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Summary

Accurate forecasts are essential for integrating wind energy into the power grid. With
wind energy’s growing role in the renewable mix, precise short-term generation forecasts
are increasingly vital. Turbine-level forecasts are critical for optimal wind farm oper-
ation, control, and planning. However, the wind’s unpredictability and the complex
interactions between turbines make forecasting challenging. Existing methods either de-
pend on resource-intensive physical models or overlook turbine interactions, resulting in
isolated, overly simplistic models.

This master’s thesis explores the use of Graph Neural Networks (GNNs) in conjunc-
tion with Recurrent Neural Networks (RNNs) for wind power generation forecasting in
wind farms. The result is an integrated approach that can learn the interactions between
turbines through GNNs to handle the temporal dynamics of the data through RNNs.

The research begins with an in-depth overview of wind turbines and their arrange-
ment in wind farms, highlighting the importance and challenges of Wind Power Forecast-
ing (WPF). It establishes that the spatial configuration of turbines complicates power
generation estimation, especially over different time horizons. Graphs are introduced as
an effective way to represent the interconnections between turbines. Various methods
for constructing these graphs are reviewed, focusing on predefined heuristics and their
limitations in adapting to changing wind farm characteristics.

The core of this thesis is the AG-LSTM Network, a model that integrates RNNs and
GNNs for short-term WPF for turbines within a wind farm. It utilizes historical power
generation data, a variety of future and past covariates, and static turbine-specific fea-
tures. The model is based on an encoder-decoder architecture with an Adaptive Graph
Long-Short Term Memory Cell (AG-LSTM), which generates a dynamic adjacency ma-
trix representing the farm’s state at each moment. This matrix combines the input fea-
tures and hidden states across turbines, resulting in an embedding that is transformed
into the power forecast.

Through comprehensive experiments and analyses, the AG-LSTM Network proves
to be more accurate than state-of-the-art methods on two real-life datasets when future
covariates are unavailable. Further experiments demonstrate the quality of the forecast
and break down the contribution of the different choices regarding its architecture. The
results underscore the potential of hybrid neural network architectures in enhancing
WPF, providing a valuable tool for the renewable energy sector.

In conclusion, this research contributes to the renewable energy field by proposing a
novel hybrid neural network model that effectively addresses the complexities of short-
term WPF. Future work could explore further exploitation of future covariates and the
robustness of the model against incomplete input data.
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Figure 1.1: Worldwide installed wind capacity per year from 2012 to 2022 [18].

The European Union has committed to becoming carbon neutral by 2050, recogniz-
ing that renewable energy sources are crucial for reaching this target. Renewable energy
sources, including solar, wind, hydro, and biomass, offer a sustainable and environmen-
tally friendly alternative to fossil fuels, reducing greenhouse gas emissions and lessening
the dependency on imported energy.

Wind power has emerged as a vital element in the renewable energy landscape and
is set to gain even greater significance. Over the past decade, the installed capacity of
wind power has consistently increased, as showcased in Figure 1.1. The International
Energy Agency forecasts that this growth will accelerate, with projections suggesting
that within the next decade, wind power will rise to become the second largest source in
terms of installed capacity, as depicted in Figure 1.2. To seamlessly integrate wind energy
into the power grid, players in this sector must be able to provide accurate forecasts of
wind power production. Precise predictions help ensure a balanced and stable power
supply, enabling better planning and optimization of the grid and enhancing the overall
reliability and efficiency of the energy system.

Wind turbines are typically organized into wind farms to mitigate costs and effi-
ciently use available space. Placing turbines sufficiently close together gives rise to a
phenomenon known as the Wake Effect. The wake that results from the motion of a
turbine affects the characteristics of its downstream wind flow, which in turn impacts
the turbines within a range. The effect on the downstream wind current is very complex,
as it depends on many conditions which are particular to the state of the farm and the
environmental conditions.

The Wake Effect of a turbine can affect multiple others, which, in turn, have their
corresponding Wake Effects. This increasing distortion in the wind patterns makes the
resulting conditions very hard to approximate. Over the years, multiple methods have
emerged to model these interactions and produce power forecasts. Still, these tend to be
too complex and resource-intensive, as they rely on solving differential equations repre-
senting the flows. Nonetheless, research has demonstrated that graph-based approaches
are effective in modelling interactions within wind systems.

Graphs are an effective tool for representing a system by showing the relationships
between its components. They have proven useful in modelling all kinds of systems
including complex ones with highly dynamic characteristics, such as road traffic networks.
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Figure 1.2: Projected Power Global Capacity by Source, 2022-2050. Adapted from [39].

In these networks, vehicles travel between roads and intersections, and small disturbances
can quickly propagate through the system. The complex interactions between turbines
in a wind farm can naturally be translated into a graph, with turbines represented as
nodes and their physical interactions as edges.

Furthermore, Graph Neural Networks (GNNs) can leverage this farm representation
by learning to combine and aggregate the information. The resulting embeddings can
then be used for downstream tasks, such as Wind Power Forecasting (WPF). GNNs
have proven successful for forecasting in other domains, including road traffic and social
networks, demonstrating their ability to exploit the information in complex relational
data. Our goal in this thesis is to expand the list by conducting additional applications
of GNNs to WPF. We specifically aim to investigate the following:

Research Question

How can GNNs efficiently utilize graph structures to capture turbine interactions
in wind farms to generate accurate short-term wind power forecasts?

To address the research question, we propose the Adaptive-Graph Long Short Term
Memory (AG-LSTM) Network, a model that utilizes historical multivariate time-series,
future covariates and static features to produce multi-step power forecasts for all the
turbines in a wind farm. The model builds upon existing forecast models, integrating
two Recurrent Neural Networks (RNNs) in an encoder-decoder configuration. Notably,
the encoder consists of a Long-Short Term Memory cell whose states are updated through
Graph Neural Networks. The model learns to dynamically adapt the GNN’s adjacency
matrix, reflecting the immediate interactions within the wind farm. Our model is tested
and compared to other methods, showing promise for the short-term WPF task.

This thesis is organized as follows: Chapter 2 provides the building blocks for wind
farms and Graph (Temporal) Neural Networks. We introduce the problem, the notation,
and delve into GNNs and RNNs. In Chapter 3, we classify the existing models for WPF.
We explore how these methods currently tackle the problem and identify their strengths
and caveats. Chapter 4 presents our proposed model, detailing its components and
their integration. Chapter 5 presents the evaluation of the model using the SDWPF
and Penmanshiel datasets, which contain information from two operational wind farms.
In the same chapter, we test our model and compare its performance to other models
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discussed in the literature. We finally assess the impact of its components and parameters
towards the obtained results. Finally, Chapter 6 concludes this work by providing an
answer to the research question, the general findings of the work, and some proposed
future research directions.



2 Background

This chapter focuses on the essential concepts related to wind turbines, wind farms, and
Graph (Temporal) Neural Networks. §2.1 describes the characteristics of wind farms.
§2.2 introduces the graph terminology, which is used in §2.3 to introduce the graph
representation of wind farms. §2.4 and §2.5 elaborate on GNNs and RNNs, respectively.
The AGCRN, which integrates both networks by combining graph convolutions that
merge node signals and cell states within the cell’s update equations, is described in
§2.6.

5
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(a) Side view (b) Top view

Figure 2.1: a) depicts the main components of a HAWT. b) illustrates the angles formed between the
orientation of the rotor-nacelle assembly φ and the wind direction U. The yaw angle γ is the difference

between them.

2.1 | Wind Farms

Wind turbines convert the wind’s kinetic energy into mechanical energy, which is then
used to generate electricity. While these devices have various configurations, horizontal-
axis wind turbines (HAWTs) are the most widely used [85]. As depicted in Figure 2.1a,
a HAWT consists of three large blades attached to the rotor-nacelle assembly, which is
mounted on top of the tower. As the wind hits the turbine’s blades, they rotate and
drive the generator responsible for producing electricity.

Turbine manufacturers provide power curves, which are used to assess the perfor-
mance and energy production potential of wind turbines based on varying wind speeds.
However, the power production of a HAWT is not solely dependent on wind speed. Other
factors that affect the power production include the orientation of the rotor-nacelle as-
sembly with respect to the direction of the wind (yaw angle), the diameter of the rotor
and the orientation of its blades (pitch angles) [64]. Figure 2.1b depicts the yaw angle.

Most HAWTs are equipped with sensors that constantly monitor their operational
conditions. These instruments include anemometers, wind vanes, thermometers, and
rotary encoders. A Supervisory Control and Data Acquisition system (SCADA) col-
lects sensor data from the individual turbines and meteorological stations, providing
operators with essential monitoring and control parameters [5]. SCADA measurements
are recorded at ten-minute intervals [5], allowing operators to react to changes in wind
speed and direction by adjusting the pitch angle and the orientation of the rotor-nacelle
assembly to optimize turbine performance.

Turbines are grouped in wind farms, ranging from two to hundreds of wind turbines,
with the latter covering hundreds of square kilometres [36]. The power yield of a wind
farm is the sum of the production of the turbines that compose it. The performance
of a wind farm is closely related to the topological and environmental conditions of its
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(a) Ideal scenario (b) Greedy scenario (c) Optimal steering

Figure 2.2: Illustration of the wake effect. a) Turbines are aligned with the wind without wake
interactions. b) Turbines are aligned with the wind. Power for the front turbine is maximized, but its
wake considerably affects the other turbines. c) By steering the upstream turbines, the farm yield is

prioritized over the individual power production.

geographical location, the physical characteristics of the individual wind turbines, and
the relative distances and angles between them.

Wind farms provide numerous financial and operational benefits, though this setup
can adversely affect the performance of individual turbines within the farm. When wind
strikes a turbine, it creates a wake where wind speed decreases, and turbulence increases
for a distance up to 20 times the rotor diameter [85]. Beyond this distance, the wind
conditions gradually revert to those of the free-stream wind. The Wake Effect refers
to the influence that this wake has on turbines located downstream. The altered wind
conditions reduce the power production of individual downstream turbines by up to 60%,
which can impact the production of an entire wind farm by as much as 54% [46]. This
phenomenon is illustrated in Figure 2.2.

Under ideal conditions, the turbines in a wind farm would be placed sufficiently far
apart, minimizing Wake Effects and maximizing individual power generation. In practice,
however, this is not feasible due to technical limitations and costs [35]. Although wind
farm layouts have transitioned from grid formations to optimized layouts due to complex
optimization studies [26, 32], modern wind farms are still subject to the Wake Effect
between their turbines.

The interaction between turbines has significant effects on the operation of wind
farms. When maximizing the farm’s yield, the turbines cannot be considered indepen-
dently. Instead, the system must be considered as a whole [81], and the power production
of some turbines must be limited by changing their orientation to mismatch the wind
direction, reducing the wake effect on downstream turbines (Figure 2.2) [48]. Correctly
estimating the impact of the individual yaw angles on the power production of the other
turbines and quantifying the total yield of the wind farm results in a non-trivial problem
that is actively researched in the energy field [6, 32, 49].
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Accurate forecasting of wind power generation is essential for wind farm operators,
enabling them to make well-informed decisions regarding their electricity supply to the
grid [5]. WPF algorithms rely on the most recent SCADA data, where the number of
previous time-steps considered for the calculation is called the observation window. The
forecast window refers to the number of future time-steps for which values are estimated.
As in any forecasting task, the estimation accuracy diminishes with the forecast horizon
[79]. The resolution for the forecast horizon usually aligns with that of the observation
window, typically set at 10 minutes [5]. Single-step forecasts estimate the value for one
future step, whereas multi-step forecasts result in multiple of these estimates.

WPF forecasts are categorized into four groups, depending on the forecast window;
i) ultra-short-term (up to 1 hour ahead), ii) short-term (within one day), iii) mid-term
(one day to one week), and iv) long-term (spanning multiple weeks) [25]. Ultra-short-
term and short-term WPF aids in real-time grid operations, grid stability, operational
security, and regulatory actions. Mid-term forecasts are utilized for planning purposes
such as unit commitment and reserve allocation. Long-term strategic decisions, including
feasibility studies, maintenance programming, and resource allocations, rely on long-
term forecasting [25, 16].

As detailed in Chapter 1, wind power plays a crucial role in the energy mix, and
will continue to do so in the upcoming decades. This thesis focuses on the short-term
horizon, due to its critical role in enabling the seamless and reliable integration of wind
power into the power grid.

2.2 | Graphs

Graphs are a representation of the relationships that exist between different entities. A
graph is defined as G = (V , E), where V = {1, 2, ..., N} represents a set of entities (or
nodes) and E represents a set of edges between entities. The number of nodes and edges
in a graph is denoted by |V| and |E|, respectively. An edge connecting nodes i and j
is denoted by (i, j) ∈ E and the nodes are considered neighbours. Graphs are either
undirected or directed. In an undirected graph, if edge (i, j) ∈ E , then an equivalent
edge (j, i) ∈ E . In directed graphs, edges have a direction. For an edge (i, j) ∈ E , j is
dubbed the out-neighbor of i, and i is the in-neighbor of j. The edges between nodes in
a graph are usually represented in matrix form.

The adjacency matrix A ∈ RN×N describes the connectivity between the nodes in
a graph. In the unweighted scenario, the entries of A are binary; if (i, j) ∈ E , Aij = 1.
Otherwise, Aij = 0. See Figure 2.3 for an example. For weighted graphs (see Figure 2.4),
the entries of A are scalars: Aij corresponds to the strength of edge (i, j) ∈ E . Examples
of adjacency matrices for different types of graphs are presented in Figures 2.3 and 2.4,

The Laplacian Matrix, defined as L = D − A, offers an alternative way to represent
a graph’s structure. While A can be used for both directed and undirected graphs, L
is used for undirected graphs. In general, a Graph Shift Operator (GSO) is any matrix
S ∈ RN×N that captures the structure of a graph. GSOs are usually sparse, meaning
that their entries sij ̸= 0 only if there is an edge (i, j) ∈ E and i ̸= j. Examples of
GSOs include L, A, and their normalized versions.

Graph signals represent quantities related to the elements of a graph. The signals for
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A =

A B C D E F



0 1 1 1 0 0 A
1 0 0 1 0 0 B
0 0 0 0 1 0 C
0 0 0 0 1 0 D
0 0 1 0 0 0 E
0 0 0 0 0 0 F ,

Figure 2.3: Example of a directed unweighted
graph.

A =

A B C D E F



0 1 3 2 0 0 A
1 0 0 4 0 0 B
3 0 0 0 1 2 C
2 4 0 0 0 0 D
0 0 1 0 0 0 E
0 0 2 0 0 0 F ,

Figure 2.4: Example of an undirected weighted
graph.

Figure 2.5: A graph can have three types of signals associated: node features (left), edge features
(middle) and graph features (right).

all nodes are stored in the feature vector x ∈ RN [41]. In the multivariate scenario, the
F graph signals are stacked column-wise into matrix X ∈ RN×F . Similarly, the signals
for all edges are stored in vector xe ∈ R|E|, and matrix E ∈ R|E|×E collects the edge
vectors in the multivariate case. A graph can also have a set of global features stored in
a vector g ∈ RG [20]. The different types of graph signals are illustrated in Figure 2.5.

2.3 | Wind Farm Graph Structure

Wind farms can be naturally represented as graphs by modelling each turbine as a
node. Defining the edges poses challenges, as the relationship they reflect is not defined
beforehand. These edges may signify physical proximity, electrical connectivity, or the
influence of the wake effect between turbines. The directional or non-directional nature
of the edges captures the dynamics within the wind farm. Additionally, introducing
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edge weights allows for a more nuanced representation, considering factors such as the
strength of inter-turbine interactions or the impact of one turbine’s output on another.
Some common heuristics for defining edge weights, as illustrated in Figure 2.6, include:

• Geographical distance. It builds on the idea that the closer two turbines are, the
more related they are. A function (e.g. Gaussian kernel) is used to map shorter
distances to larger weights:

Aij =

exp
(

−δ2
ij

σ2

)
, if i ̸= j and δij ≤ δmax

0, otherwise
(2.1)

where σ is the kernel bandwidth parameter (often the standard deviation), δij is
the Euclidean distance between turbine i and turbine j, and δmax is a distance
threshold used to limit connectivity.

• Correlation. Considers the Pearson correlation coefficient [30], which measures the
linear correlation for time-series data between two turbines:

ρ(i, j) =

∑n
k=1(xik − x̄i)(xjk − x̄j)√∑n

k=1(xik − x̄i)2
√∑n

k=1(xjk − x̄j)2
(2.2)

where xik corresponds to the time-series value for turbine i at time k, and x̄i to
the sample mean for turbine i. The edge weights are set as follows:

Aij =

ρ(i, j) if if i ̸= j and ρ(i, j) > ρmax

0, otherwise
(2.3)

• Wake interactions [68]. The direction of the wind and the relative angle formed
between the turbines are utilized to generate directed edges. The resulting weights
are inversely related to distance.

Aij =

exp
(

−δ2
ij

σ2

)
, if i ̸= j, δij ≤ δmax, ϕij ≤ ϕmax and i is upstream relative to j

0, otherwise
(2.4)

where ϕij represents the contained angle between turbines i and j, and ϕmax is the
influence cut-off angle. Unlike the other two, this scenario captures the dynamic
nature of a wind farm. The edge weights evolve with the wind; whether a turbine
is upstream relative to its neighbours depends on the wind direction at a particular
instant.

Global graph features of wind farms include wind characteristics, such as the mean or
maximum speed, direction, and turbulence intensity [12, 20, 68]. Node features include
the measurements registered by the sensors located in each turbine: temperature, wind
speed, pitch angle, nacelle orientation and output power. Although uncommon in graphs
representing wind farms, edge features can convey relative angles and distances between
connected nodes [20]. The features of any of these elements may pertain to a specific
time, encompass a series of historical values, or summarize a time-series using statistical
measures.
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(a) Distance. (b) Correlation. (c) Wake interaction.

Figure 2.6: Examples of heuristics used to define edges and their weights for a wind farm graph: a)
Edges exist between turbines less than 1.1 km apart. Distances are transformed into weights through
a Gaussian kernel. b) Considers the Pearson correlation coefficient for historical power generation. For
each turbine, the two edges with larger weights are kept. c) Considers a wind stream blowing to the
SE (grey arrows). Directed edges link an upstream turbine to its downstream neighbour if they are

less than 1 km apart and their relative angle aligns with the wind (±30◦). Weights are computed as in
a). Node positions reflect real-life turbine coordinates.

2.4 | Graph Neural Networks

Graph Neural Networks (GNNs) can effectively capture the complex relationships and
structures inherent in graph data. They utilize various techniques to propagate and
transform information across nodes and edges, enabling them to learn meaningful pat-
terns and representations, which are used to solve tasks related to the graph (e.g., graph
classification) or to its components (e.g., node regression). The core mechanisms used in
GNNs are graph convolutions, which extend the concept of convolution from traditional
signal processing to the graph domain.

2.4.1. Graph Convolutional Filters
A graph convolutional filter is a linear combination of shifted signals across a graph
structure. By extending linear signal processing principles to graph data, GNNs are
able to shift information across nodes [40]. The linear transformation S(x) = Sx allows
node signals x to propagate across a graph, following the topology encoded in a GSO S.
When the GSO corresponds to the adjacency matrix A of an unweighted matrix, this
operation replaces the signal for a node with the sum of the signals from its neighbouring
nodes (one-step propagation), as illustrated in Figure 2.7. Recursively applying this
operation allows a signal to propagate across the graph. Applying the operator k times
enables a signal to shift k-hops away from its original node [41]. The propagation is seen
in Figure 2.7; the signal that belongs to node 1 reaches its first, second and third order
neighbours when multiplied by S, S2 and S3 respectively.

Through the graph convolutional filter, a new signal is formed that aggregates infor-
mation across the graph. The different shifts of the signal are filtered through the GSO
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S = A =



0 1 0 0 0 0
1 0 1 1 0 0
0 1 0 0 1 1
0 1 0 0 0 0
0 0 1 0 0 1
0 0 1 0 1 0


, x =



1
0
0
0
0
0



(a) x (b) Sx (c) S2x (d) S3x

Figure 2.7: A graph is illustrated in the top left, where node one is highlighted and its k-th order
neighbors are identified. The scalar values within signal x shift from a node to its neighbours when

multiplied by the GSO S. The exponential of the S corresponds to the order of neighbours the signal
reaches.

and aggregated with different amounts of contribution:

H(S)x =
K∑

k=0
hkSkx (2.5)

H(S)x is the resulting graph signal, x are the (un)shifted signals and h0, ..., hk deter-
mine the contribution of each shift (up to K-th order) of the signal to the final output.
Learning these parameters translates into learning an embedding of the original signal
x leveraging the graph’s topology S. Although helpful in solving tasks such as signal
denoising, graph convolutional filters have limited expressive power. After all, they are
based on linear functions and thus cannot model complex non-linear relationships even
if the number of parameters increases.

2.4.2. Building GNNs
The graph perceptron is the building block of any GNN. It adapts the Multilayer Percep-
tron (MLP), traditionally used upon Euclidean data to graph signals [41]. A response
is obtained when a non-linearity applied to the output of a graph convolutional filter:

y(x) = σ

 K∑
k=0

hkSkx

 (2.6)

σ can be any point-wise non-linear function, such as the rectified linear unit (ReLU).
GNNs are formed by layering L graph perceptrons on top of each other. In this approach,
non-linear operators are applied to the linear combination of signals in a recursive man-
ner. For each layer l in the GNN, a signal propagation occurs:

xl = σ(zl) = σ

 K∑
k=0

hlkSkxl−1,l−2,...,L

 (2.7)
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Figure 2.8: Unrolled architecture of an RNN. A cell is used for each element in the input sequence,
resulting in an output and an update in the hidden state. Adapted from [66].

Thus, the output of a GNN is a function of the input signals x, the graph structure
S and a set of L trainable parameters H = {h1,h2, ...,hL}:

ŷ = Φ(x; S, H) (2.8)

2.4.3. GNN Training
GNNs are trained to learn the optimal parameter H⋆ = {h⋆

1 ,h⋆
2 , ...,h⋆

L} given a training
set T and a loss function L(·) that quantifies the difference between the output of the
model ŷ and the ground truth y [40]:

H⋆ = arg min
H

∑
x∈T

L (y, ŷ) = arg min
H

∑
x∈T

L (y, Φ(x; S, H)) (2.9)

Model training is achieved by iteratively updating the parameters through backprop-
agation, which works on smooth convex error functions, as they are differentiable. The
loss function is selected depending on the task the network aims to solve. Two standard
options for regression tasks are L1 and L2 [19]. L1, or Mean Absolute Error (MAE)
computes the average absolute differences between ŷ and y:

L1 =
1
R

∑
i∈T

∥ŷi − yi∥1 (2.10)

L2, or Mean Squared Error (MSE) is the sum of the square of the differences between ŷ
and y:

L2 =
1
R

∑
i∈T

∥ŷi − yi∥2
2 (2.11)

Over the years, various GNN architectures have been developed, with different pur-
poses and levels of complexity. All of them build upon the foundational concepts dis-
cussed earlier. Their goal is to leverage the graph structure to combine information
across it, learning to produce meaningful representations of the data.

2.5 | Recurrent Neural Networks

RNNs are a class of Neural Networks capable of handling sequential data, such as time-
series. These networks are applied recurrently to the input sequence and implement a
memory cell to preserve a state across time-steps [93]. The cell’s state, known as the
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Figure 2.9: Diagram of four common RNN architectures, adapted from [54, 61]. From left to right and
top to bottom: sequence-to-sequence, sequence-to-vector, vector-to-sequence and encoder-decoder.

hidden state, is denoted by ht ∈ RH , where H can take any size. At each time-step, t,
the recurrent cell utilizes the input vector xt ∈ RN and its previous hidden state ht−1
to update ht and yield the output ŷt ∈ RO, as illustrated in Figure 2.8. The hidden
state and output at time t are computed as:

ht = σ(Whhht−1 + Wxhxt + bh) (2.12a)
ŷt = σ(Whyht + by) (2.12b)

where σ(·) is an activation function (typically tanh); Whh ∈ RH×H , Wxh ∈ RH×N

and Why ∈ RO×H are weight matrices; and bh ∈ RH , and by ∈ RO are bias vectors.
These parameters are shared across the different cells of the network. The number (and
size) of these parameters is independent of the length of the input sequence but rather
depends on the dimension of the input N [72].

2.5.1. RNN Cell Configuration
RNN cells can be configured differently, depending on the input at hand and the desired
output. Four common configurations [54, 61] are depicted in Figure 2.9 and detailed
below:

1. In sequence-to-sequence, a cell is unrolled for each one of the elements of the input
sequence, and the output consists of all the individual cell outputs.

2. The sequence-to-vector setting implements the same architecture, although all the
cell outputs are ignored except for the last one.

3. The vector-to-sequence configuration takes as an input a single vector, which is
repeated and fed to each cell. The updates in the hidden state result in updated
outputs, which are compiled as the model’s output.

4. The encoder-decoder approach combines two independent RNNs [61]. The first one,
the Encoder, captures the input following the sequence-to-vector approach. The
resulting vector is then fed to the Decoder, with a vector-to-sequence configuration.
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Figure 2.10: Example of the recursive strategy to obtain a multi-step output from single-step forecasts.
In this example, O = 4 and H = 3. Image adapted from [52].

When the task consists of producing a multi-step forecast, the RNN configurations
that output a sequence can be directly used [73]:

[ŷt+1, ŷt+2, ..., ŷt+H ] = FS(xt, xt−1, ..., xt−O+1; H) (2.13)

where ŷt corresponds to the forecast at time t, FS(·) represents a RNN with a sequence
output parameterized by H, O is the size of the observation window and H corresponds
to the size of the forecast window. However, vector outputting networks have to be
executed recurrently, as each iteration produces a value that is used as part of the input
of the next iteration [73]:

ŷt+1 = FV (xt, xt−1, xt−2, ..., xt−O+1; H)

ŷt+2 = FV (ŷt+1, xt, xt−1, ..., xt−O+2; H)

ŷt+3 = FV (ŷt+2, ŷt+1, xt, ..., xt−O+3; H)

...
ŷt+H = FV (ŷt+H−1, ŷt+H−2, ŷt+H−3, ..., ŷt+H−O; H) (2.14)

where FV (·) represents a RNN with a vector output parameterized by H. An exam-
ple of the recursive strategy is provided in Figure 2.10.

RNNs are trained using a special type of backpropagation called Backpropagation-
rough Time (BPTT) [74]. The RNN is first unrolled, and the input undergoes a forward
pass to obtain an output. The loss function L(·) is defined to ignore part of the output
and only considers the relevant portion according to the selected configuration. The
gradients are propagated backwards and updated accordingly through BPTT. As these
computations must be executed for each of the cells in the network, some problems may
arise given long input (or output) sequences. Firstly, the network might run into the
unstable gradients problem, resulting in the gradients in the initial layers becoming too
small to have the weights updated or too large, resulting in a diverging solution [74].
The network may also be unable to remember information regarding the first inputs as
it unrolls across the sequence [9].

2.5.2. LSTMs
LSTMs are an improved type of RNN capable of remembering information across long
sequences while also attending to details encoded in the short-term. They incorporate
the hidden state ht found in RNNs in addition to a long-term state ct, and three gates (ft,
it and ot) responsible for controlling changes to the cell states [93]. A schematic diagram
of the mechanisms inside the LSTM cell is presented in Figure 2.11. The corresponding
equations are:
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Figure 2.11: Schematic diagram of the LSTM cell. Adapted from [66].

ft = σ(Whf ht−1 + Wxf xt + bf ) (2.15a)
it = σ(Whiht−1 + Wxixt + bi) (2.15b)
ot = σ(Whoht−1 + Wxoxt + bo) (2.15c)
c̃t = tanh(Whcht−1 + Wxcxt + bc) (2.15d)
ct = ft ⊙ ct−1 + it ⊙ c̃t (2.15e)
ht = ot ⊙ tanh(ct) (2.15f)

where Whf , Whi, Who and Whc are weight matrices applied to the hidden state of
the cell; Wxf , Wxi, Wxo and Wxc are matrices that act upon the input; bf , bi, bo

and bc are bias vectors; and ⊙ denotes element-wise multiplication between two vectors.
σ(·) corresponds to the sigmoid activation function, which sets the value of ft, it and ot

between zero and one.
The long-term cell state ct can store information that can remain unchanged across

its unfolding along the sequence [66]. The transformations to the value of ct (Equa-
tion 2.15e) are dictated by the values of ft and it. If ft equals zero, the previous state
of the cell is erased. The closer its value gets to one, the more the previous state is
preserved. Similarly, an it with a value of one indicates the inclusion of new information
(contained in the candidate state c̃t) into ct, whereas a value of zero leaves the state
unaffected. ot filters out the information contained in ct to compute ht (Equation 2.15f).

2.6 | Adaptive Graph Convolutional Recurrent
Network

The Adaptive Graph Convolutional Recurrent Network (AGCRN) was introduced in
[7] as a framework for traffic forecasting. It addresses the challenge of capturing com-
plex spatial and temporal correlations within interconnected time-series. The nodes
represent the individual traffic sensors installed on the roads. Instead of utilizing a pre-
defined adjacency matrix A based on sensor proximity and/or time-series similarity, the
authors propose a Data-Driven Graph Generation module, which results in a normalized
adjacency matrix that reflects the inter-dependencies between nodes:
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Ã = softmax
(
ReLU

(
E · ET

))
(2.16)

where E ∈ RN×F is a learnable node embedding dictionary, where each embedding
has length F . The multiplication of E with its transpose ET computes the dot products
between every pair of node embeddings, resulting in a square matrix that reflects the
similarity between any two nodes. Higher values indicate a greater similarity (or po-
tential connectivity) between nodes. The ReLU function filters out negative similarity
scores, ensuring the adaptive adjacency matrix comprises exclusively positive connec-
tions. Finally, the softmax operator normalizes every row within the adjacency matrix.

By indirectly learning the undirected adjacency matrix through embeddings, the
model has fewer parameters to learn than if the N2 parameters were learned directly.
This contrasts especially when N is large, and F is small. Adopting this approach
reduces the need for extensive training data and improves the model’s efficiency and
scalability, which is crucial for handling large graphs.

The AGCRN cell combines the temporal processing capabilities of an RNN, particu-
larly a Gated Recurrent Unit (GRU), with adaptive graph convolutional techniques to
refine the model’s spatial analysis. This combination allows the AGCRN to dynamically
learn the interdependencies among traffic series and adapt to the evolving patterns in
traffic flow data:

zt = σ
(
Ã [Xt, ht−1]EWz + Ebz

)
(2.17a)

rt = σ
(
Ã [Xt, ht−1]EWr + Ebr

)
(2.17b)

h̃t = tanh
(
Ã [Xt, r ⊙ ht−1]EWh + Ebh

)
(2.17c)

ht = zt ⊙ ht−1 + (1 − zt) ⊙ h̃t (2.17d)
at time t, zt is the update gate, calculated using the parameters Wz and bz. Similarly,

parameters Wr and br are used to compute the reset gate rt. h̃t is the candidate for
the value of the hidden state ht. [·] denotes concatenation and ⊙ denotes element-wise
multiplication.

By integrating graph convolutions in the gates of the GRU cell, AGCRN can capture
node-specific spatial dependencies in addition to temporal patterns. Each iteration of
h̃ captures a combined representation of the information belonging to a node and its
neighbours, enabling it to store and exploit information in the temporal and spatial
domains simultaneously.

In the short-term traffic forecasting task, AGCRN outperforms other graph-based
RNN models where the adjacency graph is predefined. This suggests that AGCRN’s
adaptive graph construction mechanism is more effective in capturing complex patterns
and relationships between interconnected, dynamic time-series. The success of AGCRN
in traffic forecasting highlights its potential applicability across other domains, such as
WPF, where turbines directly affect the current and future behaviour of their neighbours.

2.7 | Conclusion

This chapter introduced the fundamental concepts relevant to the rest of the thesis.
An overview of turbines and their arrangement in wind farms was provided, outlining
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the importance and challenges of accurate WPF. The arrangement of turbines in wind
farms makes estimating their power generation challenging. This challenge is further
complicated when the aim is to forecast this power yield in the short, medium, or long
term. As discussed in Chapter 1, the research on this topic is crucial, as obtaining
accurate and reliable forecasts is essential for the stability and efficiency of the power
grid

This chapter also discussed graphs, which provide a powerful representation of an
interconnected series of entities. Graphs can be used to model complex systems and
relationships in various domains. However, unlike other systems where the link between
nodes is evident, the turbines within a wind farm can be related in numerous ways
as evidenced by the approaches reviewed. These approaches are based on pre-defined
heuristics: geographical distance and correlation are fixed regardless of the changing char-
acteristics of the wind farm, while the “wake interactions” heuristic aims to reassemble
the interactions resulting from the Wake Effect. However, none of these representations
fully capture the dynamic and complex nature of wind farm interactions, highlighting
the need for further research on the topic.

Both GNNs and RNNs were introduced as two neural network architectures special-
ized in modelling spatial and temporal dependencies in data, respectively. RNNs are
adept at modelling the temporality found in sequences, while GNNs can operate in the
graph domain, leveraging graph topology to spread information across its nodes. Each
network has demonstrated promising results in its respective domain, leading to the
development of new hybrid architectures that combine their strengths. One example
is AGCRN, which integrates graph convolutions into an LSTM, enabling it to capture
both spatial and temporal dimensions simultaneously.

This study merges the previously reviewed concepts to address WPF in wind farms
using GNNs. We explore the creation of a graph from SCADA data to effectively encode
the dynamic interactions among turbines and investigate how this graph can be utilized
by a model for short-term WPF. Inspired by AGCRN, such a model should also integrate
RNNs, as they are the current state-of-the-art for time-series modelling. The resulting
model should produce forecasts at the turbine level, enabling its integration with control
methods and use for operational decision-making.

The next chapter will review the current literature on WPP and WPF, emphasizing
the most significant studies on these topics. Many of the described models build upon
the concepts discussed in this chapter, underlining their relevance and applicability to
our research.



3 Literature Review

This chapter explores WPF and Wind Power Prediction (WPP) methods for systems
ranging from individual turbines to clusters of wind farms. §3.1 introduces the topic
and a framework for classifying WPF and WPP methods. §3.2 introduces Traditional
Approaches, where Physics-Based Methods offer accuracy but are resource-intensive,
and Statistical Methods are effective for short-term forecast windows but inaccurate
for longer ones and inflexible to design variations. Artificial intelligence approaches,
described in §3.3, address the limitations of traditional methods, introducing modules
specialized in modelling temporal dependencies in data. §3.4 reviews different graph
formulations allowing GNNs to exploit wind systems’ spatial dependency. GNN-based
WPF approaches are then categorized based on the order and integration of their spatial
and temporal sub-modules. The chapter concludes with the discussion in §3.5.

19
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Figure 3.1: Classification of the methods for WPF and WPP.

3.1 | Introduction

Wind-based systems’ power production has been a research focus in the energy field
for the last 20 years [84]. In this context, a system may denote a single wind turbine,
a collection of wind turbines (such as a wind farm), or even a cluster of wind farms.
During this exploration, emphasis has been placed on two tasks: WPP and WPF. WPP
estimates the power a wind system produces at a specific time, utilizing features corre-
sponding to that moment, including sensor data, meteorological variables, and the power
output from associated systems. In contrast, WPF estimates future wind production
values, drawing on historical data and other forecasts to project power production at
upcoming intervals. In the forecasting task, the past values of the target feature(s) are
also considered. Despite the distinct temporal scopes, the synergy between these tasks
is evident, as the accuracy of predictions inherently influences the reliability of future
forecasts. The methods to tackle these tasks are classified into Traditional and Artificial
Intelligence approaches. We adhere to this classification and further categorize Artificial
Intelligence approaches by integrating GNNs into their architecture. Our framework for
categorising these methods is shown in Figure 3.1.

3.2 | Traditional Approaches

Traditional WPP and WPF approaches rely on physical and statistical models. Physics-
based approaches work by inputting down-scaled weather data into complex mathemati-
cal models such as the Jensen model [42] and the Jimenez model [44]. These methodolo-
gies typically generate wind speed estimates for the individual turbines, which are then
mapped to the corresponding output power through the power curve provided by turbine
manufacturers. As these methods build upon tested laws and specifications, they are
easily interpreted and accurately reflect physical interactions within wind farms, such as
the wake effect. Regarding WPP, physical methods are heavily used for optimizing the
layout of wind farms [23, 22] and control purposes [1, 8]. In the context of WPF, they
are suitable for long-term forecasting, given their high prediction accuracy [24, 62]. The
drawback of these approaches lies in their dependence on detailed atmospheric data and
their resource-intensive nature, resulting in higher costs and making them ineffective for
short-term WPF due to their extensive running time [95].

Statistical models adopt a data-driven strategy for WPF by capturing linear relation-
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ships in the target time-series and other correlated variables. Statistical methodologies
utilize the autoregressive moving average model (ARMA) [21] and its variants: the au-
toregressive integrated moving average model (ARIMA) [76, 34], which introduces dif-
ferencing for stationarity; the seasonal ARIMA model [83], which additionally accounts
for seasonality in the time-series; and the multivariable-compatible VARMA model [97],
which produces a forecast for multiple systems. Additional models within this category
follow the Bayesian approach [63] or apply Kalman filters [2] to forecast wind power or
wind speed for single turbines. While statistical models are straightforward to implement
and cost-effective for short-term forecasting, their performance diminishes significantly
for multi-step WPF as the forecast window grows [16]. Furthermore, these models strug-
gle with long time-series and are ineffective at considering multiple time-series as input.
Finally, these approaches may not be well-suited for the task, given their reliance on
assumed linear relationships between features, which is not typically observed on wind
power time-series.

3.3 | Non-GNN Approaches

For WPP, Neural Network-based approaches centre around surrogate modelling. These
models are trained with data derived from high-fidelity physical simulations to approx-
imate their outcomes, significantly reducing computational time while sacrificing accu-
racy. The work in [90] estimates the power curve of a wind turbine given the wind speed
and direction using a Feed-Forward Neural Network (FNN). In [3] and [69], the authors
approximate the wake fields for single turbines given large high-fidelity wake images.

3.3.1. Base Neural Approaches
The earliest neural approaches for WPF utilize FNNs that operate on historical variables
to produce single-step forecasts [14] or multi-step forecasts [13] for individual turbines.
Some works preprocess the time-series using statistical methods before running FNNs on
the result [15, 57]. Although these models outperform statistical models [57], they strug-
gle to handle temporal data, resulting in low performance when forecasting more than
a couple of time-steps into the future. FNNs cannot capture sequential dependencies
and temporal patterns, treating each input independently. Their fixed-length parame-
ters are unsuitable for varying-length time-series, and the absence of memory retention
hinders recognizing time lags. RNNs (§2.5) have emerged to address these shortcomings,
offering architectures tailored for the dynamic and sequential nature of temporal data,
thereby enhancing accuracy in WPF, as we shall see in §3.3.2 and §3.4.2.

3.3.2. Temporal Models
RNNs, particularly LSTMs, have proven effective at time-series forecasting, typically
outperforming statistical methods and FNNs [77, 60], and have been extensively used
for WPF. In [89], the authors carry out dimensionality reduction on weather data and
implement an LSTM to perform short-term WPF. In [55] and [56], wind speed signals
undergo a decomposition into low-frequency and high-frequency components. Forecast-
ing of the low-frequency term for a single-speed signal is accomplished using LSTMs. In
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[75], the authors integrate wavelet activation kernels into the activation functions for the
gating mechanism of LSTMs, which take multiple features as input. This modification
leads to enhanced short-term WPF performance.

Other variants of RNNs have also been utilized for WPF. The works in [82] and [50]
implement bidirectional LSTM approaches. A GRU is utilized in [65], which provides
multi-step, multivariate forecasts and encompasses an attention mechanism that reveals
a close relationship between wind speed and wind power. All these methods solely
use historical power values to produce the estimates, ignoring information derived from
covariates or static features.

Another family of neural networks commonly used for WPF are Convolutional Neural
Networks (CNNs). These models combine features that are arranged in grid-like struc-
tures. Multiple studies leverage CNNs for temporal feature extraction from wind-related
databases and perform WPF using Neural Networks on the resulting representations [37,
45].

A widespread technique combines the feature extraction capability of CNNs and the
temporal nature of LSTMs to carry out WPF. In [59], the wind power time-series of
four wind farms is decomposed and fed along meteorological variables to a CNN, which
carries out feature extraction. An LSTM is used to forecast the power signal components,
which are then reconstructed into a day-ahead forecast for each of the four wind systems.
The work in [88] constructs a grid of meteorological features, upon which a CNN extracts
features that act as inputs to an LSTM layer responsible for producing a wind farm-level
short-term forecast. The authors in [98] replace the LSTM with a Bi-LSTM, which acts
directly on the wind speed and wind power measurements.

Recent models combine CNNs with state-of-the-art architectures for sequence predic-
tion, such as the Transformer. Notably, [27] proposes an encoder-decoder architecture,
where temporal features are extracted using a Temporal CNN and an Informer block
generates a short-term forecast for a single wind turbine.

While the methods discussed earlier address the temporal correlations found within
the data, they generate aggregated forecasts for wind systems (i.e. a single output
signal), even when the system comprises several subsystems like individual wind turbines.
Additionally, the spatial interactions are overlooked, which limits their applicability
to interconnected structures such as wind farms. These challenges have instigated a
growing interest in developing models capable of modelling the behaviour of individual
subsystems while accounting for the spatial and temporal interrelations they exhibit.

3.4 | GNN-based Approaches

In WPP and WPF, many models have surfaced that integrate GNNs into their archi-
tecture. These models can be categorized based on the specific task they address, how
the graph representation of the wind system is constructed, and the components they
incorporate into their architectures. An overview of these works is included in Table 3.1.

3.4.1. Graph Formulation
Most studies follow a standard approach for representing wind farms as graphs. All the
reviewed methods consider individual turbines as nodes, and several define undirected
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edges based on their physical proximity or feature correlations. In [92], the authors
consider all turbines within a certain distance as neighbours, while [20] produces a sparser
adjacency matrix following the n-closest neighbours approach. Time-series correlations
are also utilized to build the graphs, such as in [96]. In [58], two graphs are defined: the
first sets edges between turbine pairs with wind speed correlations above a predefined
threshold, and the second uses the wind farm’s electrical wiring diagram to establish
edges.

The previously discussed models rely on predefined heuristics, commonly used across
domains where the interactions result straightforward and interpretable (e.g. road traf-
fic). These heuristics may not adequately capture the complex interactions in wind
systems, where multiple variables influence power generation. Here, the graph structure
should additionally be dynamic, reflecting the continual changes in environmental con-
ditions. Static models fall short because they cannot adapt to the shifting interactions
between turbines as wind patterns evolve.

In response to this, some methodologies introduce directed edges to represent wake
interactions between turbines within wind farms, taking into account not only their
physical separation but also the relative angle between the wind and the turbines [10,
12, 33, 68, 94]. The resulting graphs evolve, adding and removing links as necessary.
However, this approach requires a set of parameters (e.g. angle thresholds) that are
difficult to set empirically and that might as well change over time.

Recent methods can adaptively learn the adjacency matrix relating to wind farms.
In [31], the power time-series is fed to a GRU, whose last hidden layer is then used
as input for a self-attention mechanism, outputting the graph structure. The authors
in [80] combine a predefined adjacency matrix with two learnable matrices of the same
size; one that results from the dot product of all the pairwise combinations of the node
embeddings, and a second one, where all the individual entries are treated as parameters
and learned from the data. As a shortcoming, these models need large amounts of
training data due to their complexity and the extensive number of parameters that arise
from individually learning the matrix entries.

3.4.2. GNNs for WPF
The methodologies employed for WPF utilizing GNNs can be systematically classified
based on how the temporal and spatial features are combined. In this study, we delineate
two classes: i) Hybrid methods, which adapt and combine existing spatial and temporal
models, and ii) Integrated methods, developed to extract both types of dependencies
simultaneously. A summary is presented in Table 3.1.

Hybrid Models
In hybrid models, the spatial and temporal units are decoupled. These architectures
combine existing modules which have proven effective for exploiting the spatial structure
from graphs and the temporal features from time-series. One such method is [47], where
temporal features are extracted for each wind farm using LSTMs and then combined
using spectral graph convolutions to forecast wind speed from 10 minutes to several
hours ahead at the station level. Similarly, [58] applies LSTMs to individual turbines,
inputting recent wind speeds and operational statuses. The LSTM’s final hidden state
feeds into two consecutive GCNs that leverage the farm’s topology to forecast available
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Table 3.1: An overview of the existing GNN-based methods for WPF.

Forecast

Type1 Authors Graph nodes Architecture Feature Scale Resolution2

H Khodayar et al. [47] wind farms LSTM, GCN,
Rough Set

Theory

speed short-term MS

H Liu et al. [58] turbines LSTM, GCN power ultra-short-term SS
H Wang et al. [86] wind farms GAT, BiGRU,

Transformer
power ultra-short-term MS

H Zhang et al. [94] turbines Kalman filter,
TCN, GCN,

ARIMA

speed ultra-short-term SS

I Bentsen et al. [11] weather stations GNN, LSTM,
Transformer

speed ultra-short-term MS

I He et al. [31] weather stations GNN, GFT power ultra-short-term MS
I Stańczyk et al.[80] cities GCN, TCN speed short-term MS
I Zhao et al. [96] wind farms STGCN power ultra-short-term MS

1 H: Hybrid, I: integrated
2 SS: single-step, MS: multi-step

power and power losses per turbine.
Other models employ GNNs to integrate features within a graph, followed by a

temporal module for forecasting. The work in [94] introduces a superimposed model
for single-step wind speed forecasting at a specific turbine. This model uses ARIMA for
unstable components and a GCN for features from eight upstream turbines. A Temporal
Convolutional Neural Network then processes the outputs. The model described in [86]
uses a graph attention network and a bidirectional GRU, combined with a Transformer
layer, for multi-step WPF across multiple wind farms. The results are location-specific
forecasts.

The study in [96] uses the Spatio-Temporal Graph Convolutional Network (STGCN)
from [91] for WPF. The STGCN combines a graph convolutional layer with two gated
temporal convolutional layers to extract spatio-temporal features in a purely convolu-
tional approach. This method proves effective for multi-step, ultra-short-time forecasting
at the farm level. Similarly, [80] proposes an architecture that carries out a spatial con-
volution, followed by a temporal one. This block is applied sequentially to a multivariate
dataset to generate multi-step wind forecasts for European cities.

Although hybrid models effectively capture the spatial and temporal dimensions of
the data, their fragmented approach can be inefficient, as reflected in their parameter
count. Furthermore, none of the mentioned studies justify the specific sequence of merg-
ing spatial and temporal features, a factor that could impact overall model effectiveness.

Integrated Models
This category encompasses models wherein temporal and spatial dependencies are simul-
taneously extracted, showcasing a holistic approach to WPF. The current integrated
models for this task transform the time-series to the spectral domain before as part
of the methodology. The work in [11] integrates different temporal-based predictors
as update functions for a GNN, including the Fast Fourier Transformer. This Trans-
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former analyzes signal periodicity and learns trend components. While updating the
GNN with a standard Transformer shows minimal effect, incorporating the Fast Fourier
Transformer significantly enhances the accuracy of multi-step wind speed forecasts at
14 offshore weather stations. The authors in [31] convert the learned adjacency matrix
into a spectral matrix and use it to run convolutions on the power series in the spectral
domain, which are then translated into power forecasts. Although these architectures
have proven effective at WPF, the intensive resource requirements of the eigenvalue
decomposition and the attention mechanism (in the former case) confine their use to
small-scale graphs.

3.4.3. GNNs for WPP
GNN methods for WPP in wind farms are mainly used for surrogate modelling, ap-
proximating the physical interactions between turbines and their power outputs in a
fraction of the execution time. In [68], the authors introduce a physics-induced bias
that, similarly to an attention mechanism, learns to weigh upstream turbines’ influence
on downstream turbines using the wake model described in [67]. This bias is imple-
mented in the GNN node feature update function. The work in [33] adapts [68] for
wake steering control by incorporating yaw angles as node features. The purely data-
driven model can compute optimal yaw configurations. In [12], the authors implement a
model combining Bidirectional LSTMs and attention-based GNNS that learns to focus
on the most relevant upstream turbines for shifting signals among edges and nodes. An
analysis of the resulting weights reveals that these reflect the physical intuition of wake
interactions. In [10], the same authors develop a Bayesian model with an underlying
GNN architecture. Unlike the previously described methods, this model addresses uncer-
tainty by providing a probability distribution for the power output of the wind turbines,
derived by sampling the parameters of the GNN.

3.5 | Discussion

This chapter reviewed current methods for WPF. We examined how graph structures are
applied to represent wind systems and observed that some methods construct graphs
based on physical proximity and feature correlations. Other approaches offer a sim-
plistic model of the wake effect by additionally considering the wind direction. While
graph-adaptive methods are promising for leveraging hidden data relationships, they
can become overly complex when approximating each entry in the adjacency matrix or
when dealing with large-scale wind farms.

Furthermore, we categorized the current graph-based methods for WPF. Hybrid
models, which separate the spatial and temporal dimensions and combine them in an
arbitrary sequence, are found to be inefficient. In contrast, integrated models merge
these dimensions simultaneously within a single component. However, these methods
are expensive as they require inverting the adjacency matrix, making them impractical
for large-scale systems. We note that none of the graph-based approaches for WPF can
integrate static features or future covariates.

In general, the results from the cited studies suggest that GNNs are well-suited to
model interactions within wind systems. Specifically, GNNs have the potential to learn
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the complex interactions occurring in wind farms, as demonstrated by several works
focused on WPP. This is promising for WPF, which considers the temporal dependency
of the data in addition to the spatial one. As research continues to advance, GNNs are
likely to play a crucial role in developing more accurate and reliable WPF methods.

Building on the reviewed works, this thesis introduces a novel graph-based integrated
model for WPF at wind farms, which is set apart by two distinctive characteristics.
Firstly, the model can integrate multidimensional input data, including multiple time-
series (historical and future covariates) and static features for each turbine, to generate
accurate power forecasts. It supports multi-step series of different lengths and simultane-
ously processes data for all turbines. Furthermore, the model employs a GCN-enabled
LSTM cell to adapt the adjacency matrix dynamically based on the farm’s evolving
conditions. The number of parameters is restricted by indirectly learning the adjacency
matrix, and the model applies to large-scale wind farms. The seamless integration of
the spatial and temporal dimensions results in a holistic approach to WPF.



4 Methodology

This chapter presents the AG-LSTM Network for WPF. It begins with a definition of
the problem in §4.1. The proposed model is introduced in §4.2, and its scalability is
addressed in §4.3. Next, the process of training the model, employing the sliding window
technique is described in §4.4. Lastly, §4.5 provides a discussion of the method.

27
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4.1 | Problem Formulation

We aim to develop a model F(·) that outputs the power forecast of a wind farm, Ŷ =
[ŷt+1, ŷt+2, ..., ŷt+H ]. Each ŷt contains the wind power estimates for each of the N
turbines at a future time-step. To this end, we consider two scenarios:

i) History-Driven: The model is given by:

Ŷ = F([yt−O+1, yt−O+2, ..., yt], [Xt−O+1, Xt−O+2, ..., Xt], E; Θ) (4.1)

where each yt contains the observed power values across the wind farm at a pre-
vious time-step and Xt corresponds to one or more additional time-series that
relate to the power series (e.g. wind speed). Both yt and Xt represent historical
values, starting at t − O + 1 and extending up to time-step t. We refer to O as
the length of the observation window. E represents a set of features that remain
static through time. The model is parameterized by Θ.

ii) Future-Known Values: Similarly, the model is characterized by:

Ŷ = F([yt−O+1, ..., yt], [Xt−O+1, ..., Xt], [Ẑt+1, Ẑt+2, ..., Ẑt+H ], E; Θ) (4.2)

Here, we consider Ẑt, corresponding to the forecast of one or more features corre-
lated to the power series. For a particular time-step. These features, also called
future covariates, are given at the turbine level and span the forecast horizon (H).
These can include, for example, wind speeds and temperatures obtained using
Numerical Weather Prediction models.

Specifically, we focus on ultra-short-term forecasting for 2 and 4 hours, aiming to
aid the wind farm’s operation and control strategy. Considering the standard 10-minute
resolution of SCADA data, this translates to H taking values of 12 and 24, respectively.
We limit O to 24 (4 hours), considering that wind power data displays high volatility
and aiming to optimize the model’s runtime.

4.2 | Proposed Model

The proposed model is illustrated in Figure 4.1. It adopts an encoder-decoder configura-
tion, where the encoder leverages an Adaptive-Graph LSTM (AG-LSTM) cell responsible
for processing the input sequences to capture their underlying temporal and spatial char-
acteristics. The decoder transforms the encoded representation, combining it with the
most recent power value, static features and the forecasts of correlated time-series to gen-
erate sequence forecasts. Moving forward, we will refer to the model as the AG-LSTM
Network.

4.2.1. Model Overview
Initially, the power series [yt−O+1, ..., yt] and other features [Xt−O+1, ..., Xt] belonging
to all the turbines are fed into the encoder. This module can process inputs of varying
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Figure 4.1: Architecture of the proposed encoder-decoder model.

length O, as the internal parameters are shared across the AG-LSTM cells that com-
pose it. The hidden states are iteratively updated for every time-step within the input
sequence. The encoders’ output contains the last hidden states for each turbine, which
combine the information from a temporal and spatial perspective.

Depending on the size of the encoder’s and decoder’s hidden states, an intermediate
mapping is needed. A dedicated module is used to transform the output of the encoder,
so its dimensions match the hidden states of the decoder. The parameters of the module
are shared across turbines. This results in two cell states, unique to each turbine.

The result of the previous transformation is fed to the decoder, which consists of a set
of RNNs serial configuration. The decoder can be run asynchronously for each turbine,
as no features or embedding are shared across turbines. This module considers the
encoder’s last hidden states as initial states and recurrently updates them considering
the information corresponding to each future time-step. This information consists of the
scalar corresponding to the last power forecast (last model output) ŷt−1, an embedding
of the static features E, and optionally, the future covariates Ẑt. Given that there is no
previous power forecast for one-step into the future, the first cell takes the last actual
power output yt−1 instead.

As in the encoder, the sequential arrangement of LSTM cells in the decoder enables
the model to adjust to various forecast windows. Unlike the encoder, which outputs the
state of the last cell, the decoder generates an output for each time-step. This output
is transformed by running the hidden states through a MLP, which uses shared weights
across different time-steps and turbines. The concatenation of these results comprises
the final output of the model, Ŷ ∈ RN×H .

An in-depth description of the individual components of the model is provided below.

4.2.2. Adaptive-Graph LSTM Cell
The core component of our model is the AG-LSTM cell, inspired by the cell initially
introduced in AGCRN (§2.6). The module we propose is depicted in Figure 4.2. It
can represent and combine node features in the spatial and temporal dimensions when
applied sequentially as an encoder. The result is a condensed representation of the
sequence, key for time-series forecasting.
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The AG-LSTM cell generates a dynamic adjacency matrix at every time-step, which
combines features and past hidden states among neighbouring nodes to update the
cell gates and state. As a first step, the input features for node n at time-step t are
transformed into two embeddings, e(n)1,t and e(n)2,t :

e(n)1,t = [xt, yt]We,1 + be,1 (4.3a)

e(n)2,t = [xt, yt]We,2 + be,2 (4.3b)

We,1 and We,2 ∈ RF ×L transform the input information into embeddings of size L,
whereas be,1 and be,2 ∈ RL act as bias terms. These four terms are learnable and shared
across nodes and time-steps. [·] denotes the concatenation operation. The embeddings
for all nodes make up the matrices E1,t and E2,t:

E1,t =


e(1)1,t
e(2)1,t

...
e(N)

1,t

 , E2,t =


e(1)2,t
e(2)2,t

...
e(N)

2,t

 (4.4)

E1,t is then used to obtain the adjacency matrix At:

At = E1,tE⊺
1,t (4.5)

The model utilizes a row-normalized version of the adjacency matrix, Ãt to prevent
exploding values throughout the method.

The proposed cell integrates graph message-passing mechanisms into an LSTM,
which use Ãt to update the forget, input and output gates. Consequently, a node’s
present hidden and cell states are derived from the concurrent features and previous
states belonging to itself and its neighbours.

Ft = σ
(
Ãt [Xt, yt, Ht−1]E2,tWf + E2,tBf

)
(4.6a)

It = σ
(
Ãt [Xt, yt, Ht−1]E2,tWi + E2,tBi

)
(4.6b)

Ot = σ
(
Ãt [Xt, yt, Ht−1]E2,tWo + E2,tBo

)
(4.6c)

C̃t = σ
(
Ãt [Xt, yt, Ht−1]E2,tWc + E2,tBc

)
(4.6d)

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t (4.6e)
Ht = Ot ⊙ tanh (Ct) (4.6f)

where Ft, It and Ot correspond to the forget, input and output gates across all nodes.
Similarly C̃t is the candidate cell state, Ct is the final cell state, and Ht contains the
hidden cell state for all nodes. Xt contains the nodes’ features and yt are the target
feature values. Finally, Wf , Wi, Wo and Wc ∈ RL×Q; and Bf , Bi, Bo, and Bc ∈ RL×Q

are learnable parameters. We note that Q, which corresponds to the size of the hidden
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Figure 4.2: Diagram of the AG-LSTM cell.

and cell states of each node must equal N − F . As a result, the proposed model is only
applicable to cases where N > F .

We use two separate embedding matrices for each time-step: E1,t and E2,t. The
reason behind this is that the embeddings have two inherently different objectives. E1,t
is used solely to build the adjacency matrix, which determines graph topology through
a data-driven approach. On the other hand, E2,t enables the transformation of the
features and hidden states, allowing the model to develop new representations of the
input features. In simple terms, E2,t defines what information is relevant for a node
while E1,t determines how it is combined with other nodes.

The AG-LSTM cell can handle input data corresponding to varying nodes and multi-
ple features. The resulting hidden state combines the features of each turbine with those
of its neighbours, offering a distinct advantage by providing a more detailed context for
each turbine. Later elements of the architecture utilize the last of these states for further
processing.

4.2.3. Intermediate Mapping
A linear layer is responsible for transforming the hidden state produced by the last AG-
LSTM cell of the encoder into a form suitable for the initial RNN cell in the decoder
of the model. This transformation is crucial, mainly when the hidden dimensions of
the encoder and decoder cells differ, necessitating an adjustment to ensure compatibility.
The mapping is given by:

h′ = Whh + bh (4.7)
where h′ is the initial hidden state of the decoder, and h is the final hidden state of the
encoder for a single turbine. Wh and bh correspond to the weight and bias, respectively.
The first dimension of Wh determines the dimension of h′, whereas its second dimension
must match that of h.
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Figure 4.3: Schematic diagram of the decoder for a turbine, which recurrently generates its power
forecasts. For each time-step, it takes as input the cell states, the last power forecast, the static

features and optionally, the future covariates.

4.2.4. Static Feature Mapping
This module transforms the static features of each turbine into a latent representation.
It is beneficial when the static variables contain categorical features such as turbine ID
or type. In such cases, these should first be transformed into one-hot representations,
and the linear mapping would result in dimensionality reduction. The mapping is given
by:

es = Wss + bs (4.8)
where s are the static variables belonging to a turbine and Ws and bs are the weight

and bias of the linear mapping, respectively.

4.2.5. Decoder
The decoder is illustrated in Figure 4.3. This module generates the power time-series
forecasts through a sequential configuration containing H RNN cells. We put forward
two variations of the encoder, responding to the two problem formulations from §4.1.
As the decoder does not combine features across nodes, the equations below correspond
to the transformations for a single turbine. The decoder architecture and parameters
are shared across all nodes.

For the History-Driven scenario (Equation 4.1), the input of the LSTM results from
concatenating the last power forecast ŷt−1, and the static features es:

xt = [ŷt−1, es] (4.9)
The second variation, associated with the Future-Known Value scenario (Equation 4.2),

additionally considers the forecast for the turbine’s covariates zt:

xt = [ŷt−1, zt, es] (4.10)
the first cell within the decoder has no previous power forecasts; thus, ŷt−1 is replaced

by the last actual power value yt−1. The cell state c′
t and hidden state h′

t are updated
according to Equation 2.15.
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An MLP is employed to transform the hidden state of each decoder cell into the
final power forecast. This two-layer MLP maps h′

t directly to the output, ŷt, with all
time-steps sharing the same parameters for consistency. The transformation is given by:

z = σ(WO1h′ + bO1) (4.11a)
ŷt = WO2z + bO2 (4.11b)

where WO1 and bO1 are the weights and bias of the first layer, WO2 and bO2 are
those of the second layer, and σ is the ReLU activation function. The output has a size
of 1, reflecting the turbine power output at each future time-step.

4.3 | Model Scalability

The dynamic computation of At requires the training of We,1 and be,1. These param-
eters are shared across time-steps and nodes and their size depends on the number of
input features and hidden layer size. Consequently, this approach necessitates learn-
ing significantly fewer parameters compared to methods where parameters depend on
the node count, such as directly learning A. However, our model requires multiplying
E1,t with itself, which translates into computing the dot product among every pairwise
combination of nodes. This operation scales cubically, posing challenges for large wind
farms.

Some elements of the AG-LSTM Network depend on the size of the graph it acts
upon. First off, the cell considers 8 matrices of learnable parameters ∈ RL×Q. Because
Q = N − F , the size of these matrices increases linearly with the size of the graph. Addi-
tionally, the multiplication of matrices involved in the update of the gates (Equation 4.6)
can explode quickly with larger node counts.

The rest of the model is independent of the graph structure, making it scalable for
large graphs. The remaining parameters depend solely on the size of the hidden layers
and the number of features, which can pose additional challenges as modern SCADA
modules measure hundreds of features.

4.4 | Model Training

Sliding windows are employed to load the training data into the model. The length of
the observation window O defines the time-span of the model’s input, which considers
multiple time-series across all turbines, whereas the forecast window of length H only
targets the power feature. An observation window starting at the first available time-
step t1 and ending at tO is coupled with a forecast window extending from tO+1 to tO+H .
Both windows are slid, one step forward at a time, creating a set of input-output pairs.
This sliding process continues across the entire train dataset, ensuring that each set of
inputs and corresponding prediction contains a continuous time-series segment. This
approach is depicted in Figure 4.4. To prevent the model from overfitting to the order
of the data, the input-output pairs are shuffled in each training epoch.

Algorithm 1 provides the pseudocode for the training procedure using Python syntax.
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Figure 4.4: Example of the sliding window methodology. At each iteration, the blue window contains
the model’s input, and the red window includes the target values. These windows are slid until the

end of the dataset is reached.

4.5 | Design Insights

The AG-LSTM Network can effectively produce turbine-wise short-term wind power
forecasts, given a set of time-series along with static features at turbine level. Through
an encoder-decoder configuration, it can deal with input and output sequences of vari-
able lengths. The encoder employs the AG-LSTM cell, which combines LSTM’s ability
to model sequential data with GNN’s spatial information propagation. Crucially, the
adjacency matrix is computed dynamically, adapting to the changing environmental
conditions at the wind farm. The rationale for the design choices is detailed below.

A graph representation is an effective tool to capture wind farm dynamics. As
highlighted in §2.1, the behaviour of a turbine depends on its interaction with the others.
GNNs can encode and exploit such interactions, adapting to the varying conditions the
farm is exposed to. Furthermore, the changes in an individual turbine’s environmental
conditions foreshadow the others’ behaviour (e.g., changes in wind speed). These changes
can effectively be captured by the AG-LSTM cell. The hidden states within the cell allow
it to store and update representations for each turbine at every time-step. By integrating
the features of nodes at a given time-step with their previous hidden states through graph
convolution, the cell harnesses both current and historical data to enhance forecasting
accuracy.

In any graph-based model, the adjacency matrix serves as a critical element, defining
how information is propagated. As detailed in §3.4.1, existing models utilize different
heuristics based on relative turbine position or feature correlation to construct the ad-
jacency matrix. However, we argue that defining the adjacency matrix, rather than
learning it, can limit the model’s ability to uncover complex turbine interdependencies.
To address this limitation, the adjacency matrix within the AG-LSTM cell is dynam-
ically learned during model training. This approach allows the model to uncover and
adapt to the underlying structure of turbine interactions, potentially identifying more
nuanced relationships than predefined heuristics. Moreover, the resulting matrix can re-
flect asynchronous conditions, which are difficult to identify through traditional methods
like correlation analysis.

Additionally, AG-LSTM cells offer the advantages of traditional LSTM cells, in-
cluding the retention of information across multiple time-steps, effectively mitigating
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Algorithm 1 Model training
n_epochs: number of epochs to train for
train_loader: iterator that returns encoder features, decoder features and target values
optimizer: Optimization algorithm
L1_loss: MAE loss function
N: Model is evaluated every N epochs
x_enc_val, x_dec_val, y_val: All input and output pairs of the validation set

for epoch in n_epochs do
Training
model.train() ▷Model set to training mode
for x_enc,x_dec,y in train_loader do

optimizer.zero_grad() ▷Clear gradients
y_pred = model(x_enc, x_dec)
loss = L1_loss(y_pred,y)
loss.backward() ▷Computation of derivative
optimizer.step() ▷Parameter update

end for
Evaluation
if epoch % N == 0 then

model.eval() ▷Model set to evaluation mode
y_pred_val = model(x_enc_val,x_dec_val)
val_loss = L1_loss(y_pred_val,y_val)
lr_scheduler.step(val_loss) ▷Learning rate is reduced by a factor if loss plateaus
if early_stopping(val_loss) then ▷Training halts if loss plateaus

break
end if

end if
end for

the vanishing gradient problem common in simpler RNNs. This cell type is also notably
flexible, supporting layering and diverse configurations. This inherent modularity makes
AG-LSTM cells well-suited for integration into more complex architectures, such as the
encoder-decoder configuration.

The proposed cell offers the flexibility of RNN cells to be configured across layers
and components, making it suitable for both the encoder and decoder. However, initial
experiments showed that using this cell as the core of the decoder negatively impacted
results compared to LSTM and GRU cells. Therefore, the proposed cell is only used
for encoding. The observed behaviour suggests that the encoder’s final states already
contain the necessary information from neighbouring turbines, making the static features
and future covariates from adjacent turbines less relevant for the forecast.

The encoder-decoder architecture offers two primary advantages for the forecasting
model. First, it can accommodate input and output sequences of various lengths, setting
it apart from other models that use sequence-to-sequence configurations. This feature
is particularly valuable in the context of WPF, where forecasts of different durations
serve diverse purposes (see §2.1). Second, this architecture utilizes independent cells for
the encoding and decoding processes, enabling differentiated inputs and transformations.
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This design allows for each component to specialize in distinct tasks. For WPF, this
flexibility allows the integration of additional data into either element. For instance,
future covariates can be added to the decoder side, enhancing the model’s predictive
capability and adapting to the two discussed problem scenarios. Such flexibility and
granularity are rare, even among the latest WPF models discussed in the literature.

Model Limitations
While the AG-LSTM Network suits WPF, recognizing its limitations is crucial for inter-
preting the results and guiding future research directions. The main limitations are as
follows:

a) The AG-LSTM Network is susceptible to missing values. As a spatio-temporal
model relying on graph convolutions, it assumes complete data for all turbines and
time-steps. However, wind power data contains gaps due to turbine shutdowns and
abnormal values obtained from the SCADA system. Implementing imputation and
anomaly detection methods is essential for improving the model’s reliability and
accuracy in real-world scenarios.

b) The AG-LSTM Network does not directly account for phenomena that affect tur-
bine power output, such as curtailments. Its current design overlooks these aspects,
impacting its accuracy when these appear in a test setting. Future work is needed
to predict and account for these operational factors.

c) The method used to generate the adjacency matrix makes it challenging to un-
derstand and analyze. While the resulting matrix effectively combines states and
features across nodes through edges, relating them to the physical connections
between turbines is non-trivial. Moreover, the complexity of the problem and the
dynamic nature of the farm’s conditions make it challenging to discern patterns in
the generated matrices and their evolution over time.
Furthermore, the matrix might overlook significant links between contiguous tur-
bines subject to similar environmental conditions. Further work could explore a
hybrid adjacency matrix that combines the learned approach with heuristic en-
hancements. This could improve its function and contribute to its explainability.

d) As detailed in §4.3, the model’s complexity will scale significantly for farms with
large turbine counts. This regards the computation of the adaptive adjacency
matrix, and the convolution itself, as they directly relate to the size of the adjacency
matrix. Further work could explore the scalability of the method.



5 Evaluation

In this chapter, we outline a series of experiments carried out to evaluate the AG-LSTM
Network. Initially, we detail the testing conditions in §5.1, which include the datasets,
metrics, and experimental settings. §5.2 presents the experiments designed to benchmark
our model against various baselines, examine the model’s outputs, and assess how its
components and parameters influence the results. Finally, §5.3 offers a discussion of
these results, interpreting them within the framework of WPF.

37
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Figure 5.1: Layout of the
SDWPF Wind Farm [99].

Each dot represents one of
the 134 wind turbines.

Figure 5.2: Average correlation across the features in the SDWPF
dataset.

5.1 | Experimental Setup

In this section, we outline the conditions under which the proposed model was evaluated.
§5.1.1 introduces the SDWPF and Penmanshiel datasets, their preprocessing and split.
§5.1.2 enumerates the baseline models. §5.1.3 describes the metrics employed for model
evaluation. Lastly, §5.1.4 specifies the hardware and model parameters used to train
and test the proposed model.

5.1.1. Datasets
To evaluate our model, we use two publicly accessible datasets featuring turbine-level
sensor readings from two wind farms. A brief overview of each follows.

SDWPF Dataset
The Spatial Dynamic Wind Power Forecasting (SDWPF) Dataset [99] contains the static
and dynamic information of a 134-turbine Wind Farm in China. This dataset was
introduced in 2022 as part of a mid-term WPF challenge. Figure 5.1 depicts the farm’s
layout. The values in the dataset were registered by the farm’s SCADA system over a
245-day period with a resolution of 10 minutes. The static features comprise the relative
x and y coordinates for each turbine. Additional details about the wind farm, such as its
actual location or the capacity of its turbines are unknown to us. The dynamic features
in the data are summarised in Table 5.1. Additional visuals of the SDWPF dataset are
included in Appendix A.
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Table 5.1: Overview of the dynamic features of the SDWPF dataset, available for each turbine and
time-step. Summary considers the data without any preprocessing.

Affected Feature Units Mean Min Max S.D. % of anomalies1

Wind speed m/s 5.0 0.0 26.3 3.4 6.3
Yaw angle ◦ 0.5 -3030.5 2266.9 31.6 1.0
External temperature ◦C 41.1 -273.0 394.3 85.3 1.0
Internal temperature ◦C 27.4 -273.2 324.2 18.3 1.0
Nacelle orientation ◦ 188.6 -884.9 700.6 163.0 1.0
Blade angle 1 ◦ 26.9 -10.0 100.0 38.8 20.8
Blade angle 2 ◦ 26.8 -10.0 100.0 38.8 20.8
Blade angle 3 ◦ 26.8 -10.0 100.0 38.8 20.7
Reactive power kW -13.2 -625.0 485.2 70.4 1.0
Active power (Patv)† kW 350.4 -9.3 1567.0 425 29.8

1 Anomalies are determined according to the dataset specification.
† Target feature

Figure 5.3: Satellite view of the Penmanshiel farm, where dots are overlaid on the 14 wind turbines.

Penmanshiel Dataset
The Penmanshiel onshore wind farm [71], located in Grantshouse, UK, features 14 tur-
bines, as shown in the satellite image in Figure 5.3. Each turbine has a 2,050 kW capacity
and an 82-meter diameter. The corresponding dataset includes SCADA readings for ev-
ery turbine, captured every 10 minutes, from 2016 to 2021. An overview of the relevant
features is shown in Table 5.2. Appendix B contains additional exploratory views of the
data.

To reduce training time, we examine a single year of this dataset in our study. We
select the first 245 days of the first available year to match the temporal span of the
SDWPF dataset.

Data Preprocessing
Approximately one-third of the power values in the SDWPF dataset and 14% in the Pen-
manshiel dataset are marked as anomalies, according to Table 5.3. These anomalies tend
to occur simultaneously across turbines due to wind farm shutdowns and maintenance.
Overlooking these anomalies would degrade the performance of any graph-based method
[100], so they must be addressed. There are two conflicting approaches: some researchers
advocate for their exclusion, while others suggest smoothing or transforming them to
reduce their negative impact on the model. Given the dataset’s spatio-temporal charac-
teristics, excluding anomalies would significantly reduce it to a series of non-continuous
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Figure 5.4: Correlation across the features in the Penmanshiel dataset.

Table 5.2: Overview of the dynamic features of the Penmanshiel dataset.

Affected Feature Units Mean Min Max S.D. % of anomalies1

Wind speed m/s 7.1 0.07 30.4 3.6 0.5
Yaw angle ◦ 21.3 -180 179.9 36.8 0.5
External temperature ◦C 18.2 6.7 30.0 3.8 0.5
Internal temperature ◦C 18.8 2.2 38.9 4.8 0.5
Nacelle orientation ◦ 21.2 -180 179.9 31.1 0.5
Blade angle 1 ◦ 90.0 90.0 90.0 0.0 0.0
Blade angle 2 ◦ 90.0 90.0 90.0 0.0 0.0
Blade angle 3 ◦ 90.0 90.0 90.0 0.0 0.0
Reactive power kW -162.7 -830.3 404.5 124.7 0.5
Active power (Patv)† kW 653.5 -17.7 2,061.9 667.5 14.4

1 Anomalies are determined according to the dataset specification.
† Target feature

time-steps. For this reason, we advocate for replacing these anomalous values for each
turbine, considering its own valid data entries.

When missing or invalid values are present in the data, linear interpolation is typically
used for wind speed and wind power time-series [11, 12]. Given its straightforward nature
and decent performance in filling gaps in wind series [29], we adopt this method as well.
We replace the anomalous power values for each turbine with a linear interpolation
between the last valid value and the next available value in chronological order.

Yaw, nacelle, and blade angles are converted to radians, with additional features
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Table 5.3: The criteria for identifying data anomalies, as originally outlined in [99]. We apply these
rules to both datasets in our evaluation.

Affected feature(s) Rationale

All Values marked as NA due to external issues or SCADA system failures.
Active power, blade angles The angle for any blade is larger than 90◦.
Active power, nacelle orientation The nacelle orientation is not in [-720◦, 720◦].
Active power, yaw angle The yaw angle is not in [-180◦, 180◦].
Active power Values smaller than zero.

derived from their sine and cosine components. Similarly, the time of day is transformed
into a cyclical variable to produce sine and cosine values. Given that the data only
covers a part of the year and the data splits do not overlap chronologically, day and
month are omitted from the model inputs.

To account for the variability and different scales, and to facilitate model training,
all features were normalized through min-max scaling. The active power values smaller
than 0 were set to 0 across all turbines and time-steps.

Feature Analysis
Figure 5.2 and Figure 5.4 depict the correlations among processed features for the SD-
WPF and Penmanshiel datasets. Wind Speed strongly correlates with active power,
and wind direction moderately correlates with active power in both datasets. In the
SDWPF dataset, transformed blade angles show moderate correlations with the target
time-series. However, these features are constant in the Penmanshiel dataset, rendering
them obsolete for forecasting other features. The turbine’s internal temperature exhibits
a weak correlation in the SDWPF dataset and a moderate correlation in the Penmanshiel
dataset.

The Appendix includes additional views of both datasets, such as the Partial Auto
Correlation Function plot for the power time-series. Both wind farms exhibit similar
behaviours, with the one-step lagged power feature highly correlating with its unlagged
version, as shown in the correlation plots (”patv_displaced”). The autocorrelation of the
power time-series drops significantly after two steps and becomes non-significant after 9
time-steps for the SDWPF dataset and 10 time-steps for the Penmanshiel farm.

The previous insights are crucial for the experimental settings of the model, specifi-
cally in selecting the covariates used in our experiments and determining the observation
window size for the model’s input.

Data Split
The dataset is divided chronologically into training, validation and testing subsets as in
[7]. The train set comprises the first 171 days (~70%), followed by 25 days for validation
(~10%), and the last 49 days (~20%) are set for testing. This is illustrated for the power
time-series of a single turbine in Figure 5.5, but carried out considering all features and
turbines. We note that this division differs from the split detailed in [99], as the original
one does not consider a training subset.
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Figure 5.5: Example of the split used for the data, illustrated through the power time-series of a
sample turbine.

5.1.2. Baseline Models
To contextualize the performance of our model, we benchmark it against established
baselines known for their robust performance in WPF or related forecasting tasks. We
group these models according to the classification introduced in Chapter 3.

Traditional Approaches
• VARIMA [78]. VARIMA is an extension of ARIMA for multivariate time-series.

Because of its statistical foundation, VARIMA contrasts with the neural networks’
ability to capture complex interdependencies and nonlinearities. The optimal con-
figuration for this model is selected using the Hyndman-Khandakar algorithm,
implemented in [38].

Non-GNN Methods
• Encoder-Decoder LSTM. This architecture, described in §2.5.1, effectively mod-

els long-range dependencies in sequential data through a series of RNN cells. By
comparing our model to this foundational configuration, we can highlight the im-
provements obtained by the specialized modules.

• Temporal Fusion Transformer (TFT) [53]. TFT combines an encoder-decoder
configuration with specialized components such as multiple encoders, variable se-
lection networks, static enrichment GRNs, and self-attention mechanisms. This
structure excels in multi-horizon time-series forecasting by effectively integrating
historical data, and optionally static features and future covariates. Recent works
show promise regarding its application in wind-related forecasting applications [43,
87].

• Time-Series Mixer (TSMixer) [17]. This novel model utilizes a sequence of MLPs
to alternately execute time-mixing and feature-mixing operations on multivariate
time-series. Additionally, an enhancement described in the same paper enables
the architecture to integrate static information and future covariates. TSMixer
has demonstrated superior performance on traffic and product sales forecasting.

GNN-based Approaches
• Adaptive Graph Convolutional Recurrent Network [7]. As introduced in §2.6,

this model develops an RNN cell that integrates the fundamental mechanics of
GNNs. Since our proposed AG-LSTM cell builds on the AGCRN cell, using the
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original model as a baseline enables evaluating the modifications made to the cell
itself, and its integration to the proposed encoder-decoder architecture. The orig-
inal method only utilizes the power time-series excluding other historical features,
future time-series, and static information.

• Deep Multi-relational Spatio-Temporal Network (DMST) [51]. This model merges
historical wind power data from various wind farms through a graph that in-
tegrates distance-based and similarity-based adjacency matrices. The resulting
embeddings, along with historical covariates, are processed using a series of GRU
cells in an encoder-decoder configuration. Each cell also receives an embedding
that encodes the ID of each turbine. DMST is a submodule of the network that
secured first place in the KDD Data Cup 2022, which focused on long-term WPF
using the SDWPF dataset.

To establish the baseline to compare the performance of our model, the deep learning
methods, both Non-GNN and GNN-based, are optimized using a grid search over their
hyperparameters. Hidden layer values of 16, 32, 64, and 128 are considered. Other hy-
perparameters are kept at the optimal values from their corresponding implementations.
The settings used for model training can be found in§5.1.4.

5.1.3. Evaluation Metrics
The primary metrics used for assessing the performance of WPF models include the
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute
Percentage Error (MAPE) [28, 70]. MAE results particularly advantageous because:

a) The magnitude of the error is directly interpretable since it’s expressed in the same
units as the target variable.

b) It is robust to outliers [4], which is crucial for wind power series that often exhibit
abrupt shifts, especially with changes in wind patterns or turbine shutdowns.

Given a forecast window of size H that starts at time-step t0, the corresponding MAE
for turbine i, is denoted MAEi

t0 . The total MAE of the turbine, MAEi, is computed
as the average of its errors across the entire time window. The equations for these two
terms follow:

MAEi
t0 =

1
H

H−1∑
h=0

|ŷi
t0+h

− yi
t0+h

| (5.1a)

MAEi =
1
K

K−1∑
k=0

MAEi
t0+k

(5.1b)

where ŷ is the forecasted power value, y is the actual power value and K is the
number of sliding windows that fit into the dataset. We put forward a special case of
the error for a turbine, which aims to reduce redundancy in the result by omitting the
overlaps existing among the forecasted values within the sliding windows. Our metric,
dubbed disjoint MAE (dMAE), is given by:
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(a) (b)

Figure 5.6: Difference between MAEi (a) and dMAEi (b). For the computation of the MAE of a
single turbine, the forecasting window is slid by one unit in order to consider every possible forecast

within the dataset. On the other hand, the dMAE of a turbine excludes overlapping forecast windows;
and the forecast window is slid by H units each time.

dMAEi =
1
K

K−1∑
k=0

MAEi
t0+Hk

. (5.2)

In essence, we only consider the forecasts whose starting time-step is a multiple of H.
This makes the windows sparser and avoids considering the same true values multiple
times for the error computation. Figure 5.6 explains the difference between MAEi and
dMAEi. Finally, the error for the wind farm is computed as the average of the error of
each turbine:

dMAE =
1
N

N∑
n=1

dMAEi (5.3)

N represents the total number of turbines within the wind farm.
Because of the differing characteristics between wind farms (such as turbine capacity)

and the unique aspects of their individual time-series data, a metric is necessary to eval-
uate the performance of a model that processes them. In response to this requirement,
and following the recommendations from [70], we additionally report a scaled version of
the dMAE:

scaled dMAE =
dMAE
Patv

(5.4)

where Patv is the average power output across all turbines and timesteps. The Patv
is 371.2 kW for the SDWPF dataset and 443.0 kW for the Penmanshiel dataset.
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5.1.4. Experimental Settings
All tests were performed with Pytorch v2.1.0, using a Ryzen 9 6900HS CPU and an
NVIDIA 16Gb GeForce RTX 3080 GPU. Model training and selection were made con-
sidering L1 Loss, in line with the previously outlined evaluation metric. We adopted
the Adam Optimizer, with an initial learning rate of 0.001. The learning rate was re-
duced by 50% whenever the validation loss plateaued over 10 epochs. Model training
was carried out over 150 epochs. The batch size was set to 128 samples for the SDWPF
dataset and increased to 1048 samples for the Penmanshiel dataset, as the latter farm
has significantly fewer turbines.

A grid search was conducted to determine the size of the model’s parameters, testing
values of 16, 32, 64, and 128. As a result, the embedding size of the encoder L and the
hidden state of the decoder were set to 32 and 64, respectively. Additionally, the hidden
layer size of the output MLP was set at 128. Finally, after additional experimentation,
the embedding size for static features was fixed at 5.

We selected the features with the highest correlation to wind power as historical
features (see §5.1.1). These are the sine and cosine components of the wind direction,
the sine and cosine components of the angle of the blades, the turbine’s internal temper-
ature and the wind speed. We considered the turbine’s x and y relative coordinates as
static variables. The noise, added to the scaled features, was derived from a Gaussian
distribution with a mean of 0. The standard deviation was set to 0.01 for one-step-ahead
values and increased by 0.02 for each subsequent time-step. The transformed time-of-day
variable was also considered a future covariate.

5.2 | Results

This section contains a comprehensive analysis of the output of the AG-LSTM Network.
We first compare its results with those from the baselines for the two problem scenarios
and datasets, presenting the average outcomes of five runs with different random seeds.
§5.2.1 focuses on analyzing sample outputs of our model, identifying patterns common
in forecasting models. In §5.2.2, we look at the adjacency matrix generated from the
test data, identifying its patterns and linking it to the wind farm. Finally, §5.2.3 and
§5.2.4 contain the ablation and sensitivity analyses, respectively.

History-Driven Scenario
The numerical results for the History-Driven scenario are shown in Table 5.4 and Ta-
ble 5.5. The proposed method obtains the lowest error in both forecasting scenarios
for both datasets, followed by the NN baselines and VARIMA in that order. This un-
derscores the effectiveness of an encoder-decoder framework integrating GNNs via a
learned topology for WPF. As described in §2.1, the error for all models increases with
the forecast window, due to error accumulation and the fact that conditions for nearer
time-steps are more similar to a specific time-step than those further into the future.

Models utilizing a shorter observation window (O = 12) tend to yield better accu-
racy compared to those fed with 4 hours (O = 24). This trend is consistent with the
autocorrelation of the wind power series documented in Appendix A, suggesting that
recent patterns are representative of short-term future conditions. Supplying the models
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Table 5.4: Results for the History-Driven Scenario on the test-split of the SDWPF dataset. All results
are averaged over 5 runs.

SDWPF

H=12 (2 hours) H=24 (4 hours)

Model O (hrs) dMAE (SD) s-dMAE dMAE (SD) s-dMAE

VARIMA 12 (2) 113.8 (11.1) 30.7% 144.1 (14.5) 38.8%

TSMixer 12 (2) 104.73 (8.4) 28.2% 147.5 (14.3) 39.7%
TSMixer 24 (4) 101.33 (8.1) 27.2% 146.9 (14.2) 39.6%

Enc-Dec LSTM 12 (2) 103.5 (11.2) 27.9% 138.5 (14.8) 37.3%
Enc-Dec LSTM 24 (4) 102.9 (11.6) 27.7% 154.2 (16.7) 41.5%

DMST 12 (2) 96.0 (7.8) 25.9% 130.8 (11.6) 35.2%
DMST 24 (4) 96.1 (7.9) 25.9% 127.5 (11.3) 34.4%

AGCRN 12 (2) 98.3 (10.7) 26.5% 127.7 (13.9) 34.4%
AGCRN 24 (4) 93.9 (9.8) 25.3% 128.8 (13.9) 34.7%

TFT 12 (2) 91.8 (7.6) 24.7% 122.9 (12.8) 33.1%
TFT 24 (4) 92.7 (7.2) 25.0% 123.4 (12.9) 33.2%

AG-LSTM (Ours) 12 (2) 89.3 (9.9) 24.1% 122.6 (13.5) 33.0%
AG-LSTM (Ours) 24 (4) 90.7 (9.3) 24.4% 141.1 (16.0) 38.0%

H = Forecast window
O = Observation window
s-MAE: scaled dMAE
SD: Standard Deviation

with older data negatively impacts their performance, as they update their state at every
time-step without considering whether the information is pertinent to the task at hand.
An in-depth analysis of the impact of the observation window length on the performance
of the proposed model is presented in §5.2.4.

We emphasize that, despite our model achieving the highest performance among
those tested, the results exhibit a large standard deviation. The errors from TFT are
slightly higher but show a smaller standard deviation in tests using the SDWPF dataset.
The two graph-based baselines (DMST and AGCRN) achieve similar performance, a
trend observed across both datasets. The Encoder-Decoder LSTM architecture performs
the worst among deep learning methods for the Penmanshiel dataset and the second
worst for the SDWPF. VARIMA performs the worst in all scenarios, with a significant
performance gap. This implies that the linear nature of the model is too simple for the
complexity of the wind farm data.

From the above, we conclude that the datasets we are modeling are complex, as
indicated by the superior performance of the most intricate models, namely TFT and
AG-LSTM. Graph-based modeling seems well-suited to the data, particularly for the
SDWPF dataset, given the relatively strong performance of AG-LSTM, AGCRN, and
DMST. Given its strong performance, the AG-LSTM Network appears to exploit the
diverse components within its architecture. The ablation study in §5.2.3 explores the
contribution of each component to the model’s accuracy.

Figure 5.7a shows the average dMAE obtained by each model for forecast windows
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Table 5.5: Results for the History-Driven Scenario on the test-split of the Penmanshiel dataset. All
results are averaged over 5 runs.

Penmanshiel

H=12 (2 hours) H=24 (4 hours)

Model O (hrs) dMAE (SD) s-dMAE dMAE (SD) s-dMAE

VARIMA 12 (2) 89.1 (7.2) 20.1% 134.4 (12.1) 30.3%

TSMixer 12 (2) 59.0 (4.8) 13.3% 84.4 (9.1) 19.0%
TSMixer 24 (4) 58.8 (4.8) 13.3% 86.1 (9.0) 19.4%

Enc-Dec LSTM 12 (2) 71.1 (5.1) 16.2% 91.6 (8.9) 20.7%
Enc-Dec LSTM 24 (4) 73.2 (4.8) 16.5% 91.3 (9.2) 20.6%

DMST 12 (2) 64.2 (5.0) 14.5% 88.9 (8.6) 20.1%
DMST 24 (4) 63.1 (5.1) 14.2% 88.6 (8.6) 20.0%

AGCRN 12 (2) 64.9 (4.4) 14.6% 89.2 (8.9) 20.1%
AGCRN 24 (4) 63.8 (4.3) 14.4% 90.4 (9.1) 20.4%

TFT 12 (2) 61.6 (6.2) 13.9% 84.8 (10.1) 19.1%
TFT 24 (4) 62.1 (6.1) 14.0% 84.2 (10.4) 19.0%

AG-LSTM (Ours) 12 (2) 57.9 (4.5) 13.1% 83.7 (8.2) 18.9%
AG-LSTM (Ours) 24 (4) 57.4 (4.7) 13.0% 87.1 (8.8) 19.7%

H = Forecast window
O = Observation window
s-MAE: scaled dMAE
SD: Standard Deviation

ranging from H = 1 (10 minutes) to H = 12 (2 hours) for the SDWPF dataset. Our
model yields a lower error than the rest across all values of H. The errors follow a sim-
ilar pattern across all models, and their relative performance remains fairly consistent
through the various values of H. VARIMA exhibits a more pronounced logarithmic trend,
attaining the worst error across all models for H larger than 1. This again indicates
the incompatibility of the method with the power time-series. Figure 5.7a additionally
showcases the effectiveness of the encoder-decoder architecture for the SDWPF dataset.
Models with this configuration consistently achieve the lowest accuracy across the differ-
ent values of H. We attribute this to the differentiated components they use to process
the input and output, resulting in more nuanced embeddings.

A similar trend is observed for the Penmanshiel dataset. Figure 5.7b shows the
performance of the assessed models for increasing values of H. The accuracy of all the
deep learning models is very similar for short forecasts, in particular when H < 4. As
the forecast window increases, the dMAE becomes more disperse. Our model displays
the highest overall accuracy, which is evident for values of H larger than 7. For this
dataset, our model showcases a superior ability to encode the information available from
the provided observations.

The error distribution of our model is explored in Figure 5.8. The plot shows the
error for each turbine in the SDWPF dataset. The mean error increases as the forecast
horizon lengthens, aligning with the previously discussed point that longer-term forecasts
are more challenging due to reduced knowledge about future states. Along with the
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(a) SDWPF Dataset

(b) Penmanshiel Dataset

Figure 5.7: Average error per model relative to the length of the forecast window for the
History-Driven scenario. Results obtained with O = 12 (2 hours).

mean, there is a clear increase in error dispersion and a higher prevalence of outliers as
the values of H rise. Notably, the same four turbines frequently account for the upper
outliers, highlighting the model’s difficulty in adapting to their specific behaviours. A
detailed investigation reveals that these turbines are positioned near each other and
exhibit a low rate of invalid values, making the processed power series more volatile and
challenging for the model to learn.

Future-Known Value Scenario
We now consider the integration of the future covariates into the model. Accounting
for these values results in higher accuracy, as it provides them with an approximation
of future conditions that show a strong correlation to the power feature. Nowadays
weather forecasts containing temperature and wind conditions are available from a wide
array of sources with high geographical and temporal resolutions. However, because the
exact location and dates for the SDWPF are unknown to us, we substitute the forecasts
with known data, adding noise that increases with the forecast horizon, as described in



5.2. Results 49

Figure 5.8: Distribution of the average error per turbine of the proposed model, for H = 1 (10
minutes) to H = 12 (2 hours). Results obtained using SDWPF data. The thick vertical lines

correspond to the average across all turbines.

§5.1.4.
Table 5.6 and Table 5.7 show the performance of the baselines and the proposed

model for both datasets. TSMixer attains the lowest error across all the models by a
large margin for both the 2-hour ahead and 4-hour ahead scenarios. While the proposed
model shows a marginal advantage in performance for the shorter window against TFT,
it lags behind at H = 24 (4 hours).

Figure 5.9a shows the evolution of the dMAE as the forecast window increases for
the different models. In the first few time-steps, all models perform similarly. For values
of H larger than 3, the accuracy starts diverging. At around H = 6, the error of the
baselines plateaus, while it continues increasing for our model.

The inclusion of future covariates offers crucial additional information for longer fore-
casts. Initially, the AG-LSTM Network performs relatively well, thanks to its effective
encoding and use of past data. We hypothesize that future covariates add minimal
value at this stage. By time t + 8, past information becomes less relevant, and future
covariates are vital for accurate predictions. Consistent with this notion, the AG-LSTM
Network displays a significant limitation in harnessing future covariates; in longer fore-
cast scenarios, it is outperformed by all other models, and unlike them, its error rate
continues to rise. Our model integrates the future covariates in the decoder cells, which
may lead their values to vanish, contributing marginally to the end result.

TSMixer achieves the lowest error across all forecast windows (Figure 5.9a). At
the one-step ahead forecast, all three models display comparable errors. However, as
the forecast extends beyond the first step, the variation in accuracy begins to increase,
reaching its peak at the 7-step ahead forecasts. The authors of TSMixer attribute
its effectiveness to its unweighted method of capturing temporal information, inspired
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Table 5.6: Results for the History-Driven Scenario on the test-split of the SDWPF dataset. All results
are averaged over 5 runs.

SDWPF

H=12 (2 hours) H=24 (4 hours)

Model O (hrs) dMAE (SD) s-dMAE dMAE (SD) s-dMAE

TFT 12 (2) 60.6 (7.5) 16.3% 79.4 (11.8) 21.4%
TFT 24 (4) 62.1 (7.5) 16.7% 79.9 (12.0) 21.5%

TSMixer 12 (2) 54.6 (6.4) 14.7% 74.8 (11.0) 20.2%
TSMixer 24 (4) 54.9 (6.7) 14.8% 75.0 (11.1) 20.2%

AG-LSTM (Ours) 12 (2) 60.3 (7.2) 16.2% 79.7 (11.7) 21.5%
AG-LSTM (Ours) 24 (4) 61.1 (6.6) 17.3% 80.7 (12.5) 21.7%

H = Forecast window
O = Observation window
s-MAE: scaled dMAE
SD: Standard Deviation

Table 5.7: Results for the History-Driven Scenario on the test-split of the Penmanshiel dataset. All
results are averaged over 5 runs.

Penmanshiel

H=12 (2 hours) H=24 (4 hours)

Model O (hrs) dMAE (SD) s-dMAE dMAE (SD) s-dMAE

TFT 12 (2) 47.7 (3.9) 10.8% 76.6 (9.2) 17.3%
TFT 24 (4) 48.1 (4.1) 10.9% 77.2 (9.5) 17.4%

TSMixer 12 (2) 45.8 (3.5) 10.3% 75.6 (8.8) 17.1%
TSMixer 24 (4) 46.1 (3.7) 10.4% 75.9 (8.8) 17.1%

AG-LSTM (Ours) 12 (2) 47.6 (3.4) 10.7% 77.1 (8.5) 17.4%
AG-LSTM (Ours) 24 (4) 48.0 (3.5) 10.8% 78.7 (9.1) 17.8%

H = Forecast window
O = Observation window
s-MAE: scaled dMAE
SD: Standard Deviation

by non-linear approaches. Additionally, we hypothesize that the improvement stems
from the align-and-mix technique for integrating future covariates, in contrast to the
fragmented approach of the other methods, which combine features at different points
and across various components. This fragmentation may cause the information to vanish
through the model’s weights as it transitions from one component to another.

5.2.1. Forecast Quality
In this section, we analyze the forecast produced by our model, focusing on two specific
aspects: i) Comparison of Model Output to Target Values and ii) Input-Output Lag.
The former is an assessment of the model’s output compared to the true power values.
The latter is an assessment to check whether the results returned by the model are just
a lagged version of the input. For this section, we focus on the 2-hour ahead forecast of
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(a) SDWPF Dataset

(b) Penmanshiel Dataset

Figure 5.9: Mean error per model across different forecast windows for the scenario considering future
covariates. Results obtained with O = 12 (2 hours).

the test split of the SDWPF dataset, resulting from our model.

Comparison of Model Output to Target Values
We now inspect the forecast produced by the model and compare it to the actual power
time-series. Figure 5.10 illustrates a series of forecasts generated by our model and the
corresponding true power series. These samples are obtained for an arbitrary turbine,
considering the history-driven scenario.

The true series displays the volatility inherent to power and wind time-series, with
considerable fluctuations from one time-step to the next. Contrastingly, the model’s
output consists of a smooth line, with a defined trend and slight curvatures. Similar
patterns are observed throughout the resulting forecasts for all turbines. The difference
between the forecast and the true values, reveals a shortcoming in the model in fully
capturing and projecting the time-series dynamics. This shows that the model learns
the general trend of the series but fails to capture the fluctuations between subsequent
time-steps.



5.2. Results 52

Figure 5.10: Sample forecasts generated by our model in the history-driven scenario. For any forecast,
the corresponding input lies in the preceding window.

Figure 5.11: Forecast produced by our model, incorporating future covariates. The forecast samples
shown are the same as those in Figure 5.10.

As shown in Figure 5.11, the inclusion of future covariates enhances the forecast,
causing it to fluctuate more and better reflect the behaviour of the target feature. The
positive impact of this addition is evidenced by the enhanced results in Table 5.6 com-
pared to Table 5.4. We conclude that the high volatility is very hard to learn, even by
complex models, but aided by considering future information.

Input-Output Lag
Furthermore, we analyze the model forecasts to assess whether they correspond to lagged
versions of the input series. Outputting a shifted version of the input sequence can
happen in RNNs when the model is not complex enough or the training data does not
capture the underlying dynamics of the system. In such cases, the model can utilize its
memory cells to store the input sequences. To test this, we compute the dMAE for the
entire test dataset, considering a forecast window of size 12 (2 hours) and a step-size of
1. We then collect the last value of each forecast ŷt+12 in a new series and compare it
to the input sequence. A sample comparison is shown in Figure 5.12. The absence of
lag in the output sequence indicates that the model uses its memory units as intended,
storing transformations of the input instead of the actual power values. By utilizing
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Figure 5.12: Sample lag test, where the power time-series is compared to a series conformed of the last
forecast ŷt+12 for all the forecast windows in the test set.

historical and future covariates along with static features, the model learns to generate
a relatively accurate signal.

5.2.2. Learned Farm Topology
An adjacency matrix serves as the foundation for GNNs, as it holds the graph structure
and facilitates the propagation of information across it. The AG-LSTM cell in our
model is designed to indirectly learn an adaptive adjacency matrix (Ãt) for each time-
step, allowing it to adapt to dynamic wind farm characteristics and capture relationships
between turbines that might not be apparent. By examining the contents of Ãt, we gain
insights into these relationships, enhancing our understanding of the wind farm. Each
row represents a vector, containing the weight of the relationship of a particular turbine
to all the other turbines.

Some samples of Ãt generated by a trained version of the AG-LSTM Network are
shown in Figure 5.13, obtained over random values of t from the test split of the SD-
WPF dataset. We observe large values across the diagonal of Ãt, indicating self-loops in
the graph structure, which means turbines rely on their own features and cell states for
forecasting power production. In some cases (top-right and mid-bottom of Figure 5.13),
the matrices are very sparse, showing turbines with few or no neighbors beyond them-
selves. In other samples, turbines have many neighbors, incorporating information from
multiple turbines in addition to their own for forecasting.

A pattern can be observed across the matrices in Figure 5.13 with some columns
displaying consistent values across their entries. A systematic assessment of this phe-
nomenon consists of inspecting the rank of the corresponding adjacency matrices. The
rank is an indicator of various graph topology aspects. Figure 5.14 shows the distribu-
tion of the ranks for all iterations of Ãt for the SDWPF dataset. The ranks concentrate
around 19, which is low compared to the 134 nodes in the graph, indicating few linearly
independent structures and many turbines sharing similar interaction patterns. The low
rank also reveals the frequent existence of isolated turbines, visible as dark vertical lines
in Figure 5.13. Conversely, bright lines correspond to high values for certain turbines
that consistently act as neighbors for the rest of the wind farm.

We theorize that the turbines displaying high values across a single column in Ãt
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result fundamental for the model at that t, as they convey information that all the
other turbines exploit towards their own forecast. Pinpointing the reason for their im-
mediate prominence results challenging given the complexity of the information, but we
hypothesize these turbines display a trend before the others, due to the environmental
conditions. These turbines could be located in the limits of the wind farm, where they
are the first to experience changes in wind patterns, thus becoming early indicators of
wind regimes that affect the entire farm.

Figure 5.13: Samples of At obtained through the test split of the SDWPF dataset. Scale goes from
purple (small values) to yellow (large values).

We now analyze Ã, computed as:

Ã =
1
T

T∑
t=1

At (5.5)

where T represents the total number time-steps in a dataset. Ã corresponding to the
test split of the SWDPF dataset is depicted in Figure 5.15a. Most values in the matrix
are close to 0, reflecting mostly weak relationships among the turbines. The diagonal is
again evident, reflecting self-loops in the graph structure that repeatedly appear through
time. This is favorable, evidencing the constant use of a turbine’s features towards its
own power forecast.

The column pattern again emerges, this time over a few turbines. In Figure 5.15b,
this data is overlayed on the wind farm, where turbines are colored based on their
average column weights. Notably, four turbines display large averages, reflecting their
deep interconnectivity and pivotal role within the dynamics of the wind farm across
time-steps. Three of the highlighted turbines are in close proximity, suggesting that
their position relates to their importance.
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Figure 5.14: Distribution of the rank of the At resulting from every input in the test dataset.

(a) Matrix obtained by averaging the adjacency matrices that result
from running the test dataset through the trained model.

(b) Centrality of the turbines in the
wind farm, computed as the column

average of a).

Figure 5.15: Visualization of the adaptive adjacency matrix obtained for the BDD Dataset.

Given the intricate nature of the dataset and the transformations applied by the
model, understanding the central role of these turbines poses a challenge. We theorize
that they may encounter unique conditions earlier than others, possibly due to their
exposure to higher-altitude wind currents or being the first to be shut down according
to the farm’s operational rules. More thorough analysis and greater insight into the
specifics of the wind farm are necessary to better understand its dynamics.

5.2.3. Ablation Study
To quantify the impact of each individual component on the overall performance of the
model, we conducted an ablation study. The results, obtained using the SDWPF dataset,
are presented in Table 5.8. The first row corresponds to the baseline model configuration,
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which integrates all the necessary components for optimal performance. Subsequent rows
describe variations of the model, where the model’s configuration, the adjacency matrix,
and the input features are removed or modified to assess their individual impact on the
error metrics. We consider the scenario with observation and forecast windows of length
12.

As observed in Table 5.8. the most critical feature of the AG-LSTM Network is
the integration of future covariates (wind speed and direction). This aligns with the
basic concepts of wind turbines (§2.1), given the strong physical relationship and the
high correlation observed between these features and the power output. Fortunately,
incorporating these covariates only slightly increases the number of trainable parameters
by 0.6%, specifically within the decoder cell’s internal parameters.

Integrating historical features (wind speed, wind direction, blade orientation, and
internal temperature) into the encoder reduces the dMAE, while having minimal impact
on the number of parameters. This reduction in error demonstrates the effectiveness of
accounting for environmental conditions for each feature and synthesizing them through
the AG-LSTM cell to model interactions. On the other hand, removing the static features
(turbine position) affects the model’s accuracy by 0.3kW, reflecting the inability of the
model’s decoder to learn from them.

The use of two pre-defined (static) adjacency matrices in the AG-LSTM Network
was tested to assess the effect of the adaptive variation. In both cases, a self-loop was
added. The first matrix contains the inter-turbine correlation of the target power series.
We experimentally selected a threshold of 0.8, under which the entries were set to 0.
This matrix configuration increased the dMAE by 12.1 kW, suggesting that while two
turbines might exhibit similar general trends, their specific environmental conditions at
a given time may not consistently aid in short-term forecasting.

The second static matrix considers a Gaussian kernel applied to the Euclidean dis-
tance between turbines, limited to those located within a range of 1,500 meters. This
approach achieved a dMAE very close to that of the optimal configuration, with an
increase of just +1.2 kW. We believe this is because neighbouring turbines provide
information reflecting future short-term environmental conditions, such as wind pat-
terns. Both cases reduce the number of learnable parameters by 24.8% associated with
the input embeddings used to build Ãt. The minor difference in dMAE between the
distance-based and adaptive configurations highlights the effectiveness of both methods
and suggests that turbine distance is relevant for the spread of information across the
graph.

Finally, we replaced the decoder in our model with an MLP that considers future
covariates, the encoder’s output, and static variables for each future timestep to generate
the forecasted output. This version without decoder cells achieves a dMAE of 65.4, using
just over one-fourth of the parameters. The accuracy gap compared to the encoder-
decoder versions of the AG-LSTM Network underscores the importance of both modules.
This resonates with the results from Table 5.4 and Table 5.5, reiterating the necessity
of the encoder-decoder configuration to transform and evolve the information from the
input to the output.
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Table 5.8: Settings for the proposed model and their corresponding parameter count and results. The
reported results are obtained through the SDWPF dataset, using O = 12 and H = 12.

Settings

Configuration Ã X Z es
Number of
parameters dMAE SD s-dMAE

E-D Adaptive Y Y Y 62,153 60.3 7.2 16.2%
E-D Adaptive Y N Y 61,769 89.3 9.9 24.1%
E-D Adaptive N Y Y 61,825 67.7 11.2 18.2%
E-D Adaptive Y Y N 61,769 60.6 7.5 16.3%
E-D Correlation-based Y Y Y 46,716 72.4 11.2 19.5%
E-D Distance-based Y Y Y 46,716 61.5 6.2 16.8%

E Adaptive Y Y Y 46,909 65.4 7.1 17.6%

Configuration: E-D: encoder-decoder, E: encoder-only
Ã: adjacency matrix
X: historical features (other than power)
Z: future covariates
eS: static features

Figure 5.16: Execution time (top) and error (bottom) for observation windows ranging from 1 (10
minutes) to 24 (4 hours). The forecasts are made for H = 12 (2 hours ahead), using the SDWPF

dataset.

5.2.4. Sensitivity Analysis
We investigate the effects of the length of the observation window on our model’s per-
formance when trained under the History-Driven setting for 12-step (2-hour) forecasts.
We focus on the History-Driven setting, forecasting for 12 steps (2 hours) ahead with
the SDWPF dataset. We log the dMAE and average time per epoch for model training
with O ranging from 1 (10 minutes) up to 24 (4 hours). The experimental results are
detailed in Figure 5.16.

Training time for the model increases linearly with the expansion of the observation
window. Initially, at O = 1, the average training time per epoch is 15 seconds, which
lengthens to 57 seconds at O = 24. The runtime for each epoch increases by roughly
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1.8 seconds for every additional time-step included.
The error attained by the model exhibits a more complex behaviour. The highest

dMAE, of 96.3 kW, occurs when training with just a single timestep. As more timesteps
are included, the error generally decreases, with the lowest dMAE of 90 kW observed
when O = 10. The error remains consistently low, around 90 kW, for O values between
8 and 12, suggesting that the most critical information for predicting the wind power
time-series lies within these 12 timesteps, as supported by the ACF plot in Appendix A.
However, as O exceeds 12 (2 hours), the error not only increases but also becomes
less stable, indicating a decline in model performance with the inclusion of too much
historical data.

Considering the above, we conclude that the optimal model results at O = 10, or
100 minutes. Considering our experimental setup, training this model for 150 epochs
takes a maximum of 76 minutes and yields the lowest error overall.

5.3 | Discussion

Throughout this section, we have detailed a series of experiments to assess the perfor-
mance of our model. We now present several observations made during these experi-
ments, interpret their results, and discuss their direct implications within the context of
WPF.

The datasets used for evaluation, as described in §5.1.1, were selected because they
include multiple variables at the turbine level over long time periods, which is crucial
for the recurrent and graph-based formulation of our model. However, there are some
limitations associated with them, which we outline below:

• Firstly, the SDWPF dataset includes a significant proportion of invalid values,
which we have interpolated during preprocessing because our model requires con-
tinuous data. Training the model on this interpolated data can negatively affect
its performance, as it may learn the interpolation patterns instead of the actual,
volatile power series. Future research could concentrate on evaluating the effects
of missing values and imputation methods on our model, as well as on enhancing
its robustness to invalid entries.

• Secondly, certain characteristics of both datasets, such as turbine position, day of
the year, wind direction, and nacelle orientation, are presented as relative values.
The absence of contextual information limits their analysis and exploitation and
prevents the use of external forecast data as future covariates. As a workaround,
we added noise to these variables to simulate a forecast, which yields somewhat
unrealistic results. This approach should be taken into account when reviewing the
outcomes, as the results might differ significantly in a real-life scenario. In more
realistic settings, the quality and granularity of the forecast will undoubtedly play
a crucial role in the accuracy of the predictions.

• Lastly, the SDWPF dataset only spans 245 days. Extending the dataset to in-
clude information for more than one year could allow us to incorporate seasonality
into the model through features such as yearly progress, potentially enhancing its
performance. However, it is important to note that our experiments with time
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as an additional future covariate had a negative impact on model performance.
This suggests that not all temporal features may yield beneficial results and their
integration requires careful consideration.

Throughout the experiments, we observed a recurring pattern: the models generally
perform better when provided with observation windows close to 10 time-steps. This is
true for both the baseline models, as shown in Table Table 5.4, and for the proposed
model, as detailed in §5.2.4. This finding aligns with the autocorrelation function of
the wind power time-series, as described in Appendix A. It suggests that for optimal
performance in short-term WPF, models require limited amounts of information, leading
to shorter training and inference times.

Another observed trend across the models is the increase in dMAE and the spread of
its distribution for larger forecasting windows. This phenomenon is well-documented in
the literature and is not unique to our setting or models. As we examine the distribution
of the error for our model (see §5.2), we notice that specific turbines tend to exhibit higher
error rates. However, as our model approaches the wind farm as an integrated system,
it processes the information from all turbines simultaneously, propagating information
even among the atypical ones.

In §5.2.1, we qualitatively evaluate the forecasts generated by the AG-LSTM Network.
While the result trends vary across turbines, and the model is not merely producing a
lagged version of the input, we note that the output signal is relatively smooth. This
smoothness indicates a limitation of the model in capturing the inherent volatility of the
dataset. Although the exact cause of this behaviour is unclear, we hypothesize that it is
related to the linear interpolation of missing values in the input data. We observe that
integrating future covariates into the model mitigates this issue, reducing the uncertainty
that the model exhibits about the future power values.

In §5.2.3, we observe that the AG-LSTM Network that uses dynamically generated
adjacency matrices only slightly outperforms the one utilizing distance-based heuristics.
This establishes both graphs as effective towards the end of our model, each with its own
benefits. The good performance of the AG-LSTM cell suggests that our model effectively
learns to map interactions within the wind farm for specific time-steps. The resulting ad-
jacency matrices help map the relationships across turbines as time progresses, and help
identify isolated turbines. The average of the matrices helps pinpointing key turbines
throughout the wind farm. With additional domain knowledge, these insights could be
used to optimize the wind farm operations. However, the embeddings generated by the
model lack a direct physical representation, which poses a challenge.

§5.2.3 corroborates our design decisions, establishing the future covariates, the encoder-
decoder configuration, and the integration of the GNN’s key components towards its sat-
isfactory performance. We finish the model’s analysis with §5.2.4, where we determine
the optimal trade-off between accuracy and time happens when the observation window
equals 10 time-steps.

Overall, we conclude that the proposed method is effective for short-term WPF,
achieving the best results among the selected baselines in the history-driven scenario.
This success is attributed to the model’s capability to learn temporal patterns in the
input data and dynamically combine features across turbines. The main opportunity for
improvement lies in the exploitation of future covariates, an area where other models
have shown success.



6 Conclusion & Further Work

This chapter concludes the work carried out for this thesis. §6.1 provides an answer to
the research question and an overview of the previous chapters, highlighting the insights
obtained from them. §6.2 proposes directions for future research on using GNNs for
WPF.

60
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6.1 | Conclusion

This thesis focuses on the development and evaluation of the AG-LSTM Network, a
GNN-enabled model for providing multi-step forecasts for wind power generation in
wind farm turbines.

Chapter 1 introduces the context of the WPF task and motivates the need for de-
veloping effective, accurate, and fast models for this purpose. It starts by outlining the
current state of wind power and arguing that accurate and reliable wind farm forecasts
will become pivotal in the future energy landscape within a few years. This chapter
posits the hypotheses that graphs are suitable for encoding the complex interactions
between wind turbines and that GNNs can leverage this structure for accurate WPF.
Finally, these hypotheses are translated into the research question:

RQ) How can GNNs efficiently utilize graph structures to capture turbine interactions
in wind farms to generate accurate short-term wind power forecasts?

Chapter 2 presents the concepts on which the rest of the thesis builds. It provides
an overview of wind turbines, explaining how and why they are arranged in wind farms.
It introduces graphs and explains how GNNs operate on them. Furthermore, it intro-
duces RNNs and details the AGCRN method, which forms the basis of the developed
method.

A review of existing methods for WPF is presented in Chapter 3. A classification
framework is introduced, and different methods within each category are detailed. Par-
ticular emphasis is placed on GNN-based methods, reviewing how these translate wind
systems into the graph domain and how they leverage other types of networks with GNNs
to model spatio-temporal relationships. It is noted that, although multiple models exist
for WPF, none of them leverage various features to provide turbine-level, multi-step
forecasts.

Chapter 4 builds upon the previous content and answers the research question by
introducing and detailing the proposed AG-LSTM Network. An encoder-decoder archi-
tecture is considered as it can capture long-term dependencies and provides the flexibility
to handle input and output sequences of different lengths. The encoder comprises a novel
LSTM cell, which utilizes GNNs to combine the information from adjacent turbines. No-
tably, the adjacency matrix used by the model is dynamic, as it depends on the input
information at every iteration of the model. During training, the cell learns the map-
ping of the input features, which is ultimately transformed into the adjacency matrix,
reflecting the model’s ability to learn and model the interactions among turbines given
evolving conditions. The decoder of the proposed network integrates future covariates
and static features, providing advantageous information for the forecast.

Finally, Chapter 5 presents an evaluation of the proposed method using the SDWPF
dataset. By comparing the dMAE for 2-hour and 4-hour ahead forecasts obtained by
our model to those from other state-of-the-art models, we demonstrate its superiority
when future covariates are not considered. The AG-LSTM Network outperforms models
with and without graph convolutions and even those integrating attention mechanisms.
However, in scenarios that account for future-known variables, the model, while no longer
the best, remains comparable to higher-parameter models.
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In the same chapter, we provide a detailed output signal analysis. We conclude that
our model does not merely lag or retain the input signal but instead learns the volatile
behaviour of the time-series. Furthermore, we analyze the impact of future covariates on
the output signal, noting that they transform it from a smooth trend line into a series
that more closely resembles a power time-series.

Chapter 5 also includes an ablation study of the model, identifying the components
and parameters responsible for its accuracy. We conclude that the integration of fu-
ture covariates has the most significant impact, given the high correlation between wind
speed and wind power. The study highlights the model’s ability to encode past infor-
mation, as evidenced by the significant drop in performance when historical features are
ignored. This is further supported by the low error achieved by the encoder-decoder
architecture compared to an encoder-only version. Using an adaptive adjacency matrix
marginally reduces the model’s error, indicating that while the model learns to map tur-
bine interactions, distance-based adjacency matrices should not be disregarded as they
do not require learning any parameters.

The experiments conducted throughout the thesis offer insights not only into the
tested models but also into the dynamics of wind farms and the power series of tur-
bines. We repeatedly observed that information from the last 10 time-steps is crucial
for predicting future power production. Including data beyond this horizon can nega-
tively impact short-term forecasts. Additionally, we found that the data from certain
key turbines is utilized by most others at different time-steps, indicating their critical
role in the wind farm. Therefore, ensuring the proper functioning of these key turbines
should be prioritized to maximize the accuracy and reliability of WPF using models that
consider turbine interactions.

The insights derived from this work, encompassing the problem setting, SCADA
datasets, baseline models, and the proposed AG-LSTM architecture, will undoubtedly
contribute to more accurate short-term WPF methods. These advancements will enable
the stable and reliable operation of wind farms, which is crucial for seamlessly integrating
wind power into the energy grid. As a result, this research will significantly propel
the role of wind power in the emerging energy landscape, paving the way for a future
where the energy needs are fulfilled through renewable sources. This thesis lays a solid
foundation for continued innovation and progress in the field of WPF.

6.2 | Future Work

We conclude this work by providing directions for future research on using GNNs for
WPF in wind farms.

Robustness to Missing Data
A significant problem with the SDWPF dataset is the large proportion of missing or
invalid data from the SCADA system. In particular, 29.8% of the active power values
were classified as anomalies and replaced through linear interpolation along the time
dimension. This step was taken because the proposed model requires complete input
data and temporal interpolation was chosen due to the simultaneous appearance of
missing values across much of the wind farm. Two potential strategies can be explored.
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The first is to adapt the proposed model to manage missing information by excluding
nodes with missing values or learning to impute these values during training. The second
is to investigate the effect of different interpolation and imputation techniques on the
forecast accuracy of GNN-based models.

Future Covariates
Although the AG-LSTM Network achieves the lowest error using only historical data, it
is outperformed when future covariates are considered. This highlights an opportunity
to improve the integration of wind power and direction forecasts. While few existing
WPF models integrate such features, current methods used for WPP can be explored
to this end. One possible approach involves using a surrogate model to approximate
the power curve, with parameters optimized based on each turbine’s capacity. To our
knowledge, no existing works take on this approach for WPF.

Improved Topology Learning
The proposed model comprises a data-driven approach to dynamically determine the
adjacency matrix At for each iteration. This results in a matrix that resembles the
interaction among the turbines. However, due to its dynamic nature, At results hard to
analyze and interpret. Specifically, there is no clear way to understand the transforma-
tion that the input features undergo and their link to the farm’s dynamics. The weight
analysis in §5.2.2 shows that some critical turbines are used by others to generate power
forecasts but does not identify what makes these turbines central. Further analysis of
the wind farm’s behaviour could help to interpret these results more effectively.

The ablation study in §5.2.3 shows a slight improvement in our model’s performance
when using the adaptive matrix compared to a constant, predefined A. Even with a
distance-based A, the model still performs comparably to the baseline models. Future
research could explore combining these matrices, and incorporating additional learnable
parameters to weight them. A third matrix could also be considered based on physics-
based heuristics, such as wind speed, direction, and turbine orientation.
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Experimental Power Curve

Figure A.1: Experimental power curve for all turbines across all time-steps.

Auto-correlation Function

Figure A.2: Average absolute partial ACF for all turbines. Bars coloured blue exceed the significance
threshold of 0.01, while those in red fall below this threshold.
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Distribution of the Wind Direction

Figure A.3: Distribution of the wind direction across the entire dataset.
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Experimental Power Curve

Figure B.1: Experimental power curve for all turbines across all time-steps.

Auto-correlation Function

Figure B.2: The average absolute partial ACF for all turbines is shown. Bars colored blue exceed the
significance threshold of 0.01, while red bars fall below this threshold. Although the time-series

behavior is very similar to that of the SDWPF dataset (Figure B.3), the significance for the
Penmanshiel dataset changes with a lag of 9 time-steps.
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Distribution of the Wind Direction

Figure B.3: Distribution of the wind direction across the entire dataset.
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