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Preface
This work represents the result of my master thesis project at the Pattern Recognition and Bioinfor-
matics group at the Delft University of Technology.

My years as a student have presented me with numerous interesting fields of study within science
and engineering, and I am thankful for the chance to discover each of them. My studies have shaped
me as an engineer; I have always desired to understand the how and why, but through ups and downs
my studies have shown me how, though I appreciate a theoretical study, I value a practical focus. In
light of this it is not surprising that I conclude my MSc programme in Signals & Systems with a thesis
project in Machine Learning, which to me is a related field with a perfect practical focus.

After investigating many areas of Machine Learning, my main reason to focus on Multiple-Source
Domain Adaptation (MSA) was to explain and extend current MSA literature. Explain, because I
found that current literature dived head-first into theory. This work presents a thorough motivation
for the MSA problem setting, i.e. under what assumptions it arises, and its practicality and relevance.
I also aim to extend current literature, because the theory seemed oddly specific to one target model,
the distribution-weighted combiner. This work clearly distinguishes between theory and assumptions
that are inherent to the MSA setting and those required only for a specific target model.

The intention was to replace the distributions with other additional source knowledge and evaluate
its effect in various scenarios. However, dissecting the theory proved to be non-trivial and the choice was
made to focus on investigating what allows source knowledge to be used in new MSA theory. It is my
hope that my perspective and explanations help readers who are new to this setting to more intuitively
understand the MSA setting and theory, as well as inspire future extensions of this promising theory.

The perspective presented above is reflected in the document structure. The introduction will present
a thorough motivation for the MSA problem setting and a full chapter is dedicated to investigating it.
MSA theory is split into two chapters, to clearly separate the parts inherent to the setting and specific
to additional knowledge.

This project has been a journey and I am thankful to have had wonderful people there to share it
with. I am thankful for having had the opportunity to do real scientific research with a lot of freedom.
For that I want to thank Prof. Dr. Marco Loog, as well as for his time and our enjoyable meetings.
Furthermore, I want to thank the other members of my thesis committee, Dr. Jan van Gemert and
Dr. Jorge Martinez, for their time in assessing my work. A big thanks goes out to the lovely people
at PRB for the talks, coffee breaks and discussion–I have learned the most from you. I am especially
grateful to those who kindly shared their office with me and made my time at PRB so much more than
it could have been without them. During the covid-19 crisis I was lucky enough to study with Luuk and
exchange our thesis struggles–thank you for helping me through. Finally, for support in many shapes
and forms that long precedes this project, I want to thank my parents, Marjolein and Janne.

W.J.W. Bons
Delft, June 2021
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1
Introduction

1.1. Motivation
1.1.1. Introduction to Research Question
Currently, machine learning models are prevalent and as a result trained models are readily available.
The training data is also prevalent, but its sharing and hence its use can be discouraged for several
reasons; firstly, because sharing data is complicated by privacy issues or bandwidth constraints (e.g.
in embedded or distributed applications); secondly, because due to the large size of modern datasets
it is too costly to store the data (e.g. for speech [1] or video data) or to train new models on it [2].
Therefore, it is increasingly relevant to research what is possible with already available trained models
but without access to the training data.

An opportunity for Domain Adaptation presents itself when models are trained on similar datasets,
i.e. having the same feature space but different distributions. This arises for example when for practical
reasons samples are collected several times under different external circumstances. One example is
medical data collected with the same equipment in multiple hospitals. Another example is in distributed
applications where features correspond to physical location and the datasets are subsets of the same
feature space. In both examples the datasets are part of a bigger machine learning problem and the
models aim to solve the same task, i.e.: how to detect a disease from data collected with this medical
equipment; and how to predict some property in the entire physical space, respectively. Their shared
task and similar datasets imply it is perhaps possible to have a single model that can be applied on all
datasets. This would certainly be useful and prompts the question: which of those models performs
well on all datasets? In other words, it is a natural choice to set as target all of the sources.

This is a Domain Adaptation (DA) problem, the setting that intents to transfer knowledge from
source domains to a target domain. In this work a domain refers to a distribution and an associated
model trained on a realisation (dataset) of that distribution.

The goal is to construct a target model using only the trained source models and no source data.
Either one of the sources can be selected as the target model, or the sources can be combined. Such
combinations have been shown to improve performance over the combined models. [3][4] This work
considers the weighted combiner that linearly combines the posterior class probabilities of the trained
models hk. For example, to rely more on model two than on model one, a combiner could be hT =
0.25h1 + 0.75h2. Note that it includes as a special case selecting each individual model.

The issue with applying these (combined) source models on the target domain is that it violates
the standard machine learning assumption that training and test data are similarly distributed. As a
result of these different distributions source models do not generalise well to the target. [5] Here, as is
common in Domain Adaptation, poor target performance is due to the DA algorithm used, so is called
negative transfer.[6][7]

To approach this issue, many DA approaches use data to relate the source and target domains, for
example by estimating a shift between the source and target distributions. In this work, by assumption
no data is available to the DA algorithm. Therefore it is relevant to research the question:

“How can pre-trained models be combined for performance on all their source domains,
without access to data?” (RQ)

1



2 1. Introduction

This is especially relevant when trained models are already available, because their application requires
minimal effort; they need not be trained but can readily be applied.

The rest of this introduction is structured as follows. It will first be substantiated under which conditions
the research question is relevant. This will lead to formulating the problem at hand as a Multiple-
Source Domain Adaptation (MSA) problem setting. Following this, a performance bound from current
literature is investigated, which, as this work will argue, has the potential to be extended from the
perspective of ‘additional knowledge’.

1.1.2. Assumptions of the MSA Setting
A reasonable assumption in practice is that the target is a mixture of sources. For example, if a new
dataset consists of 80% data from dataset A and 20% data from dataset B, then its distribution is
expected to be D(x, y) = 0.8DA(x, y)+0.2DB(x, y). Note that this Target Mixture Assumption (TMA)
includes each individual source as a target.

This work will discuss an unknown target, which is conveniently modelled by the TMA by assuming
the weights to be unknown. The assumption that at test time it is unknown which source domain is
the target is interesting for several reasons.

Firstly, it is a natural choice for the problem. Consider as an example that two research teams have
collected medical imaging data of their own patients and trained a model to predict the presence of
a disease. Both teams are trying to predict the disease from imaging data of anyone, not just their
current patients; they want to generalise to new patients. The teams have the same task and it is
desirable to have a single target model that can be applied on both source domains. It is then a natural
requirement that a patient receives the same diagnosis in either hospital. The prediction should not
rely on which source domain a patient is from. In some applications this is even impossible to know;
what if, for example, a patient is found on the streets?

Secondly, it is practical to assume that at test time it is unknown which domain is the target. This
allows deploying a single model rather than a set of models that the user still has to choose from.

Finally, it is an open question how to approach the research question without knowing the target. If
the target is an unknown source, a model is available but can not be selected. If the target is a mixture
of sources, no model exists trained on that domain. However, if it is known which source is the target,
a model trained on that source is available and could be used as the target model.

In conclusion, the target is an unknown mixture of sources. Note that, contrary to most DA methods,
no other target knowledge is assumed and no target data is required.

In this work the goal is to minimise a performance guarantee: an upper bound on the performance on
any target. Optimising the performance on a single target instead is not possible because the target is
unknown.

Minimising a performance guarantee addresses the issue of negative transfer, for the following reason.
In DA settings, models can suffer from negative transfer. That is, models that intend to improve
target performance can actually perform badly on the target. If the performance is guaranteed to
be at most a certain value on any target, then by definition no negative transfer can yield a worse
performance than this. Optimising for the best performance guarantee then minimises the worst possible
negative transfer. In that way, this goal actively combats negative transfer. This is in contrast with
the standard goal of minimising expected performance. Minimising the expected loss over all possible
target distributions would allow negative transfer to be arbitrarily bad, regardless of good performance
on average. Therefore the performance guarantee is minimised instead of the performance, even though
this goal results in conservative solutions. (Additionally, optimising the expected loss is not possible
because it requires knowing the distribution over all possible target mixtures.)

So, to combat the important and expected issue of negative transfer, the goal is to find a target
model that provides a good performance guarantee, i.e. a small expected loss that can be guaranteed
for all possible target mixtures. This can be interpreted as a robustness property of the model, as it is
robust against any target mixture that it might be applied on.

To summarise, this work assumes that (a) no data is available, only trained models, (b) the target is an
unknown mixture of sources, and (c) the goal is to minimise the performance guarantee. This describes
a Multi-Source Domain Adaptation (MSA) setting, [1, 8, 9] which will therefore be used to model the
problem.
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1.2. Existing Method and Contributions
Existing theory for the MSA setting gives a performance guarantee for a combiner whose weights depend
on (estimates of) the sources’ joint distributions, and this performance guarantee is better than for a
combiner that does not use the distributions. [1, 8, 9] By using the joint distributions, the combiner
accounts for the difference in train and test distributions. However, the distributions might not be
the only mismatch between trained models and what domain they are tested on in the MSA setting;
anything related to the training procedure of source models influences the target model’s performance
and so might be used beneficially in the combining weights. For example, the complexity of the source
models also influences the target model’s performance and is not considered by current MSA theory.
Thus, in addition to the in the MSA setting available source models, some additional knowledge of
the source domains might be used in the combining weights. This work presents MSA theory from
the perspective of additional knowledge, in general, and hypothesises that other knowledge than the
distributions can be useful as well, thereby expanding MSA theory.

Any additional knowledge is related to the source domains, not to the target. Using such knowledge
to combine suits the MSA setting, because it does not require target knowledge or the sharing of source
data.

The scientific contributions of this work are threefold. Firstly, to explain MSA theory from the per-
spective of additional knowledge, this work explores and explains the MSA setting and the behaviour
of models in it, as well as current MSA theory and its performance bound. In current literature, this
bound is simply proven to hold and used, and a second contribution is to clarify its assumptions and in
particular to make a clear distinction between theory and assumptions that are inherent to the MSA
setting and those that follow from the current choice of distributions as additional knowledge. This
work will not propose combiners that use additional knowledge, but rather it will investigate what
makes source knowledge beneficial in the MSA setting and of use in new MSA theory. With this final
contribution this work aims to inspire future research on similar performance bounds with other types
of additional knowledge.

1.3. Research Questions
The main research question is:

“How can pre-trained models be combined for performance on all their source domains,
without access to data?” (RQ)

In the previous section it was motivated that this question can be modelled as an MSA setting. (The
performance on an unknown mixture target is of interest, which is modelled as a performance guarantee
for all possible targets.) The sub-questions are formulated as follows:

“Which combinations of pre-trained models are robust in the MSA setting?” (RQ1)

It will be shown that some target models are not robust to all possible targets and result in negative
transfer. Therefore this is followed by:

“How can the existence of a robust model be determined to counteract negative transfer
in the MSA setting?” (RQ2)

“What could be used as additional knowledge to ensure satisfactory robustness of a
model in the MSA setting?” (RQ3)

That is: (RQ2) investigates current theory and (RQ3) works towards expanding it.

1.4. Scope
In this work the research question will be considered within the following scope.

The learning task is supervised classification.
Data has continuous features X ∈ R and discrete labels y ∈ {1, 2} that are the same for all domains.
Models (or ‘hypotheses’) output a posterior class probability for each class (sometimes called ‘soft

labels’). Because two classes are assumed and posterior probabilities sum to one, in practice only one
probability is sufficient as an output, not a vector. Thus, models are defined as hk : X × Y → [0, 1].



4 1. Introduction

The loss function is the log-loss (also known as cross-entropy loss) in all domains.
The sample size of target domains is outside of the scope of this work and in experiments will be

taken large. That is, effects of sampling a specific target dataset are not investigated, only the expected
(mean) performance over all datasets for each possible mixture parameter. One way to view this is that
the goal is (expected) performance on a target mixture distribution, not on a realisation of it.

When using distributions as additional knowledge, the true distributions are used. (The influence
of density estimation on MSA theory was formalised by [8].) Availability of additional knowledge is
assumed the same for all sources; distinction is out of scope.

It should be noted that the MSA setting and theory are applicable to a broader extent. For example,
[1] considers regression models and [9]’s proofs do not assume that the models output the posterior
distribution, simply a distribution. However, this broader perspective is not the point of this work. To
investigate the setting and additional knowledge it was chosen to focus on the scope outlined above.

1.5. Related Work
Multiple­Source Domain Adaptation
In Multiple-Source Domain Adaptation settings, a model trained on source domains is to be adapted
for good performance on target domains. Typically, unlike in the MSA setting, labelled source data and
unlabelled target data are available during training. [10] This allows relating the targets to the sources
and adapting accordingly, for example by estimating a domain shift or by learning a domain-invariant
representation. [11] Having the source data also allows naively merging it and training a single predictor
on the merged data. In contrast, in the MSA setting no data is available, only trained models, and the
targets are unknown but constrained with respect to the sources. [1, 8, 9]

(For a brief overview of related problem settings, see section 5.2.)

MSA Setting
In the MSA setting a sufficiently robust distribution-weighted (DW) combiner always exists, guaran-
teeing an expected loss of at most ϵ, the worst-case expected loss of a source domain. [9] This setting
was first formulated and its theory analysed and proven under different assumptions, [9] i.e. in a de-
terministic setting where hypotheses are target functions instead of a probabilistic setting where they
output posteriors, and for other loss functions than the log-loss. [1, 8] In that deterministic setting,
even if the target is known, the combining weights should depend on the marginal source distributions
since (a) there exists a problem for which any combiner with fixed weights performs poorly and (b)
using a distribution-weighted combiner guarantees an expected loss of at most ϵ.

This upper bound also holds when the target is unknown [1] and similar bounds hold if the fol-
lowing assumptions are relaxed, [8, 9] lending more practical use to the theory. Firstly, relaxing the
target distribution assumption from a mixture of sources to any unknown target distribution yields
bounds that include the Rényi divergence between the target distribution and the closest mixture of
sources. Secondly, if the assumption that the true source distributions are known is relaxed to having
approximations of them, a bound utilises the Rényi divergence to measure their closeness to the true
distributions. This shows the effect of sample size in the MSA setting.

For a probabilistic setting, theory similar to that for the deterministic setting exists. [9] The distribution-
weighted combiner then depends not on the marginal but on the joint source distributions.

Theory for the cross-entropy loss gives similar bounds to other loss functions [9, apx.C] although
their derivation differs slightly. Firstly, some earlier proofs rely on a triangle inequality [8] that is not
satisfied by the cross-entropy loss. [12]. Furthermore, in the probabilistic setting the DW-combiner is
slightly adapted to ensure that it is normalised, [9] i.e. that it outputs a valid probability vector, as
required for the cross-entropy loss. [3] A slightly altered derivation still yields the same bounds. [9]

An algorithm exists that finds the weights of the DW-combiner which satisfies the theoretical bound.
[9]

Negative Transfer
In Domain Adaptation, negative transfer is the phenomenon of deteriorating target performance when
trying to transfer from a source with the intention of improving target performance. [7, 6] Negative
transfer is the result of the chosen algorithm and is caused by differences in joint distributions. [6]
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Classifier Combinations
A combination of classifiers (combiner, ensemble model) can improve performance over the combined
models. [3] Combining pre-trained models can aid performance in multiple-source DA, [4] which is not
explained by ensemble effects, [5] but rather by DA effects such as capturing domain-specific bias.

1.6. Document Outline
This introduction has presented a motivation for several assumptions and a goal, which has led to
formulating the research question in the MSA problem setting. First, chapter 2 will formally define
this setting and investigate the behaviour of models in it. Chapter 3 will then introduce a performance
bound of MSA theory, after which chapter 4 will show how this theory can be used when assuming a
combiner that uses additional knowledge.

The problem setup is first explored in detail to develop intuition for it (RQ1) and to allow in-
terpretation of MSA theory (RQ2). Following this, additional knowledge in MSA theory is discussed
(RQ3).





2
MSA Setting and Combining

2.1. Introduction
Chapter 1 has presented a motivation for treating the main research question

“How can pre-trained models be combined for performance on all their source domains,
without access to data?” (RQ)

as a problem in the MSA setting. This chapter will investigate this setting by asking the question:
“Which combinations of pre-trained models are robust in the MSA setting?” (RQ1)

To answer this, this chapter will first discuss the MSA setting, starting by defining its assumptions
and goal. Next, by example the robustness of source models and their combinations is evaluated and
compared. This investigates whether robustness can and does improve by using a combination instead
of the source models. Along the way, these examples clarify the behaviour of models and the to-be-
optimised goal in this setting. This leads to the conclusion that non-robustness is a disadvantage of the
setting for source models as well as some combiners, but also that robust models are possible.

2.2. Assumptions and Notation
Let the input space X ⊆ R consist of continuous features and the output space Y ⊆ {1, 2} of binary
labels.

A domain D refers to a distribution D(x, y) and an associated model h that was trained on a
realisation of D(x, y). No data of domains is available to train on or test with, only the trained model
is.

The domains Dk, k = {1, ...,K} are called source domains and the target domain DT is assumed to be
a mixture of them, as defined by the Target Mixture Assumption (TMA). The TMA is assumed linear
and mixes the joint distributions, i.e.

DT (x, y;λ) =
∑
k

λkDk(x, y) (2.1)

with true mixture weights λ ∈ ∆ = {λ ∈ RK : λk ≥ 0 ∧
∑K

k=1 λk = 1} (which implies λk ≤ 1 or
λk ∈ [0, 1]). Mixture weights other than the true (i.e. the true target in a scenario) are denoted by
some variable other than λ, e.g. z. Note that each individual source Dk is also an ‘extreme’ mixture
(with exactly one of the mixture weights non-zero and equal to one). (For ease of reading we also use
the notation Dλ := D(x, y;λ) and also abuse some notation by using integer k as a mixture parameter,
i.e. Dk refers to either the source or equivalently to that source viewed as an extreme mixture.)

Models (or ‘hypotheses’) h : X × Y → [0, 1] have as output for each x ∈ X the vector of posterior class
probabilities p(y|x). A model parameterised by a parameter z is denoted h(z) = h(x, y; z).

The loss of a model’s prediction is measured by the loss function ℓ : [0, 1] → R+. It is non-negative
and as a result any risk (expected loss) is non-negative L ≥ 0. Specifically, the log-loss[13] is used:
ℓ(x, y) = − log p̂(ytrue|x) where p̂(ytrue|x) is one element of |Y|-length vector h(x).

7



8 2. MSA Setting and Combining

Hypothesis Space
Recall that hypotheses h output posterior probabilities, i.e. h(x, y) is for any x ∈ X a vector p̂(y|x) of
length two. In this chapter1 the hypothesis space is that of linear combiners, i.e. for any (x, y) ∈ X ×Y

hT (x, y) =
∑
k

zkhk(x, y) (2.2)

with weights zk ∈ R that are constant (i.e. do not depend on e.g. x or y or some parameter). The
weights zk ≥ 0 are assumed normalised

∑
k zk = 1 which implies z ∈ ∆, i.e. they are valid mixture

weights. Equation 2.2 is also denoted as the weighted combiner hW (z).

2.3. Property of Losses
From the setting defined in section 2.2 follows a behaviour of models in this setting, as stated now.
(Note that this holds for any model h, not just for combiners.) It shows that the linear relationship
between source and target distributions assumed by the TMA carries over to the expected losses. This
relationship will be used in MSA theory (ch. 3). It is also a useful property of the MSA setting in
practice, since it allows calculating the loss on any target from the source losses, without needing target
or source data.

Lemma 1. The target loss is
LDλ

(h) =
∑
k

λkLDk
(h)

for ℓ the log-loss and for any h and λk.

Proof.

LDλ
(h) = E(x,y)∼Dλ

{ℓ (h(x, y))} =
∑
y

∫ ∞

−∞
Dλ(x, y)ℓ (h(x, y)) dx

for discrete y and continuous x. Substituting the TMA yields:

=
∑
y

∫ ∞

−∞

∑
k

λkDk(x, y)ℓ (h(x, y)) dx

where for well-behaved h the integral and sum over k can be interchanged:

=
∑
k

λk

∑
y

∫ ∞

−∞
Dk(x, y)ℓ (h(x, y)) dx =

∑
k

λkLDk
(h)

2.4. Formal Goal
In the MSA setting considered, the goal is to perform well on all source domains as a target. This is
modelled (as motivated in chapter 1) by the Target Mixture Assumption, i.e. the target domain Dλ is
a mixture of the source domains Dk, and this mixture is unknown.

Performance is measured by expected loss over X × Y, as is standard in machine learning. In this
setting, the objective is to minimise expected loss on the target domain, i.e. to minimise LDλ

(hT ).
The model hT does not depend on k or λ, because the same model is desired for any target domain,
respectively λ is unknown.

In this work, λ is unknown and so, as motivated in chapter 1, the goal is to provide not good
performance but a good performance guarantee. Let a performance guarantee of a model h be defined
as an upper bound on its performance on any target mixture Dλ:

∀λ ∈ ∆ : LDλ
(h) ≤ LDλworst(h)

(h) (2.3)
1Chapter 4 will extend this to linear combiners whose weights depend on x, y.
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where

λworst(h) = arg max
λ

LDλ
(h) (2.4)

which is given by the loss on some mixture on which the model performs worst: a worst-case mixture
for the model. In other words, h is guaranteed to achieve at least this performance regardless of which
target it is applied on. An interpretation is as a robustness property of h, as that model is robust
against any target mixture it might be applied on; again in the sense that its performance is guaranteed
at least as good as the guarantee. The terms ‘performance guarantee’ and ‘model robustness’ will be
used interchangeably in the rest of this work.

This work has as goal to find a target model hT that provides a good performance guarantee, as in
equation 2.3. The best performance guarantee is that with the lowest expected loss, so the objective is:

min
hT

LDλworst(hT )
(hT ) (2.5)

where λworst(hT ) is defined by equation 2.4. Note well that the worst-case mixture depends on the
model used so is not the same for the entire hypothesis space.

In conclusion, the setting’s goal is optimised for by the optimisation problem in equation 2.5, which
finds the target model that is most robust to application on any target mixture (or: the model with
the best performance guarantee).

Related
Alternative MSA settings (outside of the scope of this work) are possible if some knowledge of λ is
available. If, for example, λ was known, it could simply be used to optimise the expected loss:

min
hT

LDλ
(hT )

If not a value but a distribution over λ was known, a Bayesian approach would be to minimise its
expected value:

min
hT

Eλ∼p(λ)LDλ
(hT )

Another alternative is a minimum regret-based approach.

Hypothesis Space
To find the most robust target model (eqn. 2.5) a hypothesis space must be chosen to search in. As
motivated in chapter 1, a combination of the source models is used. That is, a parametric form of
the combiner is defined and thereby a family of models is defined as hypothesis space from which the
optimal is to be found. This hypothesis space includes the set of trained source models hk, so a possible
solution is to select one of them as hT .

In this chapter a linear combiner is used, as defined by equation 2.2.

2.5. Discussion by Example
2.5.1. Experimental Setup and Baselines
To develop intuition for the setting simple domains are used as an example. They consist of two
gaussian classes in a one-dimensional feature space, where one class has its mean shifted between
domains. Example realisations are shown in figure 2.1.

Unless otherwise stated, all performances reported below are on an independent test set and sample
sizes are taken large enough to approximate the true distribution.

Target domains are generated as follows: after splitting each source domain in a training and test
set (50% each), the training sets are mixed together by selecting a subset of the source training sets so
that the resulting mixture follows the TMA with the correct λ, and also has the same sample size as
the source domains. The same procedure produces the target’s test set.
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(a) Domain D1 with p(x|y1) ∼ N (−2, 1) and
p(x|y2) ∼ N (0, 1).

(b) Domain D2 with p(x|y1) ∼ N (0.5, 1) and
p(x|y2) ∼ N (0, 1).

(c) Domain Dλ for λ =
[
0.2 0.8

]T .

Figure 2.1: Example realisations (N = 2·106 per domain) of two source domains and one possible target
mixture. Binary classification in 1D (one feature). Each class has a gaussian distribution (parameters
below the relevant figures) and all class priors and variances are equal. The source domains differ in
the mean of one class, which is shifted asymmetrically.

Baselines
To investigate the behaviour of models in the MSA setting, they are compared with the following
baselines.

If the target is one of the sources, that source’s own model is a baseline. After all, the target model
hT is to be used in that domain in place of the source model hk that is already available. It is desired
that the new target model is at least as robust as the source model.

Another baseline are the other sources’ models. After all, since they are given in the setting, the
easiest construction of a target model is to select one of the source models. This was also part of the
motivation for the research question and it was hypothesised that some source models can also be robust
to other targets.

All together comparison with all source models is in order. Especially the source model that provides
the best guarantee is of interest, because of the easiest target models it is the one that best achieves
the setting’s goal.

2.5.2. Source Models and the Best Guarantee as the Setting’s Goal
First, consider selecting either available source model hk as the target model to use. Figure 2.2 shows
the performance of linear source classifiers on all possible mixture targets Dλ. This shows (for this
example) the expected behaviour when models are applied on datasets with different distributions than
they are trained on. That is, the source models perform the best on their own domains (e.g. h1 for
λ1 = 1) and worse on mixtures that include less of their own domain. Consequently, if for example h1

instead of h2 is applied on D2, the expected loss increases from 0.66 to almost 1.8.
Now consider the goal: to select the model that provides the best performance guarantee for all
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Figure 2.2: Comparison of the performance of linear source classifiers hk on all possible mixtures targets
Dλ. The goal of the setting is to provide the best guarantee, which is here provided by h2. The domains
used are shown in figure 2.1, the sample size of domains is N = 2.5 · 106 and the gridsize for λ used was
60.

possible targets, i.e. the lowest loss for the worst λ(eqn. 2.5). h1 and h2 provide guarantees of respec-
tively almost 1.8 and 1.05. Therefore h2 is preferred over h1, even though h1 would have performed
better on target mixtures with λ1 > 0.61. By selecting hT = h2, the (expected) loss on any target can
be guaranteed to be at most LDλ

(hT ) ≤ 1.05.

2.5.3. Combiners as Compared to Source Models
Consider now a weighted combiner (eqn. 2.2) in this setting. Figure 2.3 shows all possible combiners,
i.e. all weights z, and compares their performance as well as performance guarantees with the source
models and relevant baselines.

Firstly, consider the combiner’s performance on a single target Dλ (fig. 2.3a). For these example
domains, on this target some combiners perform better than the best source model (h1), while others
perform worse, upto at worst the performance of the other source model (h2). So for this target,
choosing the right combiner (for example the optimal) outperforms both source models.

Secondly, consider the combiner’s performance guarantee, i.e. its performance on the worst-case
target (fig. 2.3b). Similar to its performance on a single target (fig. 2.3a) the performance guarantee
of some combiners is better than the best guarantee of the source models, while other combiners have
a worse guarantee. This means that the weighted combiner hW (z) is not necessarily better than the
source models in this setting: for the ‘wrong’ weights z, a source model will provide a better guarantee.
For other weights z, however, the combiner provides a better guarantee than the source models; in
figure 2.3b for any z < 0.82. (Chapter 3 will study how to find those robust models.)

Effect of Source Model on Combiner: Complexity and Data
Logically, the source models greatly influence the combined model. When using a combiner instead of
a source model, the following differences between them should be considered.

Firstly, the combiner is often but not always more complex. For example, consider as source models
two decision trees that makes five decisions (different for each source domain). A linear weighted
combiner of the posterior probabilities then makes ten decisions and thus has a more complex decision
boundary. Consider now that the decisions made are the same for both sources; then the combiner only
makes five decisions (albeit weighted differently), the same number as the source domains. Lastly, in
some cases the combiner can also be less complex. For example, if the source models make opposing
decisions then a uniformly weighted linear combiner makes no decisions at all.
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In this work some examples use linear source classifiers, which, because their posteriors are combined
linearly, results in a target model that is also linear. Any effects on for example performance are then
not due to an increase in complexity.

Note that even though the model can become more complex by combining, the problem to solve, i.e.
performance on a D(x, y), becomes more complex as well. This is in contrast with the common approach
of using combiners to improve performance on a single dataset; there only the model’s complexity
increases, the problem’s is unchanged, and performance often improves as a result. It is therefore not
trivial that in the MSA setting the combiner (with possibly the same complexity as the source models)
is able to solve the more complex target problem. Yet, such a result will be achieved in section 4.2.

Secondly, as compared to the source model, the combiner is (indirectly) trained on more training
data, possibly with different qualities such as it being from a different part of the feature space. That
can be a partial explanation for any effects and performance differences between combiner and source
models.

2.5.4. Negative Transfer
For both selecting a source model as target model as well as for a combiner, it was empirically shown that
performance can suffer greatly in the MSA setting, as compared to using a source’s own model. This is
negative transfer, because the deteriorating performance is the result of the chosen MSA algorithm[6]
that produces the target model, and because performance of the algorithm that intended to improve
performance on other domains has actually worsened that performance.[7]

Because the performance guarantee is by definition the performance on the worst target (eqn. 2.3),
a bad performance for some target due to negative transfer results in a bad performance guarantee. In
other words, as a result of performance decrease (which is negative transfer) the performance guarantee
also suffers and the non-robustness of the target model is viewed as negative transfer.

2.5.5. Optimal Performance Guarantee
For the weighted combiner as example model, figure 2.3b also shows how the performance guarantee
and its optimum behave.

For reference the performance on two single targets (as well as the range for all possible targets)
is plotted. Firstly, this shows how the guarantee is constructed as a point-wise maximum over all λ.
Secondly, for all λ the guarantee passes through the optimum of the worst-case lambda. This implies
that if the optimal z is chosen, then the performance on all possible targets is the same and that
performance equals the performance guarantee. On the contrary, if a non-optimal value of z is chosen,
then the performance on the possible targets varies: the loss on some targets will be larger and on some
smaller than the optimal guarantee’s loss. One interpretation of this is that to minimise the guarantee
some good performance on ‘easy’ mixtures is sacrificed to improve bad performance on ‘hard’ mixtures,
until performance on all mixtures is equal in the optimum.

2.6. Conclusion
This chapter has investigated which combinations of pre-trained models are robust in the MSA setting.
The setting was first defined formally. Notably, inherent assumptions of the setting were noted to be
the availability of trained models and no data, a target that is a mixture of sources, and as goal to
find a robust target model, i.e. that minimises the worst expected loss for any unknown target. The
target model is a linear combination of the source models’ posterior probabilities. It was further proven
that that target loss is a linear combination of the source losses and by example it was shown that for
optimal z the weighted combiner achieves the same loss on all targets.

It was then empirically shown that the source models are less robust on other domains than their
own, and that a weighted combiner can be either less or more robust than the source models. Worse
performance of the target model than the source models is negative transfer in the MSA setting.
This translates to non-robustness of the target model, which is therefore negative transfer and is a
disadvantage of the MSA setting. However, the same example has shown that a weighted combiner can
also be more robust, i.e. provide a better performance guarantee, than the source models.

The question then becomes how those robust models can be found, which is the topic of chapter 3.
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(a) Single target with λ = [0.7 0.3]T .

(b) Worst-case target λ = arg maxλ Lλ(h(z)) i.e. performance
guarantee. For comparison performances (not guarantees) on two
targets as well as the range for all targets are shown.

Figure 2.3: Comparison of all weighted combiners hW (z) (equation 2.2 for all z) with linear source
classifiers hk when used on either a single target (fig. 2.3a) or the worst-case target (fig. 2.3b). The
performance on the worst-case target is a performance guarantee and minimising it is the goal of the
setting. The domains used are shown in figure 2.1, the sample size of domains is N = 2 · 106 and the
gridsize for z and λ used was 80.





3
MSA Theory Guarantees Robustness

3.1. Introduction
In the previous chapter the MSA setting was introduced, notably its assumptions and goal: to find
the target model with the best performance guarantee, i.e. that is most robust to any target mixture.
Some examples have shown that the source models are less robust on other domains than their own, and
that some weighted combiners (some combining weights) are less robust than the source models. Other
combiners were seen to be more robust than the source models. This showcased negative transfer as a
disadvantage of the setting, but also that some combiners showed promise to counteract this negative
transfer. This motivates the question:

“How can the existence of a robust model be determined to counteract negative transfer
in the MSA setting?” (RQ2)

First, this chapter will derive a theorem from literature (sec. 3.2) that guarantees a robust model in
the MSA setting. This is done for a more general model–it is not even assumed to be a combiner–so the
theorem is fundamental to the setting. After its derivation a discussion follows on using the theorem in
the MSA setting (sec. 3.3), specifically on its relation to the setting’s goal and on negative transfer.

3.2. MSA Theory
It is now proven that a robust model h(p) is guaranteed to exist. Specifically, regardless of h, if h is
continuously parameterised by a mixture parameter p then a parameter value of p exists for which the
performance on any mixture is bounded. (Discussion on this bound follows after its derivation.)

Assumptions
For any h(p) parameterised by a mixture parameter p it is assumed that LD(h(p)) ∀D, h is continuous
in that p.

The loss function ℓ (h(x, y))) is assumed convex.

Lemma 2. 1 2 Consider K sources Dk. There exists a p ∈ ∆, pk ̸= 0 such that for any source k

LDk
(h(p)) ≤

K∑
j=1

pjLDj
(h(p)) + η′ (3.1)

for a model h(p) that is continuous in its parameter p ∈ ∆ and for any η′ > 0.

Proof. See page 33.
1For h(p) the DW-combiner hDW (z) of equation 4.2 this lemma and its proof are mostly equivalent to [9, sec. B.3, lem. 6]
which in turn is based on theorem [1, lem. 2]. Specific equivalences or differences are mentioned when they’re relevant.

2A more general version of this lemma (for other fixed-point mappings) is given in appendix C as lemma 8.

15
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This lemma is a general statement about losses on the source domains. By now applying the TMA
a similar statement is obtained about losses on two mixtures.

Theorem 3. Consider two mixtures Dp and Dq. There exists a p ∈ ∆, pk ̸= 0 such that for any q ∈ ∆

LDq
(h(p)) ≤ LDp

(h(p)) + η′ (3.2)

for a model h(p) that is continuous in its parameter p ∈ ∆ and for any η′ > 0.

Proof. See page 34.

Lemma 4. In theorem 3, the tightness of the bound in equation 3.2 (i.e. the difference between its left-
and right-hand side) is bounded by:

η′

K
< LDp(h(p)) + η′ − LDq (h(p)) ≤

η′

K

K∑
k=1

1

pk
(3.3)

Proof. See page 34.

Several remarks are in order about these statements. This focuses on theorem 3 but is equally
valid for lemma 2: note that equation 3.1 is obtained from equation 3.2 by taking q = k and applying
the TMA. This focus on mixtures over sources is chosen because the setting’s goal is to optimise for
mixtures and because they are more general than sources.

Existence
To begin with, note that the bound only holds for (at least) one value of p and not for any value of p.
That is, for a single model h(p), not for the entire family of models h(p). The existence of that model
h(p) is guaranteed by theorem 3.

Robustness
Secondly, the theorem’s bound (eqn. 3.2) is a robustness property of the model h(p): it bounds the loss
of h(p) on any mixture. To find a model with such a robustness property is the goal of the setting. (To
be precise, equation 3.2 is a statement as equation 2.3.) However, the theorem does not say how robust
it is; the value of the upper bound LDp(h(p)) is unknown. This value might be very large,[1] resulting
in a loose, vapid bound. Section 3.3 will explore both how the bound relates to the setting’s goal as
well as how the upper bound can be quantified, and furthermore how tight the bound is (cor. 4).

Scope
These results are fundamental to the MSA setting considered here. Firstly, no assumptions were made
about the models other than continuity in the mixture parameter. For example, nothing was assumed
about model combinations. Secondly, for the proofs a crucial assumption was the TMA, which was
used both indirectly in the fixed-point mapping of lemma 2 and directly in theorem 3. Thus another
setting with a different TMA would require a different fixed-point mapping to derive a similar result.
(See appendix C for a discussion on this.)

3.3. Discussion
Recall that the theorem’s bound (eqn. 3.2) is a statement as equation 2.3, i.e. a robustness property
of a model such as finding one is the goal of the setting. Further recall that having such a robustness
property counteracts negative transfer in the setting (sec. 1.1.2) by being ensured that performance is
never worse than that guarantee. Thus the theorem can be used in the setting to counteract negative
transfer.

The theorem guarantees that a model exists that has as performance guarantee LDp
(h(p))+ η′. Let

us discuss of this guarantee firstly its tightness and secondly its value, and furthermore discuss how to
find the model with this property.
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Figure 3.1: Comparison of setting’s goal and theory’s upper bound for the weighted combiner (eqn. 2.2).
To minimise the loss for the worst-case λ is the goal of the setting; Theorem 3 guarantees that for some z
the line λ = z upperbounds the loss on the worst-case λ, which in this example is achieved for z = 0.30.
(The same example domains and experimental settings were used as in figure 2.3.)

3.3.1. Tightness of the Bound
The tightness of equation 3.2 is bounded by corollary 4. This shows that for some p, q and sources Dk

the bound is almost tight: there is a gap of η′/K where η′ > 0 can be chosen arbitrarily small. So
the robustness property in theorem 3 is almost (for small η′) the tightest possible under the current
assumptions, i.e. to derive a robustness property that holds for any sources Dk and any continuous
hypothesis h.

Furthermore, recall that from a previous example (sec. 2.5.5, fig. 2.3b) it was hypothesised that a
target model’s loss is the same on all targets. Corollary 4 sheds some light on this hypothesis, which
is also claimed in passing by [1, sec.5.2][9, sec.4.1]. By choosing η′ to be small, by the corollary the
loss of h(p) is approximately the same on all mixtures Dq, except possibly if the guaranteed p has a pk
close to zero. This exceptional case requires further analysis to prove the same loss on all targets, or
alternatively to prove that the loss on some targets can become significantly smaller than the guarantee.
This analysis should take into account that by lemma 2 choosing a different value for η′ might result in
a different guaranteed value of p, which might complicate taking the limit of η′ to zero in corollary 4.

3.3.2. Finding the Theorem’s Model
Figure 3.1 illustrates the relevance of the theory in the MSA setting, again with the example domains
and the simple weighted combiner hW (z). Theorem 3 guarantees that for some z, hW (z) achieves a loss
that upper bounds the guarantee. In the figure this is seen to be z = 0.30, the z that gives the optimal
guarantee. The theorem guarantees that at least one such value exists. Thus, to find the optimal
guarantee means to find the z for which the theorem’s bound holds.

To begin with, this can be done by minimising the difference between the left- and right-hand sides
of the bound. An algorithm implementing this optimisation is for specific cases given by [9]. (Further
discussion on the algorithm and optimisation problem can be found in appendix B.)

Next, note from figure 3.1 that the optimal guarantee can not be found by maximising the loss on
the matching mixture, as that maximum has a different z. Nor can it be found by minimising the upper
bound, as one might be tempted to do because it upper bounds a loss that is to be minimised. This
does not work because by the theorem the bound only holds for some z, as was also seen in the figure.
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3.3.3. Value of the Bound and Negative Transfer
The value of the upper bound of theorem 3 is (safe for a small smoothing constant) LDp(h(p)). One
interpretation of this value is the loss on target Dλ where as parameter p the true mixture weights λ are
used. Or equivalently: the loss of the model with parameter p on the target mixture with as mixture
weights the parameter λ = p. This mixture is denoted as the “matching mixture” Dλ of the model
h(p). Thus the near-optimal guarantee is given by the loss on a model’s matching mixture.

Furthermore, recall firstly that the value of the upper bound is unknown and might be large,[1] resulting
in a loose, void bound; and secondly recall that as goal of the MSA setting a performance guarantee
was chosen to counteract negative transfer. If the bound is void, negative transfer can still occur on
some targets Dq, and additionally a void bound is not useful in practice. Therefore, to ensure that the
bound is not void and thus useful, it is needed to quantify the value of LDp

(h(p)), i.e. the loss on a
matching mixture. To do so it is sufficient to prove that the bound is satisfactory for any matching
mixture Dp, so that for whichever p is guaranteed by the theorem, the bound will be satisfactory.

This implies the following perspective on the theorem: if a model is known to perform well for all
matching mixtures Dp, then by application of the theorem (a parameter value exists for which) the
model also performs well on any mixture target Dq.

This is precisely how to quantify the upper bound for the case where distributions are used as
additional knowledge, as will follow in chapter 4.

3.4. Conclusion
This chapter has presented a theory from literature that guarantees a robust model exists in the MSA
setting. The robustness property provided by the theorem is the goal of the setting and is almost the
best (tightest) possible under the current assumptions. The model it guarantees was empirically shown
to be the optimal model for one example scenario. Additionally, an algorithm exists that finds this
guaranteed model.

However, it is not yet known how robust the model is: the bound might be vapid, which would
render it useless in practice to counteract negative transfer. The next chapter will quantify the upper
bound and show how a model can be proven to be satisfactorily robust. This will be done by using
distributions as additional knowledge.



4
Additional Knowledge in the MSA

Setting

4.1. Introduction
Previously, chapter 3 has shown the existence of a model that is robust to any target mixture and
that was empirically shown to be the optimal model in the MSA setting. This was shown to be a
fundamental property of the MSA setting by assuming only continuity of the model in its parameter.
(And so no model (family) like a specific combiner was assumed.) However, it is not yet known how
robust the model is: the bound might be void.

This chapter will first show that the upper bound can be quantified by assuming a combiner that
uses distributions as additional knowledge of the sources (sec. 4.2). It will be shown that this yields a
not-void bound and thus a satisfactory robustness property.

Next, it is hypothesised that other additional knowledge than the distributions can also be used
to quantify the guarantee i.e. provide a robust model (sec. 4.3). This will not be proven, but it will
be analysed why the distributions work as additional knowledge and so which other knowledge has
the potential to improve robustness. Thought experiments will confirm this hypothesis for the case of
using either training sample size, model complexity or knowledge of non-i.i.d. sampling as additional
knowledge.

This chapter will then have answered the question:

“What could be used as additional knowledge to ensure satisfactory robustness of a
model in the MSA setting?” (RQ3)

4.1.1. Motivating example
Distributions of the source data are informative to the selection of a source model as the target model,
and by extension to how much weight to assign them in a combiner.

As a motivating example, consider the domains in figure 4.1. The domains are subsets of the same
feature space in which they are far apart. Now, given a new sample at x1 = −100, it is clear that the
preferred source classifier to select should be h1, as it was trained on more representative data. I.e. its
training data (around x = −100) more resembles the test data (at x = −100) than does h2’s training
data (around x = 100).

By extension, if not a model is to be selected but rather they are to be combined, letting the
combining weights depend on the source distributions might improve performance by ‘selecting’ the
model whose training data most resembles the test data point. That is, it addresses the problem of
different training and test distributions.

To construct such a combiner, in addition to the source classifiers also the source distributions need
to be available as additional knowledge of the source domains. The next section will confirm that this
Distribution-Weighted combiner has favourable properties.

(Similar to knowing the marginal distributions, having class information in the form of e.g. the joint
distributions could also be informative and improve performance.)

19
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Figure 4.1: Motivating example domains for using distributions as additional knowledge. The domains
are subsets of the same feature space in which they are far apart.

4.2. Distribution­Weighted Combiner
4.2.1. Theory
Introduction to Theoretical Analysis
The robustness property will now be quantified and thereby shown to be satisfactory for the distribution-
weighted (DW) combiner.

Recall the perspective (sec. 3.3.3) on MSA theory (th. 3): if a model is known to perform well for
all matching mixtures Dp, then by application of the theorem for some parameter value the model
also performs well on any mixture target Dq. Therefore it is to be shown that the DW-combiner’s
performance on any matching mixture is satisfactory, i.e. to bound LDp

(hDW (p)) for all p. Lemma 5
does just that, after which corollary 5.1 uses this lemma to quantify the upper bound in theorem 3.

To bound the loss of all matching mixtures (lem. 5) assumptions are required on the form of the
target model (a combiner), as well as knowledge of the losses of the (source) models it combines, on the
source domains. Specifically, the loss on target Dp is expressed in terms of LDk

(hk) which is known to
be upper bounded by ϵ, the worst source loss.

Assumptions and Notation
The combiner is assumed linear, i.e.

hT (x, y; θ) =
∑
k

wk(x, y; θ)hk(x, y) (4.1)

with weights wk that are continuous in parameter θ ∈ Θ. (Consequently hT (x, y; θ) is continuous in
θ.) The weights wk ≥ 0 are assumed normalised

∑
k wk = 1 which implies w ∈ ∆, i.e. they are valid

mixture weights. Specifically,

wη
k(x, y; z) = normalise

(
zkDk(x, y) + η

U(x, y)
K

)
(4.2)

with hyperparameter η > 0 for smoothing and U the uniform distribution. Weights zk ≥ 0 are nor-
malised as

∑
k zk = 1 which implies zk ∈ ∆ = [0, 1]. The normalisation is defined for some K-length

vector x with xk ≥ 0 ∀k as normalise (xk) =
xk∑
k xk

where
∑

k xk ̸= 0. The normalisation is then always
defined because η guarantees the denominator is strictly positive.

With these weights this model is the distribution-weighted (DW) combiner hη
DW (z) and it is equiv-

alent to [9]’s combiner. Note firstly that in contrast with the weighted combiner hW (z) (chapter 2) the
combining weights depend on x, y. Secondly, equation 4.2 uses as additional knowledge the distributions
Dk(x, y).

The loss of source models is bounded:

ℓ (hk(x, y)) ≤ M ∀k, (x, y)

and they are relatively accurate on their own domain; their expected loss is bounded:

LDk
(hk) ≤ ϵ ∀k
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Lemma 5. 1 Consider the distribution-weighted combiner hη
DW (z) in equation 4.2. For any η > 0 and

z ∈ ∆ it holds that:

LDz
(hη

DW (z)) ≤ ϵ+ ηM

Proof. See page 35.

Corollary 5.1. 2 Consider the distribution-weighted combiner hη
DW (z) in equation 4.2. There exist a

z ∈ ∆, zk ̸= 0 and η > 0 such that its loss on any mixture Dq is bounded by

LDq (h
η
DW (z)) ≤ ϵ+ δ (4.3)

for any δ > 0.

Proof. Consider the loss of hη
DW (z) on any mixture Dq. By theorem 3 this loss is bounded by

LDq (h
η
DW (z)) ≤ LDz (h

η
DW (z)) + η′

for any η′ > 0 and some parameter values z ∈ ∆, zk ̸= 0 and η > 0 that are guaranteed to exist.
Applying lemma 5, which holds for any z so also for the z that is guaranteed to exist here, results in:

LDq
(hη

DW (z)) ≤ ϵ+ ηM + η′

Choosing η and η′ such that ηM + η′ = δ concludes the proof. For example: η = δ
2M and η′ = δ

2 .

Existence and Robustness
Similar to the discussion of MSA theory in section 3.2, note the following. The bound only holds for
(at least) one model h(p), not for the entire family of models h(p) ∀p. The existence of that model is
guaranteed by theorem 5.1 and the theorem’s bound (eqn. 4.3) is a robustness property of the model.
To find a model with such a robustness property is the goal of the setting. Contrary to section 3.2, the
bound’s value is now known: it equals the worst source loss ϵ. (Note also that section 3.3’s discussion
on tightness and optimisation of the bound still applies here.)

Significance
This is a significant guarantee: a model hη

DW (z) exists whose loss on any mixture Dq is at most the
worst source loss ϵ, i.e. there exists some DW-combiner that guarantees the same performance on any
target mixture as the worst source model on its own domain.

Normalised Target Model
Recall that models h were assumed to have as output for each x ∈ X the vector of posterior class
probabilities p(y|x), which is required for the cross-entropy loss (sec. 2.2). Although this holds by
assumption for the source models, it might not for the target model. That is, it is not guaranteed that
for each x ∈ X :

∑
y∈Y hT (x, y; θ) = 1. To ensure a valid target model it is normalised as defined for

each x ∈ X by:

h̄T (x, y; θ) =
hT (x, y; θ)∑

y∈Y hT (x, y; θ)
(4.4)

Corollary 5.1 still holds for the normalised DW-combiner h̄DW (x, y; z) under mild assumptions. [9,
apx.C] This can be proven with the help of the following lemma. It holds for general target models,
thereby showing that MSA theory is not significantly affected by normalisation of the target model. It
need only be known by how much (ξ) a target model at most violates the normalisation assumption
(eqn. 4.5). For the normalised DW-combiner, in corollary 5.1 the chosen η then depends on ξ and the
same bound (eqn. 4.3) holds.
1This lemma and its proof are mostly equivalent to [9, sec. B.3, cor. 3].
2This corollary is mostly equivalent to [9, sec. B.3, cor. 3].
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Figure 4.2: Class-conditional distributions of motivating example domains (fig. 4.1) for using distribu-
tions as additional knowledge.

Lemma 6. 3 Consider the normalised combiner h̄T (x, y; θ) in equation 4.4. If for any x ∈ X∑
y∈Y

hT (x, y; θ) ≤ 1 + ξ (4.5)

for some ξ then the loss on a mixture Dq is bounded by

LDq (h̄T (θ)) ≤ LDq (hT (θ)) + ξ (4.6)

Proof. See page 36.

4.2.2. Experiments
Experimental Setup and Baselines
The experimental setup is the same as in section 2.5.1. As baselines, in addition to the source models
hk the DW-combiner is to be compared with the simple weighted combiner because the latter does not
make use of the distributions. So this evaluates the effect of using the distributions.

Results
First recall the motivating example for using distributions as additional information (fig. 4.1). Figure 4.2
shows class-conditionals for the same domains. As is also clear from the class-conditionals, h1 always
misclassifies half of the samples in D2, whereas h2 attains the Bayes error rate on its own domain (and
vice versa). This is evident in the robustness of models when applied on these domains: the best source
model guarantees an expected loss of at most 17.28, whereas the DW-combiner guarantees L = 0.14,
which agrees with MSA theory’s guarantee of ϵ = 0.14. Thus this shows MSA theory for the DW-
combiner in practice, and shows that it possibly yields large improvements in robustness, the goal of
the setting.

The DW-combiner is also analysed for the example domains of figure 2.1, where the domains differ by a
distributional shift. Experiments similar to those in section 2.5 give rise to the following three analyses.

Firstly, the robustness guaranteed by MSA theory is compared with the robustness of the source
models as baselines (fig. 4.3). The theorem guarantees a model that is as robust as the worst source
model performs on its own domain. Indicated as ϵ in the figure, the theory guarantees improved
robustness compared with the source models. Indeed note well and recall from section 2.5 that the
source models themselves are not robust at all, a behaviour that was denoted as negative transfer.
Figure 4.3 illustrates this: the most robust source model guarantees a loss of at most 1.05 on any
mixture target Dλ, whereas MSA theory ensures a DW-combiner exists that guarantees a loss of at
most ϵ = 0.66. Thus MSA theory guarantees a significant robustness improvement for some DW-
combiner.
3This lemma’s proof reformulates a part of [9, sec. C, th. 5].
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Figure 4.3: Comparison of the robustness guaranteed by MSA theory and the robustness of the source
classifiers. The goal of the setting is to find the most robust model, on which the theory’s model outdoes
the best source model h2. (This figure continuous figure 2.2 so also uses linear source classifiers hk, the
domains in figure 2.1, a sample size of domains of N = 2.5 · 106 and a gridsize for λ of 60.)

Secondly, the assumed form of the target model (the DW-combiner) is evaluated on a single target
(fig 4.4a). It is seen that on this target mixture for all z the DW-combiner hη

DW has a lower loss than
the simple weighted combiner hW . Furthermore, the optimal DW-combiner has a lower loss than hW as
well as both source models hk. Thus using the source distributions as in the DW-combiner can improve
performance.

Lastly, the robustness of the DW-combiner is evaluated and compared with the robustness guar-
anteed by MSA theory (fig. 4.4). This empirically shows that the optimal DW-combiner achieves a
robustness of ϵ, exactly as guaranteed by MSA theory.

This robustness is better than that of the combiner that does not use the distributions, confirming
that in some scenarios relying on the distributions to combine can improve robustness. That is, dis-
tributions as additional knowledge can improve performance, and therefore this shows that additional
knowledge can improve robustness.

4.2.3. Conclusion
MSA theory from chapter 3 was applied to the distribution-weighted combiner, yielding a guaranteed
robust model. This robustness of ϵ was shown to be a significant result and improve on both the
source models and the weighted combiner that does not use distributions. Since using distributions as
additional knowledge can improve robustness, additional knowledge can improve robustness. The next
section will investigate which other knowledge might be used in that manner.
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(a) Single target with λ = [0.7 0.3]T . This figure evaluates the
choice of the combiner.

(b) Worst-case target λ = arg maxλ Lλ(h(z)) i.e. robustness. This
figure evaluates the DW-combiner’s robustness as compared with
MSA theory’s guarantee.

Figure 4.4: Comparison of all (distribution-)weighted combiners hη
DW and hW (z) (equations 4.2 and 2.2

for all z) with linear source classifiers hk when used on either a single target (fig. 2.3a) or the worst-case
target (fig. 2.3b). The performance on the worst-case target is a performance guarantee and minimising
it is the goal of the setting. (This figure continuous figure 2.3 so also uses linear source classifiers hk,
the domains in figure 2.1, a sample size of domains of N = 2 · 106 and a gridsize for λ of 80.) For the
DW-combiner the hyperparameter used for smoothing was η = 0.001.
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Figure 4.5: Visualisation of the process of constructing a target model in the MSA setting. Source
models (top) are trained with the goal that hk performs well on (true) distribution Dk. The MSA
setting concerns the target (bottom), where the goal is performance of a target model as expected on
the (worst) target distribution. (Recall from chapter 1 that there is no ‘target test set’ (no target data
is available) but only a target distribution.) The aim is to design the combiner such that its application
on the target distribution performs best. That is, application of source models on other domains than
they have been trained on.

4.3. Other Additional Knowledge
4.3.1. Motivation
Upto now it was shown that additional knowledge of the source domains can improve performance in
the MSA setting. Specifically, it was shown how distributions can be used in a weighted combiner to
ensure a sufficiently robust combining model. This motivates the question what other knowledge might
be used in that manner.

To that end, it is now analysed why distributions worked as additional knowledge.
As a guide, figure 4.5 details the construction of a target model in the MSA setting. Suppose first

that hk is perfectly trained for performance on Dk, in the sense that it finds the Bayes classifier. If hk

is now applied (through the combiner) on a different distribution DT this violates the implicit machine
learning assumption that training and test data are similarly distributed. To account for this, the
combiner might utilise knowledge of the source distributions.[1][9]

So, additional knowledge of the trained source model is used to correct any mismatch between that
trained model (what for and how it was trained) and on what it is applied. As seen from the figure,
distributions are not the only possible mismatch: everything related to the training procedure (logically)
influences its performance. Any knowledge of the source models’ training procedures therefore might
help decide how much weight to give the model in the combiner. For example, current methods do not
account for the training sample size, but if model A is trained with 1000 times more samples it might
be preferred to model B, even though model B has a higher fraction of their samples at the new samples
feature.

Any additional knowledge is available in addition to the trained source models, which are always
available in the MSA setting.

To be precise, the goal is to optimise for robustness (sec. 2.4), which is a model’s loss on the data’s
underlying (‘true’) distribution. Anything of the training procedure that influences this loss (e.g. ϵ)
therefore influences the robustness.

Based on this observation, possible candidates for additional knowledge in this MSA setting will now
be hypothesised. Next, some of those candidates for additional knowledge are discussed by example.
Finally, a discussion of these examples will outline some requirements for combiners that use additional
knowledge.
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4.3.2. Candidates for Additional Knowledge
Recall and note well that in the setting only additional knowledge of the source domains might be
available, never of the target domain. In fact, the target domain is unknown.

Quantifiable
A candidate for additional knowledge can be anything that influences the performance of the final
trained source model hk on a fixed (target) distribution. Importantly, it must be quantifiable so that it
can be used in a target model; e.g. some human decision-making processes in model selection or data
acquisition (e.g. manual discarding of bad samples) can not be candidates.

Need Not Be Changeable
It is not needed to be able to change the candidate’s value, only to be able to measure it. For example,
any sampling biases need not be resolved, only their values need to be known to be able to account for
them.

Example Candidates
Recall that anything of the training procedure could influence robustness so is a candidate for additional
knowledge. To clarify this, some examples are now listed, guided by a visual depiction of a target model’s
construction in the MSA setting (fig. 4.5).

A dataset is (modelled as being) sampled from a (true) distribution D(x, y), of which the following
candidates can be distinguished:

• Marginal distribution D(x)

• Class-conditional distribution D(x|y)

• Class prior distribution D(y)

• Joint distribution D(x, y)

The sampled dataset is processed before it is used for training and testing. There the final trained
model might be influenced by for example:

• Data acquisition: measuring equipment biases, non-i.i.d. sampling

• Data preparation: data conversion (e.g. rounding of numbers, non-reversible feature transforma-
tions

On this dataset training is performed within some model evaluation procedure.

• Loss on test set (estimated true loss) ϵ: mean value, variance (as influenced by e.g. Ntest)

• Loss on training set (apparent loss): ditto

• Overfitting: difference between losses on test and training sets

• Number of samples Ntrain, Ntest

Those models are trained with some algorithm, yielding candidates such as:

• Hypothesis space H (before training): VC-dimension or other measures of model complexity

• Effective hypothesis space (when trained, for example due to regularisation, early stopping, ...):
VC-dimension or other measures of (the trained) model complexity. (An example of model mis-
specification follows in the next section.)

• For SVMs: margin

Many others are possible depending on algorithms and training procedures used.

4.3.3. Thought Experiments
Thought experiments will now illustrate some candidates for additional source knowledge, specifically
the training sample size, non-i.i.d. sampling and model misspecification.
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Experimental Setup and Baselines
The experimental setup and baselines are the same as in section 4.2.2. Notably, a combiner that uses
additional knowledge is to be compared with the same combiner that does not use that knowledge.
This allows an evaluation of the effect that using additional knowledge has. For example, section 4.2.2
compared the DW-combiner with the simple weighted combiner, because the former reduces to the
latter if all distributions Dk used in the combining weights are the same.

Model Complexity
Consider the following example of model misspecification. Domains D1 and D2 have the same joint
distribution (D1(x, y) = D2(x, y)) that requires a quadratic decision boundary to achieve the Bayes
loss. Let source model h1 be quadratic discriminant analysis and h2 be linear discriminant analysis,
i.e. h1 is correctly specified and h2 is misspecified. Then the losses of the source models on the true
distribution D1 = D2 will be related by ϵ2 > ϵ1 and by theorem 5.1 the performance guarantee is ϵ = ϵ2.
However, in this scenario h1 would always perform better than h2, achieving an improved robustness of
ϵ1. Furthermore, the difference between h1 and h2 is quantifiable, for example by using the order of the
trained model’s polynomial decision boundary as a measure of model complexity. So in this example,
if the combiner additionally had the policy “if distributions are equal, then prefer the most complex
model”, the combiner’s robustness would improve to ϵ1 as a result of using additional knowledge.

Note also that in this scenario the best target model for a source domain is not its own source model.

Example of Non­i.i.d. Sampling
Consider the following example of differences in sampling between domains, for example a local difference
in training sample size. Domains D1 and D2 are subsets of a single feature and label space and in a
region R ⊂ X × Y have the same joint distribution. Training sample sizes are large for both domains,
but D2 is not sampled i.i.d., instead yielding the estimate D̂2. This leads to a different prior p(y) to be
estimated from the data, influencing the posterior p(y|x) and as a result h2 might not learn to classify
points in region R correctly and ϵ2 > ϵ1. That is, source model h2 is optimised for D̂2 instead of D2

and so ϵ2, the loss on true distribution D2, increases.
However, in this scenario h1 will perform better than h2 on any target mixture, achieving an improved

robustness of ϵ1. This worse robustness is the result of the non-i.i.d. sample, which is quantifiable, for
example if a distribution is known that specifies the probability of a sample being drawn at (x, y).
If in this example a DW-combiner is used that additionally corrects for the non-i.i.d. sampling, the
combiner’s robustness would improve to ϵ1 as a result of using additional knowledge.

Example of Training Sample Size
If the only difference between domains is their distributions and sample size, the model trained on the
most samples is preferred for minimal error on their true distributions. This is because fewer samples
means a larger variation in possible distributions of the training set D̂, and the more D̂ differs from the
true distribution D, the larger the true error ϵ. So, though a smaller training set can also be a lucky
sample, in expectation over all possible sampled training sets of that size it is best to select the model
trained on the most samples.

Consider as an extreme example two domains with the same basic 1D distribution D1 = D2 that is
p(x|y = −1) ∼ N (−1, 1) and p(x|y = 1) ∼ N (1, 1) so that the Bayes classifier has its decision boundary
at x = 0. Training sample size is infinite for D1 and finite and small for D2. Then a linear model h1 is
the Bayes optimal classifier and h2 has its decision boundary close to but not exactly at x = 0. This
implies ϵ2 > ϵ1, so that h1 is always more robust than h2.

4.3.4. Discussion
Improvement Upon Current Method
Note that in none of the examples the DW-combiner is optimal and in all examples it is described how
it would improve if additional knowledge is taken into account.

Requirements For Combiners That Use Additional Knowledge
Recall the assumptions in section 2.2. A target model that uses additional knowledge should satisfy
the assumptions so that MSA theory can be used to prove robustness against any target mixture, as in
section 4.2.1.
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One requirement that might sound intuitive is best not made: the combiner should not be required to
reduce to the source model on that source’s distribution, i.e. for z = λk. This is because the best target
model for a source domain is not always its own source model, as was observed in the examples.

Discussion on Bound in Practice
Recall that the goal is to optimise for robustness (sec. 2.4), which is a model’s loss on the data’s
underlying (‘true’) distribution. Anything of the training procedure that influences this loss (e.g. ϵ)
therefore influences the robustness.

Note that the DW-combiner uses the true distributions, which are not changed by the training
process. For example, changing the training sample size does not change the combining weights, but it
does change ϵ and thus the DW-combiner’s bound. This is as hypothesised and was observed in each
example.

In practice, however, care should be taken that such a worse performance does not go unnoticed.
Consider for example the non-i.i.d. sampling example. If it is not realised that the sample of D2 is not
i.i.d., then D̂2 will erroneously be interpreted as the true distribution, and as a consequence the bound
from theorem 5.1 is ϵ as estimated on D̂2. That bound holds for targets that are a mixture of D1 and
D̂2. However, in truth targets are mixtures of D1 and D2, leading to a violation of the erroneous bound.
[8, Th.14] has shown that the actual bound in this situation includes a divergence factor d(D2||D̂2),
making it looser.

Furthermore, note that for the goal of best guarantee, overfitting is not an issue because ϵ is the
loss on the true distribution, for which a lower value is always better. The effect of overfitting is an
increased ϵ, leading to a (known) looser bound.

4.3.5. Conclusion
Additional source knowledge other than the distributions was motivated to be able to improve robustness
in the MSA setting. Specifically, since the robustness is an expected loss on an underlying (‘true’)
distribution, any influence of the training process of the source models that influences the true loss is a
candidate for additional knowledge. In addition the candidate should be quantifiable, but it need not
be changeable. A non-exhaustive list of candidates was presented, of which three were investigated by
thought experiments: model complexity, non-i.i.d. sampling and training sample size. For each example
it was reasoned why the DW-combiner is insufficient and that using that type of additional knowledge
should improve performance in the example scenario.

Lastly, a brief discussion on using combiners with additional knowledge in practice warned that
MSA theory’s bound might be unwittingly loose in practice if models are not trained for their true
distributions, for example due to being unaware of any non-i.i.d. sampling.
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Discussion and Conclusion

5.1. Conclusion
This work has formulated the main question

“How can pre-trained models be combined for performance on all their source domains,
without access to data?” (RQ)

as a problem in the Multi-Source Domain Adaptation (MSA) setting.
The contributions are threefold. To begin with, the MSA setting and theory were explained and

illustrated. A disadvantage of the setting was seen to be non-robustness (negative transfer) of the tar-
get model, though MSA theory guaranteed that a robust model does exist. As a second contribution,
existing MSA theory’s assumptions were clarified and the theory was split in two. One half was inherent
to the MSA setting and yielded the loss on a matching mixture as the robustness property for a guaran-
teed model. The other half depended on the additional source knowledge used and was presented as a
perspective on existing MSA theory. Thirdly, it was investigated what makes useful source knowledge
in the MSA setting and how it could be used to derive alternative MSA theory. Source knowledge
was reasoned to be useful if it is quantifiable and affects the true source loss, and is worthwhile to
investigate because using it can improve upon the DW-combiner. Additional knowledge can be used to
derive alternative MSA theory by bounding the loss on the matching mixture for a family of combining
models that use that additional knowledge.

In conclusion the main research question is answered as follows. By modelling the problem in
the MSA setting, MSA theory can be applied to yield a guaranteed to exist model with a robustness
property. Finding the most robust model is the goal of the setting. By using additional knowledge of
the source domains the robustness is proven to be satisfactory.

5.2. Related Work
The MSA setting and theory in this work are most similar to those for the “probability model” in [9].
Some of their assumptions are more general; they for example do not assume that models output the
posterior distribution, simply a distribution. However, this work expands on [9] by considering other
additional knowledge than the distributions they use in their distribution-weighted combiner.

Another difference with [9] is that this work has motivated and defined the goal of the MSA setting
(sec. 1.1.2, 2.4). By contrast, [9] states MSA theory and optimises its bound directly. The goal of
minimising a performance guarantee is also different than what [9] optimises for (see section 3.3.2),
although it was empirically shown (ch. 3) that [9] finds the same optimum. Furthermore, some theory
was stated differently. A clear example is the distinction this work makes between setting-specific
and additional knowledge-specific theory. Another example is a focus on mixtures over sources (see
section 3.2) which arguably results in cleaner, more comprehensible theory. As an example, compare
lemma 2 and theorem 3; here the focus on mixtures allowed the interpretation of the matching mixture.

29
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5.2.1. Related Settings
Some different but related DA settings are now characterised to place MSA in their context. For
literature on related but different MSA settings the interested reader is referred to [9, apx.G].

Multiple-Source Domain Adaptation (MSA) (as discussed in this work): has no access to any source
or target data, but available are pre-trained source models and optionally additional source knowledge
such as their distributions. The target is unknown but constrained to be a mixture of the sources.
[1][8][9]

Multi-Domain Learning: each sample of a single dataset also has a domain indicator and the goal is
to generalise to all data. [5]. This is equivalent to splitting the data into source domains and knowing
the target is a uniform mixture of sources. Thus labelled source (and target) data is available for
training.

Domain Adaptation: typically has access to unlabelled target data and labelled source data during
training. [10] The target is known, allowing adaptation for the specific target.

Domain Generalisation: has access to labelled source data during training but, like MSA and unlike
DA, has no target data or other knowledge. [14] The goal is to generalise to unknown target domains.

Transfer Learning: a broad category that includes all DA settings as well as allows transfer between
different learning tasks. The common denominator is that training in the target domain uses source
knowledge.

5.3. High­Level Overview of MSA Theory
For different types of additional knowledge MSA theory could yield a useful result such as corollary 5.1.
To aid the derivation of similar theory using other additional knowledge, a high-level overview of MSA
theory’s assumptions is now presented.

The learning process in the MSA setting (as depicted in figure 4.5) starts with source models hk

trained on source domains Dk. It is desired to construct a target model hT that is optimised for a target
domain DT . To do so, two assumptions are made. Firstly, by defining the relationship between source
and target domains (i.e. the TMA), the source and target loss are related for any model (cor. 1). In
the MSA setting, it turns out that this implies (for a guaranteed model) a relationship between the loss
on any mixture and on that model’s matching mixture (th. 3). Secondly, by defining the relationship
between source and target models (i.e. a combiner), the loss on a matching mixture is related to the loss
on the sources (lem. 5). All together this yields (for a guaranteed target model) a relationship between
the loss on any target mixture and the source loss of source models. Thus the target model’s target
loss is expressed in terms of source variables only, which are known in the setting. The robustness of
the target model is then expressed in known source variables only.

An implication is that for satisfactory robustness additional knowledge should focus on reducing
the loss on any matching mixture. That is, then knowledge has a good chance to yield a satisfactorily
robust target model.

Lastly, keep in mind that using any additional knowledge only helps in scenarios where that knowledge
is different between the domains. If for example a DW-combiner is used in a scenario where the source
distributions are the same, there are no benefits to using it over a simple weighted combiner that does
not use the distributions.

5.4. Lessons From This Work
Some take-aways from this work now follow.

The goal of performance on all source domains can be modelled as performance on an unknown
mixture target. This is a performance guarantee and a robustness property.

MSA theory addresses the main issue of the MSA setting, i.e. non-robustness. The loss on a
matching mixture plays a central role.

Robustness in the MSA setting can be improved by basing the combiner on additional knowledge
of the source domains. That combiner’s robustness can be proven to be satisfactory by evaluating its
loss on any matching mixture and applying MSA theory.
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5.5. Future Work
The focus of this work has been the perspective of additional knowledge in MSA theory. Recall that it
has been discussed which additional knowledge is useful, what its properties should be and how MSA
theory can be used to evaluate its robustness. A logical next step is to formulate combiners that use
this knowledge and to derive MSA theory for them, i.e. to bound their loss on their matching mixtures,
specifically for the discussed knowledge: model complexity, non-i.i.d. sampling and training sample
size.

The current approach to finding the target model for a scenario is to find its optimal parameters by
optimisation of the bound in theorem 3. Prior to this, a specific combiner such as the DW-combiner is
selected using what might be called a model selection procedure. It might be beneficial to incorporate
knowledge of the bound in the model selection procedure. For example, the model could be selected
from various combiners based on their expected loss on the matching mixture.

MSA theory’s statement is the result of a fixed-point mapping (FPM) assumed in its proof. Using
a different FPM might therefore yield new MSA theory either for the current MSA setting, or for
alternative settings that use a different TMA. Appendix C discusses this further.

An alternative MSA setting might be formulated where sources are themselves allowed to be mixtures.
Let’s elaborate on this. The setting might be viewed from the following perspective: the loss on any
mixture is of interest (i.e. the goal) and the loss on some mixtures is given. Currently those given
mixtures happen to be extreme mixtures, i.e. they include only one domain, and it is called a source
domain. We hypothesise that this is not necessary and it is sufficient to know the mixture parameter of
a source. (Presumably, to prove an updated theorem 3, some criterion is needed to ensure those source
mixtures ‘span’ all domains, similar to how in linear algebra a set of vectors must span a vector space
to form a basis for it.)

This alternative MSA theory would cover a larger space of target domains than current MSA
theory, as is now illustrated with an example. Consider the artificial problem by [8, sec.6], where
three domains are constructed as uniform mixtures of four gaussians {g1, g2, g3, g4}: source distri-
butions D1 of {g1, g2, g3} and D2 of {g1, g3, g4}. As mentioned by the authors, a uniform mixture
DP of all four gaussians is not a mixture of the sources D1 and D2, i.e. no λ exists for which
λD1 + (1− λ)D2 = 1

3 (g1 + λg2 + g3 + (1− λ)g4) = DP . If however instead of D1 and D2 the gaussians
g1, ..., g4 are considered as sources, then DP would be a mixture of sources and updated MSA theory
would guarantee a tighter bound than current MSA theory (by [8, Th.2]).

Note that in this alternative setting of each source it is needed to know which mixture of the domains
it is, e.g. in this example λ1 = [ 13

1
3

1
3 0]T and λ1 = [ 13 0 1

3
1
3 ]

T . By contrast, in the current MSA setting
it is always true that e.g. λ1 = [1 0]T and λ2 = [0 1]T .





A
Derivations and Proofs

Theorem 7 (Brouwer’s Fixed-Point Theorem). For any compact and convex non-empty set C ⊂ RK

and any continuous function f : C → C, there is a point x ∈ C such that f(x) = x. [9]

Lemma 2. 1 2 Consider K sources Dk. There exists a p ∈ ∆, pk ̸= 0 such that for any source k

LDk
(h(p)) ≤

K∑
j=1

pjLDj
(h(p)) + η′ (3.1)

for a model h(p) that is continuous in its parameter p ∈ ∆ and for any η′ > 0.

Proof. Consider the mapping Φ(p) : ∆ → ∆ defined as

[Φ(p)]k = normalise
(
pkLDk

(h(p)) +
η′

K

)
=

pkLDk
(h(p)) + η′

K∑K
j=1 pjLDj

(h(p)) + η′
(A.1)

where the normalisation is defined for some K-length vector x with xk ≥ 0 ∀k as normalise (xk) =
xk∑
k xk

where
∑

k xk ̸= 0. The normalisation is always defined because η′ > 0 guarantees the denominator is
strictly positive. Note that by assumption LD(h(p)) is continuous in p so Φ is as well, and that ∆ is a
set such as required for theorem 7, making Φ a valid fixed-point mapping according to that theorem.

There then exists a p ∈ ∆ such that Φ(p) = p or equivalently for that p and any k

pk =
pkLDk

(h(p)) + η′

K∑K
j=1 pjLDj

(h(p)) + η′

where pk ̸= 0. (To see this, observe that since η′ > 0, pk = 0 yields the contradiction 0 = 1
K > 0.)

Rewriting yields

LDk
(h(p)) =

K∑
j=1

pjLDj (h(p)) + η′ − η′

Kpk
(A.2)

≤
K∑
j=1

pjLDj (h(p)) + η′

which is bounded by discarding the last term. This concludes the proof.
1For h(p) the DW-combiner hDW (z) of equation 4.2 this lemma and its proof are mostly equivalent to [9, sec. B.3, lem. 6]
which in turn is based on theorem [1, lem. 2]. Specific equivalences or differences are mentioned when they’re relevant.

2A more general version of this lemma (for other fixed-point mappings) is given in appendix C as lemma 8.
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Theorem 3. Consider two mixtures Dp and Dq. There exists a p ∈ ∆, pk ̸= 0 such that for any q ∈ ∆

LDq
(h(p)) ≤ LDp

(h(p)) + η′ (3.2)

for a model h(p) that is continuous in its parameter p ∈ ∆ and for any η′ > 0.

Proof. Take lemma 2 where we apply lemma 1 (using the TMA) to its right-hand side. It follows that
there exists a p ∈ ∆, pk ̸= 0 such that for a model h(x, y; p) continuous in p ∈ ∆ and for any source k

LDk
(h(p)) ≤

K∑
j=1

pjLDj
(h(p)) + η′

= LDp
(h(p)) + η′ (A.3)

Now consider the loss of the same model on another mixture Dq:

LDq
(h(p)) =

∑
k

qkLDk
(h(p)))

which by lemma 1 (using the TMA) holds for any p, so also for the p that is guaranteed to exist in
equation A.3. So that equation can be used to obtain

≤
∑
k

qk
(
LDp

(h(p)) + η′
)

making the term between brackets independent of k. Finally, because
∑

k qk = 1 by definition, this
equals

= LDp(h(p)) + η′

This concludes the proof.

Lemma 4. In theorem 3, the tightness of the bound in equation 3.2 (i.e. the difference between its left-
and right-hand side) is bounded by:

η′

K
< LDp

(h(p)) + η′ − LDq
(h(p)) ≤ η′

K

K∑
k=1

1

pk
(3.3)

Proof. First, adapt the proof of lemma 2 by not bounding equation A.2, resulting in that equation’s
equality instead of the inequality of equation 3.1. Next, adapt the proof of theorem 3 so that it uses
the adapted version of lemma 2, resulting in the same statement as theorem 3 except for the bound
(eqn. 3.2), which is replaced by the following equality:

LDq (h(p)) = LDp(h(p)) + η′ − η′

K

K∑
k=1

qk
pk

(A.4)

Define the tightness of theorem 3’s bound as:

τ = LDp
(h(p)) + η′ − LDq

(h(p))

which by equation A.4 becomes:

τ =
η′

K

K∑
k=1

qk
pk
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By the theorem’s statement this holds for some p ∈ ∆, pk ̸= 0 and for any q ∈ ∆. Therefore the
tightness is lower bounded by using pk < 1 and upper bounded by using qk ≤ 1, yielding:

η′

K
< τ ≤ η′

K

K∑
k=1

1

pk

This concludes the proof.

Lemma 5. 3 Consider the distribution-weighted combiner hη
DW (z) in equation 4.2. For any η > 0 and

z ∈ ∆ it holds that:

LDz (h
η
DW (z)) ≤ ϵ+ ηM

Proof. By the definition of expected loss and the general weighted combiner of equation 4.1:

LDθ
(hT (θ)) =

∑
y

∫ ∞

−∞
Dθ(x, y)ℓ

(∑
k

wk(x, y; θ)hk(x, y)

)
dx

Since by assumption ℓ is convex in h and w ∈ ∆ Jensen’s inequality can be used, resulting in

LDθ
(hT (θ)) ≤

∑
y

∫ ∞

−∞
Dθ(x, y)

∑
k

wk(x, y; θ)ℓ (hk(x, y)) dx

=
∑
k

∑
y

∫ ∞

−∞
Dθ(x, y)wk(x, y; θ)ℓ (hk(x, y)) dx

where for well-behaved h and w the integral and sums could be interchanged. For the combiner hη
DW (z)

(i.e. using the weights in equation 4.2 with parameter θ = z) this becomes, by applying the TMA in
the denominator of the weights,

LDz
(hη

DW (z)) ≤
∑
k

∑
y

∫ ∞

−∞
Dz(x, y)

zkDk(x, y) + η U(x,y)
K

Dz(x, y) + ηU(x, y)
ℓ (hk(x, y)) dx

Since Dz(x,y)
Dz(x,y)+ηU(x,y) ≤ 1, this can be bounded by

≤
∑
k

∑
y

∫ ∞

−∞

(
zkDk(x, y) + η

U(x, y)
K

)
ℓ (hk(x, y)) dx

=
∑
k

(
zkLDk

(hk) +
η

K

∑
y

∫ ∞

−∞
U(x, y)ℓ (hk(x, y)) dx

)

which implies, because LDk
(hk) and ℓ(hk) are bounded by assumption and

∑
k zk = 1,

≤
∑
k

(
zkϵ+

η

K

∑
y

∫ ∞

−∞
U(x, y)M dx

)
= ϵ+ ηM

concluding the proof.
3This lemma and its proof are mostly equivalent to [9, sec. B.3, cor. 3].
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Lemma 6. 4 Consider the normalised combiner h̄T (x, y; θ) in equation 4.4. If for any x ∈ X∑
y∈Y

hT (x, y; θ) ≤ 1 + ξ (4.5)

for some ξ then the loss on a mixture Dq is bounded by

LDq
(h̄T (θ)) ≤ LDq

(hT (θ)) + ξ (4.6)

Proof. By equation 4.4 and the definition of the cross-entropy loss:

LDq
(h̄T (x, y; θ)) = LDq

(
hT (x, y; θ)∑
l∈Y hT (x, l; θ)

)
= LDq

(x, y;hT (θ)) + Ex∼Dq(x)

{
log
∑
l∈Y

hT (x, l; θ)

}

where the expectation is over only x and not (x, y) because the log-term is independent of y. By
assumption (eqn. 4.5) this is bounded by:

LDq
(h̄T (x, y; θ)) ≤ LDq

(x, y;hT (θ)) + Ex∼Dq(x) {log(1 + ξ)}

and because the logarithm is independent of x,

LDq (h̄T (x, y; θ)) = LDq (x, y;hT (θ)) + log(1 + ξ)

≤ LDq (x, y;hT (θ)) + ξ

where the inequality log(a) ≤ a− 1 was used. This completes the proof.

4This lemma’s proof reformulates a part of [9, sec. C, th. 5].



B
Discussion on Algorithm that Optimises

for the Bound
An algorithm has been shown to find the target model that is guaranteed to exist according to theorem 3.
[9] Its significance in using MSA theory for practical applications warrants a brief discussion of the
optimisation problem solves by this algorithm.

Recall that [9]’s algorithm is not derived from the goal of the setting. Rather, it minimises the difference
between the left- and right-hand sides of the bound in lemma 2:

min
p

LDk
(h(p))− LDp

(h(p))− η′ ∀k (B.1)

Negative values of the objective satisfy the bound (eqn. 3.1) and by the theorem at least one exists.
Positive values do not satisfy the bound. Thus the minimisation selects solutions that do satisfy the
bound over those that do not and no explicit constraint is necessary.

It is equivalent to minimise not for all k but for the worst-case k, so an equivalent optimisation
problem is:

min
p

max
k

LDk
(h(p))− LDp(h(p)) (B.2)

Because η′ is a constant so does not influence the optimum it is discarded. This optimisation problem
is guaranteed to find a solution that satisfies the bound in theorem 2.

[9] proves its equivalence to another formulation of the objective and give an algorithm that solves
it. Specifically, they prove this is a difference of convex decomposition (DC)-programming problem.
The algorithm they give converges to a local optimum [9, sec. 4.3]. It is however possible to test for
global optimality: if a solution is found that achieves γ = 0, that solution is globally optimal.
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C
Out­of­Scope: Notes on Alternative

TMAs and MSA Theory
Recall from section 3.2 that an alternative MSA setting with a different Target Mixture Assumption
(TMA) would require adapting the proofs of lemma 2 and theorem 3 to yield similar MSA theory, i.e.
with a similar bound. This is because in their proofs a crucial assumption is the TMA, which was used
both indirectly in the fixed-point mapping (FPM) of lemma 2 and directly in theorem 3. A different
FPM yields different MSA theory, both for the current MSA setting and for a different TMA.

In that light this appendix will review the role of the chosen FPM in the proofs of MSA theory. No
definitive conclusion is drawn, but rather several notes follow that might be of interest for future work
on MSA theory, in alternative as well as the current MSA setting.

C.1. A More General Fixed­Point Mapping
The following is a statement similar to lemma 2, but for more general Fixed-Point Mappings than the
specific [Φ(z)]k of equation A.1.

Lemma 8. Consider a fixed-point mapping Φ(θ) : Θ → Θ of the form

[Φ(θ)]k = normalise (vk(·; θ)) (C.1)

with

vk(·; θ) = θkv
′
k(·; θ) + v′0(·)

defined for Θ = [0, θmax]
K with θmax < ∞ and some functions v′k ≥ 0 and v′0 > 0 that are respectively

dependent on and independent of both k and θ. Also, v′k is continuous in θ. (The normalisation is
defined for some K-length vector x with xk ≥ 0 ∀k as normalise (xk) =

xk∑
k xk

.)
Then there exists a θ ∈ Θ, θk ̸= 0 such that

v′k(·; θ) ≤
K∑
j=1

vj(·; θ) ∀k (C.2)

Proof. The fixed-point mapping is assumed of the form as in the statement of the lemma, i.e.

[Φ(θ)]k = normalise (vk(·; θ)) =
θkv

′
k(·; θ) + v′0(·)∑K
j=1 vj(·; θ)

(C.3)

Note that under the assumptions in the statement vk > 0 so that the normalisation is always defined.
Further note that vk is continuous in θ so Φ is as well, and that Θ is a set such as required for theorem 7,
making Φ a valid fixed-point mapping according to that theorem.
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There then exists θ ∈ Θ such that Φ(θ) = θ or equivalently for that θ and any k

θk =
θkv

′
k(·; θ) + v′0(·)∑K
j=1 vj(·; θ)

where θk ̸= 0. (To see this, observe that since v′0 > 0, θk = 0 yields the contradiction 0 = 1
K > 0.)

Rewriting yields

v′k(·; θ) =
K∑
j=1

vj(·; θ)−
v′0(·)
θk

≤
K∑
j=1

vj(·; θ)

which is bounded by discarding the last term. This concludes the proof.

C.2. On Designing a Fixed­Point Mapping
Other fixed-point mappings for use in MSA theory might be designed as follows. This example uses the
current TMA.

Requirements for a mapping are:

• The TMA should be applicable, i.e.:

– Parameter z should be a valid mixture parameter, i.e. z ∈ ∆ and normalised
∑

k zk = 1.
– The mapping should include a term

∑
k zkLDk

(h) (so that the TMA can be applied).

• Brouwer’s Fixed-Point Theorem should be applicable, i.e.:

– Parameter z should be in a set that’s compact, convex and non-empty.
– Mapping Φ should be continuous in z.

To design Φ, first assume the unavoidable: z ∈ ∆ and
∑

k zk = 1. Applying Brouwer’s means
z = Φ(z) or equivalently zk = [Φ(z)]k ∀k, which together with the normalisation implies 1 =

∑
k[Φ(z)]k.

Whatever z = ϕ(z) the mapping returns, it can be normalised as [Φ(z)]k = [ϕ(z)]k∑
j [ϕ(z)]j

to satisfy the
condition. So now a ϕ(z) is desired so that Φ includes a term

∑
k zkLDk

(h) and is defined for and
continuous in all z ∈ ∆.

To end up with the desired term, ϕ = zkLDk
(h) would be suitable. However, because it’s possible

that ϕ = 0, after normalisation Φ might undefined.
One option, equivalent to the mapping used by [1, 8, 9], is to apply smoothing as [ϕ(z)]k =

zkLDk
(h) + η′/K with η′ > 0 needed for Φ to be defined for z = 0.

The cause of ϕ = 0 is that equivalently either z = 0 and/or LDk
(h) = 0. An alternative smoothing

might then target only one of z = 0 and LDk
(h). Suppose the latter, so that [ϕ(z)]k = zk(LDk

(h)+ η′),
leading to the alternative MSA theory of lemma 9.

To design a different mapping, note the following on the normalisation of Φ. The normalisation as
done here does always work, but is only necessary if ϕ(z) is not yet normalised of itself. So firstly, for
a designed mapping it can be checked if the numerator already evaluates to 1, always, and if so the
normalisation can be removed.

Secondly, an alternative is to use a series of functions that are inherently normalised. Relevant
keywords to investigate might be: partition of unity; Bernstein polynomials. Lastly, note that +η′ is
not the only smoothing that prevents zeroes; one could for example apply the exponential function.
However, all these suggestions lead to a completely different mapping that likely does not include the
desired summation-term to apply the current TMA–but they might be applicable for a different TMA.
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Lemma 9. Consider K sources Dk. There exists z ∈ ∆ such that for any source k for which zk ̸= 0

LDk
(h(z)) =

K∑
j=1

zjLDj
(h(z)) (C.4)

for a model h(z) that is continuous in its parameter z ∈ ∆.

Proof. Consider the fixed-point mapping Φ(z) : ∆ → ∆ defined as

[Φ(z)]k = normalise (zk (LDk
(h(z)) + η′)) =

zk (LDk
(h(z)) + η′)∑K

j=1 zjLDj (h(z)) + η′
(C.5)

where the normalisation is defined for some K-length vector x with xk ≥ 0 ∀k as normalise (xk) =
xk∑
k xk

where
∑

k xk ̸= 0. The normalisation is always defined because η′ guarantees the denominator is strictly
positive.

Note that by assumption LD(h(z)) is continuous in z so Φ is as well, and that ∆ is a set such as
required for theorem 7, making Φ a valid fixed-point mapping according to that theorem.

There then exists a z ∈ ∆ such that Φ(z) = z or equivalently for that z and any k

zk =
zk (LDk

(h(z)) + η′)∑K
j=1 zjLDj

(h(z)) + η′

This implies1 that either zk = 0, or if zk ̸= 0 we can rewrite this as

LDk
(h(z)) =

K∑
j=1

zjLDj
(h(z))

This concludes the proof.

1Note that zk = 0 is not allowed in the proofs of [1, Lem. 2] and [9, Lem. 6].
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