, 
that lead to an easy to calculate solution. The 
motivation for this is to derive satisfactory results 
with simple techniques and to avoid the problems 
that arise with standard methods that use 
nonlinear optimization techniques. 
If we use we{A,B} as a basis of the function space 
of inputs and outputs, then theorem 6.2 and 
corollary 6.3 show that a 'correct' {A,B} pair will 
lead to a system with only 2 Markov parameters. 
This could be seen as a search for that set of 
orthonormal functions that minimizes the dynamic 
behavior. Method 1 is based on this idea. 
Method 2 uses the generating transfer functions 
(4.7a) as a basis of the frequency domain, in other 
words it is based on an expansion of the transfer 
function of a system in the generating transfer 
functions. In the case that {A,B} is 'correct' this 
would mean that only the first n elements of such 
an expansion will contain information. This 
method can also be considered as an 
approximation of the impulse response of a system 
in terms of the orthonormal functions we. 

1. Transformation and ARX 

This method is based on the transformation of 
time series and systems as described in section 6 
and is a generalization of identification methods, 
using Laguerre polynomials, proposed by King and 
Paraskevopoulos (1979) and Nurges (1987). 
The estimation technique involved is referred to as 
ARX, which is a bit misleading because it is in 
fact a name for the following model structure: 

y(Hn) + An-1y(Hn-1) + ... + Aoy(t) = 

Bnu(t+n) + ... + Bou(t) + e(t) (7.1) 

whereu(t),y(t) and e(t) are respectively the input, 
output and disturbance of the model and Ai,Bi are 
constant matrices of appropriate dimensions. The 
parameters Aï,Bi in (7.1) can be estimated using a 
least squares algorithm (Ljung, 1987). We use the 
term ARX for this method. 
The method we propose needs an orthonormal set 
to begin with. This can be the result of a priori 
knowledge or previous modeling. We of ten used 
Laguerre polynomials as a first choice. Now 
assume that a set we is given and that we have 
recorded input and output sequences of a system 

G and we wish to find an estimate Ö. 
The procedure consists of the following steps: 

1. transform input u( t) and output y( t) with we 
into orthonormal coefficients (6.3b) Uk and Y k. 

2. Estimate in the 'orthonormal domain' aGo 
with ARX from Vec(Uk) and Vec(Yk). 
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3. Transform Go back to a 'time domain' system 

G. 
This procedure might be done iteratively, by using 

the resulting estimate G to form a new set of 

functions we{Á,Î3} and repeating. the procedure. 
This might be seen as a search for the 'best' basis 
for the decomposition of the signais. 

2. Estimation of impulse response parameters 

This method is in fact 'a generalization of the 
estimation of a finite number of Markov 
parameters of a system. As in the previous method 
we need an orthonormal set as initialization and 
we use the generating transfer functions Hk(Z), 
defined in (4.7a) and write: 

1 00 

G(z) = D + Zk ~o CkHk(Z) + E(z) (7.2a) 

where E(z) denotes the disturbance. The 
completeness of {Hk(Z)} for the frequency domain 
is a direct result of theorem 4.6, but we will not 
go into this here. 
We approximate G(z) with a finite expansion 

, 'IN, , 
G(z) = D + Zk~oCkHk(Z) + E(z) (7.2b) 

and estimate the êk parameters, with a least 
squares algorithm. A weIl known example of this 
method is the case where the orthonormal 
functions are generated by A=O and B=1. In 
section 5 it was shown how this leads to the pulse 
functions, with Hk(Z)=z-k+l. Hence in this case the 
Ck parameters are the Markov parameters of G, 

and the method is known a the estimation of a 
FIR (finite impulse response) model (Ljung, 19S7). 
Note that if {A,B} coincide with G, this leads to 
Ck=O, k>O. This procedure ' can be seen as a 
search for the 'best' basis to decomposethe 
impulse response of a system and is a 
generalization of the algorithm of Zervos c.s 
(1985), using Laguerre polynomials. 

3. Example 

As an example of these methods, we have 
simulated a 4th order SISO system, with a pseudo 
random binary signal as input and additive noise 
on the output, such that the signal to noise ratio 
on the output is 0 dB. The system has important 
high and low frequent behavior, which can be seen 
in Fig. 3 and Fig. 4, where the solid line depicts 
respectively the step response and the Bode 
amplitude of the system. 

Method 1. 
We compare the result of ARX in the time 
domain with the first orthonormal method, 
described above. First (in the time domain) an Sth 



order ARX system was estimated. For the 
orthogonal method we used a simple first order 
system (A=0.5) to generate the orthonormal 
functions . . In Fig. 2 we show the deterministic 
output y(t) of the system, the additive noise and 
the orthonormal output Yk, which is the transform 
of y(t)+noise. We transformed 1100 samples of 
y( t )+noise into 500 orthonormal coefficients Y k. 
Coefficients Yk with k>500 are negligible which 
shows that the transformation leads to a 
considerable data reduction. In Fig. 3 and 4 the 
step responses and Bode amplitudes are depicted 
of the original system and the approximations. As 
to be expected the ARX method gives an estimate 
which fits the first 8 true Markov parameters, 
(Swaanenburg and co-workers, 1985; Van den Hof 
and Janssen, 1987) which can be seen in Fig. 3. 
Figure 4 shows that the result of the ARX method 
is only satisfactory for the very high frequencies 
and that the orthogonal method gives a much 
better approximation over the whole frequency 
range. 

Method 2. 
For this method we used the same input and 
output data as for method 1. In Fig. 5 and 6 we 
compare the result of estimating Markov 
parameters (FIR) in the time domain with 
application of the second orthonormal method. 
The model that resulted from method 1, as 
described . above, was used to generate the 
orthonormal Junctions. From the estirriated 
MMkov parameters a state space model was 
realized, using approximate realization, leading to 
a 13 th order model. This high order is the result of 
the large amount of noise, which leads to a large 
variance in the estimated parameters. Since the 
data are produced by an output error model it is 
to be expected that an output error method like 
FIR gives a bet ter approximation then ARX. 
Comparison of Fig. 4 and Fig. 6 shows that this is 
indeed the case. The result of method 2 is clearly 
superior, it is . a 5th order model which is slightly 
better than the result of scheme 1. 

CONCLUSIONS 

We have shown that every fini te dimensional 
stabie linear discrete time system in a natural way 
gives rise to two sets of orthonormal functions, 
based on input and output balanced realizations, 
that are complete in [2. This is done by splitting 
of the all-pass part of the transfer function or, 
equivalently, by extending the matrices of singular 
vectors, corresponding with the Hankel matrix of 
the system. These functions, to be seen as a 
multivariable extension of the orthogonal 
polynomials, form a natural basis te describe the 
system behavior. It has been shown that these 
functions give ri se to new possibilities for the 
construct ion of approximate system identification 
methods. 
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Abstract. In approximate identification the actual purpose of the modeling procedure 
should be taken into account, in order to guarantee that the identified model is suited 
for its intended application. The fractional representation approach offers a setting 
that we claim to be suited to identify modeis, that can be used to design a controller 
for the system under consideration. In this paper we apply the algebraic systems 
theory to an uncorrupted linear feedback system with one input. Doing so, the closed 
loop identification problem is recasted into an open loop identification problem. The 
results presented are preliminary, but they are ready for generalization to a more 
general configuration. 
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INTRODUCTION 

In this paper we address the problem of identi­
fying modeis, that have to be appropriate for 
control design. Let us first focus on this ultimate 
objective of the identification. Con trol design 
algorithms get intractable, if they are applied to 

. models of high complexity. So in order to prac­
tise control design we have to come up with fair­
Iy simple modeis · of complex systems. In fact 
these simple models have to reflect all characte­
ristics of the plant, that a.re important in the 
closed loop, e.g. the feedback system of fig. 1. In 
robust control theory the ubiquitous approach is 
to approximate the plant by a nominal model 
and, in one way or another, to supply a supple­
mentary model, that reflects the deficiency of the 
nominal model with respect to the plant (Doyle 
and Stein, 1981; Vidyasagar and Kimura, 1986; 
and many references in Dorato, 1987). 

Fig. 1. Basic feedback system. 

Of ten the nominal model is linear time-invariant 
and finite dimensional and the supplementary 
model consists of one or more bounded terms. 
The latter can be given e.g. by intervals, in 
which some parameters take their values, or e.g. 
a plant P can be modeled as Po+&, where Po has 
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low complexity and & is bounded like 11&1100<0'. 
Any such description will be cal led a supple­
mentary model bound. In this way a model con­
sists of both a nominal model and a supple­
mentary model bound. Note that usually a model 
induces a class of input-ouput maps, since e.g. 
many &'s satisfy the bound. 

In view of the objective of control design a sub­
stantial difference between the nominal model 
and the plant may very well be acceptable or 
even required. In this regard we are obviously 
dealing with approximate identification. Now let 
us pay some attention to this aspect and recall 
several results from the literature: In Ljung and 
Van Overbeek (1978) it has been indicated, that 
to a large extent the outcome of an approximate 
identification is influenced by the specific con­
ditions, that come into play while performing the 
procedure. Of ten several of these conditions can 
be chosen freely. One can think of the modelset, 
input signals etcetera. For some of these con­
ditions, the consequences of aspecific choice have 
been investigated in e.g. Ljung (1985, 1989) and 
Van den Hof (1989a, 1989b). A lot of attent ion 
has been paid to experiment design in 
approximate identification (Gevers and Ljung, 
1986; Wahlberg and Ljung, 1986; Yuan and 
Ljung, 1985). The starting-point in these 
references is the observation, that in the ultimate 
application an approximate model will not per­
form as wen as an exact model of the plant. 
Clearly the goal of experiment design is to 
minimize this performance degradation by choo­
sing the right experiment al conditions. Even so if 



an identified model Po is close to plant P, and 
thus II~II is small, then the model may be expec­
ted to result in a good performance, provided 
that in the identification the deficiency of the 
nominal model has been minimized in a proper 
sense. Apparently we may as · weIl interpret ap­
proximate identification as defining the supple­
mentary model and minimizing its bound. 

In case the aim is control system design we 
might regard identification as obtaining a good 
fit of the nominal model as weIl as settling the 
supplementary model just there, where it affects 
the closed loop as little as possible. To our know­
ledge, the concepts of the pole placement control­
ler and the minimum variance controller are the 
only control strategies, for ~~ic~ the perfor~ance 
degradation has been IIllllimlzed analytlcally. 
This resulted in an optimal identification experi­
ment design (Gevers and Ljung, 1986; Ljung, 
1987)' i.e. in its class the model identified under 
the p~escribed conditions, is best suited to design 
the specific controller for the plant . UnfortuJ;late­
ly such an explicit solution does not seem to be 
tractable for more complex control design 
methods. 

The key to identification in behalf of control de­
sign is answering the question: what aspects of a 
system are important for con~rol design? Clea:-Iy 
we would like to come up wIth a model, WhlCh 
both is close to the plant and gives rise to such a 
controller, that only small dif~e~ences occur 
bet ween the feedback system contammg the plant 
and the feedback system containing the model. In 
this context we claim, that the fractional repre­
sentation approach offers a proper setting for 
solving the identification problem. The incentive 
behind this claim is twofold. 
Fitst knowing that in approximate identification 
the resulting model depends in particular on the 
experimental conditions, intuition says that if the 
plant will operate ultimately in a closed loop, 
then the identification should be performed m 
some closed loop, that is very much alike. And 
secondly the set of all plants, that are stabilized 
by a known controller can be parametrized by 
means of . the fractional representation (Hansen, 
1989' Hansen et al., 1988, 1989). 80 if we know a 
cont{'oller, that stabilizes the plant, then imme­
diately'the plant can be parametrized as a fU!lc­
tion of this controller. However the correspondmg 
set is rather extensive: e.g. iiJ. case of a stabie 
controller it contains also the zero system. There­
fore we aim at shrinking this set by means of an 
identification procedure. 

Our choice to use the fractional representation in 
identification with control design as an objective, 
can be solidified by recalling a couple of results 
from literature. First the fractional represen­
tation has been crucial in the development of 
con trol design techniques, that directly address 
the performance of the feedback system (Boyd, et 
al. , 1988; Gustafson and Desoer, 1983). And 
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secondly in Hansen (1989) and Hansen et al. 
(1988, 1989) fractional representa~ions . hav~ been 
used in the analysis of the exact IdentlficatlOn of 
a plant in a noise c~rrupted fe~dback sJ-:ste~. 
This resulted not only In an expenment deSIgn m 
terms of the loop inputs instead of the plant 
inputs, but also in an equivalent open lo~p ld~n­
tification problem. Though approxlmate ldentlfi­
cat ion of the nominal model has not been con­
sidered in these references, the results on 
recasting closed loop ~r?blems into open loop 
problems are quite promlsmg. towards thlS area. 

In this paper we present a closer investiga~ion 
into the application of fractional representat~ons 
in (approximate) identification of a nommal 
model. More specific, as a start of a series of such 
investigations, we consider the identification of a 
plant in a noiseless en~ironment. T~e results 
derived here can and wIlI be generahzed to a 
more general configuration. . . . 
We start with some notation and general prehml­
naries in the next section. Then given a control­
ler C we use the fractional representation 
approach to parametrize all plants P, that make 
the feedback system of fig. 1 stabie. We ~ill 
indicate this feedback system by H(P,C), WhlCh 
denotes the mapping from (T,Te) into (Uc, u). Fur­
ther we analyze the single variate con trol system 
Hs(P C) which equals H(P,C) in case of Te=O 
(Des~er 'et al., 1980). From this. analysis . we 
obtain the main result of the paper, I.e. a settmg, 
that appears to be suited for the identification of 
models that are appropriate for con trol design. 
In a cllscussion we outline some experiment de­
sign variables offered by this setting and we 
summarize a variety of aspects, that are worth­
while to be subjected to further investigations. 
We also pay some attention to the paradox 
bet ween the aspect of control design and the 
paraphrase 'given a controller C'. Finally we end 
up with conclusions and fut ure work. 

NOTATION AND PRELIMINARIES 

In this section we introduce some notation, we 
define the algebraic structure used in this paper 
and we summarize several results from the 
algebraic theory o~ fraction~l represe~tations. For 
a proper introductlOn to thlS axIOmatIc theory we 
refer to Desoer et al. (1980, part II) and additio­
nally Vidyasagar et al. (1982, parts land II). ~ 
sufficient background on the standard algebralc 
terms can be found in Vidyasagar (1985, appen­
dix A). 

Algebraic structure. Let 1 he a principal ring 
and let 1 he the quotient field of X, i.e. 
1: = { al b I a, bEl, b#O}. Furthermore let J be the 
group of units in 1:. J:={ al a,a-1El}. Throughout 
the paper 1 will be considered as the set of all 
stabie plants. As an example one could think of X 



to consist of all scalar rational plants, that have 
their poles in the open left half plane. Then 1 
contains all rational not necessarily proper plants 
and every element of J is stabie and stably 
invertible. However due to the generality of the 
algebraic setting the results also hold for discrete 
time systems and distributed systems. Our struc­
ture resembles the one used in Vidyasagar et al. 
(1982) and it differs from the algebraic structure 
built in Desoer et al. (1980), where, in terms of 
the example, only proper plants have been 
considered. 
A plant P with minputs and p outputs and with 
all its entries in the ring 'K is an element of 'Kpxm. 
However dimensions are not an issue in this 
paper and for the sake of conciseness we will 
denote lpxm as 1 and likewise for 1 and J. 

Algebraic theory. Wè recall several definitions 
and facts from the algebraic theory of fractional 
representations. 
The factors N,DE'K are right coprime over the 
ring of stabie plants if there exist X, YE'K such 
that XN+ YD=1. We will caU the factors X, Y 
right Bezout factors of the pair (N,D). The pair 
(N,D) is said to be a right coprime factorization 
(rcf) of the plant PE1 if det(D}/O, P=N[)-l and 
N,DE'K are right . coprime. Analogously left co­
primeness and a left coprime factorization (lcf) 

are defined with the pair (D,N) such . that 

NX+DV=! and P=D-lN. 
Some nice results with respect to the stability of 
the feedback system H(P,C} of figure 1 have been 
based on these factorizations. In the sequel both 
plant Pand controller Care considered to be in 
1. The next lemma states a necessary and suffi­
cient .condition for a plant P and a controller C 
to make a stabie feedback system H{P,C}. 

Lemma 1 (Vidyasagar, et al., 1982). Let (Np,Dp) 

be a rcf of P and (De,Ne) a lcf of C. Then the 
loop H(P,C} is stabie if and only if A, defined as 

A = DeDp + NeNp, (1) 
is unimodular in 'K, i.e. AEJ. o 

We like to recaU, that in this lemma the notions 
of stability concerns the boundedness of the map­
ping H(P,C} from the two outer loop signals r 
and re to the two inner loop signals u and Ue 
(fig.1). Clearly the stability condition holds 
irrespective of the fact whether the signals are 
deterministic or stochastic. 
Since A in equation (1) is stably invertible, it can 
easily be shown, that tor any rcf (Np,Dp) of plant 

P, every stabilizing controller C has a {De,Nc} 
such that 

(2) 

and thus De,Ne are Bezout factors of Np,Dp and 
vice versa. 
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ANALYSIS OF THE NOISELESS CASE 

In this section we use the establishments of the 
fractional representation theory to analyze the 
single variate control system Hs(P, C}, which 
equals the feedback system H(P,C} of fig. J in 
case re=O. Thereby we recast the closed loop 
identification problem into an open loop iden­
tification problem. 

Like in Hansen et al. (1988, 1989) we model a 
plant P, that makes a stabie feedback system 
H{P,C}, by means of the dual of the fractional 
representation approach to control design. In this 
modeling procedure it is pivotal to know a con­
troller, that stabilizes the unknown plant. Later 
on we will use this model in the analysis of the 
single input feedback system Hs(P,C}. 
Using the stability condition of lemma 1 together 
with just any plant Po that is stabilized by 
controller C, it is possible to derive the following 
necessary and sufficient condition for a plant P 
to make a stabie feedback system H(P,C}. 
Though this is the dual of the weU-established 
control design result (Desoer, et al., 1980), we 
supply an alternative simple proof in appendix P. 

Lemma 2. Given a controller C with rcf {Nc,De} 
and given a rcf (No , Do} of just any plant Po, 
such that H(Po,C} is stabie, then H(P,C} is 
stabie, if and only if Padmits a rcfl (Np,Dp) with 

Np = (No+DeR), Dp = (Do-NeR) , (3). 

and REl is such that det (Do-NeR}/O. o 

PLANT 

y 

Fig. 2: R-parameterization of Hs(P,C). 

Apparently lemma 2 can be interpreted as 
follows: any RE'K with det {Do-NeR}/O gives ri se 
to a plant P such that H{P,C} is stabie. This we 
caU the R-parameterization of the set of all 
plants, that are stabilized by controller C. 
Since stability of the loop (Po, C) is the only 

1) As a consequence of the algebraic structure, only 
plants, that admit rcf's as weil as Iers over 1{, are 
considered (see Desoer and Gundes, 1988; and 
Anantharam, 1985). 



requirement on Po in lemma 2, we could as weU 

use the Bezout factors Xe, Ye of (De,Ne) as No 

respectively Do; i.e. Po:=Xe Ye-l. 

Corollary 1. Given controller C with rcf (Ne,De) 

and ' lcf (De,Ne) satisfying NeXc+ De Ye=I, then 
H(P,C} is stabie, if and only if Padmits a rcf 
(Np,Dp) with 

Np = (Xe+DeR), Dp = (Yc-NeR), (4) 

where REl is such that det(Yc-NeR}:FO. Moreover 
any such rcf constitutes Bewut factors of the lcf 

(De,Ne) of the controller and vice versa. 0 

Proof. 8ee 'appendix P. 

Now we come to the key result of this paper. 
Getting ahead of the next section we state, that 
in view of control design it comes in useful to 
identify the plant P in terms of its right coprime 
factors Np and Dp. In order to realize this we 
intr,oduce the intermediate variabie z as z=Dp-lu, 
and with y=Pu=NpDp-lu this leads to 

[~] = [~:] z. (5) 

Now we focus on the single variate control 
system Hs(P, C} of fig. 2. By equation , (3) it is 
easy to verify, that z in equation (5) and z in 
fig. 2 are one and the same variabie. Identifi­
cat ion of the mapping from z to (u,y) would solve 
our problem. Referring to fig. 2 it is ' common to 
assume, that only u, y and r can possibly be 
measured. Therefore we propose the construction 
of the variabie z from reference signal r, using 
the R-parameterization. 

Proposition 1. , Let the controller C with lcf 

(De , Ne} stabilize both the unknown plant Pand 
any plant Po with ref (No, Do}2. Then the inter­
mediate variabie z originating from the feedback 
system Hs(P,C) of fig. 2, can be constructed by 
means of the stabie mapping 

z = Ao-1Ner, 

with Ao=DeDo+NeNo. 

Proof. 8ee appendix P. 

(6) 

In case the signal r is not measurable, we still 
can construct the variabie z by applying the next 
corollary, which follows from the proof of the 
proposition above. 

Corollary 2. Vnder the conditions given in propo­
sition 1, the variabie z can be constructed by 

z = Ao-l(Deu+NeY}. (7) 

Note that in equations (6) and (7) only factors of 

2) i.e. H(P,C) is stabie and thus lemma 2 is applicable. 
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the controller and the known plant Po have been 
used. 80 no information on the plant P is needed 
to construct z from r. Further it is remarkable, 

that AO-1Ne depends on thespecific rcf (No,Do) of 

Po and it does not dep end on what lef (De,Ne) 
has been chosen for C: any other lef of C can be 

written as (ADe,ANe) leading to AA in equation 

(1), and in the product (AAy-1A1ve the factor A is, 
canceled. 80 without loss of generality, that is 
without affecting the mapping from r toz, we 

can choose a lef for G, slich that De,Ne are right 
Bezout factors of (No,Do) (see equation (2)). In 

this case Ao=I and z=Ner. 
We end up this section, making aremark with 
respect to the necessity of the condition in 
lemma 2. That result has been derived for the 
feedback system H(P,G), which has two loop 
inputs, whereas we analyzed Hs(P,C} with just 
one loop input. Indeed in the latter case the 
necessity of the condition does not hold as is 
shown by a counter example in appendix E. 
Nevertheless we restricted the investigation 
deliberately to only the set of plant givEm by the 
R-parametrization of lemma 2, in order that the 
setting is readily extendible to a configuration 
with a so-called two-input plant (Schrama, 
1990). ' 

A 8UITABLE SETTING FOR 
IDENTIFICATION 

The analysis of , the previous section opens up 
several new possibilities in the identification for 
the purpose of control design. Here we like , to 
mention a few of them and we have to admit, 
that the end of this section does not go without 
speculations. 
Let us first return to proposition 1 and examine 
what happens, if the mapping in equation (5) is 
identified. Suppose the factorizations of G and Po 
have simple dynamics and suppose r is a white 
noise signal, then byequation (6) z will have a 
simple spectrum. If at the same time the plant P 
is very complex, then this complexity will be 
reflected in u and y, and thus it asserts itself in 
the identification. This 'simplicity' of z is not 
immediate from equation (7) . 
We can point out several variables, that influence 
the identification procedure. The controller and 
signal r share this property straight on: it is well­
known, that the identification result can be 
manipulated via the signal spectra (Gevers and 
Ljung, 1986~ Hansen et al, 1988, 1989; Yuan and 
Ljung, 1985) and these latter depend on both C 
and r. Further as indicated in the previous sec-

tion the mapping AO-1Ne of equation (6) depends 
on Po and its specific rcf (No, Do}. Therefore Po 
and its rcf can be seen as frequency weighting 
functions. We also mentioned, that without loss 

of generality the lcf (De, Ne} , of C can be chosen 



such that z=Ner. We emphasize that now every 
alteration of Po or its rcf immediately leads to a 

change of its right Bezout factors De, Ne, and 

thus Ne cannot be chosen freely . Moreover if Po 
is used to stress e.g. low frequency dynamics, 

then this reasse,:ts itself in Ne. 
Since all these variables are at our disposal, they 
are actually experiment design variables. Though 
it is clear that they do affect the identification 
result , we do not know yet how it comes about. 
This aspect of experiment design definitely needs 
further investigation and most probably we can 
take advantage of the results of Hansen (1989) at 
this point. 

Now we pay some attent ion to the aspect of ap­
proximation. If in equation (3) Po and (No,Do) 
are such that R is small in any sense, then evi­
dently the model Po can be said to be close to 
the plant P. At this stage we can clarify why we 
have chosen a rcf model of the plant instead of a 
lef as in Hansen (1989) and .Hansen, et al. (1988, 
1989). In these references the experiment design 
problem for exact closed loop identification has 
been tackled by considering the identification of 
a term equivalent to R. Unfortunately in general 
this leads to an increase of the dimension of the 
problem in the sense of the order of the models 
involved. On the other hand if we use a rcf and 
equation (5), then we can restrain the order of 
the approximating model in a straightforward 
manner. 

Next we consider control design. There is a 
strong relationship bet ween the fractional repre­
sentation and the graph topology, which is the 
weakest topology in which feedbackstability is a 
robust property (Vidyasagar, et al., 1982); simply 
stated if a sequence Pi converges to P in this 
topology, then the sequence of feedback systems 
H(Pi,C} converges to H(P,C}. This topology is 
induced by the gap metric, which can be defined 
in terms of factorizations3. In fact if Po is close 
enough to P in this gap metric, then we can 
practice robust control design onto Po, such that 
stabilization of P is guaranteed (Bongers and 
Bosgra, 1990; Glover and McFarlane, 1988, 
1989). For more details on the gap metric we 
refer to Georgiou (1988). 

An interesting question that arises, is how to 
parameterize the factorizations. Since we have 
not solved this problem yet, we can not supply 
an example at this moment. An even further 
reaching problem is the incorporation of the 
metric itself in the identification. That is, if the 
identification comes up with some model Po, then 
given the data what can be said about R? The 
problem gets even more involved if some noise 
contributions are present. Since the latter will be 

3) At least for linear finite dimensional systems 
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the case in practice, first the setting has to be 
generalized to control systems with noise 
contributions and more inputs. This is currently 
performed (Schrama, 1990) based on Desoer and 
Gündes (1988) and Nett (1986). These lat ter 
references concern effectively the set of all proper 
linear systems, that have more than one input 
(and output) vector and that give rise to a stabie 
feedback system. 
Finally we address the paradox bet ween the 
aspect of con trol design and the need for a known 
controller, that stabilizes the plant. We like to 
urge that everything hinges on the design of a 
new controller. This can be realized in two ways. 
First a new robust controller could be designed 
e.g. in relation to the gap metric as mentioned 
earlier. Secondly one could think of an iterative 
scheme, in which both identification and control 
design are performed consecutively and repeated­
ly. At this moment it is untransparent to what 
this iteration will lead, but we have the strong 
impression, that the knowledge obtained in the 
successive identification procedures should be 
turned to use. This might very well be done by 
means of the design variabie Po. 

CONCLUSIONS AND FUTURE WORK 

We have put the single variate control system, 
i.e. the feedback system of fig. 1 with re=O, in a 
setting, that is suitable for approximate iden­
tification of the plant in terms of a right coprime 
factorization . Moreover the closed loop identifi­
cat ion problem has been recasted into an open 
loop identification problem. Modeis, that will be 
identified in this setting, appear to be well suited 
to control design. We pointed out, that the 
identification result is affected by several 
variables, that we have at our disposal. The 
precise impact of these variables needs further 
investigation. 
Furthermore we have mentioned, that this 
setting offers several possibilities in relation to 
approximate modeling and control. However it is 
not clear yet how to handle and to combine the 
different phenomena. 
Finally the generalization of the setting to 
multiple input noisy feedback systems is 
currently under investigation (Schrama, 1990) . 
And in the next future we will also examine the 
problem of parametrization and of pulling apart 
noise contributions from effects caused by 
unmodeled dynamics. 
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APPENDIX E 

By means of a counter example we show, that 
the necessity of the condition on P for H(P,C) to 
he stabie (lemma 2) does not hold for P to make 
a stabie closed loop Hs(P,C). Let P=s+l and 
C=l/(s+l) then in Hs(P,C) we have 

1 .I. el 7'2 T( 8-+"'71"') r, e2= 2 r, 
and thus all inner loop and output signals are 
bounded provided r is bounderl. The factors 

Nc,De,Xe,}re can be chosen as C\l,O,l and R 
follows uniquely from equation (4r R=!(S+I). 
This R is not an element of 1. Conclusively 
though Hs (P, C) is stabie, there is no 
R-parameterization of P. 0 

APPENDIXP 

Proof of lemma 2. 
IJ. Given P = NpDp-l with Np and Dp as de-



fined in equation (3) and a lef (De,Ne) of C. We 
show that the control system H(P,C} is stabie, 
and a fortiori that the pair (Np,Dp) is right 
coprime. Irrespective of the coprimeness of 

[
Np,Dp} we substitute equation (3) in equation 
1): . 

A = NdNo+ DeR} + DdDo-NeR} 

= NeNo + DeDo + (NeDc-DeNe}R. 
The factor (NeDc-DeNe) equals DdC-C}De, and 
thus the term preceding R is zero. Furthermore 
(Po,C) is stabie, so AEJ. Since by definition 

A=NeNp+ DeDp, both the coprimeness of (Np,Dp) 
and the stability of H(P,C) are guaranteed. 
Only ij Give9 H(P,C} is stabie then there exist 

a rcf (Np,Dp) of Pand lcf (De,Ne) of C such that 

DeDp+NeNp=I. Next let Po be any plant, that 
makes a stabie feedback system H(Po,C}, and for 
the moment let (No,Do) be a rcf that satisfies 

DeDo+ NeNo=I. Then let Rx be given implicitly 
by Np=No+DeRx, and thus Rx= De-1 (Np-No). In 
order to establish lemma 2 we have to prove 
consecutively, that al Dp equals Do-NeRx and bl 
Rx is stabie as in equation (3) . 
al Denote Dx=Do-NeRx, su bsti tu te Rx and 

NeDe-l=De-1Ne, then Dx=Do-De-1NdNp-No}. Use 

DeDo+ NeNo=I in the rearrangement of this 

expression to DeDx+NeNp=I. Together with 

DeDp+NeNp=I this shows that Dx=Dp. 
bl Now Dp=Do-NeRx and while by definition 
DpE1{, we have NeRx = Do-DpE'K. Furthermore 
DeRx= (Np-No}E'K. Since Ne,De are right coprime, 
there exist Xc, YeE'K such that YeDe+XeNe=I. 
Now XdNeRx)+ YdDeRx}=Rx and since 'K is a 
ring we have RxE'K. Finally extension of the proof 

to a rcf (No,Do) of Po with DeDo+NeNo=Ao and 
[fAoEJ becomes self--€vident by the choice of a 

rcf (Np,Dp) of P, such that DeDp+NeNp=Ao. 0 

This proof is more concise than the proof in 
Desoer et al. (1980), which has been derived for 
proper Pand C, that both have coprime 
factorizations. 

Proof of corollary 1. Analogously to the proof of 

lemma 2 the equation A=NeNp+DeDp can be 

o 

Proof of proposition 1. 
Using the R-parameterization in equation (5) we 
obtain 

u = Dpz = (Do-NeR}z 
y = Npz = (No+ DeR}z 

and from these equations 
Rz = Dc-1(y-NOZ) 

NeRz = Doz-u 
(the corresponding variables appear in fig. 2). 
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Substitute NeDe-1 = C = De-tNe and eliminate 
Rz, then we get 

(De Do + NeNo) Z = Deu + Ney. 
Rearrangement of the controller equation 

u=De-1Ne(r-y) shows, that the right hand term 

equals Ner. Finally since the loop ll(Po,C} is 

stabie, the factor (DeDo + NeNo) is stably 
invertible. 0 
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Abstract. This paperdiscusses various methods to compute the Hal-norm of a transfer 
function matrix with use of a related Hamiltonian matrix. The underlying theory will 
he illustrated with some examples. 
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NOTATION 

[A,B,C,D] state-space representation of a transfer 
function matrix G(s)= C[sI-A]-lB+D 

G'(s) transfose of G(s) 

g:~~~ g:~~ (8 = complex conjugate of s) 
I1max maximum singular value 

1. INTRODUCTION 

In the recent literature on robust analysis and 
control, see for instance (Doyle et al. / 1989; Franc­
is, 1987), the Hal-norm of a transfer function 
matrix plays an important role. The computation 
of the Hal-norm can be necessary either in analysis 
of a system, or in the synthesis of a controller, see 
for instanee (Scherer, 1989). 

Definition 1.1. Let a real-rational proper transfer 
function matrix G(s) be givenby lA,B,C,D], and 
let all the eigenvalues · of A have negative real 
part. Then the Hal-norm of G(s) is defined as the 
supremum of the maximum singular value of G(s), 
evaluated over the right half plane: 

IIGII:= sup 11 (G(s)) = 
al Re(s )~O max 

= sup I1max(G(jw)) 
we IR 

(1) 

The Hal-norm is defined for systems that are 
analytical in the closed right half plane. Systems 
that have no poles on the imaginary axis have a 
Lal-norm that is defined as the supremum of the 
maximum singular value of G(s) evaluated on the 
imaginary axis, so the last part of (1) also gives 
the Lm-norm in the case of unstable G(s).· 
Until 1988 not much attention . has been paid to 
the computation of the Hal-norm. The 'computa­
tion' was done by a search over frequencies. The 
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disadvantages of this approach are obvious: it 
cannot he used automatically within other 
algorithms, it takes a considerable amount of 
computer time, and no accuracy bound can be 
given. In 1988 a bisection algorithm was presented 
by Boyd, Balakrishnan and Kabamba (1988,1989) 
and Robel (1989), to compute the Hal-norm with 
guaranteed accuracy, using the relation bet ween 
the singular values of the transfer function matrix 
and the eigenvalues of a related Hamiltonian 
matrix. This bisection algorithm is much more 
efficient than a search over frequencies, but for 
repeated use as weIl as for very large systems, it is 
still not very fast. 
Several attempts have been made to reduce the 
computing time. The use of derivatives of the 
Hamiltonian matrix for a search algorithm has 
heen investigated by (Bruinsma, 1990). Boyd and 
Balakrishnan (1990) and independently Bruinsma 
and Steinbuch (1990) developed an algorithm 
approximating the Hm-norm with a lower bound, 
to which we will refer as the 'tw<Hltep algorithm'. 
This algorithm is much faster than the other 
methods. 
For an exact description and proofs of the 
algorithms we refer to the mentioned papers. Here 
we give a short description of the bisection 
algorithm, the algorithm using eigenvalue 
derivatives and the two-step algorithm. The role 
of the Hamiltonian matrix in these algorithms will 
he made clearer by giving some examples of how 
its eigenvalues behave. A comparison of the three 
algori thms will be gi ven. 

2. THEORETICAL BACKGROUND 

2.1. Hamiltonian Eigenvalues and Singular Values 

All algorithms des cri bed in this article are based 
on arelation bet ween the singular values of a 



transfer function G(s) and the eigenvalues of a 
related Harniltonian matrix H( ,). 
Let systemG(s) he given through 

G(s) = [A,B,C,D] (2) 

and let A not have any eigenvalues on the imagi­
nary axis. 
For , > 0 not equal to a singular value of D we 
define the Hamiltonian matrix 

[

A-BR-1D'C -,BR-1B'j 

H(,)= ,C'S-iC -A'+C'DR-1B' (3) 

where R = (D'D - ,21) and S = (DD I 
- ,21). 

As stated in (Boyd et al., "1989), under the as­
suïnptions made, (2) and (3) are related by the 
following equivalence. 

Proposition 2.1. For all wp E IR, 

jwp is an eigenvalue of H( 'I) ~ 'I is a singular value of G(jwp) (4) 

This relation bet ween the singular values of G(s) 
and the eigenvalues of H(,) has been proven in 
(Bruinsma and Steinbuch, 1990) via the fact that 
the transfer function matrix [!2I-G-(s)G(S)]-1 has 
a realization with state matrix H( ,). The proof , 
follows by this fact, and by realizing that the sin­
gular values of O(s) are computed with 

det[,21 - O*(s)O(s)] = 0 
and that 

G*(s) = G-(s) for s = jw, wE IR. "" 
From Prop. 2.1. follows the next corollary, im­
portant in both the bisection and the eigenvalue 
derivative algorithm; 

Corollary 2.1. Let O{s) and H(,) be given by (2), 
(3) and let , > O'max(D) then " 

,>IIGII ~ (5) m 
H(,) has no imaginary eigenvalues 

The proof follows directly from Prop. 2.1., as 
stated in (Boyd et al., 1989). 

2.2. Behaviour of Hamiltonian eigenvalues 

The consequences of the theory for the behaviour 
of the eigenvalues of the Hamiltonian matrix (3) 
as a function of , will he discussed using some 
examples. 

Example 1. 
Consider the following system: 

G(s) = 1 
(TS+ 1)· (S2/ wo 2+2{Js/ wo+ 1) 

with r=1s, wo=5rad/s, ,8=0.05. 
(6) 
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JO' b-- __ _ 

frcquericy [rad/sj 

Fig. 1. Singular values of third-order system (6) 

The singular value plot of this system (Fig. 1) 
shows that the Hm-norm is ~ 2, and O'max(D) = O. 
We may expect (in accordance with Cor. 2.1) that 
for all , > IIGlim the Hamiltonian matrix H(,) 
will not have imaginary eigenvalues, and for all 
o < , ~ IIGllm at least one of the loci of the eigen­
values ot the Hamiltonian matrix will be on the 
imaginary axis. 

The eigenvalues of the Hamiltonian matrix H(,) 
are computed for a number of values , bet ween 
0.1 and 10 and plotted in the complex plane 
(Fig. 2a). The six eigenvalues li~ sYr:n~etric. with 
respect to both the real and the lmagmary !lXIS,. as 
is inherent in the structure of the Harrultoman 
matrix. 
For , -t m the eigenvalues of H(,) will equal + and 
- the poles of G(S!, as can be concluded from (3) : 

Lim H(,) = A 0] " , 
,-tm " 0 -A' 

For , = 10 the eigenvalues still are very close to 
+ and - the poles of the system (-1 and 
-o.25±4.99j). For smaller , the eigenvalues move 
towards the imaginary axis. In Fig. 2b the real 
part of the eigenvalues is plotted as a function of 
gamma. From this figure it follows that (i~ acc?r­
dance with Cor. 2.1) helow , ~ 2 the Hamtltoman 
matrix has purely imaginary eigenvalues. 

r = 0.1 

" "~ 

'~5 -4 ·3 ·2 ·1 0 1 2 

rea! part of eigenva!ue 

Fig. 2a. Eigenvalues of H(,) for system (6) 
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Fig. 2b. Real part of the eigenvalues 
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We will now relate the singular value plot (Fig. 1) 
to the eigenvalues of H( ,) (Fig. 2), using 
Prop. 2.1. If a line in the singular value plot at 
some value , would intersect the singular value at 
a number of frequencies Wl to Wk" then it follows 
from Prop. 2.1. that H(t) would have 2·k imagi­
nary eigenvalues at ± jWI to jWk. 

Relations bet ween Fig. land Fig. 2: 
Global maximum. The singular value plot has a 
global maximum 2 at a frequency W = 5 rad/s ::} 
for , = 2 a quadruple of complex eigenvalues co­
incides at the imaginary axis at ~ :I: 5j, for smaller 
, they split up in 4 imaginary eigenvalues. 
Local maximum. The singular value plot has a 
local supremum 1 at a frequency W = 0 ::} for 
, = 1 a real pair of eigenvalues (not a quadruple 
because it is a maximum at W = 0) reaches the 
imaginary axis at the origin. 
Number of imaginary eigenvalues. For a line in the 
singular value plot at value " the number of 
intersections with the singular value plot times 2 
will give the number of imaginary eigenvalues of 
H( ,), as can he verified by Fig. 2. 

interval 

0<,<~0.5 
~0.5<,<1 

1<,<2 
2<, 

Example 2. 

number of 
intersections 

(Fig.1) 
1 
3 
2 
o 

number of imago 
eigenvalues 

(Fig.2) 
2 
6 
4 
o 

For the second example we again take the third­
order system given by (6), but with a higher 
dam ping factor (3: 

third-order system given by (6) 
with r=ls, wo=5rad/s, (3=0.2 (7) 

Because we increased the damping factor (3 to 0.2, 
the peak in the singular value plot (Fig. 3) caused 
by the second order term will he smaller than in 
the first example, and the maximum is achieved 
at W = O. When decreasing , from infinity, in this 
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case the real eigenvalue pair will be the first to 
reach the imaginary axis (at , = 1), as can be 
verified with Fig. 4a. and 4b. At ,~0.5, which is 
the value of the local maximum at W ~ 5 rad/s, 
the quadruple of complex eigenvalues reaches the 
imaginary axis at imaginary value ~ ± 5j. 

Hl" k-----,-'-~ 

§ 
? 
> .g 10'\ 

ÖJ: c: 
'ëE 

frequcncy [rad/sj 

Fig. 3. Singular values of third-order system (7) 

t "'( = 0.1 

-'~-_4+ooooooo~' ! '~joo,,®~ 
-"'- t ___ .; 'Y = 10 ---'f--- /. c 0 

i ·2 
~ ~ooooooo 0 i 0 o%ooooooo~ 

.~ .4r -+" ® '..... / 1 
J +. 'Y - 0.1 1 

·5 ·4 ·3 ·2 ·1 0 1 2 5 

rcal part of eigenvaluc 

Fig. 4a. Eigenvalues of H( ,) for system (7) 
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Example 3. . 
As a third example we take the non-strietly proper 
system. . 

G(s) = [
Kl(TlS+1)/(T2s+ 1) O . 1 

o K2/( T3s+1) 
(8) 

with K1=5, K2=0.5, Tl= Is, T2=5s, T33=ls 

The singular value plot of this system (Fig. 5) 
demonstrates why in Cor. 2.1 in the right hand 
term 1 must he larger than O'max(D). For a non 
strietly proper system not all singular values go to 
zero for w .... 111. Because of this there may be values 
for 1 < IIGIIIII where the singular value plot is not 
intersected, and for which H( 1) will not have ima­
ginary eigenvalues. In Fig. 6 the real part of the 
eigenvalues as a funetion of 1 is plotted, showing 
that for 0.5 < 1 < 1 there are no eigenvalues on 
the imaginary axis. 

1.5 

g 1 

1 
'" 'ë 0 

i -O.S 

] -1 

-1.S 

frequency [rad/sj 

"' . ..... 
...... 

Fig. 5. Singular values for non strietly 
proper system (8) 

rOOOOOO O OO OO O OO OO O O 0 0 0 0 00 000 0 0 0 

o 
lXUJCIOOOOOOOOooo oo oo o oo oooo (I (I (I 0 (I (I 0 (I 0 (I 0 . ~ (I 

(I 00 0 0000 

o 

~oooooo o o ooo oo o o oo o 0 0 0 0 0 00 0 0 0 

o 
o 

-20-0 ----::---:;-------;----;---~-~6:-----:! 

gamma 

Fig. 6. Real part of the eige~alues of H( 1) as 
a funetion of 1 for system (8) . 

Other examples have shown that the eigenvalues 
of H( 1) do not necessarily all move towards the 
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imaginary axis when decreasing 1 from infinity. 
Some of them can move away from it , or for in­
stance move towards the real axis. 

3. THREE ALGORITHMS 

3.1. Biseetion algorithm 

Using Cor. 2.1., the Hal-norm of a system ean be 
approximated with a simple biseetion algorithm as 
deseribed in (Boyd et al. I 1988,1989) and (Robel, 
1989). A starting interval h'lb(O), 1ub(0)] is deter­
mined (see § 3.4.) that certainly contains the 
Hal-norm, and this interval is reduced by bisection 
until the required accuraey, specified by the 
maximum relative error f , is aehieved. 

algorithm: 
• eompute lower and upper bound starting values 

'Ylb and 1ub 
• repeat until 'break' 

• 1= 0.5·('Ylb + 1ub) 
• compute the eigenvalues of H( 1) (3) 
• iJno imaginary eigenvalues 

1ub = 1 
else 

')1b = 1 
• ij 'Ylb - 1ub ~ 2· f· 1ub, break 

.IIGII =0.5·('Ylb+1ub) al 

3.2. Algorithm using eigenvalue derivatives 

The derivatives of the Hamiltonian eigenvalues 
with respect to 1 ean he used to wrïte an algo­
rithm that eonverges in less steps than the bi­
section algorithm (Bruinsma, 1990). The eigen-:­
value derivatives can he computed with the next 
proposition (for derivation see (Rogers; 1970)). . 

Proposition 3.1. Let A( 1) be a differentiable 
matrix funetion of 1 with n distinet eigenvalues 
A1( 1) to An( 1), then 

(9) 

where Yi is the 'left eigenveetor' and Xi the 'right 
eigenvector' related to Ai: 

Yi'A = AiYi' 
AXi = AiXi 

wit4 Yi scaled sueh that Yi'·Xi = 1. 

It follows from (3) that 

~= (10) 
= r-21BR-2D'C - -B(R-l+212R -2)B'l . 

l C' (S -1+ 21 2 S-2)C 21C'DR -2B' 

with Rand S as in (3) . 



Assuming that H( ,) (3) has distinct eigenvalues, 
we can use Prop. 3.1. to compute the eigenvalue 
derivatives of H( ,) for some upper bound 
I > IIGllm. With the real part of the derivative we 
make an estimation of when the real part of the 
eigenvalue will become zero. 

algorithm: 
• compute upperand lower bound starting 

values lub and I lb 
• I = lub 
• repeat until 'break' 

• compute the eigenvalues "i of H( I) and 
~he e!gen,:alue d~rivatives deri (using (9)) 

• zfno Imagmary elgenvalues, 
lub = 'Y 
step = m!n{lpI·Re("i)·Re(deri)l} 

I 

I = lub - step 
e/se 

/lb = max:(/lb,') 
I = lub - P2' step 

• if/lb - lub ~ 2'f'IUb, break 

-IIGlim = 0.5·(/lb + lub) 

Experience has shown that appropriate choices for 
the multiplication factors pare 

PI = 0.6 
P2 = 0.8 

3.3. Two step algorithm on the lower bound 

The algorithm described here approximates the 
Hm-norm using only a lower bound. Some lower 
!x>un~ starting value is computed, and in an 
IteratlOn loop the lower bound is increased until 
~he r~uired accuracy is achieved. Within each 
lteratlOn two steps lead to the next /lb. In step 1 
we use Prop. 2.1. to compute the frequencies cor­
responding to /lb. 

For a description of the algorithm in detail we 
refer to. (Bruinsma and Steinbuch, 1990). Local 
quadratIC convergence of the algorithm has been 
proven by.Boyd and Balakrishnan (1990). Here we 
o.nly descnbe the main characteristic of the algo­
nthm: the ~wo steps to compute, given some lower 
b?und /lb(I), the next lower bound /lb(i+1) (see 
Fig. 7.) . 

step 1: 
C.ompute the frequencies WI ' to Wk correspon­
dmg to lower ~und /lb(i), using an eigen­
value computatlOn of Hamiltonian matrix 
H( /lb(i)) (Prop. 2.1.) 

step 2: 
Take frequencies mi to mk-I with mi = 
0.5· (Wi+Wi-I), compute the singular values of 
G(jmï) and take as new lower bound: . 
/lb(i+l) = m?X{ lTmax(G(jmi))}. 

I 
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Fig. 7. Two steps to compute the 
next value /lb(i+l) 

3.4. Comparison of the algorithms 

The bisection algorithm and the algorithm using 
eigenvalue derivatives only use Cor. 2.1 to com­
pute the Hm-norm, using the Hamiltonian H( ,) to 
search for the highest value I for which there are 
imaginary eigenvalues. The two-step algorithm 
a.lso uses Prop. 2.1, thus fully exploiting the rela­
tlOn bet ween the imaginary eigenvalues of H( ,) 
and the singular values. 

The different algorithms will be compared by com­
puting the Hm-norm for some examples. 
The lower and upper bound starting values Ilb 
and lub for the algorithms, used in these examples 
are: 

lub = 2·}'; lTH{G(S)}+lTmax(D) (11) 

with lT
H 

= Hankel singular values 

/lb = max:{lTmax(G(O)), lTmax(D)} (12) 

For a deriva~ion of (11) see (Glover, 1984). For 
systems of high order n the computation of this 
upper bound takes relatively much time because 
it requires the solution of two Lyapunov ~quations 
with dimension n. 
Instead ?f lower. bound (12) also other expressions 
are posslble. A slmple and effective lower bound is 
presented i~ (Bruinsma and Steinbuch, 1990). For 
the companson of the three algorithms it is not 
relevant which lower bound we use and (12) \\Till 
do quite weU. ' 

As examples we take three systems: 
- the flrst example from § 2.2, 

a 4th order system with 3 inputs and 2 out­
puts,. with a random generated state-space 
matnx, 
a. 13th order n:ode1 of a wind energy conver­
sIon system, wlth 10 inputs and 10 outputs 
extracted from (Steinbuch, 1989). ' 

The Hm-norI?s of these three systems have been 
computed wlth the three different algorithms. In 



Table 1 the number of iteration steps are given, 
necessary to compute the HID-norm wi~h m~ximum 
relative error 10 -6, plus the computmg tIme for 
the complete algorithm (on a 12 MHz AT). 

TABLE 1 HID--eomputation with rel. error 10-6 

bisection derivatives two-step 

example 1 
3rd order 

steps 14 9 2 

lxI time [sj 12.9 15.0 3.2 

random 
4th order 

steps 14 8 1 

2x3 time [sj 18.1 19.8 2.6 

wind turbo steps 16 11 4 
13th order 
10xlO time [sj 331 421 108 

The number of steps for the bisection algorithm is 
determined by the length of the starting interval 
and the maximum relative error. 
The use of eigenvalue derivatives can substantially 
reduce the number of steps, but due to the more 
complicated computations within each step the 
complete algorithm is even slower. It needs to he 
said that the algorithm using deriyatives c~n be 
improved with respect to numencal effiCIency. 
AIso, this algorithm should. have a close. upper 
bound starting value, otherwlse the steps ml&ht be 
much too large initially (see .for example FIg. 2~ 
for large 7). The algorithm mlght become faster If 
the first steps are taken with the simpier bisection 
aJgorithm. 
For all three examples the two-step algorithm is 
much faster than the ot her algorithms and needs 
only a few steps to achieve the required accuracy. 

CONCLUSIONS 

Three algorithms have been described, all based 
on the relationship between the HID-norm of a 
transfer function and the eigenvalues of an Hami­
ltonian matrix. Both · the bisection and the algo­
rithm using eigenvalue derivatives use upper and 
lower bounds. The two-step algorithm uses only a 
lower bound, and is based on an alternating ~al­
culation of eigenvalues and singular values. Usmg 
numerical examples it has been shown that the 
two-step algorithm is superior, with respect. to 
both the number of iterations and the caIculatlOn 
time. 
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Abstract-For a controlled flexible mechanism the stability robustness is analyzed. A 
gain and spring stiffness variation are modelled as parametric uncertainty, which 
typically is a structured perturbation. Stability margins are then computed using 
singular value robustness analysis, complex structured singular value robustness analysis 
and real structured singular value robustness analysis. Comparing these results with a 
crude eigenvalue computation shows that only the real case leads to exact stability 
margins. 

Key Words-Real and complex structured singular value; parametric uncertainty; 
stability robustness 

INTRODUCTION 

Robustness analysis and robust design of con trol 
systems has gained much attention in systems and 
control literature (Doyle, · 1982; Maciejowski, 
1989). Especially HID methods have been 
propagated as a tooI for robust controller design 
(Kwakernaak, 1983; Francis, 1988). HID design 
yields · stability margins for norm-bounded 
unstructured complex perturbations. However, in 
practice perturbations are of ten structured and 
real (i.e. parametric uncertainty). This may lead 
to very conservative designs. Therefore, in HID 
design only the most imrortant uncertainty can be 
taken into account (Smit, 1990), leaving a 
necessity for robustness analysis afterwards for a 
more realist ic set of perturbations to computethe 
actual stability margins. 
In this paper we investigate the robust stability of 
a simple flexible mechanism controlled by a HID 
controller. In this HID design the only and most 
important perturbation taken into account is a 
varying spring stiffness. However, since gain 
variations always occur in practice it is necessary 
to analyze .the stability margin ·of the controlled 
system with respect to both spring stiffness and 
gain variations. This will be done using three 
robust stability analysis tests: 
1. Singular Value Robustness Analysis (SVRA), 
(Doyle and Stein, 1981). . 
2.Complex Structured Singular Value Robustness 
Analysis (CSSVRA), (Doyle, 1982). . 
3: Real Structured Singular Value Robustness 
Analysis (RSSVRA), (Fan et al., 1990). . 
Our aim is to compare the stabifity margins 
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obtained by these three methods. Because the 
combined perturbation of gain and spring stiffness 
is structured and real it can be expected that the 
system is best analyzed using RSSVRA, where 
"best" means the least conservative. 
This paper is devided into three parts. In the first 
section the system is described and the 
uncertainty model is derived. The second section 
is devoted the stability analysis. A stability region 
for the unc~tainty is determined by doing a crude 
closed ~·loop pole computation of the system 
perturbed by the two varying parameters. Then 
SVRA, CSSVRA and RSSVRA are applied. The 
conservatism of the three methods is then 
evaluated by comparing the results with the 
computed stability region. Finally the conclusions 
are presented. 

UNCERTAINTY MODELLING OF 
A FLEXIBLE MECHANISM 

Robust stability analysis with structured singular 
values requires uncertainty modelling. The aim is 
to arrive at aspecific representation of the 
perturbed closed loop system. This representation 
is called the interconnection structure (Doyle, 
1982) and has all uncertainty collected in a block 
diagonal feedback matrix (see Fig. 2). In the next 
section the interconnection structure that will be 
derived in the following is needed to analyse our 
example system on its closed loop stability. The 
uncertainty model of the flexible mechanism has 
been derived using a parametric uncertainty 
modelling procedure on state space level described 
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in (Steinbuch, 1989; Terlouw, 1990). Parametric 
uncertainty modelling is based on the following 
general uncertainty representation for a plant in 
state space 

je = Ax + Bu + dAx + dBu (1) 
Y = Cx + Du + dCx + dDu 

In this equation A, B, C, and D are the nominal 
state space matrices, while dA, dB, dC and dD 
are perturbation matrices. containing information 
on the variations in the entries of the state space 
matrices. In order to apply the robustness analysis 
methods it is necessary to rewrite these equations 
into a standard form (Doyle, 1982). The 
parametric variations occuring in (1) must be 
collected in a diagonal feedback perturbation 
matrix ~ = diag(ot,o2, ... ,On) replacing dA, dB, dC 
and dD. This requires a reformulation of equation 
(1): 

je = Ax + Bu + B2U2 
Y = Cx + Du + Dl2U2 
Y2 = C2X + D2lU + D22U2 
U2 = ~Y2 

(2) 

The following equalities must be satisfied to 
guarantee the equivalence of (1) and (2): 

dA = B2(I - ~D22l-1~C2 
dB = B2 I - LlD 22 -lLlD 21 
dC = Dl2 1 - LlD22 -1~C2 
dD = Dl2 1 - ~D22 -1~D21 

Equations (3-6) determine the constraints on 
weighting matrices B2, C2, Dl2' D21 and D22 and 
the perturbation ~. 

J1,D1 J2,D2 

M Cs,Ds 
-~~~m 1 t-----Im2 t-----:~~ 

Fig. la Flexible Mechanism 
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Fig. lb Bode plot of varying system 
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This uncertainty modelling procedure will be used 
in the following to deri ve a model for a flexi bIe 
mechanism. The system under consideration is a 
flexible shaft connected to two rotating masses 
(see Fig. la). One of the two (ml) is a current 
driven motor, with J 1 and Dl the inertia and 
damping of the motor. The relation bet ween 
torque Mand current I is modelled as 

M = KI (7) 

with the real scalar K denoting the motor gain. 
The other mass (m2) is beared, and modelled by 
the damping coefficient P2 and inertia h The 
flexible shaft in between has a spring stiffness Cs 
and adamping coefficient Ds and a neglectable 
mass. The aim is to control the rotational speed of 
the second mass (m2)' So the rotational speed is 
controlled by the DC-motor through the flexibility 
of the shaft. The goal is to achieve a closed loop 
bandwidth up to the resonapce frequency of the 
shaft in spite of a varying spring stiffness Cs and a 
varying gain K (see Fig. 1 b for the effects of these 
variations on the open loop behaviour). Define the 

state vector as x = ['Î?l 'Î?2 ?/i] 1 , with 'Î?l the 

rotational speed of mass mt, 'Î?2 the rotational 
speed of mass m2 and ?/i = 'Pl - 'P2, then the state 
space matrices of the equations of motion yield: 

A= 

-(Dt+Ds)/J l 

Ds/ J 2 

-1 

K/J l . 

B= 0 

o 
C=[O 1 0] 

D = [0] 

Ds/ J i CS/J l 

-(D2+Ds)/J2 ·-CS/J2 

-1 0 

We assume that the spring stiffness Cs and the 
motor gain K can vary: 

Cs E [Cmin,Cmax] 

K E [Kmin,Kmax] 

Choose 

Cnom = (Cmin + Cmax)/2 

Knom = (Kmin + Kmax) /2 

~C = (Cmax - Cmin)/2 

~K = (Kmax - Kmin)/2 

then 

Cs = Cnom + ~C 

K = Knom + ~K 

Using description (1) to seperate the actual 
variations ~C and ~K from the nominal values 
Cnom and Knom, the following perturbation 



matrices are obtained. 

o 0 -b.C/J I 

dA = o 0 b.C/J2 

o 0 0 

b.K/J I 

dB = o 

o 

dC = [000] 

dD = [0] 

In order to be able to apply the robustness tests in 
following section on a transformation with the 
constraints of (3-6) has to be carried out: 

C
2
= [OOl/JI] 

00 0 

DI2 = [00 ] 

D"~[l~J 
D22 = [0] 

Note that the uncertainty matrix b. has indeed a 
diagonal str~cture. In (Smit, 1990) a Hw controller 
has been deslgned to con trol the output rotational 
speed .. In this d~sign, which uses the uncertainty 
m?delhng ?es.cnb~d above, only the spring 
stlffness vanatlon IS taken into account (b.K=O). 
The controller has the state-space realization: 

p = Ep + Fy (8) 

u = Gp 

It is a fourth order controller designed accounting 
for .a spring stiffn.ess variation of 1/3 of its 
nommal value. Usmg this controller and the 
uncertainty model of the plant derived above the 
int~rconnection structure (Doyle, 1982) ca~ be 
denved and is shown in Fig. 2, with 

M(s) = Cm (sI - AmtlBm (9) 
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Cm = [VI V2G] 

U2 
dC 0 

o 

Fig. 2a Interconnection structure for ÖC and b.K 
(Time domain) 

dC 0 

o dK 

M{s) 

Fig. 2b Interconnection structure for ÖC and b.K 
(Frequency domain ) 

ROBUSTNESS ANALYSIS 

Before applying the three robustness analysis 
methods mentioned in the introduction, an exact 
reference for the robust stability problem is 
obtained by a cru de eigenvalue computation. In 
the nominal case the closed loop matrix of the 
controll~d syste!ll is equal to Am in (9). 
Computmg the elgenvalues of Am for the varying 
gain and spring stiffness leads to the stability 
region S = {(Cs,K)I real{eig(Am(Cs,K))) <O}. A 



part of the region S is shown in Fig. 3 below. 
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Fig. 3 Stability region S for for varying Cs and K 

In (Smit, 1990) it is shown that the closed loop 
system has acceptable performance properties for a 
varying spring stiffness of about 1/3 of its nominal 
value and a nominal motor gain. Analysis 
afterwards learns that the motor gain may 
increase with about 40% of its nominal value 
before instability occurs. This can be seen by 
considering the box in Fig. 3 which represents all 
allowable K if ~C is chosen as in the HID design 
problem, since for one combination (Cs,K) the 
system becomes unstable (the box touches the 
instability region in the upper right corner). The 
cross in the middle of the box represents the 
nominal values of Cs and K. The maximum 
admissable ~C and ~K given by the box are 
absorbed in the interconnection structure M(s) so 
that the diagonal perturbation matrix in Fig. 2b is 
scaled to a 2 by 2 identity matrix who's elements 
can vary bet ween -1 and + I. 
Now the three robustness analysis · tests can be 
applied to M(s). The theorems given below are 
stated by computab/e upperbounds and not by the 
exact definitions. They are based on the 
requirement that the loop gain of the 
interconnection structure (Fig. 2) remains smaller 
than one for all possible ~, since ~C and ~K are 
scaled to one. Since it is the goal of this work to 
show computational results, theoretical 
background on thebounds and computational 
aspects will be ommited here. (Fan et al., 1990) 
provides an excellent explanatory text for the 
interested reader. 

Theorem SVRA (Doyle and Stein. 1981) 
Robust stability if 

O:(w) = O:[M(jw)] < 1 Vw 

Theorem CSSVRA (Doyle. 1982) 
Robust stability if 

/lc(w) = min{O:[DM(jw)D-l]} < 1 Vw 
D 

• 

where D is a block-diagonal matrix according to 
the structure of ~ • 
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Theorem RSSVRA (Fan et al.. 1990) 
Robust stability if 

/lr(W) = min {-X{D-1M(jW)*D 2M(jW)D-l 
D,G 

+j[GM(jw) * -M(jW)G]} < 1 Vw 

where D and Gare block-diagonal 
according to the structure of ~. 

matrices 

• 
with 0: denoting the maximum sin~ular value, 1" 
denoting the largest eigenvalue, denoting the 
complex conjugate transpose of a matrix. 

The largest singular value denotes the largest gain 
of M. Since the largest gain of the perturbation ~ 
is less than one the loop gain M~ of the 
interconnection structure should not exceed 1 and 

instability thus does not occur if O:[M(jw)] < 1 Vwo 
However if ~ is structured as in our example the 
largest singular value of M may be scaled and 
thereby minimized by a matrix D according to the 
structure of ~. 
If ~ is structured and real an additional scaling of 
the "imaginary part" of M may be applied 
resulting in a minimization over D, G as in 
theorem RSSVRA. 

Remark 3.1. 
For the assumed ~C and ~K the closed loop 
system can reach the edge of stability. 
Therefore the three tests above should be less 
than or equal to 1. If the peak value over all 

frequencies of O:(w) , /lc(w) and /lr(W) is larger 
than 1 the tests state that the system is not 
robustly stabie while it is and thus yield 
conservative results. • 

The first test is directly computable using 
standard software. The second test involves the 
minimization per frequency . over a (block-) 
diagonal D and the third involves an optimization 
over a (block-) diagonal D and a (block-) 
diagonal G (an algorithm doing so has been 
programmed (Terlouw, 1990)). In Fig. 4 the 
results of the computations of the upperbounds 
given above are shown. 

10' ~E -----;-----------:----~. 

E SVRA 

~ .. ' ..... ..... . 
iO' ~ . 

ê 

Hm 

Fig. 4 Results for SVRA, CSSVRA and RSSVRA 



Theorem SVRA holds for unstructured complex 
uncertainties and since the perturbations in this 
problem are structured and real the SVRA test is 
expected to be very conservative. This can be seen 

in Fig. 4 where ï7[M(jw)] has a peak value of 35, 
implying that only an uncertainty 35 times 
smaller than the actual uncertainty would satisfy 
theorem SVRA. The CSSVRA takes the structure 
of the perturbations into account and therefore is 
less conservative: D-scaling reduces conservatism 
considerably (in this case the peak value equals 2). 
The RSSVRA-test computes an upper bound for 
structured and real perturbations. In Fig. 4 the 
computed upper bound equals 1 and hence is 
non-conservative. 

Remark 3.2. 
Our experience is that of ten at specific 
frequencies the real structured singular value 
I-Lr( w) has peaks. An interpretation for scalar 
perturbations is the crossing of M(jw) with the 
negative real axis in the compfex plane 
(equivalent to the gain margin). The results of 
RSSVRA are not reliable if the computation is 
done with a frequency grid skipping such a 
crossing frequency. • 

CONCLUSIONS 

In this paper the stability robustness of a flexible 
mechanism for gain and spring stiffness variations 
has been analysed. It has been shown that it is 
possible to isolate these variations in a diagonal 
feedback . structure suitable for application of 
several robustness theorems. 
Singular value robustness analysis, even for a 
simple 2 by 2 problem, can be extremely 
conservative. This has an implication for design 
too because this conservatism would yield very 
low performance Hm controllers. 
Accounting for the structure of the perturbation 
reduces conservatism considerably, but still does 
not account for the real nature of perturbations. 
For the specific problem under investigation this 
conservatism can be completely removed by 
applying the computable upperbound of (Fan et 
al., 1990) for the real structured singular value. 
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Abstract. In this paper areliabie algorithm is developed to perform a normalized 
coprime factorization of proper discrete time finite dimensional linear time invariant 
systems. Instead of using the bilinear transform the factorization is calculated directly. 
The system is allowed to have a singular state-space matrix. It is shown that a 
modified discrete .time Riccati equation plays a crucial role to obtain a state-space 
realization for the factorization. One of the applications of the normalized coprime 
factorization is in model reduction. In the fractional balanced reduction of a plant a 
normalized coprime factorization is used. An algorithm is presented to obtain a 
discrete fractional balanced reduced plant model. 

Keywords. Proper discrete time systems; normalized coprime factorizations; fractional 
balanced reduction; reliable algorithm. 

INTRODUCTION 

In the theoretical work of Desoer et al. (1980), 
Vidyasagar et al.(1982), Vidyasagar (1984) the 
benefits of using coprime representations in 
stability analysis of controlled systems are shown. 
In the continuous time case Nett et. al. (1984), 
Meyer and Franklin (1988) and Vidyasagar (1988) 
derived state-space representations for the 
normalized coprime factors. Glover and 
McFarlane (1988, 1989), McFarlane (1988) 
showed the importance of normalized coprime 
factors in the Hoo controller design. They explicitly 
solved a continuous time four block Hoo control 
problem by using a normalized coprime 
representation of the plant. In practical situations 
a continuous time plant is controlled by a discrete 
controller using sampling and zero order hold 
circuits. 80 in order to design accurate discrete 
time controllers the control design procedure has 
to be performed in discrete time. The first step in 
discrete Hoo control design with normalized 
coprime factors is to establish whether or not in 
discrete time normalized coprime factors exist and 
can be represented in state-space forms. Chu 
(1988) gave state-space representations for 
discrete coprime factors with an inner numerator 
under the condition that the system has no poles 
in the origin. Poles in the origin are of major 
importance since in discrete time very of ten 
time-delays have to be incorporated in the system 
model. In this paper we will show the existence of 
a normalized coprime factorization of a discrete 
time plant with possibly poles in the origin. 
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PRELIMIN ARIE8 

Stabie multivariable linear systems can be studied 
by considering them as transfer function matrices 
having all entries belonging to a ring 1{. Moreover , 
in many cases (e.g. convolution operators) the 
ring 1{ is commutative and is an integral domain 
(i.e. 1{ has no di visors of zero). The class of 
possibly unstable systems are elements of the 
quotient field 1 of 1. Throughout this paper we let 
(Vidyasagar et.al. 1982, Desoer et.al. 1980): 

1:= { a/b I a E 1, bE 1\0 }, a quotient field 
ofl 

(J := a (not necessarily commutative) ring with 
identity. 

1:= a subring of (J which includes identity 
I := { h E 11 h- 1 E (J }, the set of 

mUltiflicative units of (J 
J := { h E1{ h-1 El}, the set of 

multiplicative units of 1 

Note that: J cIc 1 c (J c 1 (1) 
In the sequel of this paper we will study real 
rational finite dimensional discrete time invariant 
systems. The ring (J is identified with IRLoo the 
space of proper real-rational functions with no 
poles on the unit circle with norm 11.11 : 

00 

IIJz)1I = sup a[J~O)l (2) 
00 O~ O~21r 

The subring 1 is identified with IRHoo the subspace 
of IRLoo with no pol es outside the open unit disk, 



.1. 
and analogously 1.1. is identified with IRHoo. The 
following notation is used. We will denote transfer 
functions as G(z) or if there is no confusion G .. 
With a slight abuse of notation a transfer function 
is given by: 

G(z) := D + C(zI-A)-IB := [zEc
A 

I ~] (3) 

At denotes the trans pose of A and G * (z) denotes 
Gt(Z-I). For minimal plants G(z) E 1, the 
controllability and observability Grammians P 
respectively Q are positive definite symmetric 
solutions of the following Lyapunov equations: 

APAt + BBt = P (4) 

AtQA + CtC = Q (5) 

DEFINITION 2.1 (Vidyasagar, 1984; Huang and Liu, 
1987) 
A plant G E J has a right (left) fractional 

representation if there exist N,M (N,M) E 1 such 
that: . 

G = NM-I (= M-IN) (6) 

Furthermore we say that the pair M,N (M,N) is 
righ t (left) coprime (rcf or lcf) if there exists 

U,V (Ü,V) E 1 such that: 

UN + VM = I (NÜ + MV = I) 

The pair M,N (M,N) is normalized right 
coprime (nrcf or nlcf) if in addition to (6): 

M*M + N*N = I (MM* + NN* = I) 

(7) 
(left) 

(8) 
o 

Meyer and Franklin (1988) gave an explicit 
method to calculate the normalized right coprime 
factorization in continuous time. For the discrete 
time domain, the following proposition gives 
conditions for a state-space realization of inner 
transfer functions. 

Pa.OPOSITION 2.1 (Heuberger 1990) 
A plant G(z) := D + C(zI-A)-IB E J is called 
inner: Gt(Z-I)G(Z) = I, if and only if there exist a 
Q such that: 

a) AtQA +CtC = Q, Q = Qt (9a) 

b) DtD + BtQB = I (9b) 

c) CtD + AtQB = 0 (9c) 
o 

We will show how normalized coprime 
factorizations can he applied to model reduction. 
For this purpose we define in the following 
proposition the graph of a transfer function and 
show how this concept is related to coprime 
factorizations. 
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Pa.OPOSITION 2.2 (Vidyasagar 1985) 
All those input-output pairs that are of finite 
energy define the graph of a plant G(z): 

1{G(z)} = {(u,y) E L2 x L2 I y = Gu } 

The graph of G(z) can also be expressed in terms 
of its rcf. Let (N,M) E 1 be a rcf of GE J, then the 
Graph of Gequals: 

1{G(z)} = {[~]w I w E L2} 

NORMALIZED COPRIME 
FACTORIZATION 

o 

The following theorem gives sufficient conditions 
for the existence of a state-space representation of 
a normalized right coprime factorization of a 
discrete time plant. In the proof we will 
frequently use system eqUivalent operations, 
described by Rosenbrock (1970). 

THEOIlElll 
. Given a minimal realization: 

G(z) := [zEcAI~] E J (10) 

and define: 

(11) 

then [~] is a normalized right coprime 

factorization of G (z) if and only if there exist an 
F, H, Q such that: 

a) Ft= (AtQB+CtD)(I+DtD+BtQB)-1 (12a) 

b) HHt = (I+DtD+BtQB)-1 (12b) 

c) Q-AtQA-CtC+(AtQB+CtD)· 
(BtQB+DtD+I)-I(BtQA+DtC) = 0 (12c) 

d) Q = Qt > 0 (12d) 
PI.OOF 
Bongers and Heuberger (1990). 

o 

The procedure to obtain a normalized right 
coprime factorization for the plant G is to solve 
the .Riccati equation (12c,d) to obtain Q, calculate 
F and choose an H. The equivalent for the 
normalized left coprime factorization is a direct 
result from theorem 1 and is given in the following 
corollary. 

COI.OLLAI.Y 1 
Given a minimal realization (10): 

G(z) := D+C(zI-A)-IB := [zEc
A 

I ~] E J 
and define: . 

[M N] - [zI -A+KC I K -B+KD] -RC R RD (13) 



then [M N] is a normalized left coprime 
factorization of G (z) if and only if there exist a 
K,R,P such that: 

a) K = (APCt+BDt)(I+CPCt+DDtrl 

b) WR = (l+CPCt+DDttl 

e) P-APAL BBt+(APCt+BDt). 
(l+CPCt+DDt)-l(CPAt+DBt) = 0 

d) P = pt > 0 
PaooF 
Let G = M-IN, with (M,N) E 1 a nlef of G, then 

Gt = NtM-t with (Nt,Mt) a nrcf of Gt, so the 

realization of [hl: N] follows from theorem 1. 
o 

REMARK 
Note that we donlt need the assumption that the 
state matrix A is invertible, as is the case in 
Chu (1988). Using proposition 2.1 it is straight 
forward to show that this assumption is indeed 
superfluous. This is of major importance since in 
discrete time con trol design problems very of ten 
time-<ielays are incorporated in the augmented 
system. 

In order to solve the normalized coprime 
factorization for the plant in discrete time by 
means of standard techniques, the equation (12c): 

Q-AtQA-CtC+(AtQB+CtD) . 

(BtQB+DtD+I)-l(BtQA+DtC) = 0 
ean be written as a standard Riccati equation. 
Define: 

Al = [~ ~], B1 = m], Cl = [0 IJ, Rl = I, 

QI =[~~] 
The standard Riccati equation with 
Al,Bl,Cl,Rl,Q1 is : 

0= Q1-AltQ1A1-C1tCI+ 

Al tQ1B1(B1 tQ1B1 + Rd-1B1 tQ1A1 

Substituting the definitions of Al etc. gives: 

[~~] _ [~t ~t] [~~] [~~] _ [~][O I] + 

[~t ~tJ [~ ~J mJ ([Bt Dt] [~ ~J [~J + 1)-1. 

[Bt Dt] [~ ~][ è~] = [~~] 
evaluating this equation gives (12c). This shows 
that the discrete time normalized coprime 
factorization problem can be solved by means of 
standard techniques. Note that the sufficient 
conditions for the existence of a positive solution 
of the Riccati equation are still valid. 
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FRACTIONAL BALANCED 
REDUCTION 

In this section we extend the continuous time 
fractional balanced model reduction (FBR) 
method (Liu and Anderson 1986; Meyer 1988) to 
the discrete time domain. An essential part of the 
discrete fractional balanced reduction method is 
the existence of the discrete normalized right 
coprime factorization. A major advantage of the 
DFBR method is that plants with and without 
unstable poles are treated in the same way. 
Instead of approximating the fuH order plant by a 
reduced order model in a straightforward way: 

Gn(z) - Gr(z) 

the graph of the plant is approximated: 

"{Gn } -"(G r } 

or: 

with: 

Gn = NnMn-1, (Nn,Mn) nrcf 

and we define: 

Gr = NrMr-1 

The procedure to obtain a reduced order model in 
the graph sense is given in the next algorithm. 

Algorithm. For a given plant Gn(z) E 1 the 
construction of a low order approximation 
Gr(z) El is as follows: 
1 èonstruct a nrcf (N n,Mn) for the full order 

plant using eqn. 12. 
2 Balance and order the state-space realization of 

(Nn,Mn): 

[Mn] _ [ zI-AnIBn] 
N n - ::::Cn Dn 

such that: 
P = Q = diag(/T1 .. /Tr .. /Tn) 

with: 
/Tl ~ /T r ~ /T n > 0, 

and partition {An, Bn, Cn, Dn} as follows: 

An = [~~~ ~~~ ], Bn = [~~], 
Cn = [ Cl C2], Dn = Dn 

with All of si ze rxr, Aij, Bi,Ci of appropriate 
dimension. 

3 The approximation of the coprime factors 
(Nn,Mn) by (Nr,Mr) is: 

[Mr] _ [ zI-ArIBr] 
N r - ::::Cr Df 

with: 
Ar = All - A12(l+A22)-IA21 
Br = B1 - Adl+A22)-IB2 
Cr = Cl - C2(l+A22)-IA21 
Dr = Dn - C2(l+ A22)- lB2 



4 Given the construction of a rcf of G and back 
substituting: 

Df = [D ~ liJ, Cf = [Cr=b~F r]' 

Bf= BrHr, Af= Ar-BrFr 

we obtain a state-space realization of the 
reduced order plant Gr(z) E J: 

G· - [ zI-A r IBr] . 
r - ::::Cr Dr 

o 

Note that although the plant G may have 
unstable poles its normalized coprime factors 
(N ,M) are stabie. By the application of balanced 
reduction on the coprime factors we are able to 
reduce plants with or without unstable poles with 
the same method. 
In the standard balance and truncate method an 
upper bound on the Hoo approximation error 
bet ween the fuH order model and the reduced 
order model is given by (Heuberger 1990): 

11 [~~] - [~~] 1100 ~ 2 i~/i 

CONCLUSIONS 

Theorem 1 and Corollary 1 show that with 
standard mathematical tools the normalized 
coprime factorization can be calculated, which is 
necessary to design discrete time controllers, that 
satisfy Hoo robustness bounds. Since in practical 
applications one will in general be dealing with a 
discrete time problem, this is an important step 
towards the solution of the Hoo con trol problem in 
discrete time. 
Another application of the discrete normalized 
coprime factorization can be found in a fractional 
balanced model reduction scheme. An algorithm 
to calculate the fractional balanced reduced 
models is given. Using this method plants with or 
without unstable can be reduced in the same way, 
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Abstract. Based on a real-rational description of signals and systems in the frequency 
domain and a state-space description in the time domain, an analysis of the L2- and 
H2-optimal con trol problem with fuH (state) information will be given. First both 
problems will be formulated in the frequency domain, after which the L2-optimal 
controller will be derived resulting in the feedback connection of the system to be 
controlled with its dual. Finally this result will also be considered in the time domain 
and extended to the H2-optimal controller. This paper is intended to give some 
insight in the structure of L2- and H2-optimal controllers, especially in an 
input-output sense. The aim is to give a self-contained derivation that clarifies the 
advantages of using both frequency domain and time domain arguments. The 
importance of the solution of the algebraic Riccati equation connected with 
H2-optimal control will follow quite naturally from the derivation: it can be 
considered as an operator from the state-space into the costate-space, leading to an 
auxiliary input signal that converts the L2-optimal configuration into an H2-optimal 
configuration. 

Keywords. system theory; operator theory; multivariable systems; dual systems; L2-
and H2-optimal control; state-space methods; fuU information problem. 

1 INTRODUCTION 

Kalman (1960) introduced the linear quadratic 
control, or LQ, problem as the dual of a stochastic 
filtering problem. Since then the LQ problem has 
been widely studied, especially in the time domain 
in a state-space setting. From these studies the 
great importance of the algebraic Riccati equation 
became apparent; a particular solution to this 
equation immediately results in the solution of the 
LQ problem. A thorough investigation of this is 
given by for instance Brockett (1970). Also 
Willems (1971) should be mentioned; he considers 
solvability o( LQ problems and shows its 
dependence on some inequalities that are closely 
related to the algebraic Riccati equation. 
The introduction of Hoo-<:ontrol theory (Zarnes, 
1981) and its further development (see for instance 
(Francis, 1987) and the references therein) resulted 
in a renewed interest in the frequency domain 
properties of the LQ problem as weU as a more 
operator theoretic approach of some earlier results. 

.. In this sense the H2 problem was introduced as a 

. frequency domain version of the LQproblem, 
augmented with the possibilities of Wiener-Hopf 
design (Francis, 1982). Again the algebraic Riccati 
equation appeared to be of key hnportance; not 
only (as to be expected) for the H2 problem but 
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also for the Hoo problem (Doyle and others, 1989). 

Although the role of the algebraic Riccati equation 
has been widely recognized, the reason for its 
importance is not so of ten considered. MacFarlane 
(1963, 1969a, 1969b) showed by using a 
variational approach and Pontryagin's maximum 
principle (Athans and Falb, 1966) that the LQ 
optimal trajectory is governed by the behaviour of 
a pair of interconnected dual dynamical systems 
with two-point boundary conditions. From this 
result it is possible to derive the algebraic Riccati 
equation when a constant stabilizing 
state-feedback controller is to be found. 

This paper will give a self contained derivation of 
the solution of the fuH information LQ or H2 
problem, both in the frequency domain and in the 
time domain. By restricting our attention to linear 
time-invariant systems, we will derive the L2- and 
H2-optimal controller without explicitly using the 
aforementioned results. It is intended to show th at 
the use of both frequency domain and time 
domain arguments can simplify and clarify some 
weH known results and proofs. The L2-optimal 
controller is introduced as a convenient 
intermediate step towards the H2-optimal 
controller. 



The description of signals and systems is given in 
an operator theoretic sense and will be considered 
in section 2: Next the problem formulation for the 
H2-optimal control problem wilt be stated in 
section 3. Section 4 will then give the solution of 
the L2-optimal .control problem, föllowed by the 
solution of the H:r-ûptimal control problem in 
section 5. Finally section 6 will give a discussion 
of the results. 

2 PRELIMINARIES AND NOTATION 

A frequency domain description of signals and 
systems 

We wilt consider signals in IRL2' the Hilbert space 
of real rational functions of a complex variabie 
s=À+jw for which the inner product 

00 

(Ul(S),~(s) := (27rtt • J utOw)~(jw)dw (2.1) . 
-00 

is finite, with u* denoting the complex conjugate 
transpose of u. This inner product thus defines a 
norm denoted as: 

lIu(s)lb := ~ (u(s),u(s) . (2.2) 
80 u(s)EIRL:t if and only if u(s) is real rational and 

11 u( s) 112 < 00. This implies that u( s) is strictly 
proper and has no poles on the imaginary axis. 
From this we can define two compiementary 
subspaces in IRL2; 

IRH2 := {u(s) 1 u(s)EIRL2' no poles in ccrhp} 

IRHt:= {u(s)IU(S)EIRL2' no poles in cclhp} (2.3) 

(ccr(I )hp = closed complex right (left) half plane). 

So IRH2, IRH~ consists of signal representations that 
are real rational, strictIy proper and stabie, real 
rational, strictIy proper and antistabie, 
respectively. 

Next we consider a system as an operator on IRL2 
with representation G(s)EIRLoo; 

IRLoo:={ G(s)ly(s)=G(S)U(S)EIRL2' Vu(s)EIRL2l (2.4) 

Clearly G(s) must be such that: 

(2.5) 

so the operator norm or induced norm of G(s) can 
be defined as: . 

11 G(s) 11 := sup IIG~s~u~s)112 (2.6) 
00 u(s)fiRL2/{O} u s Ib 

From the characterization of signals in IRL2 given 
above it follows that G(s)EIRLoo if and only if G(s) 
is real rational and proper, and has no poles on 
the imaginary axis. . 
FurthermOl·e we can define two complementary 
subspaces in IRLoo, based on those defined in IRL2 
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(eq. 2.3): 

IRHoo :={ G( s)1 y( s)= G( s)u( S)EIRH2, Vu( S)EIRH2} 
IRHáï :={ G(s)ly(s)=G(S)U(S)EIRHt VU(S)EIRHt} (2.7) 

So IRHoo, IRHáï consists of system representations 
that are real rational, proper and stabie, real 
rational proper and antistable, respectively. 

Based on the inner product given in eq. 2.1, we 
can now, given G(s), define the adjoint or dual 
system representation G-(s) as satisfying: 

(G( s)u1( s), U2( s) = (ut( s), G- (s)u2( s) 

V Ut(S),U2(s)EIRL2 (2.8) 

which is equivalent to G-(jw)=G(jw)* VWEIR. 

The partitioning of IRL2 in IRHQ and IRH~ makes it 
possible to extend the definition of G- (s) to the 

entire complex plane; because IRH2 and IRH~ are 
complementary we have: 

(Ut(S),U2(S)=0 VUt(S)EIRH2, VU2(S)EIRH~ (2.9) 

Nowconsider G(S)EIRHoo, such that G(s)Ut(S)EIRH2 
and: 

(G(s)Ut(s), U2(S)=0 VUtEIRH2,VU2EIRHt 
(Ut( s), G- (s) U2( s) )=0 VUtEIRH2,VU2EIRH~ (2.10) 

This implies G-(S)EIRHáï and therefore we have: 

G-(s) = GT(-s) (2.11) 

with GT denoting the transpose of G. 

A time domain description of signals and systems 

It is well known that a system represented in the 
frequency domain as a transfer function in IRLoo can 
be represented in the time domain by a minimal 
state-space realization: 

x(t) = Ax(t) + Bu(t) 
y(t) = Cx(t) + Du(t) 

such that: 

x(O)=O 

G(S) = C·(sI-A)-1.B+ D 

(2.12) 

(2.13) 

Here we assume the state-space to be finite 
dimensional. 
Although eq. 2.12 makes it possible to calculate 
the response of y( t) to any input signal u( t) with 
u( t)=O, Vt<O, we will only consider signals with 
representations in the frequency domain that are 
in IRL2. To find a representation of such signals in 
the time domain we can use the. inverse Fourier 
transformation, which is .an isomorphism from the 
frequency domain into the time domain (Paley 
and Wiener, 1934). . 
The procedure is as follows: 
Given a signal U(S)EIRL2, di vide it into 



U( S)=Us( S)+Ua( S) with Us( S)EIRH2 and uaC S)EIRH~. 
Perform an inverse Fourier transformation of us(s) 
into the time domain to get a stabie realization 
(As,Bs,Cs) such that: 

Xs( t) 

[
Us( t) 
Us(t) 

= AsXs( t) + Bsb( t) 

= CsXs(t) , Vt>-O 

= 0, Vt<O 

Xs(O)=O 

(2.14) 

with D( t) denoting the unit impulse. 
Similarly transform ua(s), finding an antistabie 
realization (Aa,Ba, Ca) such that: 

Xa( t) 

[
UaC -t) 
uaC -t) 

= -Aaxa( t) + BaD( t) 

= CaXa(t) , Vt>-O 

= 0, Vt<O 

Xa(O)=O 
(2.15) 

Finally the time domain representation of u(s) is: 

u( t) = Us( t) + uaC t) (2.16) 

Note that u( t) can also be found by taking the free 
responses of the systems in eq. 2.14 and 2.15 with 
the initial conditions Xs(O)=Bs and xa(O)=Ba 
respectively. 

By this procedure of splitting u(s) before inverse 
Fourier transformation we now have a function of 
time u( t) that is again an element of a Hilbert 
space deflned as follows. 
Consider the function space of all real 
vector-valued functions of time u(t) with tE(-w,oo) 
and define the inner product: 

00 T 
(Ul(t),~(t):= fUl(t)~(t)dt (2.17) 

-00 

Then the Hilbert space ~(-w,oo) can be defined as: 

..Z,î(-w,oo) := {U(t) I (u(t),u(t) < oo} (2.18) 

For all VU(t)E~(-w,oo) we can thus define a norm: 

11 u( t) 11 2 := ~ < u( t), u( t) (2.19) 
Now it follows from eq. 2.14 and 2.15 that u(t) 
given in eq. 2.16 is bounded on (-w,oo) and 
approaches ° towards +00 and -w, therefore we 
have U(t)E~(-w,oo). 
From eq. 2.14 and eq. 2.15 we can see that Us(t) is 
nonzero on the interval [0,(0) and uaC t) is nonzero 
on the interval (-w,0]. It is therefore convenient to 
define two complementary subspaces in ~(-w,oo); 
..Z,î[0,(0) and ~l-w,O], such that ·Us(t)E~[O,oo) and 
uaC t)E ~(-w,0]. 
Similar to what was done in the previous section 
we can now consider a system to be an operator 
on the time domain space ~(-w,oo) having a 
representation as given in eq. 2.12. In this sense . 
also a dual system representation canbe found 
from the time domain inner product given in 
eq. 2.17. It is much easier however to substitute 
eq. 2.13 into eq. 2.11 to get: 
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a-cS) = aT(-s) = {C·(-sI-At1.B + D}T = 

-BT(sl+ATtlCT+DT (2.20) 

giving the time domain representation: 

~(t) = _AT ~(t) - CTy(t) ç(O)=O 

u( t) = BT ç( t) + DT y( t) (2.21 ) 

Finally note that it is possible to find the systems 
response signal vet) (eq. 2.11) for any input signal 
u( t)E ~[O,oo) having a representation as in eq. 2.14 
by adding this representation to the one given in 
eq. 2.12: 

[~s( t)] = [ As 0] [Xs( t)] + [Bs]. ó( t) 
x (t) BCs A x (t) ° 
Ys( t) = [DCs C] [Xs( t)] (2.22) 

x (t) 

3 PROBLEM FORMULATION 

The HrOptimal con trol problem formulation as 
considered in this paper is derived from Doyle and 
ot hers (1989) and starts with the frequency 
domain system description: 

[
Ze S)] 
yes) 

= [all at2] [W(S)] 
G21 G22 u( s) 

(3.1) 

with w(s) the input vector of disturbance and 
reference signals, u(s) the input vector of control 
signais, zes) the output vector of signals to be 
controlled and yes) the output vector of available 
measurement signais. 
In the time domain this system can be represented 
as: 

X(t) 
z( t) 

y( t) 

= Ax(t) 

= Clx( t) 

= ~x(t) 

+ B1w(t) 
+ D11 w(t) 

+ Ih.tw(t) 

+ B2U(t) 
+ D12U( t) 

+ Ih.2U(t) 

x(0)=0 

(3.2) 

We now want to find a second system that makes 
use of the measurement signals yes) and the 
control inputs u(s) to improve in some sense the 
behaviour of zes) given possible disturbances 
(references) w( s). . 
The sense in which an H2--{)ptimal controller aims 
to improve this behaviour of z( s) can be 
formulated as follows: 

Given a possible non zero disturbance (reference) 
vector w( S)EIRH2, that can be normalized such that 
11 w(s) 112=1; 
a) make sure that the controlled system is 

internally stabie. 
b) make sure that the response of z( s) is an 

element of IRH2. 
c) make sure that IIz(s)II2 is as small aspossible. 



To somewhat simplify the prob1em the following 
assumptions are made (see th. 2.3 and prop. 3.1 of 
Wonham (1978) for a definition of stabilizability 
and detectability): 

1. Du=O 
2. ~2=O 

3. Dt2·D12=I 

4. Dt2' Gl=O . 
5. (A,G1) detectable 
6. (A,B2,G.!) stabilizable and detectable 
7. G2=I and D21=O 
8. w(t)E~[O,oo) follows from: (see eq. 2.14) 

xw(t) = AwXw(t) + woó(t) xw(O)=O 

[
w(t) = GwXw(t), Vt>-O (3.3) 

w(t) = 0, Vt<O 
!his represen~ation of w( t) is assumed to be 
mcorporated m the system description, such 
that we can take U\)ó( t) as a new input signal. . 
Note that, a1though Woó( t)~ ~(-oo (0), we still 
have avalid minimization beca~s~ we are 
considering the transfer from w( t) to z( t). 

These assumptions are mainly equal to those made 
by J?oJ:le an~ others (1989). They are not very 
res~nc~lve, ,,:,lth the exceptlOn of assumption 4, 
:-vhlch IS. eqUlvale~t to not allowing cross-products 
In the tIme domam LQ criterion, and assumption 
7, which restricts our attent ion to the full 
information prob1em. 
Furthermore, based on assumptions 3 and 4 we 
can assume without further 10ss of generality 'that 
GI and Dl 2 can be partitioned as: 

CI=[~} DI2=[D~J . (3.4) 

Also .. note thatassumption 5 guarantees internal 
stabIlIty of the controlled system if z(S)EIRH2' . 

With these assumptions it is now pos si bie to state 
the H2-optimal control problem as will he 
considered in this paper: 

Formulation of the H2-optimal control problem. 

Given the system to be controlled: 

x( t) = Ax( t) + Bl wob( t) + B2U( t) x(O)=O 

[::~:~] [~] ·x(t) + [D~J ·u(t) (3.5) 

y( t) x( t) 

with (A,B2) stabilizable, (A,GI) detectable and 

DT2D12=I. 
Find a controller that uses measurement signals 
y(s) and control signals u(s), such that: 

1. z(s)EIRH2 

2. Ilz(s)112 as a result of woó(t) is minimal. • 
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4 THE L2-OPTIMAL CONTROLLER 

Giv~n t~e ~roblem formulation in the · previous 
sectlOn lt wIll appear to be convenient to first 
consider only the second demand the 
minimization of lIZ(s) 112' without con;idering 

stability; this will lead to the L2-optimal 
con trol system. The result will then be 
extended to the H2-optimal controller in the next 
section. 
In order to somewhat simplify notation we will 
first define two transfer functions based on eq. 3.5. 
The transfer from Wo to Zl(S): 

Hw(s) := Q(sI-At1Bl (4.1) 

and the transfer from u(s) to Zl(S): 

Hu(s) := Q(sI-AtIB2 (4.2) 

So, as far as z(s) is concerned, we can consider the 
frequency domain equivalent of eq. 3.5 to be: 

z(s) = [Zl(S)] = [Hu(S)U( s) + Hw(S)Wo] (4.3) 
Z2(S) D~2U(S) 

Base~ on eq. 2.1 and dropping the dependency on 
S or JW we now have: 

2 1 00 

IIzI12 = 21l' f(u- ~Huu+u-~Hwwo+w~IÇHuu+ 
-00 

w~IÇHwwo+u- u)dw (4.4) 

The follo,,:,ing theorem then gives the L2-optimal 
control slgnal U12( s) such that this criterion 
function is minimized. 

Theorem 1: 
qiven the sy:ste~ to be controlled in eq. 3.5 and 
glven the cntenon function to be minimized in 
eq. 4.4, the following statements hold (dropping 
the dependency on s when convenient): 
1. The L2-optimal control input U12(S)EIRL2 that 

minimizes the criterion function over all 
u(s)EIRL2 is: 
U12 = -(~Hu+1)-l~Hwwo (4.5) 

2. Af ter partitioning z(s) as in eq. 4.3, we have 
that eq. 4.5 simplifies to: 
U12 = -~'Zl (4.6) 

3. The minimal value of the criterion function 
over all U(S)EIRL2 is: 

2 looT 
IIzII2 = 21l' f( woIÇ(Hu~+1)-lHwwo)dw (4.7) 

-00 0 

Proof: see appendix A.1 • 
From this theorem we have that the L2-optimal 
control system is given by applying feedback from 
Zl(S) to u(s) through the dual of the transfer from 
u(s) to ZI(S). This situation is clarified by the 
block-diagram given in Fig. 1. 



Fig. 1. 

'2(5) 

L2-optimal control in the 
frequency domain. 

From equations 2.22, 3.5, 4.1, 4.2 and 4.6 we can 
now find that the time domain description of the 
L2-optimal control system is given by: . 

[ ~( t)] ç( t) 
= [A -B2BI ] [X(t)] + 

_qTq _AT ç(t) [:1] woó(t) 

[
Zl (t)] 
Z2( t) 

_ [q 0 ] [X( t)] 
- 0 -DbB~ Ç"( t) 

(4.9) 

(with x(O)=Ç"(O)=O), This leads to the 
block-diagram in Fig. 2. 

':l(t) 

Fig. 2. L2-optimal control in the time domain. 

5 THE H2-OPTIMAL CONTROLLER 

We will now extend the result of the previous 
section to the H2-optimal controller, that 
minimizes lIz(s)1I2 given the extra condition of 

z(s)EIRH2. The first step towards the solution of 
this problem will be to consider more closely the 
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behaviour of the combined state vector [~~ m as 
given by eq. 4.9. The system matrix in this 
equation, which from now on will be denoted as H; 

H := .[ A -B2B~ ] (5.1) 
_c,TG, _AT 

1 1 

is a Hamiltonian matrix and has the following 
properties: 

Lemma 1: 
Given the 2nx2n matrix H as defined in eq. 5.1 
with (A,B2) stabilizable and (A, C'D detectable, the 

following statements hold: 
1. H has no eigenvalues on the imafinary axis. 

2. H has Jordan form [~ -XTJ with modal 

matrix [~~~ ~~~] and A stabie. So the stabie 
and antistabie modal subspaces of Hare 

X_(H)=Im[~~~] and X+(H)=Im[~~~] with 

1R2n=x_( H)E!)X+( H) . 0 

Proof: see appendix A.2 • 
This lemma now immediately leads to: 

Lemma 2: 
Given the 2nx2n matrix H as defined in eq. 5.1 
with (A,B2) stabilizable and (A, q) detectable, 

and with the Jordan form and modal matrix of H 
from lemma 1 part 2, the following statements 
hold: 
1. Mll is invertible 

2. Im[~~!] = Im[i] with X:= M21M~: 
3. X is symmetrie 
4. X is a solution of the algebraic Riccati 

equation: 
T T T ( ) A X + XA - XB2B2X + q q = 0 5.2 

5. A-B2BIx is stabie . 0 

Proof: 
See th.7.2.2 and cor.7.2.1 of (Francis, 1987) for a 
recent and very complete proof; the original proof 
is given by Potter (1966) and Mä.rtensson (1971) .• 

Note that lemmas 1 and 2 do not give all 
available results on the Hamiltonian matrix and 
the algebraic Riccati equation; only results 
necessary for the further exposition in this paper 
are mentioned. See for instance Richardson and 
Kwong (1986) and Faibusovich (1987). 

We are now able to state the solution of the 
H2-optimal con trol problem as follows: 



Theorem 2: 
Given the H2-optimal control problem from 
section 3, the following statements hold: 
1. The H2-optimal trajeetory of z( t) is given by: 

[
X( t)] = [A -B2B~] [x( t)] + [ Bl] W ó( t) 
~(t) _c;,Tc;, _AT Ç'(t) XB

1

0 

[
Zl(t)] = [ c;, ,0 T] [X(t)] (5.3) 
~(t) 0 -D12B2. Ç'( t) 

with X as defined in lemma 2 part 2 and 
x(O)=Ç'(O)=O. 

2. Equation 5.3 can be simplified t~: 

x(t) = (A-B2B~X)x(t) + B2wOó(t) 

[
Zl (t)] = [q ] x( t) 
~(t) -D l2B~X 

x(0)=0 
(5.4) 

3. The H2-optimal con trol input denoted as 
Uh2( t) is given by: 

Uh2(t) = -BIx.x(t) (5.5) 
o 

Proof: 
Consider a con trol input u( t) given as 
u( t)=U12(t)+V( t), with U12( t) the L2-optimal 
con trol input from th. 1. The L2-optimal con trol 
system given in eq. 4.9 must then be extended t~: 

[~~:~]=[_~~TC1-B~~~] [;~:~]+[~1 ~2] [W~~~;)] 
[
Zl(t)]=[C1 0 ] [x(t)] + [0 0] [woé(t)] (5.6) 
~(t) 0 -D~2B~ Ç'( t) 0 D~2 v( t) 

(with x(O)=Ç'(O)=O). Now consider the similarity 
transformation: 

[
X(t)] _ [I 0]' [x(t)] (5.7) 
ç(t) X 1 q(t) 

resulting in the transformed system matrix: 

[~ ~ll~iTC;-B~~~][~ ~l 

(5.8) 

and the transformed input and output matrices: 

[~ ~r[Zl Z2] 
and 

= [-~~l -~~J (5.9) 

[01 0] [I 0] = [q 0 ] (5.10) 
o -Dl2 B~ X I -D l2B~X -Dl2B~ 

The controlled system can thus be represented as: 
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[
X( t)] 
q( t) 

[
Zl (t)] 
~(t) 

or in block-diagram as in Fig. 3: 

'"06(1) 

1.(1) 

'2(1) 

Fig. 3. Block-diagram of eq. 5.11. 

In this block diagram the signal e( t) is defined as 

e(t) := -BIq(t) + v(t) (5.12) 

which makes it possible to write down eq. 5.11 as: 

x(t) = (A-B2B~X)x(t)+[Bl B2J[WOó(t)] x(0)=0 
e( t) 

[
Zl(t)] = [ q ] x(t)+ [0 0] [woÓ(t)] (5.13) 
~(t) -Dl2B~X 0 Db e(t) 

Now assume that e( t) can be chosen arbitrarily 
and consider a choice of e(t) in ~(-oo,OJ (or 

e(s)EIRH~). In this case z(t) can only be in ~[O,oo) 
if the transfer from e( t) to z( t) contains right half 
plane zeros that completely bloek the influence of 
e( t). Because the 2-norm of Z will then be equal to 
that in case of e=O we 'can conclude that only a 
choice of e(t) in ~(O,oo) can reduce the 2-norm of 
Z without making i(t)~~[O,oo). 
Next we have to prove that any non zero choice of 
e(t) in ~[O,oo) tor e(s)EIRH2) will increase the 



2-norm of z; this requires a straight forward 
derivation of the 2-norm of z as a function of e in 
the frequency domain. This is done in 
appendix A.3. 
We now have that the H2-optimal situation is 
given by e=O. It is easy to verify that this 
situation is given by eq. 5.3 by applying 
transformation 5.7. Furthermore eq. 5.4, and with 
that eq. 5.5, follow directly from eq. 5.13 af ter 
substitution of e(t)=O 'tit. • 

Finally, based on the proof of theorem 2, we can 
find a frequency domain relation bet ween the 
L2-optimal and the H2-optimal control input by 
the following corollary. 

Corollary 1: 
Given the H2-optimal control problem as posed in 
section 3 and the L2-optimal con trol problem as 
derived from it in section 4. 
The H2-ûptimal control input Uh2(S) is related to 
the L2-optimal control input U12(S) as follows: 

Uh2(S) = UI2(S) - B~(sl+ATtlXBlWO (5.14) 
o 

Proof: 
The proof of theorem 2 and the block-diagram in 
Fig. 3 show that Uh2(S)=UI2(S)+Vo(s), with vo(s) 
such that: 

e(s) = vo(s) + 

B~(sl+AT_XB2B~tlX(BlUQ+B2Vo(S))=O ~ 

vo(s) = -(l+BI(s/+AT-XB2BItlXB2tlBI 

· (sl+AT-xB2BIt 1 XBlWo ~ 

vo(s) = -B~(I+(sl+AT_XB2B~tlXB2B~tl 
· (sl+AT_XB2B~tlXBlWO ~ 

vo(s) = -BI{(sl+AT-XB2BItl(sl+AT)}-1 

· (sl+AT_XB2BItlXBlWo ~ 

Vo(s) = -B~(sl+AT)-lXBIWO (5.15) 

• 
6 DISCUSSION 

We have derived the L2-optimal and H2--optimal 
con trol system using both frequency domain and 
time domain arguments. It has been shown that 
the key mechanism behind both solutions consists 
of a pair of interconnected dual dynamical 
systems. The L2-optimal con trol system appeared 
to be the basic configuration minimizing the 
2-norm of the criterion vector z, without 
considering stability (in fact it is not hard to 
prove that the L2-optimal control system is 
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always unstable). Transformation of this result 
into the time domain resulted in a state-space 
model with a system matrix that is Hamiltonian. 

Although the exact proof is rat her lengthy, the 
procedure of extending the L2-optimal con trol 
system to the I-h-optimal control system hasbeen 
shown to be quite simpie: given any disturbance, 
just map it onto the stabie trajectories of the 
L2-ûptimal control system. To do this the 
disturbance should be represented in the time 
domain as an initial condition of -or similarly as 
an impulsive input on- a state-space model. This 
is possible because the disturbance is assumed to 
be in IRH2. The resulting initial condition is an 
element of the 2nx2n state-spaee of the 
L2-optimal control system and ean be mapped 
into the stabie modal subspace of the Hamiltonian 
system matrix. The influence of this mapping ean 
then be considered as the result of an auxiliary 
input (disturbanee) signal, as is most clearly seen 
in theorem 2 (eq. 5.3) and is given in the 
frequeney domain by cor. 1. 

The exact form of this auxiliary signal is 
determined by the solution of the algebraic Riccati 
equation connected with the Hamiltonian system 
matrix. The reason for this is that the initial 
condition of the plant x(O)ElRn (representing the 
disturbance w) can not be changed by a control 
input u that is in IRL2. In order to map the 
combinedinitial condition into X-(I!) , it is 
therefore only possible to change the initial 
condition of the dual system ç(O)ElRn. This implies 
that x(O) must be embedded in X-(I!) by ehoosing 
ç(O) . Beeause from lemma 2 part 2 we have that 

X_(H)=Im[i] it is easy to see that 

[i]x(O)EX_(H) and so ç(O)=Xox(O) is a correct 

choice for all x(O)ElRn. The solvability of the 
H2-optimal control problem is thus determined by 
the following eonditions: 

1. dim{X-(H)} = n 
2. Mu mvertible 

If these conditions are not met, then there exists 
an initial condition x(O~ElRn for which there is no 

(finite) ç(O) sueh that l~~~~] E X_(H). Satisfaetion 

of these conditions is proven in lemma 1 part 2 
and lemma 2 part 1. 

APPENDICES 

A.l Proof of theorem 1 

First part. The criterion function IIzl12 reaches its 

minimum if (dropping the dependency on s and jw 
and with óx denoting the variation of x) 



2 [1 00 _ _ 

ó(lI zII2) = Ó 27r Hu ffuHu u+u ffuHwwo+ 
-m 

w~H;.,Huu+w~H;.,Hwwo+u-u)dw] = 0 (A.1) 

Because the integrand is real and nonnegative for 
all wElR we can minimize eq. A.1 by minimizing 
the integrand at every frequency: 

ó( u-ffuHu u + u- ffuHwwo +" w~H;.,Hu u + 

w~H;.,Hwwo+u-u) = 0 'v'waR (:} 

óu- ffuHuu+u- ffuHuóu+óu- ffuHwwo+w~H;.,Huóu + 
W~~~=O ~aR (:} 

8u-[(ffuHu+1)u+ffuHwwol + 

[u-(ffuHu+1)+w~H;.,Hu]óu = 0 'v'waR (A.2) 

Now define 

9 := (ffu Hu+1)u + ffuHwwo (A.3) 
so that eq. A.2 simplifies to 

'v'waR . (A.4) 

(óu- 9 is a scalar function). 
This implies that óu-9 is imaginary for all waR and 
so 9 must be imaginary. Furthermore we have 
that HuEIRLoo and HwUUEIRL2 (see eq 3.3; Hw is 
strictly proper), therefore we must have that 
gE1RL2. Now if 9 is a real rational function, it can 
only be imaginary for all wElR if all its poles are on 
the imaginary axis. This clearly contradicts gEIRL2 
unless g=0, thus the only possible minimum of 
II z112 is found when:. 

(HuHu+1)u + ~Hwwo= 0 'v'wElR 

u12 = -(H~Hu+1)-l~Hwwo 'v'wElR (A.5) 

Furthermore U12 is an element of IRL2 because 
f:TuHu>-O 'v'wElR and therefore (~Hu+1)-lEIRLoo. 

Second part. Consider z when applying U12 and 
make use of (l+AB) -lA = A(l+BA)-l: 

[Zl] = [Hu' {-(fÇHu+1) -1 ~Hwwo} + Hwwo] = 
Z2 D~2' {-(~Hu+ I) -1 ~Hwwo} 

[{-Hu~ -; (Hu~~+I)}~~u~~ +1)-lHwWo] = 
-D 1 2' ( Hu Hu + I) Hu Hw Wo 

[ 
(HuH~+I)-lHwwo ]_ 

-D~2' (H~Hu+I) -1~Hwwo 

(A.6) 
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(4.6') 

Third part. From eq. A.6 we can write down the 
criterion function as: 

2 1 
IIzI12 = 27r' 

00 

f (w~H;.,(HufÇ+1)-l[l+ Hu ffu]{Hu ffu+ 1)-1 Hwwo)dw 

= ~7r j(w~H;.,(Hu~+1)-lHwwo) dw (A.7) 
-m 

A.2 Proof of lemma 1 

First part. It will be shown that all pos si bIe 
imaginary eigenvalues of H must be poles of the 
L:r<>ptimal transfer from w to z for at least one 
admissable disturbance w (given by UU). This 
would then imply ~IRL2 anrl therefore contradict 
theorem 1. 
So we have to prove that imaginary eigenvalues of 

the system (H, [gl] ,[ ft D~~B~]) are controllabie 

and observable. Necessary and sufficient conditions 
for this are (Rosenbrock, 1970): 

rank [j W;A B 2 B~ BI] = 2n 'v'wElR (A.8) 
q q jw+AT 0 

and: 
T j w-A B 2 B2 

C' TC! J' w+AT 
rank 1 1 

-Ol 0 

o Dl 2 B~ 

= 2n 'v'wElR (A.9) 

We have by assumption that (A,B2,Q) is 

stabilizable and detectable (section 3), so: 

[
jW+A

T
] 

=rank B~ = n 'v'wElR (A.10) 

First con si der controllability of (H, [gIJ). It is 

clear from eq. 4.9 and Fig. 2 that any chOlce of BI 
must give an L2-optimal trajectory; so we can 
choose B1=I and consider: 

rank[jW-A B2B~ IJ =2n 'v'waR(A.ll) 
ClTq jw+AT 0 

which holds if rank[jw+AT qT] = n. 

Next consider observability of (H, [f -D~~B~])' 
Suppose eq. A.9 does not hold; then there exists a 



eertain W=Wl and a vector x= [~~] sueh that: 

(jWI-A)Xl + 
qT qX1 + 

= 0 B2B~ X2 

(jwI-AT)~ = ° 
= ° 
= ° 

(A.12) 

80 the last two equations give qx1=O and B1~=o 
sueh that from eq. A.IO we must have (jWt-A)xdO 
and (jWt+AT)X2fO. This then clearly contradiets 
the first two equations of A.12. 

Seeond part. Define: 

J := [J ~ (A.13) 

sueh that: 

H (A.14) 

Now suppose H ean be deeomposed as H=MAM-l 
with A in bloekdiagonal Jordan form. Substitution 
of eq. A.14 then gives: 

H = r 1(-HT)J = MAM-1 Ç} 

HT = J!vJ. (-A). M-1J-1 (A.15) 

Furthermore we also have 

HT = (MAM-I? = (M-Il·AT.MT 

sueh that: 
JM· (-A)· (JMj-l = (M-1)T. AT. MT 

A = (MT JMj-I.(_AT).MT JM 
A = T'I(_AT)T 

(A.16) 

Ç} 

Ç} 

(A.17) 

This implies that _AT and A are similar; so if Ai 
is a Jordan bloek in A with eigenvalue Ài, then 

-A T must have a diagonal bloek -AT sueh that 

Ai = 1i1(-AT) Ti. Now -AT eame from a Jordan 
bloek Aj of A, so it has -Àj on the diagonal. 
Therefore we must have Àj=-Àï, sueh that the 
first part of the lemma implies ArMi. A thus 
eontains for eaeh Jordan bloek Ai a seeond, 
equally large Jordan bloek Aj sueh that Àj=-Ài. 

A.3 Proof of e-O in theorem 2 

Given eq. 5.13 it will be proven that there is no 
nonzero signal e( t)E J12[O,oo) (e( S)EIRH2) that results 
in a smaller 2-norm of z than with e=O. 
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Consider eq. 5.13 in the frequeney domain: 

4s) = q(sI-A+B2B~Xtl.{BlwO+B2e(s)} 

~(s) = -D~2B;X(sI-A+B2B;X)-1. {BIwO+B2e(s)} 

+ D~2e(s) (A.18) 

and define S:= (sI-A+B2B~X)-I. 
The influenee of e(s) on the 2-norm of z(s) is then 
determined by Z*(jw)z(jw) (dropping the 
dependeney on jw): 

z*z = w~BiS*qT qSB1wo + w~BiS*qT qSB2e + 

e*B~S*qT qSB1wO + e*B~S*qT qSB2e + 

w~BiS*XB2B~XSBIWO - w~BiS*XB2(I-B~XSB2)e 

-e*(I-B;S*XB2)B1XSBIWo + 

e*( I-B~S* XB2)(I-B~XSB2) e (A.19) 

So e deereases the 2-norm of z if and only if: 

w~{BiS*[qTq+XB2B;X)SB2 - BiS*XB2}e + 

e{B;S*[qTq+XB2B~X)SBI - B;XSBI}wO + 

eB;S*[ qT q+XB2B~X)SB2e + e*e - e*B;S* XB2e 

(A.20) 

The algebraic Rieeati equation (lemma 2 part 4) 
now gives: 

T T q q+XB2B2X= 

_(jwl+AT_XB2B~)X + X(jwI-A+B2BTX) 

= S*-IX + XS'I (A.21) 

Substitution of eq. A.21 in eq. A.20 then gives: 

(A.22) 

Now consider the signal wO(s) := B~S-XB1wO' 

From lemma 2 part 5 we know that A-B2BJX is 
stabie, thus S=(sI-A+B2B~X)-1 EIRHoo and 

S- EIRHc!i. Therefore i t is clear that wO( s )EIRHt sueh 

that: 

(e( s), wO( s)= (wü( s), e( s) =0 Ve( S)EIRH2 (A.23) 

This implies that there is no ehoice of e(s)EIRHa 
sueh that eq. A.22 holds and thus the 2-norm of z 
reaehes its minimum when e7 0. 

.. .. ... 
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