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Editorial

This is the first issue of a bi—annual publication in
which recent research contributions of the Me-
chanical Engineering Systems and Control Group
at Delft University are presented. The aim of the
publication is to provide a means for fast publica-
tion of recent results of current research projects.
It also serves to encourage post—graduate students
and research associates to contribute to the
written literature in an early stage of their
research projects, and to get acquainted with the
mechanisms of writing papers and dealing with
reviews of their papers. This publication involves
an account of some of the projects that are
currently under study in our group, without
aiming at completeness. Next issues therefore will
amplify the picture of our group. We hope that
this publication will contribute to creating fruitful
communications with other groups and researchers
on subjects on common research interests.

The research in our group aims at theory and
applications of dynamic modelling, system identifi-
cation and control system design. The applications
involved include electromechanical servo systems
(robots, electrical drives, wind power systems),
and multivariable process control (power systems,
chemical separation processes). In these projects a

vi

certain merging of system theory research and
application—oriented projects takes place. We try
to be involved only in those applications in which
the achievements of recent theoretical results in
model reduction, system identification and robust
control will contribute to relevant engineering
results.

The present issue especially contains results of
projects oriented towards theoretical results. The
very stimulating educational climate of the Dutch
Graduate Program on Systems and Control
certainly has contributed significantly to some of
the results presented here, and consequently these
efforts are gratefully acknowledged.

This issue also contains some contributions which
have resulted from collaborative research projects
performed in cooperation with industrial research
partners. Such cooperative projects are experi-
enced to be of paramount importance to our
group.

The next issue will settle the balance between
theory and applications by providing a number of
contributions from various applied projects.

Okko Bosgra
Paul Van den Hof
Editors
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A family of reduced order models,

based on open-loop balancing

Peter Heuberger

Selected Topics in Identification,
Modelling and Control; Vol. 1, 1990

Lab. Measurement and Control, Dept. Mechanical Engineering and Marine Tech.,
Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

Abstract. In this paper we generalize a well-known model reduction method, called
balanced truncation, to a whole family of reduced order models, which are all based
on the semi—canonical form of a balanced realization. This family will be parametrized

by one real valued parameter, i.e. {G*a€R}. Several members of this family , as
balanced truncation and Singular perturbations, are already well known in the
literature. The generalized approach presented covers both the continuous and discrete
time case. Further conditions are given under which one can guarantee stability and
minimality of the reduced order models, and a bound is given for the Lo—norm of the
error transfer function. It is shown that this frequency error can be much smaller than

obtained with the standard methods.

Keywords. Model reduction; balanced realizations; singular perturbations; frequency

error;

1 INTRODUCTION

Model reduction methods based on balanced
realizations play an important role in various
fields of system and control techniques. The first
contribution in this area is due to Moore(1981),
who introduced the truncation of balanced
realizations of continuous time systems, which
under weak conditions results in a balanced
realization for the reduced order model, that is
again stable and minimal. The same goes for the
discrete time case, but the reduced model is not
balanced any more. For these model reduction
methods there is also a bound on the frequency
error available.

Fernando and Nicholson (1982,1983), Al-Saggaf
and Franklin (1988) and Liu and Anderson(1989)
introduced the singular perturbation approach to
reduce balanced models, which lead to reduced
order models with the same nice properties. We
will generalize these methods to a one parameter
family of reduced order models and give the
conditions under which these are stable and
minimal. Further, we will give a bound for the
[requency error and show by means of some
examples that the generalized method we propdse
can lead to much smaller frequency errors than
the 'known' methods..

The article is outlined as follows: In section 2 we
will briefly repeat the main notions of balanced
realizations and their relation with the Hankel
singular values. Sections 3 and 4 deal with the

currently existing methods in continuous and
discrete time respectively. In section 5 we extend
these methods to a generalized form, and the main
properties of this method are given in theorem 5.4.
We conclude with some examples in section 6.
Throughout this paper we only consider finite
dimensional linear -time invariant asymptotically
systems, —which in the sequel will be abbreviated
with -FDLTS systems— ,with state space
realizations:

In continuous time:

x(t) = Ax(t) + Bu(t l.la.g

y(t) = Cx(t) + Du(t 1.1b
In discrete time:

Xk+t = Axy + Bug (l.lcg

yk = Cxg + Dug (1.1d

The quadruple [A,B,C,D] is called a realization of
the transfer function

G(p) = C[pI-A] 'B+D (1.2)

where p is a complex variable. We use G(s) (p=s)
for continuous time systems and G(z) {p=zg) for
discrete time systems.

We will make an extensive use of the
w—-transformation to switch between continuous
time and discrete time: This is the bilinear



transformation that maps the imaginary axis into
the unit circle by w: s = z=id_"—;.

This transformation preserves stability and Hankel
singular values. A thorough treatment is given in
Glover (1984). We use the term w-transformation
for the transformation s-z as well as for z-s; it
will be clear from the context which one is used.

2 BALANCING TRANSFORMATIONS

In this section we explain the notion of balanced
realizations, which was introduced by Moore
(1981). Since this is a well known concept in the
literature we will treat it only very briefly, giving
the most important definitions and properties. In
words one may say that a balanced realization of a
system has the property that the amount of
controllability of a certain element of the state
vector is equal to the amount of observability of
this element. As shown in for instance (Enns,
1984; Glover, 1984) we can consider the Gramians
of a system as a tool to measure the
controllability and observability of a realization.
This is used in the balanced reafization approach.

For a realization [A,B,C,D] of a FDLTS system
G(p) the controllability and observability Gramian
are defined as follows:

Continuous time:

Pis J:eAtBBTeATtdt (2.1a)

Q= r ATt GT ey, (2.1b)
Discrete til‘?le: .

p=§ AiBBTAT' (2.1.c)

Q=5 AT'CTCAl (2.1.d)

It is well known that these Gramians satisfy the
following Lyaponov equations:

Continuous time:

AP + PAT + BBT = (2.2a)

ATQ+ QA +CcTc=0 (2.2b)
Discrete time:

APAT + BBT =P (2.2¢)

ATQA + cTc = Q (2.2d)

A minimal realization [A,B,C,D] of a FDLTS
§tystem G(p) is called (internally) balanced w.r.t.
i

P = Q = T = diag{o1,09," - *,0n} (2.3)

with 320341, i=1,2,- - -,n—1 and o,>0.

‘Verriest, 1987;

The set {oi} is the set of the non—zero Hankel
singular values of the system G(p), which are the
singular values of the Hankel operator of G&p)
(Gﬁ)ver, 1984). In the sequel we will consider
reduced order models of McMillan degree k<n and
we will use the following partitioning of [A,B,C,D]
and ¥, conformable with k and n:

_[A11 A2 e Bl]
h= [Am Azz}’ o% [Bz ;
c=[C; Ci, z=[§1g2]

where Aueﬂik"k etc.

(24)

An interpretation of the Gramians of a realization
is given in (Glover, 1984) and applied on a
balanced realization this interpretation shows that
the amount of energy to reach a state xo=x(w)

from x(0)=0 is equal to xo% %0, Thus if the ith
singular value o is very small it will take a large
amount of energy to reach the state xo=ej, the ith
unit vector, and therefore this state is almost
unreachable. = The interpretation of the
observability Gramian shows that, with u(t)=z0
t20, the amount of energy in the output on the
interval [0,0) is given by x(O)TEx(O). Hence initial
states x(0)=e;, with small o; make a small
contribution to the output and are therefore
almost unobservable. The equality of the energies
leads to the term 'balancing'.

These realizations were introduced by Moore
(1981) in the context of model reduction and they
are of major importance in various applications.
Laub (1980) gave an algorithm to calculate these
realizations. It has also been shown (Gray and
Mullis and Roberts, 1976;
Prabhakara, 1989) that these realizations are
numerically superior to others, both with respect
to parameter sensitivity and roundoff errors in
simulation.

3 CONTINUOUS TIME MODEL REDUCTION

Based on the concept of balancing, Moore (1981)
proposed a model reduction method for continuous
time systems, which eliminates the states that are
weakly observable and controllable. The singular
values of the system provide a measure for
determining how observable and controllable a
certain state is, resulting in neglecting the states
that correspond to the smallest singular values.
This results in the following model reduction
procedure.

DEeFINITION 3.1. Let G(s) be a FDLTS system and

[A,B,C,D] a balanced realization of G w.r.t. I,

partitioned according to (2.4). Then G(s)=CBi(G),

the Continuous Balanced Reduced Model of order
k, is defined as

G(S) =D+ C:[SI—AH]"lBi (31)

o
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The rationale behind this procedure is to replace
oi by 0, for i=k+1,..,n, and to retain the resulting
system. This will generally lead to satisfactory
results if the discarded singular values are
relatively small. The next proposition gives the
condition to retain stability and minimality.

ProposITION 3.2. [Moore, 1981; Pernebo and
Silverman, 1983]. If oyx>0k., then [Ay,B1,Cy,D
is balanced w.r.t. ¥; and is a stable, minim
realization. o

One would like to have an exact measure of the
error created by this procedure, but there is no
such measure known. One can however bound the
Lo norm of the error.

ProposiTiON 3.3. [Glover, 1984; Enns, 1984].
Under the conditions of definition 3.1 and
proposition 3.2, the error of the approximation is
bounded in the Loo— norm:

IG(s)-CBL(G(s))ll, € 2+ (onsst+ -+ +om)  (3:2)
and for k=n-1, this bound is tight. o

In general this model reduction method produces
very good results, and is numerically efficient and
stable. Only if the poles of the original system
G(s) are close to the imaginary axis, then the
balancing procedure tends to have numerical
problems. A favorable feature of the method is the
stability and minimality of the approximations.

A problem we have not discussed so far is the
nonuniqueness of the balanced realizations. In
EOber, 1987; Ober and McFarlane, 1988) canonical
orms are derived for balanced realizations.

Another favorable property of this method is
the consistency, which means that

CB:(CBk(G(s)) = CBi(G(s)), if r<k, in other
words once we have a kth order reduced model, we
can use this model to construct lower order
approximations. This is a situation which will
often occur in practical applications, where one is
searching the lowest order approximation that
would fulfil the designers specifications.

Fernando and Nicholson (1982), Al-Saggaf and
Franklin (1988) and Liu and Anderson (1989)
combined the balanced model reduction method
with the method of singular perturbational
approximations, resulting in the following model
reduction method.

DEFINITION 3.4. Let G(s) be a FDLTS systeﬁl and
[A,B,C,D] a balanced realization of G w.r.t. I,
partitioned according to (2.4). We define

G(s)=CSBx(G), the  Continuous  Singular

Perturbational Balanced Reduced Model of order k,

by G =D + C[sI-A]"B (3.3a)
where, A = Ay — AppAsbAgy (3.3b)
B = B; - ApAiB, (33¢)

C = C; — CaAsbAy (3.3d)
D=D - CyA3)B; (3.3e)
[+3

The rationale behind this approximation method is
as follows: Let x(t),u(t) and y(t) be respectively
the state—, input— and output vector of the
realization [A,B,C,D] and let x(t) be partitioned
conformably as x(t)= ;; E] The state space

equations are:

. 5(1[1;) = Auxl(t) + Alg){g(t) + Blu(t) (3.43.)
)'(2(1'.] = Agpﬁ(t) + Angg(t) - Bgu(t) (34b)
y(t) = Cixi(t) + Coxat) + Du(t) (3.40)

Assume that x» is a very fast stable state, such

that (3.4b) can be approximated by x;=0:
This results in an algebraic state equation, which
can be transformed to:

xo(t) = -A3} [A21X1(t) =+ Bgu(t)] (3.5&)
Substitution of (3.5a) in (3.4a,c) leads to:

x1(t) = Axy(t) + Bu(t) (3.5b)

y(t) = Cxy(t) + Du(t) (3.5.c)

The feasibility of this method is shown by the
following two propositions, which have similar
counterparts in CB.

ProrosITION 3.5. [Fernando and Nicholson, 1982;

Liu and Anderson, 1989]. [A,B,C,D] given by (3.3)
is balanced w.r.t. £; and is a stable, minimal
realization. ©

ProrosiTION 3.6. [Al-Saggaf and Franklin, 1988;
Liu and Anderson, 1989]. -The error of the
approximation (3.3) is bounded in the Lo — norm:

IG(s)-CSBk(G(s))l , € 2(oksrt - ~+on) (3.6)
and for k=n-1, this bound is tight. o

REMARK 3.7. Note that in definition 3.4 we
explicitly pose the condition oy#oks. This is
necessary to guarantee the stability of Ag and

thus)the existence of Az} (Pernebo and Silverman,
1983).
This method replaces the 'fast' dynamical
equations with algebraic ones, causing the static
%ain of CSBx(G) to be equal to the static gain of
. Again this method is consistent, so if r<k, then
CSB(CSBx(G(s)) = CSB(G(s)).
It should be stressed here that proposition 3.5 and
3.6. are valid without any condition on x(t). This
shows that CSB will be a good reduction method if
the discarded singular values are small.
An important difference with CB is the better
approximation of the low frequency components of
the original system. o



4 DISCRETE TIME MODEL REDUCTION

So far we only dealt with model reduction of
continuous time systems, based on balanced
realizations. In this section we deal with the
discrete time version, where we make a distinction
between the balanced truncation, as proposed by
Pernebo and Silverman (1983) and the result of
combining CB and the w-transformation, proposed
by Al-Saggaf and Franklin (1988).

The discrete truncation is created in the same way
as CB:

DEFINITION 4.1. Let G(z) be a FDLTS system and
[A,B,C,D] a balanced realization of G w.r.t. X,
partitioned  according  to (24).  Then

G(?:WBR(G , the Discrete Truncated Balanced
Reduced Model of order k, is defined by:

G(z) = D + Cy[zI-Ay]"B;. (4.1)
<

Pernebo and Silverman (1983) show that this
approximation is again minimal and stable, but
contrary to the continuous time case this does not
apply for the other subsystem [A33,B3,C2,D]. Also
the given approximation will generally not be
balanced, nor have {o,---,0x} as its singular
values. Nevertheless the same bound for the
Low—norm of the approximation error holds true.

ProposITION 4.2. [Al-Saggaf and Franklin, 1987].
The error of the approximation (4.1) is bounded in
the Lo—norm:

||G(s]—CSBk(G(s))I|w < 2(okut+-+on) (4.2)
with strict inequality if ox#on. o

Notice that this proposition implies that if
gk>0k+ we have a strict bound in (4.2)., contrary
to (3.2) and (3.6).

Al-Saggaf and Franklin (1987) propose a method,
that is slightly different from the above, but which
is consistent with the continuous time method by
applying the w-transformation. We know that
under this transformation Gramians are invariant
(Glover, 1984), which shows that the
transformation of a continuous realization, which
is balanced with respect to X, is a discrete
realization, balanced with respect to X. Since we
implicitly assume stability we are assured that the
w-transformation is well defined. The reduction
‘method they propose thus consists of the following
steps: :

PROCEDURE 4.3.
1 Given a sz
[A4,B4,Cq,Dq] ©

create a  realization
, balanced w.r.t. ¥.

2 Transform  this realization with  the
w-transformation to [A¢,B¢,Ce,De).

3 Retrieve [Ac,ﬁc,f}c,ﬁc] with definition 3.1.

4 Transform  this realization  with  the

w-transformation to [Ag,B4,Cq,Dad]. o

Clearly this Bprocedure guarantees that the
properties of CB are valid for this method, so the
approximation is minimal, stable and balanced
wrt. Xy (2.4), if ox>oxs, and the method is
consistent. In calculating this procedure we do not
have to go through all these steps. The following
proposition shows how the calculation can be done
without actually using the w-transformation.

PrOPOSITION 4.4. [Al-Saggaf and Franklin, 1987]
Let G(z) be a FDLTS system with realization
LAd,Bd,Cd,Dd],partitioned according to (2.4) and
alanced w.r.t. X, with ox>oxs. Further, let

[Ad,ﬁd,éd,f)d] be the kth order approximation,
calculated with procedure 4.3. Then:

Ad e A11—A;2[I+A22]'1A21 (4.33.)
Byg = By —Agp[I+Ax] 1B, (4.3b)
Cd =Cy - Cz[I+A22]'1A21 (4.3c)
Dg = D — Co[l4+Ax] 1B (4.3d)

<

We will refer to this procedure as discrete
balanced model reduction:

DEFINITION 4.5. Let G(z) be a FDLTS system and
[A,B,C,D] a balanced realization of G w.r.t. I,

partitioned according to (2,4). Then G(s)=DBx(G),
the Discrete Balanced Reduced Model of order k, 1s
defined as

G(z) = D + C[zI-A]B (4.4)
with [A,B,C,D] defined by (4.3). S

The discrete analog of CSB has been reported by
[Fernando and Nicholson '83], however without
the adaptation of the D—-matrix, which was added
in (Al-Saggaf and Franklin, 1988; Liu and
Anderson, 1989). It is in fact the result of the
previous procedure if CB is replaced by CSB. It is
again a combination of balancing and singular
perturbational model reduction.

DEFINITION 4.6. Let G(z) be a FDLTS system and
(A,B,C,D] a balanced realization of G w.r.t. X,
partitioned according to (2.4). We define

G(2)=D5By(G), the Discrete Singular
Perturbational Balanced Reduced Model of order k,

by G(z) = D + ClzI-A]"B (4.5a)
where, A= Ay + A12[I—A32]-1A21 (4.5]))
B =B + A12[1—'A22]‘1'B2 (4.5(:)
C= Ci + CQ[I—AQQ]-IAzl (45d)

D=D + Coll-Az]'B,. (4.5¢
<



Again all the properties of CSB carry over to DSB
which is stated in the following corollary.

CoroLLARY 4.7. Let [A,B,C,D] be a balanced
realization w.r.t. ¥ of a FDLTS system G(z), with

ok>0k+. Let G(z)=DBy(G) or G(z)=D5By(G) with
realization given by (4.3) or (4.5). Then this
realization is stable, minimal and balanced w.r.t.
¥;. Furthermore the approximation error is
bounded in the Le—norm by

1G(2)-G(2)|| < 2+ (oxsr++ - +0m) (4.6)
and if k=n-1 the bound is achieved. o

Liu and Anderson (1989) propose to use
combinations of the standard methods to get
better results on frequency error and DC-error
(static gain). Such a combination consists of two
or more steps, for instance using CB to reduce from
order n to k; and CSB to reduce further to order
ke. In the next section we propose a generalized
method, which can make these errors considerably
smaller and can be accomplished in only one step.

5 A FAMILY OF MODEL REDUCTION
METHODS BASED ON BALANCING

In this paragraph we combine the results of the
previous two paragraphs and define a generalized
model reduction method, that has the five
methods —CB, CSB, DB, DIB, DPSB— as special cases.
First we will five the rationale of the method that
we propose, after which we will formally define it.

The idea behind this framework is, among others,
due to Santiago and Jamshidi (1986) and is based
on a general partitioning of a transfer function
matrix.

Let G(p) be a finite dimensional linear time
invariant system (not necessarily stable) with a

realization [A,B,C,D] , G(p) = D + C[pI-A]"B.
Let O<k<n and let A,B,C be partitioned
conformably as in (2.4). We can rewrite G(p) in
the following partitioning;

G(p) = D(p) + C(p)[pI-A(p)]"B(p) (5.1a)
with E(p) = A+ Ap [pI—Agz]'IAm (5.1b)
B(p) = By + Ay [pI-A2] B, (5.1c)
C(p] =C + G [p[—Azg]-lAgl (51(1)
I_)(p] =D + C [pI—f\gz]'iBz [5.16)

We use no specific time domain here, implyin
that we can either use p=s or p=z. All mode
reduction methods we considered so far can in fact
directly be obtained from this partitioning by

approximating [A(p),B(p),C(p),D(p)] by

[A(Po):B(Po)sc(l)o),ﬁ(po)] with Po a fixed
parameter. Take po=w and p=s then we have CB;
po=1 and p=z results in DSB etc.

The approach presented here is to define the
family of reduced order models by letting po vary
over R and to find the restrictions, that have to be
satisfied in order to guarantee stable and minimal
reduced order models.
Note that from the above partitioning of G(p) one
would expect that po should be chosen on the
imaginary axis or the unit circle, which in general
would lead to complex valued reduced order
systems. However we will show that it does make
sense to choose po real.
Santiago and Jamshidi (1986) propose this idea to
define a model reduction method for systems with
unstable poles, which in continuous time comes
down to:

1 find a po such that A—p,l is stable

2 apply CBon [A—p,l,B,C,D]
3 shift the resulting A back to A+pol.

It will be clear that the result of this procedure
depends highly on the choice of p, and can change
the number of unstable poles, which in
applications as control design is not advisable.

They also indicate that different values of po
might lead to better results for systems with
different time scales. In the next definition we
formalize this reduction method.

DEFINITION 5.1. Let G(p) be a FDLTS system and
[A,B,C,D] a balanced realization of G w.r.t.
with ox>0ys1, partitioned according to (2.4). Let

a€R such that ofo(As). We define G(p)=0BE(G),
the General Balanced Reduced Model with order k
and reduction parameter q. as

G(p) = D + C[pI-A]"B (5.2a)

where A = Ay + Alz[a’I—Aggl"lAgl (52b)
B = By + Am[{ﬂ—Azg]-lBg (5.2c)

C= Ci + Cg[(ﬂ—-Agz]'lAm (5.2d)

D=D + Cylal-An]|"B:. (5.2¢

o

As stated before,we defined no time domain,
writing G(p) where p can be both p=s or p=z.
The following proposition shows how definition 5.1
covers the model reduction methods, defined
previously.

ProprosITION 5.2. Let G(p) be a FDLTS system. If
p=s:  CBi=GBx, CSBi=GBk,

p=z  DB=0Bi!, PSB=GBks TIB=0B. o
ProorF: Follows directly from substitution of the
values of « in definition 5.1 and comparing the

result with the definitions of the 'standard' model
reduction methods. O

the effect of the
different reduction

The next lemma shows
w—transformation on the
methods.



LemMA 5.3. [Heuberger, 1990]
FDLTS system .

Let G(p) be a

1. If p=s and Gg(z) = w(G(s)) then

w(0BE(G))=0B%Ga) with § = T2
9. I p=z and Ges) = w(G@) then
w(0B3(6))=GBH(Ge) with f = &1 o

The next theorem is the main result of this paper.
It sives the conditions under which GB will lead to
stable and minimal reduced order models and
gives a bound for the approximation error.

THEOREM 5.4.

Consider the situation as formulated in definition

5.1. Let ARCR, the admissible region, be given by:

AR=[0,0] if G continuous, 5.3a
AR=|~w,~1]U[1,0] if G is discrete. 5.3b
hen

e
1 [A,B,C,D] is stable and minimal for a€AR.
2 The error of the approximation is bounded:

llG—Gll00 < 2(0oks1++ + +on) for a€AR with strict

inequality if « is in the interior of AR.
¥ ! <

ProOF: Appendix A.

REMARK 5.5:

1. In this section we used a real valued parameter
o, which in fact indexes the family of reduced
order models. It is straightforward to show that
one can get a similar result if o« is allowed to be
complex. In this case the admissible region AR, as
defined in (5.3) is {a€C, real(a)20} for continuous
time systems and {a€C, |21} for discrete time
systems. Note that in general this leads to
complex valued reduced order systems, which is
the reason we did not focus on this.

2. The reduction parameter « connects the
standard methods in a continuous way. This is
understood best if we consider the continuous time
case, where a=w coincides with CB and a=0 with
CSB. Variation of @ from 0 to « gives a continuous
transition from a match on the very low to the
very high frequencies, with the result that in the
interval (0,) these two goals are more or less
weighted against each other with weight factors
depending on the choice of a.

Hence the freedom in the choice of a can be used
to optimize the frequency characteristics of the
approximant  accordin to the  designers
specifications, in the %a.ndwidt.h which i3 of
importance. This is a major advantage over the
standard methods that only leave the choice
between matching either the very high or very low
frequency behavior.

3. From practical experiments we have the very
strong impression that there exists only one value
of & for which the Lo—norm of the error transfer
functions reaches a minimum. If one would define

a function f(a) = ||G(p)-GBg(G)|| then this
k w

function will have only one global minimum
f(omin) and no local minima. If we consider the
continuous time then f(a) will reach 2 maxima on
the boundary of the admissible region, i.e. a=0
and o=w, and have no other local maxima.
However we have not yet succeeded in finding a
value for agin and f(amin).

4. Liu and Anderson (1989) propose to combine
the standard methods in order to improve the
frequency characteristics of the reduced order
model. They use for instance the combination of
CB and CSB and show through some examples how
the error bound improves. We believe that a
'good' choice of @ can do an even better job in
just one reduction step without using several 'one
at. a step' reductions. As mentioned before we
have not yet succeeded in finding rules for the
optimal value of @, but the improvement can be
quite impressive, as will be shown in the next
section. ' o

6 EXAMPLES

EXAMPLE 1

As a first example of the influence of the
parameter a, we consider a simple 3rd order
system, which was used in (Enns, 1984). The
transfer function is:

_ _ (s40.8) (42
G(s) = G n)EH .4e)s+1)

The singular values of this system are
{01,02,03} ={0.6985, 0.1599, 0.0053}.

We approximate G}s) with 1st order reduced
models, applying different values of a. As to be
expected the result shows that for a=0 (CSB) the
approximation has the same static gain as G(s),
while for a=w (CB) the high frequency behavior is
matched. This is shown in Fig. 1 and Fig 2.
Figure 1 shows the Bode plot of the original model
and the approximations with a=0,1,0. In F:E 2
the frequency errors are shown for the same values
of a. It is clear that the response for a=1 is more
or less in between the responses of the
approximations with a=0 and o=cw.

Figure 3 depicts the Lo—norm of the error transfer
function as a function of @, to be precise it is a

plot of the function f(a) = ||G(s)—9’B?’(G)||w.

The form of this function is typical for what we
found with all kind of different systems, which
lead to the impression mentioned in remark 5.5-3.



EXAMPLE 2

We consider the example used by Liu and
Anderson  (1989) and create 2nd  order
approximations of

_ (s+4)
G($) = e D)93) (s+5)F10)

with singular values

0110%0-3:0'4} =
1.5938x1072, 2.7243)!.10'3, 1.272x1074, 8.0061’.10_6}

The theoretical bound is 2(03+04) = 2.7024x1074.
Liu and Anderson use a mixture of one at a step
standard reductions (CB and CSB) to compare the
frequency errors and the errors at DC (s=0). This
means they first reduce to order 3 and then from
order 3 to 2. This is denoted by CB/CSB if the

first method used is CB and the second method is
CSB. We calculated the optimal « with respect to
the frequency error to be a=11.83. This results in
a far better frequency error, as can be seen in
Table 1.

TABLE 1. Frequency Errors of the Reductions

x 1074

CB CSB |CB/CSB|CSB/CB| GB
ll6—G|loo| 2.4802]2.3692|2.5248]2.6402|1.3415
DC—err|2.384 [0.0 |0.1601]2.5441]0.9810

While the DC—-error is still acceptable,the
frequency error is almost half of what can be
achieved by the other methods.

In Fig. 4 the frequency errors of the
approximation are shown on the whole frequenc
scale, and it shows that GB makes a trade-off
between matching high and low frequencies. It
should be pointed out however that the frequency
error of CSB is only large for the high frequencies,
which may be of no interest. In Fig. 5 we depicted
the frequency error as a function of @, and it
shows a similar curve as Fig. 3 , with only one
global minimum.

It is also interesting to consider the Hankel norm
of the approximation error, where the theoretical
bound is ¢3=1.272x104. This is given in Table 2,
from which we conclude that for this example GB
is also superior to the other ‘methods in the
Hankel norm.

TABLE 2. Hankel norm of Reduction Errors
x 1074

CB CSB |CB/CSB|CSB/CB| GB
llc=G||n|2.4291|1.8646|2.5874]1.9722]1.8177

For Table 2 we used again a=11.83 for GB, but this
is not the optimal value of a for the Hankel norm.
In Fig. 6 the Hankel norm of the reduction error is
shown as a function of the reduction parameter
and it reaches a minimum 1.2931x10°4 in a=13.28,
which is near the theoretical underbound. This
shows that, for the optimal value of a, GB results
in a very good approximation with respect to the
Hankel norm. In Fig. 6 we see again that there is
only one global minimum.

7 CONCLUSIONS

It has been shown how the standard model
reduction techniques, based on internally balanced
realizations fit in naturally within a general
framework of a one parameter family of reduced
order models. For this family we have given
conditions under which stability and minimality of
the resulting approximations are assured and we
have given a bound for the Lo—norm of the error
transfer functions, which is never worse than the
bounds, that are known for the standard methods.
This general framework leads to an extra freedom
—the so called reduction parameter— to design
reduced order models, which makes a considerable
reduction possible of the frequency error in the
bandwidth one wishes to consider. Optimal values
of the reduction parameter are not yet known, but
practical experience indicates that such optima
always exist, both one with much better frequency
behavior than the results of the standard methods
as well as with lower Hankel norm of the error
transfer function. Further research on this subject
is therefore highly recommended.
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APPENDIX A Proof of theorem 5.4.

Part 1 — Stabilit

Let G be discrete.

Proposition 5.2 shows that the case |a]=1 is one of
the standard methods for which stability - was
already proved (see corollary. 4.7).

So let |a|>1. From Pernebo and Silverman (1983)
we know that Asp is stable, so ago(Agz) and thus

A is well defined. Now suppose that G is not
stable, so:

IxeR, AeC ,x#0, [A[21 with Ax=Ix. (A1)

We will show that this leads to a contradiction

(Al} = [Au + Au[a'I - Azg]'lAm X = A
=  [An A [[al _ Aiz]'lAgl x=Ax (A2

A Az [[GI—A;]"AM]

= [F+Amlo-Au] A

= afal — Ayp]?Ay (A3)
Combining (A2) and (A3) gives:

. [[aI—Aiz]“ﬁm}x - [a[aluiig]'lAm}x (A4)

Let y= [§;:| = [[GI_A;}-IA21:| X, (Aﬁ)

then (A4) becomes: Ay = [6\ g]y. (A6)

Note that y;#0#ys since y;=x#0 and if y=0 then
(A2) shows Ayx=Ax but Ay is stable (Pernebo
and Silverman ,1983), so ya#0.

Now [|Ayllz < |Allsllyll2 < [lyll2, where || ||s denotes
the spectral norm (Pernebo and Silverman, 1983).

and ” [6\ g]y “2 2 |lyll2

with equality iff |A|=|a|=1, since yi#0#y
and |af,|A[21.

Thus we can conclude that |a|=1, which is in
contradiction with the assumption |a|>1.

This shows that G is stable for laf21.

The stability of the continuous time equivalent

follows from lemma 5.3., because the function
a—l1

a- G maps [~e0,~1]U[1,00] into [0,]. This proves

the stability of G for acAR.



Part 1 — Minimality

Consider the continuous time case. The case a=0
is covered in proposition 3.5." Pernebo and
Silverman (1983) proved the minimality of

{A,B,C} for the discrete time case, with o=,
which with lemma 5.3 shows the correctness for
the continuous time case for a=1. The correctness
for a=w (continuous time) is given in proposition
3.2. :

Now let 0<a<w and define:

(A,B,6,D) 2 [e1A,aB,a*C,D). (A7)
It is easy to see that this realization is still
balanced w.r.t. £ and stable. We just showed that
the reduction of such a system with a=1 gives a

stable minimal approximation [A,B,C,D] with:

A = Ay + Ap [IFAgp) Ay

= g7 [Au + App [&I—Azg]-lAm} = alA.
B = ﬁl + zaqz [I—Azz]'lﬁz

= Q_% [Bl + Ao [a'I—Azz]‘lBg] = a_%f’:
C =Cy + Co [I-An] Ay

=l -1

=a? [01 + Co [QI—AQQ]—IAZ]] =

Because {a“.@,aﬂé}?,a_%(ﬂl is minimal the
Popov-Belévitch-Hautus test (Kailath, 1980)

shows immediately the minimality of [A,B,C,D].
Consequently we have proven the minimality for
continuous time systems for 0<a<e.
The minimality of the discrete counterpart follows
from lemma 5.3.

1)

Part 2.
Let E(p) be the difference transfer function:
E(p)=G(p)-G(p), with G(p) = GBK(G).

n
Our aim is to proof that ||E(p)l| < E%ai with

strict inequality if @ is in the interior of AR. The
cases with G discrete and a=-1,1,0 are proven by
Al-Saggaf and Franklin (1987,1988). The

w-transformation then gives the corresponding
bounds for G continuous and a=0,1,».

Now let G(s) be a continuous time system, 0<a<ow
and G(s)=0Bf(G). Define G(s)=G(as) and

é(s)=@(aﬁ). Note that (A7) defines a stable
realization of G, still balanced with respect to T

and  that G (s) has a  realization

[a“A,a_%ﬁ,a_%C,f)]. It is straightforward that
G(s) = GBL(G) and hence:
I1G(s)-G(s)ll, =

=(1G(as)-G(as)ll,

= IG(E)-GE)l

< 2(oks++ * ++0m).

This completes the proof for G continuous and
0<a<w and thus also for 0<afw. Lemma 5.3 and
the properties of the w-transformation now gives
the proof for G discrete and a<-1 or a2l and
hence we have proven part 2.

' a

This completes the proof of theorem 5.4.
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INTRODUCTION

It is expected that Hw control theory could lead to
robust controller design, due to the absolute
bound the Hw norm gives on the singular values of
a transfer function matrix. A method which has
frequently been suggested in literature for both
handling performance and robustness
(Kwakernaak, 1983; Maciejowski, 1989; Verma
and Jonkheere, 1984; Francis, 1988) is the
Weighted Mixed Sensitivity Problem (WMSP). In
this problem the performance of a controlled
system is measured by its tracking properties
involving the sensitivity matrix of the system. The
robustness properties of the controlled system are
measured by the singular values of the
complementary  sensitivity  matrix  thereby
specifying how much multiplicative output
uncertainty the controlled system can tolerate
before instability occurs. In this paper the
influence of weightings and plant dynamics on the
controller dynamics will be investigated, giving
insight in the (robustness) properties of controllers
evolving from the WMSP.

In this paper the WMSP will be described in more
detail, by describing the control set up, the Heo

mixed sensitivity criterion and the evolving

standard plant. Then the controller satisfying an
Ho norm bound on the WMSP—criterion will be
derived and analyzed with respect to the location
of its poles and zeros, in relation to the poles and
zeros of weightings and plant. Finally the
conclusions of this study are presented.

THE WEIGHTED MIXED
SENSITIVITY PROBLEM

* In the following the control set E;g in figure 1 is
s

used, in which the controller K(s) is in cascade
with the plant G(s) and measures the tracking
error € = y — w, where ¢, w and y possibly are
vectors. The following transfer function matrices
are defined:

Sensitivity Matriz:

5(s) = (I + G(s)K(s))™ - (1)

Complementary Sensitivity Matriz:

T(s) = (I + G(s)K(s))'G(s)K(s) (2)

Control Sensitivity Matriz:

C(s) = K(s)(I + G(s)K(s))™! (3)
Wi—>2Z1

Figure 1 Control setup and cost functions

Typically the sensitivity matrix is used to measure
the tracking and disturbance rejection properties .



of the controlled system, whereas the
complementary sensitivity matrix is used for
measuring the "singular value stability margin" of
the controlled system for multiplicative output
uncertainty (Doyle and Stein, 1981 and Safonov et
al, 1981). The control sensitivity matrix is a
measure for the control effort necessary to yield a
certain performance. By using weighting functions
the frequency dependence of the specifications on
(1) = (3) for the set up in figure 1 can be handled
yielding' the Ho Weighted Mixed Sensitivity
Problem of finding controllers such that:

WS
W,T
WiC ||o

ITwell, < 7 & S0

(4)

In (4) the controller is absorbed in Ty, so actually
Tyz is a function of K(s). From this the following
design problem can be stated:

Weighted Mixed Sensitivity Design Problem
Find stabilizing controllers K(s) such that:

ITwe(KIl, < 7
where the design parameter 7 is chosen such
that a stabilizing controller exists ™

DERIVATION OF THE CENTRAL
Ho CONTROLLER

The formulae of Glover and Doyle
stabilizing controllers satisfying an Heo norm
bound use a general standard plant in
state space form as in (5) below:

1988] - for

x= Ax+ Bw+ Ba

SP Z=clx+D11W+D12U a.ndu=Ky
y=Cax+Daw+ Daou ®)
5
where A ¢ Roxn, w ¢ Rt u ¢ Rm2, z ¢ RP! and y ¢
Rp2,
Now the A, Bj, Cj and Dj; matrices for the
specific plant in (4) become (assuming G(s) =
Cg(sI-Ag)-1Bg strictly proper):

Ae O O ©

_BWICg Awl 0 0
A2 | Bead Ay D

o B0 R

0 By

Bwl 0
Bi= 1 B2= |

L 0 By

12

-“‘DwICg Cw‘[ 0 0
01= Dwng 0 ng 0

L 0 0 0 Cwa
Ca= [Cg 00 0]

[ le 0
Du= D2 =

0 Dys3

Dyy=[1]Dap=[0] (6)
The matrices Awi, Bwi, Cwi and Dy; represent the
weighting filters W;. Below the assumptions made
in élover and Doyle 51988) are restated together
with their specific implications for the WMSP:
Al (A, Bj, C,) is stabilizable and detectable
I1: The weightings Wy, W3, and W3 must be
stable since they are not observable and
the plant G(s) must be stabilizable and
detectable
A2rank Dy equals number of measurements y
p2), rank Dy equals number of controls u
m2
12: Dyz must be of full rank m2
A3 A scaling of u and y, together with a unitary
transformation of w and z, enables to assume
without, loss of generality that (by A2)

0
D12= ],D2;=[U I] and
I
= [ Dit11 Dir12 ]ml-p2
Diy121 Di122 /P2
pl-m2 m2
I3: Dwy=1
A4 Dy = 0 (satisfied if G(s) is strictly proper)
A-juwl Bj
A5 rank o Dy =n-+mVwelk
A~jwl B1
A6 rank C, Doy =n+paVweR

AT Ag is stable, this assumption facilitates the
derivations below but is not essential.

The solution to an algebraic Ricatti equation
(ARE) will be denoted via its Hamiltonian matrix,
A -P
X =Ric

* *
*}, P=P, Q=Q where

*
this implies that X = X and

lg j] [:cl i [;]['A-m,

Re A A-PX ] < 0



Now following the formulae in Glover, Doyle 1988
the controller satisfying the WMSP can be
derived. Define:

Dwi 0
D= [Dyy Dy = 0 of,
0 I
_ *
* -1 0 Dy Dy1=72 0
R= Dl. Dl' = =
[0 0 0 I
Dll .le
D.l— = 0] =
Dai] | I

« [ 0
R™ = D.lD.l = —
0 0
(7)

Define Xo and Yo as solutions to the following
ARE's (assuming that solutions exist):

DDt =721 0
0 I

Xop =
A 0
ch. —
-C{C; -A'
B B, D;i'Cy By
-C1'Dyy —C1'Dyq Dy2'Cs le
) =
—Axe' —Pxwo
Ric{
QXm Axm
Yo =
-A' 0
Ric{ -
-BiB{ A
Cy! Ca' . DuB, C;
-BiDy' -BiDay D2B{' C,
=

--_AI+|:0 —Cngwll 0] ‘J"’C . '01—02'02
Ric; 0 ] 0
| 0 A-{-By1Cg 0
L 0 0]
f -—Ayml —PyllJ
Ric{ (8)
0 Ayw

Here the (2,1) block is a zero matrix which implies
that Yo = 0 by lemma 3.1. General conditions for
the occurrence of zero Xo and Yo are given in this
lemma.

Lemma 3.1
Yo is zero if Dy is of full rank and Ayw is
stable and by duality Xw is zero if the D,
block is of full rank and Axo is stable.

o
Proof See the appendix

The central Ho controller in state—space can easily
be derived if Yo is zero and equals:

Anct+BacCic Bic
K{AmBch‘Dc} = (9}
C 1c 0
where
Ac =

Ag—Bng -B pXWl -B prQ Bng 3—Bpr3

0 Awy 0 0
BwaCg 0 Awgy 0
BwXg —BwXw; —BwXwp Aw3—Bw3Cy 3-BwXwg

0
Bw;
Bc =
0
0

Cc = [-BgBg' 0 0 By3By3']
Dc=[0]

where:
Xo = [Xg Xw1 Xy2 xwa]
Bp = [BgBg' 0 0 BgBus']
By = [BwsBg' 0 0 BusBus']



POLES AND ZEROS OF THE
CENTRAL CONTROLLER

Now that the central Hw controller for the WMSP
has been stated explicitly in section 3 the analysis
of the influence of wei%hting functions and plant
dynamics on the controller dynamics can be stated
explicitly too. This is done in two lemmas
regarding the poles and zeros of the central Ho
controller for the WMSP.

Lemma 4.1 Poles of the central Ho controller
All the poles of the Sensitivity weight W,
become poles of the central Ho controller

Proof

From (9) it is easy to verify that the eigenvalues
of Ay, are eigenvalues of A; and thus become
poles of the central Ho controller. -

Lemma 4.2 Zeros of the central Ho controller
If Ag is stable (by A7) all plant poles and the
poles of the control weighting Wj; become
zeros of the central He controller if the number
of outputs of the controller does not exceed its
number of inputs. -

Proof
The (transmission) zeros of a system are defined
by the A € € (if A is not a pole of G(s)) for which:

AI-A | B

rank < n + min(ni,no)
-C D

where ni is the number of controller inputs and no
is the number of controller outputs.

The controller zeros then can be determined as the
values A for which:

A=A ¢B2cCyc Bic

—Cic

Since the rank remains unchanged by adding rows
multiplied by constants to other rows the rank can
also be evaluated from:

rank[ ] < n + min(ni,no)

[ Al-Anc By
rank o
Cie 0
0 /\I—A\“ 0 0 Bwl
ra.nk Bw2Cg 0 I\I—Aw2 U 0
0 0 0 Al-Ays 0
_C ic 0

If now the rank of the matrix given above is
evaluated by rows, noting that the number of
controller outputs is assumed to be less or equal to

the number of controller inputs, it is easily
verified that the zeros of the controller equal the
poles of the plant and the control weighting Wis.

Lemma 4.2 states that all stable plant poles
become controller zeros. The following lemma
strengthens this to pole zero cancellation.

lemma 4.3 Pole zero cancellation
All stable poles of the the plant to be
controlled are canceled by controller zeros.
=

Proof

To determine the cancellation of all stable plant
poles by controller zeros the transfer KG has to be
regarded.

K(Ac:Bc,Cc‘Dc}G(AgaBgan:Dg) =

Ag Bch 0
0 AC Bc =
€ 0 0
] Ag BgC 1¢ 0
0 Ay | Bel®
Cs 0 0
(A, 0 0 |
Ag+BgClc 0
. A | By
Ce Cg 0

where clearly the modes of the plant (eigenvalues
of Ag) are uncontrollable, and thus are canceled
by the controller zeros. I

Remark 1
The assumption that the plant to be controlled
is stable can be removed and then lemma 4.2
changes to: all the stable plant poles are
canceled by controller zeros.

Remark 2
Note that for ¥ + o the Ho controller becomes
the H, optimal controller for the WMSP and
that the lemmas 3.1, 4.1 and 4.2 also hold for
a H; solution to the WMSP.



CONCLUSIONS

By deriving the Central Hao controller followin
Glover and Doyle (1988) for the Weighted Mixe
Sensitivity Problem, explicit relations between
controller poles and zeros and the poles and zeros
of plant and weightings have been stated. The
most important result i3 that a Hwo controller for
the WMSP cancels all stable plant poles,
regardless of the weightings which are introduced
to specify performance and robustness. Therefore
it can not be expected that controller designs
which result from the Hw Mixed Sensitivity
Problem have good robustness and performance
properties in the face of varying system poles.

APPENDIX
ZERO SOLUTIONS TO Ho ARE's

Proof of lemma 3.1
Suppose Dgy is of full rank then by A3 Dy can be
assumed to be the identity, so:

Dyy=1 (A.1)
The (2,1) block in the Hamiltonian for Yuw is:

H}’m(2,1)

= -BiB,' + ByD.{'R™"1D. B,

= “B;[I -D. 1'R- '1D.1]B 1' (AQ)
This obviously yields a zero block if

D.1'R"1D.1 =1 A3)
Now since Djy = I the left hand side of (A.3) can
be written as:

DysDyy'=72I Dnl-l Dy

I

Dy 1] (A.4)

' I

Using the formulae for inversion of block matrices
in Patel and Munro (1982) we obtain:
a4a-1DXDy'at —aDX |[ Dy
[Du' 1]
I
(A.5)

(I Dlllﬂf'lDu)*l

—XD“'G"I X

where a = D11D11'—721 and X =
equation (A.5) is equivalent to:

Du'a'lD“ + (I - Du'&"lDu)X(I = Du'a"an)

(A.6
Now substituting X in (A.6) shows that the bloca
(A.3) holds and thus Hyw(2,1) equals zero.

The ARE associated with the Hamiltonian Hyw
then takes the following form:

YoAyo + Ayo'Yo — XPX =0

where Ayo and P follow from (8). Since it is
assumed that Ayw is stable, Yo obviously equals
zero, which completes the proof.

The proof that Xw is zero if Dy is of full rank
follows by duality ' |
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Modal reduction guided by Hankel singular value intervals
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Abstract. For extremely high-dimensional lightly damped systems, that are often
represented in modal form, modal reduction is an efficient model reduction method. In
these situations other methods such as balanced reduction, requiring additional
computations, become very complicated. Modal realizations of lightly damped systems
enable straightforward estimation of the system-invariant Hankel singular values
%HSV'S), that indicate the input—output importance of states in a balanced realization.
n addition HSV intervals including the exact HSV's are determined based on such
modal realizations; eigenvalue perturbation theory (Ger3gorin, Weyl) is applied to the

(non—diagonal
of sets of mo

product of reachability and observability Gramian. An HSV-ordering
es is established and modal reduction is performed by truncating mode

sets in the lower HSV intervals. In case sets of modes are too large, scaling and
partially balancing transformations are used to split the associated HSV intervals.

Keywords.

large-scale systems, model reduction, modal reduction, balanced

reduction, Gergorin eigenvalue regions, Hankel singular value intervals.

0 NOTATION

|z|,z modulus, complex conjugate of zeC

[|z|| Euclidean norm of zeC"

7eC™™  nxm complex matrix 7Z

¥ transpose of Z

7 Hermitian adjoint of Z (=[%]T)

P, Q reachability, observability Gramian

i, i'th Hankel singular value (HSV)

Y Y=diag(oi), with 0i 2 0ix

P dominance measure of vibration mode k

A7 inverse transpose of AeC™ "

MA)  set of n eigenvalues of AeC™"

Q:A“m Hermitian, and positive definite AeC"™™"

A, R diagonal, off—\diagonaf part of matrix
AcC™™ A=A+R

Ei(A) i'th absolute row sum (DEFINITION 1)

111 Ag i'th absolute column sum SDEFINITION 2)

% (A),  Ger3gorin's eigenvalue inclusion regions,

F(D,F) (THEOREM 1, CORROLARY 1)

diag(A;) block diagonal matrix with A;e€"V™
(4,B,C,D), (A,B,C,D)~(A,B,C,D) balanced,

similar state-space realizations
1 INTRODUCTION

Controllers for extremely high—dimensional
systems as encountered in large space structure

1

applications, can only be designed after some
model simplification. In most high—dimensional
lightly damped systems vibration modes play a
crucial role as they enable a physical
interpretation and are all dynamically decoupled.
This has made mode selection (modal reduction)
one of the most important model-order reduction
methods for extremely large systems. In the
analysis of flexible mechanical structures for
instance, one usually represents the infinite-
dimensional system by a modal subsystem and all
modes outside a certain frequency range are
simply neglected. In this way responses to forces
with known frequency contents can be computed
efficiently. If we are mainly interested in the
motion of specific points in the structure, selection
of modes based on their input-output contribution
seems more appropriate than mere truncation of
modes outside a certain frequency range.

The residual system (the difference between
original and reduced system) is completely defined
by the truncated modes and is always of lower
order than the original system; this may facilitate
stability robustness analysis in robust control
applications.

Model reduction methods that try to recover the
input—-output behaviour are numerous, but mostly
involve additional computations (assumed we start
out from a modal realization). Reduction methods
that hinge on small norms of the residual system
(being particularly attractive in robustness
analysis of controlled systems) are optimal Hankel
norm reduction (Glover, 1984) and balanced
reduction (Enns, 1984).



However, the residual systems are of higher order
and exact norm calculations become laborious.
Besides the poles of the reduced-order model do
not correspond to poles of the original model and
available reduction procedures for balanced
reduction and particularly for optimal Hankel
norm reduction are computationally demanding
compared to modal reduction procedures.

In this contribution modal reduction is discussed
within a 'balancing' setting in order to obtain
input—output dominance measures of modes or sets
of modes. It is well-known that from li%htly
damped vibration modes accurate estimates of the
HSV's can be obtained (Gregory, 1984). In
addition we present methods to bound the exact
HSV's (leading to HSV intervals) and to associate
sets of modes with these HSV intervals. These sets
have a definite HSV-ordering and modal reduction
is achieved by truncating mode sets associated
with the lower HSV intervals.

In section 2 balancing theory is reviewed, and
similarity =~ between  truncated  state-space
realizations is discussed.

In section 3 a modal realization is analysed for its
correspondence with a balanced realization by
means of closed—form solutions of the reachability
and observability Gramians. The diagonal
elements of these Gramians provide HSV
estimates that are used as a measure for the
input—output importance of vibration modes. It is
shown that if damping goes to zero these estimates
converge to the exact HSV's. Besides, truncation
of a modal and balanced realization based on these
HSV's becomes identical, provided poles do not
occur repeatedly.

For systems with non-vanishing damping a
new procedure is introduced.

In section 4 eigenvalue perturbation theory is used
to establish bounds on the HSV's based on the
HSV estimates derived for each mode. Theorems
of Gersgorin and Weyl are discussed in detail.
HSV intervals can be found that cluster subsets of
modes. Sets of modes with a definite
HSV-ordering are treated as entities in the
proposed truncation procedure. Although this
method is not restricted to arbitrarily lightly
damped systems, increased damping may lead to
impracticably large mode sets and eventually all
ordering of mode sets will be lost.

In section 5 scaling and partially balancing
transformations are explored that give better
bounds on the HSV's (i.e. smaller and possibly
more HSV intervals), thus providing additional
ordering of modes.

In section 6 a general procedure is presented to
find a sufficilent number of HSV intervals, on
which the reduction can be based. A characteristic
example is given to illustrate the efficiency of the
procedure.
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2 BALANCED REDUCTION

Truncation of a balanced realization is now one of
the most popular methods for model-order
reduction. In a balanced realization states are
equally reachable (from input) and observable (at
output) and their input—output importance is
measured by associated HSV's. Lines of thought
Ehat led to this concept can be found in Moore
1981).

For a minimal state-space realization of a
time-invariant and stable system,

x=Ax+Bu y=Cx+Du (1)
with state vector x(t)eR", input vector u(t)eR™,
output vector y(t)eRP, and A,B,C, and D real
constant matrices, the associated reachability and
observability Gramians P and Q are defined as,

P= J; ®exp(At)BB exp(tA”) dt (2a)

Q= fc ®exp(ATt)CTCexp(tA) dt (2b)
The HSV's are fully stated by P and Q, and
are gystem invariants:
o =[NP Q)
with 0, 2 092 +++ 2 0, > 0.
State—space realization (1) can be transformed

(3)

into a balanced (sometimes called ‘'internally
balanced') realization,
x=Ax+Bu y=Cx+Du (4)

satisfying:
p =11pT "= § =T7QT = © = diag(o)) )
A =T1AT, B=T-'B, C=CT

with T the balancing transformation matrix.

Partitioning E=diag(21,223 and (A,B,C,D)
conformably, the reduced—order model,

x=Apyx+Bmu y=Cx+Du (6)
is again stable and balanced with both reduced-
order Gramians equal to X; (the partitioning
should be chosen such that X; contains HSV's
significantly larger those in ¥3). Thus balanced
reduction retains the input—output important part
of the dynamics, but as opposed to modal
reduction, the reduced system does not recover
poles of the original system in general;

A(A) # {)\(An), /\(Agg)} for Ajp and As; non—zero.

The Gramians are usually solved from the
(continuous time) reachability and observability
Lyapunov equations,

AP +PAT+BBT=0 (7a)

ATQ+QA+Clc=0 7b)
For complex realizations similar to (A,B,C,D) in

(1) [-]* should be replaced by [-]" in the formulas
above. Calculation of the balancing transformation
(Laub e.a., 1987) requires relatively large
computation power which may cause problems for
extremely high—-dimensional systems.



In the sequel it is shown how full balancing
transformation can be avoided if the Gramians are
block—diagonal or nearly block—diagonal.

PROPOSITION 1
Let state-space system (A,B,C,D) of order n
be truncated to (Ay,By,Cy,D) of order my.
Similarity transformations T = diag(Ty,Ta)
with T1eC"™ do not affect the truncation
result. ;

Proof:
Truncation  after  transformation  yields

(TTIAnTi,TleI,ClTl,D) ~ (A11,B1,C1,D) =

PROPOSITION 2
Let P=diag(P1,P2) and Q=diag(Qi,Q2) be
associated with state-space system (A,B,C,D)

and Py, QieC™ ™ Py QeeC"?™2,  then a
block—diagonal transformation matrix
T=diag(Ty,Ts) with TyeC"t™™,  Tpe("?*P2

exists that balances (A,B,C,D).
Moreover, if the HSV's related to P1Q; are all
larger than those related to PyQa, then direct

and balanced truncation yield identical
systems: (A41,By,C1,D) ~ (Ay1,B1,C1,D).
Realization eéA,B,C,D) will  be called
'block—balanced’.
Proof:

Since  P=T 'PT T=diag(Ti'PiTi", T3 P2T2")

and Q=TTQT=diag(TT1Q:T, T5QsT2), Ty and
Ty can be found independently to make P and
Q diagonal and equal. Proposition 1 says that
this does not alter the truncation result. 1

As a direct consequence, each truncation of a
realization with diagonal Gramians that satisfy

Pii*Qii 2 Distyit1* Qitlsists yields identical
reduced—order systems.
For given realizations with almost (block-)

diagonal Gramians, direct truncation may be such
close to balanced truncation that additional
balancing transformations would complicate the
reduction unnecessarily. For lightly damped
systems in modal form, smallness of the
off-diagonal elements of the Gramians is explained
in the next section and quantified in section 4.

3 HSV ESTIMATES
FROM MODAL REALIZATIONS

In literature it has been shown (Gregory, 1984;
Jonckheere, 1984; Blelloch e.a., 1987) that
differences between a particular modal and
balanced realization vanish if damping approaches
zero and poles do not occur repeatedly. Besides
from each mode with non—zero damping a HSV
can be estimated. In the sequel closed—form

solutions of the Gramians P and Q are presented
for realizations with diagonal state-space matrices.
For damping going to zero the diagonal elements
of P and Q tend to infinity whereas most
off-diagonal elements remain finite (only repeated
poles cause infinite off-diagonal elements).
Systems that have non—diagonalizable state-space
matrices are treated in the appendix.

Gramians of a modal realization

Given a modal realization of a strictly proper and
oscillatory system,

n
= Amtfu y =.Z 77 (n even) (8)
1=
Agk-1 = Pk + 10 Aok = Py — jwy skédn
Bor = 2 + jby € €7 By = a — jby € tlﬂ:l
N %1 =
Yokt = G + Jdy € 7y = ¢ - jd € €
with |Gl = |7, then closed—form solutions of
the Lyapunov equations (7) are:
H H
ﬁi ﬁj Ti 7
Bij=—T=4 ==z 9)
AtA § A i+/\j

(indices 'i' and 'j' denote first—order modes, 'k'
and 'l' denote vibration modes). Four types of
denominators can be discerned,

Attt Ag1 = Pty + i(wwy)
Ak + Ag1 = oyt — j(wywy)
Aoprt Aot = Pty + jwitwy)
Aok + Agrq = Aty — Jwirwy).

(10)

NN
It can be shown that diag(pii) = P = Q = diag(qii)
and we define

18212
U =Pokok = Pok-12k-1 =
2 py|
[P
= ok ok = Qok-12k-1 (11)
2 py|
as a measure of the input—output contribution of
vibration mode k (HSV estimates). The

off-diagonal elements of P and Q are generally
complex.

The vanishing damping case

From (11) we conclude that if mode k becomes
undamped (px~0) and remains reachable and
observable, a pair of diagonal elements in P and in
Q tends to infinity (#-00). If all other elements
remain finite, ¥ converges to HSV's oy and oy,
and mode k is clearly dominant. If the system has
no repeated poles, arbitrarily small damping in
any mode does not cause infinite off-diagonal



elements (on the contrary if wy=w for k#l and if
pk,p1=0 then off-diagonal elements approach
infinity t00)

If all modes become undamped and wyfwy for
k#1, then pj; and qj; (i#j) are negligible compared
to pji and qji, and the balancing transformation
relating both realizations tends to a permutation
matrix times a diagonal sign matrix (a specific
modal realization exists for which the balancing
transformation tends to identity).

In the next section approximation errors are
assessed for generally damped systems.

4 GENERALLY DAMPED SYSTEMS,
HSV INTERVALS AND MODE SETS

For non-zero damping, the exact HSV's are only
approximated by ¥ (11); for lightly damped
systems these estimates will be 'better' than for
well damped systems. This is made more precise
in this section. Based on the Gramians of a given
modal realization, intervals are derived that
include the exact HSV's.

Deviations of the Gramians from diagonal
structure as given by (11), are accounted for
quantitatively. This goes beyond error analysis in
literature: Gregory (1984) considers modal
reduction of a modally damped system appropriate
if for any two vibration modes the following
quotient is 'small',

max((;, ¢;) - max(wp;,wo;)

(12)

| woiwo |

with wy = (p2+w?]% the undamped frequency and
¢ = |p|/wo the modal damping ratio. This involves
low frequencies and damping ratios, and a large
frequency separation; no information concerning
the input matrix B or output matrix C is taken
into account. Blelloch (1987) found a similar
condition for generally damped systems.

Our approach hinges on HSV intervals. We review
two eigenvalue perturbation theories to establish
these HSV intervals: a well-known theorem of
Gersgorin to locate eigenvalues of complex
matrices in disc—shaped regions and a theorem of
Weyl to bound the real eigenvalues of Hermitian
matrices individually. In these eigenvalue
perturbation theories the matrix of - interest is
decomposed into a part with known or
'easy—to—find' eigenvalues and a 'small' residual
part that is treated as a perturbation.

In balanced reduction the HSV's can be related to
balanced states because the Gramians are both
diagonal matrices. To link modal reduction to
balanced reduction, both reachability and
observability Gramian has to be sufficiently close
to a diagonal or block—diagonal matrix. Several
methods are introduced to evaluate the deviations
from diagonal or block—diagonal form.
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Eigenvalue perturbation theory of Gergorin

In Gerdgorin's theory a matrix is decomposed into
a diagonal matrix (with known eigenvalues) and a
off-diagonal perturbation matrix,

7,2, % e (D

Z=2+4 (13)

DEFINITION 1

. n
Ei(Z) = ¥ |zy] is absolute row sum i of Z.
=1

DEFINITION 2

n
I;(Z) = % |zy| is absolute column sum j of Z.
i=1

THEOREM 1, GerSgorin.

All eigenvalues of Z €
union of n discs

n
U {xeC |xay] < Ei(2) } = gg(2)
=
A region of k intersecting discs that is disjoint
from all other discs contains exactly k
eigenvalues of A.
Pmoﬁ
This classic result can be found in most
textbooks on matrix theory (see Horn and
Johnson (1985) for a detailed discussion). 0

¢ ™ are located in the

Ger3gorin disks are centered at the diagonal
elements of A and their radii are fully defined by
the absolute values of the off-diagonal elements of

A. Since the eigenvalues of A and A" are the
same, Gerdgorin's theorem can be applied to rows
as well as columns and an intersection yields
better estimates in general,

AZ) € gg(Z) n Fyy(2)

with g,(2) =

defining the column-—based Gersgorin regions.

(14)

1i] =

G{x € G |xzy| < W2},
i=1

Since we know that the eigenvalues of PQ are real
nonne%ative, only the intersections of the discs
with the real axis are of interest. The square roots
of the interval bounds determine the HSV
intervals. If the off-diagonal absolute row or
column sums of PQ are sufficiently small
theorem 1 provides accurate bounds on the exact
HSV's, from which the feasibility of balanced
truncation can be evaluated; we thus circumvent a
complete eigenvalue solution (3).

The method discussed above to determine HSV
bounds is based upon a decomposition (13) of the
product of the Gramians that does not reflect our
HSV estimates (11) obtained from separate modes.
To ensure that the squared HSV estimates (v2)
are included in the eigenvalue intervals of PQ, we
decompose PQ as follows:



pQ = PQ + [P§ + BQ + BY

in which the first term represents the squared
HSV estimates and the bracketed expression
defines the perturbation matrix. Although the first
matrix is diagonal, the second is full in general.
The following corollary based on GerSgorin's
theorem can be used in eigenvalue estimation
problems with full perturbation matrices.

(15)

COROLLARY 1

Let Z = D + F € (™" with D a diagonal
matrix. The eigenvalues of Z are contained in
the union of n discs

n n
'Ul{ x € G |x—d;] S‘El |51 } = F(D,F)
1= J=
Proof:
Use Gersgorin with disc centers dj+fjj, then
shift center to d; while enlarging the radius by
|fii| to ensure inclusion of the original disc. g

Again intersection of row-based and column-based
discs yields sharper bounds on the eigenvalues:

A(D+F) € (D,F) n y(D,F)

with S(D,F) = U {z € C |z—d;| < L(F)},
i=1

defining the modified column-based Gersgorin
regions.

(16)

We mention that other eigenvalue inclusion
regions similar to Ger3gorin's have been derived in
literature: (see Horn and Johnson (1985) for
Ostrowski's and Brauer's theoremsﬁ. The elegant
simplicity of Ger3gorin's approach, however makes
it well suited for the analysis of HSV's as will be
demonstrated.

Figenvalue perturbation theory of Weyl

for Hermitian matrices

All eigenvalues of a Hermitian matrix are real and
can be computed relatively easy. If the
perturbation matrix is Hermitian too, eigenvalue
intervals can be derived using a theorem of Weyl.

THEOREM 2, Weyl.

ForA=A" B=B"e (™™ C=A +B, and
all eigenvalues arranged in increasing order,

the eigenvalues of C can be bounded
individually:
A (A)+A,(B) € A(C) < A (A)+A (B)
All intervals have width ,\n(B)—,\l(B).
Proof: Horn and Johnson (1985) =

This theorem can be useful for Hermitian matrices
that are close to a Hermitian matrix of which the
eigenvalues are known or easy to find. The
eigenvalue bounds of P and Q, being Hermitian

(and positive definite) can be obtained
straightforward based on decomposition (13).
However PQ, having real eigenvalues, is not
Hermitian and we have to reformulate the
eigenvalue problem in (3).

LEmMa 1
Let P = pHp and Q = qu be positive definite
matrices. Then \(PQ) = A(pr") = A(qPq").
Proof:

This is an immediate result of A(AB) = A(BA)
for A and B square. -

N\
Now both prH and qPq}i are Hermitian and PQ
is a Hermitian diagonal matrix with known
eigenvalues (¥%2). The maximum and minimum

NN
eigenvalue of perturbation matrix pr"—PQ or

qPqH—IEEi determine all eigenvalue intervals. The
required factorization of P (or Q) however makes
the eigenvalue estimation rather complicated.

If all eigenvalues of the perturbation matrix
are available even sharper bounds on the
individual eigenvalues of PQ can be obtained.

THEOREM 3, Weyl.
For A=A"B=B"e ™" C=A+B,and
all eigenvalues arranéed in increasing order,
the eigenvalues of satisfy the following
bounds: '
/\J.(A)+,\i_j+1(B) < ,\i(C)
A(C) < )\j(A)+,\i_j +n(B)

Selection of the sharpest bounds yields:
A(C) € [ max {Aj(A)+)\i_j+1(B)} A

1<isn, j=1,..,i
1<i<n, j=i,..,n

j=1,i
jrilinn{'\i(A)+'\i-i+n(B)} ]
Proof: Horn and Johnson (1985) -

In general the simplicity in calculating HSV
intervals is lost if a full eigensolution (Theorem 3)
is required.

Linking HSV intervals to mode sets

Although we now have established HSV intervals
containing a number of estimated HSV's that are
coupled to separate modes, we cannot conclude
that the underlying modal realization is close to a
balanced realization. Situations may occur in
which the product of two Hermitian matrices has
relatively small off-diagonal elements, whereas the
matrices itself have off-diagonal elements that are
relative large. This can be shown by a simple
example:

_ 121 _ 2 -1 _ 131
p=[t i a=[i7]amara=[]
This means that small HSV intervals associated

with a modal realization do not allow conclusions
on the approximately balancedness of this



realization (i.e. off-diagonal elements in P and Q
may still be large).

Eigenvalue perturbation analysis on P and Q
separately can be used to check the smallness of
the off-diagonal elements of P and Q. This
procedure is heuristic since the eigenvalues of P
and Q are not system invariants.

An alternate solution is the replacement of the
off-diagonal elements of P and Q by their absolute
values prior to multiplication. This results in a
larger perturbation matrix ensuring inclusion of
the original HSV intervals. By this modification
each separate HSV interval can only be caused by
separate eigenvalue intervals of P and Q.

As stated in section 2 a minimum requirement for
a truncation to be equal to a balanced truncation
is that P and Q are of the same block—diagonal
structure. Although this requirement can never be
met exactly for modal realizations of damped
systems, Weyl's theorems can be wused in
evaluating the 'almost block—balancedness'
(Proposition 2) of the modal realization. It is
assumed that 'P and Q sufficiently close to
block—diagonal = matrices' leads to almost
block-balancedness. Therefore let the off—diagonal
blocks define the perturbation matrix and let the
block—diagonal matrix be used for estimation of
the eigenvalues of P and Q,

P=diag(P11,P22)+AP, Q=diag(Q11,Q22)+AQ )
T fo
with AP—[PIQ 0’2} and AQ-[ng 012].

Then as a result of theorem 2, the followin
conditions ensure that eigenvalues of P (Q%
estimated from Py (Qq1) are also the largest
eigenvalues of P (Q).

f\min(Pll)_/\max(Pﬂ) > /\max(AP)“z\min(AP) (18)
/\min(Qll)—/\max(Qﬂ) > /\max(:ﬁQ)—/\min(AQ)

If (18) is satisfied the truncation result
(A11,B1,C,D) will generally deviate little from

(A11,B1,Cy,D), the balanced and truncated system.
In principle a similar analysis should be performed
on PQ since there is no simple relationship
between A(PQ) on the one hand and A(P) and
AMQ) on the other. However as we have seen
Weyl's theorem can only be applied to PQ after
factorization of P or Q, and thus HSV interval
analysis based on Weyl's theorems are less
efficient than the approach based on Gersgorin's
theorem.

5 SCALING AND PARTIALLY
BALANCING TRANSFORMATIONS

In the previous section HSV intervals were derived
based on a given modal realization. This
realization is not unique and in this section it is
shown how state transformations not destroying
the modal structure can be utilized to contract
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and possibly split HSV intervals with more than
one HSV.

In principle finding two HSV intervals, each
associated with a parallel-connected subsystem, is
sufficient for the truncation purpose (Proposition
1). Nor the retained part nor the truncated part
has to be in modal form; they are only required to
be dynamically uncoupled. This provides
additional freedom of transformation. By exact
balancing of sets of modes off-diagonal elements in
the Gramians are zeroed and sharper HSV bounds
can be achieved. If sets of modes that are
transformed in this way, are retained or truncated
as an entity, the reduction is still modal in
essence. If, on the other hand, we allow truncation
within transformed sets of modes, we have an
intermediate form between modal and balanced
truncation.

Scaling transformations

Since TZT has the same eigenvalues as Z,
simple transformations can be invoked to obtain
sharper bounds on the eigenvalues. It is well
known that GerSgorin's eigenvalue approximation
may benefit from diagonal transformations. The
advantage of diagonal transformations is that the
approximate eigenvalues (the disk centers) do not
alter while the disc radii can be manipulated.
Formulas for eigenvalue regions based on
Ger3gorin's theory are quite simple.

CorOLLARY 2, Gersgorin (Horn and Johnson, 1985)

€PN are located in the

All eigenvalues of Z €
union of n discs

1 v .

5 jzl sjl251} = Fp(5725)

jti

n
U {xeC: |x—zy| <
i=1

with $,,89,..,8, > 0

Proof:
A scaling transformation does not change the
eigenvalues nor the diagonal elements; only the
of%-dia.gonal elements vary and thus the
absolute row sums. Because only absolute
values of the off-diagonal are of interest, a
positive scaling is not restrictive. B

LEMMA 2
Given Z = D+F, with D a diagonal, and F a
full complex matrix with column-radii llI(F),
then all eigenvalues of Z are located in the
union of n discs

n

U {xeC:|x—d;| <
=1

with sy,82,..,8n > 0.

Besides choosing one s;>1 and all other s;=1
{i#g? enlarges disc radius j: 1;(S™FS) > LlI;(F)
and yields equal or reduced disc radil i:

LI;(ST'FS) < W(F).

n
1 1 "
52 5,1} = Fy(P.SFS)



Note that the absolute row sum discs show
precisely the opposite behaviour.
Proof:

The first part is just a generalization of the
previous result as it does not take the diagonal
elements as eigenvalue estimates; only the
off-diagonal elements of F may change. The
one-element scaling results in row j divided by
sj, and column j multiplied by s;. Column sum
j is thus enlarged, while all others can only
diminish. -

A systematic way to find scaling parameters d;
that yield some sharper eigenvalue bounds is not
available to our best knowledge.

For matrices having real eigenvalues, we
propose several procedures to find scalings likely
to contract eigenvalue intervals of interest.

PRrOPOSITION 3
Let Z = D+F, with D a real diagonal matrix,
F a full complex matrix, and ,\}Z) all real.
Suppose .ﬁiu D,F) is a set of eigenvalue

intervals and interval k is denoted by
F(DJF)X, then each 'disc' k; in 3, (D,F)¥
can be enlarged individually by an amount

T {dkj_ By-18k+1” dkj

8. = >1
j Hlkj(F)

with & 10 811 respectively maximum of

%(D,F)k_l, and minimum of .ﬁu(D,F)k+l.

Proof:
As a consequence of the previous lemma,
enlargement of one disc radius can never result
in any other enlarged disc; even the other discs
within interval k will shrink. This means all
scalings can be computed individually; the
minimum ensures interval k does not overlap
interval k+1 nor k-1. C

In most cases we are interested in tearing apart
one specific eigenvalue interval, and mutually
overlapping of all other intervals is of no concern
because their mutual ordering remains valid. The
following procedure exploits this additional
freedom of scaling.

PROPOSITION 4
Suppose %H(D,F)k is an eigenvalue interval

apart from all others and g, g  are its

minimum and maximum value. Let X number
all other intervals and ki, %; be the
corresponding disc numbers. Then each disc k;

in .S‘l'u(D,F]k can be enlarged individually by
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. >1

s =
k.
j Illkj(F)

Proof:
This again results from the fact that all discs
k; necessarily shrink if s, =1 and all s; >1.
1 1

The maximum ensures a scaling greater than
one is chosen. o

In the previous methods no advantage is taken of
the fact that enlargement of one disc allows a
subsequent disc to be enlarged more. By updating
the matrix and starting the procedure again most
conservatism can be removed. In the next method
a one—element—scaling is performed in each step.

ALGORITHM (iterative search for scalings)
Suppose Sm(D,F)k is an eigenvalue interval

apart from all others and g, g are its
minimum  respectively —maximum  values.
%(D,F)k represents the union of all other
eigenvalue intervals.

1: Search disc %; in .Biu(D,F)k that can be

enlarged most:
=ik (M max { dp =By, g~ dg. } ]
2: Scale matrix F:

F:= S-iFS, S = djag(si), Si =1 fori # ‘kj

s; = §) fori =k;
3: Calculate eigenvalue intervals (D,F).

4 Stop if Fy(D,F)* has been split or if no

significant contraction of intervals has been
found.
Otherwise go to 1. ]

Because smaller column-based intervals are
accompanied by larger row-based intervals, the
row-based Gerdgorin regions need mnot be
recalculated if the scalings were based on column
analysis. Scalings based completely on rows may
improve the eigenvalue bounds by intersecting
intervals from both analysis.

Partially balancing transformations

As mentioned earlier, balancing of a subsystem
introduces zero off-diagonal elements in P and Q,
which will reduce the HSV-interval sizes in most
cases. This partially balancing can best be applied
to sets of modes that are responsible for the
largest off-diagonal elements in the Gramians.
Truncation of the transformed realization is only
similar to a modal truncation if all modes involved



in the partially balancing transformation are
retained or .truncated (Proposition 1). For
moderately damped high—dimensional systems
with large sets of modes, interval splitting can
only be achieved by partially balancing
transformations involving many modes. Taking
these modes together in modal set reduction may
constrain the choice of the order reduction
unacceptably. Dropping the requirement of
modal-reduction—similar truncation we may design
effective schemes for partly -balanced, partly modal
reduction.

Note that separate balancing of vibration modes
prior to truncation does not affect the modal
reduction. For systems with a realization as in (8)
the balancing transformation will be (2x2)-block—
diagonal and introduces zeros at the entries
(2k=1,2k) and (2k,2k-1) in P and Q.

6 MODE SET SELECTION
PROCEDURES

In this section it is shown how mode sets can be
selected that are input—output most important.
HSV intervals, scaling and partially balancing are
used in a general procedure for selecting input—
output important mode sets or parts of mode sets.

We start out from a modal realization with
complex modal states that are scaled with respect
to input and output contribution (8). Modes
responsible for non—diagonalizable parts of the
state-space matrix are treated as sets from the
beginning (also see Appendix).

By means of methods presented in section 4,
HSV intervals are calculated and scaling
transformations (section 5) are applied to give
maximum information on the HSV's (HSV
intervals from different realizations should be
intersected}. Well spaced HSV intervals indicate
the suitability of (balanced) order-reduction.

To make sure that the realization is close to a
balanced realization the eigenvalue intervals of P
and Q are evaluated. Based on these intervals
together with the HSV intervals, an ordering of
sets of modes is determined.

If order-reduction can be achieved by truncation
of particular mode sets we can stop here.
Otherwise additional ordering can be forced by
partially balancing.

This may involve modes that are responsible
for large off—-diagonal contributions to P and Q, or
mode sets that are sure to be retained or
truncated. This latter procedure will not introduce
'couplings' with the mode set(s) in the medium
HSV range of which an additional ordering is
sought. However, selecting mode pairs because of
their contribution to the off-diagonal matrices of
P and Q generally couples the original mode sets,
but is very effective in splitting HSV intervals.
This can best be illustrated by means of a
characteristic example.
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EXAMPLE

A linear time—invariant two—input—two—output
system is constructed that has ten complex poles,
is non-minimum phase and typically lightly
damped. The state-space matrix is diagonalizable
and input and output matrices are scaled in order
to satisfy (8). Vibration mode numbers are
indicated by {k} and mode sets are denoted by
capitals.

)
A = diag(—0.0041-0.3823j,-0.0041+0.3823j, {1}

—0.0022-0.7580j,—0.0022+0.7580j, {2}
—0.0026-1.0197j,~0.0026+1.0197j, {3}
—0.0084—1.8087j,—0.0084+1.8087j, {4}

—0.0072-1.8474j,-0.0072+1.8474] ) {5}

[ 0.00022 + 0.00475]

0.00052 + 0.23242]]

0.00022 — 0.00475] 0.00052 — 0.23242| 1}
0.00003 — 0.22813] 000028 + 0.42735j| 1o,
0.00003 + 0.22813j  0.00028 — 0.42735]
B _ |~0-04800 — 0.00020j —0.00982 + 0.00144jf o
—0.04800 -+ 0.00020j —0.00982 — 0.00144;]
0.16178 + 0.00564 0.11206 + 0.00737j| 1y
0.16178 — 0.00564j  0.11206 — 0.00737]
0.35035 — 0.00694j 0.43074 — 0.00542j|
| 0.35035 + 0.00694j 0.43074 + 0.00542])
0.00445 + 0.00021j  0.00231 — 0‘232423‘} .
0.00445 — 0.00021j 0.00231 + 0.23242j
~0.20786 + 0.00011j ~0.00155 + 0437565
—0.20786 — 0.00011j —0.00155 — 0.43756;
ot _ | 0.00043 + 0.04852] 0.00698 + 0.0003Lj| gy
= | 0.00043 — 0.04852j 0.00698 — 0.00031j
~0.00488 — 0.10270] ~0.16776 — 0.01000j| ¢y
—0.00488 + 0.10270j —0.16776 + 0.01000j
0.00058 — 0.17478] 052705 — 0.00548| oy
| 0.00058 + 0.17478]  0.52705 + 0.00548],

The HSV estimates associated w

modes are (11):

ith the vibration

6.6621 {1}

54.1092 {2}

¥ =| 04559 (3}

2.3160 {4}

21.4060 {5}

Closed—form solutions (9) are used to calculate
both Gramians. Application of (16) with

PQ-decomposition (15) gives a first indication of
the HSV bounds (Fig. 1la, lower line; Table la).
Figure 1b (Table 1b) shows that the eigenvalue
intervals of P and Q support the division of modes
into three sets (A,B,C): {3,4,1}, {5} and {2}.
Moreover mode 1 is likely to be -more important
than modes 3 and 4; indeed the scaling
transformation algorithm of section 4 is able to
split mode set {3,4,1} within one iteration step
into a least important mode set {3,4} and a
moderately important mode(set) {1}. In Fig. la
three steps of iteration are presented, all based on
Gersgorin's absolute row. sums. Ordering of modes
3 and 4 in set A could not be obtained by
continuing the scaling transformation algorithm.

Analysis based on column information gave
similar results.



Application of Weyl's Theorem 3 did not
improve above results.

(1,2,3,4,5 modes, A,B,C,D mode sets)

A B C D
= i 3 1
= 2 i
— iteration 1 j
B4 1 5 2
 — = original i
A B C
1 I I L
0 10 20 30 40 50 3 60
— A(PQ)
Fig. 1a. HSV estimates and intervals.
A B C D
= == P T
B4 1 5 2
L. i =t qQ 4
A B C D
I L L L L
0 10 20 30 40 50 60

— A(P) , A(Q)
Fig. 1b. Eigenvalue intervals of P and Q.

We conclude that modal truncation of modes
{3,4}, {3,4,1} or 33,4,1,5 will be close to an
equivalent order-reduction by balanced truncation.
For this simple example this is satisfactory, but
for higher—dimensional systems HSV intervals and
mode sets are generally much larger and then
scaling transformations are not sufficient to split
HSV intervals. To illustrate the procedure of
partially balancing we try to split mode set {3,4}.
A balancing transformation on modes {1,5,2} did
not result in sufficiently smaller HSV intervals.
Evaluation of the off-diagonal elements of P and
Q revealed large couplings between modes 4 and 5
(with relatively close poles). Balancing the
associated 4x4-block reduced all HSV and
eigenvalue intervals dramatically (Fig. 2a/b; Table
2a/b). Note that the original modes 4 and 5 are
now coupled and in order to preserve the
reduction to be modal, modes {4,5} should be
both truncated or both retained. We can now
conclude that modal truncation of mode {3} or
modes {3,4,1,5} will be close to an equivalent
order-reduction by balanced truncation. If we do
not strive towards pure modal truncation,
truncation of the least important part of
subsystem {4,5} can be considered.

B C D E
—- = partially balanced ;
4 1 5 2
ol = original L
A B C
1 | 1 |

0 10 20 30 40 50 1 60

— A(PQ)

Fig. 2a. HSV estimates and intervals.
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O e 1D

w e dl =

30 40 56 © 60
— A(R) , AQ)

Fig. 2b. Eigenvalue intervals of P and Q,
partially balanced.

TABLE 1a HSV intervals

1
original: A(PQ)? modes
[ 0.0000 8.3355) {1,3,4}
[20.1727  22.5720) {5}
[63.8460 54.3711] {2}
iteration 1:
[0.00  4.29] (3,4}
[ 657  6.76] {1}
[10.54  28.38] {5}
[54.07  54.14] {2}
iteration 2:
[ 0.00 4.12) {3,4}
[ 6.57 6.75) {1}
[ 837 44.79] {5}
[54.08  54.14] {2}
iteration 3:
[000 4.12] {3,4)
[ 6.57 6.75) {1}
[ 8.34 44.92] {5}
(54.08  54.14] {2}

TABLE 1b Eigenvalue intervals

A(P)

modes AQ)

[ 00000  4.9359] {3,4} [ 0.3776  4.2124]
[ 6.0917 7.2324] {1} [ 6.0423  7.281§]
[18.4903 24.3217] {5} [19.1836 23.6285]
[53.4265 54.7919] {2} [63.2043 55.0141]

TABLE 2a HSV intervals (partially balanced)

O )
2

A(PQ) modes
[ 0.0000 1.6282] {3}
[ 16768  2.4116] {4}/{5}
[ 4.4102 8.3256) {1}
[214226  21.7329) {5}/{4)

[53.8404

54.3767] {2}

TABLE 2b Eigenvalue int. (part. balanced

A(P)

(03670  0.5449)

modes MQ)
(3} [03753  0.5366]

[ 2.0135 2.1538] {4}/{5} [1.8735  2.3047]

[ 6.0947  7.2294]

{1}~ [6.0561  7.2680]

[21.2261 21.9306] {5}/{4} [21.0485 22.1081]

[63.4162 54.8022]

{2} [53.2012 55.0172]



For this simple example modal and balanced
reduction gave almost indistinguishable results.
Note however that our procedure is advised for
high—dimensional systems that do not allow a
thorough comparison with balancing results. More
general model reduction techniques can be applied
after a first modal reduction.

7 CONCLUSIONS

For generally lightly damped systems, modal
realizations provide a good starting point for
estimation of the HSV's. HSV intervals derived by
means of Gersgorin's eigenvalue perturbation
theory seem very effective in evaluating the
reducibility — of  lightly = damped  systems,
circumventing a (balancing) transformation of
systems originally in modal form. Sets of modes
naturally appear that have an input-output
importance quantified by HSV intervals and they
are truncated or retained as a whole. Modal
reduction by truncation of mode sets avoids
problems with the ordering of modes within these
sets. Additional ordering information can be
obtained by scaling transformations and by
balancing of subsystems. Therefore a specific
scaling procedure has been designed. By separately
balancing (modal) subsystems, the advantages of
modal and balanced truncation can be combined
while avoiding full balancing transformations.

APPENDIX

For non—diagonalizable state-space matrices the
closed—form solutions to the Lyapunov equations
(7) are more complicated and it will be shown
that the Gramians contain off-diagonal elements
that reach infinity for damping coefficients going
to zero.

Since A is now block—diagonal (A=diag(Aij)),
the Lyapunov equation can be solved per block.
We point out the solution for the reachability
Gramian only. Partitioning B and P conformably,
we may write:

A;iiPjj + PijAj{i{ - BiBjH =0

Ai l
; njxn; Ai 1
with Aj;eC' ! Jordan blocks: .
Ai 1
Ai
To simplify the expressions we drop the

block-matrix indices of Pj; and write ‘BB for

BiBjH. Now P can be built up starting from the
lower right element,
b
p i
HE Ai + ,_\j
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. =
: ; T
following the arrows in S R S P
]
= =X
Row nj is found from,
(Ai+Aj) Piai FBimga T bb ., =0 m<
and column nj from,
(Ai+A;) Py Pyt + bbl,nj =0 l<n;
All other elements are soll\{ed from
(Ai+/\j) pl,m * pl+1,m e pl,m+1 + bbi,m =0

In all solutions we have a denominator term

Ai+Aj, that can only reach zero for vanishing
damping if Aj=A;. Thus blocks in P associated
with a Jordan block or Jordan blocks in A with
identical eigenvalues, contain elements
approaching infinity for damping going to zero.
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Abstract. Orthogonal functions are of importance in various fields of system and
control theory. In this paper it is shown that every finite dimensional time invariant
linear discrete time system gives rise to two sets of orthonormal functions, which are

complete in ¢ and therefore can be considered as a basis for this space.
examples of these functions are the L

Specific

uerre polynomials and the discrete pulse
functions. The derivation is based on the properties of discrete all-pass transfer
functions. Through transformation of input and output signals of a system G in terms
of these sets of orthonormal functions, new system descriptions are obtained and new
possibilities arise for the construction of approximate identification methods.

Keywords. Discrete time systems; all-pass functions; orthonormal functions; Laguerre
polynomials; system identification; system theory.

1 INTRODUCTION

Orthogonal functions and their application in
system theory have been subject of research for
many years, cf. the early work of Wiener (1949)
and Lee (1933). In the past decade their use for
problems like system analysis, optimal control and
system identification has been investigated by
many authors, cf. the work of King and
Paraskevopoulos (1979), Paraskevopoulos (1985),
Nurges and Yaaksoo (1981), Nurges (1987) and
Wahlberg %989) on Laguerre polynomials, the
paper of Unbehauen and Rao (1988) on continuous
time identification, and the references therein.
There are many different sets of orthonormal
functions and the choice of a specific set to attack
a certain problem in all these papers is more or
less arbitrary, and the choice is often more
motivated by the nice properties of a certain set
than by the problem at hand. For orthogonal
polynomials , like Legendre , Chebychev and
Laguerre polynomials, in general the most
important property is the so called shift structure
(Paraskevopoulos,1985).

It is to be expected that for a specific system and
a specific problem there will be a 'best' choice
from the whole family of orthogonal sets to solve
the problem. We are merely interested in the
problem of system identification and the question
arises if linear systems give rise to orthogonal
functions in a natural way, in order to find an
answer to the question if there exists a natural
coordinate basis to represent a specific system in
terms of a small number of coefficients. The
answer to this question is affirmative and in this
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paper we will give the basis for the theory
involved.

We will show that every finite dimensional linear
stable discrete time system gives rise to a
complete set of orthonormal functions, based on
input ‘or output balanced realizations, or
equivalently on the singular value decomposition
of the Hankel matrix of the system. These
functions are generalizations of the Laguerre
polynomials. The theory is based on the properties
of discrete all-pass functions, analogous to the
continuous time results of Glover (1984).

These properties are given in section 2, and in
section 3 we show how all-pass functions give rise
to sets of orthonormal functions, which is
extended to general transfer functions in section 4.
In section 4 the completeness of these sets is
proven and in section 5 some specific examples of
these sets are presented. In analogy with the
Laguerre polynomials we can use these functions
to transform timeseries and arbitrary linear
systems to what we will call the orthogonal
domain, which is explained in section 6. In section
7 two identification schemes are proposed based on
these sets of functions. The application of known
identification methods on transformed data
changes the properties of the identified models,
thus leading to new methods for approximate
identification. These schemes can be seen as a
search for the 'best' set of orthogonal functions for
the identification problem.

In this paper we restrict ourselves to finite
dimensional linear time invariant discrete time
systems, abbreviated to FDLT systems and
FDLTS systems if the system is asymptotically



stable. We will merely be dealing with state space
descriptions:

x(t+1) =Ax t}+BuEt l.1a
y(t)  =Cx(t)+Du(t 1.1b
with AeC**®, BeC"™", CeCP*", De(P*™ .

The corresponding transfer function is:
G(z)=C[zI-A]"B + D. (1.1¢)

and [A,B,C,D] is called a realization of G. For a
realization we define the controllability matrix Mc
and the observability matrix M, by:

M= [B| AB | A%’B 2] (1.2a)
M, = [C*| A*C*| A¥C*.-.]"  (1.2b)
We denote by A the complex conjugate of A and

by A* the Hermitian transpose of A, so. A*=AT,
It is well known that for minimal realizations Mg
and M, have full rank n.

We assume that the reader is familiar with the
notions of Gramians, Hankel singular values and
the w-transformation. A short treatment can be
found in this issue (Heuberger, 19902).

In this paper we use the notation £ for square
summable time sequences:

b= (xd0C | B x(G) <=} (13)

When we deal with Kronecker products we use the
operator Vec to transform a matrix into a vector:

If X=(x;)€C™*™ , then Vec(X)e("™*!

Vee(X):=(x11,X12,* * X1myX21,* *  Xam) - (1.4)
In section 6 we use the concept of the behavior of
a system, which we define as follows.

DEeFINITION 1.1. Let G(z) be a FDLTS system. We
define the behavior B(G) by
B(G)= {(u(t),y(t))| u(t)elz and {u(t),y(t)} is
an input/output pair of G(z)) o
Note that in definition 1.1 tEINO; we consider
{u(t),y(t),t20} to be an input/output pair if there
exists a realization of G and an initial condition
x(0), such that {u(t),y(t),x(0)} obey the equations
(1.1). Note that in this definition the stability of
G(z) implies that also y(t)€to.

9. PROPERTIES OF DISCRETE ALL-PASS
FUNCTIONS

In this section we give a characterization of
realizations of discrete all-pass functions. This is
given in theorem 2.2, which is the discrete time
version of theorem 5.1 in (Glover, 1984).
First we define all-pass transfer

functions,
following Glover (1984).
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DeFINITION 2.1. A discrete transfer function
matrix E(z) of a FDLT system, with dimensions
pxm is called an all-pass function if :

E(@E (3= pm
E'OE@=1 pm

(2.1a)
(2.1b)o

The next theorem shows that all Hankel singular
values of a square all-pass function are equal to
unity and it gives conditions for the existence of a
state space realization.

THEOREM  2.2. éHeubefger,lQQUb). Given a
realization [A,B,C,0], (not necessarily stable) with

AeCm* BeC™*™ Ce(™", then

1. If {AB,C} is completely controllable and
. completely  observable the following two
statements are equivalent:

(8) 3 DeC™m such that G(z)G  (b)=07,
where G(z) := D + C[zI-A]"B.
(b) 3 P,Q € €"*", such that

i)  P=P* Q=Q" (2.2a)
(i) A*QA+C*C=Q (2.2b)
(iii) APA*+BB*=P (2.2¢)
(iv) PQ=¢’ (2.2d)

9. Without the condition on controllability or °
observability: Given that the conditions under
(1.b) are satisfied then 3 D satisfying

i) D*D+B*QB=0’l (2.3a)
(i) DD*+CPC*=¢% (2.3b)
(i) C*D+A*QB=0 (2.3¢)
(iv)  BD*+APC*=0. (2.3d

<

and any such D satisfies (1)(a).

REMARK 2.3.

1. Note that if A is not stable then P and Q
cannot be seen as Gramians, since these are only
defined for stable realizations.. Nevertheless P and
Q are unique solutions of (2.2b,c) if A has no
eigenvalues on the unit circle. If A does have
eril%envalu% on the unit circle there may be an
infinite number of solutions to (2.2b,c), some of
which will satisfy (2.2d) iff (2.2a) is satisfied.

9. If A is not stable, the condition PQ=0?I does
not imply minimality of the realization. Take for
example A=I, B=C=0, then P=Q=I but {A,B,C}
is neither observable nor controllable. o

3 ORTHONORMAL FUNCTIONS '
GENERATED BY ALL-PASS FUNCTIONS

In this section we use theorem 2.2 to show that a
square stable all-pass function gives rise to an
infinite set of orthonormal functions. This

derivation is based on the fact that the



controllability Gramian P of a realization of a

FDLTS system is equal to P=MMg, where M, is
defined in (1.2a). Consider the rows of M¢ as
discrete time functions, then the entries of P are
the inner products of these functions. So if P=I
then these rows are mutually orthonormal in
l,-sense. The next step is an embedding of an
all-pass function with McMillan degree n in one
with degree k=xn, which has a controllability
matrix with kxn rows. If we let k- this leads to
an infinite number of rows or orthonormal
functions.

If G(z)=C[zI-A]"B+D is a square stable all-pass
function with McMillan degree n, then theorem
2.2 shows that P and Q, defined by (2.2) satisfy
PQ=I. We can always find a minimal realization

with P=Q=I, using well known balancing
techniques (Laub, 1980; Moore, 1981; Enns, 1984).
So AA*+BB*=1 (3.1a)
and  A*A+C*C=I (3.1b)

Stability and minimality imply that the
controllability and observability matrix (1.2a,b) of
the realization have an orthonormality property:

MMg =P =1 (3.2a)
MiMo=Q =1 (3.2b)

Hence we can consider the rows of M (and Mp)
as n mutually orthonormal discrete time functions.

REMARK 3.1. For such a realization we can show
that (3.2a,b) gives us also the singular value
decomposition of the Hankel matrix H
corresponding to G. It is well know that H=MyM,
and because the Hankel singular values of G are
all equal to unity this gives the singular value
decomposition of H:

H=USV*, U=M,, £=I, V=M. (3.3)0

The next step is to embed G in an all-pass
function with larger McMillan degree. If G(z) is a

square all-pass function then it is clear that GX(z)
is all-pass for keN. The following lemma shows

that we can easily find a realization of G?(z) with
the property (3.1a,b).

LemMa 3.2. (Heuberger, 1990P).

Let G(z)=C[zI-A]'B+D be a square stable
all-pass function with AA*+BB*=I, and

A*A+C*C=I,. Let Ga(z)=G%(z) then G has a
stable, minimal realization [Ag,Ba,Cs,Do] with:

Az=[§C R] B2=[ED} Co=[DC C] D;=D? (3.4a)
an 2

AsA% + BoBY = A3Ay + C3Ca=TLn  (3.4b)o

As a result of lemma 3.2 we can again consider
the rows of the controllability and observability
matrix of [A2,B,Cs,Ds] as 2n orthonormal
functions. Note that the first n 'controllability'
functions are the orthonormal 'controllability'
functions of [A,B,C,D] and that the last n
'observability' functions are the orthonormal
'observability' functions of [A,B,C,D] . The next
theorem extends this property to arbitrary powers
of G(z).

THEOREM 3.3. (Heuberger, 1990D).
Let G(z)=C[zI-A]'B+D be a square stable
all-pass function with AA*+BB*=A*A+C*C=I,.

Let Gi(z)=G¥(z) with keN, k>1. Then G has a
stable, minimal realization [Ay,Bx,Ck,Dk] with:

(A 0
BC A 0
A, =|BDC BC A 0 (3.5a)
IBDk2C-.. BDC BC A
[ B
BD
By =|BD? (3.5b)
B]E)k-l
Cx =[D¥!C-.-D?C DC (] (3.5¢)
Dy = DX (3.5d)
and
ARAT( + BkBﬁ = I(kﬂ)n (36&)
AXAk + CkCk = Likstyn (3.6b)o

By letting k-o theorem 3.3 actually shows the

construction of two infinite sequences of
orthonormal functions, represented by the
controllability and observability matrices of

Note that the 'controllability'

iAk,Bk,Ck}-
unctions induced by Gk are the first kxn
functions induced by Gk and the 'observability'
function of Gg-; are the last kxn 'observability'
functions of Gy..

ReEMARK 3.4. As mentioned in remark 3.1. the
controllability and observability matrices of
[Ak,Bk,Cx,Dx]  define  the singular value
decomposition of the Hankel matrix of Gk. The
structure of the realization (3.5) with the
decomposition (3.3) shows that we have actually
extended the matrices U,V by adding extra
columns, such that these extended matrices are
still unitary. o

4 ORTHONORMAL FUNCTIONS FROM

GENERAL TRANSFER FUNCTIONS

In this section we use the results of the previous
section in order to define sets of orthonormal
functions based on an arbitrary FDLTS system G



with McMillan degree n. This will
accomplished by splitting of an all-pass function
and to use the method described in section 2. The
line of thought is best understood by considering
the Hankel matrix H of G. The singular value
decomposition of H is

H=UzV* (4.1a)

U*U= Vv =1 (4.1b)
and X is the diagonal matrix with singular values.

The unitarity of U and V implies that the
columns of U and V can be seen as n orthonormal
discrete time functions. We will extend one of
these to an infinite number of orthonormal
functions, such that we again have a recursive
structure as in section 2. In general it is not
possible in general to extend U and V
simultaneously, for aming at this recursive
structure, because the Hankel singular values are
not equal. We will consider the extension of V.

If G(z) is an arbitrary FDLTS system then we can
always construct a so called input balanced
realization (Enns, 1984). This realization has the

property AA® + BB* =1, A*S?A + C*C = 22,
where ¥ is the diagonal matrix with Hankel
singular—values. Let M and M, be as in (1.2)

then MgMo=%2 and McMe=I. The Hankel matrix
has a singular value decomposition (4.1) with

U=M,Z! and V=M,
since H=MoMc=(MoE1)EM, and U*U=VV*=1.

We want to extend V=M. to a larger unitary
matrix. This can be done with the theory in the
previous section if we can consider it as the
controllability matrix of a realization of an
all-pass function. Thus we want to expand {A,B}

with new matrices {C,D} such that

G(z)=C[zI-A]'B+D is all-pass. Theorem 2.2

shows that it 1is sufficient to require that
A*A+C*C=1

The following lemma shows that this is achieved

through the singular value decomposition of A.

LEMMA 4.1. (Heuberger,1990b). Let AeC™*", Be("*"
with A stable, rank(B)=m<n and AA*+BB*=L
Let A=USV™ be the svd of A and define

F=UV* (4.2a)

C=B"F. . (4.2b)

then 1. A*A+C*C=L (4.3a)
2. 3 D=D* such that

G(z)=C[zI-A]"'B+D is all-pass  (4.3b)

BD=-FA*B (4.3¢)

DC=-CA*F (4.3d)0

be
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Note that in lemma 4.1. we did not require that
{A,B} is part of an input balanced realization of a

transfer function G, since AA*+BB*=I does not

imply A*A+C*C=32 However if we do require
this it follows, as stated before, that

[BLAB|A2B---] is exactly the matrix with the
right hand side singular vectors of the Hankel
matrix of G.

The rank condition on B in lemma 4.1 is necessary

to guarantee the existence of a Hermitian D that
obeys (4.3), which we will need for the proof of
the next theorem. '

Lemma 4.1 thus shows how we can 'split off' an
all-pass function from a FDLTS system. If we now
combine the results of theorem 3.3 and lemma 4.1,
we can extend the unitary matrix V (4.1) in a
recursive way to an infinitely large unitary matrix.
Another way of putting this is that we can create
an infinite set of orthonormal functions, based on
transfer functions. The exact form of the extension
is given in the following theorem.

Tneorem 4.2. (Heuberger,1990b). Let AeC™",
stable and BeC™™ with AA*+BB*=I and

rank(B)=m<n. Let A = USV™ be a singular value
decomposition of A. Define:

F =UV* (4.42)
P =FA* =-UzU* (4.4b)
X =I-A*A =l-vE2v* (4.4c)
[ A 0
P &g
Ae=| PFX FX.- A 0 .| (452
P2FX PFX FX AO--
[ B
PB
B.=|P?B (4.5b)
Then AeA§ + BeBs = I o

Proor: Lemma 4.1 shows that there exist C and
D such that G(z)=C[zI-A]'B+D is all-pass and
BD=-FA*B=PB. Therefore BD¥=P¥B. Further
C=B*F, so BC=BB*F=[I-AA*|F=F[I-A*A]=FX.
Substitution of the expressions for BD¥ and BC in
theorem 3.3 gives A and Be. o

Theorem 4.2 shows how a pair {A,B}, which obeys
the conditions of the theorem, gives rise to an
infinite set of orthonormal functions, which are the

TOWS Of the matrix [Bgl AeBelA%Be . '].



If an arbitrary pair {A,B} is stable and reachable
there exist a similarity transformation which
transforms its Gramian into an identity matrix.
The transformed pair then again gives rise to a set
of orthonormal functions. Thus for any such pair
I,"A,B} we can define the set of orthonormal
unctions, which in the sequel we will denote by
Ue{A,B}. This is formalized in the following
definition.

DEFINITION 4.3. EXTENSION PROCEDURE Let AC"*",
stable, BeC"™*™, rank(B)=m<n, {A,B} reachable
and P=P*>0 the solution of APA*4+BB*=P. Let
W=yP, A=W'AW and B=W'B, leading to

AA*4+BB*=I . Create with {A,B} the matrices Ae
and Be as in theorem 4.2.
We define ¥x-1{A,B} as the kth row of

[Be| AeBe| AZBe - - -] (4.6a)
and denote the set of these functions by
Ue{A,B}:={ye,¥1, )" (4.6b)o

With a small abuse of notation we will also use W,
to denote the matrix (4.6a).

We can interpret We{A,B} as responses of a

system Ge=[Ae,Be,Ae,Be] as follows: Let BeC™*"
and define the input vectors uj(t)=46i, i=1 to m.
Apply this input to Ge, then the kth output will
be ¥k-1. A more compact way of describing the
functions in terms of signals, making full use of
the structure, is presented in the following
proposition.

ProposiTION 4.4. (Heuberger,1990°). Let {A,B
and F be as in theorem 4.2 and define for kelNU{0
the transfer function

Hy(z) = [[zI—A]‘IF[I—zA*]]kz[zI—A]"B (4.72)

Let M; for ieNU{0} denote the Markov parameters
of Hk and define the matrix

My = [Mo|My|My- -]

Then the rows of 4 are the elements of We,
number kxn+1 to (k+1)xn. o

(4.7b)

The simplest example of proposition 4.4 is the
case k=0, then Hy(z)=2[zI-A]"'B, with
Ho=[B|AB|A’B- -] the first n

functions. Note that if BeC", so only one input,
then 4 gives the impulse responses of Hy(z).

This property will be of use for transformation of
a finite time—series in terms of the elements of We,
which will be covered in section 6.

which are

3

REMARK 4.5. In this section we only dealt with the
'input side' of a transfer function. An analogous
procedure can be carried out on the output side
with output balanced realizations, taking the first
n orthogonal functions from the left hand side
singular vectors of the Hankel matrix of G. What
we established in this section is thus that given a

FDLTS G(z) with Hankel matrix H=UZV*, we
defined a method to extend the matrix V to an
infinite matrix V. by adding new columns or
equivalently to extend U to Ue. o

Completeness

We have now defined a method to create an
infinite sequence of orthonormal functions, based
on a transfer function. Our goal is to use these
functions to describe linear systems and to use
them for system identification as is done for
instance with Laguerre polynomials in (King and
Paraskevopoulos, 1979; Nurges, 1987; Wahlberg,

1989; Heuberger, 1990°). A necessary condition
will be that these functions form a basis for the
function space we wish to consider, which in our
case is & (1.3). In other words we have to show
that, under appropriate conditions on {A,B},
Ue{A,B} forms a complete orthonotmal basis for
f. This result is presented in the following
theorem.

THEOREM 4.6. (Heuberger, 1990P).

Let Ae("™" stable, BeC"™™ rank(B)=m<n and
{A,B} a reachable pair. Let We{A,B} be defined
as in definition 4.3. Then this set of functions
forms a complete orthonormal basis for fp, as
defined by (1.3) o

The proof is based on T Us= Uhe=I,.
A simple example shows why the property that

U Us=I, is not sufficient for completeness and
why we need \Ilt'l'ezle. Consider the matrix I':

0
then 1“*1“=[ 11_] and I'T*=I,

and consider the rows of I' as discrete time
functions. It is clear that this constitutes an
orthonormal set. All functions are also in &, but
we do not have a basis for & since the function
(1000---) cannot be written as a converging sum
of the other functions. This can be translated to

the fact that T T'#L

The rank condition on B in theorem 4.6 is
necessary to omit situations like the one above. If
B is for instance of the form B=[By 0] then Be will
also be of this form, causing Ve to have zero
columns.



Theorem 4.6 shows that the set of orthonormal
functions, based on a transfer function, that we
introduced, forms an orthonormal basis for the
space fp. This shows that any f—time series can be
written as a converging sum of these functions. In
section 6 we will apply this to input/output pairs
[u(lt),y(t)} of a linear system, with u,yef, and we
will show how we can use these results in order to
define an alternative description of a linear
system. We first give some examples of the
extension procedure.

5 EXAMPLES OF ORTHONORMAL SETS

In this section we will give 2 examples of well
known orthogonal sets O{g functions, the Laguerre
polynomials and the discrete pulse functions, and
we will show that they can be derived using the
extension procedure outlined in the previous
paragraphs, by choosing a specific system as
'generator’'.

1. Laguerre polynomials
Let G(z) be a first order stable SISO-system with
an input balanced realization [A,B,C,D]. Let A=¢

|¢|<1 and B=4n where m:=1-£2. Now follow the
procedure outlined in theorem 4.2. The singular

value decomposition of A is A=UZV* with
U=V=1 and X=¢. Substitute this in (4.4), then
we get:

F=1, P=-¢, X=9 (5.1a)
and substitution in (4.5) results in:
§ g i v
n !
Ae=|-tn 7 €0 | Be=[1(51)
g =m0, €, 0 &2

These are exactly the matrices that constitute the

finite difference Laguerre polynomials
(Paraskevopoulos, 1985). If we look at the
generating  transfer  functions, defined in

proposition 4.4
k
Hy(z) = ([2I-A]"F[12A%]) “2[z1-A]1B
and substitute A=¢, B=y then we get

Hi(2) = yi-2[1-2¢]Kfz-¢] 2 (5.1c)
which are the generating Laguerre transfer
functions (Nurges and Yaaksoo, 1981). This shows
that with the extension procedure we generalized
the construction of the Laguerre polynomials.
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2. Pulse functions

Let G(z) be a system with a finite impulse
response. We can construct a realization
[A,B,C,D] of G with A=0,B=I, which in general
will not be minimal but fulfils the conditions of
theorem 4.2. A singular value decomposition of A

is A=UZV* with U=V=I and £=0. Substitution
in (4.4) and (4.5) results in:

F=X=I, P=0 (5.2a)
0 1
I 0 0
0.0 I 0 0
I 0
) LaiD
LI’¢3=[Be| AeBe | A%Be' * '] =0 0 I 0 (520)
0.0 0 I

So the extended set of functions are the pulse
functions ¥i(t)=6i, which is in fact the usual
basis for fs.

These examples show that the extension procedure
4.3 is quite natural and leads to a %enera.lization
of well-known orthonormal bases for f.

6 TRANSFORMATIONS

In this section we use the orthonormal functions
as a basis for & and expand time series in these
functions. We will show that if this is applied to
the input/output variables of a linear system, this
leads to another system description in terms of the
coefficients of the expansion. Let {A,B} be stable

and reachable, AeC™*" BeC"*", rank(B)=m<n and
let Ue{A,B} be defined by definition 4.3.
1. Time series

The set of functions ¥, is complete in £, so we

can expand any [h-time series f(t) in these
functions:

i) =, 2, Futn(t)

2 f(t)(t)

where Fy € CP
In order to make full use of the structure we will
%roup the orthogonal functions in groups of n
unctions and define :

(6.1a)

Fy (6.1b)

(pk(t) = ["!)ﬁmla'!)tm?;' g :thnm]*- (6.2)



This leads to:
o
f(t) k§o Ligk(t)

Ly

(6.3a)

BEORA0

where Ly € CPXn

(6.3b)

It is our goal to use this transformation for
identification purposes in which case we will
actually have to calculate the orthonormal
coefficients Ly}. In practical situations,
considering f(t) to be a sequence of measured
input and output signals, the number of points of {
will be finite, f=[f(0),f(1), -  f(N)].

In (Heuberger, 1990b) it is shown that we can
calculate the coefficients Ly by leading the inverse
sequence [f(N),f(N=1),+ « ,f{()%] through  the
enerating transfer functions Hg(z), defined in
%4.7a), and that Ly will be the output of this filter
upon the last entry (f(0)). Because of the simple
structure of {Hg(z)} this calculation of the
coefficients can be done using a simple cascade
like network (Heuberger, 1990b) as is the case
with the Laguerre polynomials (King and
Paraskevopoulos, 1979).

2. Systems

Now suppose we have at hand an arbitrary pxm
FDLTS system G(z) and let {u(t),y(t)} be an

input/output pair of G, with ueLj. The stability

ensures that yeLB and thus we can transform these
signals with any set ¥e{A,B}. We do not assume
any connection between G and {A,B}, but we will

assume that BeC™ !, Let UyYyx denote the
orthogonal coefficients (6.3) of u(t) and y(t),

UeC™n  Y,eCP*®, The next theorem shows that
these coefficients are also connected through a
linear system. We first define the transformation
of a behavior.

DEFINITION 6.1. Let {A,B} be a stable, reachable

pair, AeC™" Be(™" with rank B%zmﬁn and let
G(z) be a FDLTS system. Let B(G) and Ye{A,B}
be defined according to definition 1.1 respectively
definition 4.3. We define the transform ¥(B(G)) of
the behavior B(G) by:

U(B(G))={(Vec(Ux),Vec Yk‘)) 13 (u(t),y(t))eB(G)
with Uy an k the orthonormal
coefficients of u and 'y as defined by
(6.3).} (6.4)0

Note that the completeness of W, implies that this
is a bijective transformation.

THEOREM 6.2. (Heuberger, 1990b). Let {A,B} be a

stable, reachable pair, AeC"*", BeC"*!,
Further, let G(z) be a pxm FDLTS system with
McMillan degree ng and let ¥(B(G)) be defined
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according to definition 6.1.

Then there exists a FDLTS system G, with

dimension (pngxmng) and McMillan degree ng,

such that

a B(Go)=¥(B(G))

b For every eigenvalue of A that is a pole of G,
the system G, will have a pole in z=0. - o

CoroLLARY 6.3. (Heuberger, 1990b). Given the -
conditions of theorem 6.2, if the eigenvalues of A
coincide with the poles of G(z), then the system
Go(z) will only have poles in z=0. These poles are
not coupled and Go(zg) will thus have only two non
zero Markov parameters. o

The conditions of this corollary are for instance
fulfilled if A is the system matrix of a realization
of G(z). One might say that in this situation all

dynamic  behavior is  covered by the
transformation.
In Fig. 1 we visualize the bijective system
transformation which is induced by the
transformation of the time series.
u(t) y(t)
TG(Z) Time domain T
Transformation with ¥e{A,B}
1
—vL»-Go(z) Ort.domain —'L
Vec(Ux) - Vec(Yk)

Fig. 1 Transformation of a system, applying the
set We{A,B} of orthonormal functions.

REMARK 6.4. '

1. For the case that the orthonormal functions
are the Laguerre polynomials then theorem 6.1 is
given by Nurges and Yaaksoo (1981).

2. It is important to emphasize here that the
input/output dimension of the transformed system
is larger than the dimension of the original
system.

3. In Heuberger (1990P) two conjectures are given
which state that G and G, have the same Hankel
norm and the same Lo norm.

7. APPLICATION TO IDENTIFICATION
In analogy with the Laguerre- polynomials (King -

and  Paraskevopoulos, 1979;Nurges, 1987,
Wahlberg, 1989; Heuberger, 1990b) we can use the
generalized  orthonormal  functions in  an

identification setting. This approach can be of
great use if we have some knowledge about the
system at hand, for instance when eigenmodes are
(partially) known or if we have an initial guess of

_the system from theoretical or experimental

modeling. In that case we can create an {A,B}



pair which reflects our knowledge and use
WUe{A,B} in an identification setting. In this
section two identification methods are given, that
use the generalized orthonormal functions. Both
methods combine the use of the orthonormal
functions with fairly simple estimation techniques,
that lead to an easy to calculate solution. The
motivation for this is to derive satisfactory results
with simple techniques and to avoid the problems
that arise with standard methods that use
nonlinear optimization techniques.

If we use We{A,B} as a basis of the function space
of inputs and outputs, then theorem 6.2 and
corollary 6.3 show that a 'correct' {A,B} pair will
lead to a system with only 2 Markov parameters.
This could be seen as a search for that set of
orthonormal functions that minimizes the dynamic
behavior. Method 1 is based on this idea.

Method 2 uses the generating transfer functions
(4.7a) as a basis of the frequency domain, in other
words it is based on an expansion of the transfer
function of a system in the generating transfer
functions. In the case that {A,B} is 'correct' this
would mean that only the first n elements of such
an expansion will contain information. This
method can also be considered as an
approximation of the impulse response of a system
in terms of the orthonormal functions We.

1. Transformation and ARX

This method is based on the transformation of
time series and systems as described in section 6
and is a generalization of identification methods,
using Laguerre polynomials, proposed by King and
Paraskevopoulos (1979) and Nurges (1987).

The estimation technique involved is referred to as
ARX, which is a bit misleading because it is in
fact a name for the following model structure:

y(t+n) + Apqy(t+n-1) +...+ Agy(t) =

Bau(t+n) +... + Bou(t) + e(t) (7.1)
where u(t),y(t) and e(t) are respectively the input,
output and disturbance of the model and A;,B; are
constant matrices of appropriate dimensions. The
parameters A;,Bj in (7.1) can be estimated using a
least squares algorithm (Ljung, 1987). We use the
term ARX for this method.

The method we propose needs an orthonormal set
to begin with. This can be the result of a priori
knowledge or previous modeling. We often used
Laguerre polynomials as a first choice. Now
assume that a set We is given and that we have
recorded input and output sequences of a system

G and we wish to find an estimate G.

The procedure consists of the following steps:

1. transform input u(t) and output y(t) with We
into orthonormal coefficients 6.3b3’ Uk and Yy.

2. Estimate in the 'orthonormal domain' a @0
with ARX from Vec(Uy) and Vec(Yk).
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3. Transform G, back to a 'time domain' system

”

G.
This procedure might be done iteratively, by using

the resulting estimate G to form a new set of

functions We{A,B} and repeating the procedure.
This might be seen as a search for the 'best' basis
for the decomposition of the signals.

2. Estimation of impulse response parameters

This method is in fact a generalization of the
estimation of a finite number of Markov
parameters of a system. As in the previous method
we need an orthonormal set as initialization and
we use the generating transfer functions Hy(z),
defined in (4.7a) and write:

G(z) =D + %kgockﬂk(z) + E(z) (7.2a)

where E(z) denotes the disturbance. The
completeness of {Hy(z)} for the frequency domain
is a direct result of theorem 4.6, but we will not
go into this here.

We approximate G(z) with a finite expansion

G(z) =D + %k}:ljloéka(z) + B(z) (7.2b)

and estimate the Cy parameters, with a least
squares algorithm. A well known example of this
method is the case where the orthonormal
functions are generated by A=0 and B=I. In
section 5 it was shown how this leads to the pulse

functions, with Hy(z)=z"%*!. Hence in this case the
Cx parameters are the Markov parameters of G,

and the method is known a the estimation of a
FIR (finite impulse response) model (Ljung, 1987).
Note that if {A,B} coincide with G, this leads to
Cx=0, k>0. This procedure can be seen as a
search for the 'best' basis to decompose the
impulse response of a system and is a
eneralization of the algorithm of Zervos c.s
%1985), using Laguerre polynomials.

3. Exampie

As an examEIe of these methods, we have
simulated a 4th order SISO system, with a pseudo
random binary signal as input and additive noise
on the output, such that the signal to noise ratio
on the output is 0 dB. The system has important
high and low frequent behavior, which can be seen
in Fig. 3 and Fig. 4, where the solid line depicts
respectively the step response and the Bode
amplitude of the system.

Method 1.

We compare the result of ARX in the time
domain with the first orthonormal method,
described above. First (in the time domain) an 8th



order ARX system was estimated. For the
orthogonal method we used a simple first order
system (A=0.5) to generate the orthonormal
functions. In Fig. 2 we show the deterministic
output y(t) of the system, the additive noise and
the orthonormal output Yy, which is the transform
of y(t)+noise. We transformed 1100 samples of
y(t)+noise into 500 orthonormal coefficients Y.
Coefficients Yy with k>500 are negligible which
shows that the transformation leads to a
considerable data reduction. In Fig. 3 and 4 the
step responses and Bode amplitudes are depicted
of the original system and the approximations. As
to be expected the ARX method gives an estimate
which fits the first 8 true Markov parameters,
(Swaanenburg and co—workers, 1985; Van den Hof
and Janssen, 1987) which can be seen in Fig. 3.
Figure 4 shows that the result of the ARX method
is only satisfactory for the very high frequencies
and that the orthogonal method gives a much
better approximation over the whole frequency
range.

Method 2.

For this method we used the same input and
output data as for method 1. In Fig. 5 and 6 we
compare the result of estimating Markov
parameters (FIR) in the time domain with
application of the second orthonormal method.
The model that resulted from method 1, as
described -above, was used to generate the
orthonormal functions. From the estimated
Mdarkov parameters a state space model was
realized, using approximate realization, leading to
a 13th order model. This high order is the result of
the large amount of noise, which leads to a large
variance in the estimated parameters. Since the
data are produced by an output error model it is
to be expected that an output error method like
FIR gives a better approximation then ARX.
Comparison of Fig. 4 and Fig. 6 shows that this is
indeed the case. The result of method 2 is clearly
superior, it is a 5th order model which is slightly
better than the result of scheme 1.

CONCLUSIONS

We have shown that every finite dimensional
stable linear discrete time system in a natural way
gives rise to two sets of orthonormal functions,
based on input and output balanced realizations,
that are complete in &. This is done by splitting
of the all-pass part of the transfer function or,
equivalently, by extending the matrices of singular
vectors, corresponding with the Hankel matrix of
the system. These functions, to be seen as a
multivariable extension of the orthogonal
polynomials, form a natural basis tc describe the
system behavior. It has been shown that these
functions give rise to new possibilities for the
construction of approximate system identification
methods.
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Abstract. In approximate identification the actual purpose of the modeling procedure
should be taken into account, in order to guarantee that the identified model is suited
for its intended application. The fractional representation approach offers a setting
that we claim to be suited to identify models, that can be used to design a controller
for the system under consideration. In this paper we apply the algebraic systems
theory to an uncorrupted linear feedback system with one input. Doing so, the closed
loop identification problem is recasted into an open loop identification problem. The
results presented are preliminary, but they are ready for generalization to a more

general configuration.

Keywords. System identification, control design, algebraic systems theory, fractional

representation, feedback system.

INTRODUCTION

In this paper we address the problem of identi-
fying models, that have to be appropriate for
control design. Let us first focus on this ultimate
objective of the identification. Control design
algorithms get intractable, if they are applied to
-models of high complexity. So in order to prac-
tise control tf&iign we have to come up with fair-
ly simple models of complex systems. In fact
these simple models have to reflect all characte-
ristics of the plant, that are important in the
closed loop, e.g. the feedback system of fig. 1. In
robust control theory the ubiquitous approach is
to approximate the plant by a nominal model
and, in one way or another, to supply a supple-
mentary model, that reflects the deficiency of the
nominal model with respect to the plant (Doyle
and Stein, 1981; Vidyasagar and Kimura, 1986;
and many references in Dorato, 1987).

Te
r U ycnl U » y

Fig. 1. Basic feedback system.

Often the nominal model is linear time-invariant
and finite dimensional and the supplementary
model consists of one or more bounded terms.
The latter can be given e.g. by intervals, in
which some parameters take their values, or e.g.
a plant P can be modeled as Po+A, where Py has
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low complexity and A is bounded like [|A[lw<a.
Any such description will be called a supple-
mentary model bound. In this way a model con-
sists of both a nominal model and a supple-
mentary model bound. Note that usually a model
induces a class of input-ouput maps, since e.g.
many A's satisfy the bound.

In view of the objective of control design a sub-
stantial difference between the nominal model
and the plant may very well be acceptable or
even required. In this regard we are obviously
dealing with approximate identification. Now let
us pay some attention to this aspect and recall
several results from the literature! In Ljung and
Van Overbeek (1978) it has been.indicated, that
to a large extent the outcome of an approximate
identification is influenced by the specific con-
ditions, that come into play while performing the
procedure. Often several of these conditions can
be chosen freely. One can think of the modelset,
input signals etcetera. For some of these con-
ditions, the consequences of a specific choice have
been investigated in e.g. Ljung (1985, 1989) and
Van den Hof (1989a, 1989b). A lot of attention
has been paid to experiment design in
approximate identification (Gevers and Ljung,
1986; Wahlberg and Ljung, 1986; Yuan and
Ljung, 1985). The starting-point in these
references is the observation, that in the ultimate
application an approximate model will not per-
form as well as an exact model of the plant.
Clearly the goal of experiment design is to
minimize this performance degradation by choo-
sing the right experimental conditions. Even so if



an identified model Py is close to plant P, and
thus |[A]| is small, then the model may be expec-
ted to result in a good performance, provided
that in the identification the deficiency of the
nominal model has been minimized in a proper
sense. Apparently we may as well interpret ap-
proximate identification as defining the supple-
mentary model and minimizing its bound.

In case the aim is control system design we
might regard identification as obtaining a good
fit of the nominal model as well as settling the
supplementary model just there, where it affects
the closed loop as little as possible. To our know-
ledge, the concepts of the pole placement control-
ler and the minimum variance controller are the
only control strategies, for which the performance
degradation has been minimized analytically.
This resulted in an optimal identification experi-
ment design (Gevers and Ljung, 1986; Ljung,
1987); i.e. in its class the model identified under
the prescribed conditions, is best suited to design
the specific controller for the plant. Unfortunate-
ly such an explicit solution does not seem to be
tractable for more complex control design
methods.

The key to identification in behalf of control de-
sign is answering the question: what aspects of a
system are important for control design? Clearly
we would like to come up with a model, which
both is close to the plant and gives rise to such a
controller, that only small differences occur
between the feedback system containing the plant
and the feedback system containing the model. In
this context we claim, that the fractional repre-
sentation approach offers a proper setting for
solving the identification problem. The incentive
behind this claim is twofold.

First knowing that in approximate identification
the resulting model depends in particular on the
experimental conditions, intuition says that if the
plant will operate ultimately in a closed loop,
then the identification should be performed in
some closed loop, that is very much alike. And
secondly the set of all plants, that are stabilized
by a known controller can be parametrized by
means of the fractional representation (Hansen,
1989; Hansen et al., 1988, 1989). So if we know a
controller, that stabilizes the plant, then imme-
diately ‘the plant can be parametrized as a func-
tion of this controller. However the corresponding
set is rather extensive: e.g. in case of a stable
controller it contains also the zero system. There-
fore we aim at shrinking this set by means of an
identification procedure.

Our choice to use the fractional representation in
identification with control design as an objective,
can be solidified by recalling a couple of results
from literature. First the fractional represen-
tation has been crucial in the development of
control design techniques, that directly address
the performance of the feedback system (Boyd, et
al., 1988; Gustafson and Desoer, 1983). And
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secondly in Hansen (1989) and Hansen ef al.
(1988, 1989) fractional representations have been
used in the analysis of the exact identification of
a plant in a noise corrupted feedback system.
This resulted not only in an experiment design in
terms of the loop inputs instead of the plant
inputs, but also in an equivalent open loop iden-
tification problem. Though approximate identifi-
cation of the nominal model has not been con-
sidered in these references, the results on
recasting closed loop problems into open loop
problems are quite promising towards this area.

In this paper we present a closer investigation
into the application of fractional representations
in (approximate) identification of a nominal
model. More specific, as a start of a series of such
investigations, we consider the identification of a
plant in a noiseless environment. The results
derived here can and will be generalized to a
more general configuration.

We start with some notation and general prelimi-
naries in the next section. Then given a control-
ler C we use the {fractional representation
approach to parametrize all plants P, that make
the feedback system of fig. 1 stable. We will
indicate this feedback system by H(P,C), which
denotes the mapping from (r,7¢) into (uc,u). Fur-
ther we analyze the single variate control system
Hy(P,C), which equals H(P,C) in case of 7c=0
(Desoer et al, 1980). From this analysis we
obtain the main result of the paper, i.e. a setting,
that appears to be suited for the identification of
models, that are appropriate for control desisn.
In a discussion we outline some experiment de-
sign variables offered by this setting and we
summarize a variety of aspects, that are worth-
while to be subjected to further investigations.
We also pay some attention to the paradox
between the aspect of control design and the
paraphrase ’iven a controller C’. Finally we end
up with conclusions and future work.

NOTATION AND PRELIMINARIES

In this section we introduce some notation, we
define the algebraic structure used in this paper
and we summarize several results from the
algebraic theory of fractional representations. For
a proper introduction to this axiomatic theory we
refer to Desoer et al. 51980, part II) and additio-
nally Vidyasagar et al. (1982, parts I and II). A
sufficient background on the standard algebraic
terms can be found in Vidyasagar (1985, appen-
dix A).

Algebraic structure. Let ¥ be a principal ring
and let 7 be the quotient field of %, i.e.
F:={a/b|a,be¥, b#0}. Furthermore let J be the
group of units in ¥ J:={a|a,a’'€¥}. Throughout
the paper ¥ will be considered as the set of all
stable plants. As an example one could think of ¥
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to consist of all scalar rational plants, that have
their poles in the open left half plane. Then F
contains all rational not necessarily proper plants
and every element of J is stable and stably
invertible. However due to the generality of the
algebraic setting the results also hold for discrete
time systems and distributed systems. Our struc-
ture resembles the one used in Vidyasagar et al.
(1982) and it differs from the algebraic structure
built in Desoer et al. (1980), where, in terms of
the example, only proper plants have been
considered.

A plant P with m inputs and p outputs and with
all its entries in the ring ¥ is an element of ¥p*m.
However dimensions are not an issue in this
paper and for the sake of conciseness we will
denote ¥p*m as ¥ and likewise for F and J.

Algebraic theory. We recall several definitions
and facts from the algebraic theory of fractional
representations.

The factors N,DeX are right coprime over the
ring of stable plants if there exist X,Ye¥ such
that XN+YD=I. We will call the factors X,Y
right Bezout factors of the pair (N,D). The pair
N,D) is said to be a right coprime factorization
rcf) of the plant PeF if‘;J det (D)0, P=ND! and
N,De¥ are right coprime. Analogously left co-
primeness and a left coprime factorization (lcf)
are defined with the pair (D,N) such that
NX+DY=I and P=DIN.

Some nice results with respect to the stability of
the feedback system H(P,C) of figure 1 have been
based on these factorizations. In the sequel both
plant P and controller C are considered to be in
7. The next lemma states a necessary and suffi-

cient condition for a plant P and a controller C
to make a stable feedback system H(P,C).

Lemma 1 (Vidyasagar, et al., 1982). Let (Np,Dp)

be a ref of P and (Dg,Nc) a lef of C. Then the
loop H(P,C) is stable if and only if A, defined as

A = DcDp + NcNp, (1)
is unimodular in ¥, i.e. A€J. o

We like to recall, that in this lemma the notions
of stability concerns the boundedness of the map-
ping H(P,C) from the two outer loop signals r
and 7, to the two inner loop signals u and uc
(fig.1). Clearly the stability condition holds
irrespective of the fact whether the signals are
deterministic or stochastic.

Since A in equation (12 is stably invertible, it can
easily be shown, that for any rcf (Np,Dp) of plant

P, every stabilizing controller C has a (Dc,Nc)
such that
(2)

and thus D¢, N, are Bezout factors of Np,Dp and
vice versa.

Dch + EV.';Np =1
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ANALYSIS OF THE NOISELESS CASE

In this section we use the establishments of the
fractional representation theory to analyze the
single variate control system Hs(P,C), which
equals the feedback system H(P,C) of fig. 1 in
case 1c=0. Thereby we recast the closed loop
identification problem into an open loop iden-
tification problem.

Like in Hansen et al. (1988, 1989) we model a
plant P, that makes a stable feedback system
H(P,C), by means of the dual of the fractional
representation approach to control design. In this
modeling procedure it is pivotal to know a con-
troller, that stabilizes the unknown plant. Later
on we will use this model in the analysis of the
single input feedback system HS{P,C).

Using the stability condition of lemma 1 together
with just any plant Pp that is stabilized by
controller C, it is possible to derive the following
necessary and sufficient condition for a plant P
to make a stable feedback system H(P,C).
Though this is the dual of the well-established
control design result (Desoer, et al., 1980), we
supply an alternative simple proof in appendix P.

Lemma 2. Given a controller C with rcf (Ne,De)
and given a rcf (No,Dp) of just any plant Py,
such that H(Po,C) is stable, then H(P,C) is
stable, if and only if P admits a rcft (Np,Dp) with

Np = (N[)'l'DcR), Dp = (DU_N(;R), {3)
and Re¥ is such that det (Dy—N.R)#0. ]
....... FUABE s
r Uc . 2
99— ¢ 3 D! + — No
R
Ne I — D¢

Fig. 2: R-parameterization of Hs(P,C).

Apparently lemma 2 can be interpreted as
follows: any Re¥ with det(Dy—NcR)#0 gives rise
to a plant P such that H(P,C) is stable. This we
call the R-parameterization of the set of all
plants, that are stabilized by controller C.

Since stability of the loop (Po,C) is the only

1) As a consequence of the algebraic structure, only
plants, that admit rcf's as well as lcf's over ¥, are
considered (see Desoer and Gundes, 1988; and
Anantharam, 1985).



requirement on Pp in lemma 2, we could as well
use the Bezout factors X¢, V. of (D¢,Nc) as No
respectively Do; i.e. Po:=X¢Ycl.

Corollary 1. Given controller C with rcf (Ne,De)

and lcf (DC,NC satisfying NeXc+DcYe=I, then
H(P,C) is stable, if and only if P admits a rcf
(Np,Dp) with

(4)

Np = (Xc+DcR)’ .DP = (YC_Ncﬂ)v

where Re¥ is such that det(Y—N.R)#0. Moreover
any such rcf constitutes Bezout factors of the lcf

(De,N¢) of the controller and vice versa. o
Proof. See appendix P.

Now we come to the key result of this paper.
Getting ahead of the next section we state, that
in view of control design it comes in useful to
identify the plant P in terms of its right coprime
factors Np and Dp. In order to realize this we
introduce the intermediate variable z as 2=Dp1u,
and with y=Pu=Np,Dp1u this leads to

-@e o

Now we focus on the single variate control
system Hg(P,C) of fig. 2. By equation (3) it is
easy to verify, that z in equation (5) and z in
fig. 2 are one and the same variable. Identifi-
cation of the mapping from z to (u,y) would solve
our problem. Referring to fig. 2 it is common to
assume, that only u, y and r can possibly be
measured. Therefore we propose the construction
of the variable z from reference signal r, using
the R-parameterization.

Proposition 1. Let the controller C with lef

(D¢,N,) stabilize both the unknown plant P and
any plant Py with rcf (Ny,Dg)2. Then the inter-
mediate variable 2 originating from the feedback
system Hy(P,C) of fig. 2, can be constructed by
means of the stable mapping

(6)

= Ag‘lf\?'cr,
with Ag=Dc Do+ NeNp.

Proof. See appendix P.

In case the signal r i3 not measurable, we still
can construct the variable z by applying the next
corollary, which follows from the proof of the
proposition above.

Corollary 2. Under the conditions given in propo-
sition 1, the variable z can be constructed by

2= Ag}(Deu+Ney). (7)

Note that in equations (6) and (7) only factors of

2) i.e. H(P,C) is stable and thus lemma 2 is applicable.
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the controller and the known plant Py have been
used. So no information on the plant P is needed
to construct z from 7. Further it is remarkable,

that AotV depends on the specific ref (No,Dp) of

Pp and it does not depend on what lcf (De,Nc)
has been chosen for C any other lcf of C can be

written as (AD,AN;) leading to AA in equation

(1), and in the product (AA)*AN, the factor A is
canceled. So without loss of generality, that is
without affecting the mapping from r to 2, we

can choose a lcf for C, such that D¢, N; are right
Bezout factors of (Np,Dp) (see equation (2)). In

this case Ap=I and z=N,r.

We end up this section, making a remark with
respect to the necessity of the condition in
lemma 2. That result has been derived for the
feedback system H(P,C), which has two loop
inputs, whereas we analyzed Hg(P,C) with just
one loop input. Indeed in the latter case the
necessity of the condition does not hold as is
shown by a counter example in appendix E.
Nevertheless we restricted the investigation
deliberately to only the set of plant given by the
R-parametrization of lemma 2, in order that the
setting is readily extendible to a configuration
with) a so-—called two-input plant (Schrama,
1990).

A SUITABLE SETTING FOR
IDENTIFICATION

The analysis of the previous section opens up
several new possibilities in the identification for
the purpose of control design. Here we like to
mention a few of them and we have to admit,
that the end of this section does not go without
speculations.

Let us first return to proposition 1 and examine
what happens, if the mapping in equation (5) is
identified. Suppose the factorizations of C and Py
have simple dynamics and suppose r is a white
noise signal, then by equation (6) z will have a
simple spectrum. If at the same time the plant P
is very complex, then this complexity will be
reflected in » and y, and thus it asserts itself in
the identification. This 'simplicity' of z is not
immediate from equation (7).

We can point out several variables, that influence
the identification procedure. The controller and
signal r share this property straight on: it is well-
known, that the identification result can be
manipulated via the signal spectra (Gevers and
Ljung, 1986; Hansen et al, 1988, 1989; Yuan and
Ljung, 19855 and these latter depend on both C
and r. Further as indicated in the previous sec-

tion the mapping Ag~'N; of equation (6) depends
on Py and its specific ref (Np,Dp). Therefore Py

and its rcf can be seen as frequency weighting
functions. We also mentioned, that without loss

of generality the lcf (De,N;) of C can be chosen



such that z=Ngr. We emphasize that now every
alteration of Pg or its rcf immediately leads to a

change of its right Bezout factors De,Nc, and

thus N cannot be chosen freely. Moreover if P
is used to stress e.g. low frequency dynamics,

then this reasserts itself in Nc.

Since all these variables are at our disposal, they
are actually experiment design variables. Though
it is clear that they do affect the identification
result, we do not know yet how it comes about.
This aspect of experiment design definitely needs
further investigation and most probably we can
take advantage of the results of Hansen (1989) at
this point.

Now we pay some attention to the aspect of ap-
proximation. If in equation (3) Po and (Np,Dp)
are such that R is small in any sense, then evi-
dently the model P, can be said to be close to
the plant P. At this stage we can clarify why we
have chosen a rcf model of the plant instead of a
lcf as in Hansen (1989) and Hansen, et al. (1988,
1989). In these references the experiment design
problem for exact closed loop identification has
been tackled by considering the identification of
a term equivalent to R. Unfortunately in general
this leads to an increase of the dimension of the
problem in the sense of the order of the models
involved. On the other hand if we use a rcf and
equation (5), then we can restrain the order of
the approximating model in a straightforward
manner.

Next we consider control design. There is a
strong relationship between the fractional repre-
sentation and the graph topology, which is the
weakest topology in which feedback stability is a
robust property (Vidyasagar, et al., 1982); simply
stated if a sequence P; converges to P in this
topology, then the sequence of feedback systems
H(Pi,g converges to H(P,C). This topology is
induced by the gap metric, which can be defined
in terms of factorizations3. In fact if Py is close
enough to P in this gap metric, then we can
practice robust control design onto Py, such that
stabilization of P is guaranteed (Bongers and
Bosgra, 1990; Glover and McFarlane, 1988,
1989). For more details on the gap metric we
refer to Georgiou (1988).

An interesting question that arises, is how to
parameterize the factorizations. Since we have
not solved this problem yet, we can not supply
an example at this moment. An even further
reaching problem is the incorporation of the
metric itself in the identification. That is, if the
identification comes up with some model Py, then
given the data what can be said about R? The
problem gets even more involved if some noise
contributions are present. Since the latter will be

3) At least for linear finite dimensional systems

the case in practice, first the setting has to be
generalized to control systems with noise
contributions and more inputs. This is currently
performed (Schrama, 1990) based on Desoer and
Giindes (1988) and Nett (1986). These latter
references concern effectively the set of all proper
linear systems, that have more than one input
gand output) vector and that give rise to a stable
eedback system.

Finally we address the paradox between the
aspect of control design and the need for a known
controller, that stabilizes the plant. We like to
urge that everything hinges on the design of a
new controller. This can be realized in two ways.
First a new robust controller could be designed
e.g. in relation to the gap metric as mentioned
earlier. Secondly one could think of an iterative
scheme, in which both identification and control
design are performed consecutively and repeated-
ly. At this moment it is untransparent to what
this iteration will lead, but we have the strong
impression, that the knowledge obtained in the
successive identification procedures should be
turned to use. This might very well be done by
means of the design variable Pyo.

CONCLUSIONS AND FUTURE WORK

We have put the single variate control system,
i.e. the feedback system of fig. 1 with 7=0, in a
setting, that is suitable for approximate iden-
tification of the plant in terms of a right coprime
factorization. Moreover the closed loop identifi-
cation problem has been recasted into an open
loop identification problem. Models, that will be
identified in this setting, appear to be well suited
to control design. We pointed out, that the
identification result is affected by several
variables, that we have at our disposal. The
precise impact of these variables needs further
investigation.

Furthermore we have mentioned, that this
setting offers several possibilities in relation to
approximate modeling and control. However it is
not clear yet how to handle and to combine the
different phenomena.

Finally the generalization of the setting to
multiple input noisy feedback systems is
currently under investigation (Schrama, 1990).
And in the next future we will also examine the
problem of parametrization and of pulling apart
noise contributions from effects caused by
unmodeled dynamics.
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APPENDIX E

By means of a counter example we show, that
the necessity of the condition on P for H(P,C) to
be stable (lemma 2) does not hold for P to make
a stable closed loop H;(P,C). Let P=s+1 and

'C=1/(s+1) then in Hs(P,C) we have

= =41
€1 2(S+15 r, €2=3T,

and thus all inner loop and output signals are
bounded provided r is bounded. The factors

Ne¢,De,X¢,Y: can be chosen as C,1,0,1 and R
follows uniquely from equation %45: =4(s+1).
This R is not an element of ¥ Conclusively
though Hg(P,C) 1is stable, there is no
R-parameterization of P. o

APPENDIX P

Proof of lemma 2.
If Given P = NpDp! with Np and Dp as de-



fined in equation (3) and a lef (D, N;) of C. We
show that the control system H(P,C) is stable,
and a fortiori that the pair (Np,Dp) is right
coprime. Irrespective of the coprimeness of
((A;I,,Dp) we substitute equation (35) in equation
1): .
A = Nc(N{)'l’DcR) + bc(D(]—NcR)
= NcN(] + DQD(] + {Nch—Dch)R.

The factor (Nch—f)ch) equals DC(C—C)DC, and
thus the term preceding R is zero. Furthermore
(Po,C) is stable, so A€J. Since by definition

A=NcNp+DcDp, both the coprimeness of (Np,Dp)
and the stability of H(P,C) are guaranteed.
Only if. Given H(P,C) is stable then there exist

a rcf (Np,Dp) of P and lcf (D,N¢) of C such that

DeDp+NcNp=1I. Next let Py be any plant, that
makes a stable feedback system H(Py,C), and for
the moment let (No,Dp) be a rcf that satisfies

DeDo+NcNo=1. Then let Rx be given implicitly
by Np=N0+DcRx, and thus R;(:DC'I(NP—NQ). In
order to establish lemma 2 we have to prove
consecutively, that 3 D, equals Dy—N.Rx and b’
Ry is stable as in equation (3).

2)  Denote Dy=Dy—N.Rx, substitute Rx and

N(;Dc'l':.th-l::vc, then Dx=DU—Dc-1Nc(Np—N[)). Use
DcDo+NcNo=I in the rearrangement of this
expression to DcDx+NcNp=I Together with
bch'l‘ﬁrch:I thiS ShOWS that szDp.

b} Now Dp=Dy—-N:Ryx and while by definition
Dpe¥, we have NeRy = Dy—Dpe¥. Furthermore
DcRy=(Np—Ny JeX. Since Ng,D. are right coprime,
there exist X, Yc€¥ such that Y De+X.N=1I
Now X¢(NcRx)+ Ye(DcRx)=Rx and since ¥ is a
ring we have Rxe¥. Finally extension of the proof

to a ref (No,Do) of Py with DeDo+NcNo=Ao and
I#AgeJ becomes self-evident by the choice of a

ref (Np,Dp) of P, such that DeDp+NcNp=Ao. D

This proof is more concise than the proof in
Desoer et al. (1980), which has been derived for
proper P and C, that both have coprime
factorizations.

Proof of corollary 1. Analogously to the proof of
lemma 2 the equation A=N.Np+D.Dp can be
reduced to A=NoXc+ D, Ye=1. o

Proof of proposition 1.
Using the R-parameterization in equation (5) we

obtain
u= Dpz= (Dy—N.R)z
y = Npz = (No+D:R)z
and from these equations
Rz = D¢l (y-Noz)
NeRz = Dyzu
(the corresponding variables appear in fig. 2).
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Substitute NeD¢! = C = DN and eliminate
Rz, then we get

(DeDo + NeNo) 2= Deu + Ney.
Rearrangement of the controller equation
u=D¢1No(r—y) shows, that the right hand term
equals Ncr. Finally since the loop H(Po,C) is

stable, the factor (DcDo + NcNp) is stably
invertible. o
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NOTATION

[A,B,C,D] state-space representation of a transfer
function matrix G(s)= C[sI-A]-'B+D

G'(s) transpose of G(s)

G™(s G'(-s

G*(s G'(8) (8 = complex conjugate of s)
Onax maximum singular value )

1. INTRODUCTION

In the recent literature on robust analysis and
control, see for instance (Doyle et al.,’1989; Franc-
is, 1987), the Hwo-norm of a transfer function
matrix plays an important role. The computation
of the Ho-norm can be necessary either in analysis
of a system, or in the synthesis of a controller, see
for instance (Scherer, 1989).

Definition 1.1. Let a real-rational proper transfer
function matrix G(s) be given by FA,B,C,D], and
let all the eigenvalues of A have negative real
part. Then the Ho-norm of G(s) is defined as the
supremum of the maximum singular value of G(s),
evaluated over the right half plane:

Gl := Re?:gzﬂ Tmax(G(8)) =

= sup 07, (G(iw) (1)
The Heo-norm is defined for systems that are
analytical in the closed right half plane. Systems
that have no poles on the imaginary axis have a
Lo-norm that is defined as the supremum of the
maximum singular value of G(s) evaluated on the
imaginary axis, so the last part of (1) also gives
the Leo-norm in the case of unstable G(s).

Until 1988 not much attention has been paid to
the computation of the Ho-norm. The 'computa-
tion' was done by a search over frequencies. The

disadvantages of this approach are obvious: it
cannot be wused automatically within other
algorithms, it takes a considerable amount of
computer time, and no accuracy bound can be
given. In 1988 a bisection alglgrithm was presented
by Boyd, Balakrishnan and Kabamba (1988,1989)
and Robel (1989), to compute the Hw-norm with
guaranteed accuracy, using the relation between
the singular values of the transfer function matrix
and the eigenvalues of a related Hamiltonian
matrix. This bisection algorithm is much more
efficient than a search over frequencies, but for
repeated use as well as for very large systems, it is
still not very fast.

Several attempts have been made to reduce the
computing time. The use of derivatives of the
Hamiltonian matrix for a search algorithm has
been investigated by (Bruinsma, 199{]?. Boyd and
Balakrishnan (1990) and independently Bruinsma
and Steinbuch (1990) developed an algorithm
approximating the Ho-norm with a lower bound,
to which we will refer as the 'two-step algorithm'.
This algorithm is much faster than the other
methods.

For an exact description and proofs of the
algorithms we refer to the mentioned papers. Here
we give a short description of the bisection
algorithm, the algorithm using eigenvalue
derivatives and the two-step algorithm. The role
of the Hamiltonian matrix in these algorithms will
be made clearer by giving some examples of how
its eigenvalues behave. A comparison of the three
algorithms will be given.

2. THEORETICAL BACKGROUND

2.1. Hamiltonian Eigenvalues and Singular Values

All algorithms described in this article are based
on a relation between the singular values of a



transfer function G(s) and the eigenvalues of a
related Hamiltonian matrix H(7).
Let system G(s) be given through

G(s) = [A,B,C,D] (2)
and let A not have any eigenvalues on the imagi-
nary azis.

For v > 0 not equal to a singular value of D we
define the Hamiltonian matrix

A—BR-ID'C
7C'S-1C -A'+C'DR-1B'

where R = (D'D - 42[) and S = (DD' - 42I).

—7BR-1B'

H(7) = (3)

As stated in (Boyd et al., 1989), under the as-
sumptions made, (2) and (3) are related by the
following equivalence.

Proposition 2.1. For all wp € R,

jwp is an eigenvalue of H(7,) &
71 1s a singular value of G(jwp) (4)

This relation between the singular values of G(s)
and the eigenvalues of H(%) has been proven in
(Bruinsma and Steinbuch, 1990) via the fact that

the transfer function matrix [f;rﬁ'I-G'Ss)G(s)]'1 has

a realization with state matrix H(7). The proof-

follows by this fact, and by realizing that the sin-
gular values of GS% are computed with

det[72I - G*(s)G(s)] = 0
and that

G*(s) = G™(s) for s = jw, we R.
From Prop. 2.1. follows the next corollary, im-
portant in both the bisection and the eigenvalue
derivative algorithm.

Corollary 2.1. Let G(s) and H(7) be given by (2),
(3) and let 7 > opax(D) then
Gl & (5)
H(7) has no imaginary eigenvalues

The proof follows directly from Prop. 2.1., as
stated in (Boyd et al., 1989).

2.2. Behaviour of Hamiltonian eigenvalues

The consequences of the theory for the behaviour
of the eigenvalues of the Hamiltonian matrix (3)
as a function of y will be discussed using some
examples.

Example 1.
Consider the following system:
G(s) = :

(78+1)-(82/ wo2+208/ wo+1)
with 7=1s, wy=>5rad/s, $=0.05.

(| : i T

101}

singular value

IQJE

102
101 100

frequency [rad/s]

Fig. 1. Singular values of third-order system (6)

The singular value plot of this system (Fig. 1)
shows that the Ho-norm is # 2, and opax(D) = 0.
We may expect (in accordance with Cor. 2.1) that
for all ¥ > ||G|lo the Hamiltonian matrix H(7)
will not have imaginary eigenvalues, and for all
0< 7« yG”w at least one of the loci of the eigen-
values of the Hamiltonian matrix will be on the
imaginary axis.

The eigenvalues of the Hamiltonian matrix H(%)
are computed for a number of values 4 between
0.1 and 10 and plotted in the complex plane
(Fig. 2a). The six eigenvalues lie symmetric with
respect to both the real and the imaginary axis, as
is inherent in the structure of the Hamiltonian
matrix.

For 74 - o the eigenvalues of H(7) will equal + and
- the poles of G(s), as can be concluded from (3):

LimH(y) = | & 0
1w 0 -A'

For v = 10 the eigenvalues still are very close to
+ and - the poles of the system (-1 and
-0.2544.99j). For smaller v the eigenvalues move
towards the imaginary axis. In Fig. 2b the real
part of the eigenvalues is plotted as a function of
gamma. From this figure it follows that (in accor-
dance with Cor. 2.1) below 7 # 2 the Hamiltonian
matrix has purely imaginary eigenvalues.

‘ |——————7=01
SR R

1Y=10

—o

j ————r /M

%5 4 3 2z 0 1 2 3 4 5
real part of eigenvalue

imag. part of cigenvalue
(=]

Fig. 2a. Eigenvalues of H(y) for system (6)
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We will now relate the singular value plot (Fig. 1)
to the ei%enva.lues of H(y) (Fig. 2), using
Prop. 2.1. If a line in the singular value plot at
some value 7 would intersect the singular value at
a number of frequencies w; to wy,, then it follows
from Prop. 2.1. that H(7) would have 2-k imagi-
nary eigenvalues at + jw; to jwk.

Relations between Fig. 1 and Fig. 2:

Global mazimum. The singular value plot has a
lobal maximum 2 at a frequency w = 5 rad/s 2
or ¥ = 2 a quadruple of complex eigenvalues co-
incides at the imaginary axis at » + 5j, for smaller
7 they split up in 4 imaginary eigenvalues.

Local mazimum. The singular value plot has a
local supremum 1 at a frequency w = 0 3 for
7 =1 a real pair of eigenvalues (not a quadruple
because it is a maximum at w = 0) reaches the
imaginary axis at the origin.

Number of imaginary eigenvalues. For a line in the
singular value plot at value 7, the number of
intersections with the singular value plot times 2
will give the number of imaginary eigenvalues of
H(7), as can be verified by Fig. 2.

interval number of  number of imag.
intersections eigenvalues
(Fig.1) (Fig.2)
0<7<0.5 1 2
r0.5< <1 3 6
1<y<2 2 4
2<y 0 0
Example 2.

For the second example we again take the third—
order system given by (6), but with a higher
damping factor f:

third-order system given by (6)
with 7=1s, wp=>5rad/s, /=0.2 (7)

Because we increased the damping factor § to 0.2,
the peak in the singular value plot (Fig. 3) caused
by the second order term will be smaller than in
the first example, and the maximum is achieved
at w = 0. When decreasing 7 from infinity, in this

case the real eigenvalue pair will be the first to
reach the imaginary axis (at y = 1), as can be
verified with Fig. 4a. and 4b. At 7 %0.5, which is
the value of the local maximum at w = 5 rad/s,
the quadruple of complex eigenvalues reaches the
imaginary axis at imaginary value ¥ + 5j.

100
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singular value
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Fig. 3. Singular values of third-order system (7)
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Example 3.
As a third example we take the non-strictly proper

system
Ky(78+1)/(r2s+1) 0
G(s) =
0 Ka/(73s+1)
with K=5, K,=0.5, 7= 18, 72="5s, T33=].S

The singular value plot of this system (Fii 5)
demonstrates why in Cor. 2.1 in the right hand
term 4 must be larger than amang). For a non
strictly proper system not all singular values go to
zero for w - . Because of this there may be values
for 7 < ||G|le where the singular value plot is not
intersected, and for which H(%) will not have ima-
ginary eigenvalues. In Fig. 6 the real part of the
eigenvalues as a function of 7 is plotted, showing
that for 0.5 < 7 < 1 there are no eigenvalues on
the imaginary axis.

o

singular value

10 A o
102 10t 10° 1w

frequency [rad/s]

Fig. 5. Singular values for non strictly
proper system (8)
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Fig. 6. Real part of the eigenyalues of H(y) as
a function of 7 for system (8).

Other examples have shown that the eigenvalues
of H(7) do not necessarily all move towards the

imaginary axis when decreasin% 7 from infinity.
Some of them can move away from it, or for in-
stance move towards the real axis.

3. THREE ALGORITHMS

3.1. Bisection algorithm

Using Cor. 2.1., the Ho-norm of a system can be
approximated with a simple bisection algorithm as
described in (Boyd et al., 1988,1989) and (Robel,
1989). A starting interval [11b(0), 7ub(0)] is deter-
mined (see § 3.4.) that certainly contains the
Ho-norm, and this interval is reduced by bisection
until the required accuracy, specified by the
maximum relative error ¢, is achieved.

algorithm:
¢ compute lower and upper bound starting values

Mb and 7ub
e repeat until 'break’

[ 7= 0.5-(11b + 7ub)
e compute the eigenvalues of H(y) (3)
e ifno imaginary eigenvalues
Tub = 7
else
 Mb=7
[® if b — Yub £ 2+ € Yub, break

* I1GIl, = 0.5+ (b + 7ub)

3.2. Algorithm using eigenvalue derivatives

The derivatives of the Hamiltonian eigenvalues
with respect to 7 can be used to write an algo-
rithm that converges in less steps than the bi-
section algorithm (Bruinsma, 1990). The eigen-
value derivatives can be computed with the next
proposition (for derivation see (Rogers, 1970)).

Proposition 3.1. Let A(y) be a differentiable
matrix function of 4 with n distinct eigenvalues
A1(7) to An(7), then

dAi7( 7 - },i-(,r).d_‘}f(rl).-m(?) (9)

where y; is the 'left eiaemrector' and x; the 'right
eigenvector' related to Aj:
vi'A = Ajyi'

Ax; = Aix;
with y; scaled such that y;'-x; = 1.
It follows from (3) that
- | (10

_ [-29BR-2D'C  -B(R-1*27?R -2)B'

C'(S-4+2~282)C 27/C'DR-?B'
with R and S as in (3).



Assuming that H(7) (3) has distinct eigenvalues,
we can use Prop. 3.1. to compute the eigenvalue
derivatives of H(y) for some upper bound
7> ||Gl|lo. With the real part of the derivative we
make an estimation of when the real part of the
eigenvalue will become zero.

algorithm:

e compute upper and lower bound starting
values yyp and 7 1p
® 7= Tub
e repeat until 'break’
[¢ compute the eigenvalues A; of H(7) and
the eigenvalue derivatives der; (using (9))
e ifno imaginary eigenvalues,
Tub =7
step = min{|ps- Re(A;)- Re(der;)|}
i

Y = 7ub - Step
else
Mb = max(Mb,7)
. 7= 7ub - p2-step
o if Mb - Yub € 2+ €+ Yub, break

o Gl = 0.5+ (b + 7ub)

Experience has shown that appropriate choices for
the multiplication factors p are

p1= 0.6

p2 =038

3.3. Two step algorithm on the lower bound

The algorithm described here approximates the
Heo-norm using only a lower bound. Some lower
bound starting value is computed, and in an
iteration loop the lower bound is increased until
the required accuracy is achieved. Within each
iteration two steps lead to the next mp. In step 1
we use Prop. 2.1. to compute the frequencies cor-
responding to 7p.

For a description of the algorithm in detail we
refer to (Bruinsma and Steinbuch, 1990). Local
quadratic convergence of the algorithm has been
proven by Boyd and Balakrishnan (1990{). Here we
only describe the main characteristic of the algo-
rithm: the two steps to compute, given some lower
bound mp(i), the next lower bound mp(i+1) (see
Fig. 7.).
step 1:
Compute the frequencies w;-to wy correspon-
ding to lower bound 7p(i), using an eigen-
value computation of Hamiltonian matrix
Hz(‘?’lb(i)) (Prop. 2.1.)
ep 2:

Take frequencies m; to my.; with m; =
0.5+ (wj+wi-1), compute the singular values of
G(jmi) and take as new lower bound: -
M5(+1) = max{omax(G(ims))}.

i

49

singular T A step 1
value (log) O: step 2
I I
Zpli+ 1)
Tt

4
freq. (log)

Fig. 7. Two steps to compute the
next value mp(i+1)

3.4. Comparison of the algorithms

The bisection algorithm and the algorithm using
eigenvalue derivatives only use Cor. 2.1 to com-
pute the Ho-norm, using the Hamiltonian H(7) to
search for the highest value 7 for which there are
imaginary eigenvalues. The two-step algorithm
also uses Prop. 2.1, thus fully exploiting the rela-
tion between the imaginary eigenvalues of H(9)
and the singular values.

The different algorithms will be compared by com-
puting the Ho-norm for some examples.

The lower and upper bound starting values mp
and yyp for the algorithms, used in these examples

are:
with oy = Hankel singular values
Mb = max{onax(G(0)), onax(D)} (12)

For a derivation of (11) see (Glover, 1984). For
systems of high order n the computation of this
upper bound takes relatively much time, because
it requires the solution of two Lyapunov equations
with dimension n.

Instead of lower bound (12) also other expressions
are possible. A simple and effective lower bound is
presented in (Bruinsma and Steinbuch, 1990). For
the comparison of the three algorithms it 1s not
relevant which lower bound we use, and (12) will
do quite well.

As examples we take three systems:

- the first example from § 2.2,

- a 4th order system with 3 inputs and 2 out-
puts, with a random generated state-space
matrix,

- a 13th order model of a wind energy conver-
sion system, with 10 inputs and 10 outputs,
extracted from (Steinbuch, 1989).

The Ho-norms of these three systems have been
computed with the three different algorithms. In



Table 1 the number of iteration steps are given,
necessary to compute the Ho-norm with maximum
relative error 10-6, plus the (:omput.ingF time for
the complete algorithm (on a 12 MHz AT).

TABLE 1 Ho-computation with rel. error 10-8

| bisection derivatives two-step

example 1 steps 14 9 2
3rd order

1x1 time [s] 12.9 15.0 3.2
random steps 14 8 1
4th order

2x3 time [s] 18.1 19.8 2.6
wind turb. steps 16 11 4
13th order

10x10 time [s] 331 421 108

The number of steps for the bisection algorithm is
determined by the length of the starting interval
and the maximum relative error.

The use of eigenvalue derivatives can substantially
reduce the number of steps, but due to the more
complicated computations within each step the
complete algorithm is even slower. It needs to be
said that the algorithm using derivatives can be
improved with respect to numerical efficiency.
Also, this algorithm should have a close upper
bound starting value, otherwise the steps might be
much too large initially (see for example Fig. 2b
for large ). The algorithm might become faster if
the first steps are taken with the simpler bisection
algorithm.

For all three examples the two-step algorithm is
much faster than the other algorithms and needs
only a few steps to achieve the required accuracy.

CONCLUSIONS

Three algorithms have been described, all based
on the relationship between the Ho-norm of a
transfer function and the eigenvalues of an Hami-
ltonian matrix. Both the bisection and the algo-
rithm using eigenvalue derivatives use upper and
lower bounds. The two-step algorithm uses only a
lower bound, and is based on an alternating cal-
culation of eigenvalues and singular values. Using
numerical examples it has been shown that the
two-step algorithm is superior, with respect to
both the number of iterations and the calculation
time. '
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Abstract—For a controlled flexible mechanism the stability robustness is analyzed. A
gain and spring stiffness variation are modelled as parametric uncertainty, which
typically is a structured perturbation. Stability margins are then computed using
sinfular value robustness analysis, complex structured singular value robustness analysis
and real structured singular value robustness analysis. Comparing these results with a
crude eigenvalue computation shows that only the real case leads to exact stability

margins.

Ke;
stability robustness

INTRODUCTION

Robustness analysis and robust design of control
systems has gained much attention in systems and
control literature (Doyle, 1982; Maciejowski,
1989). Especially Ho methods have been
ropagated as a tool for robust controller design
Kwakernaak, 1983; Francis, 1988). Hw design
yields stability margins for norm-bounded
unstructured complex perturbations. However, in
practice perturbations are often structured and
real (i.e. parametric uncertainty). This may lead
to very conservative designs. Therefore, in Hw
design only the most important uncertainty can be
taken into account (Smit, 1990), leaving a
necessity for robustness analysis afterwards for a
more realistic set of perturbations to compute the
actual stability margins.

In this paper we investigate the robust stability of
a simple flexible mechanism controlled by a Hw
controller. In this Hw design the only and most
important perturbation taken into account is a
varying spring stiffness. However, since gain
variations always occur in practice it is necessary
to analyze the stability margin -of the controlled
system with respect to both spring stiffness and
gain variations. This will be done using three
robust stability analysis.tests:

1. Singular Value Robustness Analysis (SVRA),
(Doyle and Stein, 1981).

2.Complex Structured Singular Value Robustness
Analysis (CSSVRA), (Doyle, 1982). '

3. Real Structured Singular Value Robustness
Analysis (RSSVRA), (Fan et al., 1990?. '
Our aim is to compare the stability margins
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Words—Real and complex structured singular value; parametric uncertainty;

obtained by these three methods. Because the
combined perturbation of gain and spring stiffness
is structured and real it can be expected that the
system is best analyzed using RSSVRA, where
"best" means the least conservative.

This paper is devided into three parts. In the first
section the system is described and the
uncertainty model is derived. The second section
is devoted the stability analysis. A stability region
for the uncertainty is determined by doing a crude
closed *loop pole computation of the system
perturbed by the two varying parameters. Then
SVRA, CSSVRA and RSSVRA are applied. The
conservatism of the three methods is then
evaluated by comparing the results with the
computed stability region. Finally the conclusions
are presented.

UNCERTAINTY MODELLING OF
A FLEXIBLE MECHANISM

Robust stability analysis with structured singular
values requires uncertainty modelling. The aim is
to arrive at a specific representation of the
perturbed closed loop system. This representation
is called the interconnection structure (Doyle,
1982) and has all uncertainty collected in a block
diagonal feedback matrix (see Fig. 2). In the next
section the interconnection structure that will be
derived in the following is needed to analyse our
example system on its closed loop stability. The
uncertainty model of the flexible mechanism has
been derived using a parametric uncertainty
modelling procedure on state space level described



in (Steinbuch, 1989; Terlouw, 1990). Parametric
uncertainty modelling is based on the following
general uncertainty representation for a plant in
state space

x = Ax + Bu + dAx + dBu (1)
y = Cx + Du + dCx + dDu

In this equation A, B, C, and D are the nominal
state space matrices, while dA, dB, dC and dD
are perturbation matrices containing information
on the variations in the entries of the state space
matrices. In order to apply the robustness analysis
methods it is necessary to rewrite these equations
into a standard form (Doyle, 1982). The
parametric variations occuring in (1) must be
collected in a diagonal feedback perturbation
matrix A = diag(éy,02,...,6n) replacing dA, dB, dC
?.n)d dD. This requires a reformulation of equation
1):

x = Ax + Bu+ Baug (2)
y = Cx + Du+ Djus
y2= Cax + Daqu + Dauy
uz = Ay,
The following equalities must be satisfied to
guarantee the equivalence of (1) and (2):
dA = Bg I1- ADgz '1ACQ 3
dB = B2 I- ADgg 'IADgi 4
dC = Dlg I- AD22 ‘1A02 5
dD = Dyo(I — ADgg)1ADy, 6
Equations (3—6) determine the constraints on

weighting matrices Bj, C3, D3, D2y and Dy and
the perturbation A.

J1,D1 J2,D2

Cs,Ds

—>—am1
Py

m2

Fig. 1a Flexible Mechanism

100 —

-----

1 o

Herz

Fig. 1b Bode plot of varying system

52

This uncertainty modelling procedure will be used
in the following to derive a model for a flexible
mechanism. The system under consideration is a
flexible shaft connected to two rotating masses
(see Fig. la). One of the two (mj) i3 a current
driven motor, with J; and D; the inertia and
damping of the motor. The relation between
torque M and current I is modelled as

(7)

M = KI

with the real scalar K denoting the motor gain.
The other mass (mj) is beared, and modelled by
the damping coefficient Dy and inertia J;. The
flexible shaft in between has a spring stiffness Cs
and a damping coefficient Ds and a neglectable
mass. The aim is to control the rotational speed of
the second mass (m3). So the rotational speed is
controlled by the DC—motor through the flexibility
of the shaft. The goal is to achieve a closed loop
bandwidth up to the resonance frequency of the
shaft in spite of a varying spring stiffness Cs and a
varying gain K (see Fig. 1b for the effects of these
variations on the open loop behaviour). Define the

state vector as x [P1 @2 ¥', with ¢; the

rotational speed of mass my, {, the rotational
speed of mass my and ¥ = ; — s, then the state
space matrices of the equations of motion yield:

~«D+Ds)/Jy  Ds/Ji  Celdy
A = Ds/-]2 —(D2+D5)/J2 —Cs/Jz
-1 -1 0
'K/J;
B=] 0
| 0
C=[01 0]
D=[0]

We assume that the spring stiffness Cg and the
motor gain K can vary:

Cs € [Cmimcmax]
K € [Kmimeax]
Choose )
Cnom = (Cmin + Cmax)/2
(

Knom = (Knin + Kmax)/2

AC i (Cmax = Cmiﬂ)/2

AK = (Kmax = Kmin)/2
then

CS = Cnom + AC
K = Kuom + AK

Using description (1) to seperate the actual
variations AC and AK from the nominal values
Cnom and Kpon, the following perturbation



matrices are obtained.

[0 0-AC/J,
dA=1]00 AC/J,
(00 0
" AK/J,
dB = 0
0
dC=[000]
dD = [0]

In order to be able to apply the robustness tests in
following section on a transformation with the
constraints of (3—6) has to be carried out:

[ -1 1
Ba= | Jy/J2 0
0 0]
[001/3,]
Cy=
(00 0
D;2=[00]
0
Day =
1/J;
D = [0]
AC 0
A =
0 AK

Note that the uncertainty matrix A has indeed a
diagonal structure. In (Smit, 1990) a Ho controller
has been designed to control the output rotational
speed. In this design, which uses the uncertainty
modelling described above, only the spring
stiffness variation is taken into account (AK=0).
The controller has the state—space realization:

' (8)

p=Ep + Fy
u= Gp
It is a fourth order controller designed accounting
for a spring stiffness variation of 1/3 of its
nominal value. Using this controller and the
uncertainty model of the plant derived above, the

interconnection structure (Doyle, 1982) can be
derived and is shown in Fig. 2, with
(9)

M(s) = Cn(sI — An) "By
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where
-BG
Am=
FC E
W,
Bm:
0
Co=[Vi VoG]
dC O
U2 [ vz
0 dK
................... \
. 1'021'I
SN N
| B [ C
| =
| LA ]
{2y &
| > ] L =]
5 =
: L= 4

____________________________________________________________

Fig. 2a Interconnection structure for AC and AK
(Time domain)

dC 0
0 dK

M(s)

Fig. 2b Interconnection structure for AC and AK
(Frequency domain)

ROBUSTNESS ANALYSIS

Before applying the three robustness analysis
methods mentioned in the introduction, an exact
reference for the robust stability problem is
obtained by a crude eigenvalue computation. In
the nominal case the c%osed loop matrix of the
controlled system is equal to Ap in (9).
Computing the eigenvalues of Ay for the varying
gain and spring stiffness leads to the stability
region S = {(Cs,K)| real(eig(An(Cs,K)))<0}. A



part of the region S is shown in Fig. 3 below.

unstable

IR

FE AR S SAC]| P =012 el Sl S LS

.....
........

...........
.................
.......................................

Fig. 3 Stability region S for for varying Cs and K

In (Smit, 1990) it is shown that the closed loop
system has acceptable performance properties for a
varying spring stiffness of about 1/3 of its nominal
value and a nominal motor gain. Analysis
afterwards learns that the motor gain may
increase with about 40% of its nominal value
before instability occurs. This can be seen by
considering the box in Fig. 3 which represents all
allowable K if AC is chosen as in the Ho design
problem, since for one combination (CsK) the
system becomes unstable (the box touches the
instability region in the upper right corner). The
cross in the middle of the box represents the
nominal values of Cg and K. The maximum
admissable AC and AK given by the box are
absorbed in the interconnection structure M(s) so
that the diagonal perturbation matrix in Fig. 2b is
scaled to a 2 by 2 identity matrix who's elements
can vary between —1 and +1. _

Now the three robustness analysis tests can be
applied to M(s). The theorems given below are
stated by computable upperbounds and not by the
exact definitions. They are based on the
requirement that the loop gain of the
interconnection structure (Fig. 2) remains smaller
than one for all possible A, since AC and AK are
scaled to one. Since it is the goal of this work to
show computational results, theoretical
background on the bounds and computational
aspects will be ommited here. (Fan et al., 1990)
provides an excellent explanatory text for the
interested reader.

Theorem SVRA (Doyle and Stein, 1981)

Robust stability if .

o(w) = o[M(jw)] < 1 Vw 0
Theorem CSSVRA (Doyle, 1982)

Robust stability if

pe(w) = mlgn{E[DM(jw)D‘l]} <1Vw

where D is a block—diagonal matrix according to
the structure of A I

Theorem RSSVRA (Fan et al., 1990)

Robust stability if
1e(1) = %ﬁg{7{D~1M{jw)*D2M(jw)D-t

+j[GM(jw)*—M(jw)G]} <1V

where D and G are block—diagonal matrices
according to the structure of A. =

with o denoting the maximum singular value, A
denoting the largest eigenvalue, * denoting the
complex conjugate transpose of a matrix.

The largest singular value denotes the largest gain
of M. Since the largest gain of the perturbation A
is less than one the loop gain MA of the
interconnection structure should not exceed 1 and

instability thus does not occur if o[M(jw)] < 1 Vw.
However if A is structured as in our example the
largest singular value of M may be scaled and
thereby minimized by a matrix D according to the
structure of A.

If A is structured and real an additional scaling of
the "imaginary part" of M may be applied
resulting in a minimization over D, G as in
theorem RSSVRA.

Remark 3.1.
For the assumed AC and AK the closed loop
system can reach the edge of stability.
Therefore the three tests above should be less
than or equal to 1. If the peak value over all

frequencies of o{w), pe(w) and pr(w) is larger
than 1 the tests state that the system is not
robustly stable while it is and thus yield
conservative results. "

The first test is directly computable using
standard software. The second test involves the
minimization per frequency over a (block-)
diagonal D and the third involves an optimization
over a (block—) diagonal D and a (block-)
diagonal G (an algorithm doing so has been
programmed (Terlouw, 1990)). In Fig. 4 the
results of the computations of the upperbounds
given above are shown.

SVRA

:
| 4

C3SVRA

Fig. 4 Results for SVRA, CSSVRA and RSSVRA



Theorem SVRA holds for unstructured complex
uncertainties and since the perturbations in this
problem are structured and real the SVRA test is
expected to be very conservative. This can be seen

in Fig. 4 where o[M(jw)] has a peak value of 35,
implying that only an uncertainty 35 times
smaller than the actual uncertainty would satisfy
theorem SVRA. The CSSVRA takes the structure
of the perturbations into account and therefore is
less conservative: D-scaling reduces conservatism
considerably (in this case the peak value equals 2).
The RSSVRA-test computes an upper bound for
structured aend real perturbations. In Fig. 4 the
computed upper bound equals 1 and hence is
non-conservative.

Remark 3.2.
Our experience is that often at specific
frequencies the real structured singular value
pe(w) has peaks. An interpretation for scalar
perturbations is the crossing of M(ju.? with the
negative real axis in the complex plane
(equivalent to the gain margin). The results of
RSSVRA are not reliable if the computation is
done with a frequency grid skipping such a
crossing frequency. -

CONCLUSIONS

In this paper the stability robustness of a flexible
mechanism for gain and spring stiffness variations
has been analysed. It has been shown that it is
possible to isolate these variations in a diagonal
feedback structure suitable for application of
several robustness theorems.

Singular value robustness analysis, even for a
simple 2 by 2 problem, can be extremely
conservative. This has an implication for design
too because this conservatism would yield very
low performance Hw controllers.

Accounting for the structure of the perturbation
reduces conservatism considerably, but still does
not account for the real nature of perturbations.
For the specific problem under investigation this
conservatism can be completely removed by
applying the computable upperbound of (Fan et
al., 1990) for the real structured singular value.
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Abstract. In this paper a reliable algorithm is developed to perform a normalized
coprime factorization of proper discrete time finite dimensional linear time invariant
systems. Instead of using the bilinear transform the factorization is calculated directly.
The system is allowed to have a singular state-space matrix. It is shown that a
modified discrete time Riccati equation plays a crucial role to obtain a state-space
realization for the factorization. One of the applications of the normalized coprime
factorization is in model reduction. In the fractional balanced reduction of a plant a
normalized coprime factorization is used. An algorithm is presented to obtain a
discrete fractional balanced reduced plant model.

Keywords. Proper discrete time systems; normalized coprime factorizations; fractional

balanced reduction; reliable algorithm.

INTRODUCTION

In the theoretical work of Desoer et al. (1980),
Vidyasagar et al.(1982), Vidyasagar (1984) the
benefits of using coprime representations in
stability analysis of controlled systems are shown.
In the continuous time case Nett et. al. (1984),
Meyer and Franklin (1988) and Vidyasagar (1988)

derived state-space representations for the
normalized coprime factors. Glover and
McFarlane (1988, 1989), McFarlane (1988)

showed the importance of normalized coprime
factors in the Hw controller design. They explicitly
solved a continuous time four block He control
problem by using a normalized coprime
representation of the plant. In practical situations
a continuous time plant is controlled by a discrete
controller using sampling and zero order hold
circuits. So in order to design accurate discrete
time controllers the control design procedure has
to be performed in discrete time. The first step in
discrete Ho control design with normalized
coprime factors is to establish whether or not in
discrete time normalized coprime factors exist and
can be represented in state—space forms. Chu
(1988) gave state-space representations for
discrete coprime factors with an inner numerator
under the condition that the system has no poles
in the origin. Poles in the origin are of major
importance since in discrete time very often
time—delays have to be incorporated in the system
model. In this paper we will show the existence of
a normalized coprime factorization of a discrete
time plant with possibly poles in the origin.

a7

PRELIMINARIES

Stable multivariable linear systems can be studied
by considering them as transfer function matrices
having all entries belonging to a ring ¥. Moreover,
in many cases (e.g. convolution operators) the
ring ¥ is commutative and is an integral domain
(i.e. ¥ has no divisors of zero). The class of
possibly unstable systems are elements of the
uotient field 7 of ¥. Throughout this paper we let
((lVidyasagar et.al. 1982, Desoer et.al. 1980):
F = a%b | a€ ¥, be ¥\0 }, a quotient field
0
G := a (not necessarily commutative) ring with
identity.
a subring of ¢ which includes identity
{heX|h1eg}, theset of
multiplicative units of §
{h E'Irh'l € ¥ }, the set of
multiplicative units of ¥

1=
T =
J

Note that: JcZc¥cGcF (1)
In the sequel of this paper we will study real
rational finite dimensional discrete time invariant
systems. The ring G is identified with RLo the
space of proper real-rational functions with no
poles on the unit circle with norm [|.]|w:

A=)l = sup s(fe'%]
0<0<2

The subring ¥ is identified with RHe the subspace
of RLo with no poles outside the open unit disk,

(2)



and analogously ¥t is identified with RH. The
following notation is used. We will denote transfer
functions as G(z) or if there is no confusion G.
With a slight abuse of notation a transfer function
is given by:

G(z) := D + C(zI-A)"B := [%EiH}] 3)

At denotes the transpose of A and G*(z) denotes
Gy(z!). For minimal plants G(z) € %, the
controllability and observability Grammians P
respectively Q are positive definite symmetric
solutions of the following Lyapunov equations:

APAt + BBt = P (4)
AtQA + CC = Q (5)

DEFI)nmon 2.1 (Vidyasagar, 1984; Huang and Liu,
1987
A plant G € F has a right (left) fractional

representation if there exist N,M (N,M) € ¥ such
that:

G = NM-1 (= M-IN) (6)

Furthermore we say that the pair M,N (M,N) is
right (left) coprime (rcf or lcf) if there exists

U,V (U,V) € ¥ such that:
UN+VM=1I (NU + MV =1) (7)

The pair M,N (M,N) is normalized right (left)
coprime (nref or nlcf) if in addition to (6):
(8)

M*M + N*N=1 (MM* + NN* =1)
o

Meyer and Franklin (1988) gave an explicit
method to calculate the normalized right coprime
factorization in continuous time. For the discrete
time domain, the following proposition gives
conditions for a state-space realization of inner
transfer functions.

ProPoSITION 2.1 (Heuberger 1990)

A plant G(z) := D + C(zI-A)1B € 7 is called
inner: Gt(z1)G(z) = I, if and only if there exist a
Q such that:

a) AQA +CtC=Q, Q = Q¢ (9a)
b) DD+ BQB =1 (9b)
c) CtD + AtQB =0 (9¢c)

u]

We will show how normalized coprime
factorizations can be applied to model reduction.
For this purpose we define in the followin,
proposition the graph of a transfer function an
show how this concept is related to coprime
factorizations.

PROPOSITION 2.2 (Vidyasagar 1985)
All those input—output pairs that are of finite
energy define the graph of a plant G(z):

#{G(2)} = {(wy) €Lox Ly [y =Gu}

The graph of G(z) can also be expressed in terms
of its rcf. Let (N,M) € ¥ be a rcf of G € 7, then the
Graph of G equals:

(6@} = {[N]wlwels}

NORMALIZED COPRIME
FACTORIZATION

The following theorem gives sufficient conditions
for the existence of a state—space representation of
a normalized right coprime factorization of a
discrete time plant. In the proof we will
frequently use system equivalent operations,
described by Rosenbrock (1970).

THEOREM 1
Given a minimal realization:

G(z) := [EE-EA—\—%] €F (10)
and define:
zI-A+BF | BH
[1;’}] - (11)
—(C+DF |DH
then [%ﬂ is a normalized right coprime

factorization of G(z) if and only if there exist an
F, H, Q such that:

a)  Ft= (AtQB+CtD)(I+DtD+B!QB)1 (12a)

b)  HHt= (I+DtD+BtQB)! (12b)
c) Q-AtQA-CtC+(AtQB+CtD)-
(BtQB+D!D+I)"1(BIQA+DIC) =0  (12¢)
d Q=Qt>0 (12d)
PRrOOF
Bongers and Heuberger (1990).
a

The procedure to obtain a normalized right
coprime factorization for the plant G is to solve
the Riccati equation (12¢,d) to obtain Q, calculate
F and choose an H. The equivalent for the
normalized left coprime factorization is a direct
result from theorem 1 and is given in the following
corollary.

COROLLARY 1
Given a minimal realization (10):

G(z) := D+C(z1-A)"1B := [%%g] eF

and define:

VMK = [zI—A+KC’K —B+I(D]

(13)



then [M N] is a normalized left coprime
factorization of G(z) if and only if there exist a
K,R,P such that:

a) K = (APCt+BDt)(I+CPCt+DDt)!
b) R!R = (I+CPCt+DDt)!
c) P-APAt- BBt+(APCt+BDt)-

(I+CPCt+DDt)"{(CPAt+DBt) = 0
d) P=Pts 0
PROOF
Let G = M-IN, with (M,N) € % a nlecf of G, then
Gt = NtM-t with (Nt,Mt) a nrcf of Gt, so the
realization of [M N] follows from theorem 1.

‘o

REMARK
Note that we don't need the assumption that the
state matrix A is invertible, as is the case in
Chu (1988). Using proposition 2.1 it is straight
forward to show that this assumption is indeed
superfluous. This is of major importance since in
discrete time control design problems very often

time—delays are incorporated in the augmented
system.

In order to solve the normalized -coprime
factorization for the plant in discrete time by
means of standard techniques, the equation (12c):

Q-AtQA-CtC+(AtQB+CtD)-

(BtQB+DtD+I)}(BtQA+DtC) = 0
can be written as a standard Riccati equation.
Define:

=80 Bi=[p].ci=p00,Ri=1,

_[Qo
The standard
AIFBI!CI)Rl!Ql is :
0 = Q-A1*QiA1-CytCy+
A1tQ;B1(B1tQ1B1+R;)1B1tQ1A,
Substituting the definitions of A; etc. gives:

31 (S99 - e
BB o

QO][A0] _[00
B0 3 9] (0] = [ 00]
evaluating this equation gives (12c). This shows
that the discrete time normalized coprime
factorization problem can be solved by means of
standard techniques. Note that the sufficient
conditions for the existence of a positive solution
of the Riccati equation are still valid.

Riccati equation with

FRACTIONAL BALANCED
REDUCTION

In this section we extend the continuous time
fractional balanced model reduction (FBR)
method (Liu and Anderson 1986; Meyer 1988) to
the discrete time domain. An essential part of the
discrete fractional balanced reduction method is
the existence of the discrete normalized right
coprime factorization. A major advantage of the
DFBR method is that plants with and without
unstable poles are treated in the same way.
Instead of approximating the full order plant by a
reduced order model in a straightforward way:

Gn(z) — Gi(2)
the graph of the plant is approximated:

$#{Gn} - $(Gr}

or:
(i) - [¥]
Nn N
with:
Gp = NyMy1, (Np,My) nref
and we define:
Gr = N:M;1

The procedure to obtain a reduced order model in
the graph sense is given in the next algorithm.

Algorithm. For a given plant Gg(z) € F the

construction of a low order approximation

Gr&z) € F is as follows:

1 Construct a nrcf (Nn,My) for the full order
plant using eqn. 12.

2 Balance and order the state—space realization of

(Np,Mp): ‘
[Mn} == [ ZI_AH Bn}
Nl.‘l n n
such that:
P = Q = diag(ey .. 0 .. on)
with:

51 2 Tr 2 Tn > 0,
and partition {Ap, Bp, Cpn, Dn} as follows:

_ [ At Ap2 _ | B
An= [AzlAzz}’B“_ [32]’
Cn=[cl CZ]aDn=Dn

with Ay of size rxr, Ajj, Bj,C; of appropriate
dimension.

3 The approximation of the coprime factors
(Nn,Mn) by (Nr,Mr) 18:

[Mr] _ [ zI-A¢|B ]

N¢ — £ |Df

with:
Af = A1 — Aga(I4+A32) 1Ay
Bf=B; - A12(1+A22)’1B2
Ci=Cy - Cz(I-i‘Azg)'lAgl
Df = Dy — Ca(I+A22) 1By



4 Given the construction of a rcf of G and back
substituting:

Lol gH: - -F
Dp= [D H] L [CrD:Fr]‘
Bf = BiHr, Af = Ar—B/F;

we obtain a state-space realization of the
reduced order plant G¢(z) € F:

G = [ ZI_Ar Br]

r r
u]

Note that although the plant G may have
unstable poles its normalized coprime factors
(N,M) are stable. By the application of balanced
reduction on the coprime factors we are able to
reduce plants with or without unstable poles with
the same method.

In the standard balance and truncate method an
upper bound on the Hwo approximation error
between the full order model and the reduced
order model is given by (Heuberger 1990):

M,] [M n
) sz

CONCLUSIONS

Theorem 1 and Corollary 1 show that with
standard mathematical tools the normalized
coprime factorization can be calculated, which is
necessary to design discrete time controllers, that
satisfy He robustness bounds. Since in practical
applications one will in general be dealing with a
discrete time problem, this is an important step
towards the solution of the Hw control problem in
discrete time.

Another application of the discrete normalized
coprime factorization can be found in a fractional
balanced model reduction scheme. An algorithm
to calculate the fractional balanced reduced
models is given. Using this method plants with or
without unstable can be reduced in the same way.
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Abstract. Based on a real-rational description of signals and systems in the frequency
domain and a state—space description in the time domain, an analysis of the Ls— and
Ho—optimal control problem with full (state) information will be given. First both
problems will be formulated in the frequency domain, after which the Lp—optimal
controller will be derived resulting in the feedback connection of the system to be
controlled with its dual. Finally this result will also be considered in the time domain
and extended to the Ho—optimal controller. This paper is intended to give some
insight in the structure of Ly— and Hz—optimal controllers, especially in an
input—output sense. The aim is to give a self-contained derivation that clarifies the
advantages of using both frequency domain and time domain arguments. The
importance of the solution of the algebraic Riccati equation connected with
Ho-optimal control will follow quite naturally from the derivation: it can be
considered as an operator from the state-space into the costate-space, leading to an
auxiliary input signal that converts the Ly—optimal configuration into an Ho—optimal
configuration.

Keywords. system theory; operator theory; multivariable systems; dual systems; Lo—

and Ho—optimal control; state—space methods; full information problem.

1 INTRODUCTION

Kalman (1960) introduced the linear quadratic
control, or LQ, problem as the dual of a stochastic
filtering problem. Since then the LQ problem has
been widely studied, especially in the time domain
in a state-space setting. From these studies the
%reat importance of the algebraic Riccati equation
ecame apparent; a particular solution to this
equation immediately results in the solution of the
LQ problem. A thorough investigation of this is
%‘ivven by for instance Brockett (1970). Also
illems (1971) should be mentioned; he considers
solvability of LQ problems and shows its
dependence on some inequalities that are closely
related to the algebraic Riccati equation.
The introduction of Hw—control theory (Zames,
1981) and its further development (ks‘ee for instance
(Francis, 1987) and the references therein) resulted
in a renewed interest in the frequency domain
properties of the LQ problem as well as a more
operator theoretic approach of some earlier results.
_In this sense the Hy problem was introduced as a
frequency domain version of the LQ problem,
augmented with the possibilities of Wiener—Hopf
design (Francis, 1982). Again the algebraic Riccati
equation appeared to be of key importance; not
only (as to be expected) for the Hy problem but

also for the Hw problem (Doyle and others, 1989).

Although the role of the algebraic Riccati equation
has been widely recognized, the reason for its
importance is not so often considered. MacFarlane
(1963, 1969a, 1969b) showed by wusing a
variational approach and Pontryagin's maximum
principle (Athans and Falb, 1966?l that the LQ
optimal trajectory is governed by the behaviour of
a pair of interconnected dual dynamical systems
with two—point boundary conditions. From this
result it is possible to derive the algebraic Riccati
equation  when a  constant  stabilizing
state—feedback controller is to be found.

This paper will give a self contained derivation of
the solution of the full information LQ or Hy

problem, both in the frequency domain and in the
time domain. By restricting our attention to linear
time—invariant systems, we will derive the Lo— and
Ho—-optimal controller without explicitly using the
aforementioned results. It is intended to show that
the use of both frequency domain and time
domain arguments can simplify and clarify some
well known results and proofs. The Lo—optimal

controller is introduced as a convenient
intermediate step towards the Hs—optimal
controller.



The description of signals and systems is given in
an operator theoretic sense and will be considered
in section 2. Next the problem formulation for the
Ho-optimal control problem will be stated in
section 3. Section 4 will then give the solution of
the Ly—optimal control problem, followed by the
solution of the Hp—optimal control problem in
section 5. Finally section 6 will give a discussion
of the results.

2 PRELIMINARIES AND NOTATION

A frequen omain cription of signals and

systems

We will consider signals in RLy, the Hilbert space
of real rational functions of a complex variable
s=A+jw for which the inner product

((9)18)) = (2)"+ Ju(i0) ()

=0
is finite, with u* denoting the complex conjugate
transpose of u. This inner product thus defines a
norm denoted as:

llu(8)llz := 4 (u(s),u(s)) (2.2)
So u(s)eRL, if and only if u(s) is real rational and
|lu(s)|l, < . This implies that u(s) is strictly

proper and has no poles on the imaginary axis.
From this we can define two complementary
subspaces in RLg;

RH; := {u(s)|u(s)eRLg, no poles in ccrhp}

RH3 := {u(s)|u(s)€RLq, no poles in cclhp}  (2.3)

(cer(1)hp = closed complex right (left) half plane).

So RH,, RH3 consists of signal representations that
are real rational, strictly proper and stable, real
rational, strictly proper and  antistable,
respectively.

Next we consider a system as an operator on RLg
with representation G(s)€RLo;

RLoo:={ G(s)|y(s)=G(s)u(s)eRLg, Yu(s)eRLy}  (2.4)
Clearly G(s) must be such that:
“ﬁw <w Y u(s)eRLy/{0} (2.5)

so the operator norm or induced norm of G(s) can
be defined as: ;

sup ||Gf s?u% s)lo
u(s)eRLy/{0} N2
From the characterization. of signals in RLj given
above it follows that G(s)eRLw if and only if G(s)
is real rational and proper, and has no poles on
the imaginary axis.

Furthermore we can define two complementary
subspaces in RLw, based on those defined in RLg

IG(s)ll , = (2:6)

(2.1)
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(eq. 2.3):

RHow :={G(8)|y(s)=G(s)u(s)eRHz, Yu(s)eRHz}
RH& :={ G(s)|y(s)=G(s)u(s)eRH3, Yu(s)eRH3} (2.7)

So RHw, RH% consists of system representations
that are real rational, proper and stable, real
rational proper and antistable, respectively.

Based on the inner product given in eq. 2.1, we
can now, given G(s), define the adjoint or dual
system representation G7(s) as satisfying:

(G(8)uy(8),u(8)) = (uy(s),G™(8)uy(s))
Y wui(s),ua(s)eRLa

which is equivalent to G™(jw)=G(jw)* VweR.

The partitioning of RLy in RH, and RH3 makes it
possible to extend the definition of G™(s) to the

entire complex plane; because RH, and RH3 are
complementary we have:

(u(s),u2(s))=0  Yuy(s)eRH,, Yup(s)eRH;  (2.9)
No&m consider G(s)eRHw, such that G(s)ui(s)eRH,
and:

(G(s)w(8),u2(5))=0 Vu €RHy,Yup€RH3
(u(s),G(s)ux(s))=0  VueRHpVuseRHz (2.10)
This implies G™(s)eRH and therefore we have:

G (s) = G'(-s) (2.11)
with GT denoting the transpose of G.

(2.8)

A time domain description of signals and systems

It is well known that a system represented in the
frequency domain as a transfer function in RLe can
be represented in the time domain by a minimal
state-space realization:

i(8) = As(t) + Bu(t)  2(0)=0

(2.12)
y(t) = Ca(t) + Du(t)
such that:
G(s) = C-(sFA)1-B+ D (2.13)

Here we assume the state—space to be finite
dimensional.

Although eq. 2.12 makes it possible to calculate
the response of y(f) to any input signal u(f) with
u(t)=0, Vt<0, we will only consider signals with
representations in the frequency domain that are
in RLe. To find a representation of such signals in
the time domain we can use the inverse Fourier
transformation, which is.an isomorphism from the
frequency domain into the time domain (Paley
and Wiener, 1934).

The procedure is as follows:
Given a signal u(s)eRLy, into

divide it



u(s)=1us(s)+ua(s) with us(s)eRHy and wua(s)eRH3.
Perform an inverse Fourier transformation of ug(s)
into the time domain to get a stable realization
(As,Bs,Cs) such that:

w(t) = Asz(t) + Bsb(t)  25(0)=0
{us(t) = Cezs(t), V>0 (2.14)
us(t) = 0, V<0

with &(¢) denoting the unit impulse.
Similarly transform us(s), finding an antistable
realization (Aa,Ba,Ca) such that:

Ta(t)  =-Aaza(t) + Bab(t)  a(0)=0
w(-t) = Cuza(t), V20 (2.15)
|:'E-‘.a.(—t—) = 0, Vi<0

Finally the time domain representation of u(s) is:
u(t) = us(t) + ua(t) (2.16)

Note that u(f) can also be found by taking the free
responses of the systems in eq. 2.14 and 2.15 with
the initial conditions z5(0)=Bs and 24(0)=B,
respectively.

By this procedure of splitting u(s) before inverse
Fourier transformation we now have a function of
time u(t) that is again an element of a Hilbert
space detined as follows.

Consider the function space of all real
vector—valued functions of time u(f) with ¢€(—wo,)
and define the inner product:

(ut),15(0)) : _Tu'{(:)uz(z)dt (2.17)
Then the Hilbert :pace #(—,2) can be defined as:
H(-oo0) = {u(t) [ (u(?),u(?)) < o} (2.18)

For all Vu(t)€ %(—o,w) we can thus define a norm:

lu(D)ll; :=  (u(t),u(8)) (2.19)
Now it follows from eq. 2.14 and 2.15 that wu(¢)
given in eq.2.16 is bounded on (-w) and
approaches 0 towards +w and —w, therefore we
have u(t)e _35(—00,0:?.
From eq. 2.14 and eq. 2.15 we can see that ug() is
nonzero on the interval [0,00%1 and u,(t) is nonzero
on the interval (—,0]. It is therefore convenient to
define two complementary subspaces in H(—w,w);
#$[0,0) and H(—w,0], such that wus(¢)e-%4[0,w) and
Uy t)E éﬁ(*w,{]]

Similar to what was done in the previous section
we can now consider a system to be an operator
on the time domain space .$(-w,0) having a
representation as given in eq. 2.12. In this sense
also a dual system representation can be found
from the time domain inner product given in
eq. 2.17. It is much easier however to substitute
eq. 2.13 into eq. 2.11 to get:

G (s) = G*(~s) = {C-(~sI-A)'-B + D} =

~B*(si+A") 1"+ D" (2.20)
giving the time domain representation:
&) =-AT6() - Cylt)  &(0)=0
ut) = B €l + Dy(t) (2.21)

Finally note that it is possible to find the systems
response signal y(¢) (eq. 2.11) for any input signal
(t?g.ﬁ[{],oo having a representation as in eq. 2.14
by adding this representation to the one given in

eq. 2.12:

(B [ As 0][w(0] 4 [Bs]. 50

R TR
z (1)

3 PROBLEM FORMULATION

The Hy—optimal control problem formulation as
considered in this paper is derived from Doyle and
others (1989) and starts with the frequency
domain system description:

ol Lo aallio)
y(s) Gy Gaa) [ u(s)
with w(s) the input vector of disturbance and
reference signals, u(s) the input vector of control
signals, 2(s) the output vector of signals to be
controlled and y(s) the output vector of available

measurement signals.
In the time domain this system can be represented

(3.1)

as:
(t) =Ax(t) + Buw(t) + Bou(t) 2(0)=0
At) =Cia(t) +Duw(t) + Diu(t) (3.2)

y(t) = Co(t) + Dayw(t) + Deou(t)

We now want to find a second system that makes
use of the measurement signals y(s) and the
control inputs u(s) to improve in some sense the
behaviour of 2(s) given possible disturbances
(references) w(s).

The sense in which an Hs—optimal controller aims
to improve this behaviour of 2(s) can be
formulated as follows:

Given a possible nonzero disturbance (reference)

vector uw(s)eRHa, that can be normalized such that

llu(s)ll;=1;

a) make sure that the controlled system is
internally stable.

b) make sure that the response of z(s) is an
element of RHs.

¢) make sure that ||2(s)||, is as small as possible.



To somewhat simplify the problem the followin%
assumptions are made (see th. 2.3 and prop. 3.1 0
Wonham (1978) for a definition of stabilizability
and detectability):

1. D;y=0

2. Dy=0

3. D?Q-D12=f

4, D’{‘z - Ci=0

5. (A,Cy) detectable

6. (A, 2,0;2 stabilizable and detectable
7. O=I Do1=0

8.

w(t)€ 4[0,») follows from: (see eq. 2.14)

zo(t) = Awzw(t) + wod(t)  zw(0)=0
[w(t) = Cum(t), VE20 (33)
wi) = 0, V<0

This representation of w(f) is assumed to be
incorporated in the system description, such

that we can take wpd(?) as a new ingmt signal. -

Note that, although woﬁ{t)ﬁ HB(—wy), we still
have a valid minimization because we are
considering the transfer from w(t) to z(¢).

These assumptions are mainly equal to those made
by Doyle and others (1989). They are not very
restrictive, with the exception of assumption 4,
which is equivalent to not allowing cross—products
in the time domain LQ criterion, and assumption
7, which restricts our attention to the full
information problem.

Furthermore, based on assumptions 3 and 4, we
can assume without further loss of generality that
C) and Dy3 can be partitioned as:

G = [Ci], Dy=| "
0 Di,

Also note that -assumption 5 guarantees internal
stability of the controlled system if 2(s)€RHa.

(3.4)

With these assumptions it is now possible to state

the Ho—optimal control problem as will be
considered in this paper:

Formulation of the Ho—optimal control problem.
Given the system to be controlled:

w(t) = Ax(f) + Biwod(t) + Bau(t) 2(0)=0
[""m] = [Ci]-x(t)+ 0 1. 1) (3.5)
2(t) 0 Dy

yt) = 1)

with (A,Bs) stabilizable, (A,Cj) detectable and
T

Di2Dyp=1.

Find a controller that uses measurement signals
y(s) and control signals u(s), such that:

1. 2(s)eRHa
2. ||2(s)||, as a result of wyd(?) is minimal. =
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4 THE Ly-OPTIMAL CONTROLLER

Given the problem formulation in the previous
section it will appear to be convenient to first

consider only the second demand, the
minimization of ||#(s)|l,, without considering
stability; this will lead to the Ly-optimal
control system. The result will then be

extended to the Ho—optimal controller in the next
section.

In order to somewhat simplify notation we will
first define two transfer functions based on eq. 3.5.
The transfer from wp to z(s):

Hy(s) = Ci(sI-A)"B; (81)
and the transfer from (s) to z(s):
Hy(s) := Cy(sI-A)™ B, (4.2)

So, as far as 2(s) is concerned, we can consider the
frequency domain equivalent of eq. 3.5 to be:

As) = [z,(s)] = I:Hu(S)’u(S) + Hy(s)wo

(4.3)
2(s) Dipu(s)

Based on eq. 2.1 and dropping the dependency on
sor jw we now have:

3 1 % . i T
l2lly = 57 J(u” HyHyutv HyHywetwoHy Hyut

o
wEH;waﬁu" u)dw (4.4)

The following theorem then gives the Ly—optimal
control signal wp(s) such that this criterion
function is minimized.

Theorem 1:

Given the system to be controlled in eq. 3.5 and

given the criterion function to be minimized in

eq. 4.4, the following statements hold (dropping
the dependency on s when convenient):

1. The Ly—optimal control input wua(s)€RLy that
minimizes the criterion function over all
u(s)eRLy, is:
wy = —(HH+D'H Hw, (4.5)

2. After partitioning 2(s) as in eq. 4.3, we have
that eq. 4.5 simplifies to:
wp = —Hy'z (4.6)

3. The minimal value of the criterion function
over all u(s)eRLg is:

2 [+0]
lelly = = J(ubHy(H,Hy+ ) Hyup)dw (47)

-0 u]

Proof: see appendix A.1 0

From this theorem we have that the Lo—optimal
control system is given by applying feedback from
#%(s) to u(s) through the dual of the transfer from
u(s) to z(s). This situation is clarified by the
block—diagram given in Fig. 1.
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Fig. 1.  Lp—optimal control in the

frequency domain.

From equations 2.22, 3.5, 4.1, 4.2 and 4.6 we can
now find that the time domain description of the
La-optimal control system is given by: -

®(t))] _[A -BeBj|[a(t)] . [B, 5
ol =lara e |[eo) * [0
[zl(t)} [ G o ] [z(t)] (4.9)
2(?) 0 -Dj,B; |[€(1)
ith  x(0)= = i
(1 SEn T, e i e
wd()
(1) 1) 50
B ! G

£t

_

T
_@

/ j G
AT

(1)

— P2

Fig. 2. Ly-optimal control in the time domain.

5 THE Hp-OPTIMAL CONTROLLER

We will now extend the result of the previous
section to the Hp-optimal controller, that
minimizes ||#(s)||, given the extra condition of

#(s)eRH,. The first step towards the solution of
this problem will be to consider more closely the

x(t
behaviour of the combined state vector [e{zﬂ as
given by eq.4.9. The system matrix in this
equation, which from now on will be denoted as H;

i

_[A4 -B,B

o = LC"TC‘ EA%] (5.1)
1 1

is a Hamiltonian matrix and has the following
properties:

Lemma 1:
Given the 2nx2n matrix H as defined in eq. 5.1
with (A,B,) stabilizable and (4,C}) detectable, the

following statements hold:
1. H has no eigenvalues on the imafinary axis.

2. H has Jordan form A with modal

0
0 -AT

o [ M Ml2]
matrix [ May Moy and A stable. So the stable

and antistable modal subspaces of H are

X_(H)=Im[%;ﬂ and x+(m=1m{ﬂ§;§] with
R®=X_(H)eX, (H). ¢

Proof: see appendix A.2 o

This lemma now immediately leads to:

Lemma 2:
Given the 2nx2n matrix H as defined in eq. 5.1
with (A,B;) stabilizable and (A,C}) detectable,

and with the Jordan form and modal matrix of H
from lemma 1 part 2, the following statements
hold:

) [ M11 is invertible

: -1

2. Im[ﬁ;] = Im[j{,] with X := My My
3. X is symmetric
4. X is a solution of the algebraic Riccati

equation:

AX + XA - XB,B}X + C\TCl = 0 (5.2)
5. A-ByBjX is stable ]
Proof:
See th.7.2.2 and cor.7.2.1 of (Francis, 198?) for a
recent and very complete proof; the original proof

is given by Potter (1966) and Mértensson (1971).g

Note that lemmas 1 and 2 do not give all
available results on the Hamiltonian matrix and
the algebraic Riccati equation; only results
necessary for the further exposition in this paper
are mentioned. See for instance Richardson and
Kwong (1986) and Faibusovich (1987).

We are now able to state the solution of the
Ha—optimal control problem as follows:



Theorem 2:

Given the Ha-optimal control problem from
section 3, the following statements hold:

1. The Hy-optimal trajectory of 2(t) is given by:

) = o

el b3

with X as defined in lemma 2 part 2 and

2{0)=¢(0)=0. Ik
2. Equation 5.3 can be simplified to:

Hl) = (A-BB3X)a(t) + Byupd(t) (0)=0
{zl(t)] { C ]zm (5.4)
5(f)]  |-DiBaX

3. The Hs-optimal
una(t) is given by:

(5.3)

control input denoted as

wna(t) = —B3X-a(t) (5.5)
o

Proof:
Consider a control input wu(f) given as
u(t)=u2(t)+v(t), with w(f) the Ly-optimal

control input from th. 1. The Lp—optimal control
system given in eq. 4.9 must then be extended to:

- 3

&) lata ATl lo oL o
ool Tt ol o ) ™

(with x(0)=¢£(0)=0). Now consider the similarity
transformation:

3()] - [ 1 0][=(9)
ol = Ly i
resulting in the transformed system matrix:
F O\ A =BBi 1[I 0] _

X r} [‘CiTCi —ATHX 1]

[ A—B,B} X —B, B}

| ATX+XxA—XB,BIX+C"C, -AT+XB,B]
(with lemma 2 part 4)

ASBEEX . By BY

[0 —AT+XB2Bg]

and the transformed input and output matrices:

[ T 0][Bi -Bs = By By (5.9)
X If [0 O —XB; —XB,

and

a 0 c 0

L0 = " .| (5.10)
The controlled system can thus be represented as:

(5.7)

]=

(5.8)

66

w(t)] _ [A-BB3X -B,B; Hr(t)]
a(t) | 0 -A"+XB,B}| ()
4 [ B, B, woﬁ(t)]’ [-”7(0) =0
[=XB, -XB,| | (1) ¢(0)
[zm)] - q 0 THW)}
2(t) -D},ByX —Dj,B, | 4(?)
g [0 U][‘”ﬂ‘s(‘)] (5.11)
0 Dip) L o(2)
or in block-diagram as in Fig. 3:
up (1)
(]
A1) (0
R
L 4-B,B1x —|L -Dj,B1X
u1) -XB) — uyd(1)
o1) 0 F
-B) J -XB, — (1)
AT+XB,BY
(1)
—1 Pia
Fig. 3.  Block—diagram of eq. 5.11.

In this block diagram the signal e(t) is defined as
ot) == —Bjq(t) + o) (5.12)
which makes it possible to write down eq. 5.11 as:

i(t) = (A-B,BLX)a{t)+[B, B,) [‘”ﬂ;ﬁ)‘)] #0)=0

- Latadeo ]

Now assume that e(?) can be chosen arbitrarily
and consider a choice of e(f) in #(—0] (or

¢(s)eRH3). In this case 2(f) can only be in 4[0,x)
if the transfer from e(t) to #(f) contains right half
plane zeros that completely block the influence of
¢(t). Because the 2-norm of z will then be equal to
that in case of e=0, we can conclude that only a
choice of e(f) in .%[0,0) can reduce the 2-norm of
7 without making 2(¢)¢ -%4[0,).

Next we have to prove that any nonzero choice of
e(t) in A[0,0) For e(s)eRHz) will increase the



2-norm of 2z this requires a straightforward
derivation of the 2-norm of z as a function of e in
the frequency domain. This is done in
appendix A.3.

We now have that the Ho—optimal situation is
given by e=0. It is easy to verify that this
situation is given by eq.53 by applying
transformation 5.7. Furthermore eq. 5.4, and with
that eq. 5.5, follow directly from eq. 5.13 after
substitution of e(¢)=0 V. &

Finally, based on the proof of theorem 2, we can
find a frequency domain relation between the
Ly-optimal and the Hy-optimal control input by
the following corollary.

Corollary 1:
Given the Ho—optimal control problem as posed in

section 3 and the Lo—optimal control problem as
derived from it in section 4.

The Ho-optimal control input wupy(s) is related to
the Lo—optimal control input ua(s) as follows:

wna(8) = ma(s) — By(sI+A") XByup (5.14)
u]

Proof:

The proof of theorem 2 and the block—diagram in
Fig. 3 show that upa(s)=uia(s)+vo(s), with vo(s)
such that:

e(s) = wvo(s) +
By(sI+A"-XByB3)  X(Byug+ Byvo(s)=0 &

U(s) = -(JI’+B'};(sI+AT_XB2 B'g)" XBy)! B}‘

+(s-+A"-XByB3)" XByug "

w(s) = ~By(F+(si+A' ~XB;B2) ' XB; By
F (SI+AT_XBzB%‘)-1XBIwD 8

w(s) = —Ba{(sI+AT™-XB,BY)(sl+ A7)}t
-(sH+A"-XB;B3) XByuy 8
w(s) = ~Ba(sI+A") " XByuo (5.15)
|

6 DISCUSSION

We have derived the Ly-optimal and Ha-optimal
control system using both frequency domain and
time domain arguments. It has been shown that
the key mechanism behind both solutions consists
of a pair of interconnected dual dynamical
systems. The Lgo-optimal control system appeared
to be the basic configuration minimizing the
2-norm of the criterion vector 2z without
considering stability (in fact it is not hard to
prove that the Lg—optimal control system is
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always unstable). Transformation of this result
into the time domain resulted in a state-space
model with a system matrix that is Hamiltonian.

Although the exact proof is rather lengthy, the
procedure of extending the Lp—optimal control
system to the Hp—optimal control system has been
shown to be quite simple: given any disturbance,
just map it onto the stable trajectories of the
Lo—optimal control system. To do this the
disturbance should be represented in the time
domain as an initial condition of —or similarly as
an impulsive input on— a state—space model. This
is possible because the disturbance is assumed to
be in RHp. The resulting initial condition is an
element of the 2nx2n state—space of the
Lo-optimal control system and can be mapped
into the stable modal subspace of the Hamiltonian
system matrix. The influence of this mapping can
then be considered as the result of an auxiliary
input (disturbance) signal, as is most clearly seen
in theorem 2 (eq.5.3) and is given in the
frequency domain by cor. 1.

The exact form of this auxiliary signal is
determined by the solution of the algebraic Riccati
equation connected with the Hamiltonian system
matrix. The reason for this is that the initial
condition of the plant #(0)eRn (representing the
disturbance w) can not be changed by a control
input « that is in RLy. In order to map the
combined initial condition into X.(H), it is
therefore only possible to change the initial
condition of the dual system £(0)eRn. This implies
that z(0) must be embedded in X_(H) by choosing
£(0). Because from lemma 2 part 2 we have that

X_(H)=Im [ ;}] it s that

,{(]"”(U)EX-(H) and so £(0)=X-z(0) is a correct

oice for all 2(0)eRr. The solvability of the
Ho—-optimal control problem is thus determined by
the following conditions:

L dim{X()} = n

2. M;i; inverti

easy to see

If these conditions are not met, then there exists
an initial condition :r(UfEan for which there is no

(finite) £(0) such that Xt0 ] € X(H). Satisfaction

&0
of these conditions is proven in lemma 1 part 2

and lemma 2 part 1.

APPENDICES
A.1 Proof of theorem 1

First part. The criterion function ||z]|, reaches its

minimum if &dropping the dependency on s and jw
and with 6z denoting the variation of z)



2 0%inn ¥
81122 = 5[% {(u” H Hyuwtu” B H, g+
—0

wy B H, u+wy Hy Hywy+u™ u)dw] = 0 (A.1)

Because the ihtegra.nd is real and nonnegative for
all weR we can minimize eq. A.1 by minimizing
the integrand at every frequency:

8w HyH,u + v HyH,w, + wyHyHyu +
ng;wao-}-ﬂ‘ u) =0 YweR @

bu” H H, u+ u'H;Hu6u+Eu"H;wao+ng;,Hu6u +
fuutu du=0 YweR &

bu” (( HyH,+ 1) u+ Hy Hw) +

(v (HHA+D+ugH HSu=0 YoR  (A.2)
Now define
gi= (HyH, 4D+ HyHyu, (A.3)
so that eq. A.2 simplifies to
Su'g+ gbu=2-Re(bu"g) =0  VweR (A4)

(6u” g is a scalar function).

This implies that 6u™g is imaginary for all weR and
so g must be imaginary. Furthermore we have
that Hye€RLo and HyupeRLy (see eq 3.3; Hy is
strictly proper), therefore we must have that
¢eRLy. Now if g is a real rational function, it can
only be imaginary for all weR if all its poles are on
the imaginary axis. This clearly contradicts geRLy
unless {qz{], thus the only possible minimum of
||2]|, is found when:

(H,Hy+Du + HHauwg=0 YR

Uy = _(H;Hu+n-1H:1waG VuweR (A5)

Furthermore uj2 is an element of RLy because
H,H, >0 VweR and therefore (HyH,+1)1€RLw.

Second part. Consider z when applying w2 and
make use of (/+AB)1A = A(I+BA)™:

[Zl]: Hy {-(HH,+1) ' HiH,wy} + Hyw,] _

% [ D, {'_‘( HaHu+ I)- IH;waO} ]

[{-HH; + (H H+I)}(H H, +1)‘le%] =

~Di, (HyH+I)"' HyH,w,
(HHy+1) "' Hyw, ] -

=Dy o+ (HyH+I) ! HyH,w,

sl 2
ity By

(A.é)

So 7 = (H H,+1)'H,w, and

uy = —-Hy(H,Hy+ ) Hywy = —H, 2 (4.6")

Third part. From eq. A.6 we can write down the
criterion function as:
2 = 1 .
Iy =&
[11]
§ (g Hy(H Hy+ 1) I+ H, B (H Hy+ 1) o) dw

—0

I~

(A7)

b

—00

o
— J (wp Hy(H Hy+ ) Hywg) dw

A.2 Proof of lemma 1

First part. It will be shown that all possible
imaginary eigenvalues of H must be poles of the
Lo—optimal transfer from w to z for at least one
admissable disturbance w (given by wuyp). This
would then imply z¢RL, and therefore contradict
theorem 1.

So we have to prove that imaginary eigenvalues of

the system (H, [‘E‘],[g‘l D{g Bﬂ) are controllable

and observable. Necessary and sufficient conditions
for this are (Rosenbrock, 1970):

; T
rank (194 BaBa Bil — 9 vuer (A8)
Ci C jwtd” 0
and: T
jw-A B, B,
7 ; i
rank [C1 G Jwtd =2n VYweR (A.9)
e 0
0 Dj , By

We have by assumption that (A,B,,C]) is
stabilizable and detectable (section 3), so:

rank[jw-A Bj=rank [3“6’;'4] —rank[jw+AT Q7]
1

jwt+AT

=rank[B’£ } =n VR (A.10)

First consider controllability of (H,['[). It is

clear from eq. 4.9 and Fig. 2 that any choice of B,
must give an Ly-optimal trajectory; so we can
choose By=I and consider:

" T
rank Jw;A BQB% I —on vue (A.11)
Ci Cl jwtd” 0

which holds if rank[jw+A" C\7] = n.

Next consider observability of (H,[g'l —Diz Bﬂ ).
Suppose eq. A.9 does not hold; then there exists a



certain w=w; and a vector F[;;] such that:

(jui-A)z + ByByzy =
a'Cn + (jw-ANz
-Cizy

= (A.12)

[ =T — R — T ]

D'i-szxz

So the last two equations give Cjz,;=0 and B'gz?:()
such that from eq. A.10 we must have (jwi—A)z#0

and (jwy+AT)z#0. This then clearly contradicts
the first two equations of A.12.

Second part. Define:

I e [_‘} 1 (A.13)
such that:
T T
rt = [T GG - gt o
-ByB} A
H = JY-H)J (A.14)

Now suppose H can be decomposed as H=MAM!
with A in blockdiagonal Jordan form. Substitution
of eq. A.14 then gives:

H = JY(-H")J = MAM? &

H® = JM-(-A)- ML (A.15)
Furthermore we also have

H = (MAMYT = (M)T AT M (A.16)
such that:

IM-(=A)-(JM) = (MY)T- AT MT &
A = (MPam)t(-AT).- MM 8
A = TY-ADT (A.17)

This implies that —~AT and A are similar; so if Aj
is a Jordan block in A with eigenvalue Aj, then

-AT must have a diagonal block —Apf such that

As = Ti(-AT) Ty Now -AT came from a Jordan
block Aj of A, so it has —A; on the diagonal.
Therefore we must have \j=-A;, such that the
first part of the lemma implies Aj#Aj. A thus
contains for each Jordan block A; a second,
equally large Jordan block Aj such that A\j=-A;.

A.3 Proof of e=0 in theorem 2

Given eq. 5.13 it will be proven that there is no
nonzero signal e(t)e .25‘[0,002] (e(s)eRHg) that results
in a smaller 2-norm of z than with e=0.

Consider eq. 5.13 in the frequency domain:
#(s) = Ci(s-A+ByByX) ™ { Biuy+Byels)}

D}, BI X(sI-A+ B,BL X)™\- { Biwy+ Bye(s)}
+ Diye(s) (A.18)
and define S := (sI-A+B;By X)™.

The influence of e(s) on the 2-norm of 2(s) is then

determined by  z*(jw)z(jw) (dropping the
dependency on jw):

2(9)

2z = wyB)S*C} C\SB,u, + wyB. S*C}T C\SB,e +
By S*C\ C\SB,w, + ¢*ByS*C\T C1SB,e +
wy B} 5*XB, By XSB,w, — wy B, $*XB,(I-By XSB,)e
—e*(I-B}S*XB,) By XSB,uw, +

e*(I-B) S*XB,)(I-B} XSB,)e (A.19)

So e decreases the 2-norm of z if and only if:

wp{ B1S*C\" C\+ XB,B3 X|SB, — B} $*XB,}e +

e{ By 5*(C\" C1+ XB, B} X|SB, — By XSB,}w, +

B S C\T Cl+ XB,BL X|SBye + e*e — e*BLS*XBye
- eB}XSBye < 0 (A.20)

The algebraic Riccati equation (lemma 2 part 4)
now gives:
&’ C1+ XB,Bh X=
(jwI+AT-XBBD) X + X(jwl-A+ByBy X)
= §1X + XS1 (A.21)
Substitution of eq. A.21 in eq. A.20 then gives:

w Bi XSBae + eByS*XByuy + e*e < 0 (A.22)

Now consider the signal wj(s) := BLS XB,u,

From lemma 2 part 5 we know that A—B?,B%‘X is
stable, thus  S=(sI-A+B;B3X)? €RHo and
S eRHw. Therefore it is clear that wj(s)eERH3 such
that:

(e(s),up(s))=Cwp(s),e(s))=0 Ve(s)eRHz

This implies that there is no choice of e(s)eRH,
such that eq. A.22 holds and thus the 2-norm of 2
reaches its minimum when e=0.

(A.23)
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