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Abstract

Over the past decade, Koopman operator methods received a surge in interest by enabling the
application of linear techniques to nonlinear systems. Existing methods often rely on prior
data dictionaries and closure of the operator on this dictionary.

We expand on the framework by Korda and Mezić (2020) to construct eigenfunctions directly
from data by exploiting the eigenfunction partial differential equation (PDE), guaranteeing
closure and eliminating the need for a prior data dictionary. The constructed models are
extended to forced systems through the multi-step prediction error of a linear state-space
model.

By identifying a relationship between Estimation of Signal Parameters via Rotational Invari-
ance Techniques (ESPRIT) and Dynamic Mode Decomposition (DMD) applied to Hankel
matrices, we simplify the original optimisation problem and significantly reducing the re-
quired model order. A detailed numerical investigation of both autonomous dynamics and
forced dynamics follows. For autonomous dynamics we report a variance accounted for (VAF)
up to 90% for a toy model and the Van der Pol oscillator, whilst the original work is unable
to reconstruct the underlying dynamics on longer time scales. We were unable to reproduce
accurate multi-step predictions under the influence of forcing.

We extend the constructed models by inclusion of monomial terms into the dynamics. This
can be interpreted as a linear model with nonlinear output, approximated by a polynomial.
Results on the Koopman generator and the inclusion of monomial terms suggest the con-
struction of a bilinear model. A multi-step prediction is formulated, simplified and solved,
expanding the predictive capabilities of the model. Whilst the inclusion of monomial terms
improved the prediction of autonomous dynamics, the bilinear models failed to converge for
the Duffing oscillator and Van der Pol oscillator.

We perform a further study on the constructed eigenfunctions by designing a new neural
network architecture, aimed at learning Koopman eigenfunctions. The network architecture
accurately recovers the autonomous dynamics of the system. The learned eigenfunctions
suggest that the constructed eigenfunctions can be severely limited by the choice of the initial
condition set Γ, opening the door for future research.
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Chapter 1

Introduction

The problem of understanding the principles that generate a sequence of data is fundamental
in science. In the context of physics, the emphasis is on revealing the conceptual laws respon-
sible for generating this data. Within engineering, the focus shifts toward deriving numerical
representations of these generating laws. Numerical methods that learn the dynamics of a
given measurement sequence, enabling accurate predictions of these dynamics, are therefore
vital tools in engineering.
In the domain of system and control, accurate models facilitate the design of control strategies
to achieve some desired behaviour. Typically, such models are constructed using prior knowl-
edge of the dynamics. However, this prior knowledge is not always available, necessitating
the derivation of models from observed data. Effective methods for data-driven construction
of models for linear systems have been developed, but doing so remains difficult for nonlin-
ear systems. The prevalence of nonlinear systems in the real world, coupled with the large
amount of data presently available, makes this an active area of research across numerous
scientific domains [2].
In the last decade, data-driven analysis of nonlinear systems has grown into a popular field, fol-
lowing renewed interest in the Koopman operator. The Koopman operator lifts the dynamics
of the system to dynamics of observables. These advances were initiated with the development
of Dynamic Mode Decomposition (DMD) for the analysis of fluid dynamics [3], spawning a
range of modifications. A few examples are: extended DMD (eDMD) by Williams et al.
[4], eDMD with control by Korda and Mezić [5] and subspace DMD (subDMD) by Takeishi
et al. [6]. Applications have emerged in the fields of neuroscience [7], robotics [8, 9], energy
efficiency [10], quantum control [11], plasma physics [12] and molecular physics [13].
In the present work, we aim to construct models that can be employed for control of nonlinear
systems. Existing methods either propose linear models [1, 5] or linear parameter varying
(LPV) models [14]. Linear models have a limit on the nonlinear dynamics they can capture
[15]. Work by Surana suggests that bilinear models are better at capturing the dynamics in
lifted coordinates [16].
Most Koopman operator methods assume that the derived model is closed on the span of
observables [17, 18]. This is a strong assumption to make, and can be avoided by using
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2 Introduction

eigenfunctions as coordinates, which are closed by definition. Deriving these directly from
data is attempted by Kaiser et al. and Korda and Mezić [1, 18].

Korda and Mezić construct the eigenfunctions by exploiting the Koopman eigenfunction
partial differential equation (PDE), extending any function on a surface of initial condi-
tions to an eigenfunction of the Koopman operator. This work expands on this method, with
developments focused around the underlying research question,

Can we construct bilinear models with nonlinear output from measurement data us-
ing optimal construction of Koopman operator eigenfunction whilst maintaining a low
computational complexity?

Chapter 2 builds up the terminology and Koopman operator theory, functioning as a literature
review on existing Koopman operator methods. This chapter ends with a detailed summary
of the method presented by Korda and Mezić and a problem statement, motivating the
aforementioned research question. These are summarised in 6 subproblems.

Chapter 3 presents an alternative approach to solving the optimisation problem presented
in the original method, whilst simultaneously reducing the constructed system order. The
proposed approach shows a close relationship between DMD and Estimation of Signal Pa-
rameters via Rotational Invariance Techniques (ESPRIT) [19]. The method is numerically
tested and compared to the original results by Korda and Mezić for a Toy model, the Duffing
oscillator and Van der Pol oscillator.

Chapter 4 extends the constructed models by approximating a nonlinear output with a polyno-
mial output. Properties of the Koopman are exploited to include these into linear autonomous
dynamics. This model is then applied to construct a bilinear model for the forced system.
The chapter ends with a numerical investigation of these models.

We compare the constructed eigenfunctions with a eigenfunctions learned by a new neural
network architecture in Chapter 5. The learned eigenfunctions point out a clear limitation of
eigenfunction construction.

Finally, the work concludes with a discussion and outlook in Chapter 6 and a conclusion in
Chapter 7.

M.T.P. van Laarhoven Master of Science Thesis



Chapter 2

Theory and literature review

In this section, we aim to provide background theory on dynamical systems and the Koopman
operator. We do this by introducing terminology for discussion of dynamical systems and for
the identification of linear and nonlinear systems. This will follow with a definition for the
Koopman operator and relevant properties. We end wtih a summary of the literature study
on a range of numerical methods that are often used to construct a Koopman operator model
from data. We conclude with a problem statement for the present work.

2-1 Identification of dynamical systems

Identification of dynamical systems is the problem of deriving the equations that generated
the dynamics from data. In this section our objective is twofold: to introduce terminology of
dynamical systems and define the problem of system identification.

Dynamical systems

Dynamical systems aim to mathematically desribe the evolution of a set of measurements
over time. A dynamical system is typically defined by a set of states, written X , and a map
characterising the evolution over time, given by Ft. This is made explicit in the following
definition.

Definition 2.1 (Dynamical system). A dynamical system is a triplet (Ft,X , T ), con-
sisting of a state set X , a time set T and a map Ft : X → X satisfying F0(x) = x and
Ft1(Ft2(x)) = Ft1+t2(x) for all x ∈ X and t1, t2 ∈ T . Furthermore, we call the systems

• Continuous if the flow map Ft(x0) of the dynamical system is the solution at
time t ≥ 0 given a differential equation with boundary condition x(0) = x0. In
terms of the vector field f , this becomes

ẋ(t) = f(x(t)).

Master of Science Thesis M.T.P. van Laarhoven



4 Theory and literature review

• Discrete if the flow map Ft(x0) of the dynamical system is the solution at time
t ≥ 0 given a transition map f with initial condition x[0] = x0

x[k + 1] = f(x[k]).

Moreover, we call a system forced if the flow map Ft(x0, u(t)) or Ft(x0, u[k]) is depen-
dent on a time-dependent forcing u ∈ U , associated to the solution of the differential
equation or transition map with boundary condition x(0) = x0,

ẋ(t) = f(x(t), u(t)), x[k + 1] = f(x[k], u[k])

In the present work only time-independent systems are considered, for which the vector field
or transition map f is independent of the time variable t ∈ T . Describing the dynamical
system through the map f is often more useful. The vector field often has a much simpler
expression than the flow map Ft, and can often be derived from physics. We assume that this
vector field f is Lipschitz continuous, required for the uniqueness of the map Ft. That is, for
states x, y ∈ X we require

∥f(x)− f(y)∥ ≤ C∥x− y∥

for some C > 0. In particular, this often culminates in the considered state set X being
bounded.

For forced systems, the map f is often decomposed into components for classification based
on mathematical properties. The terminology for the present work is defined in Table 2-1. In
the introduction of these models, the time dependence (t) of the state variable x is dropped
for compactness. All definitions extend to discrete-time be replacing ẋ with x[k + 1] and x
with x[k]. It will be made clear in context whether a continuous-time or discrete-time model
is considered.

Table 2-1: Model types considered in the present work for a state variable x ∈ Rn, y ∈ Rm and
u ∈ Rp. We denote for the matrices A ∈ Rn×n, B0 ∈ Rn×p, C ∈ Rm×n and Bi ∈ Rn×n for
i = 1, 2, . . . , p. Furthermore, we use the notation f : Rn → Rn, h : Rn → Rm and gi : Rn → Rn

for i = 1, 2, . . . , p for the functions used in these models.

Name Evolution map Output map

Linear ẋ = Ax + B0u y = Cx

Bilinear ẋ = Ax + B0u +
∑k

i=1 uiBix y = Cx

Linear in control ẋ = f(x) + B0u y = h(x)

Control-affine ẋ = f(x) +
∑p

i=1 gi(x)ui y = h(x)

In the present work we will discuss the systems introduced in Table 2-1, and aim to identify
models of these systems from data. This data is often corrupted by some measurement noise
due to uncertainties in the sensors and unmodeled high-frequency dynamics. We will consider
measurements corrupted by white noise η ∼ N (0, σ2). The output map in Table 2-1 is then
replaced by

y = Cx+ η, or y = h(x) + η.

M.T.P. van Laarhoven Master of Science Thesis



2-1 Identification of dynamical systems 5

We will now turn to the system identification problem.

The system identification problem

The system identification problem boils down to an optimisation problem in terms of a set
of measurements and a parameterised target model. The target model will be denoted M ,
with parameters given by θ, as an element of all, possibly constrained, parameters Θ. The
target model aims to estimate the k’th future measurement from an initial given measurement
and the inputs given until the k’th time step. The parameterisation of the model is often
motivated by the goals that the model should achieve. For example, if linear control methods
are to be employed, the model can parameterised as a transfer function or by the matrix
entries of the linear model in Table 2-1.

Definition 2.2 (System identification problem). Given measurement y(i)[k] and input
sequences u(i)[k], with k = 0, 1, 2, . . . , N , indexed by i ∈ I. The identification problem
aims to find the parameters of a parameterised target model M : Θ×Rm×U×N→ Rm

through the optimisation problem

argmin
θ∈Θ

∑
i∈I

N∑
k=1

∥∥∥y(i)[k]−M(θ, y(i)[0], u(i), k)
∥∥∥

2

In the present work we assume that we have control over the measurement sequences y(i) and
input sequences u(i), making experiment design part of the identification problem.

Verification of the model on new data is a key component for understanding the validity of
the model [20]. For this purpose we will consider the variance accounted for (VAF) as a
performance measure for identified models, defined in terms of a validation sequence y[k] and
an estimated sequence ŷ[k] of length N ,

VAF(y, ŷ) = 100%×
(

1−
∑N

k=0(y[k]− ŷ[k])2∑N
k=0(y[k])2

)
. (2-1)

For linear systems one typically performs correlation analysis to gauge the performance of
model. If the model accurately captures the dynamics in a system, the residual ϵ = |ŷ[k] −
y[k]| should be uncorrelated with itself. For systems with nonlinear components, it is often
not feasible to achieve uncorrelated residuals [15], since the uncaptured dynamics have will
culminate in residuals correlated to the state. Instead, a frequentist perspective for the
residuals is often taken to analyse the performance of a nonlinear model in comparison to the
best possible linear approximation.

The system identification process is the combination of model selection, experiment design
and validation, which we summarise by the procedure presented in Figure 2-1.

Takens embedding theorem

A primary contributor to the complexity of system identification is that measurements y are
results of the composition of the evolution functions f and output functions h of the system
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6 Theory and literature review

Experiments

Model selection

y[k] = M(θ, y[0], u, k)

Validation

Training Modification

Analysis

Experiment
design

Figure 2-1: The system identification cycle, illustrating the use of data analysis for model
selection and experiment design, and then validating the constructed models.

models defined in Table 2-1. Consequently, the state dimension n could be smaller than the
measurement dimension m, limiting the information contained in the output measurements.
In 1981, Takens proved the existence of a map between time-delayed measurements and the
state dynamics of the system [21]. The importance of this embedding theorem was noted by
the field of system identification as it moved toward nonlinear identification methods [22, 23].
In this section we will state a variation of the embedding theorem, and state the consequence
of this theorem in the context of system identification.

This formulation is due to Stark [22], where we use fp to denote p repeated applications
of the evolution function in a discrete setting. We use Dr(X ) to denote the set of r-times
differentiable diffeomorphic functions on X and Cr(X ,R) to denote the r-times continuously
differentiable maps from X into R.

Theorem 2.1 (Takens embedding theorem [22]). Let X be a compact n-dimensional manifold.
If d ≥ 2n+1, the set (f, h) for which the delay embedding map ϕf,h : X → Rd is an embedding,
defined by

ϕf,h(x) :=
[
h(n) h(f(n)) h(f2(n)) · · · h(fd−1(n))

]
,

is open and dense in Dr(X )× Cr(X ,R) for r ≥ 1.

Up to this point we kept X undefined for generality. In practice X is some subset of Rn,
the conditions of compactness and X to be a manifold result in some restrictions on the
dynamics of the system. First, for finite-dimensional metric spaces with the induced topology,
compactness of a set is equivalent to being closed and bounded. It follows that the dynamics
f cannot diverge to remain properly defined. Second, X is a manifold as a subspace of Rn

when the function representing the manifold does not have any singular points, this condition
is almost always met [24].

The density in Dr(X )×Cr(X ,R) means that ϕf,h is not necessarily an embedding for all pairs
f , h. However, an embedding that is arbitrarily close to ϕf,h can be constructed such that

M.T.P. van Laarhoven Master of Science Thesis



2-1 Identification of dynamical systems 7

for ϵ > 0, there exist f ′ ∈ Dr(X ) and h′ ∈ Cr(X ,R) such that ∥f − f ′∥∞ < ϵ, ∥h− h′∥∞ < ϵ
and ϕf ′,h′ is an embedding.
A function ϕ is an embedding if it maps X diffeomorphically onto its image. On a compact
manifold this is equivalent to both ϕ and its derivative being injective on X . Hence, one can
define f ′ := ϕ ◦ f ◦ ϕ−1 as the evolution map in time-delay coordinates. Because ϕ is an
embedding, this is well-defined with dynamics that are equivalent to the original system.
The work of Stark extends Theorem 2.1 to forced systems, both with known and unknown
input signal dynamics. In particular, this yields an embedding of the form

ϕf,h,u(x) :=
[
h(x[k]) h(x[k − 1]) h(x[k − 2]) · · · h(x[k − d+ 1])

]
. (2-2)

For specific inputs, the above delay embedding does not satisfy the density result in The-
orem 2.1. However, it does for a dense subset of the possible inputs u ∈ U . This yields
equivalent dynammics in delay coordinates,

z[k + 1] = ϕf,h,u

(
f(ϕ−1

f,h,u(z[k]), u[k])
)
.

We summarise this in Corollary 2.1

Corrollary 2.1 (Takens embedding for input-output systems). Given a discrete-time input-
output system

x[k + 1] = f(x[k], u[k]),
y[k] = h(x[k]).

This yields an associated system in time-delay coordinates for almost all u[k] ∈ U ,

z[k + 1] = f ′(z[k], u[k])
z[k] = ϕ(x[k])

Where ϕ satisfies the conditions is defined as in Equation (2-2).

In the context of system identification this implies that if we have a some convergent algo-
rithm estimating the dynamic with time-delay coordinates, that this limit will have dynamics
equivalent to the underlying system. We work out the delay embedding dynamics for a linear
system in the following example.

Example 2-1.1 (Linear system). Consider a linear system of the form

x[k + 1] = Ax[k] +Bu,

y[k] = Cx[k].

The embedding ϕ becomes

ϕ(x[k]) =


C
CA
CA2

...
CAd−1

x[k] +


0 0 · · · 0
CB 0 · · · 0
CAB CB · · · 0

...
... . . . ...

CAd−2B CAd−3B · · · CB


︸ ︷︷ ︸

KB


u[k]

u[k + 1]
...

u[k + d− 2]

 .

Master of Science Thesis M.T.P. van Laarhoven



8 Theory and literature review

Then, to find ϕ−1 we aim to find a solution for x[k] in

z[k]−


0 0 · · · 0
CB 0 · · · 0
CAB CB · · · 0

...
... . . . ...

CAd−2B CAd−3B · · · CB




u[k]

u[k + 1]
...

u[k + d− 2]

 =


C
CA
CA2

...
CAd−1


︸ ︷︷ ︸

Od

x[k].

This has a solution for x[k] if the matrix Od has a left-inverse. This left-inverse exists as the
pseudo-inverse O†

d if Od has full column rank, which is the case if the system is observable
and d ≥ n.

For our example, take d = n for n = 3. Then,

x[k + 1] = AO†
dz[k]−AO†

d

 0 0 0
CB 0 0
CAB CB 0


 u[k]
u[k + 1]
u[k + 2]

+
[
B 0 0

]  u[k]
u[k + 1]
u[k + 2]

 .
We define A′ = OdAO†

d, to find

z[k + 1] = A′z[k] − A′

 0 0 0
CB 0 0
CAB CB 0


 u[k]
u[k + 1]
u[k + 2]

 +

 CB 0 0
CAB CB 0
CA2B CAB CB


 u[k]
u[k + 1]
u[k + 2]

 .
We conclude that a linear system yields a linear system when viewed in time-delay coordinates.

2-2 Example systems

In this work we will consider three systems for which we illustrate the presented concepts
and test the developed numerical methods. Each of these models serves their own purpose
and poses specific difficulties for the developed methods. The vector fields are presented in
Figure 2-2.

Toy model

This Toy model was originally proposed by Tu et al., serving an illustrative role in the context
of Koopman operator methods [17]. The vector field of this model is given by,

ẋ1 = νx1 + u

ẋ2 = σ(x2 − x2
1).

This model is relatively simple, and has dynamics reminiscent to those of linear systems. The
vector field is presented in Figure 2-2, illustrating the attractive single point for ν = −0.4
and σ = −0.5.

M.T.P. van Laarhoven Master of Science Thesis



2-2 Example systems 9

−1 0 1

x1

−1

0

1

x
2

Toy model

−1 0 1

x1

Duffing oscillator

−1 0 1

x1

Van der Pol oscillator

Figure 2-2: Vector field of the Toy model, Duffing oscillator and Van der Pol oscillator.

Duffing oscillator

The Duffing oscillator can be interpreted as a mass-damper system with a nonlinear spring
[24]. The model is often used as an example of a symple system that expresses chaos. This is
the format presented by Korda and Mezić [1].

ẋ1 = x2

ẋ2 = −0.5x2 − x1(4x2
1 − 1) + u

This vector field has three fixed points located at (x1, x2) = (−0.5, 0), (x1, x2) = (0.5, 0) and
at (0, 0). The fixed point at (x1, x2) = (0, 0) is unstable, while the others are stable. The two
stable fixed points introduce interesting dynamics into the system, since the attractive regions
of the two fixed points cause the dynamics of close initial conditions to diverge towards the
two different fixed points.

Van der Pol oscillator

The Van der Pol oscillator is a nonlinear system originally investigated in the context of
electronics [25]. We use the format presented by Korda and Mezić [1].

ẋ1 = 2x2

ẋ2 = −0.8x1 + 2x2 − 10x2
1x2 + u

This model has a single unstable fixed point at the origin. This model poses two difficulties in
the context of identification: For one, the system has a periodic orbit, introducing difficulties
into identification problems, as any error in the initial state estimate at t = 0 will not disappear
over time. Secondly, the vector field for states ∥x∥ > 1 is much larger than for states ∥x∥ < 1,
putting requirements on the step size for both regions.
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10 Theory and literature review

2-3 Koopman Operator

In this section we aim to define the Koopman operator. For this, we first define a few key terms
from functional analysis, providing a mathematical framework for the Koopman operator.

Linear Operators

Linear operators aim to generalise the properties of matrices to infinite-dimensional Banach
spaces. Banach spaces are closed spaces with a distance measure, the metric. We set the
stage by giving a few background definitions [26].

Definition 2.3 (Linear Operator [26]). A linear operator A from Banach Spaces M
to N is a pair (A,D(A)), with the domain D(A) a subspace of M and A : D(A)→ N
a bounded linear operator. That is, for x, y ∈M and α, β ∈ C, we have

A(αx+ βy) = αAx+ βAy.

Furthermore, we have ∥Ax∥ ≤ c∥x∥ for some c ≥ 0 and all x ∈ D(A). The set of linear
operators on M to N is denoted L(M,N).

One of the main features of matrices is the information contained in eigenvalues and eigenvec-
tors. One can extend their definition to the realm of infinite-dimensional operators. However,
the determinant does not lend itself for the extension to infinite dimensions. Instead, we con-
sider that for a matrix A, an eigenvalue λ makes A− λI not invertible. This is the definition
that is generalised for linear operators.

Definition 2.4 (Resolvent and spectrum [26]). The resolvent set ρ(A) of a linear
operator A on X is the set of λ for which λI −A has a bounded two-sided inverse,

ρ(A) := {λ ∈ C : ∃U ∈ L(X) with U(λI −A)x = x = (λI −A)Ux}.

The spectrum is the complement of the resolvent

σ(A) := C\ρ(A).

The spectrum of linear operators is significantly more intricate than those of matrices. A
range of classification methods exist for λ in the context of dynamical systems. However, this
is beyond the scope of the present work.
The Koopman operator really is an element of a family of operators, called a C0-Semigroup.
A C0-Semigroup is effectively a generalisation of the exponential function. The properties of
the exponential function extend themselves directly to a definition for the C0-Semigroup.

Definition 2.5 (C0-Semigroup [26]). A family S = {St}t≥0 of bounded operators on
M is a C0-semigroup if

1. S0 = I
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2-3 Koopman Operator 11

2. StSs = St+s for all t, s ≥ 0

3. limt↓0 ∥Stx− x∥ = 0 for all x ∈M

The generator of the C0-semigroup is the operator L defined

D(L) := {x ∈M : lim
t↓0

1
t
(Stx− x) ∈M}

Lx := lim
t↓0

1
t
(Stx− x)

The relationship between the definition of the C0-Semigroup and the exponential function
will become more clear once the Koopman operator is introduced.

Spectral decomposition

A core result in linear systems is the spectral decomposition theorem, allowing a matrix to
be defined in terms of the action on its eigenvectors. This decomposition theorem can be
extended to linear operators, with a few modifications. For a normal n × n matrix A with
eigenvalues λi, the spectral decomposition reads

A =
n∑

i=1
λiPλi

,

with Pλi
the projection matrix onto the span of the eigenvector associated to λi [26].

For normal linear operators a similar result can be stated in terms of the action on x

Ax =
∑
i≥0

λiPλi
x︸ ︷︷ ︸

atomic

+
∫
λ d (Ec(λ)x)︸ ︷︷ ︸
continuous

.

The integral term emerges due to the infinite-dimensionality of the operator. A detailed
discussion of the spectral properties of linear operators is beyond the scope of the present
work.

The Koopman Operator

The core idea of the Koopman operator is to take a nonlinear, continuous finite-dimensional
system and trade in the nonlinearity of the system for infinite-dimensional linearity.

Definition 2.6 (Koopman operator on G(X )). Given an autonomous continuous-time
dynamical system (Ft,X , T ), the associated Koopman operator Kt : G(X ) → G(X ) is
the C0-semigroup defined by

Ktg(x) := g(Ft(x)).

Effectively, the Koopman operator takes an input function g and propagates it forward in time
using the flow map Ft. The flow map typically is the solution of an associated differential
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12 Theory and literature review

equation ẋ = f(x(t)), given an initial condition. Hence, the benefit of the Koopman operator
is not directly clear. The benefits of the operator lie in the linearity of the operator,

Kt(αg(x) + βh(x)) = αKtg(x) + βKth(x).

By projecting the infinite-dimensional operator to a finite-dimensional subspace, the operator
becomes a matrix. This allows for numerical methods to be implemented for nonlinear systems
on this finite-dimensional projection. For example, the linearity of the operator allows for
spectral analysis of the system. And, by extension, imposes structure in the identification
for linear models of nonlinear systems. The time propagation is summarised in the following
schematic,

x(t)

g(x(t))

x(t+ s)

g(x(t+ s))

g

Ks

Fs

g

Instead of first propagating the state in time, and then taking applying the observation
functino, the observation function is applied, and then propagated in time afterwards. Ul-

X C
x[0]

x[1]

x[2]

x[N ] g(x) y[0]
y[1]

y[2]
y[N ]

x(t) = Ft(x(0) y(t) = Ktg(x(0))

Figure 2-3: The Koopman operator lifts the nonlinear dynamics in a state space X to an infinite-
dimensional G(X ), with linear dynamics. The pointwise values in C propagate linearly in time.

timately the Koopman operator transforms the dynamics of a finite-dimensional nonlinear
system with x ∈ X to an infinite-dimensional linear system with χ ∈ G(X ). Hence, we
transform the nonlinear model into a linear model,

ẋ = f(x) ↔ χ[k + 1] = Kχ[k].

Where the dynamics at a state x can be analysed by the map x 7→ χ(x).

Properties

The primary reason for the investigation of the Koopman operator is the discussion of the
associated spectral properties. We will show that these have a close analogue to linear systems

M.T.P. van Laarhoven Master of Science Thesis



2-3 Koopman Operator 13

through the generator of the Koopman operator. An eigenfunction is any function φ ∈ G(X )
satisfying

Kτφ = λτφ.

These eigenvalues satisfy an important algebraic property. Note that the time dependence
of the eigenvalue is solely determined by the exponent τ , we will motivate this later in this
section.

Proposition 2.1 (Koopman operator eigenvalues). Suppose φ1, φ2 ∈ G(X ) are nonzero
eigenfunctions of the Koopman operator with eigenvalues λ1 and λ2 respectively. Suppose
φn

1 , φ
m
2 ∈ G(X ), then, φn

1φ
m
2 is also an eigenfunction with eigenvalue λn

1λ
m
2 for n,m ∈ Z.

In addition, λ∗
1 is also an eigenvalue with eigenfunction φ∗

1.

Proof. Let φ1, φ2 ∈ G(X ) be nonzero eigenfunctions of the Koopman operator Kτ , with
eigenvalues λ1 and λ2 respectively. Let n,m ∈ Z such that φn

1 , φ
m
2 ∈ G(X ). Then,

Kτφ
n
1φ

m
2 = (φn

1φ
m
2 ) ◦ Fτ = (φ1 ◦ Fτ )n(φ2 ◦ Fτ )m = λn

1λ
m
2 φ

n
1φ

m
2 .

We conclude that φn
1φ

m
2 is also an eigenfunction with eigenvalue λn

1λ
m
2 .

The second property can be derived from

Kτφ
∗
1 = φ∗

1 ◦ Fτ = (φ1 ◦ Fτ )∗ = λ∗
1φ

∗
1.

From which we conclude that φ∗
1 is an eigenfunction with eigenvalue λ∗

1.

The above proof works for n,m ∈ R as well. However, in the context of complex-valued
functions an appropriate branch cut should be chosen. In our work we only need this property
for integer multiples. The assumption that φn

1φ
m
2 ∈ G(X ) is required to ensure that the

eigenfunction actually exists in the function space. For example, continuous functions do not
necessarily have a continuous inverse, relating to the n = −1 in Proposition 2.1.

The generator of the Koopman C0-Semigroup is, by definition,

Lg := lim
τ→0

g ◦ Fτ − g
τ

= lim
τ→0

g(x(t+ τ))− g(x(t))
τ

= d
dtg(x(t)). (2-3)

Here we consider x(t) as a given trajectory, satisfying the differential equation ẋ = f(x). We
can compute the derivative further,

d
dtg(x(t)) = ∇g · ẋ(t) = ∇g · f(x). (2-4)

It is often noted that this is the Lie derivative of g along the vector field f [16, 27]. This lends
itself to continuous-time eigenfunctions of the generator,

Lφ(x) = d
dtφ = µφ(x) (2-5)

In particular, any eigenfunction φ of the Koopman operator is also an eigenfunction of the
generator,

Lφ = lim
τ→0

Kτφ− φ
τ

= lim
τ→0

λτ − 1
τ

φ = log(λ)φ.
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14 Theory and literature review

For an eigenfunction φ we conclude that discrete-time eigenvalues λτ and continuous-time
eigenvalues µ of a system are related by λ = eµ. This is the same relationship satisfied
by eigenvalues of a discretisation of a continuous-time linear system. We often work with
both µ and λ, throughout this work the notation will be kept consistent, with µ referring to
continuous-time eigenvalues and λ referring to discrete-time eigenvalues respectively.

In particular, we emphasise that Equation (2-5) leads to a useful insight. If a boundary
condition for the eigenfunction at time t = 0 can be given, the differential equation can be
solved by propagating the initial condition forward in time. That is, given φ(x0) at t = 0, we
have that

eµtφ(x0) = λtφ(x0)

is a solution of the differential equation.

The linear properties of the Koopman operator allow for a spectral decomposition of the
operator. That is, given a set of eigenfunctions

Φ = {φ ∈ G(X ) : Kτφ = λτφ},

the action of the Koopman operator on an observation function g can be computed by pro-
jection onto the eigenfunctions as

Kτg =
∑
k≥1

λτφiPφig =
∑
k≥1

λτφi⟨φi|g⟩. (2-6)

Or, equivalently in continuous-time,

Lg =
∑
k≥1

µφiPφig =
∑
k≥1

µφi⟨φi|g⟩

Examples

To illustrate the properties of the Koopman operator we investigate the eigenfunctions of two
systems. In particular, we investigate the Toy model and Van der Pol oscillator, introduced
in Section 2-2. For these systems, the partial differential equation (PDE) in Equation (2-5)
can be solved by the method of characteristics [28]. It is rarely mentioned by authors that
this is possible. This raises the question whether insights can be recovered from comparing
the results of numerical methods for the Koopman operator with these analytical expressions.

Example 2-3.1 (Toy model). We solve the problem for the generalised form of the Toy
model presented in Section 2-2. Given the differential equations,

ẋ1 = νx1,

ẋ2 = σ(x2 − x2
1),

We can solve the eigenfunction PDE in Equation (2-5) analytically,

µφ = ⟨∇φ|f⟩

= νx1
∂φ

∂x1
+ σ(x2 − x2

1) ∂φ
∂x2
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2-3 Koopman Operator 15

This equation can be solved by the method of characteristics. This yields the following set of
ordinary differential equations (ODEs),

dx2
dx1

= σ(x2 − x2
1)

νx1
,

dφ
dx1

= µφ

νx1
,

x2(x1) = c1x
σ/ν
1 + σ

σ − 2ν x
2
1,

φ(x1) = c2x
µ/ν
1 .

Along the curve x2(x1) we have φ(x1) = c2x
µ/ν
1 . Now, c2 can be a function of c1, so that

c2 = h(c1) = h

(
x2 − σ

σ−2νx
2
1

x
σ/ν
1

)
.

This yields the general solution for φ, given an arbitrary eigenvalue µ,

φµ = x
µ/ν
1 h

(
x2 − σ

σ−2νx
2
1

x
σ/ν
1

)

Two simple eigenfunctions can be derived from this expression.

φ1 = x1,

φ2 = x2 −
σ

σ − 2ν x
2
1,

with µ1 = ν and h(s) = 1,
with µ2 = σ and h(s) = s.

These eigenfunctions are desirable in the approximation of the underlying dynamics, since on
domains with |x1| < 1, the original states x1 and x2 are approximated relatively well by these
two eigenfunctions.

Proposition 2.1 raised the question whether there exists a finite set of eigenfunctions that can
be used to construct all other eigenfunctions. The previous example serves as a counterexam-
ple to this question. In fact, the entire construction put no requirements on µ and h, making
the set of eigenvalues and eigenfunctions uncountably large.

Example 2-3.2 (Van der Pol oscillator). The general form of the Van der Pol oscillator is
typically given in terms of a single parameter ν [25],

ẋ1 = x2,

ẋ2 = ν(1− x2
1)x2 − x1

Applying the method of characteristics, we find the following set of ODEs,
dx2
dx1

= ν(1− x2
1)− x1

x2
,

dφ
dx1

= µφ

x2
,

x2(x1) = −ν4x
3
1 + ν

2x1 + c1
x1
,

φ(x1) = c2e
µx1 .

Solving for the constant c2 along the curve of x2 in the above expression yields the following
expression for the eigenfunctions of the Van der Pol oscillator

φ(x1, x2) = eµx1h

(
x1x2 + ν

4x
4
1 −

ν

2x
2
1

)
.

It is not directly clear what functions h yield desirable properties for the reconstruction of
the underlying dynamics.
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16 Theory and literature review

2-4 Numerical methods for the Koopman operator

The ability of the Koopman operator to capture nonlinearities with linear models leads to the
developments of numerical methods for the identification of the Koopman operator. In this
section we give a brief overview of methods building on the development of Dynamic Mode
Decomposition (DMD) by Williams et al. [4].

Finite-dimensional projection

In the context of numerical methods for the Koopman operator, we aim to approximate the
infinitedimensional operator K, acting on G(X ) by a finite-dimensional approximation Kτ ,
acting on a subspace of G(X ). This boils down to truncating the infinite series expansion in
Equation (2-6) to a finite set of eigenfunctions based on the choice of the subspace considered.
The original developments on DMD take the space of observation functions g(x) = x as the
considered subspace, and extended DMD (eDMD) expands on this by augmenting the space
with a prior dictionary of observation functions.
The projection of the Koopman operator on this subspace might not be closed however. This
is clearly illustrated through an example by Kaiser et al. [18]. We consider the continuous-
time Toy model presented in Section 2-2. For illustrative purposes we consider the generator
projected onto the span of observables given by span

(
{x1, x2, x

2
1x1x2x

2
2}
)
. Decomposing onto

these coordinates yields

d
dt


x1
x2
x2

1
x1x2
x2

2

 =


ν 0 0 0 0
0 σ −σ 0 0
0 0 2ν 0 0
0 0 0 ν + σ −σ
0 0 0 0 2σ




x1
x2
x2

1
x1x2
x2

2

+


0
0
0
0

−2σx2
1x2


The residual term of −2σx2

1x2 gives perturbations in the generator and associated Koopman
operator. As a consequence, the associated eigenfunctions are perturbed and do not behave
linearly in the underlying system. If the estimate is to be used for prediction, it is therefore
paramount to choose the observable coordinates such that linearity for the eigenfunctions is
recovered. Another way of framing this problem, is to require the choice of basis functions to
span a Koopman-invariant subspace.

Dynamic Mode Decomposition

In this section we aim to introduce DMD and illustrate the relation to the Koopman operator.
We define a matrix of state measurements X, and its one step ahead measurement X+. DMD
then aims to identify a matrix Â satisfying X+ = ÂX by solving the least squares problem
minÂ ∥X

+ − ÂX∥2. The solution of this optimisation problem can be computed directly by
performing a singular value decomposition (SVD) on

X = UΣV ∗,

to obtain a solution
Â = U∗X+V Σ−1.
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2-4 Numerical methods for the Koopman operator 17

The eigenvalues λi and eigenvectors wi of Â can be used to construct DMD-modes through

ϕ̂ = X+V Σ−1w.

Note that the original definition used to define the modes Uw. However, then the eigenvectors
lie in the range of X instead of X+ and are therefore not true eigenvectors of A. If the data
was generated by linear dynamics, x[k + 1] = Ax[k] then these modes are the eigenvalue-
eigenvector pairs of the projection of A onto the range of X+ [17]. The algorithm is presented
in Algorithm 1. A range of variations on Algorithm 1 exist for better insight or to gain

Algorithm 1: Dynamic Mode Decomposition
Input : Measurement data matrix pair (X,X+)
Output: Evolution map Â and a set W of DMD modes (λ, ϕ)
(U, S, V )← SVD(X)
Â = U∗X+V S−1

// Extract eigenvalue-eigenvector pairs and compute associated DMD mode

for λ,wλ in eig(Â) do
(λj , ϕj)← (λ,X+V S−1wλ)

end
return (λj , ϕj), Â

a computational advantage if the measurement series is sequential. The key observation
connecting DMD and the Koopman operator is that we can write the state in terms of the
dynamic modes ϕj with amplitudes vj ,

x[k] =
n∑

j=1
λk−1

j vjϕj .

Numerical methods

The effectiveness of DMD for the analysis of fluid dynamics problems spawned a broad range
of modifications. In Table 2-2 an overview for these methods is provided. These modification
range from the ability to deal with stochastic perturbations [29], adaptations for systems with
specific mathematical properties [30–32], specific techniques for construction of models [6, 33]
to models adapted to the control of nonlinear systems [5, 14].

We emphasised works focussing on the construction of models that are invariant on the
considered subspace. One can achieve this by explicitly constructing models that are restricted
to the space of eigenfunctions. These eigenfunctions can be constructed through deep learning
[35, 36], or by modifying a prior subspace [18, 34]. The work by Korda and Mezić poses a
method to exploit the Koopman PDE, constructing eigenfunctions directly from data in such
a way that their span optimally recovers the underlying state measurements [1].

Master of Science Thesis M.T.P. van Laarhoven



18 Theory and literature review

Table 2-2: Discussed methods in this section, satisfying objective properties based on discussion:
1. “✓” discussed in detail, 2. “‡” discussed briefly, 3. “-” not discussed. Invariance implies
whether the constructed subspace is invariant to the Koopman operator. Properties of the method
are characterised by 1. “+” if it holds , “=” if it holds under additional assumptions and “-” if
does not hold. Lastly, the methods are characterised by design goal, “A” for analysis, “T” for
theory, “P” for prediction and “C” for control. If an error analysis was performed, the associated
performance metric is presented. Note that this performance metric cannot be compared between
methods due to different error definitions.
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ncDMD, fbDMD, tlsDMD [29] ✓ - - ✓ - - - - - A 10
subDMD [6] ✓ - - ✓ - - - - - A 5

Measure-preserving DMD [30] ✓ - - ✓ ✓ - - + = A 15
piDMD [31] ✓ - ‡ ✓ - - - + = A -

Exploiting symmetry [32] - - - - - - - = + T -
Pruning of eigenfunctions [34] ✓ - ‡ ‡ - ‡ - + - A 1

Deep learning of eigenfunctions [35] ✓ - ‡ - ✓ ✓ + + - A/P 10
Eigenflows [36] - - ‡ - - ✓ + + + P 1

SSD [33] - - - ‡ - ✓ - - - P 20
eDMD with control [14] - ✓ - - - - - - - A -

eDMD for MPC [5] ✓ ✓ ✓ ‡ - - - - - C/P 25
KRONIC [18] - ✓ - ✓ - ✓ - = - C/P -

Eigenfunction construction [1] - ✓ ‡ ‡ - ✓ - = - C/P 4
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2-5 Eigenfunction construction 19

2-5 Eigenfunction construction

The differential equations of the Koopman eigenfunctions can be exploited to construct eigen-
functions using interpolation, instead of using a function dictionary. The work in this section
was originally developed by Korda and Mezić [1]. We summarise their developments and
indicate points for research.

Theory

The core idea is to exploit the time-independence of the differential equation in Equation (2-
5). In this section we aim to construct an optimisation problem that uses the simplicity of
this differential equation by considering a set of initial conditions Γ ⊆ X . For simplicity, we
first consider an arbitrary time-independent nonlinear system on X = Rn of the form

ẋ = f(x) (2-7)

Furthermore, we assume that the entire state x is available as measurements. On the set of
initial conditions Γ, we assume that complex-valued continuous functions g ∈ C(Γ), that, by
definition, propagates linearly through Equation (2-5). Thus, given g0 = g(x0) at t = 0, the
dynamics are propagated linearly through time,

ψ(t) = eµtg0 = eµtφ(x(0))

at t > 0. The function ψ is the time evolution of an eigenfunction φ over time, with as-
sociated eigenvalue µ. This eigenvalue µ is then an eigenvalue of the Koopman generator.
The expression can be interpreted as the propagation of a function g on Γ propagated along
trajectories of the system, illustrated in Figure 2-4. It remains to relate x(t) back to ψ(t).
That is, find the eigenfunction φ satisfying the equality φ(x(t)) = ψ(t).

Γ

g(Γ)
x(0)

g(x(0)) = ψ(0)

x(t1)

ψ(t1)

x(0) x(t1) x(t)

ψ(t)

ψ(t1)

Figure 2-4: The trajectory traced by the function ψ(t), starting from an initial condition x(0) ∈ Γ
can be unfolded along the trajectory x(t) to obtain a linear evolution starting from an arbitrary
function g on Γ.

Before we solve the problem of recovering φ from ψ, we introduce notation to formally define
φ. We define a function ν(x) denoting the minimum time it takes to reach a given state x
from the initial set Γ along the flow of the system, ν : X → T . That is,

ν(x) = inf
t∈T
{t : F−t(x) ∈ Γ}
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Using this notation we can define the eigenfunction φ on the state space X , given that the
trajectory originated from Γ,

φ(x) = λν(x)g(F−ν(x)(x)). (2-8)

The eigenfunction effectively transports x back along the flow of the system to the set Γ, where
it is lifted, and then propagated forward in time again. This is illustrated in Figure 2-5.

Γ

g(Γ)
x(0)

g(x(0))

x

φ(x)

F−ν(x)

λν(x)

Figure 2-5: To construct an eigenfunction we translate x back along the flow Ft of the system,
until it reaches the set Γ, where the state is lifted and propagated forward in time to find φ(x).

We assumed to have control over our experiments, and hence we can perform experiments
such that we obtain a number of trajectories originating from a set of initial conditions Γ.
Given a trajectory x(i) with index i, originating at x(i)[0] ∈ Γ, each subsequent measurement
x(i)[k] is is related back to x(i)[0]. Hence given a discrete-time Koopman eigenvalue λ and
g(x(i)[0]) we have

φ(x(i)[k]) = λkτg(x(i)[0]), (2-9)

where τ is the time interval between measurements.

Theorem 2.2. Equation (2-8) constitutes an Koopman generator eigenfunction with eigen-
value µ = log λ of an autonomous system,

ẋ = f(x)

Proof. We first compute the derivative along a trajectory x(t). Then,

d
dtφ = g(F−ν(x)(x)) d

dtλ
ν(x) + λν(x) d

dtg(F−ν(x)(x))

= log (λ)λν(x)g(F−ν(x)(x)) + 0
= log (λ)φ.

We used that d
dtν(x) = d

dt t = 1 along a trajectory of the system. Similarly, F−ν(x)(x) = x(0)
remains constant along a trajectory of the system. Hence we can conclude that φ is an
eigenfunction of the autonomous system.

Given an arbitrary input-output system,

ẋ = f(x, u)
y = h(x).
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Korda and Mezić aim to derive a seperate model for each output variable y, with linear
propagation of the eigenvalues. The assumption is that the system in lifted coordinates is
linear, and that the measurement variable is a linear combination of the eigenfunctions,

y = c1φ1(x) + c2φ2(x) + · · ·+ cNgφNg (x).

Casting this into a standard linear model, this becomes

χ[k + 1] =


λτ

1 0

0 λτ
2

. . .
. . . . . . 0

0 λτ
Ng

χ[k] +Bu[k]

χ[k] =
[
φ1(x[k]) φ2(x[k]) · · · φNg (x[k])

]⊺
y[k] =

[
1 1 · · · 1

]
︸ ︷︷ ︸

C

χ[k].

(2-10)

The eigenfunctions φj are propagated through time using their eigenvalues, yielding a diagonal
evolution matrix. The observation matrix C has a 1 in every entry, since the coefficients cj

for a linear combination can be absorbed into the functions φj .

Note that if this method is applied to estimate the original state variable x, one estimates n
models to ccompute the reconstruct the entire state variable.

Data equation

We presented a method to construct an eigenfunction, but have left the choice of the eigenval-
ues λj and initial conditions g(x(0)) open. In this section we aim to derive these eigenvalues
and initial conditions from measurement data. We assume the availability of two datasets,
one with, and one without forcing. We first consider the dataset without forcing, for which
the linear model in Equation (2-10) lends itself to a data equation,


y[0]
y[1]
y[2]

...
y[N ]

 =


C
CA
CA2

...
CAN




g1(x[0])
g2(x[0])
g3(x[0])

...
gNg (x[0])

 =



1 1 · · · 1
λτ

1 λτ
2 · · · λτ

Ng

λ2τ
1 λ2τ

2 · · · λ2τ
Ng

...
... . . .

λNτ
1 λNτ

2 λNτ
Ng


︸ ︷︷ ︸

Λ


g1(x[0])
g2(x[0])
g3(x[0])

...
gNg (x[0])

 .

The matrix Λ is a Vandermonde matrix, typically arising in signal analysis problems [19].
This data equation is used by Korda and Mezić to construct an optimisation problem for
the eigenvalues λj and function values gj for individual measurement variables y. To find
a parameterisation for g, we find a range of initial conditions on Γ by augmenting the data
with additional trajectories. These trajectories are included into the optimisation problem by
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horizontal stacking of the data equation

min
λj ,gj

∥∥∥∥∥∥∥∥∥∥


y(1)[0] y(2)[0] · · · y(q)[0]
y(1)[1] y(2)[1] · · · y(q)[1]

...
... . . . ...

y(1)[N ] y(2)[N ] · · · y(q)[N ]

− Λ


g1(x(1)[0]) g1(x(2)[0]) · · · g1(x(q)[0])
g2(x(1)[0]) g2(x(2)[0]) · · · g2(x(q)[0])

...
... . . . ...

gNg (x(1)[0]) gNg (x(2)[0]) · · · gNg (x(q)[0])


∥∥∥∥∥∥∥∥∥∥
.

(2-11)
This optimisation problem is not convex, and thus requires specialised optimisation methods
to prevent finding a local minimum. Korda and Mezić solve the optimisation problem using
a descent method, initialised by the eigenvalues found by DMD to find a solution.

Interpolation

The data equation leads to estimates for g on the surface Γ, together with eigenvalues λ.
Combining these with the known evolution presented in Equation (2-9), we can formulate
an optimisation problem for the eigenfunctions φ. For each eigenvalue λτ

i , the optimisation
problem becomes

min
φ

q∑
j=1

N∑
k=0
∥φi(x(j)[k])− λkτ

i gi(x(j)[0]).

Each mode is used to propagate the function g on Γ over the state space, along the training
trajectories. The optimisation problem is a functional optimisation problem, having a function
as a solution. One can solve this by using interpolation to construct φ for the entire state
space X , through the use of basis functions, or by other methods such as sparse optimisation
[37].

Implementing control

The autonomous dynamics can now be augmented by implementing a forcing input into the
system, using a dataset where a forcing was present. By assuming that the forcing is addi-
tive, the knowledge of the evolution matrix A can be used to compute another optimisation
problem. The measurement yi at time instance k can be written in terms of the initial state
and the time evolution.

y[k] = CAkχ[0] +
k−1∑
j=0

CAk−j−1Bu[j].

The measurements y are known and the lifted state χ[0] can be computed using the estimated
eigenfunctions φj(x[0]). The control input gain B is the only unknown in this expression, since
the matrices A and C were computed in the previous subsection. We rewrite this expression
in vectorised form,

min
B

N∑
k=1

∥∥∥∥∥∥y[k]− CAkχ[0] +
k−1∑
j=0

(
u⊺[j]⊗ (CAj)

)
vec(B)

∥∥∥∥∥∥ . (2-12)
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Nt trajectories from Γ Eigenfunction responses

7→

Interpolated eigenfunctions

χ[k + 1] = Aχ[k] +Bu[k]
y[k] = Cχ[k]

Optimisation

Interpolation

Multi-step
prediction

Figure 2-6: Diagram summarising the procedure by Korda and Mezić for the construction of a
linear model through eigenfunction construction.

This is a least squares optimisation problem. To denote the solution, we define the matrices

θ =


y[1]− CAχ[0]
y[2]− CA2χ[0]

...
y[N ]− CANχ[0]

 , and Θ =


u⊺[0]⊗ C

u⊺[0]⊗ (CA) + u⊺[1]⊗ C
...∑k−1

j=0
(
u⊺[j]⊗ (CAj)

)

 .

Then B can be recovered by computing

B = vec−1(Θ†θ)

Summary

The entire procedure by Korda and Mezić is summarised in Figure 2-6. By exploiting a set of
sequences originating from a known subset of initial conditions Γ ⊆ X , one can formulate an
optimisation problem mirorring the eigenfunction PDE in Equation (2-5). The relationship
of the eigenfunction dynamics to locations in the state-space result in a simple optimisation
problem, allowing the eigenfunctions to reduce to interpolated values.

2-6 Koopman eigenfunction evolution for forced systems

Before concluding this chapter, we investigate the effect of an external forcing signal on the
Koopman operator estimates. The Koopman operator is only defined for autonomous systems,
since it assumes that the flow map Fτ of the dynamical system is only dependent on the state
of the system. In this section we aim to extend the definition of the Koopman operator to
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deal with a control input. There are two ways to approach this, one through a modification
of the flow map Ft, and the other through the generator, applying Equation (2-4) to move
the vector field f into continuous-time dynamics of the observation functions.

The flow map Fτ can be modified to introduce a time-independent forcing u ∈ U into the
dynamics over a time interval τ , x(t+ τ) = Fτ (x(t)). In this case, the Koopman operator Kτ

becomes dependent on the given input u. That is,

Kτ (u)g(x) := g ◦ Fτ (x, u).

This constitutes a 2-parameter group of operators, being a C0-Semigroup in the coordinate τ .
There is less structure in this problem, and consequently there appears to be limited work on
such operator groups. For our purposes, this leads to linear parameter varying (LPV) models
of the form

χ[k + 1] = Kτ (u)χ[k],

with scheduling variable u. Unfortunately this poses little structure to decompose Kτ (u) into
parts without prior knowledge on the underlying system.

Instead we consider the generator definition, which allows us to apply Equation (2-4) to
construct a Koopman model based on knowledge of the underlying vector field. As an example,
we consider the systems discussed in Table 2-1. For systems that are linear in control, we
have

Lg = ⟨∇g|f +Bu⟩ = (∇g)⊺f + (∇g)⊺Bu

For systems that are affine in control, we have

Lg = ⟨∇g|f + ηu⟩ = (∇g)⊺f + (∇g)⊺ηu

Following the differential equation in Equation (2-3) we need to integrate the forced generator
definition over time. Given a constant input signal u, this is highly dependent on the un-
derlying system. Instead, we can use a first-order Euler integration method to approximate
the discrete-time evolution. We use the notation φ[k] to denote the evolution of a single
eigenfunction over time. Then,

φ[k + 1] ≈ φ[k] + τ
d
dtφ[k]︸ ︷︷ ︸

φ[k]◦Fτ

+τ(∇φ[k])⊺ηu[k] ≈ λτφ[k] + (∇φ[k])⊺ηu[k].

The terms φ,∇φ and ν are functions on the state space X , or equivalently, an element of
an infinite-dimensional vector space. Under the assumption that the gradient lies in the
span of eigenfunctions, (∇φ)⊺η ∈ span(φi), we can write this as a bilinear system in infinite-
dimensional coordinates,

φ[k + 1] ≈ λτφ[k] + τBφ[k]u[k].

In this expression, the operator B acts on φ[k] so that Bφ[k] = τ(∇φ)⊺η.
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2-7 Conclusion and Problem statement

Interpretable black-box linear models for nonlinear systems

Koopman operator methods are typically applied to construct linear models of nonlinear sys-
tems and bear a close resemblance to linear methods for system identification. The estimates
for the finite-dimensional projection of the Koopman operator constructed through methods
such as DMD or eigenfunction construction do not tell much about the system on their own.
However, the eigenfunctions associated to the eigenvectors make these models interpretable,
giving information about periodic and decaying modes in terms of locations in the state space.

Problem Statement

Using the identified works, we were able to identify a range of open problems in the field.
In this section we aim to summarise the problems that currently limit the applicability of
Koopman operator methods for prediction and control. The core problems we were able to
identify can be listed,

1. Koopman operator methods often apply only to autonomous systems.

2. Koopman operator methods often rely on the availability of full state measurements,
there is limited investigation into the use of time-delay coordinates.

3. The choice of function dictionary is critical in the convergence properties of the Koop-
man operator. There is limited work on data-driven methods for function selection.

Korda and Mezić solve this problem through optimal selection of eigenfunctions. Although
their work appears promising with direct applicability to the control of systems, it suffers
from a few key problems.

• The problem of partial state measurements is not discussed.

• Isolated models are constructed for each measurement variable separately, yielding a
large underlying state dimension.

• The method relies on a nonconvex optimisation problem for the selection of eigenfunc-
tions

• Their method is only tested on two systems, the limitations of the method are not clear.

We derive the following research questions, building on the work from Korda and Mezić.

1. Can we avoid the nonconvex optimisation problem by exploiting the structure in the
optimisation problem?

2. Instead of constructing isolated models, can we directly construct a combined linear
model?
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3. Can we improve the estimation performance of systems where the output map is not
contained in the linear span of the constructed eigenfunctions.

4. Can we construct bilinear models using eigenfunction construction to improve predictive
performance?

5. Can we extend the optimal eigenfunction construction to systems with partial state
measurements, while maintaining a low-order model?

6. What are the limitations to the construction of optimal eigenfunctions in terms of
robustness and system classes?

In the present work we aim to answer the above questions, summarised in the main research
question.

Can we construct bilinear models with nonlinear output from measurement data using
optimal construction of Koopman operator eigenfunctions whilst maintaining a low
computational complexity?
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Chapter 3

Subspace methods for eigenfunction
construction

In this section we aim to answer two research questions presented in Section 2-7. In particular,
we investigate

1. Can we avoid the nonconvex optimisation problem by exploiting the structure in the
optimisation problem?

2. Instead of constructing isolated models, can we directly construct a combined linear
model?

We will show that both questions can be solved together, by identifying Dynamic Mode
Decomposition (DMD) as a subspace method, drawing inspiration from another method,
Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) [19]. In the
context of subspace methods, it is straightforward to generalise the optimisation problem to
multivariable measurements, yielding a model of reduced order when compared to the work
by Korda and Mezić.

The work in this section is structured by first deriving the main results, showing that the
application of DMD to Hankel matrices and ESPRIT yield equivalent modes. Although the
result is not difficult, this relationship is to our knowledge not recognised in existing works.

The application of DMD to the construction is investigated numerically. First, we investigate
the effect of applying DMD to multiple trajectories numerically under white measurement
noise, motivated by recognising that nonlinear systems might express nonglobal dynamics.
Then, using techniques from linear subspace identification we define the hyperparameters used
for the application of DMD to eigenfunction construction. These results are then compared
to the results by Korda and Mezić.
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3-1 Application of subspace methods to eigenfunction construction

Subspace methods are ubiquitous in system identification, and are typically applied to op-
timisation problems similar to the problem in Equation (2-11). In particular, we first aim
to show that the optimisation problem can be solved in two steps. First, by performing a
singular value decomposition to find the eigenvalues λ, and then finding the initial conditions
g(x(q)[0]). We will show that the DMD modes are equivalent to ESPRIT modes when applied
to Hankel matrices. We will show that these methods estimate the correct eigenvalues under
assumption of the given model in noise-free data. When introducing ESPRIT, we directly
generalise to multivariable measurement data, laying the groundwork for the extension of
Koopman eigenfunction construction to reduced order models.

Before introducing ESPRIT we will introduce notation for the top and bottom submatrices
of a given matrix.

Definition 3.1 (Leading lower/upper principal submatrix). Given a matrixA ∈ Cn×m,
we define

• the leading upper principal submatrix A(s) as the matrix obtained by removing
the last s rows from the matrix A.

• the leading lower principal submatrix A(s) as the matrix obtained by removing
the first s rows from the matrix A.

The leading upper principal submatrix A(2) and lower principal submatrix A(1) then become

A =


a1,1 a1,2 · · · a1,m−1 a1,m

a2,1 a2,2 · · · a2,m−1 a2,m
...

... . . . ...
...

an−1,1 an−1,2 · · · an−1,m−1 an−1,m

an,1 an,2 · · · an,m−1 an,m

 .

A(2)

A(1)

For the purpose of notational simplicity, we will additionally use the notation

A = A(l), and A = A(l)

The parameter l will be clearly defined whenever we use this notation.

Equivalence of ESPRIT and DMD

ESPRIT was a method developed by Roy et al. in 1986 to estimates parameters in noisy
sinusoidal signals [19]. This work was developed in a series of works in signal analysis,
spawned by subspace ideas of Pisarenko [38]. ESPRIT assumes a sinusoidal signal model,
written as

x[k] =
d∑

j=1
sje

ikωj + η[k], η ∼ N (0, σ2) (3-1)
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Here sj ∈ R and ωj ∈ (−π, π) are the parameters to be identified and η is additive white
noise. Vectorising the data sequence, we obtain a data equation of the form

x[0]
x[1]

...
x[N ]


︸ ︷︷ ︸

X

=


1 1 · · · 1
eiω1 eiω2 · · · eiωd

...
... . . . ...

eNiω1 eNiω2 · · · eNiωd


︸ ︷︷ ︸

Λ


s1
s2
...
sd

+


η[0]
η[1]

...
η[N ]

 . (3-2)

The structure in the Vandermonde matrix Λ is the main actor, allowing a time shift of the
data sequence by multiplying by a diagonal matrix D = diag(eiω1 , eiω2 , . . . eiωd),

Λ = ΛD

Although the original work by Roy et al. was derived for single-state measurements, it is
readily extended to state-space models with multiple measurements. Data generated by a
general linear model of the form in Table 2-1 with x ∈ Rn yields that

x[0]
x[1]

...
x[N ]

 =


C
CA

...
CAN


︸ ︷︷ ︸

O


s1
s2
...
sd

+


η[0]
η[1]

...
η[N ]

 . (3-3)

satisfies a a similar shift property with D = A, albeit with a shift of n rows. We will call a
variation of this property the subspace invariance property of order l.

Definition 3.2 (Subspace invariance of order l). Let k > d. Suppose we have matrices
Λ ∈ CN×d and M ∈ Cd×k, and a d× d invertible matrix D. Then the matrix product
AM satisfies the subspace invariance property of order l if,

Λ(l)M = Λ(l)DM.

The name stems from a geometric perspective, where the subspace spanned by the columns
of ΛM is invariant under removal of the first or last l rows.

Let y ∈ col(Λ(l)D) = col(Λ(l)). By definition, there exists x such that Λ(l)x = y. But then,
y = Λ(l)(Dx), from which y ∈ col(Λ(l)) follows. Furthermore, we have that rank(Λ(l)D) =
rank(Λ(l)) due to the invertibility of D. Hence, the column space of both matrices have equal
dimension. We conclude

col(Λ(l)M) = col(Λ(l)M),

ESPRIT aims to exploit this property in the crosscorrelation matrices of the data sequence
vectors X,

RXX∗ = E[XX∗] = ΛSΛ∗ + σ2I

R
XX

∗ = E[XX∗] = ΛSD∗Λ∗ + σ2Z.
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Where we define Z as the cross-correlation between the noise one time-step ahead.

Given a vector of data X, as defined in Equation (3-2), we define the Hankel matrix with
parameter s as

H =


x[0] x[1] · · · x[N − s]
x[1] x[2] · · · x[N − s+ 1]

...
... . . . ...

x[s− 1] x[s] · · · x[N ]

 (3-4)

If a sequence X satisfies the shift invariance property of order l, then so does the associated
Hankel matrix.

The first-order time shift of the Hankel matrix is closely related to the crosscorrelation when
x is one-dimensional. This relationship reads,

RXX∗ = HH∗, R
XX

∗ = HH
∗
.

ESPRIT estimates the eigenvalues λ of the shift matrix D by computing the generalised
eigenvalues of the matrix crosscorrelation pair. In the noise-free case we can show that these
generalised eigenvalues are the eigenvalues of the shift matrix D,(

R
XX

∗ − λRXX∗

)
x = ΛS (D∗ − λI) Λ∗x.

The underlying eigenvalues are then recovered by Hermitian conjugation. Under the influence
of noise, the generalised eigenvalues are biased. The work by Roy et al. is able to compensate
for this bias to recover the original eigenvalues [19]. Roy et al. already noted that the Hankel
matrices could be used directly, so that the correlation matrices do not need to be computed.
In fact, it is often preferably to act directly on data instead [39]. The next result shows that
the Hankel matrices can be applied directly to derive the eigenvalues of the shift matrix D.
Furthermore, we show that this is equivalent to the application of DMD to the Hankel matrix
of measurements.

In Proposition 3.1 we consider a noise-free signal model. Under the influence of Gaussian
measurement noise, the truncation of the singular value decomposition (SVD) to the modes
with highest variation causes the correct eigenvalues to be estimated in the limit of infinite
measurements, N →∞ [40].

Proposition 3.1 (ESPRIT equivalence to DMD modes). Given a SVD for a data Hankel
matrix H = USV ∗ satisfying the subspace invariance property in Definition 3.2 of order l,
with H = ΛM , we have that

σ(D) ⊆ σ(U∗HV S†)

Proof. We first show that for λ ∈ σ(D) we have that λ ∈ σ(H†H). For this purpose, consider
the generalised eigenvalues of the pair (H,H), defined as Hx = λHx. Then

0 =
(
H − λH

)
x = A (D − λI)Mx.

Thus any λ satisfying (D−λI)x = 0, will also be a generalised eigenvalue of the pair (H,H).
Then, by definition, we have that λ is an eigenvalue of H†H.

M.T.P. van Laarhoven Master of Science Thesis



3-1 Application of subspace methods to eigenfunction construction 31

Using
H = UU∗HV V ∗,

we can write for the Hankel matrix product

HH† = UU∗HV S†U∗

Using the cyclic property for square matrices of the spectrum, σ(AB) = σ(BA), we can
conclude

σ(H†H) = σ(HH†) = σ(U∗HV S†)

Multiple trajectories

The previous method was constructed for a Hankel matrix H of a single measurement se-
quence. However, for nonlinear systems the dynamics in different regions of the state space X
might differ significantly. These can be included by horizontal stacking of the Hankel matrices
without affecting the shift invariance. Denoting data sequences Xi, such as in Equation (3-3)
with Hankel matrices Hi,[

H1 H2 · · · Hq

]
= OA

[
M1 M2 · · · Mq

]
.

Where we consider a shift invariance of order n. As a consequence, we can apply the result
in Proposition 3.1 to horizontally stacked Hankel matrices of different trajectories in order to
extract eigenvalues from different trajectories.

Application to eigenfunction construction and reduced order models

ESPRIT will estimate the correct eigenvalues of the Koopman operator, under the assumption
that the data can be explained by a model of the form in Equation (2-7). Application using
a single measurement variable to the optimisation problem in Equation (2-11) is therefore
unambiguous, by applying ESPRIT with a single shift operation. However, we can reduce
the model order in this way as well. We will now assume a model of the form

χ[k + 1] = Aχ[k]
y[k] = Cχ[k]

χ[k] =
[
φ1(x[k]) φ2(x[k]) · · · φNg (x[k])

]⊺
.

(3-5)

Where A = diag(λτ
1 , λ

τ
2 , . . . , λ

τ
Ng

). The largest difference with the original model considered
in Equation (2-7) is the introduction of the linear output map C ∈ CNg×m. This condenses
the m different models needed for the original method, to a single model. Consequently, we
reduce the model order from mNg to Ng.
The data equation for the condensed model becomes

y[0]
y[1]

...
y[N ]

 =


C
CA

...
CAN


︸ ︷︷ ︸

O


g1(x[0])
g2(x[0])

...
gNg (x[0])

 .
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Note that this matrix format again lends itself to a shift invariance property of order m,

O(m)G = O(m)AG

Therefore, the eigenvalues of the Koopman operator in the matrix A can be computed using
with the proposed generalised ESPRIT in Proposition 3.1.

Linear output map

To find the linear output map C, we seperate the measurement model into individual mea-
surements. Writing for the linear output map

C =


C1
C2
...
Cm

 =


c11 c12 · · · c1Ng

c21 c22 · · · c2Ng

...
... . . . ...

cm1 cm2 · · · cmNg


we find for individual state measurements that

yi[0]
yi[1]

...
yi[N ]

 =


Ci

CiA
...

CiA
N



g1(x[0])
g2(x[0])

...
gNg (x[0])

 = Λ


ci1g1(x[0])
ci2g2(x[0])

...
ciNggNg (x[0])

 = Λ


g′

i1(x[0])
g′

i2(x[0])
...

g′
iNg

(x[0])


Thus for each measurement i of the output y, a scaled version of gi(x[0]) can be found by
taking the pseudo-inverse of the Vandermonde matrix Λ and computing O†

iY . We choose for
all j,

gj(x[0]) = max
i=1,2,...,m

|g′
ij(x[0])|.

The elements cij may then be computed

cij =
g′

ij(x[0])
gj(x[0]) .

Complex conjugate pairs

In our systems, we have real-valued measurements y[k] ∈ Rm for all k. Consequently, any
eigenvalue λ ∈ σ(A) has a complex conjugate λ∗ ∈ σ(A). This follows from every matrix in
Proposition 3.1 being a real-valued matrix, since the measurement data in H is real.

Considering the Koopman operator eigenvalue properties in Proposition 2.1, we know that if
λi = λ∗

j that the associated eigenfunctions satisfy φi = φ∗
j . Consequently,

gi(x[0]) = g∗
j (x[0]) (3-6)

Thus, to find the eigenfunctions, the interpolation problem only needs to be solved for the
functions associated to the eigenvalues with Im(λ) ≥ 0, reducing the number of interpolation
problems that need to be solved.
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3-2 Numerical study

To assess the performance of subspace methods in the application of eigenfunction construc-
tion we will outline a numerical comparison of ESPRIT in the presence of white noise and in
the application to eigenfunction construction. First, we perform a quantitative comparison
for eigenvalue estimation accuracy to compare the performance under the condition of using
multiple trajectories. The proposed method is then applied to the eigenfunction construction
problem and compared to the original results by Korda and Mezić on uncontrolled systems.
Lastly we compare the reduced order models in order to assess the predictive performance
under influence of a square-wave forcing.

Quantitative study on accuracy under noise

To better understand the effect of the Hankel matrix construction on the performance of
subspace methods under measurement noise we first perform a short numerical study. In this
section we aim to estimate the eigenvalues of the matrix D for sequences following a signal
model of the form in Equation (3-1).

Typically, to normalise the noise variance with respect to the signal magnitude we use the
signal to noise ratio (SNR). The SNR is defined in terms of the noise variance σ and mean-
squared signal magnitude E[x[k]2] on a logarithmic scale,

SNR = 10 log10

(
E[x[k]2]

σ

)
. (3-7)

Thus in the limit SNR → 0, we have that the measured signal consists solely of noise.
Similarly, for SNR ≫ 1, the noise on the signal is almost negligable. Typical values for
real-world measurement data ranges range from 10 to 100 dB [40].

Measurement noise on the data results in a limit on the minimum eigenvalue that can be
identified. Epps and Techet propose the following bound on the singular values si, for the
mode to be noise-free [40, 41]. This bound is expressed in terms of the dimensions of the
n ×m data matrix H on which the SVD is performed, assuming a noise model of the form
H + η, with η ∼ N (0, σ2). Yielding,

si > σ
√
nm. (3-8)

The introduction of measurement noise on the data matrix introduces a small bias on the
expected value of the estimated singular values, with order of magnitude being the ratio
between the noise variance and the size of the singular value [41],

E[s̃i] = si +O
(
σ2

si

)
.

Performance of an estimation method is measured through the relative error between the
nominal eigenvalue λ and the estimated eigenvalue λ̂,

ε =
∥∥∥∥∥λ− λ̂λ

∥∥∥∥∥ . (3-9)
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λ1

λ2

λ̂1

λ̂2

Figure 3-1: For a set of true eigenvalues λ1 and λ2 and their unordered estimates λ̂1 and λ̂2 it
is unclear how they should be paired.

To assess the performance of the proposed method under SNR we compare DMD applied
to Hankel matrices generated from a single trajectory, and applied to a horizontal stack of
Hankel matrices. For SNR’s between 5 dB and 100 dB, we generate 24 random eigenvalues
pairs. These eigenvalues are distributed uniformly along a circle of radius r ∼ N (1, 0.1). For
each set of eigenvalues, we generate 40 trajectories of length 50.

On this data the proposed methods are applied to generate eigenvalue estimates λ̂, for which
their relative error is computed. This poses another problem however, since we now have two
unordered sets of eigenvalues. These sets do not have the same elements, nor do all elements
correspond to a correct eigenvalue estimate. This is illustrated Figure 3-1.

Eigenvalue pairing

The problem of eigenvalue pairing can be reduced to a formal problem. Given two sets A and
B, we want to find for each x ∈ A a the closest complex number y ∈ B such that |x− y| < ϵ.
This number may not exist, if the method failed to identify the eigenvalue due to noise in the
measurement data.

This problem can be casted into a mixed-integer linear programming (MILP) problem. Sup-
pose A and B are of size nA and nB respectively. Then we index the sets A and B with
i = 1, 2, . . . , nA and j = 1, 2, . . . , nB respectively. Then we can introduce a binary variable
zi,j , denoting whether we pair xi ∈ A and yj ∈ B. The goal then becomes to maximise the
used number of elements under the conditions that each element of A and B is used at most
once, whilst satisfying the condition that |xi− yj | < ϵ. The full optimisation problem is then,

min
zi,j∈{0,1}

∑
i,j

zi,j |xi − yi| − zi,j

s.t.
∑

i

zi,j ≤ 1, j = 1, 2, . . . , nB∑
j

zi,j ≤ 1, i = 1, 2, . . . , nA

zi,j |xi − yi| < ϵ ∀i, j

(3-10)

We solve this optimisation problem using scipy’s MILP solver, which uses an implementation
Huangfu and Hall [42]. The maximum absolute eigenvalue error allowed is set at ϵ = 0.1 in
our work.
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Hyperparameter selection

There are three hyperparameters that are left open to choice at this point. Namely, the time
delay τ , the Hankel matrix parameter s and the number of eigenvalues Ng.

There is a range of research on selection of the time-step τ and Hankel matrix parameter s for
subspace methods. Typically, the time-step is taken at 10 times the bandwidth of the system
[20]. However, for the interpolation problem in Equation (3-6), we want τ smaller for a more
accurate representation of the lifting function. To solve this, we propose a two-step approach,
selecting a time step τ based on literature for the subspace identification in Proposition 3.1,
and using another time step τ ′ < τ to solve the interpolation problem in Equation (3-6). The
eigenvalues of time step τ ′ are related to the eigenvalues of τ through

λτ ′ = (λτ )
τ ′
τ . (3-11)

The Hankel matrix parameter s is typically chosen by looking at the singular values in the
data. For this purpose, we plot the singular values in S of the SVD of H = USV ∗ for s′ greater
than the expected model order, selecting the order such that the elbow point is contained in
the data [20, 43].

Like the previous section, the noise floor of the singular values limit the smallest singular
value that feasibly describes the data. Therefore the limit in Equation (3-8) determines an
expected lower bound, and can be used as prior knowledge in the process of the model order
selection s [41].

Quantitative comparison in application to Eigenfunction construction

We compare the performance of the proposed method to results generated by the original
work by Korda and Mezić. We report on the variance accounted for (VAF) of the unforced
dynamics for the models presented in Section 2-2.

All models were derived from 50 random trajectories of length 2500 with a time-step of 0.01,
originating from a circle of radius 9 for the Toy model, a radius of 1 for the Duffing oscillator
and a radius 0.02 for the Van der Pol oscillator. The differential equations of these systems,
presented in Section 2-2 are solved with a dynamic Runge-Kutta integration, using Scipy’s
initial-value-problem solver with default settings. These circles define the sets Γ proposed in
Section 2-5. A subset of these trajectories are presented in Figure 3-2.

To gauge the sensitivity of the proposed method to measurement noise, the trajectories are
perturbed by gaussian noise with an SNR of 20 dB.

To identify the proposed models, the trajectories were resampled at the time step presented in
the next section. The derived eigenvalues were then converted to the smaller sampling time for
interpolation using Equation (3-11). Similarly, to compute the VAF, we use the autonomous
dynamics of 25 trajectories of length 2500, originating from a uniform distribution on the
aforementioned circles.
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Figure 3-2: A subset of the training trajectories used for construction of Koopman eigenfunctions
for the discussed models. The set Γ of initial conditions is presented in blue.

3-3 Results

Estimated eigenvalue accuracy

The relative error in the estimated DMD modes are presented in Figure 3-3 and Table 3-1 for a
range of SNRs. The distribution plot in Figure 3-3 presents primarily the order of magnitude
of the relative error in the eigenvalue magnitude and the associated variation. We find that
the eigenvalues found by DMD when applying only a single trajectory for estimation is slightly
more accurate and more concentrated around the mean order of magnitude. However, the
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Figure 3-3: Distribution in the magnitude of the relative error in estimated eigenvalues for DMD
applied to hankel matrices for the estimation of eigenvalues in terms of the SNR. Both the use
of a single trajectory and 40 trajectories is investigated.

results in Table 3-1 paint a different picture. Whenever only a single trajectory is included
for the identification of eigenvalues the method fails to accurately identify about 20% of these
modes, whilst DMD increases in accuracy as the SNR decreases toward 0.
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Table 3-1: Mean order of magnitude in the relative error with standard deviation, and the
accuracy in estimated eigenvalues for DMD applied to Hankel matrices for the estimation of
eigenvalues in terms of the SNR. The results are presented with the use of a single trajectory and
for 40 trajectories.

SNR (dB) 5 28.75 52.5 76.25 100

Relative error
log10 ε (-)

Single −1.4± 0.3 −2.0± 0.5 −2.6± 0.8 −3.4± 1.1 −4.2± 1.3
Multiple −1.3± 0.2 −2.1± 0.6 −2.9± 1.1 −3.9± 1.4 −5.0± 1.5

Accuracy (%)
Single 28 63 82 89 97
Multiple 25 67 84 92 95

−1 0 1

Re(x)

−1.0

−0.5

0.0

0.5

1.0

Im
(x

)

Estimated eigenvalues

True

Estimate

Figure 3-4: Eigenvalue estimates produced by DMD under a SNR of 28.75 dB estimated with 40
trajectories of length 50. The eigenvalues are uniformly distributed across a circle with a gaussian
distributed radius around 1.

In Figure 3-4 we present the eigenvalues estimated by DMD by using 40 trajectories of length
50 at a SNR of 28.75 dB. Comparing these with the results in Table 3-1 we find that the
accuracy is primary lost whenever eigenvalues are positioned close together. Under the noise
variation and trajectory length these eigenvalues become indistinguishable for the presented
method. These result in incorrectly estimated eigenvalues.

Application of subspace methods to eigenfunction construction

We first estimate the time step required to capture the dynamics in the system. The step
responses of the system are presented in Figure 3-5. For linear systems, one can approximate
the bandwidth of the system by looking at the step-response, and approximating the dynamics
by a second-order model. The 3 dB response time then gives an estimate for this bandwidth.

To select the model order, we consider the magnitude of singular values in the Hankel data
matrix. These magnitudes are presented for both noise-corrupted and noise-free data in
Figure 3-6. The results are presented together with the theoretical bound presented in Equa-
tion (3-8). We indeed find that the theoretical bound is on a similar order of magnitude to
the noise floor.
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Figure 3-5: Step response over time to a unit input signal of the Toy model, the damped Duffing
oscillator and the Van der Pol oscillator.
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Figure 3-6: The magnitude of the singular values of the Hankel data matrix up to s = 20 for both
noise-free data and with noise-corrupted data with SNR = 20. The dashed line is the theoretical
bound on modes that are not corrupted by noise. The singular values are presented for the Toy
model, the Duffing oscillator and the Van der Pol oscillator.

M.T.P. van Laarhoven Master of Science Thesis



3-3 Results 39

For linear systems a gap in the singular value magnitude typically emerges, similar to the gap
in singular values for the Toy model in Figure 3-6. However, for the more complex nonlinear
systems, there does not appear to be such a gap. The autonomous dynamics in the toy
model can be reconstructed with three eigenfunctions, as shown in Section 2-3. However, the
eigenfunctions for the Duffing oscillator and Van der Pol oscillator do not lead to an exact
reconstruction of the state variables. These emerge as singular values with small variation in
the Hankel matrices.
For the noise-corrupted models we choose the order at the noise boundary, for the nominal
order, we take the characteristic elbow point for the nonlinear models. For further comparison
we also take an extended model with a larger model order, to compare the performance under
the addition of further modes. All the parameters of the identification cycle are presented in
Table 3-2.

Table 3-2: Estimated parameters for the identification of the Toy model, Duffing oscillator and
Van der Pol oscillator.

Toy model Duffing oscillator Van der Pol oscillator
Time step 0.1 0.2 0.2
Noisy order 3 3 3
Nominal order 3 6 8
Extended 3 14 16
Korda 6 28 32

The identified autonomous dynamics are presented in Figure 3-7. We can only really gauge
the initial response for each model, since they do not include control and therefore converge
to an equilibrium or a periodic attractor. We find that for most systems the identified models
capture the general dynamics in the system. Furthermore, we present the VAF for a validation
set of autonomous responses in Figure 3-8 and Table 3-3.

Table 3-3: VAF with standard deviation for state estimates in the Toy model, Duffing oscillator
and Van der Pol oscillator for different model orders.

State Toy model Duffing oscillator Van der Pol oscillator

Noisy
x1 25± 30 69± 31 44± 5
x2 97± 10 33± 16 33± 3

Nominal
x1 96± 16 71± 26 90± 3
x2 98± 9 30± 16 68± 2

Extended
x1 96± 16 25± 22 96± 3
x2 98± 9 21± 17 91± 6

Korda
x1 100± 0 82± 33 96± 0
x2 100± 1 82± 32 55± 1

Noise-corrupted models

We find that the impact of noise on measurement data for the Toy model is significantly larger
than for the Duffing and Van der Pol oscillators. Looking at the responses in Figure 3-7 we
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Figure 3-7: Autonomous dynamics of the Toy model, Duffing oscillator and Van der Pol oscillator
over time for both state variables. The validation data is presented in blue, with grey representing
an SNR of 20 dB. Furthermore, the dynamics identified from noise-corrupted data (orange), the
nominal model order (dark grey), the extended model (pink) and by Korda and Mezić (cyan).
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find that this can mostly be attributed to the inaccuracy in the initial state estimate. This
can mostly be attributed to the interpolation problem being performed at noisy states x. For
the toy model, the response characteristic occurs at a similar time-scale as the true dynamics.
For the other models, it is difficult to compare the dynamics due to the smaller number of
eigenvalues used.

Nominal and extended models

The performance of the nominal and extended models for the Toy model is mostly similar,
with a slight discrepancy. This can be attributed to the interpolation method used. Due to
the convexity of the state space in which the dynamics take place, Pythons’ interpolation
method cannot always produce an estimate. Hence we had to resort to nearest-neighbour
interpolation, producing less accurate results, especially around points that have different
trajectories along slight variations. Matlabs’ linear interpolation method does allow for ex-
trapolated values, allowing the results by Korda and Mezić to be slightly more accurate.

We note that subspace methods appear unable to reconstruct the dynamics for the Duffing
oscillator. The Duffing oscillator is the only model that has two fixed points, causing the
system to be unable to be described by a linear model, which is one of the underlying as-
sumptions in using subspace methods. The original method proposed by Korda and Mezić
does reproduce the dynamics accurately, possibly due to the extra flexibility introduced by
using an optimisation algorithm.

From Figure 3-7 we also find that the additional states from the extended models are required
to reconstruct the attractor dynamics for the Van der Pol oscillator accurately. This suggests
that the elbow point used for linear systems is not a good indicator for the required Koopman
model order.

The forced responses in Figure 3-9 is poor for the proposed models. Since the autonomous
response for the Duffing oscillator was already quite poor, this is expected. For the other
models however, the difference can be attributed to the fact that linear models are a poor fit
Koopman dynamics, illustrated in Section 2-6.

Models by Korda and Mezić

The results originally presented by Korda and Mezić could not be reproduced on time scales
larger than presented in the original paper, both for the autonomous response in Figure 3-7
and the forced response in Figure 3-9 [1]. The time frame originally presented are all within
2 seconds of the dynamics, suggesting that their method is not identifying a true Koopman
model, but overfitting to the small time scale. This originally caused the method to fail for
the Van der Pol oscillator, which has attractor dynamics with a longer time scale. This was
not discussed in the original work and poses a significant challenge to identify the forcing
gain B in multi-step prediction. This suggests that the work by Korda and Mezić identifies
an k-step ahead predictor, where k is limited by the timescale of the used training data for
optimisation.
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Figure 3-9: Prediction performance of the identified system dynamics under the influence of a
square-wave forcing with a period of 2 seconds.
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3-4 Stiffness of the Van der Pol oscillator

The results presented in the previous section are limited to a small subset of the entire state-
space. In this section we take the Van der Pol oscillator as an example. The vector field in
Figure 2-2 showed that the dynamics yield a very fast and sharp response for ∥x∥ > 1, while
maintaining slow dynamics for ∥x∥ < 1.

The nonlinearity dominates the initial response, converging slowly to the limit cycle. This
behaviour is illustrative of the stiffness of the Van der Pol oscillator. To define this property
more clearly, we consider the stiffness ratio, defined by

Definition 3.3 (Stiffness ratio [44]). Given the Jacobian J of the vector field f of a
differential equation, the stiffness ratio of f is defined as the ratio between the largest
and smallest eigenvalue of J(x), where x is allowed to vary over a small region X.

S =
maxλ∈σ(J(x)),x∈X |Re(λ)|
minλ∈σ(J(x)),x∈X |Re(λ)| .

The stiffness ratio is typically used to characterize the performance of numerical integration
methods. A high stiffness ratio requires an integration method to adapt the step size to both
fast dynamics and slow dynamics within as a trajectory moves through the region X.

To fast and slow dynamics will be associated to different Koopman modes, which need to both
be identified by our subspace method. The quick dynamics take up a comparatively small
fraction of the data, while the slower dynamics are dominant until a limit cycle or equilibrium
point is reached. Consequently, the variation is attributed to a comparatively small singular
value in ESPRIT.

For the Van der Pol oscillator with our parameters we can compute the jacobian,

J(x) =
[

0 2
−0.8− 20x1x2 2− 10x2

1

]

The eigenvalues of the jacobian can be computed analytically in terms of the state x,

λ1 = −x2 + 5x2
1 +

√
(2x2 − 10x2

1) + 4(1.6 + 20x1x2)

λ2 = −x2 + 5x2
1 −

√
(2x2 − 10x2

1) + 4(1.6 + 20x1x2)

The first state variable x1 dominates the magnitude of the eigenvalues. Consequently, we
can expect that when x1 is much larger than x2 that the stiffness ratio S grows large. For
large initial states, the dynamics are first attracted to the axis x2 = 0, moving the dynamics
into a region with high stiffness ratio. This causes the presented identification method to fail
whenever the nonrecurrent set includes states with |x| > 2. We present the stiffness ratio for
the Van der Pol oscillator in Figure 3-10, where we take for X a disk of radius r = 0.05 around
the given coordinate. The fast dynamics previously mentioned are clearly visible as curved
bands in the stiffness ratio. The stiffness ratio inside these bands are of a much larger order
of magnitude than outside of these bands. The vertical bands emerge due to the eigenvalues
with 0 real part of the Jacobian at x1 =

√
0.2.
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Figure 3-10: Stiffness ratio for the Van der Pol oscillator computed for a disk of radius 0.05
around the given coordinate.

3-5 Conclusion

By applying DMD to Hankel matrices we can correctly identify the eigenvalues required for
reconstruction of the nonlinear dynamics, whilst reducing the model order originally required
by Korda and Mezić. The autonomous response of these models have an average VAF ranging
from 96% for the Toy model and Van der Pol oscillator to 25% for the Duffing oscillator. This
is an improvement compared to the reproduction of the original work by Korda and Mezić
on the considered time scales.

It was found that a large model order is required for accurate reconstruction, and that there
are significant limitations on the subset for which the model is valid. These properties emerged
due to the stiffness of the Van der Pol oscillator. Furthermore, the assumption of a linear
model for a nonlinear system with multiple equilibria causes the proposed method to fail,
whereas the original optimisation problem is capable with dealing with such systems.

We were unable to recover the forced dynamics from the proposed models. Previous results
in Chapter 2 suggested that a linear model is a poor fit for the nonlinear forced dynamics in
eigenfunction coordinates.

We can answer the questions posed at the start of this chapter positively. We succesfully ex-
ploited the structure in the optimisation problem to extract eigenvalues and initial conditions
from data. At the same time, we were able to combine both models into a single model, of a
significantly reduced order when compared to the results by Korda and Mezić.
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Chapter 4

Derived bilinear models for Koopman
eigenfunction construction

The properties of the Koopman operator eigenfunctions presented in Proposition 2.1 can be
exploited to construct an output map purely from Koopman eigenfunctions. In this chapter
we aim to provide answers to the following research questions.

1. Can we improve the estimation performance of systems where the output map is not
contained in the linear span of the constructed eigenfunctions.

2. Can we construct bilinear models using eigenfunction construction to improve predictive
performance?

To illustrate the problem covered by the first research question, we expand on the derivation
in Example 2-3.1. The two eigenfunctions posed at the end of the derivation would lead
to a model where the state measurement function g(x) = x2 is not contained in the span of
eigenfunctions, g /∈ span(φ1, φ2) associated to eigenvalues ν and σ respectively. That is, there
do not exist c1 and c2 such that

x2 = c1x1 + c2

(
x2 −

σ

σ − 2ν x
2
1

)
for all x1 and x2. However, there is a solution when we include φ2

1 in the output vector span

x2 = 1
(
x2 −

σ

σ − 2ν x
2
1

)
+ σ

σ − 2ν (x1)2

This motivates the question whether we can extend eigenfunction construction to models with
a polynomial output map, in order to get improved state reconstruction estimates.

The results presented in Section 3-3 correctly identify that a third order model is required for
the dynamics to be recovered by a linear model. However, the derivation for the Van der Pol
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model in Example 2-3.2 shows that the eigenfunctions quickly become intricate expressions,
causing the linear model to require a large model order to accurately capture the dynamics.
The aim then becomes to construct an output model, improving the approximation of the
underlying state, without requiring the construction of additional eigenfunctions.
Before moving toward the body of this work, we introduce some notation to make the expres-
sions in this chapter more readable.

Notation

Multi-index notation: Given a sequence, or vector χ = [ χ1 χ2 ··· χNg ]⊺, we define the multi-
index ς = (ςi)

Ng

i=i such that
χς = χς1

1 χ
ς2
2 · · ·χ

ςNg

Ng
.

We define the norm of this multi-index as

|ς| =
Ng∑
i=1

ςi

4-1 Polynomial output

A finite set of Koopman operator eigenfunctions does not necessarily have the underlying
states in their linear span. It is unclear whether a finite set of eigenfunctions in Example 2-
3.2 will lead to the ability to reconstruct the underlying state x from a linear combination of
lifted coordinates. However, under certain conditions on the set of eigenfunctions φi, there
should exist an inverse map H to reconstruct the underlying state x from the eigenfunctions,

x = h(φ1(x), φ2(x), . . . , φNg ).

In the context of system identification, we have no prior knowledge on this map. However,
we can attempt to approximate it from data. To expand on this, we start by considering
autonomous linear dynamics with a smooth nonlinear output h,

χ[k + 1] = Aχ[k]
x[k] = h(χ[k]).

(4-1)

In the Koopman operator context, this is the linear evolution of the lifted state variable
χ ∈ G(X ), with a map h to reconstruct the underlying state.
The idea is to approximate the output map h with a polynomial p instead of the linear estimate
in existing works. We can write this polynomial in multi-index notation, with sequences of
indices ςi and ς ′

i and coefficients ci,

h(χ[k]) ≈ p(χ[k]) =
∞∑

i=0
ciχ

ςi [k](χ∗)ς′
i [k]. (4-2)

The existence of this map p is a consequence of the Stone-Weierstrass theorem. The Stone-
Weierstrass theorem is typically only stated for single-variable polynomials. However, starting
from the generalised formulation presented in Theorem 4.1, we can show that the multivariable
polynomials can approximate any complex-valued continuous function.
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Theorem 4.1 (Stone-Weierstrass [26]). Let K be a compact set and suppose Y is a subspace
of C(K) such that

1. 1 ∈ Y ;

2. g, h ∈ Y implies gh ∈ Y ;

3. g ∈ Y implies g ∈ Y ;

4. Y separates points in K. That is, for any two points x, y ∈ K with x ̸= y, there exists
an f ∈ Y such that f(x) ̸= f(y).

Then Y is dense in C(K).

The abstract formulation in Theorem 4.1 does not directly correlate to the desired properties
in the present work. The idea is to identify K with the complex-valued lifted coordinates χ
in Equation (4-1) and Y with the space of multi-variable polynomials. The density if Y in
C(K) then implies that we can approximate any continuous h arbitrarily well. If we write
for the functions χi : Cn → C to denote the i’th element of the lifted state, χi(x) 7→ xi, we
can formally state the result in Proposition 4.1.

Proposition 4.1 (Stone-Weierstrass for multivariable functions). The set of all multivariable
polynomials

Y =

∑
i≥0

ciχ
ςi(χ∗)ς′

i : ci,j ∈ C

 .
is dense in the complex-valued continuous functions C(Cn).

Proof. We let K = Cn, then

1. 1 ∈ Y , with c0 = 1, ς0 = ς ′
0 = 0 and ci = 0 for i ≥ 0.

2. The product of two multivariable polynomials is again a multivariable polynomial∑
i≥0

aiχ
ςi(χ∗)ς′

i

∑
i≥0

biχ
νi(χ∗)ν′

i

 =
∑
i≥0

 ∑
k+j=i

akbj

χςi+νi(χ∗)ς′
i+ν′

i

3. g ∈ Y implies g ∈ Y by setting ς 7→ ς ′, ς ′ 7→ ς and ci 7→ c∗
i .

4. Given x, y ∈ Cn with x ̸= y. Let i be the index of the element in the vectors such that
xi ̸= yi. The polynomial p(x) = xi then satisfies p(x) ̸= p(y) if x ̸= y.

Thus by Theorem 4.1 we conclude that Y is dense in C(Cn).

Thus, given a map h, there exists some polynomial p such that h ≈ p. Two questions remain,

1. Does the application of Dynamic Mode Decomposition (DMD) result in unbiased esti-
mates for the eigenvalues λ?

2. How can we apply these results to the model produced by eigenfunction construction?

These questions are investigated in the next two subsections.
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Estimation of eigenvalues

The convergence of Koopman modes computed by DMD applied to Hankel matrices was
previously investigated by Arbabi and Mezić [45]. This suggests that the application of DMD
should result in unbiased estimates for the Koopman eigenvalues in the limit of an infinite
Hankel delay s→∞. In this section we investigate their original results in our context.

Proposition 4.2 (Convergence of the Hankel-DMD algorithm inside the basin of attraction
[45]). On an ergodic attractor with basin of attraction B, we consider the Koopman operator
acting on the space of square-integrable functions, with continuous observable f ∈ L2(X ).
For almost all initial conditions x[0] ∈ B the eigenvalues of the DMD estimate converge to
the Koopman operator eigenvalues as s→∞.

This result only holds in the limit s→∞ of the Hankel matrices, suggesting that the identified
eigenvalues are biased in the estimation. However, the result in Proposition 4.2 is stated for
the Koopman operator acting on L2(X ), for which the Koopman operator has a much more
intricate spectrum [27]. In the present work we consider the Koopman operator on the space
of continuous functions C(K), for which we have shown that almost any complex number
|λ| ≤ 1 is a Koopman eigenvalue with associated eigenfunction. Thus whilst the estimation of
the true eigenvalues might be biased, this does not pose a problem to the proposed method,
although the predictive performance of the identified models might be limited.
The ergodicity of in Proposition 4.2 implies that the system to be identified explores the state
space X sufficiently. This is mostly a technical requirement, and can be resolved by using
multiple trajectories instead [45].

Derived linear model

The linear model presented in Equation (4-1), combined with the polynomial expression
allows us to bring the polynomial output into the dynamics of the linear model through
an expansion of the underlying state-space. This follows from the properties presented in
Proposition 2.1, making each term in the output polynomial p an Koopman eigenfunction
with known eigenvalue. Thus given an initial estimate of Koopman operator eigenvalues
and eigenfunctions, constructed from the method presented in Chapter 3, we can estimate
the output map p by augmenting the states with eigenfunction products. We use the term
derived states for these eigenfunction products. This allows us to bring the lifted dynamics
in Equation (4-1) into a model of the form

χ′[k + 1] = Aχ′[k]
x[k] = Cx.

Where we use the notation χ′ to denote the augmented state. The matrix C now consists of
the coefficients of the polynomial p in Equation (4-2).
We define the lattice set of order d to construct the derived Koopman modes from products
of eigenfunctions and eigenvalues,

Λd(λ) =

λς(λ∗)ς′ : ςi, ς ′
i ∈ N,

Ng∑
i=1

ςi + ς ′
i ≤ d
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We can now define the derived Koopman model of a given order.

Definition 4.1 (Derived Koopman model). Assume a linear model of Koopman eigen-
functions of the form in Equation (4-1) whose state χ ∈ CNg consists of Koopman modes
(λτ

i , φi) associated to state elements χi.
We define the derived Koopman model of order d as the model constructed from the
Koopman modes with multi-indices ςi,

φςi = φςi(φ∗)ς′
i .

(λτ )ςi = (λτ )ςi(λτ∗)ς′
i .

Where ςi iterates over all multi-indices satisfying 1 < |ςi + ς ′
i| ≤ d. The matrix A′ is

then constructed

A′ = diag
([

1 λτ
1 λτ

2 · · · λτ
Ng

(λτ )ς1 (λτ )ς2 · · · (λτ )ςℓ

])
.

This yields a complete model of the form,

χ′[k + 1] = A′χ′[k]

χ′[k] =
[
1 φ1(x[k]) φ2(x[k]) · · · λτ

Ng
φς1(x[k]) φς2(x[k]) · · · φςℓ

]⊺
x[k] = Cχ′[k]

We denote the dimension of this model as N ′.

Derived state dimension

The state dimension of the derived system grows quickly with the number of states Ng in the
original system and the order of the included polynomial. Suppose we have χ1, χ2 and χ3,
with the goal of constructing a polynomial of degree 2. Then, a sequence of exponents j1, j2
and j3 should satisfy

j1 + j2 + j3 ≤ 2.

That is, if we assume that the state dimension Ng is larger than the desired polynomial degree
d, we partition d into Ng parts, with the inclusion of 0. We denote this number by pd(Ng). A
detailed investigation is beyond the scope of the present work. To illustrate the quick growth
of pd(Ng) we present the p3(Ng) and p5(Ng) in Figure 4-1.

As a consequence we are severely limited in the number of terms in the polynomial estimate of
the output map due to the exponential growth in additional dynamics. Considering Figure 4-
1, we can expect to include only a small number of states in the derived state dimension.

4-2 Bilinear models

The motivation for constructing bilinear models is twofold. For one, the results on the gen-
erator of the Koopman operator in Section 2-6 suggest that bilinear models are more fit for
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Figure 4-1: The state dimension N ′ for derived models of order 3 and 5 in terms of an initial
state dimension Ng

the estimation of the forcing dynamics. Second, the inclusion of the derived Koopman modes
in the dynamics, requires the introduction of bilinearity into the dynamics. The inclusion of
forcing dynamics can be shown by considering the dynamics of a single forced state x,

x[k + 1] = x[k] + u[k].

The squared dynamics are then given by

x2[k + 1] = x2[k] + 2x[k]u[k] + u2[k].

We conclude that the inclusion of bilinear terms and squared control signal u2 should result
in more accurate models. We write the following for a bilinear model in lifted coordinates χ

χ[k + 1] = Aχ[k] +Bu[k] +
p∑

i=1
ui[k]Biχ[k]

y[k] = Cχ[k]

In the following, we assume that the matrices A and C are known, constructed by the methods
discussed in the previous section. Furthermore, we assume the availability of a lifting map,
relating χ[k] to the true state x[k] for each time instance k. The goal is now to construct
a least-squares optimisation problem for the matrices B and Bi. We start by relating the
measurement at time instance k in terms of an initial state and subsequent inputs.

y[k] = CAkχ[0] +
N−1∑
j=0

[
CAN−j−1Bu[j] +

p∑
i=1

CAN−j−1Biχ[j]u[j]
]

By vectorizing the matrices B and Bi, we can formulate a linear data equation. For this
purpose we define two matrices,

CB =


u⊺[0]⊗ C

u⊺[0]⊗ CA+ u⊺[1]⊗ C
...∑N−1

k=0 u⊺[k]⊗ CAN−k−1

 , CBi =


(ui[0]χ[0])⊺ ⊗ C

(ui[0]χ[0])⊺ ⊗ CA+ (ui[1]χ[1])⊺ ⊗ C
...∑N−1

k=0 (ui[k]χ[k])⊺[k]⊗ CAN−k−1

 . (4-3)
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Now, the data equation becomes
y[1]
y[2]

...
y[N ]


︸ ︷︷ ︸

Y

=


CA
CA2

...
CAN


︸ ︷︷ ︸

OA

χ[0] + CBvec(B) +
p∑

i=1
CBivec(Bi). (4-4)

By performing Koopman eigenfunction construction on the autonomous dynamics we have
previously derived the matrices C and A, and a function to construct χ[k] from measurements
y[k]. Consequently, the only unknowns in Equation (4-4) are the forcing gains B and Bi. To
find the gains B and Bi we can solve a least squares problem. To collect terms, we define

ΘC =
[
CB CB1 · · · CBp

]
, ΘB =

[
vec(B)⊺ vec(B1)⊺ · · · vec(Bp)⊺

]⊺
Then, we can formulate the least squares problem

min
ΘB

∥Y −OAχ[0] + ΘCΘB∥2 . (4-5)

Where ΘB ∈ C(Ng+1)p×Ng . The solution for B and Bi is then given by[
B B1 · · · Bp

]
= vec−1

(
Θ†

C (Y −OAχ[0])
)

By combining the bilinear model with the aforementioned state extension, the reduced dy-
namics can be seen as a model of the form,

χ[k + 1] = Aχ[k] +
p∑

i=1
pi(χ[k])ui[k].

The bilinear gain on input i in the extended systems is then effectively a polynomial gain
pi(χ[k]). The polynomial pi aims to approximate the terms (∇g)⊺B or (∇g)⊺η from the ex-
amples in Section 2-6 in the context of systems that are linear in control or control-affine
respectively. This comes at the cost of computing additional gains on products of eigenfunc-
tions.

State-by-state optimisation

The memory requirements op the problem in Equation (4-5) quickly grows in size. For a
lifted state dimension of N ′ we find that each CBi is of size NN ′ ×N ′2. With derived states,
N ′ grows extremely quickly, making the problem size infeasible to be solved on a normal
computer. As an example, if we take a derived state dimension of N ′ = 100 with a training
data size of N = 2000, a computer would need on the order of 102 gigabyte of memory to
store CBi .

Instead we propose to solve the problem in Equation (4-5) row-by-row, or equivalently, state-
by-state. This is possible because A is diagonal, as was illustrated in Equation (2-10), and
we know the lifted state χ at each time step k.
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Table 4-1: Parameters used for the identification of derived bilinear models.

Toy model Duffing oscillator Van der Pol oscillator
Initial order Ng 3 5 15
Polynomial order d 2 4 2
Derived order N ′ 9 125 152
Time step τ (s) 0.1 0.2 0.2
Sequences 50 50 50
Sequence length N 2000 2000 2000

The observability matrix OA then becomes a single-column Vandermonde matrix, and the
kronecker product terms in the matrices CB and CBi disappears,


χj [1]
χj [2]

...
χj [N ]


︸ ︷︷ ︸

χj

=


λj

λ2
j
...
λN

j


︸ ︷︷ ︸

Oλj

χ[0] +


u⊺[0]

u⊺[0]λj + u⊺[1]
...∑N−1

k=0 u⊺[k]λN−k−1
j

 vec(B)

+
p∑

i=1


ui[0]χ⊺[0]

ui[0]χ⊺[0]λj + ui[1]χ⊺[1]
...∑N−1

k=0 ui[k]χ⊺[k]λN−k−1
j

 vec(Bi)

The optimisation problem then has a reduced form that can be solved seperately for each j.
We use the same notation introduced in the previous section, with the matrix C = 1 in the
matrices in Equation (4-3)

min ∥χj −Oλj
χj [0] + ΘCΘB∥ (4-6)

4-3 Numerical study

Setup

We estimate the eigenvalues of the Koopman dynamics using the DMD modes derived from
Hankel matrices, as derived in Chapter 3. To illustrate the expanded state space, we use the
same system order derived in Section 3-3, taking the elbow point for the parameter s in the
noise-free case, except for the Van der Pol oscillator, for which it was found that a system
order of 15 was needed to recover the periodic dynamics. All the problem parameters are
summarised in Table 4-1, remaining mostly identical to the parameters used in Section 3-3.

M.T.P. van Laarhoven Master of Science Thesis



4-3 Numerical study 53

Autonomous dynamics

The autonomous response of the identified polynomial models are presented in Figure 4-2. All
models were able to predict the correct response from a given initial condition. Comparing
the variance accounted for (VAF) of the polynomial models in Table 4-2 to the previously
obtained results in Table 3-3, we find slightly improved results, while simultaneously working
with fewer eigenfunctions.
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Figure 4-2: The autonomous response to an initial condition of the Toy model, Duffing oscillator
and Van der Pol oscillator, compared to the identified model dynamics.

Most notably, the Duffing oscillator has a better VAF than the previously obtained models.
The introduction of the eigenvalue λ = 1 allows the model to precondition an offset for the
attractor on the presented domain. Note however, similar to the previously identified models,
expansion of the subspace X causes the identification process to fail.

Table 4-2: Average VAF and standard deviation of the identified autonomous response to 25
initial conditions of length 2500 for the Toy model, Duffing oscillator and Van der Pol oscillator.

State Toy model Duffing Oscillator Van der Pol oscillator
x1 99± 10 90± 15 97± 2
x2 100± 2 83± 8 93± 6
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Figure 4-3: The forced response of the Toy model, Duffing oscillator and Van der Pol oscillator
to a unit square-wave forcing with a period of 5 s. Models with polynomial states are derived with
both linear, and bilinear forcing terms. The model labeled "Full" was identified with an additional
forcing a squared forcing signal u2[k]. The bilinear models for the Van der Pol oscillator did not
yield stable dynamics, and were left out of the figure for readability.

Bilinear dynamics

In Figure 4-3 the response to a square wave forcing of the identified models is presented.
Almost all bilinear models fail to capture the dynamics induced by the square-wave . Fur-
thermore, the linear models appear to yield mostly better predictive performance than the
bilinear models. For the Van der Pol oscillator, the presented method failed to get a good
estimate of the dynamics. Therefore, these dynamics were intentially left out from Figure 4-3
for readability.
Once the periodic behaviour for the Toy model dynamics have been reached, the bilinear
models perform better than the linear model, being able to model both the directly influenced
dynamics in x1 and the coupling in x2. This coupling cannot be modeled with a linear system,
as illustrated in the introduction of the present chapter.
The key reason for the poor performance of the bilinear models is due to the requirement of
using the lifted state estimate χ[k] in the state estimation problem. However, when we look
at the residual of the state reconstruction,

ε = ∥Cφ(x)− x∥,

we find that the residual is sizable for each of the model. The residual is presented in Figure 4-4
on the subset of the state space for which the models were trained.
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Figure 4-4: State reconstruction error ∥Cφ(x) − x∥ for the Toy model, Duffing oscillator and
Van der Pol oscillator on the region identified by the dynamics.

The state reconstruction error is relatively large for the region considered. Consequently, a
lifted state φ(x) has a poor correlation to the underlying state x. The use of these coordinates
in the optimisation problem in Equation (4-6) causes the optimal solution to be partially
optimised towards this error instead.

The worse initial state response in Figure 4-3 can also be explained by the state reconstruction
error in Figure 4-4. The state reconstruction error is only small around the fixed points for
the Toy model and Duffing oscillator, or around the periodic dynamics for the Van der Pol
oscillator. As a consequence, the forced dynamics away from these equilibria or attractors
has a comparatively large effect on the reconstructed state dynamics.

The poor state reconstruction error suggests that the addition of polynomial terms does not
introduce enough degrees of freedom to get a good output map estimation. This is mostly
due to the limited number of states that can be introduced due to the exponential growth
of the underlying state dimension. Smaller initial state orders were attempted in favour of a
larger derived state order. However, it was found that this yielded worse overall performance.

4-4 Conclusion

We presented a method to augment a linear Koopman model with a nonlinear output map,
approximated as a multivariable polynomial. This polynomial can be included in the un-
derlying state dynamics to obtain an augmented linear model for autonomous dynamics.
Combining this derived model with the method of eigenfunction construction presented in
Chapter 3 results in a slightly improvemed and more robust VAF for the Toy model and Van
der Pol oscillator, the derived model for the Duffing oscillator outperforms the original results
by Korda and Mezić. We conclude that the estimation performance of the proposed systems
can be improved by inclusion of a nonlinear output map.

The inclusion of derived dynamics proposes the use of a bilinear model to estimate the forced
dynamics. By exploiting the structure in the underlying problem, the complexity of the
optimisation problem can be reduced to a small least-squares problem. The dynamics under
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influence of a square-wave forcing of the Van der Pol oscillator and Duffing oscillator are
unable to be reconstructed by the proposed model. The dynamics of the Toy model are
captured around the fixed point, but at the cost of a large initial state error.

A state reconstruction error of a similar order of magnitude of the state itself suggests that
the proposed models grow too quickly in size to capture an accurate low-dimensional repre-
sentation of the Koopman operator for models. We conclude that, for the proposed methods,
a bilinear model can improve the performance of eigenfunction construction, given that the
state reconstruction error is small enough to ensure that the optimisation problem for the
derivation of a bilinear system is well-conditioned.

M.T.P. van Laarhoven Master of Science Thesis



Chapter 5

Neural networks for eigenfunction
construction

To further investigate the limitations of eigenfunction construction in application to nonlinear
systems we construct a neural network model for the learning of Koopman eigenfunctions.
This has been previously attempted in works by Lusch et al., which successfully learned
reduced linear representations for the Koopman operator [35]. In the present work we intro-
duce a different optimisation problem, aimed at multi-step prediction. The presented network
model lends itself to learning eigenvalues and eigenfunctions of the Koopman operator, allow-
ing is to do a more detailed comparison into the eigenfunctions constructed in the previous
chapters.

5-1 Network Architecture

We want the Koopman network architecture to reflect the eigenvalue evolution constructed
in previous sections. Consequently, we want the network to reflect the dynamics of a system
of the form

χ[k + 1] = Aχ[k]
x[k] = φ−1(χ[k])

χ[k] =
[
φ1(x[k]) φ2(x[k]) · · · φNg (x[k])

]⊺
.

(5-1)

Here, A is a diagonal matrix containing the eigenvalues of eigenfunctions φ, represented as a
lifted state χ. Instead of the previously considered linear output maps, we now consider an
arbitrary nonlinear map h for output reconstruction.

The proposed network architecture is presented in Figure 5-1, which represents each of the
components in Equation (5-1) a seperate block. This model allows to do a k-step ahead
prediction by repeatedly applying the eigenvalue gain in the eigenvalue block A. This network
is effectively an auto-encoder, constructing a latent space of lifted coordinates χ, where the
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Figure 5-1: Proposed network architecture, consisting of a multilayer linear eigenfunction block
φ, the linear evolution A and a multilayer linear output map φ−1. The block structure represents
the format of a linear system, where the time step is indicated above the states x and lifted states
χ.

dynamics is linear. The blocks φ and φ−1 in Figure 5-1 consist of small neural networks with
2 hidden layers of 20 hidden nodes each, with a split hyperbolic tangent activation function,
defined in the next subsection.

Complex-valued networks

Eigenvalues of the Koopman operator are inherently complex-valued, making the eigenfunc-
tions and output map complex-valued as well. Consequently, our network needs to be capable
of learning complex-valued parameters. There is relatively limited research toward the prop-
erties and uses of complex-valued networks. We elaborate on the choice of activation function
for learning linear complex-valued neural networks [46].

Not all classic activation functions are applicable to complex-valued networks. For example,
the Rectified linear unit (ReLU),

ReLU(x) = max{x, 0}

does not have a complex extension due to lack of ordering in the complex numbers. In addi-
tion, a notion of differentiability is required, quickly moving toward holomorphic functions.
Both the complex-valued holomorphic hyperbolic tangent and the split hyperbolic tangent
were tested in our context. It was found that the holomorphic hyperbolic tangent failed to
converge, while the split hyperbolic tangent stanh : C→ C,

stanh(z) = tanh(Re(z)) + i tanh(Im(z)),

did converge. Although not holomorphic, this function is differentiable with respect to the
real and complex part separately, which is sufficient for a convergent network [46].

Learning problem

The learning problem considers two seperate learning objectives,
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1. State reconstruction: h(φ(y[k])) = y[k],

2. Prediction: h(Ajφ(y[k])) = y[k + j] for j = 1, 2, · · · .

Note that state reconstruction is effectively a special case of the prediction step with j = 0.

The complete loss function can then be defined as an optimisation problem in terms of the
network parameters θ ∈ Θ,

min
θ∈Θ

N∑
j=0

∥∥∥y[k + j]− h
(
Ajφ (y[k])

)∥∥∥
2

+ α1

Ng∑
j=1
∥λj∥1 + α2∥θ∥2 (5-2)

For the optimisation problem, ℓ2 regularisation is employed on the network parameters and ℓ1
regularisation on the eigenvalues Λ. This drives any unnecessary eigenvalues to 0, constructing
a minimal description for the neural network model.

Inspired by the work by Verhoek et al., we consider a multi-step optimisation problem [47]
where the prediction horizon N is increased over the epochs. The optimisation problem
in Equation (5-2) is solved for a batch size of 256 trajectories, making the optimisation
procedure significantly more stable. Furthermore, the eigenvalues are kept fixed until the
model has learned stable dynamics up to a horizon of N = 10. The network was implemented
in Pytorch, using the Adam optimiser with default parameters and a variable learning rate.
All hyperparameters used for the learning of the Koopman network are presented in Table 5-1.

Table 5-1: Hyperparameters for the learning of Koopman eigenfunctions.

Group Parameter Value

Architecture

Hidden layers φ 2
Hidden size φ 20

Hidden layers φ−1 2
Hidden size φ−1 20

Learning
problem

Learning rate 10−3

α1 10−7

α2 10−8

Batch size 256

The model parameters are taken at a similar order of magnitude as originally presented in
Chapter 3, taken at the slightly modified values in Table 5-2.

Table 5-2: Model hyperparameters for the learning of Koopman eigenfunctions.

Parameter Toy model Duffing oscillator Van der Pol oscillator
Time-step 0.1 0.1 0.1
Lifted dimension Ng 3 5 15
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5-2 Results

The presented networks successfully converged, enabling the prediction of nonlinear dynamics.
We present the validation loss after 34 epochs of 700 iterations in Table 5-3. The training
took approximately 1 hour on a NVIDIA GeForce GTX970.

Table 5-3: Validation loss after 34 epochs of 700 iterations for the proposed network architecture
applied to the Toy model, Duffing oscillator and Van der Pol oscillator

Parameter Toy model Duffing oscillator Van der Pol oscillator
Loss 2.3× 10−4 2× 10−2 5.3× 10−4

The network architecture with the proposed hyperparamaters is best adapted to learning the
dynamics of the Toy model. This is expected, since the Toy model can be approximated well
by a linear system, as we have seen in the results of the previous chapters.

Dynamics

The small loss function in Table 5-3 suggest that the models are able to accurately capture
the dynamics in the system. In Figure 5-2 we present the multi-step prediction performance
of the learned networks, at longer timescales than the model was learned for. The dynamics
remaining stable for N > 100 suggests that the lifted space can be interpreted as set of
eigenfunctions.

The performance of these models can be made arbitrarily well by tuning the hyperparameters
of the learning problem. The performance under the relatively small network suggests that
this work can be extended for further study. However, the primary goal of the present chapter
is to compare the learned eigenfunctions with the eigenfunctions constructed in Chapter 3.

Interestingly, the dynamics for the Duffing oscillator deviate significantly when compared
to the dynamics for the Van der Pol oscillator. This suggests that the Duffing oscillator
would benefit from using a larger lifted state dimension, allowing the inclusion of additional
eigenvalues.

Comparison to eigenfunction construction

We first compare the learned eigenvalues of the network to the eigenvalues identified by
Dynamic Mode Decomposition (DMD), applied to Hankel matrices. These are plotted for
the Toy model, Duffing oscillator and Van der Pol oscillator in Figure 5-3. Interestingly, the
distribution of eigenvalues for the two methods are mostly different. The eigenvalues identified
by the network are typically more concentrated around 1, with a smaller complex term. This
suggests that the periodicity introduced by the complex eigenvalues is not exploited by the
network. This can partially be derived from the relatively short-time scale for which the
models were trained and the characteristics of the dynamics in the example models.

The Duffing oscillator and Toy model only have a small complex contribution in the eigenval-
ues, since their periodicity is not that pronounced in their unforced dynamics, which is also
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Figure 5-2: Dynamics estimated by the learned network for the Toy model, Duffing oscillator
and Van der Pol oscillator, originating from a random initial condition.
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illustrated by the responses in Figure 5-2. Similarly, the 100 time-steps for the Van der Pol
oscillator captures only 1 period of the limit cycle, limiting the required periodicity of the
learned eigenfunctions. Unfortunately we were unable to increase the prediction horizon of
the learned models further, due to hardware limitations. Again, a full study was beyond the
scope of the present work.

In Figure 5-4 we study two learned eigenfunctions from the network for the Van der Pol oscil-
lator and compare it to the eigenfunctions constructed from data. The associated eigenvalues
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Figure 5-4: Norm of the eigenfunctions for the Van der Pol oscillator, learned by the network
and the eigenfunctions constructed directly from data.

were chosen such that two close DMD estimates also existed. A clear limitation of the models
constructed from the proposed eigenfunctions emerges. The choice of Γ appears to limit the
functions that can be approximated, illustrated by the clear bands along the trajectories orig-
inating from Γ. Any initial condition g on the set Γ can be propagated through λτ , causing
the pointwise norm of the initial condition along the given trajectory to satisfy,

|λτg| ≤ |λτ ||g|.

As a result, the norm can only decay, or remain constant along trajectories of the system.
However, the eigenfunctions learned by the network in Figure 5-4 suggests that periodicities
in the propagated magnitude are required for eigenfunctions that accurately capture the
dynamics in the system.
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Chapter 6

Discussion and outlook

6-1 Discussion

The results presented in Chapter 3 suggests that the original method proposed by Korda
and Mezić for models with eigenfunction construction is not suitable to construct accurate
dynamics in its present form. Even when exploiting gradient descent for the derivation of
eigenvalues, the constructed dynamics are unsatisfactory at time scales larger than discussed
in the original work.
This breaks down into two main issues that culminated into the conclusions of the previ-
ous chapters; the underlying assumption for the existence of linear dynamics and the state
reconstruction error. We discuss these issues seperately.

Assumption of linear dynamics

The assumption of linear dynamics is twofold. We first discuss the linear autonomous dy-
namics, which should not limit the accuracy of the proposed models. The assumption of
the existence of a linear model in the form of Equation (3-3) lays at the foundation for the
eigenvalue estimates. This suffers from the same problem discussed in the section on Propo-
sition 4.2; Estimated Koopman eigenvalues will remain biased unless s → ∞. This is less of
a problem than it initially might seem, since we have shown in Section 2-5 that any number
λτ with |λ| ≤ 1 can be used to construct an eigenfunction for a stable system.
However, the assumption on a linear input gain B makes it difficult for the proposed methods
to capture the forced dynamics. This is in line with the derivations in Section 2-6. This raises
the question whether there are more efficient eigenfunctions when taking the forced dynamics
into account, which we will discuss in the outlook.

State reconstruction

Initially the autonomous dynamics presented for both the original models and derived models
show promising results. However, the state reconstruction error, following the results in
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Section 4-3, sketches a different picture. The number of states required to obtain a small
state reconstruction error appears to be extremely large for more complex systems. This is
in line with results presented by a range of authors when Koopman methods are presented in
the context of control [5, 29].

As long as the state reconstruction error is large, the construction of a bilinear model will
remain difficult. One could consider identifying the bilinear model directly instead, proposed
in the outlook. This bilinear model can then be used to construct eigenfunctions in the same
way as in Section 2-5.

A linear model for nonlinear systems will never capture the full nonlinear dynamics. This
error can be accurately quantified in the frequency domain, illustrating the limit of linear
models clearly. Therefore, linear Koopman methods remain primarily an analysis tool for
autonomous dynamics when applied to nonlinear systems.

System complexity

For the Duffing oscillator and Van der Pol oscillator clear problems can be formulated for the
proposed method. This illustrates the difficulty in approximating their autonomous dynamics
presented in Section 3-3.

The Duffing oscillator ultimately has three isolated fixed points in the autonomous dynamics.
This can never be reconstructed by a linear model. A discrete-time linear model has either a
unique fixed point at the origin, or an entire fixed subspace, associated to the eigenvalue 1.
The subspace would emerge as an entire line on which the dynamics are in equilibrium. In
autonomous dynamics, the proposed methods can initialise the dynamics at the origin. This
allows the system to initialise one of the two stable equilibria, towards which the dynamics
will converge explaining the reasonable performance. However, once a forcing is introduced,
this initialisation breaks down.

The Van der Pol oscillator is suggested to break down due to the dynamics on different
time-scales. The stiffness ratio captured this in the discussion in Section 3-3. In theory, this
should not truly limit the proposed methods, since subspace methods can deal with multi-
scale dynamics. The difficult mainly lies in capturing enough of the periodic dynamics, whilst
also having a small enough time-scale for the large initial response. To solve this, one could
consider doing multiple iterations of Dynamic Mode Decomposition (DMD) at two different
time scales and matching them by scaling the eigenvalue accordingly. This allows eigenvalues
of both time-scales to be captured without running into limitations for capturing both.

Dependence on hyperparameters

Throughout this study, tuning the hyperparameters for the identification processes was an
intricate processes. Much of this culminated in the recommendations throughout the previous
sections. This puts a limit on the interpretability of the presented results. In particular,
variations on the initial state set Γ or variations in the chosen time step τ were found to
significantly impact the performance of the presented methods in application to the Duffing
oscillator and Van der Pol oscillator.
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Note that these difficulties can partially be attributed to the aforementioned predictive lim-
itations for these models, due to the difficulty of using linear techniques in identifying these
models. A simple further study would investigate the effect of these parameters in more
detail.

The results presented in Chapter 5 suggest that the choice of the initial condition set Γ might
have a large effect on the capabilities of the model. Currently, there are only a limited set
of requirements on the set Γ. Further work should focus on deriving results on the effects
of a given set, in order for the derived method to be able to capture a broader range of
eigenfunctions.

6-2 Outlook

We can make two larger recommendations for further study., which we present in two seperate
sections. First, we already mentioned in Chapter 2 that full state measurements are typically
not available. Although the methods discussed in the present work are still in their infancy,
practical studies can be made to investigate the practical feasibility and identify points for
further research.

Second, the two-step approach limits the performance of systems under the influence of forc-
ing. If the end goal of a model is to design a control algorithm for the nonlinear system, the
identification of the forced dynamics should inherently be part of the eigenvalue identification
step.

6-2-1 Time delay embedding for Koopman operator models

Typically we do not have access to full measurements of the states associated to the dynamical
system. This problem has not been investigated in detail up to this point. In the context
of methods based on DMD authors often point to Takens’ theorem without further study.
However, in the context of controlled systems, the application of Takens’ theorem is more
intricate, as was illustrated in Section 2-1. Previously we discussed background literature on
Takens’ theorem in Theorem 2.1. In this section we apply the results by Stark to linear and
bilinear models to derive embedding results for Koopman models of nonlinear systems. We
start by repeating the full embedding results [22].

Theorem 6.1 (Takens embedding theorem for forced systems [22]). Let X and U be compact
manifolds of dimension n and p respectively. If d ≥ 2n + 1, and the set of periodic orbits
with period smaller then d of h ∈ Dr(U) has zero Lebesgue measure in U . Then for r ≥ 1
there exists a residual set of (f, ϕ) ∈r (X ) × Cr(X ,R) such that for any (f, ϕ) in this set
there is an open dense set of u of full Lebesgue measure such that the delay embedding map
ϕf,h : X → Rd is an embedding, defined by

ϕf,h(x) :=
[
h(x) h(f(x)) h(f2(x)) · · · h(fd−1(x))

]
.

By Theorem 6.1, taking a time-delay embedding of the measurement variable y dimension
d ≥ 2n + 1, there exists a diffeomorphism ϕ onto X . This diffeomorphism can be used to
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extend the eigenfunctions to output systems, by taking

φ′ = φ ◦ ϕ−1 (6-1)

as the lifting functions. Suppose we identify a model for a system with nonlinear dynamics,

x[k + 1] = f(x[k])
y[k] = h(x[k]).

Then, by the developments in Chapter 3, we assume the existence of a model of the form

χ[k + 1] = Aχ[k]

χ[k] =
[
φ1(x[k]) φ2(x[k]) · · · φNg (x[k])

]⊺
y[k] = Cx[k].

Assuming that h ∈ span{φ1, φ2, · · · , φNg}. With the extension of the model in the previous
chapter, we consider a projection onto the algebra of eigenfunctions.

Effectively we now have a linear autonomous model, which now allows us to extend the model
to time-delay coordinates. We start by showing that eigenfunctions are preserved under the
application of time-delay coordinates.

Proposition 6.1 (Delay embedding eigenfunctions). Suppose φ is a Koopman operator eigen-
function with eigenvalue λ, and ϕ the delay embedding defined in Theorem 6.1. Then φ◦ϕ−1

is also an eigenfunction with eigenvalue λ in embedded coordinates.

Proof. Suppose we have a Koopman operator eigenfunction φ with eigenvalue λ associated
to a vector field f . Let ϕ be the delay embedding from Theorem 6.1. Then,

Kτφ ◦ ϕ−1 = φ ◦ ϕ−1 ◦ F ′
τ = φ ◦ Fτ ◦ ϕ−1 = λφ ◦ ϕ−1

We conclude that φ ◦ ϕ−1 is therefore an eigenfunction of the nonlinear system with output
map.

Using the notation of x′ for time-delay coordinates we construct a complete model of the form

χ[k + 1] = Aχ[k]

χ[k] =
[
φ1(x[k]) φ2(x[k]) · · · φNg (x[k])

]⊺
x′[k] = Cχ[k]
y[k] = x′

1[k]

We conclude that the proposed method can be used to construct an autonomous model with
time-delay coordinates x′.

The inclusion of a forcing term in the embedding ϕ makes the eigenfunctions φ in these
coordinates dependent on the forcing u. Adapting the eigenfunctions to include a forcing u

M.T.P. van Laarhoven Master of Science Thesis



6-2 Outlook 67

removes the ability to construct these from an interpolation problem, requiring significant
modifications to the developed methods.
However, under the assumption that a measurement is lifted at time t, where u[k] = 0 for
k < t, the proposed lifting function construction can be applied. The lifted dynamics χ
are independent of the use of time-delay coordinates. Therefore, given some initial state χ,
constructed from unforced time-delay coordinates, the models can then be used to estimate
the future dynamics with some known forcing u. In practice, these models would be probably
be combined with some form of Kalman filter, making this a soft requirement.
A seperate study should be done on whether the proposed methods yield sufficient perfor-
mance when using time-delay coordinates for forced dynamics. The poor performance of
the forced models in Chapter 3 suggests that this is difficult, since the problem complexity
becomes larger.

6-2-2 Estimating Koopman modes with forced dynamics

One of the core questions arising in the present work is whether the estimated eigenvalues
λτ are sufficient to reconstruct the forced dynamics. The forcing might actuate dynamics
that are not necessarily captured by the autonomous dynamics used for the identification of
Koopman eigenvalues.
The model proposed by Korda and Mezić in Equation (2-10) is standard in linear system
identification methods. Methods such as MOESP and N4SID can identify such models directly
from forcing data [48, 49]. This suggests the application of these methods to the proposed
problem. However, these methods assume a specific disturbance model,

x[k + 1] = Ax[k] +Bu[k] +Ke[k]
y[k] = Cx[k] +Du[k] + e[k].

Where e[k] is a white-noise sequence. This requirement is needed to ensure that the es-
timate for A is unbiased [20]. Whenever we attempt to model a nonlinear system as a
finite-dimensional linear system, the residual error e[k] is highly correlated to the underlying
state x[k]. Furthermore, the residual is also correlated to the forcing u[k] because the forced
Koopman dynamics do not lend themselves to a linear system, as illustrated in Section 2-6.
So even in the limit of infinite state dimension the residual will be correlated to the state and
forcing. Consequently, eigenvalue estimates produced by MOESP and N4SID methods will
be severly biased, causing the autonomous dynamics to be poorly reconstructed.
We attempted the application of MOESP to identify eigenvalues for eigenfunction construc-
tion. However, it was found that the found eigenfunctions were unable to reconstruct the
autonomous dynamics. The forced dynamics were reasonably estimated however.
One of the problems in subspace identification is the application of these methods whenever
the forcing x is correlated to the underlying state x, typically occurring whenever the system
is operating in closed loop. This problem is similar to the residual e[k] being correlated to
the underlying state.
Additionally, extensions to subspace methods for bilinear systems exist [50]. Consequently,
work on combining closed-loop identification methods with the bilinear estimation methods
could culminate in results applicable to the present work. The field of subspace identification
is somewhat mature however, and the present problem does not appear to be a solved problem.
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Chapter 7

Conclusion

By performing eigenfunction construction on Koopman operator methods we identify models
for nonlinear systems with linear properties. In order to make these models more viable in
practical applications it is crucial that the identification of eigenvalues becomes simpler and
that the identified models reflect the nonlinearity of the systems.

In the present work we have shown an equivalence of Estimation of Signal Parameters via
Rotational Invariance Techniques (ESPRIT) and Dynamic Mode Decomposition (DMD) in
the context of Hankel matrices, a relationship not explicitly noted before. This removes a
complex optimisation problem from the procedure by Korda and Mezić whilst simultaneously
reducing the model order by computing a full model for all states at once. A numerical study
shows that the constructed models can obtain a variance accounted for (VAF) up to 98 %
for autonomous dynamics on the Toy model and Van der Pol oscillator on a small part of the
state-space. The response to a square-wave forcing shows that the suggested linear models
are unable to accurately predict a forced response.

We were unable to recover the results presented by Korda and Mezić on time scales larger
than presented in their original paper. Furthermore, the results suggest that the original
optimisation method is overfitting to the data.

The properties of the Koopman operator eigenvalues allowed us to estimate a linear au-
tonomous system with nonlinear output as a linear system with a high-dimensional state
order. This improved the VAF on autonomous dynamics to at least 80% for all autonomous
responses. These models were then used to construct a bilinear model, whose optimisation
procedure was simplified by exploiting the structure in the optimisation problem. The bi-
linear model failed to accurately capture the forcing dynamics due to a large error in the
underlying state estimate. This underlying state estimate was quantified and investigated in
terms of the state reconstruction error. For the constructed models, the state reconstruction
error ∥Cφ(x) − x∥ was of the same order of magnitude as x. This caused the optimisation
problem to be ill-conditioned.

Neural networks can effectively be applied to construct eigenfunctions with linear dynamics
for nonlinear systems. Such a network was employed to compare learned eigenfunctions with
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the constructed eigenfunctions. The comparison pointed out that the optimal eigenfunctions
might nog have sufficient freedom with our choice of Γ. This questions the effect of Γ on the
eigenfunctions that can be constructed, and what choice of Γ is optimal for the construction
of eigenfunctions.

The use of time-delay coordinates was discussed briefly in the present work, functioning as a
starting point for further studies. This already shows that the lifting functions can only be
constructed for time-delay coordinates with a sequence of unforced measurements.

We give two primary starting points for future work. First, future work should aim at improv-
ing the estimate of the forced dynamics by exploiting existing methods for the identification of
bilinear systems, using the estimated eigenvalues for the eigenfunction construction problem.
Second, understanding the effects of the initial condition set Γ is paramount to constructing
more accurate eigenfunctions.
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