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Abstract

Data sharing for research and industrial applications faces significant challenges due to privacy
constraints and regulatory requirements, driving the need for high-quality synthetic alternatives.
Recent advances in synthetic data generation have demonstrated considerable success for
single-table datasets, with emerging research extending these capabilities to multi-table re-
lational scenarios. While transformer and diffusion architectures achieve state-of-the-art per-
formance in single-table generation, a notable performance gap emerges when applied to
relational data, where diffusion approaches consistently outperform transformer-based meth-
ods.

This thesis examines the factors contributing to this performance difference, conducting an
evaluation using multiple baselines across both single and relational tabular datasets, with RE-
aLTabformer andClavaDDPMas state-of-the-art transformer- and diffusion-based approaches,
respectively.

Our investigation reveals that the performance can mainly be attributed to the inadequate
processing of contextual relationships and suboptimal strategies for representing inter-table
dependencies in transformer-based models. To close this gap, we introduce two changes
for transformer-based models: layer sharing to enhance parameter utilization and contextual
encoding to better preserve the relational structure. These changes provide insight into the key
design principles behind effective synthetic relational data generation using transformer-based
models, particularly the need for architectures that account for context and facilitate practical
knowledge transfer. The proposed methods result in substantial performance improvements,
with gains of 1.52× in Logistic Detection and 1.94× in the Discriminator Measure metric.
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1
Introduction

Data-driven research and industry increasingly depend on high-quality data to train machine
learning models and perform statistical analyses. However, the sharing and utilization of real-
world data face significant challenges, particularly in sensitive domains where privacy regula-
tions, such as the GDPR [23], and data scarcity issues [6] limit access to real datasets. These
constraints have increased the interest in synthetic data generation as a privacy-preserving al-
ternative that maintains statistical properties while eliminating direct links to real individuals or
entities. To this end, numerous deep-learning-based generative models have been developed
to generate synthetic data.

These generative approaches have undergone substantial evolution in recent years, with the
focus shifting from traditional statistical methods to deep-learning-based architectures. While
significant progress has been achieved in generating synthetic data for individual tables [74,
44], the challenge becomes considerably more complex when dealing with multi-table rela-
tional datasets where preserving inter-table relationships and maintaining referential consis-
tency are paramount. Recent research has demonstrated varying levels of success across
different architectural approaches for synthesizing relational data.

Comparative studies suggest that diffusion-based architectures consistently outperform token-
based transformer architectures in both single- and multi-table scenarios [39, 22], despite
transformers offering advantages in terms of preprocessing requirements and being more eas-
ily integrated with other models or systems. In the remainder of this thesis, we use the terms
‘diffusion’ and ‘transformer’ as abbreviations for these respective architectures. The observed
performance gap between diffusion-based and transformer-based models raises questions
about the architectural choices and data representation strategies that impact the quality of
synthetic data.

1



1.1. Problem Statement 2

1.1. Problem Statement
This thesis addresses the consistently lower performance of transformer models compared
to diffusion models. Our investigations suggest that this performance gap stems from funda-
mental architectural differences in how these models approach generating relational data. Un-
derstanding and addressing these limitations presents an opportunity to enhance transformer-
based approaches for generating relational synthetic data.

1.2. Research Questions
Following the preceding problem statement, we aim to investigate and close the performance
gap between diffusers and transformers. As such, to investigate the performance differences
between relational data generation methods, we ask the following three questions:

• RQ1: How does the representation of relational data affect the performance of gener-
ative models? This question provides a systematic comparison of different data repre-
sentation approaches, examining their impact on generation quality and computational
requirements.

• RQ2: How can parameter sharing help narrow the performance gap between transformer-
based and diffusion-based models for relational tabular data generation? This question
explores whether sharing parameters across layers can enhance the effectiveness of
our baseline transformer model.

• RQ3: How does the representation of relational cues affect the quality of transformer-
based relational data? This question examines various approaches to incorporating con-
textual cues that enable transformer models to understand and preserve the hierarchical
relationships inherent in multi-table datasets. Thereby investigating the impact of both
their encoding and their position in the generative model’s input.

1.3. Research Contributions
The primary contributions of this work include:

• A systematic analysis of performance disparities between transformer and diffusion ar-
chitectures in both single-table and multi-table generation scenarios.

• Novel architectural enhancements for transformer-based models that substantially im-
prove their relational data generation capabilities at a low computational cost.

• A comprehensive evaluation comparing different data representation strategies and their
impact on data generation quality.

• Empirical demonstration of significant performance improvements, achieving up to 1.52–
1.94× enhancement over baseline transformer approaches.



1.4. Report Structure 3

1.4. Report Structure
The remainder of this thesis is structured as follows: Chapter 2 includes the written research
paper part of this thesis, currently under review under the ACM’s International Conference on
Information and Knowledge Management (CIKM) 2025. In this work, we propose two methods
for improving the performance of transformer-based synthetic relational data models. Chap-
ter 3 presents additional background for synthetic data generation, reviews prior art for both
single-table and relational data. Additionally, it offers a technical background on transformer
architectures. Moreover, this chapter also includes the specific application domains and de-
tailed model comparisons that establish the context for our research. Chapter 4 introduces
the proposed techniques with extended analyses from the experiments in the research paper,
along with various other experiments that provide insights into enhancements for generative
models and identify which tricks did not yield any performance gains. Chapter 5 summarizes
the key findings of this thesis and outlines directions for future work in relational synthetic data
generation.



2
Research Paper

In this chapter, we present the paper titled ”Minding the Gap: Improving Transformer-Based
Relational Data Synthesis.” which is currently under review for the Applied Research Paper
track at the 34th ACM International Conference on Information and Knowledge Management
(CIKM 2025). The conference is scheduled to take place from November 10 to 14 in Seoul,
South Korea. The paper investigates the gap in data fidelity and utility between diffusion- and
transformer-based models for generating synthetic tabular data. We propose two simple meth-
ods that can be applied to existing transformer-based models, enabling them to outperform
diffusion-based models on specific metrics.

Please note that due to a data processing error, some of the standard deviations of the logistic
detection metric in Tables 2, 3, 5, and 6 are shown as 0.00. The corrected versions of these
tables are provided in Appendix A.
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Abstract
Shareable tabular data is of high importance in industry and re-

search. While generating synthetic records is well studied, research

has only recently extended towards relational data synthesis. In the

tabular generation setting, diffusion and transformer models boast

superior performance over prior art. However, in the relational set-

ting, diffusion models outperform transformers. This work focuses

on the apparent performance gap between tabular transformers and

diffusion models in the single (tabular) and multi-table (relational)

settings, using REaLTabformer and ClavaDDPM as representative

state-of-the-art models. We evaluate these architectures on a set of

representative single and multi-table datasets, where we highlight

the root causes for the gap between the methods. In our experi-

ments, we attribute this difference to contextual information and

data representation. To close this gap in the relational setting, we

propose using two seemingly simple strategies: layer sharing and

contextual cues. This work provides insights into the key design

considerations for single- and multi-table generative models: incor-

porating contextual information and reusing existing knowledge.

With the proposed methods, we achieve improvements of 1.52×
and 1.94× for the Logistic Detection and Discriminator Measure

metrics, respectively.

Keywords
Synthetic Tabular Data,Multi-Tabular, Transformer, Diffusion, Layer

Sharing, Clustering
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1 Introduction
The increasing need for high-quality synthetic tabular data has

spurred the development of many generative deep learning mod-

els over recent years. Following earlier seminal works from the
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image domain has led to Variational Auto-encoder (VAE) and GAN-

based approaches: TVAE and CTGAN [31]. Similarly, advances in

graph generation [22] and data-diffusion models [11] made grounds

for methods like GOGGLE [17] and TabDDPM [15]. While these

methods have provided means for ever-increasing synthetic data

fidelity, they have primarily focused on flat datasets, where singular

rows represent data entries. Extending this towards multiple re-
lated tables is a recent advance backed by diffusion and transformer

architectures. ClavaDDPM [20] (Clava) builds on TabDDPM to syn-

thesize (multi-)relational data. In a similar vein, developments from

the natural language domain [27] have been successfully applied for

tabular generation [4]. REaLTabFormer (RTF) [24] builds upon this

idea to extend the data generation to the relational data domain.

While tabular generators have been well studied in the context

of flat data [1, 23, 26], it naturally follows to consider their ability

to create relational data. To do so, such models must not only learn

to generate distinct tables, but also the relation between them—as

depicted in Figure 1.Comparing the different models on both flat

and (multi-)relational data provides insight into design considera-

tions for applied research. Related work, SynthRela [13] introduces

an evaluation framework for comparing and measuring the per-

formance of relational tabular generative models. In this work, we

build upon their findings that diffusion models consistently out-

perform transformer-based models for synthesizing relational data.

Customers
Pnt ID Col 1 Col 2 Col 3
1 10 US M

2 25 DE F

3 18 ES F

1

Purchases
Pnt ID Chld ID Col 4
1 1 110
1 2 19
2 3 23
2 4 7
3 5 4

Denormalized Customers x Purchases
Pnt ID Col 1 Col 2 Col 3 Chld ID Col 4
1 10 US M 1 110
1 10 US M 2 19
2 25 DE F 3 23
2 25 DE F 4 7
3 18 ES F 5 4

Figure 1: Example relational dataset with ‘customers’ as
Parent (Pnt) table and ‘purchases’ as subsequent Child
(Chld) table. 1○ illustrates creating a denormalized dataset
by performing an inner-join on the primary key 𝐾 ‘Pnt ID’,
to flatten relational data. The pairs 𝐴,𝐶 and 𝐶, 𝐷 , represent
the table height and width, respectively. Note that the
denormalized dataset contains duplication as each Child
table’s record is prefixed with its corresponding Parent row.
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Table 1: Tabular evaluation on Machine Learning Efficiency (MLE), Discriminator Measure (DM) scores, and train time. Scores
reported as mean±standard deviation with best results in boldfaceboldface and second best underlined highlighted. For both metrics, lower is
better. We denote training time in seconds with T train.

Orig. Data GAN CTGAN TVAE GOGGLE GReaT Clava RTF OURS

Breast Cancer [29] MLE 0.05±0.02 0.07±0.03 0.05±0.01 0.04±0.01 0.08±0.03 0.08±0.03 0.04±0.01 0.04±0.01 0.04±0.02
DM 0.03±0.02 0.72±0.10 0.30±0.08 0.25±0.10 0.45±0.05 0.43±0.12 0.09±0.04 0.22±0.06 0.19±0.07

T train - 1448 1209 905 2739 322 181 128 83

Cali. Housing [19] MLE 0.35±0.09 0.41±0.06 0.49±0.07 0.45±0.08 0.75±0.05 0.42±0.09 0.32±0.08 0.36±0.08 0.37±0.08

DM 0.01±0.00 0.46±0.30 0.50±0.27 0.56±0.27 0.78±0.09 0.22±0.05 0.06±0.03 0.16±0.04 0.18±0.04

T train - 732 1729 848 425 8407 379 652 659

Adult [2] MLE 0.10±0.00 0.16±0.03 0.13±0.01 0.13±0.01 0.16±0.01 0.11±0.01 0.10±0.00 0.10±0.00 0.10±0.00
DM 0.00±0.00 0.99±0.01 0.89±0.08 0.77±0.04 0.99±0.01 0.28±0.04 0.06±0.03 0.12±0.03 0.15±0.04

T train - 2777 431 335 1082 10704 401 1087 1082

Magic [3] MLE 0.11±0.01 0.13±0.02 0.16±0.02 0.15±0.02 0.14±0.02 0.13±0.02 0.11±0.02 0.11±0.01 0.12±0.02

DM 0.01±0.01 0.94±0.09 0.82±0.23 0.86±0.17 0.47±0.20 0.34±0.05 0.04±0.03 0.11±0.03 0.13±0.05

T train - 1441 191 143 6601 5113 360 1688 1643

Shoppers [21] MLE 0.09±0.01 0.10±0.01 0.09±0.01 0.09±0.01 0.12±0.00 0.11±0.02 0.08±0.01 0.09±0.01 0.09±0.01

DM 0.01±0.00 0.97±0.06 0.97±0.04 0.93±0.09 0.95±0.06 0.33±0.06 0.59±0.01 0.20±0.06 0.27±0.08

T train - 740 367 592 622 3684 335 372 427

Moreover, the diffusion models enjoy favourable training and infer-

ence time-cost over their transformer counterparts. However, the

transformer-based approaches are favourable due to their limited

requirements on data-preprocessing [4, 24].

These aforementioned results lead us to quantitatively analyse

Clava and RTF in single-table and relational tabular settings. Our

preliminary results spurred the following question: How does the

representation of relational records influence the fidelity of data

generated by generative models? To further illustrate this point Fig-

ure 1 shows how we can convert a parent table (with 𝐴 rows and 𝐵

columns) and a child table (with 𝐶 rows and 𝐷 columns) into one

flat table—i.e., denormalized. The parent and child tables are linked

through a key—‘Pnt. ID’—with 𝐾 denoting the features making up

this key. We aim to investigate whether we can learn these relations

when represented as a flat table.

Based on the performance gap analysis, we unveil that the exist-

ing transformer model lags behind the diffusion model because of

the suboptimal modeling on the contextual information and parent-

child tables We thus propose novel strategies, such as layer sharing

and contextual information, to close the performance gap and im-

prove the existing transformer-based tabular generative modes.

Our design and evaluation center on two sub-research questions:

(i) how can layer sharing reduce the performance gap, and (ii) how

does contextual information impact transformer-based relational

models? In our evaluations, we improve up to 1.5–1.9× in terms of

Logistic Detection (LD) and Discriminator Measure (DM), respec-

tively, over baseline REaLTabFormer performance. Thus demon-

strating our design to be effective for closing or bridging the gap

between transformers and diffusion models in relational tabular

data modeling.

2 Related Work and Background
Our observations in the single and relational settings ignite the

question of what causes this performance difference. Whether the

difference is caused by the methods, architectures, or how inter-row

relations are modeled. As such, we first consider the related works

Single Table Generation synthesis has been well studied, fol-

lowing trends from the image and language generation domains.

Initial models in the tabular data setting consisted of GAN and

VAE derivatives, adapted to work on tabular data [31]. CTGAN

builds upon the regular GAN architecture to work with hetero-

geneous data and handle class imbalance. More recent advances

include the usage of graph-based models like GOGGLE [17], diffu-

sion as TabDDPM [15] and Clava [20], and natural-languag derived

models as GREaT [4] and REaLTabFormer [24]. While GReAT and

REaLTabFormer share the same underlying backbone, i.e. Trans-

former [27], they differ in their modeling approach. The former

advocates using the ‘semantic information’ of tables, by fine-tuning

a pre-trained language model and converting samples into natural

text. REaLTabFormer, provides superior performance by using only

the architecture and a novel tokenization.

Relational Table Generation extends the prior setting, seeing

recent advancements with RTF and Clava. Although both gener-

ate relational data, they differ significantly in key aspects. RTF

is an auto-regressive-based model with a relational sequence-to-

sequence (Seq2Seq) head, which we call ‘relational adapter’. Herein,

the relational adapter uses the learned parent table model as the

encoder. Thus, sequentially learning the parent and child, using the

former to guide the relational sampling. Clava, on the other hand,

achieves relational sampling through condition-guided diffusion

sampling. Thus making the learning independent of the per-table

models. Instead of encoding the relations explicitly, Clava learns

to condition based on a learned data-clustering approach. Therein
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assigning ‘cluster IDS’ to records, on which a classifier guidance

model is used to generate samples a low-dimensional bottleneck.

As a results considerably simplifying the conditional generation

of Child records. Instead requiring child samples to be sampled

from a class-dependent distribution, as proxy for the parent. Effec-

tively creating an information bottleneck during the training and

sampling process of the Child rows. As SyntRela [13] shows that

Clava outperforms RTF on their benchmark, this motivates further

investigation into the performance gap between the two models.

This is particularly relevant given that Transformer-derived archi-

tectures have demonstrated strong performance on relational and

structured sequence-to-sequence tasks [16].

3 Evaluating the Performance Gap
Before moving towards our method’s considerations, we create a

match-up between related work for single (Table 1) and relational

data generation (Table 3). In the single table case, Clava consistently

achieves best or second-best results in Discriminator Measure (DM)

and Machine Learning Efficiency (MLE), respectively—measures

for data fidelity and utility, as discussed below. RTF achieves similar

performance, ranging from a close second-place to trading blows

with Clava. Contrary to our expectations, the minimal gap between

RTF and Clava widens considerably when we move to the relational

tables, as shown in Table 2 ‘Baseline’ column. In this setting, Clava’s

Logistic Detection (LD) and Discriminator Measure (DM) often far

exceed those of REaLTabFormer—metrics representing the difficulty

of distinguishing between real and generated data. Following this

salient result, we investigate the apparent performance gap between

RTF and Clava.

Data Utility. To evaluate data utility, we use downstream tasks to

assess the quality of synthesized datasets. To this end, we employ

Machine Learning Efficacy (MLE) [32] on single table datasets,

which represents the performance of a classical machine learning

(ML) model trained on synthetic samples and evaluated on real test

samples. As the choice of downstream model can impact reported

quality, we use five ML models per dataset: Decision Tree (DT) [6],

Random Forest (RF) [5], Gradient Boosting [9], AdaBoost [8], and

XGBoosted Random Forest [7]. We report an aggregate score of

the models mentioned above for every dataset over multiple runs

and replications. Scores are represented as the arithmetic mean and

standard deviation.

Data Fidelity. Similar to data utility, more realistic data should

match the original distribution. We evaluate data fidelity using the

Discriminator Measure and extend this with the Logistic Detec-

tion [24] in the relational setting. Both tasks evaluate the discerni-

bility of real and fake data, differing in their underlying task and

model selection. The Logistic Detection trains a Random Forest

Classifier—following the approach of RTF—to discriminate between

real and generated records, thus providing a means to pick up on

broad-scale inconsistencies between real and fake data. These two

metrics jointly provide insight in how well the generated relational

match the original Parent and Child table. We report the a normal-

ized Discriminator Metric (DM), computed as DM
′ = |DM− 50|/50.

For notational convenience, refer to the normalized Discriminator

Metric when we refer to 𝐷𝑀 ′. DM scores are computed based on

the model’s predictive accuracy, whereas LD scores are computed

based on the ROC-AUC measure, with scores in the range of 0 to

100 in line with RTF.

Table 2: Relational-dataset evaluation on Discriminator
Measure (DM), Logistic Detection (LD) scores, and train
duration. Scores are reported as mean±standard deviation. For
DM, lower is better; for LD, higher is better. Best scores are
highlighted in boldfaceboldface and second-best are underlined. We
denote training time in seconds with T train. Out of Memory
(OOM) indicates an inability to complete with the allotted
resources.

Metric Original

Baseline Flattened

RTF Clava RTF Clava

A
i
r
B
n
B P
a
r
e
n
t LD 98.98±1.00 52.63±0.00 85.92±0.00 29.24±0.00 71.45±0.00

DM 0.02±0.01 0.57±0.05 0.57±0.05 0.98±0.03 1.00±0.00

C
h
i
l
d LD 91.37±1.21 42.22±0.00 89.05±0.00 62.30±0.00 76.52±0.00

DM 0.05±0.02 0.44±0.05 0.54±0.07 0.28±0.04 0.88±0.03

𝑇train - 2762 1049 8891 407

R
o
s
s
m
a
n

P
a
r
e
n
t LD 95.69±0.00 83.58±0.00 21.78±0.00 94.42±0.00 82.59±0.00

DM 0.85±0.01 0.54±0.02 0.09±0.04 0.49±0.01 0.72±0.02

C
h
i
l
d LD 95.19±0.00 57.42±0.00 88.01±0.00 90.84±0.00 75.51±0.00

DM 0.84±0.05 0.40±0.05 0.10±0.04 0.09±0.00 0.62±0.06

𝑇train - 1754 1119 3035 384

F
T
P

P
a
r
e
n
t LD 99.12±0.00 85.16±0.00 97.54±0.00 OOM 95.74±0.00

DM 0.02±0.01 0.11±0.02 0.06±0.04 OOM 0.09±0.00

C
h
i
l
d LD 92.31±0.00 29.20±0.00 86.55±0.00 OOM 88.02±0.00

DM 0.49±0.04 0.73±0.02 0.56±0.02 OOM 0.48±0.00

𝑇train - 1561 961 - 366

As such, evaluate the methods in a ‘flattened’ relational setting—

by denormalizing tables through inner-joining based on their pri-

mary key.We train both methods on the flattened table, of which we

report their performance in the ‘Flattened’ column of Table 2. The

resulting flat table contains redundant information where parent ta-

ble attributes are replicated across multiple rows corresponding to

each associated child record, effectively flattening the hierarchical

relationship into a singular tabular format. While this denormali-

sation process increases storage requirements and introduces data

redundancy, it potentially simplifies the data structure enabling the

application of single-table synthesis methods. Herein, we note that

the FTP results are excluded for REaLTabFormer as the method

failed to compute within the imposed 24 GB memory constraint.

While Clava’s Child performance is mostly negatively affected, RE-

aLTabFormer shows a remarkable improvement in data quality.

Matching or exceeding Clava’s baseline performance on the Child

table regarding DM for AirBnb and Rossmann.

Meanwhile, we also observe that overall Parent performance

is negatively impacted. Herein, there is considerable degradation

on Airbnb and only marginal improvements on Rossman. In ad-

dition, flattening the data brings considerable overhead for RTF,
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now requires storing all activations of the values of both the parent

and child rows. Contrary to the Seq2Seq approach, which reduces

this overhead by training them sequentially. This performance and

overhead impact support the explicit relational data modeling in

a model’s architecture. However, it gives a glimpse into closing

the performance gap between REaLTabFormer and Clava through

the implicit layersharing that ‘Flattened’ data imposes. The same

model weights are used to generate the parent and child rows.

Although this heads us towards closing the gap, our results hint

towards a simplified conditional relation that benefits the relational

modeling. As Clava only Specifically, we highlight the differences in

data representation and, more so, the provided contextual informa-
tion. The former differs as Clava models this as a bottlenecked ‘hop’

versus the effectively ‘flat’ representation of RTF. Secondly, we say

the ‘contextual’ information is provided to the model to sample rela-

tional data. By RealTabFormer’s Seq2seq architecture, the relational

sampler can see all of the parent’s information. Clava, however,

uses clustering and a classifier guidance method (on cluster ID) to

steer relational sampling.

Summary: Following our preliminary results, we show

that Clava and RTF exhibit a considerable performance gap
for generating relational data. Moreover, we investigate the

impact of representing the relational information, by denor-

malizing the relational dataset as a single (flattened) table.

Herein, we show that while both models benefit from mod-

eling two tables as a relation over flattened, RTF relational
data performance improves considerably for its Child table.
Following these observations and results, we hypothesize

that auto-regressive models can benefit from sharing their

relational representation.

4 Method
Following our preliminary results and gained insights, we focus

on leveraging these to close the performance gap. We propose

to change the relational data representation to the base adapter

and provide hints to the base and adapter models to simplify the

conditional distribution of relational records. Towards the latter,

we propose providing additional ‘in-context’ hints to the trans-

former model during the relational sampling. Towards the former,

we consider altering the representation of relational information by

creating a denormalized single table of the parent and child tables

as illustrated in Figure 1. In Figure 2, we show the four steps our

method proposes.

In short. First, in step 1○ we cluster on the joint parent (𝑋 ) and

child (𝑌 ) tables as shown in Algorithm 1. Then, we proceed in step

2○ by appending this information as a categorical column to 𝑋 and

𝑌 , at column index 𝑞. We then tokenize the augmented training

datasets and train our Base model’s transformer on the tokenized

parent table data 𝑋 . Finally, in step 4○ we apply layer sharing

between the Base model and the Decoder model of the Relational

Adapter, while fixing their parameters. As both models now inherit

their parameters from the Base model, only the Adapter model’s

Child vocabulary can be optimized on the Child’s data.

1
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Figure 2: Representing tabular data with contextual
information, orange and purple indicate Parent and Child
data/model respectively. Contextual information is added
to related Parent and Child records using clustering 1○–
2○. Subsequently a Base model is trained on the Parent
Table ( 3○), which is subsequently used 4○ as a frozen
Encoder-Decoder for learning the relationalAdapter. Therein
sharing the Parent table’s model (Encoder) layers with the
relational (Decoder) of the relational adapter sequence-to-
sequence (Seq2Seq) model, while only training the encoder’s
vocabulary.

In-Context Relational Cues. As shown in Figure 2 steps 1○– 2○,

we add contextual information to the training data. Provided with

Clava’s relational performance, we consider the impact of its rela-

tional modelling. Given that classifier-based diffusion on its own

does not translate to an auto-regressive architecture, we turn to

in-context representation. Similar to classifier based guidance, this

makes the conditional ’guidance’ token learnable before being used

during inference. Therewith providing a signal to the generator to

conditionally sample from a simplified distribution. Hereby, both let-

ting the generator learn to steer the generation process conditioned

on the cluster ID token. Subsequently, allowing to conditionally

sample from the cluster ID by providing the model with the cluster

ID as context As a result, providing classifier-based guidance to the

auto-regressive generative model.

To create the contextual information to the model, we augment

the training data with a Cluster ID (Clst ID in Figure 2). We add

these cluster IDs to both the parent and child table with the loca-

tion of the cluster ID being configurable, akin to Clava’s Classifier

Guidance approach. Thereby providing a piece of categorical in-

formation, matching the model’s tokenizer discretization process.

For a fair comparison with Clava, we share the obtained clustering
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Algorithm 1 Cluster-Augmented Model Training. For the reader’s

convenience, we refer with 1○– 4○ to the steps in Figure 2.

Require: Training dataset 𝐷train, clustering algorithm Cluster,
number of clusters 𝑘 , randomly initialized Base model,

randomly initialize Adapter model, Tokenization function

Tokenize, context insertion index 𝑞.

1: Encode dataset
2: X,Y← 𝐷train {Split Parent and Child.}

Step 1○: Cluster encoded data
3: C𝑋 ,C𝑌 ← Cluster(X,Y, 𝑘) {Get cluster assignments for Par-

ent and Child.}

Step 2○: Add contextual information
{Insert context for rows X,Y with cluster ID from step 1○ at

position 𝑞}

4: for 𝑜 = 1 to |X| do
5: X[𝑖] ← insert(C𝑋 [𝑖],X[𝑖], 𝑞)
6: end for
7: for 𝑗 = 1 to |Y| do
8: Y[ 𝑗] ← insert(C𝑌 [ 𝑗],Y[ 𝑗], 𝑞)
9: end for

Step 3○: Train base-model
10: X← Tokenize(𝑋 )
11: Base← Train(Base,X)
Step 4○: Train Relational ‘Adapter’
12: Adapter ← Base {Link Base & Adapter Transformer block

weights}

13: X← Base(X)
14: Y← Tokenize(Y)
15: Adapter ← Finetune(Adapter,X,Y) {Only fine-tune Adapter

model’s vocabulary.}

Returns: Base, Adapter

IDs between methods. In our experiments we run the clustering

algorithm on data with one-hot encoding for categorical features,

to enable clustering in data-space.

Layer sharing. After preparing the Parent and Child tables with

contextual information, we continue by training the generative

model. Before continuing, we recall that RTF learns a decoder-

only ‘sequence-to-sequence‘ model. By first training an encoder

on the ‘parent’ output, it learns to represent a representation for

a secondary model. This latter model, is then learned separately

to predict a child ‘completion’ given a parent’s records encoded

representation. Of which the Parent tables Base model acts as an

encoder for the Parent module, to create a latent representation of a

parent’s table records. Initially, these models both start off randomly

initialized. Subsequently, we tokenize the Parent and Child dataset

on which the models are trained sequentially. First we train the

Base model on the augmented Parent, in step 3○. Afterwards, we

continue by fine-tuning the Adapter module.

To then learn the relational Adapter we reduce the number of

learnable parameters compared to REaLTabFormer, as show 4○
in Figure 2. We do so by performing layer-wise parameter tying

between the Base and Adapter model . More formally, let each Base

and Adapter learnable layer 𝐿( ·) be indexed by 𝑝, 𝑐 ∈ [0, 𝑁 − 1],
then ∀ 𝑝, 𝑐 𝑠.𝑡 . 𝑝 ≠ 𝑐 ⇒ 𝐿𝑝 = 𝐿𝑐 . Moreover, we freeze the Parent

and Child module, optimizing only the tokens to represent the Child

rows. As a result, we are left with around ∼ 1% of the learnable

parameters during the fine-tuning of the Adapter—compared to

REaLTabFormer.

As such, leaving only the Child table’s specific open to opti-

mization during the fine-tuning of the Relational Adapter. As a

result treating the relational data generation akin to a sequence-to-

sequence task (Seq2Seq), such as sentence translation tasks. Herein,

we remark that layer sharing in the NLP domain has been applied

successfully [34, 35, 33, 30].

5 Evaluation
In this section, we continue with the evaluation of our proposed

method. We evaluate the models on the same dataset as shown

in section 3, on which we provide additional information in subsec-

tion 5.1. We consider the following three experimental setups to

evaluate the proposed method, and ablate the design considerations.

First, we evaluate the method on the single and relational datasets,

comparing against REaLTabFormer and ClavaDDPM. Second, we

ablate our design considerations by separating the evaluation of

layer-sharing and contextual IDs. Last, we consider the impact of

clustering approaches in providing more informed contextual infor-

mation to the model. Before proceeding to the experimental results,

let us detail the common experimental setup.

5.1 Experimental Setup
As shown prior in section 3 we evaluate baseline models on five

single-table datasets; Breast Cancer Wisconsin (Breast) [29], Cali-

fornia Housing (Housing) [19], Adult Income (Adult) [2], MAGIC

Gamma Telescope (Magic) [3] and the Online Shoppers Purchasing

Intention Dataset (Shoppers) [21]. We highlight key characteristics

of these datasets in Table 4. Moreover, we consider the relational

model’s performance on three relational datasets: AirBnB New User

Bookings [10], Rossmann Store Sales [14], and FTP [18]. These rela-

tional datasets consist of a parent and a child table linked through

one primary key, as illustrated by the dotted line in Figure 1.

5.2 Narrowing the Relational Gap
First, we evaluate our proposed method in the relational and single

table settings. We provide the single table results in Table 1 under

the ‘OURS’ column. We can first conclude that providing a contex-

tual cue to the model has a minor impact on the train duration over

RTF, seeing similar training times, except for Shoppers, seeing an

increase of ∼ 14%. Moreover, we also observe that context only min-

imally impacts the downstream utility regarding MLE compared to

RTF. In terms of detectability, again, our method achieves a similar

performance to that of RTF.

However, in the relational setting, as tabulated in Table 3, we

observe a clear pattern in the delta between Clava and RTF on child

table performance. Seeing that the gap is reduced or even switches

in favour of our proposed method, coming from RTF compared

to Clava. Seeing an improvement over all child-related metrics,

narrowing the LD performance gap from ∼ 12–57 (and 0.3–0.23 for

DM), to ∼ 12–9 (and for DM to −0.35–0.17). For the parent data,
we see improvements over RTF, outperforming both baselines on

AirBnB, and providing minor enhancements on Rossman and FTP.
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Table 3: Multi-table relational dataset Logistic Detection (LD) and Discriminator Measure (DM) scores. Relational (Rel.) and Flat
correspond to the original relational dataset and the flattened or denormalized (1NF) dataset, respectively. Metric shown as
mean±standard deviation. For DM, lower is better; for LD, higher is better. Bold faceBold face indicates best result and underlined second best.
We denote training time in seconds with T train. DNC denotes ‘did not compute’ as they resulted in OOM regardless of batch-size.
We denote the time required to train the models by T train.

Metric Original RealTabFormer Clava OURS

Ablation* (subsection 5.3)

Layer Share Context ID

A
i
r
B
n
B
[
1
0
] Parent LD 98.98±1.00 52.63±0.00 85.92±0.00 87.24±0.00 51.55±0.00 87.41±0.00

(Users) DM 0.02±0.01 0.57±0.05 0.57±0.05 0.17±0.06 0.57±0.04 0.13±0.02

Child LD 91.37±1.21 42.22±0.00 89.05±0.00 67.18±0.00 71.85±0.00 32.31±0.00

(Sessions) DM 0.05±0.02 0.44±0.05 0.54±0.07 0.33±0.07 0.35±0.07 0.63±0.05

T train - 2762 1049 3228 4347 4168

R
o
s
s
m
a
n
n
[
1
4
]

Parent LD 95.69±0.00 83.58±0.00 21.78±0.00 86.53±0.00 85.65±0.00 86.53±0.00
(Stores) DM 0.85±0.01 0.54±0.02 0.09±0.04 0.53±0.01 0.54±0.02 0.53±0.01

Child LD 95.19±0.00 57.42±0.00 88.01±0.00 79.30±0.00 64.97±0.00 77.24±0.00

(Sales) DM 0.84±0.05 0.40±0.05 0.10±0.04 0.27±0.07 0.37±0.06 0.27±0.07

T train - 1754 1119 3514 1758 3517

F
T
P
[
1
8
]

Parent LD 99.12±0.00 85.16±0.00 97.54±0.00 85.54±0.00 88.44±0.00 81.35±0.00

(Sessions) DM 0.02±0.01 0.11±0.02 0.06±0.04 0.11±0.02 0.10±0.02 0.13±0.02

Child LD 92.31±0.00 29.20±0.00 86.55±0.00 71.25±0.00 69.19±0.00 26.79±0.00

(Products) DM 0.49±0.04 0.73±0.02 0.56±0.02 0.21±0.02 0.62±0.05 0.77±0.01

T train - 1561 961 1454 1310 1596

5.3 Ablation: Evaluating Layer Sharing and
Contextual Cues

Next, we consider the impact of the two design considerations

brought forward in our method. Herein, we are ablating on the

contribution towards improving relational transformer-based gen-

eration by evaluating the contribution of layer sharing (Layer Share)

and the contextual cue (Context ID) independently on the relational

Table 4: Overview of datasets used, with names of the Parent
and Child Tables for relational datasets.

Dataset Table #Rows #Columns Task
Cat. Num.

S
i
n
g
l
e
-
t
a
b
l
e Breast 569 1 30 Bin. Class.

Housing 20,640 0 9 Reg.

Adult 45,222 9 6 Bin. Class.

Magic 19,020 1 9 Bin. Class.

Shoppers 12,330 7 9 Bin. Class.

R
e
l
a
t
i
o
n
a
l AirBnB

Users 10,000 13 3

Multi. Class.

Sessions 191,025 5 1

Rossmann

Stores 1,115 3 7

Reg.

Sales 68,015 3 6

FTP

Sessions 15,000 1 3

Bin. Class.

Products 33,455 5 1

datasets. We summarize the result in the ‘Ablation’ column of Ta-

ble 3.

We observe similar trends to the ‘implicit’ layer sharing found

in the data-flattening experiments from section 3. Augmenting the

data with a context ID boosts RTF—except on FTP’s ‘products’

table—and the joint application of contextual information and layer

sharing consistently aids the generation of transformer-based rela-

tional data generation.

5.4 Ablation: Contextual Cue Position
Here we evaluate the impact of placing the relational context cue

at different positions to the model. Considering the first, second,

or last column during step 2○ of our method (see section 4) be-

fore training. We recall that in the transformer architectures, to-

kens in early positions are attended to by all subsequent ones. As

such, providing early context acts as learned ‘contextual guidance’,

whereas providing it in a later position acts as an auxiliary training

task—i.e., predicting the ‘cluster’ ID before generating subsequent

child records. In Table 5 we report the results of altering the inser-

tion index of the contextual cue to the transformer model. These

results show that placing a token ‘early’, i.e., before the Parent ID,

negatively impacts generation quality. We speculate that modeling

the parent as conditioned on the contextual ID makes the distri-

bution harder to generalize. As the training samples may lie near

the decision boundaries of the clustering model, following step 1○,

requiring the model to ‘commit’ too early during generation to

the conditional signal. In the results, column index 1 consistently
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Table 5: Relational-dataset ablation on the impact of
contextual information placement onDiscriminatorMeasure
(DM), Logistic Detection (LD) scores, and train duration. Idx.
refers to the column index position at which the cluster
IDs are inserted during 2○ of our method, where ‘1’ is the
default. Scores are reported as mean±standard deviation. For
DM, lower is better; for LD, higher is better. Best scores shown
in boldfaceboldface, second-best are underlined. We denote training
time in seconds with T train.

Metric Original

Insertion Indx.

RTF Idx. 0 Idx. 1 Last Idx.

A
i
r
B
n
B P
a
r
e
n
t LD 98.98±1.00 52.63±0.00 29.24±0.00 78.99±0.00 47.56±0.00

DM 0.02±0.01 0.57±0.05 0.98±0.03 0.22±0.00 0.62±0.00

C
h
i
l
d LD 91.37±1.21 42.22±0.00 62.30±0.00 50.64±0.00 59.06±0.00

DM 0.05±0.02 0.44±0.05 0.28±0.04 0.42±0.00 0.39±0.00

𝑇train - 2762 2823 2004 2575

F
T
P

P
a
r
e
n
t LD 99.12±0.00 85.16±0.00 84.63±0.00 85.54±0.00 85.60±0.00

DM 0.02±0.01 0.11±0.02 0.13±0.03 0.11±0.02 0.11±0.01

C
h
i
l
d LD 92.31±0.00 29.20±0.00 57.96±0.00 71.25±0.00 68.02±0.00

DM 0.49±0.04 0.73±0.02 0.60±0.03 0.21±0.02 0.26±0.00

𝑇train - 1561 1707 1454 1584

provides the best or second-best scores for the parent tables. The

main improvement brought forward by contextual cues in general

can be seen in the parent table. We thus focus mainly on the scores

of the parent tables when evaluating the different indices used to

place the context cues. For FTP, the scores are close with minor

differences in the parent table performance. On the AirBnB dataset,

we see different results, with the second position (index 1) showing

the best performance for the parent table.

5.5 Ablation: Clustering Representation
Lastly, we consider the impact of altering the data representation on

which the clustering algorithm is run. Rather than using the cluster-

ing on the data domain, we first create a learned tabular embedding

space. Using an external embedding space allows for unsupervised

enrichment of tabular data by capturing complex, high-order re-

lationships for clustering methods. While such models enable the

creation of high-fidelity embeddings of heterogeneous data [28, 25,

12], these models also increase the training time and memory over-

head significantly.We use TransTab [28] to create these embeddings

by using the pre-activation logits of the [CLS] token after training

the TransTab model on a table. We compare this with our default

encoding process using one-hot encoding for categorical features

and standardization for numerical ones. This latter method imposes

negligible computational overhead to ‘embed’ the data, provided

that the categorical features are not too sparsely represented. As

such, for the FTP dataset, we exclude the ‘category_d’ column from

the dataset used for clustering, as these are almost all unique. By

doing so, we reduce the encoded representation considerably, as the

one-hot encoded representation of such features yields extremely

sparse data to the clustering process.

Table 6: Relational-dataset evaluation on AirBnb for
Discriminator Measure (DM), Logistic Detection (LD) scores,
and train duration T train. ‘Learned Spaces’ indicate the
embedding space used assigning cluster ID in step 1○ of our
method. Scores are reported as mean±standard deviation. For
DM, lower is better; for LD, higher is better. Best scores are
highlighted in boldfaceboldface and second-best are underlined.

Metric

Learned Spaces

REaLTabFormer TransTab One-Hot

Parent

LD 52.63±0.00 78.07±0.00 87.24±0.00
DM 0.57±0.05 0.21±0.00 0.17±0.06

Child

LD 42.22±0.00 56.31±0.00 67.18±0.00
DM 0.44±0.05 0.35±0.00 0.33±0.07

𝑇
emb

- 2735 1

𝑇train 2762 3237 3228

𝑇
total

2762 5972 3229

In Table 5 we compare the difference in performance between the

different clustering methods on the Airbnb dataset. While both em-

bedding improve over REaLTabFormer performance, the One-Hot

data yields greater improvements. Moreover, it requires consider-

ably less compute, only adding around one second to the training

process. Although more embedding mechanisms could be consid-

ered, combined with the already strong performance of the baseline

method, we leave this to future work to explore.

6 Conclusion
In this work, we study relational table synthesizers and narrow

the performance gap of complementary methods, namely diffusion-

based and transformer-based generative models. First, we examine

the effect of contextual data augmentation on transformer-based

multi-tabular data synthesis, inspired by the success of this tech-

nique in state-of-the-art diffusion-based models. Secondly, we show

the positive impact of layer-sharing by first flattening the relation,

providing ground for our novel layer-sharing approach.

By incorporating these insights into the training data and ar-

chitecture, we demonstrated an average improvement in the LD

score of 1.22× for the parent tables in the relational benchmarks

and a reduction in the DM by 2.08×. This confirms that contextual

augmentation and information reuse can considerably enhance fi-

delity with minor additional costs. Building on this foundation, we

propose using layer-sharing for transformer architectures, in which

we copy and freeze model weights from the trained parent model to

the decoder in the sequence-to-sequence model. Our experiments

on relational datasets show that this form of knowledge transfer

across relational schemas yields an average improvement of 1.73×
in LD and 1.17× in DM on child tables. Together, these comple-

mentary strategies surpass naive transformer baselines and rival

state-of-the-art diffusion approaches’ performance in data fidelity

and utility. For future work, we are working to extend the proposed

method towards m-n relational and multi-relational (3+) data.
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GenAI Usage Disclosure
Herein, we confirm that generative AI tools have been used exclu-

sively to assist with rewriting or performing grammar and spelling

checks on text written by the authors. All ideas, experimental de-

signs, analyses, and core paper contents were created solely by the

authors. No portions of the research code, data generation, or origi-

nal contributions were created or modified by GenAI. Although this

work investigates GenAI as a method to generate relational tabular

data, in this paper, as the objective of this paper is to compare and

improve the gap between diffusion-based and transformer-based

tabular generative models. As such, it is necessary to evaluate those

GenAI models and present their qualitative results.
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3
Background and Related Works

This chapter expands upon the topics introduced in the research paper in chapter 2. We
begin by establishing the theoretical and practical foundations of synthetic data, examining the
evolution of generative modelling approaches within this context, and conclude with a detailed
analysis of current state-of-the-art methods that form the basis for our research contributions.
The chapter is organized into three main sections.

Section 3.1 introduces synthetic data generation from both theoretical and practical perspec-
tives. This section explains why synthetic data is essential and what makes relational data
synthesis particularly challenging. Section 3.2 examines the architectural foundations under-
lying modern methods for generating synthetic data. This section provides crucial background
for understanding the architectural trade-offs between these approaches. It establishes the
context for our subsequent analysis of their relative performance in relational settings in chap-
ter 4. Section 3.3 presents a review of existing approaches and state-of-the-art models.

3.1. Foundations and Applications
Synthetic data refers to artificially generated data that preserves the statistical properties and
relationships of real data [7]. Unlike real-world data, synthetic data is created through compu-
tational processes rather than being collected from real-world events or measurements.

Applications and Motivation Synthetic data is in high demand in multiple domains where
traditional data sharing faces significant challenges due to privacy concerns, regulatory con-
straints, or data scarcity issues [6]. The healthcare sector represents one of the most com-
pelling use cases for synthetic data generation due to the highly sensitive nature of patient in-
formation and strict regulatory requirements, such as the GDPR in Europe and the American
Health Insurance Portability and Accountability Act (HIPAA) [34] in the United States. Syn-
thetic patient data enables researchers to develop and validate machine learning algorithms
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without exposing actual patient records [69]. This method is especially useful in the context of
small sample sizes, such as for rare diseases or underrepresented demographic groups [27].

In the financial sector, synthetic data is primarily used to support the development of fraud
detection systems and regulatory compliance testing [4]. By generating synthetic transactional
datasets, institutions can develop and evaluate systems and algorithms without compromising
sensitive customer information. Credit scoring models also benefit from synthetic customer
profiles that reflect a wide range of demographic and financial characteristics while preserving
individual privacy. Finally, the use of synthetic financial data facilitates collaboration between
financial institutions and academic researchers, enabling advancements in financial technol-
ogy while upholding confidentiality standards.

Synthetic data is also increasingly used for research and development by both academic
and industry research communities to promote reproducibility and enable data sharing across
different institutions. By offering standardized benchmarks, synthetic datasets allow for the
comparison of algorithmic approaches without requiring access to proprietary or sensitive data.
This is particularly beneficial in interdisciplinary collaborations, where organizations may hold
complementary datasets but are unable to share them directly due to privacy constraints or
competitive interests. Moreover, synthetic data helps address the issue of research repro-
ducibility by providing shareable datasets that support independent validation of findings.

Finally, machine learning applications also benefit from the use of synthetic data. Data
augmentation is a key application area for synthetic data, particularly in situations involving
imbalanced datasets or rare event detection [14, 24, 6]. Generating synthetic examples for
under-represented classes can help mitigate class imbalance, a common challenge in real-
world machine learning tasks. This approach is advantageous when acquiring additional real-
world data is costly, time-consuming, or ethically constrained. In addition, synthetic data sup-
ports more comprehensive model evaluation by enabling testing across a broader range of
scenarios that may not be sufficiently represented in the original training data.

Synthetic Data Fundamentals As highlighted in the previous section, synthetic data can
be used to overcome many of the challenges relevant to working with data. In this thesis, our
primary focus is on relational data stored in tabular format. Before exploring the challenges
associated with both single-table tabular data and relational data, we define how the quality
of synthetic data can be evaluated.

Assessment of Synthetic Data Quality The quality of synthetic data is typically assessed
across three dimensions [1]. Statistical fidelity (fidelity) measures how well the synthetic data
preserves the distribution characteristics of the original dataset. In other words, the fidelity
of generated data measures how closely the synthetic data resembles the original real data.
Downstream utility (utility) assesses whether synthetic data maintains sufficient quality for
practical applications, such as training machine learning models or conducting statistical anal-
yses. The data utility thus measures the usefulness of the synthetic data when used in a
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downstream task. Privacy preservation evaluates the degree to which synthetic data protects
against re-identification attacks and membership inference, ensuring that individual records
cannot be traced back to real entities [67]. This thesis focuses on the data fidelity and utility
measures, leaving privacy preservation assessment for future work.
These quality dimensions exist in tension with one another, creating what is commonly re-
ferred to as the privacy-utility trade-off [77]. Increased privacy protection through greater data
transformation typically results in a reduction in statistical fidelity and downstream utility. Con-
versely, maintaining high utility often requires preserving fine-grained statistical relationships
that may inadvertently leak sensitive information [67].

Synthetic Tabular Data Generating synthetic tabular data presents unique challenges that
distinguish it from other synthetic data domains, such as images or text. Tabular datasets
typically contain heterogeneous feature types, including categorical variables, continuous nu-
merical values, ordinal features, and binary indicators, each requiring specialized handling
during the generation process [74].
One key challenge of tabular data is the presence of mixed data types. Categorical variables,
particularly those with varying cardinalities (the number of unique values per categorical vari-
able), require distinct treatment from numerical features, and their interactions can introduce
additional complexity into the modeling process. High-cardinality categories, such as user IDs
or geographic codes. present unique difficulties due to sparse representation and a high risk of
memorization [35]. Furthermore, tabular datasets often include heterogeneous feature distri-
butions, where some features follow conventional distributions, while others exhibit heavy tails,
multimodality, or complex interdependencies. Generative models must preserve these statisti-
cal properties and maintain logical coherence across features. Class imbalance and rare cate-
gories introduce an additional layer of complexity, particularly in domains such as fraud detec-
tion or healthcare, where positive instances are either scarce or overrepresented. Generative
models must accurately capture these low-frequency events while avoiding mode collapse,
where the model generates only a limited set of frequent patterns, and over-smoothing, where
the outputs become overly averaged and lose meaningful variation across samples [76, 67].
Finally, tabular data often contains feature dependencies that reflect domain-specific rules or
logical constraints—for example, age may correlate with education level, or specific combina-
tions of features may be invalid. A good generative model must preserve these relationships
without overfitting to the training data.

Synthetic Relational Data Compared to creating synthetic data for a single flat table, gen-
erating synthetic data for relational databases presents considerable difficulties, stemming
from their composition of several interconnected tables. In the context of relational datasets,
specifically those stored using relational database management systems (RDBMS), keys are
attributes or sets of attributes that uniquely identify rows within a table or define relationships
between tables [17]. Common types include primary keys, which ensure row uniqueness, and
foreign keys, which enforce referential integrity between related tables. Because primary and
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foreign key links create complex dependency structures that mirror actual relationships in the
data, maintaining the integrity of these relationships is crucial in multi-table setups. This work
focuses on datasets where one parent table is connected to one child table, a setting we refer
to as relational. Datasets with more than two tables are referred to as multi-table datasets,
which is out of the scope for this work but is covered by some recent methods [30, 54].

Additional Complexity of Relational Data Maintaining referential integrity is the key chal-
lenge in generating synthetic relational datasets. Primary keysmust remain unique within each
table, and foreign keys must accurately reference existing primary key values from their par-
ent tables. Violations of these constraints create records that disrupt the logical structure and
render the generated synthetic data invalid. To address this challenge, contemporary meth-
ods such as ClavaDDPM [54] explicitly enforce these constraints by generating parent tables
before their children tables in a coordinated, schema-aware process. Accurately replicating
cardinality relationships between tables presents another crucial aspect for generating realis-
tic datasets. One-to-many connections, such as the relationship between customers and their
orders, require managing the distribution of child rows associated with each parent to maintain
consistency and realism. Many-to-many relationships, such as datasets of students that can
enroll in multiple courses, are often implemented via junction tables and increase complexity
by requiring consistency across multiple relational paths.

Time-based constraints add another layer of challenge, as many schemas require events to
follow logical sequences, such as customer registration preceding order placement and pay-
ment records following order completion. Properly managing these causal sequences requires
modeling more than just static referential links; it involves capturing business logic and domain-
specific constraints. Finally, cross-table semantic constraints, such as ensuring that employee
salaries fall within the defined ranges for their job or that student enrollment dates occur within
valid academic periods, must be respected. Without these checks, synthetic datasets risk con-
taining logically impossible or inconsistent scenarios. Effectivemethods combine schema- and
constraint-aware design with generative modeling to ensure multi-table logical consistency.

3.2. Generative Modeling Approaches and Architectures
This section examines the architectural changes that have led to the development of the lat-
est models for relational synthetic data. We examine the evolution from traditional statistical
methods to current deep learning approaches, focusing on how each model addresses the
challenges of tabular data. The section provides a detailed analysis of transformer and diffu-
sion model structures, comparing their benefits and drawbacks for synthetic data output. This
architectural understanding forms the basis for identifying specific areas where transformer
models can be improved for relational data synthesis.

Evolution of Synthetic Data Generation Early synthetic data generation relied on tradi-
tional statistical methods. Parametric approaches used standard distributions, such as Gaus-
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sian or copula models, to generate new samples [7]. These methods worked well for simple
datasets but struggled with complex relationships and high-dimensional data. Non-parametric
techniques, such as bootstrap sampling, offered more flexibility but could not generate truly
novel examples beyond resampling existing data points. Machine learning brought new possi-
bilities. Decision trees and Bayesian networks could model conditional dependencies between
variables, enabling more sophisticated synthetic data generation. Bayesian networks proved
particularly useful for tabular data as they could capture feature relationships explicitly. How-
ever, these approaches still faced limitations when dealing with complex non-linear patterns
and high-dimensional feature spaces.

Deep learning transformed synthetic data generation through several key paradigms. Genera-
tive Adversarial Networks (GANs) [28] introduced adversarial training approaches for generat-
ing realistic data. Variational Autoencoders (VAEs) [42] established probabilistic frameworks
for learning data representations. More recently, diffusion models have emerged as powerful
alternatives with enhanced stability and data quality [36]. Transformer architectures, initially
designed for natural language processing [70], have also been adapted for tabular data gen-
eration, bringing the power of attention mechanisms to synthetic data tasks.

Generative Adversarial Networks (GANs) GANs train two neural networks in competition:
a generator creates synthetic samples while a discriminator tries to identify fake data [28].
The generator G learns to map random noise z ∼ pz(z) to synthetic samples G(z), aiming
to produce data indistinguishable from the real distribution pdata(x). Simultaneously, the dis-
criminator D attempts to distinguish real samples x ∼ pdata from generated ones. Training
proceeds through a minimax game with the value function being defined by Equation 3.1.

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log (1−D(G(z)))] (3.1)

Here,D(x) estimates the likelihood that a sample x comes from the real data distribution, while
G(z) generates synthetic samples from random noise z. The generator learns to produce
data that can deceive the discriminator, which in turn learns to better distinguish between
real and fake data, creating an adversarial process that pushes both networks to improve.
Figure 3.1 presents an overview of the GAN architecture, showing the computation of both
the discriminator and generator loss and how they influence both models during training.

Generator

Discriminator

Loss
Function

Loss
Function

Figure 3.1: GAN architecture.
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For tabular data, the GAN framework faces unique challenges. Mixed data types require
special handling, as standard GAN architectures typically work with continuous values. CT-
GAN [74] addresses this by using mode-specific normalization for continuous features and
categorical encodings for discrete variables. Training instability represents another significant
challenge for tabular GANs. Mode collapse can cause the generator to produce limited di-
versity in synthetic samples. Class imbalance in the training data can lead to inadequate
representation of minority classes in the generated samples. Various techniques have been
proposed to address these issues, including modified loss functions and training procedures.

Variational Autoencoders (VAEs) VAEs combine neural networks with probabilistic model-
ing to learn latent representations of data [42]. An encoder maps inputs to a latent distribution,
typically a Gaussian distribution, and a decoder reconstructs samples from this space, en-
abling the generation of new data using the Training a VAE involves maximizing the evidence
lower bound (ELBO) on the data likelihood, which balances the accuracy of reconstruction
and regularization of the latent space. For an input x, the ELBO is given by Equation 3.2.

LELBO(x) = Ez∼qϕ(z|x) [log pθ(x|z)]−DKL (qϕ(z|x) ∥ p(z)) (3.2)

Here, qϕ(z|x) is the encoder, or approximate posterior, pθ(x|z) is the decoder, modeling the
likelihood of the data given the latent variables, and p(z) is the prior over the latent space,
typically chosen as a standard normal distribution. The reconstruction term encourages the
model to reproduce the input data accurately. In contrast, the Kullback–Leibler (KL) divergence
term regularizes the latent space to remain close to the prior, which helps ensure smooth
interpolation and meaningful structure in the generative process.

TVAE [74] adapts this framework for mixed-type tabular data by using a Bayesian Gaussian
Mixture Model for continuous features and one-hot encoding for categorical features. VAEs
offer more stable training than GANs, with reconstruction loss and KL divergence providing
reliable learning signals, especially useful for small datasets. However, they can suffer from
posterior collapse, where the model ignores the latent variables, resulting in smooth or unre-
alistic samples. Additionally, the Gaussian latent assumption may limit their expressiveness
for complex tabular distributions.

Graph Neural Networks (GNNs) GNNs offer a novel approach to tabular data generation by
representing features as nodes and their dependencies as edges [62]. These graphs can be
constructed using statistical measures, such as correlation, or learned during training, some-
times incorporating domain knowledge to improve their structure. The core mechanism of
GNNs ismessage passing, where each node iteratively aggregates information from its neigh-
bors to update its representation. At layer l+1, the representation h

(l+1)
v of node v is updated

via Equation 3.3.

h(l+1)
v = σ

 ∑
u∈N (v)

f
(l)
θ

(
h(l)v , h(l)u , euv

) (3.3)
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Here, N (v) denotes the neighbors of node v, h(l+1)
v is the node’s embedding at layer l, euv

represents edge features, f (l)
θ is a learnable message function, and σ is a non-linear activation

function.

Through iterativemessage passing, GNNs can capture complex, higher-order relationships be-
tween features, making them potentially well-suited for structured generative modeling tasks.
However, their application to tabular data presents significant challenges. Unlike natural graph
domains such as social networks, tabular data lacks inherent graph topology, the structural
arrangement of connections between data points, requiring researchers to construct artificial
graphs based on feature correlations or domain knowledge. This graph construction process
is often non-trivial and domain-specific. Additionally, GNNs introduce computational overhead
compared to traditional tabular methods and suffer from limited interpretability, as the learned
feature interactions through message passing are challenging to explain or validate.

Denoising Diffusion Probabilistic Models (DDPMs) Diffusion models work by gradually
adding noise to data during a forward process, then learning to reverse this process to gen-
erate new samples [36]. The forward diffusion process converts data to pure noise through
a series of small steps. The training objective of DDPMs is to learn the reverse denoising
process by minimizing the difference between the true noise and the predicted noise. The
forward process adds Gaussian noise over T steps, as defined in Equation 3.4.

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (3.4)

To approximate the reverse process, the model uses a neural network ϵθ(xt, t) and minimizes
the simplified loss shown in Equation 3.5.

Lsimple = Ex0,ϵ,t
[
∥ϵ− ϵθ(xt, t)∥2

]
(3.5)

Here, ϵ ∼ N (0, I) is the true noise, xt is the noisy version of x0 at timestep t, and ϵθ is trained
to denoise it. This loss function encourages the model to learn an accurate reverse process,
enabling high-quality sample generation.

TabDDPM [44] adapts diffusion models specifically for tabular data. It handles mixed data
types by applying different noise schedules to categorical and continuous features. The model
learns to denoise tabular data while preserving feature relationships and distributions. Diffu-
sion models generally exhibit more stable training than GANs and can produce high-quality
samples, though they require more computational resources during generation.

Transformer Architectures Transformers use self-attention mechanisms to model relation-
ships between sequence elements [70]. Each layer of a transformer employs a self-attention
mechanism to update the representation of each input token, taking into account its relation-
ships with all other features in the input. This allows the model to capture complex dependen-
cies between features, regardless of their position or type. The core operation behind this is
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called scaled dot-product attention, as defined in Equation 3.6.

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (3.6)

Here,Q,K, and V are the query, key, and value, respectively. They are computed by applying
learned linear projections to the input embeddings. Intuitively, the query Q represents what
each token is trying to focus on, the keyK represents the content of each token, and the value
V contains the information to be aggregated. The attention mechanism works by comparing
each query to all keys using a dot product, determining how much attention each token should
pay to other tokens. The resulting attention weights are normalized with the softmax function
and used to compute a weighted sum of the values V , yielding an updated representation for
each token. To stabilize gradients during training, the dot products are scaled by a factor of
√
dk, where dk is the dimensionality of the keys.

There are three main types of transformer architectures: decoder-only transformers, encoder-
only transformers, and encoder-decoder transformers. Decoder-only transformers such as
GPT-2 [59] and Llama [68] generate outputs one token at a time by attending only to past
inputs, which is why they are also referred to as autoregressive models. When predicting
the value of a token at position t, these models prevent attending to information from token
positions t + 1, t + 2, . . . , by applying masking to these future attention weights. This type of
self-attention is called causal self-attention. Decoder-only transformers are commonly used for
text or data generation tasks. This is the primary architecture used in most generative models.
Encoder-only transformers such as BERT [20], encode the entire input sequence simultane-
ously using bidirectional self-attention, capturing rich contextual representations. These are
mainly used for classification, regression, or embedding tasks where no generation is required.
Encoder-decoder transformers such as T5 [60] and BART [46], use the encoder to process
the input and the decoder to generate an output sequence, attending to both the encoder’s
output and previously generated tokens. This setup is effective for tasks like translation, sum-
marization, or conditional data generation.

Adapting transformers for tabular data requires tokenizing the samples of each table while
maintaining the per-column information. GReaT [10] tokenizes tabular rows into textual repre-
sentations of feature-value pairs, enabling pre-trained language models to generate synthetic
tabular data without changing the tokenizer. The attention mechanism allows transformers
to model complex feature dependencies. Each feature can attend to all other features in the
table, potentially capturing long-range relationships that simpler models might miss. However,
transformers also face challenges with tabular data, including the need for careful tokeniza-
tion strategies and position encoding schemes that make sense for non-sequential tabular
features.

Transformer vs. Diffusion: Comparative Analysis A key difference between transformer-
based and diffusion-based models lies in data preprocessing. Diffusion-based models op-
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erate exclusively in numerical feature spaces, requiring all categorical or textual features to
be encoded before training. Commonly used encoding schemes include label encoding, one-
hot encoding, frequency encoding, target encoding, or learning embeddings. Each encoding
scheme carries a trade-off in terms of bias, dimensionality of the encoded data, and gen-
eralization performance [32, 51]. This makes data preprocessing for diffusion models time-
consuming and prone to performance issues when selecting the incorrect encoding scheme.
One-hot encoding, a standard encoding scheme within the field of machine learning [57], for
example, yields poor results when used to train diffusion models because of the sparse and
high-dimensional encoding space generated by one-hot encoding [63]. In contrast to diffu-
sion models, transformer-based models require no data preprocessing due to their tokenized
approach, which can handle different data types natively. This allows transformer-based mod-
els to be trained directly on the raw, unprocessed data, making them more flexible and often
easier to deploy across multiple datasets [70, 21].

In terms of computational cost, transformers rely on the self-attention mechanism that com-
putes attention weights between all token pairs in an input sequence. This leads to a compu-
tational and memory complexity of O(n2), where n is the sequence length[70]. Consequently,
transformers can become inefficient for long or high-dimensional tabular data representations.
On the other hand, diffusion models scale linearly with the input size, as each forward and re-
verse step operates independently over the entire feature vector, regardless of the number of
features or tokens [36, 40]. This makes diffusion-based models more computationally efficient
for datasets where tokenization of features would otherwise result in long sequences.

Another significant distinction lies in the conditioning of features during generation.
Transformer-based models, due to their flexible attention mechanism, can condition genera-
tion on arbitrary subsets of the input. By masking or providing only selected tokens, the model
can infer missing values or generate samples consistent with partial inputs, enabling power-
ful forms of data imputation, augmentation, and conditional generation without architectural
changes [19]. This conditioning behavior effectively provides an empirical estimate of the dis-
tribution of missing or target tokens, based on the observed features. In contrast, diffusion
models typically require architectural adaptations, such as concatenating conditional inputs,
adding feature-specific embeddings, or designing conditional noise schedules, to support sim-
ilar types of conditioning [64].

3.3. Existing Approaches
This section focuses on existing synthetic generative data models and their evolution from
mainly GAN-based models to transformer- and diffusion-based models of recent years. A
more detailed analysis is provided for REaLTabFormer and ClavaDDPM, which serve as rep-
resentative examples of diffusion and transformer architectures for relational data generation.
These models serve as the foundation for our research, and understanding their capabilities
and limitations is essential for identifying opportunities for architectural improvements.
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GAN-Based Methods MedGAN [16] represents one of the earliest applications of GANs in
the context of tabular data. In combination with an auto-encoder, MedGAN learns the distri-
bution of discrete variables of electronic health records while maintaining acceptable levels of
privacy risk. Table-GAN [55] extended the DCGAN [58] framework specifically for general tab-
ular data generation, moving beyond the domain-specific application of MedGAN. This model
introduced architectural changes to handle mixed data types often found in tabular data, in-
cluding both continuous and categorical variables. TGAN [73] incorporated domain-specific
knowledge about tabular data structures and introduced techniques for better handling of
categorical variables through specialized encoding schemes. The model demonstrated im-
proved fidelity in preserving statistical properties of the original data compared to its predeces-
sors. CTGAN [74] introduced conditional generators that could be trained to generate sam-
ples based on specific categorical conditions, significantly improving the quality of generated
data for imbalanced datasets while also being able to handle multi-model non-Gaussian data,
and severe imbalance of categorical columns. CTGAN also incorporated mode-specific nor-
malization techniques to effectively handle skewed continuous distributions. CTAB-GAN [78]
advanced conditional GANs for tabular data by effectively modeling diverse data types, in-
cluding a mix of continuous and categorical variables, and addressing data imbalance and
long-tail distributions. CTAB-GAN achieved this by introducing classification loss, information
loss, and generator loss into the conditional GAN framework, along with a conditional vector
designed for mixed data types and skewed distributions. CTAB-GAN+ [79] further improved
upon CTAB-GAN by incorporating an auxiliary classifier/regressor for additional supervision,
enabling more efficient modeling of continuous, categorical, and mixed variables through a
novel data encoding scheme. CTAB-GAN+ enhanced GAN training stability and effective-
ness using the Wasserstein GAN with Gradient Penalty (Was+GP) and included information,
downstream, and generator losses.

VAE-Based Methods VAEs offer another powerful approach for synthetic data generation
by learning a latent representation of the data distribution. TVAE [74], developed by the same
authors as CTGAN, adapted a VAE for mixed-type tabular data generation. Similar to CTGAN,
it leveraged mode-specific normalization for continuous columns and conditional generation
based on categorical columns to handle class imbalance. Graph-VAE [49] extended the VAE
framework by integrating GNNs to generate realistic synthetic relational data. This method
was shown to accurately preserve the structures of real datasets, even for large datasets with
advanced data types. VAE-GMM [2] proposed a novel VAE-based model that integrates a
Bayesian Gaussian Mixture Model within the VAE architecture. This approach overcomes
the limitations of assuming a strictly Gaussian latent space, common in traditional VAEs like
TVAE, by leveraging the inherent distribution approximation capabilities of GMMs. It also offers
enhanced flexibility through the use of various differentiable distributions for individual features,
allowing it to effectively handle both continuous and discrete data types.
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Hybrid Methods TabSyn [76] is a hybrid model that combines two transformers in an au-
toencoder setup to convert raw tabular inputs into a continuous latent space. A score-based
diffusion model operates within the learned latent space to capture and generate the distribu-
tion of the training dataset.
GOGGLE [47] (Generative mOdellinG with Graph LEarning) is a framework for generating syn-
thetic tabular data by learning both the relationships between features and how those features
influence one another. It builds on a VAE, where the decoder is a Message Passing Neural
Network (MPNN). This MPNN uses a learnable, weighted graph that represents the inferred
structure of dependencies between features.

Diffusion-Based Methods DDPMs, initially successful in image synthesis, have recently
been adapted for tabular data, demonstrating competitive performance. However, applying
diffusion models to tabular data with mixed data types is not straightforward. Diffusion models
natively operate in continuous state spaces because their core mechanism involves gradually
adding Gaussian noise to data and then learning to reverse this process, which inherently
requires continuous-valued representations. This diffusion and denoising process relies on
differentiable transitions and smooth probability distributions, features not present in discrete
state spaces, where data changes occur in jumps rather than smoothly. In discrete spaces,
such as text or categorical labels, there’s no natural way to define or addGaussian noise, nor to
compute gradients through sampling steps, making it difficult for standard diffusion models to
handle such data directly. Recent work [5] has provided the foundations for applying diffusion
models to discrete state spaces, enabling their use with tabular data.

TabDDPM [44] introduced a simple yet effective DDPM design specifically for tabular data syn-
thesis, capable of handling mixed data types. TabDDPM addresses heterogeneity by using
two separate diffusion processes: a DDPM with Gaussian noise for numerical columns and a
multinomial diffusionmodel for categorical columns. TabDDPM has consistently demonstrated
superior performance over GAN-based and VAE-based alternatives in generating tabular data.
STaSy [41] applies score-based generative modeling to tabular data synthesis, addressing the
training instability that arises from tabular data’s complex multi-modal distributions through a
self-paced learning strategy that progressively trains on samples from easy to hard, followed
by fine-tuning. This approach demonstrates superior performance compared to existing GAN-
based and other generative methods for tabular data. CoDi [45] proposed using two diffusion
models, one for numerical and one for categorical columns, that are inter-conditioned on each
other to model the joint distribution. It also adopted contrastive learning methods to bind the
two diffusion processes further. RelDDPM [48] introduced a novel framework for controllable
tabular data synthesis using diffusion models, capable of guiding the generative process to
fulfill different conditions. RelDDPM specifically utilizes an unconditional DDPM tailored for
tabular data, handling categorical attributes by incorporating a multinomial diffusion process,
similar to TabDDPM. Conditioning is achieved through the use of controller modules that can
steer the generation of synthetic samples at inference time without requiring retraining of the
model. RelDDPM is suitable for multi-table datasets; however, since it requires initial condi-
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tioning to generate samples and cannot be used for complete table synthesis as is, we exclude
it from our benchmark experiments.

Diffusion-Based Methods: ClavaDDPM ClavaDDPM (Cluster Latent Variable Guided De-
noising Diffusion Probabilistic Model) [54], also referred to as Clava, is designed for the syn-
thesis of multi-relational (multi-table) datasets. This setting extends beyond the standard two-
table relational setting covered in this thesis, allowing for both deeper relations and multiple
related parent tables. In doing so, ClavaDDPM addresses the challenges related to scalability
and capturing long-range dependencies across tables.

The fundamental innovation of ClavaDDPM lies in its use of clustering labels as intermedi-
aries to model relationships between tables, with a particular focus on foreign key constraints.
Rather than directly modeling the conditional distribution p(gj |yj) where gj represents a for-
eign key group and yj is the parent row, ClavaDDPM introduces latent variables c to achieve
conditional independence: gj⊥yj |c. This allows the data modeling problem to be reformulated
as shown in Equation 3.7.

p(gj , yj) =
∑
c

p(gj |c)p(yj |c)p(c) =
∑
c

p(gj |c)p(yj , c) (3.7)

The conditioning space of the parent row y can be both noisy and of high dimensionality,
which can lead to poorly learned conditional distributions and worsen the quality of generated
samples. By conditioning on a cluster label, the conditioning space complexity is reduced
while maintaining the ability to capture inter-table correlations.

ClavaDDPM operates using three distinct phases: Phase 1: Latent learning and table aug-
mentation. First, the latent variables c are learned on the joint space (X;Y ), with X the child
table data and Y the parent table data, using Gaussian Mixture Models (GMMs) [18]. Then
relation-aware clustering is applied in the weighted joint space H = (X;λY ) where λ controls
the importance balance of child versus parent features. Using the learned latent variables, the
data is then augmented to create TY = (Y ;C). Phase 2: Training. Using the augmented
parent table TY from phase 1, the diffusion model pθ(y, c) is trained, after which the child dif-
fusion model pϕ(x) is trained on the child table data. Then, a classifier pψ(c|x) is trained to
determine which cluster label a child row belongs to based on its features. Lastly, the foreign
key group size s, where s represents the number of child rows referring to each parent row,
is estimated using p(s|c). Phase 3: Synthesis. The trained parent model pθ can now be
used to generate the synthetic parent table T̃Y , augmented with the synthetic cluster labels
C̃, using T̃Y = (Ỹ ; C̃) ∼ pθ(·, ·). Then, for each synthetic latent variable c̃j , the sample group
size s̃j ∼ p(·|c̃j) is sampled to determine the number of child samples to be generated. Finally,
the child rows are generated using the classifier-guided sampling: x̃ij ∼ pϕ,ψ(·|c̃j), where x̃ij
denotes the i-th synthetic child row belonging to parent j. pϕ,ψ(·|c̃j) denotes the combination
of using the child table diffusion model pϕ and the classifier pψ to generate child table samples
conditioned on the cluster label.
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Transformer-Based Methods Recent advancements in Large Language Models (LLMs)
have created new opportunities for generating synthetic tabular data by harnessing the strong
generative capabilities and proficiency in handling textual representations of data of LLMs.
GReaT [10] introduced the first approach for synthesizing realistic, heterogeneous tabular data
using an autoregressive generative LLM. It builds on a decoder-only GPT-2 architecture [59] as
its backbone. To apply language modeling to tabular data, GReaT converts rows into textual
sequences by combining feature names with their corresponding values. During training, it
also permutes feature orders to allow for arbitrary conditioning at inference time. TabMT [31]
introduced a novel Masked Transformer (MT) architecture for generating synthetic tabular data.
TabMT is specifically designed to handle heterogeneous feature types and missing values
natively, using enhanced masking strategies to guide the generative process. TabMT has
achieved state-of-the-art performance across a diverse range of tabular datasets, from small
to larger-scale datasets, and offers improved trade-offs between data utility and privacy.

Transformer-Based Methods: REaLTabFormer REaLTabFormer (Realistic Relational and
Tabular Transformer) [65], referred to as RTF, is a transformer-basedmethod designed for gen-
erating both single-table tabular data and relational datasets. RTF utilizes an auto-regressive
decoder-only GPT-2 [59] transformer model to treat tabular data generation as a language
modeling task, enabling the synthesis of realistic synthetic data. Each table row is treated as
a sequence with potential dependencies across column values, similar to sentences in natural
language processing. The conditional probability for xij , the value in row i and column j, is
modelled as the conditional probability of column j, given the previous columns as shown in
Equation 3.8.

xij ∼ P (X|xi1, xi2, . . . , xij−1) (3.8)

For the relational setting, RTF extends this approach to model child table generation condi-
tioned on the parent table context as shown in Equation 3.9.

xnij ∼ P (X|o1i , · · · , xni1, xni2, · · · , xnij−1, Ck) (3.9)

This conditioning thus happens on three types of information; o1i , · · · represents all previously
generated child observations for the parent to capture the inter-observation dependencies,
xni1, x

n
i2, · · · , xnij−1 represents the previous columns in the current child observation being gen-

erated to capture the intra-observation dependencies and finally Ck is the encoded context
from the parent table observation which captures the parent-child relationship. This way, RTF
generates each table cell by considering both the sequential structure within rows and the
relational structure across tables.

For relational data generation, RTF uses a three-phase approach: Phase 1: Parent table
training. RTF uses a GPT-2 model with a language modeling head, as depicted by the third
blue box in 3.2, to model the tabular parent table data. This yields a trained parent table
model. Phase 2: Child table training. In the second phase, RTF implements a sequence-
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Figure 3.2: GPT-2 block, GPT-2 model, GPT-2 model with language modeling head and a sequence-to-sequence
model.

to-sequence (Seq2Seq) architecture, as shown by the yellow rightmost box in 3.2, to learn
both the child table distribution and the parent-child relationships. The encoder is taken as the
pre-trained parent model from phase 1 without the language modeling head, and the decoder
is a new GPT-2 model with a language modeling head. By default, RTF freezes all the weights
in the encoder since those have already been trained. The decoder is capable of generating
arbitrary-length sequences of child observations after training. Phase 3: Synthesis. First,
the parent model is used to generate parent table samples, then these samples are used
as conditional input for the generation of related child samples by the Seq2Seq model. All
related child observations for the same parent table sample get concatenated into a sequence
si = [o1i , o

2
i , · · · , oni ].

RTF employs an entirely text-based strategy for tokenizing data, including numerical values.
Numerical values are tokenized per column. First, all numbers get rounded to a specified
precision, then padding is applied using both leading and trailing zeros to make the number
of characters per column entry equal, after which the resulting string is partitioned into fixed-
length tokens that are then used to create column-specific vocabularies.

Another technique introduced is target masking, which acts as a regularization technique by
randomly replacing target tokens with special mask tokens during training. This prevents the
model from copying training data during data generation, forcing it to generalize and thereby
reducing data copying risks. At inference time, the generation of the special mask token is
disabled to prevent the production of invalid output samples.

To prevent overfitting, the Qδ statistic is combined with boostrapping to detect overfitting with-
out hold-out data: Qδ =

1
N

∑
q(pq−q), where pq represents the proportion of synthetic samples

below the q-th quantile of the real data distribution. This is computed every 5 training epochs.
Whenever the synthetic data is more similar to the sampled subset compared to the real data
in 2 or more consecutive evaluations, training is stopped.



4
Experiments

This chapter presents a comprehensive experimental evaluation of our proposed synthetic
data generation method against established baselines across multiple datasets and evalua-
tion metrics. We compare our approach, which combines layer sharing and contextual cues,
against ClavaDDPM and the RealTabFormer (RTF) baseline, alongside ablation studies that
isolate the individual contributions of layer sharing and contextual cues.

Our evaluation framework utilizes data fidelity measures and distributional similarity metrics
to assess the quality of synthetic data from multiple perspectives. The experimental design
follows a systematic approach to validate three key questions: whether our combined method
outperforms existing baselines in generating realistic tabular data, how each component (layer
sharing and contextual cues) contributes to overall performance, and whether the improve-
ments are consistent across different evaluation methodologies. We employ LD and DM met-
rics for data fidelity assessment, complemented by distributional similarity measures (Wasser-
stein distance andMaximumMeanDiscrepancy) and classification-based overlap assessment
(AUC), applied to UMAP projections to provide a comprehensive view of synthetic data quality.
All experiments are conducted on standardized train-test splits to ensure fair comparison.

The following sections detail the experimental setup, introduce the datasets used, present
comparative results across different datasets, and provide an analysis of the key findings that
validate the effectiveness of our approach.

4.1. Experimental Setup
This section outlines the experimental setup used to conduct the experiments presented in
this chapter and the research paper included in chapter 2.

Hardware All experiments were conducted on a workstation equipped with an AMD Ryzen
7950X CPU, 64 GB of DDR5 RAM, and an NVIDIA RTX 4090 featuring 24 GB of VRAM.

28
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Please note that due to a mismatch in the required CUDA drivers, all results for the GOGGLE
baseline were obtained by running on the CPU instead of the GPU, resulting in longer training
times.

Metrics To assess the data utility of synthetic data, we use the Machine Learning Efficacy
(MLE) [75] for single-table evaluation, which measures how effectively machine learning mod-
els perform when trained on synthetic data and tested on real samples. To mitigate bias from
model selection, we employ a diverse set of five machine learning models per dataset: De-
cision Tree (DT) [13], Random Forest (RF) [12], Gradient Boosting [26], AdaBoost [25], and
XGBoosted Random Forest [15]. For each trained model, we generate 5 distinct samples with
the same length as the test dataset. Performance scores are aggregated, and the arithmetic
mean and standard deviation are reported.

Data Preprocessing Since the metrics introduced in the previous paragraph all solely work
on numerical data, encoding schemes are needed to evaluate generated samples. For the
Breast Cancer, California Housing and Magic datasets no encoding is needed since all fea-
tures are fully numerical. For the Adult Income and Shoppers dataset, one-hot encoding is
used to convert raw samples generated from models like RTF or samples in possibly different
encodings, such as those from ClavaDDPM, into the same space. For the relational datasets,
we encode the foreign key columns using incremental label encoding and pick the encoding
for the other columns depending on the dataset. The Airbnb dataset contains many cate-
gorical features; therefore, applying one-hot encoding would result in a dataset that is too
high-dimensional. To avoid the ordered data space of label encoders, we encode the AirBnB
dataset using an adjusted version of frequency encoding, which we label as centered fre-
quency encoding. This type of encoding eliminates the possibility of two distinct categories
being mapped to the same encoded value, which can occur naturally with standard frequency
encoding. LetX be a categorical variable with categories c1, c2, . . . , ck and corresponding rela-
tive frequencies f(c1), f(c2), . . . , f(ck), sorted in descending order of frequency. The centered
frequency encoding enc(ci) for category ci can be computed as defined in Equation 4.1.

enc(ci) =

 i∑
j=1

f(cj)

− f(ci)

2
(4.1)

The Rossmann dataset is encoded with one-hot encoding for both the parent and child tables.
For the FTP dataset, the ‘sessions’ parent table, which contains information on user online
browser sessions, only has one categorical value, representing the gender of the user; we
encode this using a simple label encoder. The ‘products‘ child table of the FTP dataset holds
data on what products users have been viewing during their browser sessions and consists
of a session ID linking the viewing to a user session in the parent table. The remaining five
features are categorical, grouping the viewed product in specific subcategories. One of these
categories, ‘category_d’, has |category_d| = 36, 092 while the total number of samples in the
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product table is 66,491. Applying one-hot encoding to this table is thus not feasible, and using
centered frequency encoding would map all values to be close to each other, thereby losing
much of the context. As such, this table is encoded using incremental label encoding.

A simple experiment running ClavaDDPM on the Adult dataset using three encoding schemes
shows that centered frequency encoding can bring benefits in both data fidelity and utility
scores for numerical methods. These results can be found in Table 4.1

Table 4.1: MLE and DM scores for training ClavaDDPM on the Adult Income dataset using different encoding
schemes; incremental label encoding (Label Enc.), centered frequency encoding (Freq. Enc.), and one-hot
encoding (One-Hot Enc.).

Metric Original Label Enc. Freq. Enc. One-Hot Enc.

MLE 0.10±0.00 0.11±0.00 0.10±0.00 0.15±0.00

DM 0.00±0.00 0.08±0.03 0.06±0.03 0.40±0.06

Ttrain - 355 401 435

4.2. Datasets
Table 4.2: Overview of datasets used, with names of the Parent and Child Tables for relational datasets. In the
‘Task’ column Bin. denotes Binary, Class. denotes Classification, Multi. denotes Multi-class and Reg. denotes
regression.

Dataset Table #Rows #Columns Task
Cat. Num.

Single-table

Breast Cancer Wisconsin [72] 569 1 30 Bin. Class.
California Housing [53] 20,640 0 9 Reg.
Adult Income [8] 45,222 9 6 Bin. Class.
Magic Gamma Telescope [9] 19,020 1 9 Bin. Class.
Shoppers [61] 12,330 7 9 Bin. Class.

Relational

AirBnB User Bookings [33] Users 10,000 13 3 Multi. Class.Sessions 191,025 5 1

Rossmann Store Sales [43] Stores 1,115 3 7 Reg.Sales 68,015 3 6

FTP [52] Sessions 15,000 1 3 Bin. Class.Products 33,455 5 1

Table 4.2 gives an overview of all datasets used as benchmarks within this thesis. The follow-
ing paragraphs provide a brief introduction to each dataset, beginning with the five single-table
datasets and concluding with three relational datasets, each comprising one parent and one
child table.
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Single-Table Datasets
The Breast Cancer Wisconsin (Breast Cancer) [72] dataset contains diagnostic measure-
ments from breast mass samples, where the task involves classifying tumors as malignant or
benign based on computed features from digitized images. This binary classification problem
involves 30 numerical features derived from cell characteristics, including radius, texture, and
smoothness. The number of samples is limited to 569.

The California Housing (Cali. Housing) [53] dataset presents a regression challenge involv-
ing median house values of homes in California. The dataset incorporates geographical and
demographic variables, including median income, housing age, average rooms per house-
hold, and population density, making it suitable for evaluating models on continuous target
prediction.

The Adult Income (Adult) [8] dataset, derived from the 1994 US Census, poses a binary
classification task to predict whether an individual’s annual income exceeds $50K. This dataset
combines categorical features such as education level, marital status, and occupation with
numerical attributes like age and hours worked per week, providing a realistic scenario with
mixed data types.

The MAGIC Gamma Telescope (Magic) [9] dataset originates from high-energy physics ex-
periments aimed at distinguishing gamma-ray signals from background noise in telescope ob-
servations. The binary classification task relies on features extracted from image parameters,
offering a domain-specific challenge with only numerical inputs.

The Online Shoppers Purchasing Intention (Shoppers) [61] dataset captures user behavior
during e-commerce website sessions to predict purchase completion. Features include ses-
sion duration metrics, page visit counts, traffic sources, and temporal information, representing
a modern application area with practical commercial relevance.

Relational Datasets
To evaluate the performance of the benchmark and proposed generative relational models,
we use three datasets, each with one parent and one child table.

The AirBnB New User Bookings (AirBnB) [33] dataset involves predicting the first booking
destination for new users, incorporating user demographics, session logs, and destination
information.

The Rossmann Store Sales (Rossmann) [43] dataset focuses on forecasting daily sales for
a chain of stores, utilizing historical sales data, store attributes, and external factors like pro-
motions and holidays.

The FTP [52] dataset contains user browsing sessions in the parent table with correspond-
ing product viewings in the child table. Initially, the task corresponding to the dataset was
predicting the gender of a user based on all their product viewings.
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4.3. Data Representation Experiments
Our experiments regarding different data representations are two-fold; first, we evaluate whether
the performance of RTF is affected when we create a relational dataset by splitting a single-
table dataset into two separate tables. The second experiment we perform evaluates the effect
of data denormalization, in which we join the parent and child tables of the relational datasets
to yield a single joint table; more details can be found in the research paper in chapter 2. The
results of this experiment correspond to Table 2 of the research paper and are presented in
corrected form in Table A.1.

Training RTF on Split California Housing Dataset
We selected the California Housing dataset as a representative single-table dataset with a
substantial number of samples and features. As the primary key, we take the ‘MedInc’ and
‘AveOccup’ columns, which represent the median household income and the average number
of occupants per household, respectively.

Table 4.3: MLE and DM scores for training RTF model on the split California Housing dataset. ‘Full’ denotes an
RTF model with 12 layers in the GPT-2 models instead of the default of 6 layers.

Metric Original RTF Left to Right Right to Left

RTF RTF Full RTF RTF Full

MLE 0.35±0.09 0.36±0.08 5.89±0.24 3.23±0.21 0.57±0.05 0.56±0.07

DM 0.01±0.00 0.16±0.04 0.89±0.02 0.84±0.03 0.74±0.05 0.68±0.06

Ttrain - 652 611 1381 779 1432

Experiment Summary: Training RTF model on the split California Housing dataset.
Training is performed starting with the left side of the table as the parent table and the
right side as the child table (Left to Right) and the other way around (Right to Left).

Key Takeaway: Starting training from the right table performs significantly better com-
pared to starting with the left side. Performance is still degraded compared to training on
a single table.

4.4. Layer Sharing
This section covers experiments related to our proposed layer-sharing technique, as intro-
duced in the research paper. We investigate what layers to share and how many layers to
use.

What Layers to Share?
Our layer-sharing technique can be applied to any subset of the GPT-2 layers. When a layer
is selected to be shared between the encoder and decoder in the Seq2Seq model, its weights
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get frozen during training on the child table. Any layer that is not being shared does not get
frozen and will be trained from a random initialization.

Table 4.4: Evaluation of sharing different layers with evaluation on Discriminator Measure (DM), Logistic Detection
(LD) scores, and train duration. Scores are reported as mean±standard deviation. For DM, lower is better; for LD, higher
is better. Best scores are highlighted in boldfaceboldface and second-best are underlined.

Metric Original Shared Layers

RTF First 2 Middle 2 Last 2 All

AirBnB

Parent LD 97.82±1.66 52.63±1.55 50.85±2.51 52.57±2.45 52.46±2.19 51.55±1.36

DM 0.02±0.01 0.57±0.05 0.56±0.04 0.56±0.05 0.56±0.05 0.57±0.04

Child LD 91.23±1.05 42.22±1.65 28.73±0.57 28.47±0.78 20.61±0.32 71.85±0.75

DM 0.05±0.02 0.44±0.05 0.53±0.04 0.55±0.06 0.64±0.05 0.35±0.07

Ttrain - 2762 2535 2321 2286 4347

Experiment Summary: We compare layer sharing by only sharing a subset or all layers
of the GPT-2 model between the encoder and decoder in the sequence-to-sequence
model. When layer sharing is applied, the shared layers are frozen, while the remaining
layers remain unfrozen.

Key Takeaway: Layer sharing yields no performance improvement and even degrades
performance when not applied to all layers.

Number of Layers
After establishing the importance of applying layer sharing to all layers in the GPT-2 model,
we aim to find out what a good number of layers to use is. By default, inspired by GReaT and
RTF, we use the distilled configuration of GPT-2 which has 6 layers with an embedding size
of 768.
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Figure 4.1: Layer sharing experiment to evaluate the impact of the number of layers when using layer sharing.
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Table 4.5: Comparison of the number of layers used by our model. The experiments under ‘Number of Layers’
include both layer sharing and contextual cues.

Metric Original Number of Layers

RTF 1 2 3 4 5 6 9 12

Parent LD 97.82±1.66 52.63±1.55 87.18±1.54 87.20±2.01 83.83±1.52 86.60±1.12 84.16±0.00 87.24±2.31 80.76±0.00 79.02±0.00

DM 0.02±0.01 0.57±0.05 0.16±0.04 0.15±0.04 0.18±0.05 0.18±0.05 0.17±0.01 0.17±0.06 0.19±0.00 0.21±0.00

Child LD 91.23±1.05 42.22±1.65 54.23±0.48 49.05±0.83 58.58±0.34 41.80±0.35 31.27±0.00 67.18±0.53 47.00±0.00 69.00±0.00

DM 0.05±0.02 0.44±0.05 0.46±0.06 0.51±0.09 0.43±0.10 0.52±0.07 0.58±0.00 0.33±0.07 0.46±0.00 0.35±0.00

Ttrain - 2762 1048 1198 1579 2055 2280 3228 3746 4757

Experiment Summary: Comparison of using different numbers of layers for the GPT-
2 encoder and decoder when applying layer sharing and using contextual cues. RTF
represents the baseline RTF model without any changes made.

Key Takeaway: The default number of six transformer layers yields the best perfor-
mance for both the parent and child tables across LD and DM scores. Using more than
six layers appears to impact performance and training time negatively. A smaller number
of layers, specifically one or three, does yield surprisingly good LD scores for the parent
table at the cost of lower LD and DM scores for the child table.

4.5. Contextual Cue
Building on our experiments using contextual cues, as introduced in the research paper, we
present two new experiments summarized in Table 4.6. To obtain the contextual cues, our data
needs to be in a fully numerical space. Since the selected relational datasets contain mixed
data types, we require encoding or learning embeddings of the raw data. In the research paper,
we’ve shown that using learned embeddings from TransTab [71] yields worse performance
compared to a simple one-hot encoding, while also requiring significantly more training time.

To optimize the contextual cues, we compare different clustering methods, inspired by ClavaD-
DPM [54], and evaluate their performance in both one-hot encoded and label-encoded feature
spaces.

Data Encoding & Clustering Method
ClavaDDPM introduced four different clustering techniques: using a Gaussian Mixture Model
(GMM), using a Bayesian Gaussian Mixture Model with variational inference (Variational) for
soft probabilistic cluster assignments, using k-Means clustering (k-Means) for hard partitioning,
and using a hybrid approach that combines GMM with K-means++ initialization for improved
convergence (Both).
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Table 4.6: Performance comparison across different data encoding methods and clustering techniques.

Metric Original One-Hot Encoding Label Encoding

RTF GMM Variational k-Means Both GMM Variational k-Means Both

AirBnB

Parent LD 97.82±1.66 52.63±1.55 85.00±2.27 87.08±2.91 84.46±1.36 82.83±0.87 75.11±1.32 78.24±1.14 86.37±2.13 79.22±1.71

DM 0.02±0.01 0.57±0.05 0.19±0.05 0.16±0.05 0.24±0.09 0.17±0.05 0.32±0.08 0.26±0.07 0.17±0.04 0.31±0.11

Child LD 91.23±1.05 42.22±1.65 66.64±0.64 56.20±1.20 59.17±0.66 62.07±0.47 53.66±0.68 43.63±0.59 57.62±0.72 61.91±0.88

DM 0.05±0.02 0.44±0.05 0.28±0.05 0.37±0.04 0.33±0.05 0.34±0.05 0.38±0.04 0.44±0.04 0.35±0.04 0.32±0.05

Ttrain - 2762 2747 2756 4514 2738 3094 2804 2742 4522

Experiment Summary: Comparing performance for generating contextual cues using
different feature spaces and clustering techniques.

Key Takeaway: One-hot encoding provides the best performance improvement using
variational clustering, albeit at the cost of worse child table performance compared to
GMM-based clustering in the same feature space. Label encoding is outperformed by
one-hot encoding across all techniques, except for k-means clustering, where better LD
and DM performance is achieved for the parent table.

4.6. Extended Analysis & Visualization
To gain further insights into the effects of layer sharing and the use of contextual cues, we
present extended visualizations and statistical analyses in this section. This builds upon the
experiments introduced in the research paper.

Working with tabular data provides a challenge in how to visualize the data, plotting the dis-
tribution of each column gives some insights into the performance of each column, but lacks
the structure and relations across the features. We use a UMAP [50] projection to convert
the higher-dimensional tabular data to a 2D feature space. UMAP is a non-linear dimension-
ality reduction technique that projects high-dimensional data into lower-dimensional spaces
while preserving both local and global structure of the data. Unlike linear methods like PCA,
UMAP can capture complex, non-linear relationships in the data, and unlike t-SNE, it better
preserves global structure and is more computationally efficient. For synthetic data evaluation,
UMAP is particularly valuable because it reveals the underlying manifold structure of both real
and generated datasets, allowing visual assessment of whether synthetic data occupies the
same regions of the data space as real data. By comparing UMAP embeddings of real versus
synthetic data, we can determine whether the generative model successfully captures the ac-
tual data distribution’s clustering patterns, density variations, and overall geometric structure—
aspects that are difficult to assess through traditional statistical summaries alone.

We train a UMAP model on the real AirBnB test data and the synthetic data generated by
ClavaDDPM, the RTF baseline, our method, which comprises both layer sharing and using
contextual cues, and the ablations of only using contextual cues or layer sharing. The learned
2D embeddings are visualized through scatter plots that display the spatial distribution of real
versus synthetic samples, with different colors distinguishing between the two. To better reveal
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density patterns and distributional overlap, we overlay Kernel Density Estimation (KDE) [56]
contours on the scatter plots, which highlight regions of high data concentration and provide a
more precise assessment of whether synthetic samples occupy similar areas in the embedding
space as the real data. In these visualizations, we look for better overlap between real and
synthetic data distributions, where fewer isolated blue points, representing real data, indicate
superior coverage by the synthetic model and thus higher data quality.

UMAP Visualization AirBnB User Table
For the user table, we take one synthetic sample per model and the whole test dataset as real
data to train a UMAP model.
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Figure 4.2: UMAP projections of the AirBnB User table and the generated samples by ClavaDDPM,
REaLTabFormer, our model with layer sharing only, our model with contextual cues only, and finally our model
with both layer sharing and contextual cues

Experiment Summary: Comparing the UMAP projections of different generative mod-
els on the AirBnB user table to see the impact of our proposedmethods on the distribution
of the generated data.

Key Takeaway: Contextual cues improve the generated data compared to the baseline
RTF model, as reflected by better data overlap in the UMAP plots for Figure 4.2c and
Figure 4.2e.

UMAP Visualization AirBnB Session Table
Given the high number of samples in the AirBnB session test dataset (39,167 versus 2,000 in
the user table), we take one sample per model from which we randomly sample about a third,
13,055.
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Figure 4.3: UMAP projections of the AirBnB Session table and the generated samples by ClavaDDPM,
REaLTabFormer, our model with layer sharing only, our model with contextual cues only, and finally our model
with both layer sharing and contextual cues

Experiment Summary: Comparing the UMAP projections of different generative mod-
els on the AirBnB session table to see the impact of our proposed methods on the distri-
bution of the generated data.

Key Takeaway: Layer sharing improves the generated data compared to the baseline
RTF model, as reflected by better data overlap in the UMAP plots for Figure 4.3c and
Figure 4.3e. Contextual cues yield no performance improvement on their own for the
session table.

UMAP Statistical Analysis
After training the UMAP model, we obtain embeddings of each synthetic sample. In addition
to the visual comparison provided above, we also conduct a statistical analysis to assess how
well the generated distributions represent the actual data, with results shown in Table 4.7. For
distribution similarity, we use the Wasserstein distance, also referred to as the Earth Mover’s
Distance, which quantifies the minimum cost to transform one probability distribution into an-
other, measuring both location and shape differences. Lower values indicate better overlap,
with 0 representing identical distributions [3]. Also, we use the Maximum Mean Discrepancy
(MMD) [29]. MMD is a kernel-based test that compares distributions by measuring distances
between their mean embeddings, capturing higher-order statistical dependencies. Lower val-
ues indicate better similarity, with 0 representing identical distributions. As a third statistic, we
use the Area Under the ROC Curve (AUC) [11], which is a classification performance metric
that measures a classifier’s ability to distinguish between two classes, ranging from 0.5 (equal
to random guessing) to 1.0 (perfect data separation). For synthetic data evaluation, we train
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a random forest classifier to distinguish between real and synthetic data, with the AUC quan-
tifying how easily the datasets can be separated. Values close to 0.5 indicate good overlap
and indistinguishable distributions, while values near 1.0 suggest easily separable data.

Table 4.7: Statistics derived from the UMAP-generated feature space for the Airbnb dataset. Wass. represents
the Wasserstein distance, MMD the Maximum Mean Discrepancy, and AUC the Area Under the Curve. For Wass.
and MMD, lower is better, while for AUC, a score closer to 0.50 is best. Scores are presented over one run.

Metric RTF Clava OURS Ablation* (subsection 5.3 paper)

Layer Share Context ID

Parent
Wass. 0.72 0.22 0.27 1.05 0.32
MMD 0.0033 0.0010 0.0016 0.0038 0.0015
AUC 0.67 0.53 0.62 0.70 0.56

Child
Wass. 0.56 0.13 0.38 0.43 2.34
MMD 0.0019 0.0002 0.0011 0.0011 0.0035
AUC 0.75 0.54 0.70 0.69 0.87

Table 4.7 shows that using contextual cues yields better data for the parent table, as indicated
by both lower Wasserstein distance and MMD value, as well as an AUC score closer to 0.50,
compared to the baseline RTF model. Furthermore, layer sharing improves the performance
of the child table.

4.7. Other Experiments
This section covers additional experiments that provided no grounds for performance improve-
ments but could be helpful for the reader in understanding the capabilities of transformer-based
relational models.

Training on Partial Datasets
One of the things we investigated was whether transformer-based models could outperform
diffusion-based models when both are trained on subsets of the training data. We test this
by randomly sampling five different subsets of all single-table datasets, except for the Breast
Cancer Wisconsin dataset, which, due to its limited number of samples, was excluded from the
experiment. We then train both ClavaDDPM and the baseline RTF model on these subsets.
We take samples ranging in size from 1% to 100% of the training data.
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Figure 4.4: California housing dataset: scores for training ClavaDDPM and REaLTabFormer on a subset of the
training data.
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(b) Label Encoding: MLE
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(c) Frequency Encoding: MLE
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(d) One-Hot Encoding: DM
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(e) Label Encoding: DM
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Figure 4.5: Adult income dataset: scores for training ClavaDDPM and REaLTabFormer on a subset of the training
data. Different data encoding methods have been used for creating the dataset used by ClavaDDPM.
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Figure 4.6: Magic dataset: scores for training ClavaDDPM and REaLTabFormer on a subset of the training data.
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Figure 4.7: Shoppers dataset: scores for training ClavaDDPM and REaLTabFormer on a subset of the training
data.

Experiment Summary: Sample a fraction of the training data across four different
single-table datasets and train both ClavaDDPM and RTF on the sampled subsets. Per
fraction, we perform five distinct training runs.

Key Takeaway: ClavaDDPM matches or outperforms RTF on almost all datasets, ex-
cept for tiny fractions of the training data, such as 1% as can be seen in Figure 4.5a and
Figure 4.5d. Both models seem to converge to near-optimal performance when around
15-25% of the training data is used. The performance of ClavaDDPM appears unstable
when trained on the one-hot encoded Adult dataset, which can be attributed to the sparse
feature space.
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Tuning Temperature Parameter During Sampling
In this experiment, we investigate the effects of varying the temperature parameter when sam-
pling from the trained baseline RTF model. The temperature parameter, commonly denoted
as T , is a scalar that controls the randomness of sampling from transformer models. Lower
temperatures (T < 1) make the model more deterministic, favoring high-probability tokens,
while higher temperatures (T > 1) increase diversity by flattening the probability distribution,
allowing lower-probability tokens to be sampled more frequently. By default, as is common for
transformer models, RTF uses a temperature value of T = 1.0. Temperature is widely used to
balance between repetition and creativity in generative models [37]. We run the experiment
on all five single-table datasets and the AirBnB dataset.
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Figure 4.8: Results of sampling from a trained RTF model with different values for the temperature (x-axis) and
the corresponding LD and DM metric results on the y-axis. For LD, higher is better, while for DM, lower is better.
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(d) Magic (e) Shoppers

Figure 4.9: Changing the temperature parameter during sampling after training a REaLTabFormer model on single
table datasets.
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Experiment Summary: Varying the temperature hyperparameter T for a trained RTF
model on different datasets.

Key Takeaway: Values below 1.0 yield worse performance in general, while a slightly
higher temperature of up to 1.10 does improve performance on some datasets. Since
the performance improvements are minor, we stick with the default setting of 1.0.

Different Decoder Architecture: Llama
One of the benefits of using transformers is that changing between architectures is straight-
forward, thanks to APIs like the Hugging Face Transformers library. In this experiment, we
replace the GPT-2 decoder used by RTF with an LLaMA-based decoder and train the model
on the Magic dataset. Hyperparameter tuning is applied to both the number of layers (L) and
the size of the hidden states (H). Results are summarized in Table 4.8.

Table 4.8: Comparing the performance of ClavaDDPM, RTF, and RTF using the Llama decoder on the Magic
dataset. ‘2L 4096H’ denotes the usage of a Llama model with 2 layers and a hidden state size of 4096. ‘Num.
Params.’ denotes the total number of model parameters.

Clava RTF 2L 4096H 2L 128H 1L 4096H 1L 2048H 1L 1024H 1L 512H 1L 256H 1L 128H 1L 64H

MLE 0.11±0.02 0.11±0.01 0.12±0.01 0.12±0.01 0.13±0.02 0.13±0.02 0.12±0.01 0.12±0.01 0.12±0.01 0.12±0.01 0.12±0.01

DM 0.04±0.03 0.11±0.03 0.27±0.07 0.05±0.02 0.19±0.05 0.16±0.04 0.14±0.04 0.10±0.03 0.06±0.03 0.05±0.02 0.08±0.04

Train Time (s) 374 1701 1738 1310 1211 583 430 539 1013 951 986

Num. Params. - 43,775,232 409,677,824 8,739,200 207,294,464 86,870,016 39,240,704 18,571,776 9,023,744 4,446,336 2,206,784

Experiment Summary: Performance comparison of training an RTF model with a GPT-
2 decoder versus an Llama decoder. We vary the number of layers and the size of the
hidden states of the Llama decoder.

Key Takeaway: Using a Llama decoder can achieveMLE scores comparable to those of
ClavaDDPM and RTF, while improving upon RTF in terms of DM scores and approaching
those of ClavaDDPM. These results can be obtained using significantly fewer parame-
ters.

Negative Results
While the core methods in this work produced promising results, we also explored several al-
ternative approaches that ultimately did not yield improvements or introduced new challenges.
We briefly summarize the most notable of these below to inform future work and help others
avoid similar pitfalls.

Initially, we aimed to compute contextual cues based on learned spaces using custom mod-
els. To this end, we attempted to develop Autoencoders and embedding models, both of
which proved challenging to stabilize during training and ultimately did not work. Should one
be interested in obtaining embeddings, we strongly advise using existing models such as
TransTab [71], SAINT [66], or TabTransformer [38].
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During the development of our layer sharing method, we explored various options to utilize
layer sharing without freezing the layers in the decoder of the Seq2Seq model after copying
them from the encoder to the decoder; however, this approach did not yield positive results.

Hyperparameter tuning has consumed a significant portion of time during research, which can
be beneficial for some parameters. However, we advise spending more time examining and
understanding the generated data before proceeding in this direction.



5
Conclusion

This thesis evaluates the performance of transformer-based methods in comparison with their
diffusion-based counterparts in both the single-table and relational settings. Identifying an
existing performance gap between the two, this work addresses three key research questions
aimed at closing this gap.

5.1. Discussion
Regarding RQ1 on how relational data representation affects generative model performance,
our experiments revealed that denormalizing datasets negatively impacted transformer-based
model performance. This finding emphasizes the importance of preserving the original rela-
tional structure rather than flattening relationships, as the hierarchical organization inherent in
multi-table schemas provides crucial information for effective generation.

ForRQ2 concerning the role of layer sharing in closing the performance gap between transformer-
based and diffusion-based models, our layer-sharing mechanism demonstrated substantial
improvements. By copying and freezing weights from trained parent models to child table de-
coders, we achieve average improvements of 1.80× in LD and 2.10 reduction in DM scores for
child tables in the relational setting. This approach effectively leverages the learned represen-
tations from the parent table, bringing transformer performance closer to that of state-of-the-art
diffusion methods.

Addressing RQ3 on how relational cue representation affects generation quality, our contex-
tual data augmentation strategy proved highly effective. Incorporating contextual information
during training, inspired by successful diffusion-based implementations, yielded average im-
provements of 1.23× in LD scores for parent tables and 2.10× reduction in DM metrics. The
UMAP-based distributional analysis further validated these findings, showing superior overlap
with real data distributions across Wasserstein distance, Maximum Mean Discrepancy, and

44
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classification-based separability metrics.

The combination of these techniques demonstrates that architectural enhancements and data
representation strategies can significantly improve transformer-based relational data genera-
tion while maintaining computational efficiency. Averaging over both parent and child tables,
we achieve an average increase in LD score of 1.52× and an average decrease in DM score
of 1.94×

5.2. Future Work
Several promising directions and extensions emerge from this research for future investiga-
tion. First, extending our approach to handle deeper relational datasets beyond the current
parent-child structure would enable the generation of more complex datasets. This includes
supporting grandparent-parent-child relationships and many-to-many connections, which are
common in real-world databases but present additional challenges for maintaining referential
integrity across multiple relational paths.

Second, improving the tokenization strategy for numerical values represents a significant op-
portunity for enhancement. Current approaches treat numerical data similarly to categorical
information, potentially losing important distributional properties. Developing specialized tok-
enization schemes that better preserve numerical relationships and distributions could further
improve generation quality.

Second, investigating hybrid architectures that combine the strengths of diffusion and trans-
former models, similar to recent work like TabSyn [76], offers potential for achieving supe-
rior performance. Such approaches could leverage the distributional modeling capabilities of
diffusion processes while maintaining the sequential generation advantages of transformer
architectures.

Third, exploring multidimensional contextual cues could provide richer relational representa-
tions while also allowing for the introduction of another loss term, which would punish the
generation of child samples that are far from their parent samples in the embedding space of
the contextual cues.

Lastly, as also mentioned by the authors of the RTF paper [65], it can be worthwhile to look
into swapping out the GPT-2 model for another transformer model. Results on one single-table
dataset are discussed in chapter 4.
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Nomenclature

Abbreviations

Abbreviation Definition

AUC Area Under the ROC Curve
ClavaDDPM Cluster Latent Variable Guided Denoising Diffusion Proba-

bilistic Model
DDPM Denoising Diffusion Probabilistic Models
DM Discriminator Measure
DT Decision Tree
ELBO Evidence Lower Bound
GAN Generative Adversarial Network
GDPR General Data Protection Regulation
GMM Gaussian Mixture Model
HIPAA Health Insurance Portability and Accountability Act
KL Kullback–Leibler
LD Logistic Detection
LLM Large Language Model
ML Machine Learning
MLE Machine Learning Efficacy
MMD Maximum Mean Discrepancy
MPNN Message Passing Neural Network
MSE Mean Squared Error
MT Masked Transformer
RDBMS Relational Database Management System
REaLTabFormer Realistic Relational and Tabular Transformer
RF Random Forest
RTF REaLTabFormer
Seq2Seq Sequence-to-sequence
VAE Variational Autoencoder
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A
Corrected Tables for Research Paper

In the research paper presented in chapter 2, due to a processing error during evaluation, stan-
dard deviation values were reported as 0.00 for most logistic detection results. The corrected
values, based on the same underlying data and methods, are presented in this appendix.

Table 2
Table A.1: Relational-dataset evaluation on Discriminator Measure (DM), Logistic Detection (LD) scores, and train
duration. Scores are reported as mean±standard deviation. For DM, lower is better; for LD, higher is better. Best scores
are highlighted in boldfaceboldface and second-best are underlined.

Metric Original Baseline Flattened

RTF Clava RTF Clava

AirBnB

Parent LD 97.82±1.66 52.63±1.55 85.92±1.39 29.24±1.09 71.45±1.70

DM 0.02±0.01 0.57±0.05 0.57±0.05 0.98±0.03 1.00±0.00

Child LD 91.23±1.05 42.22±1.65 89.05±0.36 62.30±0.09 76.52±0.76

DM 0.05±0.02 0.44±0.05 0.54±0.07 0.28±0.04 0.88±0.03

Ttrain - 2762 1049 8891 407

Rossman

Parent LD 95.69±2.08 83.58±5.26 21.78±1.66 93.77±1.93 82.59±6.64

DM 0.85±0.01 0.54±0.02 0.09±0.04 0.49±0.10 0.72±0.02

Child LD 95.19±2.09 57.42±0.96 88.01±0.68 91.02±0.99 75.51±1.13

DM 0.84±0.05 0.40±0.05 0.10±0.04 0.09±0.02 0.62±0.06

Ttrain - 1754 1119 3035 384

FTP

Parent LD 99.12±0.93 85.16±1.74 97.54±1.10 OOM 95.74±1.32

DM 0.02±0.01 0.11±0.02 0.06±0.04 OOM 0.09±0.04

Child LD 92.31±0.75 29.20±0.83 86.55±0.54 OOM 88.02±1.17

DM 0.49±0.04 0.73±0.02 0.56±0.02 OOM 0.48±0.03

Ttrain - 1561 961 - 366
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Table 3
Table A.2: Multi-table relational dataset Logistic Detection (LD) and Discriminator Measure (DM) scores.
Relational (Rel.) and Flat correspond to the original relational dataset and the flattened or denormalized (1NF)
dataset, respectively. Metric shown as mean±standard deviation. For DM, lower is better; for LD, higher is better.
Bold faceBold face indicates best result and underlined second best. We denote training time in seconds with T train.

Metric Original RealTabFormer Clava OURS Ablation* (subsection 5.3)

Layer Share Context ID

AirBnB

Parent LD 97.82±1.66 52.63±1.55 85.92±1.39 87.24±2.31 51.55±1.36 87.41±1.84

(Users) DM 0.02±0.01 0.57±0.05 0.57±0.05 0.17±0.06 0.57±0.04 0.13±0.02

Child LD 91.23±1.05 42.22±1.65 89.05±0.36 67.18±0.53 71.85±0.75 32.31±0.69

(Sessions) DM 0.05±0.02 0.44±0.05 0.54±0.07 0.33±0.07 0.35±0.07 0.63±0.05

T train - 2762 1049 3228 4347 4168

Rossmann

Parent LD 95.69±2.08 83.58±5.26 21.78±1.66 86.53±3.60 85.65±8.51 86.53±3.60

(Stores) DM 0.85±0.01 0.54±0.02 0.09±0.04 0.53±0.01 0.54±0.02 0.53±0.01

Child LD 95.19±2.09 57.42±0.96 88.01±0.68 79.30±1.31 64.97±0.77 77.24±1.88

(Sales) DM 0.84±0.05 0.40±0.05 0.10±0.04 0.27±0.07 0.37±0.06 0.27±0.07

T train - 1754 1119 3514 1758 3517

FTP

Parent LD 99.12±0.93 85.16±1.74 97.54±1.10 85.54±1.12 88.44±1.73 81.35±0.59

(Sessions) DM 0.02±0.01 0.11±0.02 0.06±0.04 0.11±0.02 0.10±0.02 0.13±0.02

Child LD 92.31±0.75 29.20±0.83 86.55±0.54 71.25±0.70 69.19±0.78 26.79±0.95

(Products) DM 0.49±0.04 0.73±0.02 0.56±0.02 0.21±0.02 0.62±0.05 0.77±0.01

T train - 1561 961 1454 1310 1596

Table 5
Table A.3: Relational-dataset ablation on the impact of contextual information placement on Discriminator Measure
(DM), Logistic Detection (LD) scores, and train duration. Idx. refers to the column index position at which the cluster
IDs are inserted during 2⃝ of our method, where ‘1’ is the default. Scores are reported as mean±standard deviation. For
DM, lower is better; for LD, higher is better. Best scores shown in boldfaceboldface, second-best are underlined. We
denote training time in seconds with T train.

Metric Original Insertion Indx.

RTF Idx. 0 Idx. 1 Last Idx.

AirBnB

Parent LD 97.82±1.66 52.63±1.55 29.24±0.00 78.99±1.05 47.56±1.01

DM 0.02±0.01 0.57±0.05 0.98±0.03 0.22±0.04 0.62±0.02

Child LD 91.23±1.05 42.22±1.65 62.30±0.00 50.64±0.77 59.06±0.69

DM 0.05±0.02 0.44±0.05 0.28±0.04 0.42±0.05 0.39±0.05

Ttrain - 2762 2823 2004 2575

FTP

Parent LD 99.12±0.93 85.16±1.74 84.63±1.55 85.54±1.12 85.60±1.01

DM 0.02±0.01 0.11±0.02 0.13±0.03 0.11±0.02 0.11±0.02

Child LD 92.31±0.75 29.20±0.83 57.96±0.63 71.25±0.70 68.02±0.77

DM 0.49±0.04 0.73±0.02 0.60±0.03 0.21±0.02 0.26±0.02

Ttrain - 1561 1707 1454 1584
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Table 6
Table A.4: Relational-dataset evaluation on AirBnB for Discriminator Measure (DM), Logistic Detection (LD)
scores, and train duration T train. ‘Learned Spaces’ indicate the embedding space used to assign cluster ID in
step 1⃝ of our method. Scores are reported as mean±standard deviation. For DM, lower is better; for LD, higher is
better. Best scores are highlighted in boldfaceboldface and second-best are underlined.

Metric Original Learned Spaces

RTF TransTab One-Hot

AirBnB

Parent LD 97.82±1.66 52.63±1.55 78.07±2.22 87.24±2.31

DM 0.02±0.01 0.57±0.05 0.21±0.03 0.17±0.06

Child LD 91.23±1.05 42.22±1.65 56.31±0.63 67.18±0.53

DM 0.05±0.02 0.44±0.05 0.35±0.05 0.33±0.07

Temb - - 2735 1
Ttrain - 2762 3237 3228
Ttotal - 2762 5972 3229
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