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NN-Based Instantaneous Target Velocity
Estimation Using Automotive Radar

Mujtaba Hassan, Graduate Student Member, IEEE, Francesco Fioranelli™, Senior Member, IEEE,
Alexander Yarovoy, Fellow, IEEE, Satish Ravindran, and Luihi Chen

Abstract—The problem of estimating instantaneous dis-
tributed target velocity using noisy measurements by multi-
ple asynchronous automotive radar sensors is investigated.
Two novel neural networks (NNs)-based approaches are pro-
posed to address the problem. Both NNs use the point cloud
with radar detections as an input. In the first approach,
a hybrid NN is designed to take a set of points inside a cluster
as its input, extract spatial-dynamic features to be used
as weights for each input point, and apply them to obtain
a weighted least square (WLS) solution for instantaneous
velocity estimation. To this end, dedicated loss functions
are proposed to allow the model to predict weights that can
follow a velocity profile curve satisfying target constraints.
Moreover, a small offset in the radial velocity value of each
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point is applied to adjust errors in the sensor measurements. In the second approach, a deep NN is proposed that
takes a set of points inside a cluster as its input and directly outputs velocity estimates. Both approaches have been
verified experimentally using the large open-source automotive RadarScenes dataset. The results show a significant
improvement in terms of mean absolute error in velocity estimation over the state-of-the-art alternative techniques.
Moreover, the estimated velocity is used as an additional measurement value inside a target tracker. Results show that
this can increase the performance of the tracker, especially during challenging scenarios such as abrupt changes in the

velocity of the target.

Index Terms— Automotive radar, instantaneous velocity estimation, neural networks (NNs).

[. INTRODUCTION

DVANCED driver assistance systems (ADAS) have
attracted a lot of attention in the automotive domain [1],
and many ADAS features are key in determining the safety
score of vehicles as part of the Euro NCAP requirements [2].
These features can be broadly categorized into two categories:
perception stack and decision-making [3]. The former provides
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higher degrees of scene understanding, whereas capabilities
of the latter allow the vehicle to make relevant decisions
autonomously. Multiobject tracking (MOT) is a vital com-
ponent of this perception stack to enable the vehicle to
recognize objects present in the scene and estimate their
characteristics.

For this task, different sensors can be used, each having
some advantages over the others. Cameras are widely used
since they are relatively cheap and can give a very detailed
and intuitive representation of the scene. However, they do
not provide a direct estimation of the distance and velocity of
the objects, and they can fail in cases such as low light, snow,
and fog. LiDAR can provide accurate information about the
distance of the objects and its characteristics. However, it is an
extremely costly sensor which makes it difficult to deploy for
mass production, as well as not estimating directly the velocity
of objects. An alternative to LiDAR is radar, currently used in
ADAS systems, thanks to its relatively low costs, capabilities
in low visibility conditions, and direct estimation of distance
and radial velocity of objects via the Doppler effect.

For many ADAS functions, the knowledge of the velocity
of objects in the scene is indeed crucial [4], and methods
that can provide an instantaneous (i.e., with a single data
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frame) estimation have been investigated in the literature
on automotive radar. The major challenge here is that due
to its high range resolution, a typical target (car, cyclist,
pedestrian, etc.) is seen by an automotive radar as a point
cloud. This cloud is very dynamic and changes considerably
by changing the target aspect angle. Therefore, traditional
methods for target tracking by low-resolution radars are not
directly applicable to automotive radars.

A method to estimate the instantaneous velocity of targets,
based on the mathematical relationship between their radial
velocity and azimuth, was proposed in [5]. In [6], this approach
was augmented with an RANSAC-based [7]removal of outlier
points, and is widely used by other methods. Although the
approach helps in reducing the overall error by removing some
noisy points, this is a heuristic process which makes it difficult
to remove outlier points from inlier points in a generalized and
reliable manner. This approach was further extended in [8]
and [9] to include nonlinear velocity estimation using dual
radar. Separation of the linear and nonlinear velocities by
using a single radar was proposed in [10]. A recursive least
square solution for the same task was used in [11]. Orientation
information to assist in velocity estimation was used in [12].
Direct computation of the full motion states by using multiple
sensors was suggested in [13]. However, all these methods
are based on heuristics that tend not to use all the features
available in the radar point cloud and can fail in challenging
cases with a high number of outliers. Moreover, the same
weight, importance is given to each point, which increases
the error because the different noise level in each point may
cause the radial velocity—azimuth profile to shift.

Alternative methods found in the literature perform the same
function using neural networks (NNs). Svenningsson et al. [14]
trained a supervised NN to obtain object detections with
velocity values, assuming the velocity to be in the direction of
orientation. However, the orientation estimation from a single
frame is inaccurate and can lead to high errors in velocity esti-
mation. Niederlohner et al. [15] used a self-supervised learning
method to train an NN for object detection with velocity labels.
Being more robust to outliers, this approach used multiple
frames for this task, which breaks the requirement of fast,
instantaneous target velocity estimation.

While many challenges have been addressed in previous
studies, several gaps still remain. Traditional methods for
instantaneous velocity estimation, often derived from [6],
typically involve removing outlier points from detected targets
using the RANSAC [7] algorithm. This heuristic approach
can fail in certain scenarios, particularly when the number
of outliers exceeds the number of inliers. Additionally, these
methods primarily use radial velocity and azimuth features,
as incorporating other features like shape, range, and RCS
is difficult with heuristic techniques. Also, each point is
given the same weight, which increases velocity estimation
errors due to varying noise levels, causing shifts in the radial
velocity—azimuth profile curve. Thus, a method that can target
these shortcomings may improve the performance.

Moreover, the use of NNs for instantaneous velocity estima-
tion is still underdeveloped. Most existing works are inspired
by LiDAR and do not fully exploit the unique features

of automotive radars and their data, focusing mainly on
object detection with velocity estimation as a secondary out-
come [14]. A dedicated NN for this purpose may therefore be
useful.

Furthermore, it should be noted that some methods suggest
improving velocity estimation through the usage of multiple
frames [15] or by enhancing tracking [9], but this introduces
latency, which may be undesirable for real-time automotive
applications. Therefore those approaches are not considered
in this work.

To address these gaps, the objective of this study is to
develop an instantaneous velocity estimation method using
automotive radar that can perform well for real driving scenar-
i0s. In this article, two NN-based solutions for instantaneous
target velocity estimation are proposed. In the first approach,
a hybrid NN-based WLS solution is designed to operate on an
input point cloud, inspired from the ego-motion estimation task
in [16]. Essentially, an NN is used to predict the weights of
each input point, instead of applying RANSAC [7] to separate
these points as done by [6]. NN is utilized because it can learn
more complex features between points to obtain the weights.
These weights are then used for a WLS solution. Unlike the
ego-motion estimation task in [16], where a large number of
points are available from static objects in the scene, for the
problem considered in this article there are only a few detec-
tion points available from the detected targets. This makes the
results of the velocity estimation highly susceptible to noise.
In order to overcome this problem, implicit characteristics of
automotive target motion are learned based on the usage of
suitable loss functions that trains the proposed network. This
guides the network to obtain a radial velocity—azimuth profile
curve which can provide realistic velocity output expected in
an automotive context. Finally, a small offset can be added to
each point to reduce the error in cases when it is not possible
to estimate the velocity based on only noisy measurements.
Unlike in [16], a loss is specifically given the value of the
magnitude of these offsets to reduce overfitting on training
data and minimize offset values for points with low noise.

In the second approach, a deep NN (DNN) is specifically
designed to directly estimate the target velocity using target
point cloud. The motivation for this second approach is that
there is a fundamental limit to the velocity estimation methods
using radial velocity—azimuth profiles, which starts to deteri-
orate with a low number of detected points per target. This is
not an uncommon situation in automotive radar. The idea of
this second approach is to improve the velocity estimation on
these cases by learning the output in an end-to-end fashion,
directly based on training data.

The proposed approaches are extensively evaluated using
the open-source experimental RadarScenes dataset [17], and
show a superior performance than alternative methods. Specifi-
cally, a reduction in the mean average error (MAE) of 59% can
be achieved using the proposed DNN method as compared to
the network presented in [16], which was found to be the best
alternative method. Moreover, it is shown that the addition
of velocity as a measurement within a tracking algorithm
improves its performance, especially for cases with changing
dynamics of tracked objects. Specifically, a reduction in aver-
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age RMSE of 41% on the tracker’s velocity estimation can be
achieved by adding the velocity estimated from the proposed
DNN method as a measurement in the tracker. Summarizing,
the main contributions of this work include the following.

1) Design of two novel NN-based methods to obtain instan-
taneous target velocity estimates from a set of target
cloud points, which outperform alternative methods for
this task.

2) Integration of the instantaneous velocity estimation as an
additional measurement within tracking algorithms that
improves the velocity estimation from the tracker itself.

3) Verification of the performance on real driving scenarios
using the large automotive radar RadarScenes dataset,
which shows the applicability of the proposed methods
on various scenarios including changing dynamics of
tracked objects.

The remainder of this article is organized as follows.
Section II provides an overview of the methods found in
literature. Section III describes the details of the two pro-
posed methods. Section IV presents the experiments and a
comprehensive evaluation of the results. Finally, Section V
draws conclusions.

[1. RELATED WORK

This section discusses existing approaches available for
instantaneous velocity estimation using automotive radar.
These can be broadly categorized into two main approaches:
traditional methods and NN-based methods.

A. Traditional Approaches

Instantaneous velocity estimation using automotive radar is
a well-studied problem. Rohling et al. [5] are the pioneers in
this regard who estimated the instantaneous velocity of targets,
based on the mathematical relationship between their radial
velocity and azimuth. However, noise points were not removed
during the calculation resulting in a decrease in accuracy.
Kellner et al. [6] targeted this shortcoming by introducing
an RANSAC-based [7] removal of outlier points. This is a
popular approach and used by many later works [8], [9],
[13]. Although this approach helps in reducing the overall
error by removing noise points, this is a heuristic process
which makes it difficult to remove outlier points from inlier
points in a generalized and reliable manner. This approach
was further extended in [8] which used dual radars to
obtain rotational velocity estimation. However, this resulted
in higher errors for targets with lower rotational velocity.
Kellner et al. [9] integrated the radial velocity—azimuth
equation inside a tracking algorithm to improve tracking.
Schlichenmaier et al. [10] proposed to estimate the linear and
rotational velocities by using a single automotive radar. Ru and
Xu [12] proposed to include orientation information to assist
in velocity estimation. A recursive least square solution for the
same task was developed in [11]. Schlichenmaier et al. [13]
suggested direct computation of the full motion states by
using multiple sensors. This showed improved performance
on targets with lower rotational velocity than [8]. However,
all these methods are based on heuristics that tend not to
use all the features available in the radar point cloud and

can fail in challenging cases with a high number of outliers.
Moreover, the same weight, importance is given to each point,
which increases the error because the different noise level in
each point may cause the radial velocity—azimuth profile to
shift. Table I summarizes the merits and limitations for these
methods.

B. NN-Based Approaches

Alternative methods found in the literature perform the same
function using neural networks (NN). A supervised NN to
obtain object detections with velocity values, assuming the
velocity to be in the direction of orientation, is proposed
in [14]. However, the orientation estimation from a single
frame is inaccurate and can lead to high errors in velocity
estimation. A self-supervised learning method to train an NN
for object detection with velocity labels is proposed in [15].
Being more robust to outliers, this approach used multiple
frames for this task, which breaks the requirement of fast,
instantaneous target velocity estimation. A WLS solution for
ego-motion estimation whereby the weights were obtained
using an NN is proposed in [16]. A similar approach can be
used to obtain instantaneous velocity estimation of targets.
However since both tasks are different, there is a need to
develop this further to obtain accurate target instantaneous
velocity estimation. Table II summarizes the merits and limi-
tations for these methods.

I1l. PROPOSED METHODOLOGY

This section introduces the design of the proposed
NN-based methods for instantaneous velocity estimation.

A. Problem Formulation

This article focuses on the instantaneous velocity estimation
of targets using automotive radar point cloud. Since points
at different regions of a target can be detected, the radial
velocity components for each point are different based on
azimuth. Moreover, usage of multiple radar sensors increases
the azimuth span of the target and provides more detections
with different values for radial velocity and azimuth. These
factors are useful for velocity estimation which is found using
the radial velocity—azimuth relationship [5] as given by the
following equation:

v, 1) cos(6y) sin(6;)

v, 2) cos(6,) sin(62) |Ty
= . [V} (1)
: : : ¥

v, N) cos(By)  sin(Oy)

where N denotes the number of point detections in the cloud,
v,y denotes the radial velocity feature of point N, 8y denotes
the azimuth feature of point N, V, denotes the down-range
target velocity, and V, denotes the cross-range target velocity.

To write (1) in a more compact form, the vector-based
formulation given by (2) is used

D=A-V )

where A denotes the velocity projection matrix, D denotes
the radial velocity measurements, and V denotes the velocity
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TABLE |

COMPARISON BETWEEN CONVENTIONAL METHODS IN THE LITERATURE FOR INSTANTANEOUS VELOCITY ESTIMATION USING AUTOMOTIVE RADAR

Method

Merits

Limitations

Lateral velocity estimation for au-
tomotive radar applications [5]
(published: 2007)

Introduced a least square solution for linear instan-
taneous velocity estimation based on the velocity
profile concept.

Does not remove outlier points for estimating the
least square solution. Same weight is given to each
point for the calculation.

Instantaneous lateral velocity esti-
mation of a vehicle using Doppler
radar [6] (published: 2013)

Proposed a RANSAC based removal of outlier points
and performed least square solution on the remaining
inlier points.

Heuristic approach to remove the outliers which
cannot be easily generalized. Same weight is given
to each point for the calculation.

Instantaneous full-motion estima-
tion of arbitrary objects using
dual Doppler radar [8] (published:
2014)

Proposed usage of multiple radars to estimate full
motion parameters including turn rate.

Used RANSAC to remove the outlier points which
have the same issues mentioned earlier. Gives high
error for zero turn rate.

Tracking of extended objects with
high resolution Doppler radar [9]
(published: 2016)

Integrated the velocity profile into a tracking algo-
rithm to improve the performance of tracking on
highly dynamic maneuvers.

Used RANSAC to remove the outlier points which
have the same issues mentioned above. Not an in-
stantaneous method.

Improvement on velocity estima-
tion of an extended object [12]
(published: 2017)

Provide a robust velocity estimation by fusing three
velocity estimation methods (based on heading angle,
point tracking, velocity profile).

The proposed method for heading angle estimation
is not always accurate because of the nature of
automotive radar detections. Not an instantaneous
method.

Instantaneous actual motion
estimation with a single high-
resolution radar sensor [10]
(published: 2018)

Proposed a method to estimate instantaneous velocity
using single radar by distinguishing between linear /
nonlinear motion.

Used RANSAC to remove the outlier points which
have the same issues mentioned above. Does not
consider target orientation for velocity estimation.

An RLS-based instantaneous ve-
locity estimator for extended radar
tracking [11] (published: 2020)

Proposed a Recursive Least Square (RLS) based
approach to reduce the impact of noise for instan-
taneous velocity estimation.

Requires a good initial estimate of the velocity for
the method to converge to an accurate solution.
Does not consider target orientation for velocity
estimation.

Clustering and subsequent contour
and motion estimation of automo-
tive objects using a network of co-
operative radar sensors [13] (pub-
lished: 2023)

Proposed a method to estimate full instantaneous
motion state that shows better performance than [8]
on cases with zero turn rate using multiple sensors.

Used RANSAC to remove the outlier points which
have the same issues mentioned above. Does not
consider target orientation for velocity estimation.

TABLE Il

COMPARISON BETWEEN NN-BASED METHODS IN THE LITERATURE FOR INSTANTANEOUS VELOCITY ESTIMATION USING AUTOMOTIVE RADAR

Method

Merits

Limitations

Radar-pointgnn: Graph based ob-
ject recognition for unstructured
radar point-cloud data [14] (pub-
lished: 2021)

Proposed a data driven graph based method to per-
form object detection with velocity estimation.

The velocity direction is dependent only on orienta-
tion but the orientation estimation can be inaccurate.

Self-supervised velocity estimation
for automotive radar object de-
tection networks [15] (published:
2022).

Proposed a self-supervised data driven method for
velocity estimation which does not require ground
truth velocity.

The method generates velocity labels based on two
consecutive frames which may be inaccurate during
highly changing target maneuvers. Uses multiple
data frames.

DeepEgo: Deep instantaneous ego-
motion estimation using automo-
tive radar [16] (published: 2023)

Proposed a weighted least square solution for instan-
taneous ego motion estimation that uses data driven
approach to learn weights.

Targeted for ego motion estimation. Does not con-
sider target motion characteristics. Offset usage can
cause overfitting.

components. Equation (2) can be used to estimate V given at
least two detections. Typically, standard regression approaches
such as an ordinary least square (OLS) method can be used
to solve this problem [5], as given by the following equation:

vet = (ATA) AT D. 3)

However, real-world data may contain noise in measure-
ments and outlier points due to incorrect clustering of points.
Moreover, moving parts of targets such as wheels show a
different radial velocity distribution than the true velocity of
the target. Being susceptible to these factors, OLS will provide
an inaccurate solution. To address this issue, in [6] it was
proposed to use RANSAC [7] to remove the outlier points.
Also, since both the radial velocity and azimuth measurements
can contain noise, [6] used orthogonal distance regression
(ODR) instead of least square to solve the aforementioned
equations. Although this helps in reducing errors by removing
some outlier points, this remains a heuristic approach that

can fail in some particular cases. Moreover, same weight is
given to each considered point, which increases the error in
velocity estimation because the different noise levels in each
point cause the radial velocity—azimuth profile curve to shift.
As an illustration, a simple simulation is performed where a
target is represented by seven detected points. A random noise
of different magnitude was added to each of these detected
points. This addition was performed to simulate measurements
containing both outliers and inliers with different noise levels.
Fig. 1 shows the radial velocity—azimuth profile curve and
the results obtained by applying an RANSAC-based solution.
Three issues can be observed: first, the approach fails to deter-
mine some outlier points; second, similar weight is given to
each of the inlier points with different noise levels; third, some
inlier points are considered as outliers. Because of these issues,
the RANSAC-based method resulted in an inaccurate velocity
estimation. To obtain a more accurate solution, different points
should be given different weights based on their noise levels.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2026 at 11:55:32 UTC from |IEEE Xplore. Restrictions apply.



IEEE SENSORS JOURNAL, VOL. 25, NO. 15, 1 AUGUST 2025

30090
o
o O Detection
———— Ground truth
21 Prediction (RANSAC)
—_— -4 [
£ Outlier point detected as inlier «<
> 6l
§
L
> T - &
5 8 R T
©
@
14
10
A2
s Outlier point detected as inlier
14 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.86 0.88 09 0.92 094 0.96 098 1 1.02
Azimuth (rad)
Fig. 1. Example of RANSAC-based velocity estimation for a simulated

scene with some salient cases: two outlier points are detected as inlier
as shown by red color; all the inlier points are given the same weights;
one inlier point is detected as an outlier as shown by blue color. These
factors may result in an inaccurate velocity estimation.

To address this issue, an NN-based solution is proposed in the
first approach to learn these weights. The idea is that outlier
points which do not originate from the target exhibit features
that are different from those of points belonging to the target;
hence, an NN can learn to distinguish these points from each
other and assign weights accordingly.

B. Approach 1: NN-Based WLS Solution for Velocity
Estimation

The first approach to estimate instantaneous target velocity
is based on a hybrid NN architecture inspired from DeepEgo
[16] and PointNet [18] in the literature. Fig. 2 shows the
architecture of the proposed method. The input to the network
is points detected from the same target, which can be obtained
by a tracker using a clustering algorithm.

Essentially, this architecture comprises two parts. First is
the feature extraction module. Here, each of the input point is
passed through a shared multilayer perceptron (MLP) encoder
block containing three shared perceptron layers to extract local
features from each of these points. Multiple layers are used
to extract features with different levels of detail. These local
features are then averaged using an average pooling layer
to obtain a combined set of global features. These global
features are then replicated for each point and passed to
the second part. This part is the cost minimization module.
It contains MLP decoder block to serve as a cost function that
is minimized to obtain the weights. Essentially, it takes the
detected points, local features, and global feature as the input,
concatenates these features, and then uses MLP decoder block
to approximate a cost function that is minimized to obtain
the desired weights. These weights can finally be used for
a WLS solution. The final layer is a single perceptron layer
that outputs two values for each point: weight and offset. The
weight denotes the contribution of each point in determining
the WLS solution. The offset provides an approximation of
the noise in each point and is added to the radial velocity

values to try and correct this noise. The NN is trained for this
task through the usage of suitable loss functions to guide the
training, detailed as follows.

1) Loss Functions: The proposed network is trained to
perform its task through the usage of five loss functions. The
first two loss functions are inspired from [16], whereas the last
three functions are novel and proposed in this work.

a) Motion loss: This is the loss between the true and
predicted velocity which gives an indication of the closeness
between these values, and is therefore the main loss function.
Unlike [16], Huber loss [19] instead of mean square error
(MSE) loss is used to further mitigate the impact of outliers
during training. This is beneficial because for instantaneous
velocity estimation, each target contains few points resulting
in high impact of noise compared to the task of ego-velocity
estimation. Huber loss is generally more robust to these cases
than the MSE loss. The motion loss function is expressed by

1/2(Ve — vey?, if [VE — V| < a
a(lVe8 = Vv = 1/2a), if V&=V >a
4)

where a denotes a given threshold, V& denotes the ground
truth velocity, and V' denotes the estimated velocity.

b) Doppler loss: Although motion loss minimizes the
difference between true and predicted velocities, it does not
consider the weights of each point and works mainly as a
minimization loss for a least square solution. This results in
overfitting to a few points and many inlier points are simply
ignored. To address this issue, [16] introduced a Doppler loss
which uses the difference between expected and measured
radial velocities to determine the correct weights for each
points. This loss can be obtained by the following set of
equations:

Lossyor =

D = A. V¥ (5)
DT — peXp _ pmeas (6)
DT — () 2
o

1/2(Wet — we)?, if |We — W < g
a(lWe — W' = 1/2a), if W& = W*|>aq
®)

where o2 denotes the variance as a hyperparameter, D™
denotes the measured radial velocity, W& denotes the expected
weights from ground truth, and W*' denotes the estimated
weights from the model.

¢) Gradient loss: Although motion loss and Doppler loss
minimize the difference between true and predicted velocities
to obtain a WLS solution, the results are susceptible to noise
especially in some challenging situations. This is because the
span of azimuth values covered by a single target is usually
very small with respect to the radar field of view. As a result,
the noise can have a huge impact on the shape of the radial
velocity—azimuth profile curve for a detected target. This is
strengthened by the fact that, in the regions where there is
a high gradient between radial velocity and azimuth, a small
change in the radial velocity can have a huge impact on the

Losspopp =
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Fig. 2. Architecture for proposed Approach 1: It consists of a feature ex

traction module to extract pointwise features which are then passed to a

cost minimization module to obtain pointwise weights and offsets. These pointwise weights and offsets are used in a WLS solution to obtain velocity.

shape of radial velocity—azimuth profile curve. As a result,
it is necessary that the network predicts weights which can
generate gradients of radial velocity—azimuth profile curve that
closely follows the ground truth. To achieve this objective,
a gradient loss is proposed here to limit the difference in
gradient between the ground truth radial velocity—azimuth
profile and the obtained predicted one. The loss is computed
by the following equations:

Grad™ = —V,* xsinf + V,# xcosf 9)
Grad™ = —V,*' xsinf + V,*' % cos6 (10)
Grad®" = Grad®*P — Grad™ (11)
G dcl‘l‘ _ O 2
Wgtzexp _(ra—) (12)
202
oo — | 172(We =W, if |We — W™ <a
T AW — W — 1/24), if [WE — WS > a

(13)

where V, &' denotes the down-range ground truth velocity, V&
denotes the cross-range ground truth velocity, V,*' denotes
the down-range estimated velocity, and V,*' denotes the
cross-range estimated velocity.

d) Orientation loss: Motion, Doppler, and gradient losses
are more generic loss functions that do not consider the target
properties. For instance, in an automotive context a vehicle
may only be traveling in the direction of its orientation. This
can provide additional constraints for the network to generate
appropriate weights. To incorporate this information into the
network, an orientation loss is proposed to guide the network
to output weights generating a velocity estimate which is
closer to the direction of target orientation. The loss function
is given by the following equations:

v, &
Orig‘:tan_l( ygt) (14)
Ories‘—tan_l( "eS[) (15)
- Vv est

Lossori
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1/2(0ri¢ — Ori*™)?, if |0rig — Ori®™| < a
a(|0ri# — Ori®™| — 1/2a), if |Ori# — Ori®™| > a
(16)

where Ori®' denotes the orientation direction of the target’s
ground truth velocity, and Ori®" denotes the direction of the
target’s estimated velocity.

e) Offset loss: It is proposed to add an offset to the radial
velocity values of each point in order to minimize the noise
and obtain accurate velocity estimation. However, this is prone
to overfitting and if no limit is placed on the added offset
values, the network can be overtrained to output large offset
values based on the training data. On the other hand, the main
intention of using the offset is only to add small values in
radial velocity of points with higher noise to compensate for
it. To achieve this, a Lasso regression is applied where a loss
value is computed as L1 norm of the amplitude of all the offset
values. This allows the network to overall learn to predict small
offsets and only give higher offset values to the points with
higher noise in radial velocity. The proposed loss function is
given by the following equation:

n=N

Lossoi = »_ |Off, ™|

n=1

a7

where N denotes the number of points in the point cloud, and
Off,*" denotes the offset estimated from the model for each
point.

Combining all components, the proposed loss function for
the whole network can be written as follows:

Lossan = Lossmot + a - Losspopp

+ b - Lossgrag + ¢ - Lossoyri + d - Lossor ~ (18)

where a, b, ¢, and d are hyperparameters that should be
adjusted empirically. It should be noted that the losses defined
in (4), (8), (13), and (16) are also computed for all N points in
the point clouds, as explicitly written for the loss component
in (15).

C. Approach 2: DNN-Based Instantaneous Velocity
Estimation

Although the WLS-based approach can help in reducing
the overall error in velocity estimation, there are some funda-
mental limits to methods based on the radial velocity—azimuth
profile, which essentially perform worse when the underlying
rigid body assumption is inaccurate and the number of detected
points per target is small. This is indeed the case for some
automotive radar scenarios, resulting in inaccurate velocity
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Fig. 3. Architecture for proposed Approach 2: It consists of a feature extraction module to extract pointwise local features which are then passed
to a point transformer block to obtain complex local and global features. These are in turn passed through a cost minimization module to output

velocity components.

estimate for these cases. Therefore, in the second proposed
approach, a DNN that directly outputs the target velocity based
on training data is designed, along with suitable loss functions.

Fig. 3 shows the architecture of the proposed method. The
model is inspired by PointTransformer [20] and uses the self-
attention mechanism [21] to learn the complex relationships
between different points. Specifically, the points from detected
targets are given as the input to the model. These points are
then processed by a local feature extraction module containing
shared MLP encoder layers to obtain local features for each
points. These are then passed to a point transformer block.
This is the core function which extracts complex features
between different points using a point transformer layer to
obtain discriminative features. Essentially, the input to this
block is a set of N points with x features. These are
passed to a set of linear layers to obtain the desired features
for the point transformer layer. The point transformer layer
generates complex features between different points using
a self-attention mechanism. These are then passed through
the cost minimization module containing three MLP decoder
layers to obtain the velocity estimates from these features.
These layers serve as an approximation for a function that
can obtain velocity estimates from points, and is minimized
using the proposed loss function. It should be noted that com-
pared to the PointTransformer architecture in [20], which uses
multiple point transformer blocks, this architecture is much
simpler and only a single block is used without any transition
up/down layers. This is done to extract relationships between
all points while having very few points per detected target (i.e.,
maximum 16 points), which can be efficiently processed using
a single point transformer block. Also, a smaller number of
output channels (i.e., 16) are used for each layer since there
are few points per target.

1) Loss Function: As opposed to Approach 1, where a
WLS-based solution of the radial velocity—azimuth profile is
sought after, for this approach it is undesirable to restrict
the model to strictly follow such a curve, as this can fail
on challenging cases such as when there are only few target
points. In order to keep the training of the network as general
as possible, a loss function that minimizes only the Huber loss
between the ground truth velocity V& and predicted velocity
Vet is used. The loss function is given by the following

equation:

1/2(ve — veny?, it Ve — Ve < g

a(|lVe = V™ —1/2a), if [V& =V >a.
(19)

Loss =

D. Addition of Velocity Estimation as an Additional
Measurement for Tracking Algorithms

1) Motivation: Instantaneous velocity estimation of tracked
targets can be very useful for a tracker, especially during
changing track dynamics. For example, during a change in
the movement of the target, the tracked states significantly
deviate from the true states. The availability of the velocity
estimation can be thus helpful in determining that there is a
change in movement, thereby reducing the error in tracked
states. As an illustration of this effect, a 1-D movement of a
tracked target is simulated, with results presented in Fig. 4.
Initially, the tracked target is static and then accelerates for
5 s with an acceleration rate of 4 m/s>. Then, it moves at
a constant speed of 20 m/s for 5 s. Afterwards, it comes
to a stop again by decelerating at a rate of 4 m/s*> for a
duration of 5 s. Four different trackers are compared. The
first one is a constant velocity (CV) tracker that uses only
position measurement for tracking. The second is a CV tracker
that uses both position and velocity as measurement. The
third is a constant acceleration (CA) tracker that uses only
position measurement. The fourth is a CA tracker that uses
both position and velocity as measurement. Gaussian noise
with a standard deviation of 0.5 is added to both position and
velocity measurements.

Fig. 4 compares the error in position and velocity estimation
using each of the four trackers. It can be seen that the trackers
using both position and velocity measurements yield lower
error than those using only position measurement. Also, the
trackers using a CV model have higher error in general,
showing that an incorrect tracking model results in higher
errors.

2) Implementation Details: To analyze the performance of
the proposed velocity estimation on tracking algorithms, the
estimated velocity is integrated as an additional measurement
inside a tracker. For comparison, three trackers are used: the
first uses only position as the measurements, the second uses
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Fig. 4. Motivation for using instantaneous velocity measurements within a tracker: position estimation (top-left), RMSE in position (top-right), velocity
estimation (bottom-left), and RMSE in velocity (bottom-right). The results compare CV tracker using position measurements (red), CV tracker
using position and velocity measurements (yellow), CA tracker using position measurements (blue), and CA tracker using position and velocity
measurements (green). Trackers using both position and velocity measurements yield better results, especially during changes in velocity.

position and velocity as the measurements but the velocity is
estimated by the approach in [6], and the third uses position
and velocity as measurement where the velocity is obtained
using the proposed Approach 2. MATLAB’s implementa-
tion [22] of an integrating multiple model (IMM) filtering
technique [23] is specifically used for the state estimation
where it is assumed that the tracked target can follow three
motion models including CV, CA, and constant turn. Here,
CA was used as the initial motion model. This was used
because targets usually follow a linear motion and CV motion
can be incorporated if the acceleration is set to zero. The states
include position (x, y), velocity (V,, V,), and acceleration
(A, Ay) in 2-D.

Since the velocity estimation module needs at least two
detections per target and there can be scenarios where the
number of points is less than two, there is a difference between
the number of position and velocity measurements. As both
the position and velocity are needed as measurements for
the tracker, the predicted velocity from the motion model
is given as a measurement when the velocity measurement
is not directly available. Also, when there is a difference of
more than 5 m/s between the predicted velocity from tracker’s
motion model and estimated velocity measurement, it can be
assumed that the velocity estimation is incorrect and so the
predicted velocity is taken as the measurement. This reduces
the errors due to highly inaccurate velocity estimations, e.g.
in cases when the estimation based on [6] fails, and the number
of detected points is too few.

V. RESULTS AND DISCUSSION
This section describes the analysis of the experimental
data and the results achieved using the proposed methods for
instantaneous velocity estimation.

A. Experimental Dataset

In order to evaluate the performance of the proposed
methods on real driving scenarios, the 2-D open-source
RadarScenes dataset [17] is used. This is a very large dataset
comprising a total of 158 different scenes that provide a large
variability in ego and target motion as well as scene conditions.
These scenes are divided into two parts: 130 training sequences
and 28 testing sequences, each having diverse multiple scenar-
ios where the ego-vehicle is static or moving. There is also a
large variety in the different classes of targets that are present
in the scenes. However, our methods are evaluated only on car
targets given their importance and variability in shape, size,
and maneuvers they can perform.

Fig. 5 provides an illustration of the setup for collecting
this dataset. Essentially, this provides recordings from a set of
four automotive radar sensors which are present at different
locations and with different orientations. Specifically, two
radars (radar 2 and radar 3) are tilted by 25°, whereas the
other 2 radars (radar 1 and radar 4) are tilted by 85°. Each
of these radars provides a field of view of 120°, maximum
detection range of 100 m, range resolution of 0.15 m, radial
velocity resolution of 0.1 km/h, and an angular resolution that
ranges from 0.5° to 2° from the center to the side of the field
of view.

There are multiple point detections per target in the
RadarScenes dataset, thanks to the resolution of the radars
and cases of overlap when the same target is seen by multiple
radars. This is useful for velocity estimation because it results
in the availability of more detected points and reduces the
impact of noise in the estimation process. Also, the usage of
multiple sensors which are present at different locations and
orientations makes available a larger radial velocity—azimuth
profile curve span, which is beneficial.
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Fig. 5. Visualization of the RadarScenes dataset setup, taken from [16].
There are four radar sensors present at different orientations to cover a
wide field of view. In this work, the coordinate system is used as shown
in this figure.

Notably, RadarScenes provide points with track IDs. These
can be used to directly obtain the set of points detected for
each target by combining the points with same track ID; these
are then used as inputs to the proposed networks for veloc-
ity estimation. Although the RadarScenes dataset provides
detected points with track IDs, the ground truth velocity of
the targets is not directly available. To the best of the authors’
knowledge, this is a major issue common to all real-world
driving scenario datasets, as it is difficult to obtain ground truth
velocity of targets in real driving scenarios. Although some
works obtain ground truth velocity in a controlled setting with
very few targets instrumented with GPS [13], this approach
is not scalable or feasible when a lot of different targets are
needed to provide a variety in target motions. In order to still
obtain a form of ground truth to compare the results of the
proposed methods, it was decided to estimate the target ground
truth velocity using a filtering approach.

In this respect, the position of each target within a frame
is first obtained. This is found by clustering all the points
with the same track ID and using the center of a bounding
box generated using these points. This gives the position (i.e.,
not velocity) of different targets in each frame with their
corresponding track IDs. Next, this position information is
used to track the targets over frames and the tracked target’s
velocity is estimated based on the tracker’s estimate. This is
done using an IMM tracker [23] that considers three possible
motion models including CV, CA, and constant turn with
CA model as the initial motion model assumption. Here, the
motion is tracked using an extended Kalman filter [24] to
incorporate nonlinear process noise. Moreover, a smoothing
filter is applied on top of the EKF output to refine the estimates
because information about position at all frames is available.
This can give more accurate results than using a conventional
filter which only uses information from the previous frames.
A comparison of the performance of the proposed tracker with
a conventional tracker for a simulated scenario is shown in
Fig. 6. Here, the target starts to accelerate from a static state.
This change in target motion results in an inaccurate state
estimation for both trackers. However, the proposed tracker
follows the ground truth more closely as compared to the
conventional tracker. This is because it has information about
the future frames. Afterwards, the target moves with a CV. The
proposed tracker adjusts to this change quickly as compared to
the conventional tracker, resulting in a lower error. Finally, the

target decelerates and comes to a halt. The proposed tracker
is able to follow the ground truth velocity more closely as
compared to the conventional tracker.

Although the proposed approach shows decent performance,
there are limitations in this method. First, since the target cen-
ter position is estimated based on the bounding box generated
from the set of detected radar points, this estimated position
is not completely precise. This will impact the ground truth
position which may in turn affect the estimated ground truth
velocity. Second, a deviation in estimated state from the true
state is observed when there is an abrupt change in motion
(i.e., a shift of motion from CV to acceleration). Although the
usage of smoothing filter reduces this impact, optimal filter
parameters for different targets cannot be estimated that may
result in error. Finally, the performance of the tracking output
is highly impacted during a turn of the target. Since targets
mostly move linearly, a higher confidence is given to CA
as compared to constant turn motion. Since it is extremely
difficult to verify the target’s ground-truth turn rate, this work
does not estimate turn rate.

These limitations in the ground truth may introduce training
bias especially for the proposed DNN method which does not
directly use a specific mathematical model. Furthermore, the
proposed NN + WLS method may also be impacted because
it follows a radial velocity—azimuth profile model, but this will
not be satisfied during these cases, resulting in higher training
error. Finallyy, this may impact evaluation since the ground
truth itself is not completely accurate.

B. Evaluation Metrics

Suitable evaluation metrics are required to objectively eval-
uate the performance of different methods for instantaneous
target velocity estimation. In this work, the following metrics
are considered.

1) RMSE: This measures the difference between the pre-
dicted and ground truth velocity by computing the root MSE.
This is a popular metric, used frequently to provide a good
estimation of the accuracy. However, it is sensitive to outliers
since it uses a square term. In real automotive scenarios,
outliers are often present and can greatly affect the value of
this metric. Specifically in this work, where the ground truth
is not directly available but estimated, and where there are
scenarios with very few detected points per target, this metric
may show very high values because of outliers. Hence, more
metrics are considered as follows.

2) MAE: This metric compares the predicted and ground
truth velocity by computing the MAE, and is less sensitive
to outliers as compared to RMSE. For this reason, this
metric is mostly considered here to assess velocity estimation
performances.

3) Saturated-RMSE: This is a variant of the RMSE whereby
the maximum error per target is set to a fixed threshold value
to reduce the impact of noise and outliers; the threshold is in
this case set to 10.

4) High Error Count: This metric provides an account of the
number of times when a method under test fails by giving an
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Fig. 6. Comparison of state estimation between the proposed tracker (green) and a conventional tracker (red) compared to ground truth (dashed
line): position estimation (top-left), RMSE in position (top-right), velocity estimation (bottom-left), and RMSE in velocity (bottom-right). The proposed
tracker gives better velocity estimation, especially during change in motion.

error exceeding a given threshold, here set to 10. This metric
is not sensitive to outliers.

C. Analysis of Results Compared With Alternative
Methods

This section provides a comparison of the proposed methods
for instantaneous velocity estimation with alternative ones
from the literature. The effect of different parameters and
scenarios is specifically considered.

1) Effect of Number of Detected Points Per Target: An
analysis of the impact of the number of detected points
per target on the velocity estimation methods is performed.
Fig. 7 shows a plot of the MAE versus number of detected
points per target, for both scenarios with static ego and
those with linearly moving ego. It can be seen that the
proposed DNN method, which does not depend explicitly on
the radial velocity—azimuth profile, is robust even with a lower
number of detected points per target. In general, also the
other proposed approach of this article, the NN-based WLS,
achieves good performance for a number of points higher than
4, compared with the alternative methods from the literature.
It is also observed that the RANSAC method [6] performs
worse than the OLS method [5] when the number of points
decreases to a value less than 5. This is because in the case
of fewer points per targets, RANSAC selects only a smaller
subset of points as inliers resulting in even fewer points to
be available for the solution. DeepEgo [16] gives a higher
error than the proposed NN + WLS method except for cases
with a very small number of points. This is due to the usage
of nonrobust MSE loss which causes the training to focus
on those outlier cases. The three different alternative methods
(RAN + LS [6], RAN + RLS [11], and RAN + LSQ-F [13]),
which use RANSAC-based removal of points but utilize differ-
ent methods to solve least square solution, performed similar
to each other, showing that the major impact on performance
is dependent on the RANSAC-based removal of points, not on
the method for finding the least squares solution.

Based on the initial results shown in Fig. 7, it was decided
to further evaluate the performance with a different number
of minimum points per target. First, the minimum number
of points per target was set to four, considered a border-line
case where approaches relying on the radial velocity—azimuth
curves start to fail. The second case uses a minimum number
of points per target set to eight, in order to correctly eval-
uate the performance of the proposed NN + WLS method
(Approach 1 in Section III), which achieves a robust perfor-
mance for this number of points. This evaluation was done
separately for scenarios with static and linearly moving ego.
It is important to note that frames where the ego-vehicle
makes a rotation are not included in this study, because this
would make the radial velocity—azimuth profile deviate from
the equations used in Section III, resulting in all the methods
to fail, except the proposed DNN method (Approach 2 in
Section III).

2) Results on Static Ego: The initial performance study
considers static ego to avoid issues from inaccurate modeling
of ego-motion. First, the evaluation is performed on relatively
simpler scenarios with cars having at least eight detections.
This resulted in a total of 11371 train and 2788 test targets
from the train and test scenes, respectively. In the second set of
experiments, the evaluation is extended to scenarios with cars
having at least four detections to consider more challenging
cases. This resulted in a total of 23436 train and 5473 test
targets from the train and test scenes, respectively.

Tables III and IV show a comparison of the MAE obtained
in the velocity estimation using the different considered meth-
ods, averaged across all targets. Here, V, denotes the error in
down-range and V, in cross-range relative to the ego-vehicle
direction. V is then obtained as the square root of the sum
of V, and V, squared. It can be observed that both proposed
methods provide a lower error than the alternative methods,
with the DNN-based method providing the lowest error. This
is because in real-world driving scenarios, targets can make
turns and deviate from the linear motion assumption used
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Fig. 7. Effect of number of detected points per target on MAE for different instantaneous velocity methods: red line denotes errors obtained using
an OLS method (OLS [5]); magenta line refers to a method using RANSAC to remove outliers followed by a least square solution on the remaining
points (RAN + LS [6]); yellow line refers to a method using recursive least square solution whereby the initial velocity estimate is obtained using
RAN + LS [6] (RAN + RLS [11]); black line refers to a method using RANSAC to remove outliers followed by a least square solution to obtain linear
and rotational velocity (RAN + LSQ-F [13]); blue line represents a hybrid NN method that generates weights for each point and uses those inside a
WLS solution based on DeepEgo [16]; cyan line represents the proposed method 1, which uses a hybrid NN to estimate weights for a WLS solution
(NN + WLS); green line represents the proposed method 2, which uses a DNN with a point transformer block to directly output velocity values
(DNN). Both proposed methods provide lower error than alternative ones, with the DNN method being more robust to different number of points.
It must be noted that the alternative methods (RAN + LS [6], RAN + RLS [11], and RAN + LSQ-F [13]) give similar performance resulting in an
overlap of the curves. (a) Cases with static ego. (b) Cases with linearly moving ego-vehicle.

TABLE IlI
MAE IN INSTANTANEOUS VELOCITY ESTIMATION FOR DIFFERENT
METHODS—STATIC EGO; CAR TARGETS WITH MINIMUM
EIGHT DETECTED POINTS

MAE (m/s) Vx Vy \4
OLS [5] 4.24 9.36 10.3
RAN+LS [6] 1.17 2.97 3.20
RAN+RLS [11] 1.19 292 3.15
RAN+LSQ-F [13] 1.20 2.95 3.19
DeepEgo [16] 1.10 1.79 2.10
Proposed NN+WLS 1.04 1.65 1.96
Proposed DNN 1.32 1.72 2.18
TABLE IV

MAE IN INSTANTANEOUS VELOCITY ESTIMATION FOR DIFFERENT
METHODS—STATIC EGO; CAR TARGETS WITH MINIMUM
FOUR DETECTED POINTS

MAE (m/s) Vx Vy |4
OLS [5] 7.21 14.0 15.8
RAN+LS [6] 5.11 9.10 10.4
RAN+RLS [11] 5.09 9.07 10.4
RAN+LSQ-F [13] 5.12 9.12 10.5
DeepEgo [16] 1.54 2.64 3.06
Proposed NN+WLS 1.37 2.35 2.72
Proposed DNN 1.37 2.00 2.43

in approaches relying on the radial velocity—azimuth profile.
On the contrary, the DNN-based method does not assume a
particular target motion modeling and does not suffer from
this issue.

It can also be observed that the proposed NN-based
WLS method provides the lowest error out of the radial
velocity—azimuth profile-based methods. This is because
appropriate weights can be given to outliers and inliers with
different noise levels. Additionally, implicit characteristics
of the target such as its orientation and gradient of radial

velocity—azimuth profile can be predicted using orientation
loss and gradient loss respectively, which helps in obtaining
better velocity estimates. Finally, the noise in radial velocity
measurements can be corrected using offset values that reduces
the impact of noise on the velocity estimation as mentioned in
Section III. On the other hand, OLS [5] is not able to remove
the outliers resulting in the highest error. RAN + LS [6],
RAN + RLS [11], and RAN + LSQ-F [13] can remove the
outliers in most cases, but cannot provide different weights
based on different noise levels, and also sometimes fail to
remove outliers in challenging cases. DeepEgo [16] is able to
provide a lower error than RAN + LS because it can give
different weights to different points based on feature learning.
However, this approach does not consider the characteristics
of the target, and training can be unstable because of the usage
of MSE loss (instead of the Huber loss proposed here). Also,
no regularization has been applied to offset values, resulting
in a higher error than the proposed NN-based WLS method.

It is also observed that for the case when only cars with
a minimum of eight detected points are considered, the DNN
method provides higher error than the NN + WLS method.
This is because the DNN needs more data for efficient training.
For this case, the training data is insufficient to completely
learn the patterns in data. It is expected that with the availabil-
ity of more training data, the DNN will be able to show better
performance than the NN + WLS method. On the other hand,
the proposed NN 4+ WLS method—which is a hybrid method
where the NN part only generates weights rather than complete
velocity estimates—can provide better results for cases where
only few training data is available.

3) Results With Linearly Moving Ego: In this section, scenar-
ios with moving ego-vehicle are considered as a further step
from those presented with static ego-vehicle. Here, only frames
with linearly moving ego-vehicle are analyzed. This is because
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TABLE V
MAE IN INSTANTANEOUS VELOCITY ESTIMATION FOR DIFFERENT
METHODS—LINEARLY MOVING EGO; CAR TARGETS WITH
MINIMUM EIGHT DETECTED POINTS

MAE (m/s) Vx Vy |4
OLS [5] 9.52 27.5 29.1
RAN+LS [6] 3.02 4.10 5.09
RAN+RLS [11] 3.01 4.09 5.08
RAN+LSQ-F [13] 3.02 4.13 5.12
DeepEgo [16] 2.51 1.90 3.13
Proposed NN+WLS 0.97 1.10 1.47
Proposed DNN 1.55 1.05 1.88

during the turning of the ego-vehicle, the underlying model
of radial velocity—azimuth curves of many methods does not
work. There are studies [9] that propose more complex models
during turns of the ego-vehicle, but they require noise-free
measurements. These can be made available in simulations or
controlled test scenarios, but are not available in real-world
driving scenarios such as in RadarScenes dataset used here.
As for the static ego-vehicle case, two separate studies are
performed, first considering cars with a minimum of eight
detected points, and then with a minimum of four detected
points. This resulted in a total of 73344 and 13328 targets
from the train and test scenes for the first experiment, and a
total of 156 543 and 27 019 targets for the train and test scenes
for the second experiment, respectively.

Tables V and VI present a comparison of the MAE obtained
in the velocity estimation using the different considered meth-
ods, averaged across all targets. Overall, the error is higher
when the ego-vehicle is moving as compared to the cases when
ego-vehicle is static. In any case, it can be observed that both
proposed methods provide a lower error than the alternative
methods, with the DNN-based method providing the lowest
error. It can also be observed that the proposed NN-WLS
method provides the lowest error out of those based on
the radial velocity—azimuth profile. Overall, the improvement
achieved using the proposed methods over the alternative
methods is much greater for linearly moving ego case than
for static ego. Specifically, the DNN and NN + WLS methods
provide a reduction in MAE of 2.58 m/s (or 59%) and 1.67 m/s
(or 38%) as compared to DeepEgo [16] respectively, whereas
OLS [5], RAN + LS [6], RAN + RLS [11], and RAN +
LSQ-F [13] methods result in a very high MAE. As for static
ego-vehicle, it is observed that the NN + WLS approach
provides lower error than the DNN one when cars with a
minimum of 8 detections are considered. This is because it
is easier to train the NN 4+ WLS using a smaller number of
samples as compared to the more “black-box” DNN which
requires more samples to correctly learn the target features.
Finally, the improvement achieved by the proposed methods
compared to the alternative ones is more significant for linearly
moving ego-vehicle cases than for static ones.

D. Detailed Analysis of Results

Additional tests are performed to evaluate the proposed
methods in this section. For conciseness, only cases with static
ego-vehicle and target cars with a minimum of 4 detected
points are considered.

TABLE VI
MAE IN INSTANTANEOUS VELOCITY ESTIMATION FOR DIFFERENT
METHODS—LINEARLY MOVING EGO; CAR TARGETS
WITH MINIMUM FOUR DETECTED POINTS

MAE (m/s) Vx Vy \4
OLS [5] 12.9 56.5 57.9
RAN+LS [6] 9.13 43.7 44.7
RAN+RLS [11] 9.12 43.7 44.7
RAN+LSQ-F [13] 9.18 43.8 44.8
DeepEgo [16] 3.21 2.95 4.37
Proposed NN+WLS 1.67 2.12 2.70
Proposed DNN 1.42 1.09 1.79

1) Error Distribution in Space: An analysis of the spatial
distribution of the error in velocity estimation was performed.
Fig. 8 shows a heat map of the MAE obtained using the
proposed NN + WLS method at different spatial locations,
where the MAE for all targets that lie within a particular bin
in the spatial grid is averaged. The color bar denotes the error
from lower (yellow) to higher (red). Regions with no targets
are represented in white. Fig. 8(a) shows that the MAE in
target down-range velocity V, is lower at regions in front of
the ego car (azimuth close to 0°). This is because for these
regions the target down-range velocity V, is close to the radial
velocity component which is directly available as a point cloud
feature. However, as the azimuth increases, the MAE in V,
increases because of the shift toward the tangential direction,
resulting in a less accurate estimation of V,. On the other hand,
Fig. 8(b) shows that the MAE in target cross-range velocity V,
is higher at regions with azimuth close to 0°. This is because in
these locations, the target velocity V, component is tangential
to the ego-vehicle’s front direction, making its estimation less
accurate.

Fig. 9 shows a similar heatmap when using the pro-
posed DNN method for the instantaneous velocity estimation.
The trend in V, component across the space is similar to
NN + WLS method with lower MAE at regions in front of
the ego car (azimuth close to 0°). However, there seems to be
no dominant trend in V, component across the space in this
case.

2) Error in Case of Radar Failure: The networks in the two
proposed approaches, NN + WLS and DNN, have been trained
with data from all the four radars of the RadarScenes dataset.
As in real scenarios there can be failures or issues with data
from one or more sensors, an analysis has been made here
to evaluate the velocity estimation performance when only a
subset of radar sensors is used during inference.

Table VII shows the relevant results. It should be noted that
in this case all targets are retained, even those with a number of
detected points lower than four once data from some specific
radar is removed. A drop in performance for the NN + WLS
approach is noted as the number of radars decreases. This is
because of two reasons. First, there is a decrease in the number
of points per target when the radars are removed, resulting
in many cases where there are less than four points. This
resulted in a significant error for methods based on the radial
velocity—azimuth profile such as NN + WLS. Second, with
the decrease in the number of radars, the azimuth span of the
target is reduced, which results in the availability of a smaller
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Distribution of MAE in X-Y spatial dimensions using the proposed NN + WLS approach. (a) MAE in V, component. (b) MAE in V),
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Fig. 9. Distribution of MAE in X-Y spatial dimensions using the proposed DNN approach. (a) MAE in Vy component. (b) MAE in V,, component.

TABLE VII
MAE IN INSTANTANEOUS VELOCITY ESTIMATION BY REMOVING
RADARS—KEEPING TARGETS WITH LESS THAN FOUR POINTS

MAE (m/s) WLS DNN
All Sensors 2.72 243
Sensor 1 16.3 3.91
Sensor 2 19.4 2.71
Sensor 3 52.0 2.96
Sensor 4 15.9 3.26
Sensors 1+2 48.9 2.93
Sensor 2+3 10.7 2.66
Sensor 3+4 17.1 2.47
Sensor 1+2+3 4.61 2.63
Sensor 2+3+4 7.93 2.45

portion of the radial velocity—azimuth profile. This causes the
noise to have a higher effect and worsens the performances.
The DNN-based method on the other hand is able to maintain
performance with a small increase in error, since it is more
robust to targets having a lower number of detected points.
For a more complete comparison, an analysis is also shown
when targets with fewer than four detected points are removed,
with results shown in Table VIII. Comparing these with
Table VII, it can be observed that both proposed methods are
relatively robust to sensor failures, provided that the targets
with very few detected points are not considered. Essentially,
the drop in performance observed for Table VII is due to
the cases of targets with very few detected points. Overall,
the MAE for the NN + WLS method is higher than for the

TABLE VIII
MAE IN INSTANTANEOUS VELOCITY ESTIMATION BY REMOVING
RADARS—REMOVING TARGETS WITH LESS THAN FOUR POINTS

MAE (m/s) WLS DNN
All Sensors 2.72 243
Sensor 1 2.53 2.33
Sensor 2 3.21 245
Sensor 3 2.97 2.41
Sensor 4 3.80 2.24
Sensors 142 2.78 2.59
Sensor 2+3 2.69 2.42
Sensor 3+4 3.22 2.31
Sensor 14+2+3 2.64 2.52
Sensor 2+3+4 2.77 2.33

DNN method because of the reasons mentioned in the previous
paragraph.

3) Additional Study on Proposed Method 1 (NN + WLS): An
additional analysis of the impact on MAE using different com-
ponents of the proposed NN + WLS method was performed.
Table IX provides a breakdown of the MAE where succes-
sively one component of those described in Section III-B
is removed from the training procedure. It can be seen that
the removal of each proposed component results in increasing
MAE, with the addition to offset values having the highest
impact in increasing the resulting error.

a) Effect of loss functions: Instantaneous velocity estima-
tion for a real target is a difficult problem because the span of
the radial velocity—azimuth profile curve is small, resulting in
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TABLE IX TABLE X
MAE IN INSTANTANEOUS VELOCITY ESTIMATION BY REMOVING ERROR IN Vi FOR DIFFERENT METHODS USING VARIOUS METRICS
DIFFERENT COMPONENTS OF THE PROPOSED NN + WLS METHOD RVISE Sat-RMSE || High Error Count
MAE (m/s) Vx Vy \J OLS [5] 35.7 4.28 647
NN+WLS 1.37 2.35 2.72 RAN+LS [6] 87.4 2.83 236
No Offset 2.40 4.83 5.39 RAN+RLS [11] 87.4 2.81 236
No Offset / Gradient Loss 2.717 5.40 6.07 RAN+LSQ-F [13] 87.5 2.84 235
No Offset / Gradient / 432 3.95 9.04 DeepEgo [16] 3.76 2.31 62
Orientation Loss ) ) ) Proposed NN+WLS 8.28 1.78 44
No Oﬁset / Gradient / 569 9.64 112 Proposed DNN 2.20 2.11 28
Orientation / Doppler Loss
TABLE XI

small noise to have a large impact on the estimation. In order
to mitigate this, gradient and orientation losses are proposed
during training to guide the network to implicitly correct the
gradient of the radial velocity—azimuth profile, and implicitly
estimate the velocity direction to be toward the orientation of
the target. This allows the model to predict weights that can
generate a velocity prediction which satisfies these physically
meaningful constraints more closely, thus reducing error.
Fig. 10 shows an example from the RadarScenes dataset
(sequence 19) when a car is moving in a lateral direction
(Vy ~ 0 m/s, V, ~ 8 m/s) and is located at a high azimuth
angle such that the gradient of the radial velocity—azimuth
profile curve has a high impact on V,. Fig. 10(a) shows the
spatial location of the detected points. From the detections,
the orientation of the car can be estimated which is aligned
in the direction of y as the extent of the detections is aligned in
this direction. As the car motion is also physically aligned with
its spatial orientation, this fact can help guide the networks
to estimate the velocity correctly (i.e., a small V, value
and larger V), value). Moreover, Fig. 8(b) shows the radial
velocity—azimuth profile curve generated by models which
are trained with/without orientation/gradient loss as defined
in Section III-B. It can be seen that the gradient of the profile
generated using a model trained with these losses is aligned
with that generated using the ground truth velocity, resulting in
a lower error in instantaneous velocity estimation. Conversely,
the profile generated using a model trained without these losses
is misaligned with that generated using ground truth velocity.
This happens because there is a point which has a “noisy”
radial velocity value; this is assumed to be an inlier and caused
a shift in the gradient of the curve. This results in a large error.

b) Effect of adding offset values to radial velocity: As opposed
to the task of ego-motion estimation, where there are many
detected points, for instantaneous target velocity estimation
only few points are usually detected by a target. This results
in ‘noisy’ points having a significant effect on the velocity
estimation. Even though a WLS solution can reduce this effect
by giving low weights to such points, this may not be enough
for accurate velocity estimation as noise in such points is not
removed. To further address this issue, an additional offset
to the radial velocity values was proposed as described in
Section III-B. However, in order to avoid overfitting on the
training data by having sporadic changes in the radial velocity
values, an offset loss term is also added to give high values
when the sum of magnitude of offsets is higher. Notably, this
is different from the approach of DeepEgo [16], which does

ERROR IN Vj, FOR DIFFERENT METHODS USING VARIOUS METRICS

RMSE Sat-RMSE High Error Count
OLS [5] 40.7 6.13 1451
RAN+LS [6] 354 5.17 886
RAN+RLS [11] 354 5.14 876
RAN+LSQ-F [13] 35.5 5.17 888
DeepEgo [16] 4.74 343 194
Proposed NN+WLS 5.1 3.12 132
Proposed DNN 2.95 2.82 53

not add any loss term based on the offset values, leading to
unstable results in different scenarios considered in this work.

Fig. 11 shows an illustration of how adding offset can help
in reducing the velocity estimation error. Fig. 11(a) shows that
when no offset values are used, the model is not able to provide
an accurate solution because of the points with low radial
velocity values in the bottom-right area. These will distort
the estimated radial velocity—azimuth profile with respect to
the ground truth. Fig. 11(b) shows that when offset values are
used together with the correct loss functions for training, the
network is able to generate a WLS solution that is closer to the
ground truth. Specifically, the points with low radial velocity
values in the bottom-right area are shifted upward toward the
expected curve direction.

4) Evaluation Using Other Metrics: MAE metric is good to
evaluate the performance of different methods in the presence
of outliers. However, for further evaluation, the results of the
other metrics described in Section IV-B are also presented.

Table X presents the results for the estimation of V, and
Table XI for V, for each of the different methods. Both
proposed approaches provide lower errors than other methods,
with the DNN method providing the lowest error for all
metrics. As an exception, the NN 4+ WLS method gives higher
RMSE than DeepEgo [16]. This is because RMSE is prone to
outliers, resulting in high value when some cases with very
large errors are present. However, in general NN + WLS has
a better performance. This can be confirmed by the fact that
when a threshold on the maximum error is set using Saturated-
RMSE, NN + WLS performs better than DeepEgo. Also, the
high error count is smaller for NN 4+ WLS than DeepEgo,
showing that the proposed method performs well. Also, the
RANSAC-based methods (RAN + LS [6], RAN + RLS [11],
and RAN + LSQ-F [13]) show similar performance, with the
RAN + RLS [11] method resulting in slightly better perfor-
mance than the other two.

Fig. 12 illustrates the cumulative distribution of the square
error for the different methods. It can be observed that the
proposed NN + WLS method generally provides lower error
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Improvement in instantaneous velocity estimation using additional offset values for the radial velocity as presented in Section IlI-B.

(a) Radial velocity—azimuth profile for model without offset. (b) Radial velocity—azimuth profile for model with offset.

for most of the cases. However, there are few cases when the
square error is very high, resulting in its mean (i.e., MSE) and
consequently RMSE to become very high. Notably, DeepEgo
has an overall higher error for most targets and more cases
when the square error passes the threshold of high error
count (i.e., absolute error: 10 m/s, square error: 100 mz/sz).
On the other hand, the proposed DNN method is least affected
by outliers since it is trained not to output outlier velocity
values with very high magnitude. This is also evident from
Tables X and XI where RMSE and Sat-RMSE are similar for
the proposed DNN method.

E. Integration of Estimated Velocity as an Additional
Measurement Inside a Tracker

Instantaneous target velocity can be used as an additional
measurement inside a tracker to help in state estimation,
especially during changing track dynamics. For a performance
assessment, three trackers using different measurements were
considered. The first tracker uses only position as the mea-
surement. The second tracker uses both position and velocity
as the measurement, where the velocity is given by the
RANSAC + LS-based method in [6]. The third tracker
uses both position and velocity as the measurement, where
the velocity measurement is obtained using the proposed
DNN-based velocity estimator.

All trackers used an IMM approach [23] with three pos-
sibilities for tracking including CA, CV, and constant turn
(CT) models, where the initial model was taken as CA. The
motion and measurement model parameters were kept constant
for each tracker. It should be noted that there are cases
when it is not possible to estimate the instantaneous velocity
correctly, such as cases when the tracked target has fewer
than two detected points, or is turning. In these cases, the
tracked velocity obtained using state prediction at the previous
frame was kept as the current velocity measurement. However,
to account for the uncertainty in measurement, the velocity
components of the state covariance matrix were given higher
value by scaling with a factor of 10. Moreover, if the difference
between the estimated velocity using the proposed approach
and the tracked velocity using a state prediction at the current
timestamp has a magnitude difference greater than 5 m/s,
it was assumed that the instantaneous velocity estimation was
inaccurate. Thus, the velocity predicted by the tracker at the
current state was used as the current measurement.

Table XII presents the average RMSE obtained using differ-
ent methods on all testing scenarios with static ego-vehicle in
the RadarScenes dataset. This gives a total of 137 tracks. Aver-
age RMSE over all tracks is reported because of the RMSE
wide usage in many tracking metrics (e.g., in OSPA [25]). The
results show that the tracker using the proposed DNN-based
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Fig. 12. Cumulative distribution of square error for the different instantaneous velocity estimation methods. Blue lines denote square error obtained
using DeepEgo [16], red lines denote square error obtained using the proposed NN + WLS method, and orange lines denote square error obtained
using the proposed DNN method. It is observed that NN + WLS provides the lowest square error for most cases, but also includes outlier cases
with high square error. (a) Cumulative distribution of square error in V, component. (b) Cumulative distribution of square error in V,, component.

TABLE XII
ERROR IN TRACKER’S STATE ESTIMATE: STATIC EGO—ALL
TRACKS (137 TRACKS)

Average RMSE Pos Vel

Tracker with Pos Measurement 1.01 3.45

Tracker with Pos / (RAN+LS) Vel Measurement 7.63 22.0
Tracker with Pos / (DNN) Vel Measurement 1.00 2.03

instantaneous velocity estimation as measurement provides
the best state estimation. It can also be observed that the
tracker using only position measurement is able to achieve
a good average RMSE. This is because most of the times,
tracked targets move at a CV. In these cases, the prediction
from the tracker’s motion model gives an accurate estimation
of the state. However, in the cases when there is an abrupt
change in motion, the velocity prediction from this model
becomes inaccurate, degrading the tracking performance. It is
also observed that the performance of the tracker using
RANSAC + LS-based velocity measurement is worse than the
tracker using only position measurements. This is because for
many cases the RANSAC + LS method provides an inaccurate
velocity estimation, which is worse than the velocity estimated
using tracker’s motion model.

In order to investigate the performance on cases with chang-
ing track dynamics, a dedicated analysis was done on a subset
of the relevant tracks in the RadarScenes dataset. Specifically,
20 tracks with high changes in dynamics were considered.
Table XIII compares the performance of different methods on
these cases. An improvement in tracker’s state estimation is
reported using the proposed DNN-based velocity measurement
as compared to other methods. Also, the tracker using position
measurement gives higher error for these cases compared to
the cases in Table XII. This is because the tracker using only
position measurement is not able to correctly estimate the
states during changes in track dynamics. Finally, the error for
the tracker using RANSAC + LS-based instantaneous velocity
measurement is still higher than other methods, as there are
many frames with incorrect velocity estimation.

In the next evaluation, scenarios with linearly mov-
ing ego-vehicle are considered, for a total of 100 tracks

TABLE Xl
ERROR IN TRACKER’S STATE ESTIMATE: STATIC EGO—TRACKS
WITH CHANGING DYNAMICS (20 TRACKS)

Average RMSE Pos Vel

Tracker with Pos Measurement 1.74 7.50

Tracker with Pos / (RAN+LS) Vel Measurement 4.51 12.2
Tracker with Pos / (DNN) Vel Measurement 0.90 1.72

TABLE XIV
ERROR IN TRACKER’S STATE ESTIMATE: LINEARLY MOVING
EGO—TRACKS WITH CHANGING DYNAMICS (100 TRACKS)

Average RMSE Pos Vel

Tracker with Pos Measurement 2.39 8.21

Tracker with Pos / (RAN+LS) Vel Measurement 7.22 116
Tracker with Pos / (DNN) Vel Measurement 1.38 2.96

exhibiting changes in their dynamics. Table XIV shows the
relevant performance using different methods. Overall, the
error is higher as compared to scenes with static ego-
vehicle. This is because of the errors in ground-truth data
generation and velocity estimation due to the inaccuracy
in tracker modeling and noise in the measurements. It is
observed that the proposed DNN model provides the best
performance. However, the improvement in average RMSE
against the tracker using only position measurement is
lower than for static ego-vehicle cases. The tracker using
RANSAC + LS measurements provides a very high RMSE
error on average. This is because of the addition of challenging
cases, resulting at times in inaccurate velocity estimation.

In addition to the average RMSE, an analysis on some typ-
ical individual tracking scenarios was also performed. Fig. 13
shows an example of performance on a tracked target that
moves linearly in front of the ego-vehicle and changes its
speed during the measurement. The ego-vehicle eventually
overtakes this tracked target terminating the track. The tracker
using position measurement gives higher error at the start of
the scene because the initial velocity is not known and it takes
some time for the tracker to correctly estimate velocity. After-
wards, the tracked target accelerates, and the tracker using only
position measurement is not able to estimate velocity correctly.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2026 at 11:55:32 UTC from |IEEE Xplore. Restrictions apply.



30102

IEEE SENSORS JOURNAL, VOL. 25, NO. 15, 1 AUGUST 2025

Velocity vs Time
70 T T T T

Tracker using Pos Meas

Tracker using Pos/(DNN) Vel Meas
Tracker using Pos/(RAN+LS) Vel Meas | 7|
DNN Inst Vel Meas
——~— RAN+LS Inst Vel Meas
Ground Truth Data

60 -

Speed (m/s)

0 20 40 60 80 100 120 140 160 180
Frame

Fig. 13.  Example of velocity estimation for a tracked target with
changing dynamics: tracker using only position measurement (blue);
tracker using position and velocity measurement obtained from the
proposed DNN method (green); tracker using position and velocity mea-
surement obtained from the RANSAC + LS method (red); instantaneous
velocity estimation using the proposed DNN method (dotted green);
instantaneous velocity estimation using RANSAC + LS method (dotted
red); ground truth velocity (black). The tracker with the proposed DNN
provides the best velocity estimation for most frames.

However, trackers using both position and velocity measure-
ments are able to follow the ground truth velocity more closely.
Afterwards, the tracked target starts to decelerate. All the
trackers assumed a positive acceleration of the tracked target
based on the past observations, and are not able to estimate
this change initially, taking some time to correct this mismatch.
However, the tracker using the proposed DNN method is able
to recover faster than other methods resulting in a better state
estimation. This is because accurate velocity measurement is
available from the proposed DNN method. The tracker using
RANSAC + LS-based velocity measurement results in higher
error since many velocity estimations from the RANSAC +
LS method are inaccurate during this time. It is also observed
that the tracker using the proposed DNN method provides
an inaccurate state estimation for the last few frames. This
corresponds to the time when the ego-vehicle overtakes the
tracked target. This is one of the failure cases of the proposed
DNN method because this is a rare event not observed during
training of the model.

From these results, it can be concluded that using velocity as
a measurement inside a tracker helps in improving the velocity
estimation for cases with changing track dynamics. However,
this is sensitive to the accuracy of the velocity measurement.
The velocity estimation given by the tracker can also degrade
if the measurement is inaccurate.

F. Analysis on Real-Time Deployment

Table XV provides estimates of the real-time deployment
needs of the two proposed methods. It can be observed
that both proposed methods require very low memory and
computational load, making them suitable to be implemented
on embedded hardware. The parameter count for both methods
is few Kbytes, so it is easy to fit these in SRAMs which are
typically in MBytes. Moreover, given a frame rate of 10 Hz
and 64 targets per frame, the compute is few GFlops. This
makes it suitable to run on DSPs or NN accelerators which are

TABLE XV
PRACTICAL REQUIREMENTS FOR THE TWO PROPOSED METHODS. THE
INVESTIGATION PROVIDES THE NUMBERS FOR A SINGLE INFERENCE.
INTEL XEON W-2245 CORE IS USED FOR RUNTIME EVALUATION

Method Params (K) Flops (M) Runtime (ms)
Proposed NN+WLS 73.8 2.04 1.18
Proposed DNN 3.17 0.49 0.88

typically in the range of hundreds of GOPs to few TOPs. This
is further validated by the low runtime for both methods on a
CPU core, showing their potential for real-time deployment.
Both methods contain mostly standard layers which are
supported by the NN accelerators. However, there are some
details that need to be kept in consideration. First, the
NN + WLS method involves matrix inversion operation which
is not easily implementable in hardware. However, the size
of the matrix is small here (2 x 2), so this will not be a
bottleneck. Second, the DNN method contains a point attention
layer that involves multiplication between each point. This
typically requires high computational load and memory, but
will not be an issue here because of 16 points per target.
Hence, both proposed methods have good potential to be
effectively implemented on embedded hardware for ADAS.

V. CONCLUSION

To address the challenge of distributed target tracking
with radar(s), two NN-based solutions for instantaneous tar-
get velocity estimation are proposed. First, a novel hybrid
NN-based WLS approach is proposed. The network takes a
target point cloud as its input and extracts spatial-dynamic
features to be used as weights for each input point. These
weighted points are then used to obtain a weighted least square
solution for instantaneous target velocity estimation. Second,
a DNN is proposed to estimate instantaneously target velocity
by learning directly from the radar data.

The proposed approaches have been validated on the
RadarScenes experimental dataset, showing a significant
improvement in target velocity estimation over the alternative
state-of-the-art methods presented in the literature. Specif-
ically, a reduction in the MAE of 59% can be achieved
using the proposed DNN method as compared to the net-
work presented in [16], which was found to be the best
alternative method. Moreover, using the instantaneous veloc-
ity estimate as an additional measurement inside tracking
algorithms improved performances, especially for cases with
changing track dynamics.

Since it is challenging to obtain accurate ground-truth rota-
tional velocity of the ego car and of the detected targets, this
work is focused on linear instantaneous velocity estimation
and assumed linear ego-vehicle motion. As part of future work,
rotational velocity of the targets can be added into the models,
as well as processing across multiple frames to estimate target
acceleration. In this work, a rigid body assumption is taken
which considers the velocity of each point to be the same.
This assumption is typically correct for several target classes
such as cars, bus, and trucks. However, it might not be true for
classes such as pedestrians and cyclists, where the movement
of body parts changes the velocity of different parts within
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the target. Accordingly, the accuracy of the proposed methods
might be impacted on these classes. This will especially affect
the performance of the proposed NN + WLS method which
considers rigid body assumption in the radial velocity—azimuth
equation to estimate velocity. However, the impact on perfor-
mance for the proposed DNN method will be smaller since
it does not assume a specific mathematical model and rather
learns this function using data. As a future work, a thorough
investigation on the performance of the proposed methods for
different classes can be performed.
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