
Delft University of Technology

The Monadic Approach to
Serverless Applications

Master Thesis

Distributed Systems
CSE5000

Authors:
Rahul Kochar (4812522)

Thesis Committee:
Prof. dr. J. Rellermeyer (Daily supervisor)

Dr. ir. J. Pouwelse
Dr. Przemysław Pawełczak

ii

April 12, 2024

Abstract
The serverless computing trend is steadily picking up steam over the last few years and

is challenging the traditional microservices on Kubernetes model which included inefficiencies
like idling. The big three cloud providers AWS, GCP and Azure have different opinions on what
serverless computing and serverless applications should look like, how they should be designed
and what their architecture should be leading to each cloud going their own separate way. Ulti-
mately, this causes vendor lock-in, fragments the serverless cloud technology landscape, para-
lyzes other research and development efforts while also harming other stakeholders like users,
developers and businesses that depend on these cloud services and products. The heavy re-
liance on often changing proprietary API that is not compatible with alternatives makes stabil-
ity a serious concern and enables exploitation of users. This thesis proposes MSA - Monadic
approach to Serverless Applications to enables developers to write cloud agnostic serverless
applications and tackle vendor lock-in. Users can build complex serverless applications with-
out polluting business logic and migrate from one cloud to another by pressing a button. This
thesis makes multiple other contributions such as documenting and showing how to reconcile
differences in features between the big clouds in various ways for telemetry, metrics, unifying
interactions of equivalent services in different clouds, getting rid of tedious boilerplate code in
business logic while remaining cloud agnostic among others. Three serverless applications are
built with MSA and benchmarked against equivalent applications build with alternatives. Server-
less applications built with MSA frequently outperformed in execution time and RAM usage.
These experiments also yielded insights on situations in which certain types of serverless appli-
cations perform better on a cloud than others. Lastly, usability of MSA and the quality of solution
(solving vendor lock-in) received good scores in a user survey.

iii

Contents

1 Introduction 3
1.1 Research Questions . 4
1.2 Thesis Structure . 4

2 Background 5
2.1 Serverless Compute . 5

2.1.1 Loss of Control . 5
2.1.2 Differences Between Commercial Serverless Function Offerings 9
2.1.3 A Closer Look at the Anomalies in Azure Function Application 11

2.2 Infrastructure as Code . 12
2.3 Specific Code for Serverless Functions . 14
2.4 Monads . 16

3 Related Work 19

4 Design of Monadic Serverless Applications 23
4.1 Tooling . 23
4.2 FooBar . 24
4.3 Cloud Monads . 27

4.3.1 Serverless Functions . 27
4.3.2 API Gateway . 28
4.3.3 Message Queue . 29
4.3.4 SQL Database . 30
4.3.5 Blob Storage (S3) . 30

4.4 Other Cloud Monads . 31
4.4.1 Telemetry . 31
4.4.2 Execution Time . 31
4.4.3 RAM. 32
4.4.4 Input Validation . 32

4.5 Supported Programming Languages . 32
4.6 Policy as Code . 33
4.7 Conclusion . 33

5 Building Cloud Agnostic Applications 35
5.1 MVCC . 35
5.2 Serverless MapReduce . 36
5.3 Serverless ZooKeeper . 38

v

vi Contents

6 Evaluation 39
6.1 Procedure. 39
6.2 MVCC Database . 40
6.3 Serverless MapReduce . 46
6.4 Serverless ZooKeeper . 49
6.5 Latency . 49
6.6 Discussion . 52

7 User Survey 55
7.1 User Survey. 55

7.1.1 Setup . 55
7.1.2 The Experiment. 56
7.1.3 Questionnaire. 57

8 Discussion and Future Work 61
8.1 Discussion . 61
8.2 Future Work. 64

Contents 1

1
Introduction

Serverless computing is a paradigm of writing code in which cloud providers like Amazon Web
Services (AWS), Google Cloud Platform (GCP), and Microsoft Azure offer managed services so
that developers focus solely on writing business logic while the cloud provider takes responsibility
for hosting the application with high availability, managing and administering all related physical
and virtual infrastructure, security, and providing near-instantaneous scaling to meet demand,
cost-effectively [143], [141], [169].

Serverless functions or Function-as-a-Service are a small piece of code hosted somewhere
on the Internet that can be executed by making a curl request to an endpoint. These functions
are designed to be small, disposable, and cheap such that they can be created en-masse rapidly
and after completing their duty, can be discarded just as fast. This inherently requires serverless
functions to be stateless and in turn significantly lowers the threshold for writing highly scalable
APIs, stateless applications and small pieces of code while taking away granular control from
developers [137], [98]. The cloud provider abstracts away almost all of the control into a service
where developers trade away customisability and configurability for convenience and economics
of scale to collectively reduce costs (for users of serverless and public cloud providers). Tra-
ditionally, developers had to maintain their own servers and other infrastructure (networking,
security, cooling, etc.) which gave developers the freedom and ability to customise the minutest
details about where and how their code runs.

AWS Lambda is the first serverless product offering by a large public cloud provider in 2014
[65]. Other public cloud providers and vendors followed soon after with their own offerings with
various interpretations of serverless that fragment the serverless technology landscape and
ultimately hinders research and development of cloud technologies. [45], [156], [174], [113],
[16] describe that vendor lock in characterized by lack of common tooling, compatibility across
ecosystems and vendor specific configurations are a serious concern for users of cloud tech-
nologies, tools and services. The multi-cloud strategy is frequently employed by consumers to
escape from the clutches of vendor lock-in, but it runs into the problem of lack of a common
framework or protocol for serverless functions and applications. Developers are forced to write
code specific to the serverless function and the cloud provider that hosts the serverless func-
tion and other infrastructure such as databases, etc. Migrating the function to a different cloud
provider or setup can mean a severe re-write of the code [124] - even though serverless is un-

3

4 Chapter title

derstood to be as something that can run any code and is therefore agnostic of everything i.e. it
is just business logic which in theory stays the same in every context and situation in which the
code may be hosted and run on.

To free developers from the shackles and constraints of vendor lock-in described above,
this thesis takes inspiration from the monadic approach [4] of abstractions to abstract away and
encapsulating the differences, and explicitly stating conditions and requirements that a monad
must satisfy so that a compiler (or another program) can verify and give a guarantee that the
specified conditions hold and requirements are indeed satisfied.

1.1. Research Questions
This thesis has the following Research Questions (RQ) that satisfy many of the criteria in the
list of conditions for determining a grand challenge [77]. Vendor lock-in is a serious problem
recognized by practitioners and researchers alike in cloud computing but also widely in software
development [52], [117], [147], [91], [176].

1. Monadic Approach: Can monads help the user explicitly declare requirements for their
serverless functions without polluting/compromising functional nature of code?
Can developers neatly state where the serverless function is hosted and executed (being
mindful of where other resources the serverless function interacts with are hosted) and
other configurations like telemetry without bloating the code base or other ill effects that
tend to solidify vendor lock-in.

2. Cloud Agnostic: Can the monadic approach be applied to Infrastructure as Code to pro-
vision cloud agnostic infrastructure
Will the monadic approach enable developers to explicitly describe the cloud components
and interactions in an arbitrary cloud environment without polluting the functional nature
of code while being cloud agnostic at the same time.

3. Clean Packaging: Can code synthesis be a standardized solution for writing generic
cloud-agnostic business logic (that can be run in the serverless function of choice)?
Will the monadic approach enable serverless functions to have the required capabilities
such that developers canwrite cloud-agnostic business logic and simultaneously the server-
less function is not bloated with unrelated packages and unnecessary capabilities that
weigh down the serverless function.

4. How do serverless applications built with a monadic and cloud agnostic approach
compare to serverless applications built with the traditional approach?

5. Is MSA easy to use?

1.2. Thesis Structure
Chapter 2 and 3 will provide additional background leading to the main matter in chapters 4 and
5 followed by an Evaluation of the monadic approach and User Survey in Chapters 6 and 7. The
thesis concludes with a Discussion, Conclusion and Future Work in chapter 8.

2
Background

This chapter gives the reader an overview of the current state of serverless computing, a closer
look at the challenges in cross-cloud compatibility of serverless applications and describes the
appealing properties of monads that can solve the aforementioned challenges. Other concepts
needed for the solution like Infrastructure as Code are also introduced for the reader’s benefit.

2.1. Serverless Compute
Serverless technologies are gaining momentum, with all major cloud providers announcing in-
vestments which suggests that serverless will play a critical role in the future of cloud computing.
Serverless is attractive because of its fine-grained billing and low maintenance required. Devel-
opers pay only for resources actually used and do not pay for idling which is hard to escape
in traditional forms of compute. Serverless products and tools like Serverless Functions (AWS
Lambda, GCP Cloud Function, etc.) are clean and convenient to use because they sit very
high on the stack for instance AWS Lambda sits on top of over 80 other AWS services [19].
All the details of the stack under the serverless function are hidden and managed by the cloud,
i.e. this is the cost of convenience as developers have no control, visibility, or knowledge about
what is happening inside the function. Developers simply submit code to the cloud provider,
and the cloud provider runs the code in a Serverless Function while giving benefits like security,
availability, and dynamic elasticity for free. Compared to traditional means, developers give up
control in serverless functions in numerous ways [137], [74].

2.1.1. Loss of Control
• Configuration: Developers are limited to the configurations provided by the cloud provider.
This means developers are limited to supported languages and specific supported versions
[94], [139], [30] by the cloud provider. Developers are forced to upgrade the language/ver-
sion of the language to a supported language/version if the cloud provider decides to halt
support. For example, AWS supports four versions of Python at a time [95] and Python
has an annual release cycle of often breaking changes [154]. This means that a serverless
application written in Python on AWS must update their code every few years (not includ-
ing maintenance required for other packages and dependencies of the business logic in

5

6 Chapter title

that serverless function).
Additionally, there are no configuration options/control over compilers and runtimes like
JVM on AWS, GCP and Azure, nor any run-time parameters of Operating System that run
the serverless function. The inability to configure JVM prohibits the attachment of agents
and limits themonitoring of Java serverless functions [41]. AWS allowsmonitoring garbage
collection with all options can that can be passed to JAVA_TOOL_OPTIONS, CPU, memory,
etc. [59] while GCP and Azure allow developers to view some metrics like CPU, memory,
and sampling requests [87], [85].
To try to solve these problems, cloud providers allow submitting a container (eg: Docker)
which is run as a serverless function. Code can be run in any language and version as
long as the developers can build a container [53], [172], [48], [46]. This can be a temporary
workaround for the shortcomings of serverless functions, but it is inconsistent with the idea
of serverless functions. Container-as-a-Service is not serverless because cloud providers
will then play the role of providing Infrastructure-as-a-Service (IaaS) to developers i.e.
the cloud will host the container and provide some benefits (of IaaS) but developers are
responsible for critical aspects like maintaining and patching the operating system in the
container, networking/security to facilitate communication in and out of the container.
Serverless functions on different cloud providers have different properties; for instance,
an AWS Lambda and Azure Function Application can run for at most 15 and 10 minutes,
respectively, while GCP Cloud Functions timeout at 10 minutes (event-driven) or 60 min-
utes (http functions) [39], [66], [27]. Similarly, other characteristics such as RAM, system
architecture, operating system, importing libraries for business logic, size of code in the
serverless function, etc. have seemingly arbitrary and unique values on AWS, GCP, and
Azure. Factors like GCP Cloud Functions running for 4 and 6 times the max timeout of
AWS Lambda and Azure Application Functions [28] respectively or that AWS Lambda sup-
ports arm64 architecture while GCP and Azure do not or that Azure Application Functions
allow running a serverless function on a Windows Operating System but AWS and GCP
do not support Windows out of the box among numerous others deliver a fatal blow to the
general case for cross-cloud compatibility of serverless functions and applications [40],
[37], [105].

• Performance: Program execution of serverless functions is a black box. Physical hard-
ware, core operating system and runtimes are unknown and significantly limit the ability to
optimise software for peak performance for that stack of hardware and software. Server-
less functions running on virtual hardware are even harder to optimise code for because
predicting behaviors is hard. Inconsistencies/variance in performance characteristics can
be observed because the cloud provider is responsible for selecting the type of hardware
the serverless function runs on, and developers have negligible to no control over this.
Traditionally, latency can be improved by placing the two components that need low latency
nearby in the server rack. Serverless technologies do not have such a concept because
the cloud provider schedules the hardware that runs the function. The hardware may be on
the same rack but could also be at opposite ends of the data center building. Data center
networks are hierarchical because of their vast size forcing non-co-located servers to use
layer 3 network to communicate. There is a significant difference in latency and bandwidth
between co-located servers in the same rack compared to two servers placed in arbitrary

2.1. Serverless Compute 7

places in the data center [75]. Cold starts can also affect latency, but cloud providers now
offer some keep-warm mechanism at a low cost to mitigate this.

• Concurrency and Scalability: Serverless boldly claims as much as you want on demand
elasticity. However, cloud providers place limits on maximum resources that can run at
any given moment eg: 1000 AWS Lambda and GCP Cloud Functions by default. On
request, AWS may increase the number up to 50,000 Lambdas which is significantly more
than traditional means of compute given the price. Different cloud providers have different
limits and constraints on various resources.

• Logging and Monitoring: Monitoring and logging tools are unique to the cloud provider.
All of the basic necessities and more are easily available on AWS, GCP and Azure (more
in Section 2.1.2). However, these are not compatible with the other cloud platforms and
require developers to re-create monitoring and logging on another cloud should develop-
ers choose to run a serverless function on another cloud. Developers can choose to use
third party tools like DataDog but that introduces extra complexity in managing the log-
ging service compared to using the default out-of-the-box logging tools provided by cloud
providers because they do not require management.

• Security: Developers are responsible for ”Security in the cloud” i.e. securing the code in
a serverless function, networking/firewall, Role Based Access Control (RBAC), etc. while
cloud providers usually take responsibility for ”Security of the cloud” which is securing the
physical hardware, patching the Operating System etc. [106]. Developers are restricted
to the security tools offered by the cloud provider and are suggested to follow the best
practices recommended by the cloud provider. These practices, security tools and some-
times principles are often unique to the cloud provider and not transferable to other cloud
providers and services [97]. It may not be possible to implement custom security policies
and protocols because cloud providers do not grant control/access to stack/underlying
tools and technologies of the serverless function. Therefore, it is not guaranteed that the
security and logging/monitoring requirements required by the developer/application will
always be met. Cloud providers conveniently solve various security challenges for devel-
opers using serverless functions but [36], [78] show the emergence of new attack vectors
for serverless architecture and serverless code.

• Debugging/Testing on Local Machine: Testing serverless functions locally is always
a challenge because functions often need to interact with a SQL database or message
queue which does not exist locally. However, cloud providers have made efforts to en-
able developers to locally test and debug code that does not require other components
in the cloud. Azure supports invoking a serverless function on command line or with a
VS Code extension. AWS [99] and GCP [80] have developed alternatives in the last year.
AWS uses SAM [142] on the command line to simulate the function, while Google’s func-
tions_framework allows running a serverless function like a normal program. Google
goes a step further in allowing the code to access components on the cloud with appro-
priate client libraries. The three major cloud providers have their own unique local test-
ing/debugging ecosystem and are not compatible with other alternatives. The same holds
for testing/debugging on the cloud - the available tools and methods are specific to and
restricted to what is allowed by the cloud provider.

8 Chapter title

• Testing on the Cloud: An individual serverless function can be easily tested on the cloud
by following the instructions of the respective cloud provider. However, none of the cloud
providers support tests that have a greater scope than unit tests, i.e. it is not possible to
do end-to-end testing or integration/regression tests etc. To avoid this, developers create
a replica environment that is used only for testing. It would be beneficial if cloud providers
had a ”test” mode granting developers with greater insight for easier debugging than a
regular cloud environment.

• Stateless vs Stateful Applications: Serverless functions are by design stateless and
(semi)-functional programming allows developers to take full advantage of parallel pro-
cessing on serverless functions. Some applications like MapReduce would benefit greatly
from serverless functions but require a state. To get around this, developers often dump the
state into a database or cheap storage/cache, and then the following serverless functions
contain some logic to figure out which data from the dump/cache it needs and loads it. This
is an unclean approach because the heavy lifting of managing state is done programati-
cally by the developer in the serverless function and there are extra dependencies (and
costs) to the database which are restricted by latency of input/output speeds and geogra-
phies/localities. This approach is loaded with naked side effects and is not functional/pure
in nature. [76] introduces disorderly programming where procedural programming does
not contribute to scaleable business logic in serverless functions.

• Issue Resolution: The cloud provider takes complete ownership for many things as de-
fined in the SLA - Service Level Agreement. Developers are limited to the legalities and
fine-prints, possibly without a course of remediation except opening a support ticket. Cloud
providers usually have a paid tier system with guaranteed support within a certain number
of hours depending on tier. On the lowest/free tier, cloud providers may actively respond
and assist developers but may also choose to blatantly ignore the support ticket or fea-
ture requests. Developers can control little more than the code running in the serverless
function.

While serverless functions pamper developers with conveniences of scalability and cost-
efficiency [55], it comes with drawbacks. The fundamental problem with serverless functions
is that developers often have other requirements like monitoring, configuration, and security, to
name a few, that serverless functions struggle to fully satisfy. It is for the developer to realize
which of the developer’s requirements are met, and it is the responsibility of the developer to
find a workaround to meet unmet requirements.

The next section will show through more examples that serverless functions by various cloud
providers and the ecosystem around the serverless functions have sharp contrasts. Intuitively,
the business logic inside a serverless functions should be the same if the same programming
language is used - after all that is what serverless functions are all about. Developers give code
to the cloud provider and the cloud provider hosts the code. However, a serverless function by
itself is rather static and is not very useful. To be useful, the serverless function needs to interact
with other cloud components and resources, which are unique to every cloud. The next section
describes the major differences in writing code for serverless functions on AWS, GCP and Azure
in Python. Similar analogies hold for other languages. In this thesis, we propose MSA (Monadic
Approach to Serverless Functions) to ease some of these problems.

2.1. Serverless Compute 9

2.1.2. Differences Between Commercial Serverless Function Offerings
There are significant differences between functionality and features of the three serverless func-
tion offerings (AWS Lambda, GCP Cloud Functions and Azure Function Applications) examined
in this thesis. This section describes the support for functionality and features such as logging
and monitoring to middleware and input validation that AWS provides developers on Lambda
that do not have equivalents (or have weak equivalents that partially match AWS) on GCP Cloud
Function and Azure Function Application.

In the desire to be cloud agnostic, some features are not straightforward to offer such as
init functions and powertools of AWS Lambda. Init functions [92] are similar to init containers in
Kubernetes [84] and allow developers to run some code when the serverless function is triggered
or invoked for the first time to prepare for running the business logic in the serverless function.
Powertools [136] allows developers to set up a cache for their serverless function and re-use the
data stored in the cache in future invocations because the data is persisted to other invocations
of the serverless function [34] (speed up serverless function and save costs in some cases like
accessing secrets from AWS Secrets Manager [22]). A cold start of the serverless function will
require running the init and setting up the cache again - this means developers need to do extra
work to manage these resources and is a pollution of business logic.

AWS Lambda also has an extensive telemetry suite consisting of tracing, logging and metrics
built in for developers to plug-in and use ([163], [100], [110]). Developers can add annotations
to functions in business logic to use the telemetry features. In the listing 2.1, the annotations
capture_lambda_handler and capture_method sends a trace of the handler and of othermethods
to AWS X-ray [24]. This can be used to capture traces of both synchronous and asynchronous
methods, capture the values returned (or exceptions thrown), include annotations and metadata
to filter logs during analysis, aiohttp, capture traces of threads [25] and concurrent asynchronous
functions.

1 @tracer.capture_lambda_handler
2 def lambda_handler(event, context):
3 ...
4 update_item(”user1”, ”item1”)
5

6 @tracer.capture_method
7 def update_item(user_id, item):
8 ...

Listing 2.1: Tracer example in AWS Lambda

Listing 2.2 shows an example of logging in AWSLambda. The annotation inject_lambda_context
should be used for prod environment because it gives vital information such as if the Lambda
was a cold start, ARN (Amazon Resource Number) to uniquely identify the function etc. Adding
log_event = True is recommended for non-prod environments because it logs additional infor-
mation like the event that is given fed to the lambda as input. Developers can add metadata and
annotations for log analysis to ease searching log files, choose between five different log levels,
specify policies for logging such as minimum log level [38], set a debug sampling rate and a
broad formatting suite to make useful logs [102]. Lastly, loggers can be extended by inheriting
and overriding to build custom serializers and formatters [101].

Instead of building their own tools, GCP supports external telemetry tools like Cisco App-
Dynamics, DataDog, DynaTrace, New Relic and Splunk [121] which can be used to improve
logging and tracing in GCP Cloud Functions (in addition to default logging provided out-of-the-

10 Chapter title

box with all serverless functions). At this moment, AWS officially supports DataDog, while Azure
Function Applications has their own custom and native to Azure tool called Application Insights
[79] that needs to be set up to receive some basic logging and monitoring features that AWS
Lambda developers enjoy with little to no setup. In addition to all this, tools like Baselime [119]
and OTEL [21] offer a large logging and telemetry suite for AWS but do not support GCP and
Azure at the time of writing.

1 logger = Logger()
2

3 @logger.inject_lambda_context # For prod
4 # @logger.inject_lambda_context(log_event=True) # For non-prod
5 def lambda_handler(event: dict, context: LambdaContext) -> str:
6 logger.info(”Collecting payment”)
7

8 # You can log entire objects too
9 logger.info({”operation”: ”collect_payment”, ”charge_id”: event[”charge_id”]})
10 return ”hello world”

Listing 2.2: Logger example in AWS Lambda

Tracer and Logger are for debugging and AWS also provides developers with an extensive
monitoring suite for Lambda. Listing 2.3 shows how developers can request the monitoring of
specific methods, capture cold starts, and add tags and metadata to improve visibility, allowing
a graphical user interface to consume and plot statistics conveniently. The last line shows how
developers can define custom metrics and measurements. Additionally, developers can set the
resolution time for metrics [6], give additional weightage, or gain fine-grained control over the
reporting of metrics through multivalued metrics in which the same metric can be given multiple
values (AWS will put them on a list), add default tags so that it is persisted across lambda
invocations, raise errors if some conditions for metrics are not met, and isolate multiple instances
of the same metrics [110].

1 STAGE = getenv(”STAGE”, ”dev”)
2 metrics = Metrics()
3

4 @metrics.log_metrics # ensures metrics are flushed upon request completion/failure
5 # @metrics.log_metrics(capture_cold_start_metric=True). # This will also capture cold

start
6 def lambda_handler(event: dict, context: LambdaContext):
7 metrics.add_dimension(name=”environment”, value=STAGE)
8 metrics.add_metric(name=”SuccessfulBooking”, unit=MetricUnit.Count, value=1)

Listing 2.3: Metrics example in AWS Lambda

Developers can validate the input and output (or part of the input or output) of AWS Lambda
against predefined JSON schemas by adding validator decorators [166]. To parse data, AWS
Lambda provides Pydantic [132] which can also be added through decorators [123]. AWS has
developed a vast prebuilt collection of parsers that can be quickly plugged in to parse input
effortlessly or the parsers can be extended by overriding. Several envelopes are provided to
unwrap, extract, and type cast the required object/value from complex input. AWS provides a
neat solution for abstracting away polluting boilerplate code to verify input by validating objects
against data types or specific criteria. Custom conditions including dynamic conditions based
on input among numerous other possibilities can be applied quickly. AWS Event Source Data
Classes [57] allows developers to create self-describing Lambda event sources and helper func-
tions to deserialize and/or decode nested fields to simplify working with other cloud components

2.1. Serverless Compute 11

and services in AWS. In short, repetitive error prone pain points of receiving and validating input
are made simple by providing ready made and highly customizable solutions.

AWS Lambda can batch process streams from various sources like SQS, Kinesis, and Dy-
namoDB. AWS provides various primitives that can be easily used and extended by developers
to fit specific use cases like batch processing asynchronous messages, integrating with Event
Source Data Classes, input validation with Pydantic, and error handling including partial failure
mechanisms.

AWS allows developers to use middleware in serverless functions (shown in listing 2.4) to
run custom logic before and after every Lambda invocation synchronously [111]. Listing 2.4
shows an example that runs some code both before and after the business logic in the server-
less function is executed [148]. The middleware can be quickly integrated with other features
described above, such as tracing, logging, envelopes, validations, and batch processing. Middy
is another open source tool for writing middleware on AWS Lambda [162] that offers developers
an alternative with similar features. GCP does not officially have such features for middleware,
but a user on StackOverflow suggests a workaround for GCP Cloud Function [153].

1 from aws_lambda_powertools.middleware_factory import lambda_handler_decorator
2

3 @lambda_handler_decorator
4 def middleware_before_after(handler, event, context):
5 # logic_before_handler_execution()
6 response = handler(event, context)
7 # logic_after_handler_execution()
8 return response
9

10 # @middleware_before_after(trace_execution=True) Optionally trace your middleware
execution

11 @middleware_before_after
12 def lambda_handler(event, context):
13 ...

Listing 2.4: Middleware example in AWS Lambda

2.1.3. A Closer Look at the Anomalies in Azure Function Application
Many cloud services and components of AWS, GCP and Azure are supported in MSA however,
this thesis is primarily aimed at serverless applications and ecosystem of tools and technologies
around serverless. AWS Lambda and GCP Cloud Functions have multiple things in common,
such as hosting small pieces of code on lightweight infrastructure like MicroVMs Firecracker [61],
[2]. AWS Lambda and GCP Cloud Functions are merely that, a URL that can be used to trigger
the serverless function (execute the code). Microsoft Azure claims that Function Applications are
the equivalent serverless function in Azure to AWS Lambda [144] and GCP Cloud Function [67].
However, in the documentation of Function Applications, Azure describes it as a ”serverless
solution” [29] instead of the well-defined term ”serverless function”. This directly contradicts
the two previous claims of Azure. StackOverflow describes Azure Function Applications as
”serverless compute” [170]. Azure also claims that WebJobs are equivalent to AWS Lambda
[144], but WebJobs appears to have been made part of Function Applications now [15].

Functionally, hosting multiple small pieces of code in AWS and GCP requires multiple server-
less functions as this naturally follows from the definition. OnAzure Function Application (Python),
every piece of code is placed under an endpoint annotation in the same Function Application.

12 Chapter title

Thus, Azure Function Application also has the capabilities of AWS and GCP API Gateway[5]
and [14]. This forms the next major contradiction with the ideas of serverless - being light-weight
and economical by having exactly the infrastructure and resources needed. A single serverless
function can not be triggered or scaled as they all live together in Azure Function Application.

Azure’s claim that Function Applications are serverless functions is unfounded due to limita-
tions on performance, cost and resource efficiency. As a result Microsoft Azure does not have
serverless functions and if Azure fixes this in the future, it will also be possible for developers
to migrate applications built with MSA to and from Azure. The rest of the chapter will explore
the differences in creating serverless functions on the a cloud and writing business logic for the
serverless function with code examples.

2.2. Infrastructure as Code
There are multiple ways to create serverless functions and other infrastructure in the cloud. The
easiest way is manually through the website (called Console) of the cloud provider, but it is prone
to human error in selecting configurations. A reliable and scaleable approach is to automate by
using an API of the cloud provider or Infrastructure as Code tools like Terraform and Pulumi.
[83] describes Infrastructure as Code as ”process of managing and provisioning computer data
center resources through machine-readable definition files, rather than physical hardware con-
figuration or interactive configuration tools”. In simpler words, it is a declarative description (in
yaml, json, etc.) of the components in a cloud environment. It is written in code and can there-
fore scale, be automated, and the code can be semantically versioned. Versioning and tagging a
cloud environment and services/components in the environment removes dynamic elements like
human errors that limit reproducibility, reliability and scalability. Combined with CI/CD pipelines,
Infrastructure as Code will give a complete end-to-end solution for reliably creating, managing,
and deleting cloud resources.

Pulumi [127] is an Infrastructure as Code tool that offers an API to provision and manage in-
frastructure in the cloud. Pulumi works in two steps, a Preview stage and then an Up stage. This
is similar to a compile and run/execute step in many programming languages. The preview step
constructs a Directed Acyclic Graph with specific details (also called a plan) of the actions Pulumi
will perform in a cloud environment. The up stage is to apply the plan to the cloud environment.
Pulumi stores a state on a local machine or in the cloud on a S3 bucket for example. The state is
a description of the cloud environment according to the actions performed previously by Pulumi.
When creating the directed acyclic graph, Pulumi compares the actual state of the cloud with
the stored state of the cloud (local machine or S3 bucket) to detect a drift which is differences
between the two states. Developers must necessarily resolve drifts by either adding/deleting
the appropriate services and components to infrastructure code to match those that exist in the
cloud or by asking Pulumi to create/edit/delete the resources on the cloud that do not match the
infrastructure code. This can be a highly destructive and sometimes difficult to reverse opera-
tion such as when a database without backups is deleted. Pulumi has other useful features like
CI/CD [128] and secret management [130] to ease the development of applications.

There have been attempts in the past to unify cloud infrastructures of AWS, GCP and Azure
into a common framework that did not succeed (discussed in Chapter 3) for various reasons.
Listing 2.5, 2.7 and 2.8 show the creation of a simple serverless function using Infrastructure as
Code in Pulumi [127]. Terraform [157] is another popular Infrastructure as Code tool in which
infrastructure is declaratively described in yaml files. Listing 2.6 shows an example of Listing

2.2. Infrastructure as Code 13

2.5 in Terraform. The other two listings are written similarly in Terraform.
1 import pulumi_aws as aws
2 import pulumi_archive as archive
3

4 aws_serverless_function = aws.lambda_.Function(<name>,
5 code=pulumi.FileArchive(<path-to-code>),
6 role=<iam role>.arn,
7 handler=<serverless function handler>,
8 runtime=<serverless function runtime>
9)

Listing 2.5: AWS Serverless Function

1 resource ”aws_lambda_function” ”<resource-name-for-lambda>” {
2 function_name = <name>
3 filename = <filename.zip>
4 source_code_hash = <archive file object of filename>.lambda.output_base64sha256
5 role = <iam role>.arn
6 handler = <serverless function handler>
7 runtime = <serverless function runtime>
8 }

Listing 2.6: AWS Serverless Function

Among these code examples to provision a simple serverless function in AWS, GCP and
Azure, Azure is the most plagued by complexity because of the tertiary details required to create
a serverless function that are unrelated to the code that runs in the serverless function and
the serverless function itself. AWS and GCP are relatively straightforward with AWS requiring
an IAM role to grant lambda permission to execute itself and other permissions if the lambda
needs to interact with other services and components. GCP Cloud Function similarly require an
”invoker”. Building complex serverless functions requires many more configurations and often
other components from the cloud. Just like this example of a simple serverless function, the
other services and components with complex configurations are similarly unique and non-trivial
to unify.

1 import pulumi_gcp as gcp
2

3 gcp_serverless_function = gcp.cloudfunctions.Function(<name>,
4 runtime=<serverless function runtime>,
5 source_archive_bucket=<code bucket>.name,
6 source_archive_object=<code object in bucket>.name,
7 trigger_http=True,
8 entry_point=<<serverless function handler>
9)

Listing 2.7: GCP Serverless Function

1 import pulumi_azure as azure
2

3 aws_serverless_function = azure.appservice.FunctionApp(<name>,
4 resource_group_name=<resource group>.name,
5 location=<resource group>.location,
6 app_service_plan_id=<plan>.id,
7 storage_account_name=<account>.name,
8 storage_account_access_key=<account>.primary_access_key

14 Chapter title

9)

Listing 2.8: Azure Serverless Function

These examples show that creating a serverless function on different clouds has significantly
different requirements. Similar differences in infrastructure code also hold for almost all other
cloud services and components such as databases, api gateways, message queues, compute
and networking hardware related services, security, access and permissions related compo-
nents, etc. In MSA, developers can write infrastructure code for an arbitrary cloud, and Monads
with the help of Pulumi are used to create the corresponding infrastructure on a specific cloud.
The next section looks at the differences (polluting boilerplate code) imposed upon business
logic by the cloud provider.

2.3. Specific Code for Serverless Functions
A developer should ideally write the same business logic in any serverless function, irrespective
of where it is run but the signature of the handler (starting point of the serverless function, similar
to main method in many languages) in the big three cloud providers has unique annotations
and different parameters. Often, serverless functions by GCP have different handler signatures
depending on the use-case (business logic in the serverless function). Additionally, AWS, GCP
and Azure provide boto3 [17], functions_framework [68] and Azure-Functions [31] libraries to
interact with other services (e.g. message queue, SQL database, etc.) in their respective clouds.
The behavior, capabilities, and interactions with these libraries are specific to the cloud provider.
Thus there are multiple hurdles in migrating a serverless function from one cloud provider to
another - although the business logic and computations the developer wants to perform do not
change.

The handler in AWS Lambda has a consistent signature shown in Listing 2.9. GCP and
Azure serverless functions have different handler signatures depending on how the function is
triggered, GCP http 2.10, GCP message queue 2.11 and Azure HTTP 2.12 are shown below.
The parameters in the handler contain different information in the three cloud providers that are
shown by accessing HTTP headers and query parameters passedwhen triggering the serverless
function with a curl request. There are some similarities between some of these examples but
clearly, an uniform and consistent standard for the handler of serverless functions is absent.
Cloud providers provide a SDK with their serverless functions to ease development (writing
business logic and interacting with other services and components in the cloud), but they too
are incompatible with each other.

1 from json import dumps
2

3 def <function-name>(event, context):
4 # HTTP query parameters can be accessed with
5 query_parameters = event.get(”queryStringParameters”) or {}
6 # HTTP headers can be accessed with
7 headers = event.get(”headers”) or {}
8

9 # Write business logic here
10

11 return {
12 ”statusCode”: <http status code>,
13 ”body”: <output of code>

2.3. Specific Code for Serverless Functions 15

14 }

Listing 2.9: AWS Lambda Handler

1 import functions_framework
2

3 @functions_framework.http
4 def <function-name>(request):
5 # HTTP query parameters can be accessed with
6 query_parameters = request.args
7 # HTTP headers can be accessed with
8 headers = request.headers
9

10 # Write business logic here
11

12 return body

Listing 2.10: GCP Cloud Function Handler for HTTP trigger

1 import functions_framework
2 from base64 import b64decode
3

4 @functions_framework.cloud_event
5 def <function-name>(cloud_event):
6 # The message put into message queue can be accessed with
7 message = base64.b64decode(cloud_event.data[”message”][”data”]).decode(”utf-8”)
8

9 # Do something with message (business logic)

Listing 2.11: GCP Cloud Function Handler for Message Queue trigger

1 import azure.functions as func
2 import datetime
3 import json
4 import logging
5

6 app = func.FunctionApp()
7

8 @app.route(route=”<route>”, auth_level=func.AuthLevel.ANONYMOUS)
9 def <function-name>(req: func.HttpRequest) -> func.HttpResponse:
10 # HTTP query parameters can be accessed with
11 query_string_parameters = req.params
12 # HTTP headers can be accessed with
13 headers = req.headers
14

15 # Write business logic here
16

17 return func.HttpResponse(
18 status_code=<http status code>,
19 body=<output of code>
20)

Listing 2.12: Azure Function Application Handler for HTTP trigger

There are sufficient compatibility challenges in writing non-trivial code for serverless func-
tions for AWS, GCP and Azure. Putting this together with the previous section about specific
code for infrastructure code on different cloud providers, the picture is bleak for developers and

16 Chapter title

the wider software and technology communities when it comes to cross cloud compatibility and
vendor lock-in. To paint a fuller picture, making a serverless function with a hello world pro-
gram is trivial because it does not solve a non-trivial problem. Building useful applications on
the cloud has various aspects, such as scalability, security, reliability, and maintainability of the
infrastructure, but also the cloud environment. This requires numerous cloud components and
services to work together such as API Gateways, message queues, serverless functions, IAM
Roles/permission sets, various kinds of databases and caches, logging, alerting and monitor-
ing, etc. and the business logic in the serverless function must also align appropriately with the
other cloud services and components. Some discrepancies between cloud providers are major
and can only be solved by the cloud providers themselves. Other discrepancies are minor, but
putting all of them together forms a formidable problem of vendor lock-in for developers and
consumers of cloud services and technologies. [58] concluded that monads can be used for
serverless computing and abstracting state in serverless functions. This thesis goes further on
to build cloud agnostic serverless applications using monads which are the basis of this thesis
for solving vendor lock-in.

2.4. Monads
The additional code required by a serverless function for business logic code pollutes the code
in the serverless function as a whole. Cloud providers having unique polluting code worsens the
situation but is a frequently occurring problem in other parts of software development. Monads
were first introduced in Haskell [60], [4], a master planned functional programming language to
neatly solve numerous problems while simultaneously keeping business logic clean and func-
tional in nature. [171] mentions some examples in which Monads are used to abstract away
control flow and thereby reduce boilerplate code for common operations. This enables develop-
ers to always remain in control of the boilerplate code while maintaining the purity of business
logic. The primary application of monads in MSA is encapsulating side-effects, state, and keep-
ing the code clean, functional, and stateless. Monads are structures that combine functions and
wrap their return value into a type with some additional computation. This additional compu-
tation allows developers to encapsulate tedious polluting code behind a wrapper and keep the
business logic code clean. A simple example of a monad is Either that encapsulates the type
of a value [51]. The type can be any of the two explicitly specified types and developers can
simply use the value of a specific type. Similarly, the Cloud Monad wrapper in MSA encapsu-
lates the polluting boilerplate code for that respective cloud provider so that developers can write
pure business logic code that will be portable and compatible across any cloud provider. MSA
combines this concept with Infrastructure as Code to solve the serverless functions themselves
having specific infrastructure code on different cloud providers by encapsulating the specifics of
a cloud provider in a Cloud Monad.

Another feature of Haskell is function composition in which the output of running a computa-
tion of a function is passed to another function i.e. compose two functions into a single function.
Listing 2.13 shows in Line 2 that the functions f and g can be chained with the dot operator. The
example below it computes the odd numbers in the list of integers from 1 to 9 [103]. Such a
composition is convenient to build complex programs with serverless functions and it is critical
for this composition to be cloud agnostic to solve vendor lock-in.

1 # Mathematical notation
2 f (g x) = (f . g) x

2.4. Monads 17

3

4 # Example
5 map (\x -> not (even x)) [1..9]
6 # can be re-written to
7 map (not . even) [1..9]

Listing 2.13: Function Composition in Haskell

To summarize this chapter, even though the three biggest cloud providers - AWS, GCP and
Azure have similar features and functionalities, there are severe discrepancies between the
ecosystems, supporting tooling and libraries. The developers have paltry control over how,
where, and on what their code runs on, resulting in the inability to give functional and non-
functional SLA/QoS guarantees for a serverless application. The few that are still possible stem
directly from the cloud provider, such as uptime and security. Additionally, serverless functions
impose requirements on developers such as timing out in fewminutes with limited resources and
writing pure code (functional programming) to take advantage of the concurrency and scale the
cloud can offer. The control flow of serverless functions simply do not have any provisions for
enabling developers to reliably perform such actions in a cloud agnostic setting because it either
means changing the control flow in a breaking and disruptive way or a smarter approach such
as Monads which encapsulates these potentially problematic aspects and elegantly provides a
backward compatible solution.

3
Related Work

This chapter details previous efforts to solve the problems mentioned above. There has been
a distinct delineation in responsibilities and use-cases between infrastructure and application.
Thus, all previous efforts have focused either on abstractions for application/code or feeble at-
tempts to unify infrastructure.

Apache jClouds [12] and Dasein-Cloud [50] are multi-cloud toolkits for creating portable across
cloud applications in Java. [3] checks portability of AWS EC2 and GCP Compute Engine work-
loads. [112] claim to test jCloud’s serverless application portability and usability but are merely
evaluating putting jar files into a serverless function. The code in jar files and interactions with
other cloud components are elementary. Neither JClouds nor Dasein help developers create
portable infrastructure and their documentation says that the best developed abstractions are
for Blob Storage and Compute Instance Management. Dasein has not been maintained since
2014 while jClouds supports few GCP and Azure components. [125] and [11] try to create an
abstraction library, have problems similar to jClouds, and have not been maintained for over 4
years.

Taibi et al. [152] describes FaaSifying arbitrary python code for an AWS Lambda. A similar
approach can be taken and extended for serverless functions on other clouds and templates.
The selected approach is inefficient and leaves the task of integrating a serverless function with
the cloud infrastructure to the developer (unlike native serverless functions). [138] uses object
oriented programming principles like inheritance to abstract away the tedious boilerplate code
in serverless functions. However, this means that an overhead (extra library) is created, and
the authors discuss neither infrastructure nor smooth integration of the serverless function with
other cloud services and components.

Apache Libcloud [13] is a Python library for infrastructure and supports a wide range of cloud
providers for infrastructure related to Compute (instance management), Load Balancer, Object
Storage, Container, Backup and DNS. Terraform [157], Pulumi [127], and Serverless Framework
[145] are Infrastructure as Code tools with a wide variety of cloud providers and, unlike Libcloud,
supports everything on AWS,GCP, and Azure with a separate API for each cloud. However, each
cloud has a unique infrastructure code with no compatibility between clouds on both. Terraform,
Pulumi and Libcloud are simply a common platform from where infrastructure on a cloud can be

19

20 Chapter title

described in declarative syntax and then provisioned on various clouds.
OpenFaaS [118], KNative [90], Fission [62], OpenWhisk [122] provide a common interface for

serverless functions running on top of containers or a Kubernetes cluster that can be run on any
cloud. Apart from not integrating smoothly with other cloud components (like native serverless
functions do), this also introduces extra complexities like Kubernetes, containers, etc. that need
to be managed by developers. The idea of running containers inside containers is suboptimal
and hence all of these are considered invalid solutions.

[175] suggests an analytical approach SEAPORT (SErverless Applications PORtability as-
sessmenT) to determine if a serverless function can be ported to another cloud. This strategy
is applicable to a subset of serverless functions, whereas any serverless function should be
portable. [177] proposes a model in which developers create a serverless function multiple
times for every cloud, a benchmark suite evaluates all the serverless functions to find the cloud
that delivers the best performance, and then selects that cloud for that serverless function in the
future. To avoid duplicate infrastructure in multiple clouds, the authors also created a common
interface so that components in a cloud can talk to components in another cloud. This can create
efficient multi-cloud systems where each components can be deployed on a cloud best suited
for it but the problem lies in the fact that each serverless function (and component) needs to be
created multiple times, once for each cloud.

Pulumi-cloud [129] (different from Pulumi) comes the closest to solving the challenges out-
lined. Pulumi-cloud creates their own API that abstracts away infrastructure, and the business
logic in serverless function can interact with infrastructure through a common API. The challenge
with this approach is the existence of a common API which introduces additional complexity com-
pared to writing business logic in a way that is native to a cloud provider. Pulumi-cloud is still
a Work-in-Progress at the time of writing and has released support for AWS in public preview,
Azure in early stage preview, and has announced that GCP will be supported in the future.
MBrace [1] is built for data scripting in a cloud agnostic fashion in F# and C# with support for
Azure [108] and soon AWS [107]. It is possible to write scripts for specific tasks but is not a
general purpose library for solving vendor lock-in. Modal [161] is another serverless platform for
data, AI andML tasks. They do not make any claims for agnosticity and instead run all workloads
on a proprietary cloud environment.

There are other efforts in rapidly building serverless applications like Vercel [167], Netlify [42]
and Dark [49] but they are limited to frontends and hosting websites with serverless functions.
They do not offer equivalents of the vast array of services and resources like AWS, GCP and
Azure. These tools do not expose the underlying infrastructure and are hence not designed for
cloud agnosticity but rather for rapidly building specific serverless applications in the specific
platform of the tool. AWS SAM [23] provides templates to quickly build serverless applications.
The templates are a short-hand syntax for optimized Infrastructure as Code that only works on
AWS.

Shuttle.rs uses Infrastructure from Code (IfC) to generate backends and other serverless ap-
plications in AWS. In IfC, developers write their business logic and tools like Shuttle [32], Klotho
[88], SST [33] and Ampt [64] generate required infrastructure code for AWS using Infrastructure
as Code tools like Terraform and Pulumi. Klotho suggests to have support for GCP and Azure
in their introduction and tutorials but at this moment their GitHub repository [89] does not show
evidence of support for either GCP or Azure in main branch. [160] claims that Ampt (previously
Serverless Cloud) deploys to an AWS environment owned by Ampt whereas all other tools de-
ploy to the AWS environment of the developer. Ampt takes away transparency and visibility of

Chapter title 21

the resources on a cloud environment but also demands developers trust Ampt to secure the
cloud environment. Further, Ampt they also claimed that Ampt makes abstractions that restrict
the ability to create/manage individual resources.

Nitric [159] another IfC tool supports AWS, GCP and Azure. Nitric documentation claims
twice that Nitric is ”cloud agnostic” [131] and [158] but the example code on GitHub [116] does
not have Azure and has duplicate infra code, once each for AWS and GCP. Writing code multiple
times, once for every cloud is not cloud agnostic. Further, [160] reports that Nitric has signifi-
cantly increased delays in cold start invocations of serverless functions. Nitric admitted this [43]
and explained that the cold starts happen because business logic for the serverless function is
containerized and then run in an AWS Lambda. Cloud Native Computing Foundation (CNCF)
[141] states multiple times that serverless is achieved through virtualization.

4
Design of Monadic Serverless

Applications
This chapter takes a top-down model to explain the design and working of MSA - Monadic
approach to Serverless Functions. Section 4.1 and 4.2 will introduce how Pulumi (Infrastructure
as Code) is used and monads are implemented in Cloud Monads with an example while Section
4.3 explains the design of Cloud Monads. Section 4.4 shows how monads are used to bridge
differences between features offered by cloud providers, and Sections 4.5 and 4.6 provide some
commentary on other aspects of MSA.

4.1. Tooling
A resource in Pulumi is a class (of Object Oriented Programming) whose object represents
a service or component in the cloud. Instantiating such an object or resource involves Pulumi
making an API call(s) to the respective cloud to create the actual service, and deleting the object
deletes the actual resource in the cloud. If the object stores information such as data or maintains
tertiary responsibilities such as permission sets, then the appropriate policies set explicitly by the
developer or the default policies of the cloud provider apply to the creation and deletion of that
resource.

Pulumi has a native resource for every component and service of AWS, GCP, and Azure that
can be used to provision, maintain, and destroy infrastructure on the cloud. A cloud monad is
made by creating a wrapper around the native resource of Pulumi. Developers program against
the wrapper, which can contain extra logic to give developers extra features and ease the de-
velopment of specific and custom resources. In MSA, monads are implemented in a similar
way. The extra logic in the wrapper is used to translate cloud agnostic infrastructure code to
the specific code required for a particular cloud. This cleanly abstracts away the specific code
of a cloud provider and assists the developer in evading vendor lock-in because developers are
never exposed to the specific code of any cloud provider. A limiting factor of MSA is the desire
to create perfectly equivalent serverless applications on various cloud providers because this
can create potential side effects. Chapter 2 lists numerous differences, many of which can be
resolved neatly through monads. Although monads have a reputation for solving complex prob-

23

24 Chapter title

lems in easy, clean and convenient ways, some problems, such as a common architecture for a
serverless function, can be resolved by either GCP and Azure adding support for arm64 archi-
tecture or AWS pulling support for arm64 (to match GCP and Azure which only have x86_64). At
the moment, MSA only supports features that are commonly supported by both AWS and GCP.

A benefit of using Pulumi resources to implement the cloud monads instead of making di-
rect API calls to the cloud is to leverage the extensive CI/CD tools that come with Pulumi [128].
To migrate a serverless application from one cloud to another, Pulumi first creates the equiv-
alent serverless application in the other cloud and then deletes the resources in the cloud the
migration is done from. Thus, by using MSA, developers gain the ability to use modern end-to-
end CI/CD tooling out-of-the-box.MSA has three parts, 1) Cloud Agnostic Infrastructure Code 2)
Cloud Agnostic Business Logic (code in serverless function), and 3) other features offered as
monads to users to solve the problems introduced. Writing cloud agnostic infrastructure code
can be complex because in serverless functions because of differences like trigger mechanisms
of serverless functions and other events however the idea of the trigger is largely the same across
all cloud providers. This can be leveraged by using monads to encapsulate these differences
so that developers are not exposed to these differences.

The key challenge preventing developers from writing cloud agnostic business logic are the
differences centered on the interactions with other cloud services and components. The first of
two possible solutions is to create a superset of frameworks and services offered by the various
clouds so that developers write code against the superset that at runtime selects and executes
the appropriate code for that context. The drawback is that developers may not use all the
features in the superset which bloat the serverless function. This is inconsistent with the ideals
of serverless computing. Another approach is to ask developers to state the requirements of
a serverless function (and interactions with other cloud services and components) which can
then be used to synthesize the code inside the serverless function (business logic provided by
developer + other things required for cloud agnosticity). The synthesis is unique for every cloud
and situation. Every interaction a serverless function can have with another cloud service or
component has a prebuilt template that code synthesis uses to create the cloud native code that
can be executed by a serverless function. Templates can be easily extended, replaced, and
new templates can be added to meet specific niche edge cases. This approach ensures that all
the requirements of the serverless function are met and that the serverless function is efficient
and lightweight (inline with principles of serverless computing) without exposing developers to
the specifics of any cloud. The next section uses a simple example to build a cloud agnostic
serverless application.

4.2. FooBar
FooBar (code available here1) is a simple API with two endpoints /foo and /bar that have a
serverless function containing a small piece of business logic at the end of each endpoint. To
build FooBar, two serverless functions, an IAM role and an API Gateway (shown in listing 4.1)
are required. The IAM roles grant the necessary permissions so that the serverless function can
be invoked and executed and the API Gateway exposes the serverless functions to the public
internet.

1 from pulumi import ResourceOptions

1https://github.com/rkochar/msa/blob/master/utils/foobar.py

4.2. FooBar 25

2 from utils.monad import Monad
3

4

5 def apigw_foobar():
6 m = Monad()
7

8 apigw_faas_iam_role = m.create_iam(role_name=”a-faas-iam-role”, role_file=”faas-
basic-role”, attachment_name=”faas-role-attachment”, policy_name=”faas-iam-policy”
, policy_file”faas-basic-policy”)

9

10 foo_function = m.create_faas(name=’foobar-foo’, code_path=”foobar/foo”, handler=”
foo.foo”, runtime=”python3.10”, template=”http”, role=apigw_lambda_iam_role)

11 bar_funtion = m.create_faas(name=’foobar-bar’, code_path=”foobar/bar”, handler=”bar
.bar”, template=”http”, runtime=”python3.10”, role=apigw_faas_iam_role, imports=[”
pydantic”, ”numpy”], is_timed=True)

12

13 routes = [
14 (”/foo”, ”GET”, foo_function, ”foobar-foo”, ”Serverless function for endpoint /

foo”),
15 (”/bar”, ”GET”, bar_function, ”foobar-bar”, ”Serverless function for endpoint /

bar”),
16]
17 m.create_apigw(’foobar’, routes, opts=ResourceOptions(depends_on=[foo_function,

bar_function], replace_on_changes=[”*”], delete_before_replace=True))

Listing 4.1: FooBar: Infrastructure as Code

For convenience, a single IAM role is re-used for both serverless functions in line 8. Lines
10 and 11 make the serverless function with names ”foobar-foo” and ”foobar-bar”. The template
parameter informs MSA how the serverless function will be triggered and how the results com-
puted by the serverless function are to be returned to the triggerer of the serverless function. In
this case, the functions are triggered by HTTP through an API Gateway and results are returned
in the same way. The handler tells the serverless function which method in which file is the start-
ing point of execution of business logic when the serverless function is triggered. Line 11 also
declares three specific requirements of that serverless function. Numpy and Pydantic libraries
are declared as requirements for the business logic in the serverless function and the developer
has requested to measure the execution time of the business logic in the serverless function.
The routes pentuple in line 13 defines the endpoints, HTTP request type and the serverless
function that will be triggered. The API Gateway on line 17 simply implements this pentuple for
every endpoint and conveniently hides the internals and plumbing of the serverless application
from the outside world. This infrastructure code is generic and does not contain specific code
or configurations that are specific to a cloud provider. This is critical in enabling migrations from
cloud to another to solve vendor lock-in.

Listing 4.2 shows the business logic in the Bar serverless function. It generates a random
number using numpy and checks the headers made with the curl request for a few conditions
to make a valid transaction. Just like the previous listing on Infrastructure Code, the business
logic is regular Python 3.10 code. This enables the business logic to be used in any serverless
function in any cloud without specific requirements or extra conditions other than support for
Python. The FooBar program proves the capability of MSA to write elementary programs that
are cloud agnostic in infrastructure code and business logic. Later in this chapter, other useful
capabilities like message queues and different types of databases are introduced.

26 Chapter title

1 from numpy.random import randint
2 from pydantic import BaseModel, Field, ValidationError, validator
3

4

5 def bar(headers, query_parameters):
6 try:
7 transaction = Transaction(sender=headers.get(”sender”), receiver=headers.get(”

receiver”), amount=headers.get(”amount”)) # The Transaction class is defined in
Section Input Validation

8 except ValidationError as e:
9 return f”Errors found: {e.error_count()}. {e.errors()}”
10 result = randint(0, 5)
11 return f”Transfer {transaction.amount} from {transaction.sender} to {transaction.

receiver}. result: {result}”

Listing 4.2: FooBar: Business Logic of Bar

To complete the serverless functions, the cloud agnostic business logic needs to be combined
with other code that is written in a cloud native manner to meet the specific requirements for that
serverless function (Section 2.1.2) and other specific requirements for a serverless function to
interact with specific cloud services and components. MSA abstracts away the specifics and
mundane requirements from developers to preserving the purity of business logic. This is inline
with monadic principles of not restricting developers but rather, safely exposing the features
of the cloud to the developers. Code synthesis is used to achieve this and MSA is able to
offer extreme amounts of customizability to developers (just like monads) while maintaining the
sanctity of business logic.

Listings 4.3 and 4.4 show the synthesized code for the serverless functions on AWS andGCP
respectively. An example of how features that are not native to a specific serverless function in
a specific cloud can be added in a cloud agnostic manner is shown. Lines 11, 17 and 18 for
AWS and lines 10, 16 and 17 for GCP add a timer monad is added to measure execution time
of the business logic in the serverless function (as requested in line 11 of 4.1).

1 import json
2 import boto3
3 from os import getenv
4 import re
5 from time import time
6 from uuid import uuid4
7

8

9 def template(event, context):
10 name = ”foobar-bar”
11 start_time = time()
12 telemetry = None
13 query_parameters, headers = event.get(”queryStringParameters”) or {}, event.get(”

headers”) or {}
14

15 body = bar(headers, query_parameters)
16

17 end_time = time()
18 execution_time = str(end_time - start_time)
19 print(f”execution_time: {execution_time}”)
20

21 return {
22 ”statusCode”: 200,

4.3. Cloud Monads 27

23 ”body”: json.dumps({”body”: body, ”execution_time”: str(time() - start_time),
})

24 }
25

26 # <Business logic of Bar from abvove is here.>

Listing 4.3: FooBar: Bar in AWS

1 import functions_framework
2 from os import getenv
3 from time import time
4 from uuid import uuid4
5

6

7 @functions_framework.http
8 def template(request):
9 name = ”foobar-bar”
10 start_time = time()
11 telemetry = None
12 query_parameters, headers = request.args, request.headers
13

14 body = bar(headers, query_parameters)
15

16 end_time = time()
17 execution_time = str(end_time - start_time)
18 print(f”execution_time: {execution_time}”)
19

20 return {”body”: body, ”execution_time”: str(time() - start_time), }, 200
21

22 # <Business logic of Bar from above is here.>

Listing 4.4: FooBar: Bar in GCP

4.3. Cloud Monads
This section describes the working of Cloud Monads, each of which abstract a cloud services or
component across multiple clouds. Each cloud monad is unique because it is carefully crafted
to match the infrastructure configurations on the various cloud and simultaneously taking into
account the relevant business logic required to interact and/or work with that cloud service or
component. All of the below monads work on AWS and GCP but have varying degrees of appli-
cability on Azure because Azure at this moment does not have sufficient and eligible serverless
services and offerings to build nontrivial serverless applications (Section 2.1.3).

4.3.1. Serverless Functions
Serverless functions are the core of serverless applications and are responsible for performing
computations. The Serverless Function Cloud Monad encapsulates AWS Lambda, GCP Cloud
Functions, and Azure Function Applications. The default trigger (template) of every serverless
function is HTTP(S) and can be changed by explicitly stating a different template in infrastruc-
ture code. This is done along with stating the other services and components on the cloud the
serverless function wishes to interact with. A serverless function on AWS can be triggered in
dozens of different ways such as when a value that satisfies a regular expression is updated in
a DynamoDB table or when a message is sent to AWS’s AI chatbot Lex [20], [165]. GCP Cloud

28 Chapter title

Functions can only be triggered in two different ways, 1) through a HTTP(S) request either di-
rectly to the serverless function or through an API Gateway or 2) by a message queue.

This difference where serverless functions in GCP can not be triggered directly by events is
solved by using a Trigger Cloud Monad such that developers are not exposed to this complexity.
All events such as updating a value in a database will publish a message to a dedicated mes-
sage queue that will trigger the serverless function. The Trigger Cloud Monad creates all the
required infrastructure and code synthesis ensures required extra code is synthesized without
any extra effort from the developer. In AWS, the triggers are straightforward and the parameters
are simply passed on to Pulumi. Regular expressions can be used to filter triggering events
but this is not supported on GCP. A similar approach as Section 4.3.5 can be taken to resolve
this and other differences in trigger mechanism. The Trigger Cloud Monad encapsulates all the
complexities but the approach taken for GCP causes a drop in performance compared to AWS.
This is unavoidable and expected because of the extra message queue and other code intro-
duced in GCP. Ideally GCP should offer features like clean and efficient trigger mechanisms to
developers.

The business logic inside a serverless function may require libraries to ease development
of complex functionality. Dependencies can be made available inside a serverless functions
by explicitly stating the dependencies in infrastructure code. GCP Cloud Functions and Azure
Function Applications conveniently import libraries from pip with a requirements.txt generated by
the Serverless Function Cloud Monad. AWS complicates importing libraries because they have
made optimizations to make serverless functions lighter. A Lambda Layer [173] is similar to a
layer in a container such as Docker. The Layer is designed to contain read-only binaries of li-
braries so that the Layer can be reused by other serverless functions. An additional benefit is that
a Lambda strictly contain business logic making a Lambda lighter than an equivalent GCP Cloud
Function and Azure Function Application. The Layer is built with specified libraries in the devel-
oper’s local machine (or CI/CD pipeline if used) and uploaded to a S3 bucket for the Lambda
to access. Another complexity that is abstracted away from developers is the architecture of
AWS Lambda which can be x86-64 or arm64. This affects the layer when the architectures of
local machine used to create the layer is arm64 which is at odds with the serverless function of
x86_64.

The Serverless Function Cloud Monad has several other responsibilities that relate to inter-
actions with other services and components on various clouds that are discussed in the next
paragraphs. The next subsection will discuss exposing the serverless function to the public
internet and HTTP(S) triggers including code synthesis.

4.3.2. API Gateway
AWS allows serverless function to be exposed naked to the public internet [93] and GCP gives
from authentication which can be disabled [81]. The default endpoints generated for server-
less functions are unique which make it inconvenient to build an API with serverless functions.
The API Gateway fixes this. A pentuple provided to the API Gateway Cloud Monad is used
to generate Swagger documentation according to the specifications of AWS [5] and GCP [14].
The pentuple allows developers to describe their endpoints and the serverless function that will
be triggered upon hitting the endpoint without exposing the internals (different semantics of the
Swagger yaml file), routing and serverless functions to the users.

Serverless functions that are triggered through an API Gateway should use the handler

4.3. Cloud Monads 29

shown in Listing 4.5. MSA synthesizes code that is native to the cloud on which the serverless
function exists. To effortlessly write cloud agnostic business logic, MSA provides developers
easy access to headers and query parameters passed along with the HTTP(S) request. MSA
extracts these fields by parsing the specific inputs received by serverless functions and these
inputs are different on different clouds.

1 def <function-name>(headers, query_parameters):
2 # Business logic
3 return <string>

Listing 4.5: Cloud agnostic HTTP trigger example

4.3.3. Message Queue
Triggering serverless functions with message queues achieves two objectives. Complex compu-
tations can be performed in serverless architecture by chaining serverless functions in serverless
function composition and allows computations to be performed asynchronously. This is critical
in serverless architecture because idling in synchronous calls is against the principles of server-
less that postulate efficient usage of resources by deleting resources when they are not needed.
One approach for this can be a serverless function making an asynchronous HTTP(S) call to
the next serverless function but this suffers from unreliability in networking such as message not
delivered or delivered with corrupted data. Message queues such as AWS SQS (Simple Queue
Service) [8] and GCP Pub/Sub [126] are an excellent asynchronous alternative because mes-
sage queues guarantee the delivery of a message which can then be used to asynchronously
trigger the next serverless function in the serverless function composition.

Pub/Sub of GCP gives strict ordering guarantees of messages compared to a regular mes-
sage queue of AWS SQS. To compensate, SQS has a FIFO (First In First Out) mode, which is
enabled when the name of the topic has the suffix .fifo. FIFO queues also force AWS to have
at most one instance of an AWS Lambda running [35] at a time. In AWS, serverless functions
can batch process messages in a message queue, but not in GCP. Thus, for simplicity, this the-
sis limits the scope to each message in a message queue triggering a serverless function. The
Message Queue Cloud Monad returns a Python dictionary that should be passed along as an
environment variable to a serverless function so that the serverless function can communicate
with a message queue.

Similar to the HTTP(S) template discussed above, Listing 4.6 shows the unified function
signature of a serverless function that will be triggered by a message in a message queue. GCP
automatically deletes a message after it is consumed by a subscriber, but AWS does not. The
code required to equalize this behavior between AWS and GCP is synthesized in the business
logic of AWS serverless functions. If a serverless function states in the infrastructure code that
it wishes to publish messages to a message queue, a method publish_message is made
available to do so. Developers can simply call this method and pass the data to be published in
the queue as a string.

1 def <function-name>(message):
2 # Business logic

Listing 4.6: Cloud agnostic Message Queue trigger example

30 Chapter title

4.3.4. SQL Database
Databases are particularly complex because in addition to the differences in design decisions
by different cloud providers, they also suffer from discrepancies in consistency guarantees and
data models between alternative databases on various cloud providers. MSA has limited the
scope to the cheapest instance of MySQL databases of AWSRDS (Relational Database Service)
[7] and GCP CloudSQL [63] for the purposes of this thesis. The engine version is another
challenge in building cloud agnostic serverless applications because all versions of MySQL are
not supported by all cloud providers. This problem can be properly solved by the cloud providers
themselves and MSA sidesteps it by selecting MySQL v8.0.34 because it is supported on both
AWS and GCP. Another complication is that AWS demands that every RDS live inside a Virtual
Private Cloud (VPC) but GCP allows a CloudSQL instance to live outside a VPC. Thus, the
SQL Database Cloud Monad also sets up the VPC and required networking and communication
infrastructure behind the scenes with no extra effort required by developers. CloudSQL requires
creating an User [71] and so the cloud monad also creates a default user on both AWS and
GCP.

Another challenge in writing pure cloud agnostic business logic is connecting to SQL databases.
AWSRDSandGCPCloudSQL have their own specific ways and there are extra networking com-
plications like VPC and firewalls. The code synthesizer carefully synthesizes required code to
connect to the SQL database and also adds amethod execute_sql_query so that developers
can simply write their SQL query without polluting business logic. execute_sql_queries en-
ables writing efficient programs and designing complex business logic by batching queries into
a transaction before committing or flushing to the database. The SQL Database Cloud Monad is
an example of how monads add complexity in the form of layers and abstractions to deliver sev-
eral benefits without sacrificing on the ability to design complex and secure architecture involving
plumbing and security but also writing complex and efficient business logic.

4.3.5. Blob Storage (S3)
The S3 Cloud Monad is used for various purposes. When a developer submits code to a server-
less function, MSA zips the code and puts the zip file into a S3 bucket (Cloud Storage in GCP
and Azure Storage Service in Azure) behind the scenes. The serverless function then picks up
the zip file and loads the business logic. Some other usecases are storing data for data intensive
computations, persisting state of a serverless function and using S3 to trigger other serverless
functions. In AWS, 28 different events can trigger a Lambda [56] but there are only 4 [72] event
types in GCP. Additionally, AWS allows filtering events with regular expressions [26] but in filters
are not supported. This means a serverless function in GCP can be triggered on false positive
events (note: in GCP events are published to a message queue that trigger a serverless function
and MSA cleanly abstracts all of this away). Lastly, not only do the Python libraries of AWS S3,
”boto3” [140] and ”storage” of GCP [133] match these differences in properties, but they also
have their own specific API calls that are not portable from one cloud to another.

The differences in filtering events used as triggers and the Python libraries have been solved
by the S3 API Cloud Monad by abstracting away the two Python libraries and most event trigger
types (some event trigger types like lifecycle rules in AWS must first be supported by GCP).
The S3 API Cloud Monad unifies interactions with S3 on AWS and GCP such as inserting and
(conditionally) retrieving data so that developers can program against a common API. Code
synthesis ensures the required code is available in the serverless function. In addition, regular

4.4. Other Cloud Monads 31

expressions on a trigger have also been standardized. In AWS, no extra work is required as it
is supported by the cloud out of the box. When conditions are specified in GCP, each potential
triggering event is checked by the unified S3 API and the trigger is terminated if all conditions are
not satisfied. This is not efficient because a serverless function is triggered in GCP on all events
(GCP charges developers for this), but AWS developers save money because the situation of
false negatives does not arise. Thus, in GCP, a combination of S3 Cloud Monad that creates a
message queue to enable triggering a serverless function with S3 events and the S3 API Cloud
Monad that provides developers additional critical features, such as regular expressions to filter
triggering events, provide developers with a rich experience that is comparable to AWS with the
additional benefits of escaping vendor lock-in.

4.4. Other Cloud Monads
Some other Cloud Monads are offered as features to developers and serve as a proof of con-
cept to show how differences in features of serverless functions such as built-in telemetry can
be resolved. All of these monads need to be explicitly requested in infrastructure code by a
serverless function to receive that specific feature delivered through code synthesis. Many of
these features can be implemented directly into the business logic of a serverless function. It is
not recommended because implementing these features will pollute the business logic.

4.4.1. Telemetry
In OpenTelemetry, an observability framework for telemetric data such as traces and logs [168],
a span is the smallest unit that contains information about an unit of work (serverless function
in this thesis), and a tree of spans are together called a trace [164]. It is useful for debugging
complex architectures and workflows. Section 2.1.2 describes the different levels of support for
telemetry in serverless functions by various cloud providers. All of those (non native) solutions
are unclean/bulky (a central server and other resources are needed such as networking, stor-
age, etc) and some are paid services requiring a subscription. AWS Lambda has its own native
Telemetry API [96] and some open source projects like AWS’s OTEL Lambda [21] and Open-
Telemetry Lambda [120] (in addition to X-Ray). Both of these are added as a prebuilt layer to a
AWS Lambda which is a neat and clean solution that does not complicate infrastructure code nor
does it pollute business logic. However, these tools are specific to AWS Lambda which solidifies
vendor lock-in.

The cloud agnostic Open Telemetry Cloud Monad generates traces. At the moment, the in-
formation available in a span is the parent_name (previous span in the trace), parent_span_id
(span id of parent’s span) and span_depth (number of executions in the chain so far). This is
extensible and developers can easily add their own specific use cases into it (besides making
their own Open Telemetry Cloud Monad in MSA). Every serverless function in a function com-
position must explicitly request the opentelemetry monad otherwise the chain is broken and the
span is reset.

4.4.2. Execution Time
This Cloud Monad times the execution time of the business logic in a serverless function. If
the serverless function is triggered by a HTTP request then the execution time is returned as
output in the json under the key ”execution_time” with rest of the output. For message queue or
other triggers it is, the execution time is obtained in the logs. It is passed on with telemetry for a

32 Chapter title

complete view of the serverless function composition.

4.4.3. RAM
Similar to the Execution Time Cloud Monad, the RAM Cloud Monad measures the RAM used
by the serverless function and the result is returned with the HTTP response or can be retrieved
in the logs of the serverless function.

4.4.4. Input Validation
AWS Lambda has an elegant input validation mechanism (discussed in Section 2.1.2). A simple
approach to offer clean input validation in through by Pydantic [132] in the business logic. In
line with the monadic principles, the parameters’ requirements are explicitly stated and deliv-
ered to the developer. Listing 4.7 shows an example in which a serverless function takes three
parameters as input from the headers of the http request and verifies the conditions specified in
the transaction class. strict=False coerces the datatype if it does not match (string to int in
the example) and unique_sender_receiver ensures that the sender and receiver are unique to
make a do a valid transaction. This snippet is cloud agnostic, frees business logic from tedious
boilerplate code and the only requirement is that Pydantic be declared as a dependency so that
MSA can import Pydantic.

1 from pydantic import BaseModel, Field, ValidationError
2

3 try:
4 transaction = Transaction(sender=headers.get(”sender”), receiver=headers.get(”

receiver”), amount=headers.get(”amount”), strict=False)
5 except ValidationError as e:
6 return ”Errors found: ” + str(e.error_count()) + ”\n” + str(e.errors())
7

8 class Transaction(BaseModel):
9 sender: int = Field(ge=1, le=5)
10 receiver: int = Field(ge=1, le=5)
11 amount: int = Field(ge=1, le=10)
12

13 @validator(”receiver”)
14 def unique_sender_receiver(cls, receiver, values):
15 if ”sender” in values and receiver == values[”sender”]:
16 raise ValueError(”Sender and receiver must be unique”)
17 return receiver

Listing 4.7: Pydantic: input validation

4.5. Supported Programming Languages
MSA has been implemented entirely in Python and Python is the only language supported in
a serverless function at the moment. Python was selected because it is highly malleable and
can be quickly and easily molded into what is required to build MSA. With the insights gained,
adding support for ductile and stricter languages like Java and Go is relatively straightforward.
The language used for cloud agnostic infrastructure code is less important because it is merely
a description of the services and components in a cloud environment. Languages such as Go,
Java, JavaScript and others supported by Pulumi (except YAML) can be used for infrastructure
code without major challenges.

4.6. Policy as Code 33

The degree of malleability of the language affects the complexity and maintainability of the
implementation but not the capability of the serverless functions in a language different from
Python. A constraint to keep in mind is that the serverless function templates use APIs pro-
vided by the cloud provider to interact with various cloud services and components. Writing and
running cloud agnostic business logic in Python serves as a reference for making MSA pro-
gramming language agnostic. The templates need to be adapted to the new language, and an
equivalent for packaging/importing of libraries and dependencies needs to be implemented. For
Python, it is sufficient to list the names of libraries for pip to install them. Languages such as
Java using Maven or Gradle or Dotnet will require an appropriate solution. Code synthesis and
monads such as the timer monad do not require significant changes but they need to be adapted
for the new language.

Pulumi can also be swapped with another Infrastructure as Code tool, or even implementing
the API calls to the cloud provider directly are viable. The monadic approach is independent of
all tools and programming languages and other criteria.

4.6. Policy as Code
Policy as Code allows developers to describe rules in code for cloud services and components
such as2 blob storages such as AWS S3, GCP Cloud Storage and Azure Storage can not be
accessed from the public Internet. Naturally, Policy as Code is plagued by the same problems of
vendor lock-in and specific configurations. MSA solves it by making monadic abstractions over
Pulumi’s policy as code tool [73]. This is merely an interesting side feature and not part of the
core of this thesis.

4.7. Conclusion
The chapter started by looking at how the Cloud Monads are constructed and used to provision,
manage, and destroy cloud services and components using Pulumi. A simple serverless ap-
plication FooBar showed both the ease of creating and migrating infrastructure from one cloud
to another. The business logic in a serverless function is cloud agnostic because the interac-
tions with other cloud services and components such as message queues and SQL database
are done through a unified API provided by MSA. The individual differences between a service
and it’s near equivalents on other clouds are abstracted away. Code synthesis is used so that
a serverless function always interacts in a native manner with other services and cloud com-
ponents. This ensures that developers are able to take advantage of all features on a cloud
that might not be possible with a non-native approach. Cloud Monads such as S3 release de-
velopers from the tedious tasks of implementing their own filters for queries to S3 and filtering
out false positive triggers, but there is little that MSA can do to deliver permanent relief from
such exploitative designs by any cloud provider. Monads such as the execution time, telemetry,
RAM and input validation show how useful features for telemetry, monitoring, debugging, etc.
can be made cloud agnostic and used to overcome the lack of compatibility between serverless
functions across various cloud providers.

2https://github.com/rkochar/msa/blob/master/policy-as-code/__main__.py

5
Building Cloud Agnostic Applications

This section describes the applications made with MSA and are later used in chapter 6 for bench-
marking.

5.1. MVCC
A challenge with building serverless applications is the requirement for serverless functions to
be idempotent programs (for parallelization) and have negligible side effects and state. Some
solutions like Apache Airflow [10], Step Functions [155] andWorkflow [70] are frequently used for
complex stateful computations. This MVCC program builds a Multi-Version Concurrency Control
(MVCC) database by using first principles and function composition to perform complex stateful
computations in a functional programming approach instead of using previously mentioned tools.

MVCC is a type of non-locking database [114] in which users who wish to write to the
database submit a new version of the data with the user’s changes. This means that the original
data are immutable and allow strong read consistency and scalability/parallelization, while write
consistency and scalability/parallelization of writes are determined by the conflict resolution strat-
egy. In our use case, there are 10 bank accounts with 10 euros each at the start and transactions
are made from one account to another of between 1 and 5 euros (these numbers are selected
randomly and can be changed). According to MVCC, making a transaction involves creating a
new version with the updated amounts. According to MVCC, the write operation of making a
transaction does not affect reads at all because reads will use the last available amounts until a
new version is released.

Figure 5.1 shows the architecture to implement this program in AWS and GCP has the same
diagram without the VPC at bottom left. One SQL database is made with multiple tables to save
cost and the tables are not shared. Read and write serverless functions have multiple instances
of serverless functions, each with their own SQL table as depicted by the three lambdas and
three AWS RDS tables under the Read-only instance. Init and Control have an instance of the
serverless function each. There are three endpoints, init, read (check amount in account) and
write (send x euro to account y). Init sets up the SQL tables to prepare for the first transaction.
The read endpoint will fetch the latest versions available and write will accept transactions. If
a transaction is valid (sanity check, input parsing, etc.), the transaction is proposed to Control

35

36 Chapter title

Figure 5.1: MVCC Diagram for AWS

though a message queue. If Control can successfully verify that the transaction is possible
by checking the balance of the sender, the transaction is acknowledged and a new version is
published and the relevant tables are updated with the latest version.

5.2. Serverless MapReduce
Berkeley view on serverless computing [86] identifies 5 problems (including MapReduce) that
stretch serverless computing to its limits. MapReduce is a complex distributed program to write
in stateless functional programming because it involves steps such as splitting the work and
data into chunks that are given to workers for parallel computations, and then the results are
collected again in the map stage. The reduce stage has similar steps which require tracking and
aggregating upon the results of the mapper to yield the final answer. Serverless functions are
short-lived, which further complicates this. AWS first proposed a serverless reference architec-
ture (Refarch) using S3 and Lambda [146] and later started offering their own serverless spark
offering called Glue [18]. GCP followed with a serverless spark offering [151] as well.

Refarch is re-created with MSA so it will be cloud agnostic. The original architecture and
business logic are mostly preserved, but there are some changes. Refarch had a driver program

5.2. Serverless MapReduce 37

that acted as a coordinator and ran on the local machine. This allowed Refarch to make http
calls to serverless functions but our mapreduce will run completely on the cloud, which means
the driver program needs to be triggered by a curl request to an API Gateway and it needs to
be split into smaller pieces because of the timeout on serverless functions. In addition, all http
calls need to be replaced with appropriate triggers.

Figure 5.2: MVCC Diagram for AWS

Figure 5.2 shows the architecture of mapreduce built with MSA. The start endpoint triggers
the start serverless function that distributes work to the mappers. Start calculates the amount
of work, size of data and RAM of the serverless functions to make chunks and marks each
chunk with an id. Every chunk is published along with the assigned id in the message queue
to trigger multiple mappers in parallel. Additionally, the distribution of work called jobinfo is also
persisted by writing to S3. The mapper performs the map step and writes the results to S3
using the assigned id in the name of the file and each file uploaded to S3 triggers the Reducer
Coordinator that checks if every chunk in the map step has been processed using jobinfo to
trigger the Reducer that completes the MapReduce step and writes the final answer to S3. The

38 Chapter title

result endpoint simply fetches the final answer from S3 for convenience of the user.

5.3. Serverless ZooKeeper
Copik et al. [44] made a serverless implementation of ZooKeeper in AWS called FaasKeeper. At
the time of writing, there is a pull request [69] with a serverless implementation of Zookeeper on
GCP that reuses neither business logic nor infrastructure code. An attempt was made to rebuild
FaasKeeper with MSA first on AWS and then migrate to GCP. There are non-trivial challenges
because FaasKeeper uses DynamoDB triggers (trigger an action when a value is added/updated
in DynamoDB database) which are defined in infrastructure code through EventSourceMappings
[47]. The equivalent of DynamoDB in GCP is Google Spanner [149] but the philosophy of GCP
is that triggers should be in business logic [150]. This is a serious hindrance in creating a cloud
agnostic serverless ZooKeeper because of the hard delineation of responsibilities between in-
frastructure code and business logic. Four potential solutions are to create a monad to solve this
difference in philosophy, use a different database in GCP that supports triggers in infrastructure
code (like DynamoDB on AWS), migrate DynamoDB triggers defined in infrastructure code to
business logic in AWS or to migrate from DynamoDB to a database that is supported on both
AWS and GCP such as MySQL or PostgreSQL with a common philosophy for triggers.

A monad can be made to bridge the gap between the responsibilities of infrastructure code
and business logic however eliminating or diluting this gap destroys the logical isolation be-
tween infrastructure code and business logic. The isolation/loose coupling gives much needed
confidence to developers, businesses and other users that their services will not be severely
impacted by small trivial mistakes because the contagion is localized. Although a monad can
solve the problem, it will introduce a greater evil. The challenge with databases is that they tend
to have unique query languages to help users take maximum advantage of the trade-offs made
in the design of a database. Using different databases in different clouds forces developers
to interact with databases in a query language independent approach. Building a one-to-one
mapping of query languages can be a solution but this is unnecessarily complicated and bloats
business logic and/or negatively impacts performance. Solving compatibility and vendor lock-in
in databases is outside the scope of this thesis, and it is desirable to use an existing solution
instead of building one ourselves. The last two potential solutions have similar drawbacks -
ZooKeeper is used for low latency atomic writes. Putting triggers in business logic (and also
checking for false positives in triggers) will increase latency, which is overwriting a core proper-
ty/feature of ZooKeeper [82]. Should GCP support defining triggers in the infrastructure code for
Spanner, similar to what AWS does on DynamoDB, this is expected to become feasible. The last
solution is to use a common database such as SQL. MySQL and PostgreSQL are not NoSQL
like DynamoDB and Spanner, however they can give similar properties on a single machine but
that totally defeats the purpose of ZooKeeper which is to be a ”Distributed Coordination Service
for Distributed Applications” [178]. Thus, all solutions either considerably damage the highly
desirable features of Zookeeper, or the solution introduces a greater evil than the problem we
initially start with.

6
Evaluation

This chapter describes the various experiments performed to evaluate MSA and answer the re-
search questions. To determine the quality of serverless applications built with MSA, they are
compared with equivalent counterparts (referred to as native) built according to best practices
recommended by respective cloud providers. This will reveal the downsides if any of MSA. Sec-
tion 6.1 explains the setup and assists the reader in reproducing the experiments by describing
how to prepare the infrastructure and the steps taken before making measurements to solve
unpredictable behavior such as cold starts of serverless functions. Sections 6.2, 6.3, and 6.4
evaluate the performance of three serverless applications. MVCC is a non-locking, scaleable
and distributed database, MapReduce is a data intensive serverless application, and Zookeeper
is a latency serverless sensitive application. Section 6.5 discussed the latency of MVCC and
Zookeeper and Section 6.6 gives the reader a gist of the insights gained in this chapter.

6.1. Procedure
To solve the unreliability of cold starts in serverless functions on AWS and GCP, serverless func-
tions are warmed up by sending a random large number of requests for about a minute and then
a request is sent every 5 seconds for a total of 10 requests. The serverless functions invoked
by these 10 requests are measured with the execution time and ram usage monads described
in Section 4.4. This procedure is used for all experiments involving serverless functions on
AWS and GCP including baselines from other sources. The number of concurrent executions of
serverless functions is set to the default value of 1 and the autoscalar is enabled, which means
that if a default threshold selected by the cloud provider is crossed, another instance of the
serverless function will be created (or destroyed when the load falls below the threshold). When
the program uses function composition to perform complex computations over multiple server-
less functions, timestamps from logs are used to calculate the exact end time of operations.
All experiments are done within the free tier of AWS and GCP except the VPC and networking
needed for SQL databases in MVCC is paid. Unless explicitly stated, the default parameters
are selected for all configurations in the cloud. The experiments are carried out using Python
3.10 during working hours on working days at the AWS and GCP data centers in Ireland and
Belgium, respectively.

39

40 Chapter title

6.2. MVCC Database

To study the overheads introduced by MSA, three baselines are selected for comparisons.
MVCC is implemented on Kubernetes and natively on AWS and GCP [115]. Kubernetes is
selected because it is frequently used in numerous industries for hosting applications. The im-
plementation on Kubernetes uses microservices in Python to replace serverless functions, and
a MySQL database for AWS RDS and GCP CloudSQL. The message queue is Kafka and run
locally on a Docker Desktop Kubernetes cluster [54] on a MacBook M2. The values in this
experiment are calculated by taking the average of 10 consecutive valid and accepted trans-
actions after the microservices have stabilized (same as described in Section 6.1). The box
plots show the 10 measurements for each variant, and the number used for the calculations
below is the mean, unless otherwise specified. In every experiment, Kubernetes is compared
with MSA implementations on AWS and GCP followed by a comparison of MSA with the native
implementation in that cloud.

Figure 6.1: Execution time of Worker and Control

6.2. MVCC Database 41

Figure 6.2: Execution time of Worker and Control of AWS

Figure 6.1 compares execution time in seconds of Worker and Control serverless functions
and Fig. 6.2 zooms in on AWS. In Worker, the implementation on Kubernetes the fastest re-
sponses in the tails which is expected because it is running on a local machine instead of an
enormously complex public data center of a cloud provider. AWS has a mean execution time
of 0.104632s and has the smallest range observed while Kubernetes has a mean of 0.601930s
(475% more than AWS) and the largest range among the 5 measured variants. This is also
expected because of the implementation of Kafka listeners polling a queue waiting for an event
in classical microservice fashion, whereas in serverless, a function is triggered near instanta-
neously after the triggering event occurs. GCP has a mean of 1.078641s (930% and 79% higher
than AWS and Kubernetes, respectively). Looking at the two implementations in the respective
cloud providers, the mean MSA is faster than native by 11.2% in AWS and 13.6% in GCP.

Control shows similar trends to Worker. Noteworthy difference is that there are longer tails
in Kubernetes and in GCP. Control writes the transaction to the database so interactions with
a SQL database can explain the longer and variable executions times. Kubernetes requires
on average 0.770943s which is 473% more than AWS which needs on average 0.134539s.
GCP is the slowest at 1.569475s, which is 1066% and 103% more than AWS and Kubernetes,
respectively. AWS MSA of Control is faster by 0.9% than its native equivalent but GCP is slower
by 25% and is the only instance in which MSA is not faster than its native counterpart in Figure
6.1. GCP MSA can be slower than Native in Control but faster than Worker because the code
synthesis for writing to the database in GCP is suboptimal.

42 Chapter title

Figure 6.3: Ram usage of Worker and Control

Figure 6.4: Execution time of Worker and Control of AWS

6.2. MVCC Database 43

Figure 6.3 examines the ram usage in KB of Worker and Control serverless functions on
Kubernetes, AWS and GCP (MSA and native implementations), and Fig. 6.4 is a zoom in on
the AWS and Kubernetes boxplots. GCP requires more RAM than AWS and Kubernetes in
both Worker and Control. In Worker, GCP MSA required 182% and 256% more than AWS and
Kubernetes, respectively. Kubernetes needed the lowest at a mean of 37324 KB and AWS
requires an extra 26% at 47069 KB. AWS Native requires an additional 0. 26% on average over
AWSMSA, while GCPNative needed an additional 11.8% over GCPMSA. In Control, AWSMSA
required the lowest amount of RAM but AWS Native and Kubernetes are both within the margin
of error. GCP MSA is 385% higher than both Kubernetes and AWS MSA. It is interesting that
Control GCPMSA requires 28% extra RAM than Native (whereas it was 11.8% lower in Worker).
This trend is also consistent with execution time where MSA outperforms Native in Worker but
not in Control. GCP requires significantly higher RAM and execution time despite having the
same business logic and programming language compared to Kubernetes and AWS (MSA and
Native). A possible explanation for this is that the SQL library Google provides is significantly
slower than the SQL libraries on AWS (boto3) and the MySQL Python Connector client used in
Kubernetes.

Figure 6.5: Execution time of Worker and Control (latency optimized)

To test the fastest execution times, v2 is a latency optimized write-ahead approach can
be used. The key difference from v1 described earlier, is that after Control receives and ac-

44 Chapter title

cepts a transaction, the transaction is logged and acknowledged. The transaction is later asyn-
chronously written to the database by using a message queue to trigger another serverless func-
tion. In some edge cases, this can cause transactions to be incorrectly accepted or rejected, and
this is a conscious design decision to optimize latency. Figure 6.5 shows the execution times of
Worker and Control in seconds. The trend is similar to v1 with Kubernetes and GCP showing a
large range of values but AWS consistently has a small range and is the fastest on average in
this experiment while GCP is the slowest along with long tails. Interestingly, v2 is faster than v1
for Kubernetes and GCP but not AWS. In Worker, the execution times of latency optimized Ku-
bernetes, GCP Native, and GCP MSA are 45%, 9% and 16% faster than v1 but AWS Native and
AWS MSA are slower by 92%, 29.5% than v1. In Control, Kubernetes, GCP Native and GCP
MSA are 68%, 25% and 36% faster than v1 while AWS Native and AWS MSA are 65% 100.3%
slower respectively. Looking at Control, this suggests that for a serverless function, commu-
nicating with the SQL database RDS on AWS is faster than communicating with the message
queue SQS. However, Kubernetes and GCP can publish a message on Kafka and Pub/Sub
faster than updating a row in SQL databases, MySQL and Cloud SQL respectively. This can be
because of optimizations (or tradeoffs) made in the respective clients, hardware, networking, or
service (message queue and SQL Database) itself by cloud providers (and vendors for Kuber-
netes, Kafka, and MySQL). A more thorough study is required to provide more insight because
it is possible that the AWS SQS Python client is slow, which makes AWS RDS look fast. It is not
clear by Worker shows significantly different numbers in v2 than v1.

Figure 6.6: Execution time of Worker and Control (latency optimized) of AWS

Figure 6.7 shows the RAM usage in v2 which is roughly the same as before. In Worker
and Control, Kubernetes needed 0.7% and 0.17% lesser RAM than v1. AWS shows a similar
trend in Worker and Control where Native requires 0. 56% and 0. 9% lesser RAM than v1 and
AWSMSA 1.16% and 1.7% respectively. GCP however shows wild swings with Worker needing
-4.8% and 11% more RAM while Control needs 8% and 31% lesser RAM.

6.2. MVCC Database 45

Figure 6.7: Ram usage of Worker and Control (latency optimized)

Figure 6.8: Ram usage of Worker and Control (latency optimized) of AWS

46 Chapter title

Figure 6.9: Mapper Execution Time

6.3. Serverless MapReduce
D1, D2 and D3 are randomly selected subsets of UC Berkeley’s amplab1 dataset [9] where D1
is 10% (15KB) of the total dataset and D2, D3 are twice the size of D1 and D2 respectively.
Mapper and reducer serverless functions correspond to the map and reduce steps in MapRe-
duce. The selected baseline is the modernized version of AWS’s reference architecture for
mapreduce and is referred to as Refarch. Unfortunately, Refarch has not been maintained and
predates numerous developments in the cloud because it is written in Python 2 and uses AWS
configurations that are not supported. Refarch has been updated to Python 3.10, deprecations
(on AWS configurations) have been fixed, and it’s dependencies have also been modernized.
The structure and logic of Refarch is preserved but it is important to note that it’s driver program
and reducer programs run locally whereas our mapreduce built with MSA runs entirely on the
cloud. Refarch’s default line count program is used and the measurements are the average of
10 consecutive invocations where the mapper and reducer step of mapreduce can involve mul-
tiple invocations. After each dataset is run, everything is torn down and deployed fresh for the
next dataset.

Figure 6.9 shows the execution times (seconds) of Mapper. Refarch’s implementations are
the fastest, 66% and 55% faster than AWS and GCP on d1, 69% and 76.5% in d2 and 53.5%
and 68% in d3. The size of the data set doubles in each experiment, and therefore a proportional
increase in execution times expected. Refarch does not consistently show this and MSA AWS
has a steeper slope going from d2 to d3 than from d1 to d2. GCP however shows a consistent
linear increase. Interestingly, MSA AWS has longer tails than others showing some fast execu-
tions but they are still slower than Refarch. The measurements on the tails of MSA AWS are

6.3. Serverless MapReduce 47

Figure 6.10: Mapper RAM Usage

faster than those of MSA GCP although on average MSA GCP outperforms MSA AWS by 25%
on d1 and underperforms by 32.6% and 45.6% on d2 and d3, respectively.

Figure 6.10 shows curious results in the RAM usage (KB) of Mapper serverless functions. D1
is expected to have the lowest and d3 the highest but d3 is the lowest on all 3 implementations
on serverless mapreduce. This is probably due to buffering loading of the data from S3. Better
results of buffering are seen in larger datasets of d3 than d1. In Refarch, d2 does the worst while
d3 has a long upwards tail but in AWS MSA, the RAM usage is consistent across the datasets
and the benefits of buffering are neatly visible. In GCP, the RAM usage is more consistent than
AWS MSA and Refarch but requires 21%, 18% and 20% more RAM than AWS MSA in d1, d2
and d3 respectively. There are long tails in Figure 6.9 for both AWS and GCP, but proportional
tails are not seen in RAM usage (Fig. 6.10) suggesting that the tails are due to interactions with
S3 on AWS and Cloud Storage in GCP.

48 Chapter title

Figure 6.11: Reducer Execution Time

Figure 6.11 shows execution times of Reducer. Since the line count program is used, the
reducer needs to aggregate the results by reading from and writing the final answer to a S3
bucket (Cloud Storage for GCP). This is an interesting graph because on AWS, d2 and d3 take
significantly more time than d1 (likely because of more interactions with S3 to aggregate a larger
number of files containing results of map step). In AWS, d2 is on average faster than d3, d3
has a smaller range while in GCP the opposite holds - D3 is on average faster than d2. AWS
outperforms GCP d1 by 11% but underperforms in d2 and d3 by 13.7% and 32.2% respectively.

Figure 6.12: Reducer RAM Usage

Figure 6.12 does not add new insights but confirms what has already been seen. GCP
requires significantly more RAM than AWS 21.8%, 22.1% and 23.6% on d1, d2 and d3 respec-

6.4. Serverless ZooKeeper 49

tively. Furthermore, Reduce does not load datasets from S3 but both AWS and GCP use similar
amounts of RAM compared to Mapper. This suggests that it is the amount of RAM reserved by
a serverless function by default is included in the measurement by the default resource library
[135] built into Python, perhaps cloud providers have adapted the library to suit serverless func-
tions or buffering is exceptionally good in Mapper. The experiments conducted for MapReduce
would benefit greatly if GCPwere to release an equivalent reference architecture for a serverless
mapreduce in GCP so that MSA can be evaluated against it.

6.4. Serverless ZooKeeper
The original serverless Zookeeper, FaaSKeeper [44], is used as a baseline with an equivalent
implementation of FaaSKeeper built with MSA. Two serverless functions Writer and Distributor
are examined. Writer exclusively modifies system storage and does all the writing operations of
ZooKeeper. Clients register watches on nodes that store data and Distributor is responsible for
sending notifications to all Clients when Writer modifies a node. The execution time (seconds)
and ram usage (KB) of Writer and Distributor are measured in Figure 6.13. FaaSKeeper Writer is
usually tight and consistent in execution time while MSAWriter on average has twice the execu-
tion time of FaaSKeeper. However, the range of values observed in both implementations is the
same because of long tails in FaaSKeeper Writer. In Distributor the mean of MSA 0.228478s,
88% larger than FaaSKeeper’s 0.121204s. However, the MSA tails are significantly larger at the
bottom, which means that some invocations of MSADistributor are faster than the FaaSKeeper’s
Distributor. MSA underperformed in both Writer and Distributor suggesting that either code syn-
thesis can not compete with Native implementations in latency sensitive serverless applications
or that optimizations can be made in the synthesized code for DynamoDB. MSA implementa-
tions in Writer and Distributor require 2.5% and 1.6% more RAM than FaaSKeeper. Distributor
has tightly bound RAM usage for both implementations but, in Writer, MSA has a wider range
than FaaSKeeper. Overall, there are long tails in execution times of all implementations but not
in RAM which can be caused by the interactions of the serverless function with DynamoDB. The
same conclusions as before for optimizing synthesized code of DynamoDB also holds here.

6.5. Latency
In this section, the experiments measure latency, which is defined as the difference in time at
which confirmation for an event is received and the time at which an event is received. In MVCC
the event is a transaction of sending an amount from one account to another, while in Zookeeper
it is creation of a new node in the file system.

Figure 6.14 shows the latency of MVCC in seconds, and Fig. 6.15 zooms in on AWS. In
v1, AWS has the smallest range of values and the lowest average latency. Kubernetes and
GCP (Native andMSA) are showing considerable variance with standard deviations of 0.731117,
0.508081 and 0.621536 while for AWS (Native and MSA) it is 0.014367 and 0.011322. In AWS,
MSA is slightly better than Native but not in GCP although the latencies of GCP Native and GCP
MSA are a whisker away from each other. In v2, AWS is once again the most consistent with
the smallest range although Kubernetes shows significant improvement of 78% compared to
v1, Kubernetes has the lowest average latency in v2 but it also has a long tail. Compared to
v1, AWS Native and AWS MSA are 77% and 69.4% higher) while for GCP Native , GCP MSA
and Kubernetes it has reduced in v2 by 17.4% and 28.2%. The standard deviation of latency in

50 Chapter title

Figure 6.13: Execution time and RAM usage of Writer and Distributor in ZooKeeper

6.5. Latency 51

GCP Native fell by 29.8% but increased for GCP MSA by 7.4% compared to v1. The standard
deviation of latency in AWS MSA v2 is 230% higher than AWS Native (Fig. 6.15), while for GCP
this number is 87% higher, suggesting that MSA can be better equipped to work with message
queues.

Figure 6.14: Latency in MVCC

52 Chapter title

Figure 6.15: Latency in MVCC (Zoom in on AWS)

Figure 6.16 examines the latency in serverless Zookeeper built with MSA and FaaSKeeper.
We find that FaaSKeeper outperforms by a substantial amount with a 80% lower standard de-
viation in latency compared to MSA. On average, FaaSKeeper latencies are half the time in
seconds of MSA and does not have a long tail like MSA.

Figure 6.16: Latency in Zookeeper

6.6. Discussion
This chapter started by evaluating five MVCC implementations, one on Kubernetes, one built na-
tively on AWS and GCP, and one built with cloud-agnostic infrastructure code and cloud-agnostic
business logic using MSA on AWS and GCP. The experiment had two parts with two different
implementations of MVCC, the first with strict consistency (v1) and the second, latency optimized
with eventual consistency guarantees (v2). AWS MSA and GCP MSA beat their natively built

6.6. Discussion 53

counterparts in average execution time in two different serverless functions, in v1 and v2. Ku-
bernetes sometimes was better than MSA, but both serverless implementations on AWS (Native
and MSA) had smaller tails and lesser variance than Kubernetes. AWS serverless functions had
shorter execution times and lower RAM usage than GCP serverless functions suggesting that
AWS may have optimized CRUD operations by a serverless function to a SQL database (AWS
RDS) while GCP is yet to offer such benefits to their users. Next a serverless implementation
of Zookeeper built with MSA is compared with FaaSKeeper and it was found that FaaSKeeper
outperformed MSA in execution time and RAM in all tests. There were frequent interactions with
DynamoDB and message queues which are likely to have caused long tails.

We also looked at a partially serverless implementation of Mapreduce by AWS called Re-
farch against 2 purely serverless implementations on AWS and GCP with MSA. This experiment
is different from the previous experiments because it is data centric and revealed that there are
situations in which a GCP Cloud Function can run faster than AWS Lambda. We also discovered
that in Mapper and Reducer, GCP serverless functions had smaller tails than and outperformed
AWS in execution time, but not in RAM usage. A more extensive study with a greater amount
of resources is needed to study buffering done by serverless functions when loading data from
S3 because RAM usage was roughly the same for all three datasets tested. Both MSA imple-
mentations reflected the size of datasets proportional to execution time, but Refarch which is
built in AWS did not reflect this trend as it was faster than expected in d2. MSA was unable to
beat Refarch in execution time of serverless functions highlighting that data intensive server-
less functions are a blind spot of MSA and were not taken into account in the design. A more
thorough evaluation of execution times for each statement of code in a serverless function can
better explain the execution times and RAM usage and help identify the cause of the observed
behaviors.

Lastly, we looked at latencies in MVCC and Zookeeper and found that MSA is better equipped
to communicate with databases than Native counterparts and there is room for improvement in
publishing messages to a message queue. This is expected because in AWS, messages can
be batch processed from a message queue but GCP serverless functions can not do this. Thus,
in the design of MSA, AWS Lambda cannot batch process at the moment. Furthermore, if a
serverless function needs to interact with a SQL database, it can be advisable for the serverless
function to communicate directly with the database in AWS but asynchronously in GCP using
a message queue that will trigger another serverless function to interact with a SQL database.
In Zookeeper, we find that the code synthesis and abstractions made for DynamoDB can be
improved because FaaSKeeper outperformed MSA in all experiments.

In general, AWS almost always outperformed GCP in execution time and RAM usage, some-
times by significant amounts and this is consistent with other previous works [109], [104], [45].
Another insight gained are that serverless components on the cloud offered by various cloud
providers offer significantly different performance in execution time and RAM usage, but also la-
tency of operations like publishing a message in a serverless message queues (AWS SQS and
GCP Pub/Sub) and CRUD operations in a SQL database (AWS RDS and GCP Cloud SQL).
Such operations are vital in time-sensitive applications (more so in serverless functions), and
it would logically follow that, similarly to latency, there are probably also other scalability con-
straints and sweet spots of different services on different clouds. This knowledge will better
inform developers in building cloud applications by leveraging the strengths and working around
the weaknesses of a cloud and it’s services. This highlights that migrating an application from
one cloud to another has various easy-to-miss nontrivial nuances that can have considerable

54 Chapter title

impact on performance of that application and the QoS/SLA the application provides to its users.

7
User Survey

7.1. User Survey
To determine if MSA actually solves the vendor lock-in problem by enabling developers to write
cloud-agnostic infrastructure code and business logic, a user survey is conducted. The following
paragraphs explain the design and structure of the experiment and survey followed by the results
and analysis.

7.1.1. Setup
To determine if MSA meets the objectives of the thesis such as cloud agnosticity, participants
need to build a non-trivial serverless application where there are sufficient differences in the
native implementations between AWS and GCP so that the utility of MSA can be discovered. It
is also important for participants to have previously worked on preferably both AWS and GCP
before hand or at least be familiar with the challenges of vendor lock-in specifically on the cloud.
Without understanding the problem, it is hard to see how MSA solves the problem, and thereby
limits the ability of participants to give useful opinions about MSA in the survey. To this end,
participants experienced in building cloud infrastructure and writing cloud native applications on
multiple clouds are required. This is because MSA has both components and one of the two can
only give an incomplete picture of MSA to the participant. The eligibility conditions complicate
finding a sizable number of participants belonging to such a specific niche group of participants.
Possible biases are addressed by inviting participants with experience on various clouds and
different seniority/years of experience coming from different domains of IT.

To bring out the problem of vendor lock-in and solve it with MSA, participants are asked to
build a serverless application with multiple components on AWS or GCP and migrate to the other
cloud. Participants examine and test the migrated serverless application on the other cloud to
determine if the migration is successful. A migration is successful if the migrated application on
the other cloud perform the same tasks as the original without additional side effects. This re-
quires specific prior knowledge and experience with cloud applications to build such a serverless
application in a short time and to know what to look for to fairly evaluate MSA.

55

56 Chapter title

Figure 7.1: Example architecture of serverless application for user survey

7.1.2. The Experiment
Participants are given 45 minutes to build an API with two endpoints, ”/foo” and ”/bar”. Foo
is a simple FizzBuzz implementation on a serverless function exposed through an API Gate-
way, while Bar stores the headers and query parameters received at the API Gateway in a SQL
database. A complication for developers is that the SQL database can contain sensitive infor-
mation, so serverless functions exposed to the public Internet can not have read or write access
to the SQL database. Foo is a simple program, and participants are helped to get started and
learn their way around MSA. Bar is built without assistance and developers have access to doc-
umentation of MSA, AWS and GCP. To save time, participants are also provided with a schema
of the SQL table with the code required to setup the database.

A possible implementation of Bar can consist of two serverless functions (Figure 7.1), one
that is exposed to the public Internet and the other in the VPC to interact with the SQL database.
Function composition can be used where the first serverless function is triggered by an API
Gateway endpoint with a POST request. The serverless function processes the headers and
query parameters and publishes the computed results to a message queue that will trigger the
other serverless function in the VPC. To enable communication between the serverless functions
outside and inside the VPC, appropriate IAM roles and permissions are needed in addition to
opening a port or some form of hole in the VPC. This must be done delicately because a wide
open VPC is not a VPC anymore, so IAM roles should be used to further tighten the VPC. Other

7.1. User Survey 57

solutions such as setting an API Gateway with authentication inside the VPC accepting traffic
at only port 443 are also a valid solution, but is not supported by MSA at the moment. After
setting up the infrastructure, developers need to ensure that their business logic can interact
with two different flavors of SQL databases (AWS RDS and GCP Cloud SQL) and message
queues (AWS SQS and GCP Pub/sub). The last step is to do a migration from one cloud to the
other.

7.1.3. Questionnaire
Participants start the survey by answering important questions like the number of years of pro-
gramming experience, multiple clouds, and monads, followed by more specific questions about
MSA, quality of migration, and abstractions. 15 responses were collected for the survey of which
46% and 33% reported extensive and moderate experience with multiple clouds, 33% also re-
ported more than 7 years of programming experience and another 40% with between 3 to 7
years suggesting the participants should have the required technical skills but are also relatively
diverse with a healthy mix of seasoned veterans and others at various stages of mastery of cloud
technologies. Most of the participants were unfamiliar with monads and therefore were given a
brief introduction to monads before starting to build the application with MSA.

Figure 7.2: User survey results by question

All the following questions are answered by giving an integer score between 1 and 10 where
1 means strongly disagree and 10 means strongly agree. The overall average score of given
to MSA is 7.8. Participants strongly agreed (average score 8) that MSA allowed developers to
be true to the ideals of serverless programming, that is, a serverless function with Python code
on a cloud of choice (AWS or GCP) can be hosted with specific configurations. The partici-
pants also reported an average score of 8.2 and 7.73 for abstracting tedious boilerplate code
from infrastructure code and business logic. Some concerns raised by participants for the latter
were about batch processing on AWS Lambda, and MSA taking a hard position on delineating
responsibilities of business logic and infrastructure code. This design decision is at odds with
personal preferences for some participants who prefer to dynamically configure infrastructure
through business logic and better align with the philosophy of GCP with respect to triggers. De-

58 Chapter title

Years of programming experience Experience with multiple clouds
26% (0 to 3) 20% No
40% (3 to 7) 33% (Moderate)
33% (>7) 46% (Extensive)

Table 7.1: Relevant experience of participants

spite this, participants reported an average of 8.13 to satisfactorily migrate cloud infrastructure
from one cloud to another and a 7.4 to migrate business logic to another cloud. Participants
were also pleased with MSA and gave an 8 for the ability to create components on the cloud like
SQL databases, message queues, etc. with specific nontrivial configurations that are unique to
a specific cloud through a common infrastructure code. However, ease of use received a 7.27
because MSA forces developers to write infrastructure code and business logic in specific ways,
which is restrictive. Such criticism is typical for abstractions, specifically since the participants
were already familiar with the various proprietary APIs of the cloud providers, which play a major
role in causing the vendor lock-in this thesis aims to solve. Given that participants were unfa-
miliar with monads, using a design like MSA can feel like a burden because numerous design
decisions are informed by monads.

Participants with experience on a single cloud were the least impressed by MSA giving an
overall average of 7.1. This is expected because the severe divide between AWS and GCP is
arduous to appreciate without first experiencing the problem firsthand. Participants with expe-
rience on multiple clouds reported an overall average of 8.36. Participants with greater than 7
years of programming experience (G7) and those with less than 3 years (L3) gave an overall
average score of 8 and 7.1. For ease of use of MSA, both G7 and L3 gave lower scores with an
average of 7.2 and 6.75; however, both groups were satisfied with the quality of migration of the
infrastructure code (8.8 and 8.5) and the business logic (7.25 and 6). An interesting convergence
in opinions between the two groups is that G7 reports an average of 7.8 and L3 7.75 for hosting
a serverless function with Python code on a cloud of choice (AWS or GCP) with specific config-
urations. This suggests both groups are satisfied with the ability to create serverless functions
with specific configurations but there challenging elements to MSA. It is possible that this opinion
will change if the participants have more time to build more complex serverless functions, which
will give MSA a better opportunity to show its strengths.

The difference in average score per question between participants with extensive and mod-
erate experience with multiple clouds is always within 0.5 with the former usually being higher.
Perhaps the tasks were too simple for these two groups. Lastly, in Figure 7.2 there are tails up
an down in most questions suggesting that either more work needs to be done in explaining the
problem and the solution or that there is a variety of opinions on the topics discussed suggesting
that there are more subtle complexities and nuances that require a closer look.

7.1. User Survey 59

Number Question
1 How many years of programming experience do you have?
2 What is experience with multiple clouds (AWS, GCP, Azure, etc.)?

3 How familiar are youwith the concept of monads from functional programming?
(1: Not at all, 10: Know it like the back of my hand).

4 Have you used monads when you write code? (1: Never, 10: All the time).

5 Does this tool allow you to ”host any code, where ever you want, the way you
want”? (Is this tool true to the ideals of serverless programming?)

6 Is boilerplate code successfully abstracted away from business logic in writing
Infrastructure as Code? (Do monads abstract away the tedious boring code).

7
Is boilerplate code successfully abstracted away from business logic in writing
code in the serverless function? (Do monads abstract away the tedious boring
code).

8 Does MSA satisfactorily migrate cloud infrastructure to another cloud?

9 Does MSA satisfactorily migrate business logic in serverless function to an-
other cloud?

10 Are you able to create other components like SQL database, Message Queue,
etc. with configurations unique to a cloud with common code?

11 How easy/convenient to use is it?

Table 7.2: Questions asked in the Survey

8
Discussion and Future Work

In this thesis, we have introduced MSA - Monadic approach to Serverless Applications that takes
inspiration from Monads to solve vendor lock-in on public clouds like AWS and GCP. In chapter
3 numerous previous attempts at solving this problem are listed and as of the time of writing
this paper, no attempt as succeeded. All solutions solve either the agnostic cloud infrastructure
problem or the cloud agnostic business logic problem, but none have created a complete and
performant solution to solve both problems simultaneously. The monadic idea of encapsulating
tedious polluting boilerplate code that is specific for a cloud provider behind a wrapper combined
with Infrastructure as Code provides a potent tool for enabling developers to write pure and effi-
cient business logic code to build performant cloud agnostic cloud native serverless applications.
MSA has been designed to enable developers to build complex serverless applications that re-
main true to the ideals of serverless computing such as cost effective and near-instantaneous
scalability with negligible maintenance. Section 8.1 answers the research questions in Section
1.1 with which this thesis started. Section 8.2 concludes the thesis with possibilities for future
work.

8.1. Discussion
1. Monadic Approach: Can monads help the user explicitly declare requirements for their

serverless functions without polluting/compromising functional nature of code?

Yes. Section 4.2 shows an example and explains the various aspects in which monads
are used to enable developers to declare requirements for their serverless functions in the
monadic style. Layers of abstractions are used in Cloud Monads so that there is no loss
in functionality and the quality of code is maintained. Chapter 5 describes more complex
programs built in the same style that always adhere to the monadic principles. Further, by
unifying the infrastructure code and business logic through layers of abstractions, devel-
opers do not need to learn or use specific code of a particular cloud because the specifics
and other ugly details such as discrepancies between various clouds are abstracted away.
MSA does not take away freedoms of developers by allowing usage of specific code of a
cloud provider and but then MSA is not able to guarantee cloud agnosticity.

61

62 Chapter title

2. Cloud Agnostic: Can the monadic approach be applied to Infrastructure as Code to pro-
vision cloud agnostic infrastructure
Yes. In sections 2.1.1 and 2.1.2 we highlight the various differences in configurations,
ecosystems, and product offerings between the public clouds, and in chapter 4 we dis-
cuss how these differences are solved in infrastructure code by taking inspiration from
monads. For instance, an event in S3 can directly trigger a Lambda in AWS however in
GCP an event in Cloud Storage can only be published in a Pub/Sub message queue. This
is severe difference between infrastructure code in AWS and GCP. The respective Cloud
Monads solve this by creating the required infrastructure and providing an equivalent trig-
ger mechanism in GCP as AWS already has to enable writing cloud agnostic infrastructure
code. Chapter 5 provides evidence for using common generic infrastructure code to build
complex cloud agnostic infrastructures on AWS and GCP without rewriting any code. The
cloud agnostic infrastructure code guarantees can further be extended in a similar way to
other clouds such as Azure, Oracle, IBM, etc. Lastly, the Cloud Monad also allows de-
velopers to state conditions and restrictions on their dependency and MSA ensures the
conditions are validated and restrictions are actively obeyed.

3. Clean Packaging: Can code synthesis be a standardized solution to write generic cloud-
agnostic business logic which can be run in the serverless function of choice?
Yes. Section 2.3 shows the different requirements business logic code must satisfy to be
run on different serverless functions in AWS, GCP and Azure. Although all three clouds
make similar claims and give developers similar configurations on the surface, the devil is
in the details. Two possible solutions to enable developers to write cloud agnostic business
logic to are discussed, the first is to build a common framework or library for developers to
code against, but that can means extra lines of code in dependencies that are unrelated to
the program. The other solution is to synthesize code on the fly so that only the required
code is synthesized and the serverless function is not bloated with irrelevant dependencies.
This keeps the serverless function light and clean besides smoothly integrating with the
monadic concept of asking for requirements to be explicitly stating upfront.
Section 4.3 describes how developers can state the interactions that a serverless function
will have with other cloud services and components. Code synthesis will then ensure that
the specific things that are required are synthesized in a clean modular approach that does
not burden developers with tiresome repetitive code. Prebuilt templates store the required
code for every situation such as triggering a serverless function with HTTP(S) or amessage
queue. The code synthesis stitches together the required templates so deliver exactly what
is required in the serverless function. The benefit of synthesis is that developers can code
against a common API that will work on all supported clouds, but the drawback lies in the
fact that a template for every cloud interaction needs to be built, maintained and it can add
extra lines of code to the serverless function compared to a vendor specific cloud native
approach that usually causes vendor lock-in.

4. How do serverless applications built with a monadic and cloud agnostic approach
compare to serverless applications built with the traditional approach?
Chapter 6 benchmarks and evaluates the three complex cloud-agnostic serverless appli-
cations built with MSA. The first application MVCC is a non-locking scaleable distributed

8.1. Discussion 63

database, MapReduce and ZooKeeper are data intensive and latency sensitive serverless
applications respectively. In the experiments it is found that serverless applications built
with MSA often beat alternatives in execution time and provide comparable performance
in ram usage along with the additional benefit of freedom from vendor lock-in by cloud
providers.
In MVCC, AWS MSA and GCP MSA are benchmarked against their native implementa-
tions in respective clouds and also an equivalent architecture in Kubernetes. Kubernetes
is selected because it is a widely used tool of choice. In v1 of MVCC, MSA outperformed
native implementations in Worker in both execution times and RAM usage of serverless
functions. MSA was usually ahead in Control too but there are some instances in GCP
where MSA required more RAM and execution time than native. GCP MSA was always
significantly behind Kubernetes in all experiments but AWS MSA often outperformed Ku-
bernetes. A latency optimized variant (v2) of MVCC is also made that asynchronously
writes transactions to the databases. V2 improved the latencies in Kubernetes and GCP
but not AWS suggesting that AWS has optimized writing to a RDS whereas GCP optimized
publishing a message on a message queue. A closer look is required to confirm this.
The ZooKeeper experiment benchmarked MSA against a serverless ZooKeeper called
FaaSKeeper. MSA was on average unable to beat FaaSKeeper in all experiments which
means there are areas of improvements in MSA in latency sensitive applications like
ZooKeeper. Some samples of MSA did outperform FaaSKeeper and they could be chance
or luck but it is hard to say given the enormous complexities and unknown scheduling al-
gorithms of AWS data centers.
The last application is a serverless MapReduce in which AWS’s reference architecture
(Refarch) is modernized and used as a benchmark. AWS MSA was slower than Refarch
in execution times of Mapper but had long tails and some samples were competitive with
Refarch. Perhaps minor tweaking in MSA can fix this. In a first, GCP outperformed AWS in
execution time on the first dataset of Mapper and in second and third datasets of Reducer.
GCP however required significantly higher RAM than AWS in all experiments suggesting
that GCP Cloud Functions trade off RAM for execution time in data intensive tasks. The
datasets however are not a wide spectrum in size and complexity so perhaps AWS makes
tradeoffs that show results at different sizes of datasets.
AWSMSA outperformed AWSNative in latency on all MVCC experiments however in GCP
MSA beat GCP Native only in v2. In time sensitive applications like ZooKeeper, MSA was
unable to keep up with FaaSKeeper. Serverless applications built with MSA in many cases
outperform natively built serverless applications in execution time and RAM usage (Section
6.6) and not only does MSA aid developers in escaping the clutches of vendor lock-in, but
also improves code quality by enabling developers to write clean functional infrastructure
code and business logic. Thus, developers benefit in various ways, sometimes without
drawbacks.

5. Is MSA easy to use?
The purpose of the survey is to determine MSA solves the problem of vendor lock-in by
enabling developers to write cloud-agnostic infrastructure code and business logic. 15
participants are asked to build a nontrivial serverless application where there are sufficient
differences in the native implementations between AWS and GCP so that the utility of MSA

64 Chapter title

can be discovered. A survey filled out by the participants after building the serverless ap-
plication asked questions about building specific and customizable serverless functions,
quality of migration in infrastructure and business logic, ease of use of MSA among others.
The overall average score on scale of 1 (strongly disagree) to 10 (strongly agree) is 7.8
which is slightly lower than expected but acceptable given the challenges in conducting
the survey such as recruiting participants with the required experiences (monads and ex-
perience with multiple clouds) and conducting the survey such that the problem of vendor
lock-in is brought out, utility of MSA is brought out and there is time to reflect on what MSA
does in a limited amount of time and resources.
Participants with experience on multiple clouds reported an average overall score of 8.36
while participants without the experience reported an average overall score of 7.1 showing
a gap in information about the vendor lock-in challenges or the difficulties in explainingMSA
as almost all participants were unfamiliar with monads. It is possible that the monadic
aspect of MSA was complex and hard to evaluate for participants given their reported
existing knowledge of monads. Abstractions are seen as a burden when a developer only
knows one proprietary API and does not understand the need for the abstraction, which
makes it hard to understand the utility of the abstraction. It is also possible that serverless
application made by participants was trivial which robbed MSA of an opportunity to truly
show what it can do.
Participants strongly agreed with a score of 8 that MSA allowed developers to stay true to
the ideals of serverless programming, 8.2 and 7.73 for abstracting away tedious mundane
boilerplate code from infrastructure code and business logic, 8.13 and 7.4 for migrating
infrastructure code and business logic from one cloud to another (AWS and GCP) and
a 8 for creating other cloud services and components such as message queues, SQL
databases and so on with specific configurations that can be problematic in cloud agnostic
settings. Lastly, ease of use of MSA scored 7.27 possibly because participants found
monads and related aspects cumbersome.

8.2. Future Work
In this thesis, we presented MSA to build serverless cloud-agnostic applications on AWS and
GCP which are automated and migrations can be made from one cloud to another simply by
pressing a button. There are several possible improvements that are logical next steps for MSA
or outside the scope of this thesis due to time or financial constraints.

1. Data migration: Serverless functions are stateless and hence cloud applications de-
pend heavily on databases for many things like storing state or passing information from
serverless function to another. MSA does not migrate data in a database from the cloud
to another with the serverless application. The data is instead deleted to reduce costs by
cleaning up the cloud environment from which the migration is done from. This is sufficient
for this thesis but impractical for real life use cases.

2. Security: MSA allows developers to build highly customizable IAM roles to grant or
deny access of cloud components to other resources and cloud components however it
is not sufficiently fine grained to be used in production environments. Ideally, the IAM
roles should be built in code dynamically instead of statically in json files to plug the holes

8.2. Future Work 65

and grant tighter accesses and permissions to cloud components and resources. Another
perspective of security is in networking, where, while VPC is a good idea, opening of ports
or piercing the VPC with specific services can be done better and more securely. Lastly,
it is vital to protect data in databases with encrypting at rest and in movement, frequent
rotations of keys and regular backups. Lastly, serverless functions are exposed through
an API Gateway on AWS and GCP however they do not offer sufficient protection against
DDoS attacks and meet other requirements for securing and protecting resources required
for critical infrastructure. [134] notes that security in Infrastructure as Code requires more
attention to better protect cloud environments and developers/consumers/organizations
using cloud technologies from malicious actors.

3. Edge compute: Edge computing has been picking up steam and can prove to be a
game changer with other concepts like distributed machine learning, IoT and many more.
Serverless applications can leverage the edge to further minimize latency in applications.

4. IfC: MSA did not explore the possibility of generating infrastructure code from the business
logic. This will further simplify building serverless applications and combining Monads with
the latest developments in AI can be promising.

5. Cross cloud: MSA currently allows developers to build a serverless application on a
single cloud at a time. In this thesis, several instances were observed where particular
services of a cloud are better than competitors. It could be interesting for developers to
build a cross cloud serverless application that leverage the best tools and services of every
cloud.

Bibliography
[1] {m}brace the cloud. url: http://mbrace.io/.
[2] Alexandru Agache et al. “Firecracker: Lightweight virtualization for serverless applica-

tions”. In: 17th USENIX symposium on networked systems design and implementation
(NSDI 20). 2020, pp. 419–434.

[3] Udit Agarwal. “Cloud Abstraction Libraries: Implementation and Comparison”. In: (2016).
[4] All about Monads. url: https://wiki.haskell.org/All_About_Monads.
[5] Amazon API Gateway. url: https://aws.amazon.com/api-gateway/.
[6] Amazon CloudWatch now supports high resolution metric extraction from structured logs.

url: https://aws.amazon.com/about-aws/whats-new/2023/02/amazon-
cloudwatch-high-resolution-metric-extraction-structured-logs/.

[7] Amazon Relational Database Service. url: https://aws.amazon.com/rds/.
[8] Amazon Simple Queue Service. url: https://aws.amazon.com/sqs/.
[9] Amplab, UC Berkeley. url: https://amplab.cs.berkeley.edu/.
[10] Apache Airflow. url: https://airflow.apache.org/.
[11] Apache Deltacloud. url: https://deltacloud.apache.org/.
[12] Apache jclouds. url: https://jclouds.apache.org/.
[13] Apache Libcloud. url: https://libcloud.apache.org.
[14] API Gateway. url: https://cloud.google.com/api-gateway.
[15] Are Webjobs depricated? url: https://learn.microsoft.com/en-us/answers/

questions/1117332/are-webjobs-depricated.
[16] Itzhak Aviv et al. “Infrastructure from code: The next generation of cloud lifecycle au-

tomation”. In: IEEE Software 40.1 (2022), pp. 42–49.
[17] AWS Boto3 Github Repository. url: https://github.com/boto/boto3/.
[18] AWS Glue. url: https://aws.amazon.com/glue/.
[19] AWS Lambda: Resilience under-the-hood. url: https://aws.amazon.com/blogs/

compute/aws-lambda-resilience-under-the-hood/.
[20] AWS Lex. url: https://aws.amazon.com/lex/.
[21] AWS OTEL Lambda. url: https://github.com/aws- observability/aws-

otel-lambda.
[22] AWS Secrets Manager. url: https://docs.aws.amazon.com/secretsmanager/

latest/userguide/intro.html.
[23] AWS Serverless Application Model. url: https://aws.amazon.com/serverless/

sam/.

67

http://mbrace.io/
https://wiki.haskell.org/All_About_Monads
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/about-aws/whats-new/2023/02/amazon-cloudwatch-high-resolution-metric-extraction-structured-logs/
https://aws.amazon.com/about-aws/whats-new/2023/02/amazon-cloudwatch-high-resolution-metric-extraction-structured-logs/
https://aws.amazon.com/rds/
https://aws.amazon.com/sqs/
https://amplab.cs.berkeley.edu/
https://airflow.apache.org/
https://deltacloud.apache.org/
https://jclouds.apache.org/
https://libcloud.apache.org
https://cloud.google.com/api-gateway
https://learn.microsoft.com/en-us/answers/questions/1117332/are-webjobs-depricated
https://learn.microsoft.com/en-us/answers/questions/1117332/are-webjobs-depricated
https://github.com/boto/boto3/
https://aws.amazon.com/glue/
https://aws.amazon.com/blogs/compute/aws-lambda-resilience-under-the-hood/
https://aws.amazon.com/blogs/compute/aws-lambda-resilience-under-the-hood/
https://aws.amazon.com/lex/
https://github.com/aws-observability/aws-otel-lambda
https://github.com/aws-observability/aws-otel-lambda
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/serverless/sam/

68 Bibliography

[24] AWS X-Ray. url: https://aws.amazon.com/xray/.
[25] AWS X-Ray SDK for Python. url: https://github.com/aws/aws-xray-sdk-

python/#user-content-trace-threadpoolexecutor.
[26] aws.s3.BucketNotification Supporting Types. url: https://www.pulumi.com/registry/

packages/aws/api-docs/s3/bucketnotification/#supporting-types.
[27] Azure Functions hosting options. url: https://cloud.google.com/functions/

docs/configuring/timeout.
[28] Azure Functions hosting options. url: https://learn.microsoft.com/en-us/

azure/azure-functions/functions-scale#timeout.
[29] Azure Functions overview. url: https://learn.microsoft.com/en-us/azure/

azure-functions/functions-overview?pivots=programming-language-
csharp.

[30] Azure Functions runtime versions overview. url: https://learn.microsoft.com/
en-us/azure/azure-functions/functions-versions.

[31] Azure Python Functions Github Repository. url: https://github.com/Azure/
azure-functions-python-library.

[32] Build Backends. Fast. url: https://www.shuttle.rs/.
[33] Build modern full-stack applications on AWS. url: https://sst.dev/.
[34] Caching data and configuration settings with AWS Lambda extensions. url: https://

aws.amazon.com/blogs/compute/caching- data- and- configuration-
settings-with-aws-lambda-extensions/.

[35] Can I limit concurrent invocations of an AWS Lambda? url: https://stackoverflow.
com/questions/42028897/can-i-limit-concurrent-invocations-of-
an-aws-lambda.

[36] José Manuel Ortega Candel et al. “Cloud vs Serverless Computing: A Security Point of
View”. In: International Conference on Ubiquitous Computing and Ambient Intelligence.
Springer. 2022, pp. 1098–1109.

[37] Configure Cloud Functions. url: https://cloud.google.com/functions/docs/
configuring.

[38] Configuring advanced logging controls for your Lambda function. url: https://docs.
aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html#
monitoring-cloudwatchlogs-advanced.

[39] Configuring Lambda function options. url: https://docs.aws.amazon.com/lambda/
latest/dg/configuration-function-common.html#configuration-timeout-
console.

[40] Configuring Lambda function options. url: https://docs.aws.amazon.com/lambda/
latest/dg/configuration-function-common.html.

[41] Configuring the monitoring agent. url: https://www.ibm.com/docs/en/mon-
diag-tools?topic=application-configuring-monitoring-agent.

[42] Connect everything. Build anything. url: https://www.netlify.com/.

https://aws.amazon.com/xray/
https://github.com/aws/aws-xray-sdk-python/#user-content-trace-threadpoolexecutor
https://github.com/aws/aws-xray-sdk-python/#user-content-trace-threadpoolexecutor
https://www.pulumi.com/registry/packages/aws/api-docs/s3/bucketnotification/#supporting-types
https://www.pulumi.com/registry/packages/aws/api-docs/s3/bucketnotification/#supporting-types
https://cloud.google.com/functions/docs/configuring/timeout
https://cloud.google.com/functions/docs/configuring/timeout
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale#timeout
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale#timeout
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview?pivots=programming-language-csharp
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview?pivots=programming-language-csharp
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview?pivots=programming-language-csharp
https://learn.microsoft.com/en-us/azure/azure-functions/functions-versions
https://learn.microsoft.com/en-us/azure/azure-functions/functions-versions
https://github.com/Azure/azure-functions-python-library
https://github.com/Azure/azure-functions-python-library
https://www.shuttle.rs/
https://sst.dev/
https://aws.amazon.com/blogs/compute/caching-data-and-configuration-settings-with-aws-lambda-extensions/
https://aws.amazon.com/blogs/compute/caching-data-and-configuration-settings-with-aws-lambda-extensions/
https://aws.amazon.com/blogs/compute/caching-data-and-configuration-settings-with-aws-lambda-extensions/
https://stackoverflow.com/questions/42028897/can-i-limit-concurrent-invocations-of-an-aws-lambda
https://stackoverflow.com/questions/42028897/can-i-limit-concurrent-invocations-of-an-aws-lambda
https://stackoverflow.com/questions/42028897/can-i-limit-concurrent-invocations-of-an-aws-lambda
https://cloud.google.com/functions/docs/configuring
https://cloud.google.com/functions/docs/configuring
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html#monitoring-cloudwatchlogs-advanced
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html#monitoring-cloudwatchlogs-advanced
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html#monitoring-cloudwatchlogs-advanced
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-timeout-console
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-timeout-console
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-timeout-console
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://www.ibm.com/docs/en/mon-diag-tools?topic=application-configuring-monitoring-agent
https://www.ibm.com/docs/en/mon-diag-tools?topic=application-configuring-monitoring-agent
https://www.netlify.com/

Bibliography 69

[43] Contributors to AWS Lambda container cold starts. url: https://nitric.io/blog/
lambda-container-coldstarts.

[44] Marcin Copik et al. “FaaSKeeper: Learning fromBuilding Serverless Services with ZooKeeper
as an Example”. In: arXiv preprint arXiv:2203.14859 (2022).

[45] Marcin Copik et al. “Sebs: A serverless benchmark suite for function-as-a-service com-
puting”. In: Proceedings of the 22nd International Middleware Conference. 2021, pp. 64–
78.

[46] Create your first containerized functions on Azure Container Apps. url: https://learn.
microsoft.com/en- us/azure/azure- functions/functions- deploy-
container-apps?tabs=acr%2Cbash&pivots=programming-language-csharp.

[47] CreateEventSourceMapping. url: https : / / docs . aws . amazon . com / lambda /
latest/api/API_CreateEventSourceMapping.html.

[48] Customize the Cloud Functions build process. url: https://cloud.google.com/
function/docs/building#view_your_build_image_logs.

[49] Darklang: just code. url: https://darklang.com/.
[50] Dasein Cloud. url: https://jclouds.apache.org/.
[51] Data.Either: The Either type and associated data operations. url: https://hackage.

haskell.org/package/base-4.19.1.0/docs/Data-Either.html.
[52] Ricardo Ramos De Oliveira, Rafael Messias Martins, and Adenilso Da Silva Simao. “Im-

pact of the vendor lock-in problem on testing as a service (TaaS)”. In: 2017 IEEE Inter-
national Conference on Cloud Engineering (IC2E). IEEE. 2017, pp. 190–196.

[53] Deploy Lambda functions with container images. url: https://docs.aws.amazon.
com/prescriptive-guidance/latest/patterns/deploy-lambda-functions-
with-container-images.html.

[54] Deploy on Kubernetes with Docker Desktop. url: https://docs.docker.com/
desktop/kubernetes/.

[55] Simon Eismann et al. “The state of serverless applications: Collection, characteriza-
tion, and community consensus”. In: IEEE Transactions on Software Engineering 48.10
(2021), pp. 4152–4166.

[56] Event notification types and destinations. url: https://docs.aws.amazon.com/
AmazonS3/latest/userguide/notification-how-to-event-types-and-
destinations.html#supported-notification-event-types.

[57] Event Source Data Classes. url: https://docs.powertools.aws.dev/lambda/
python/latest/utilities/data_classes/.

[58] Jelle Eysbach. “Cloud Monads: A novel concept for monadic abstraction over state in
serverless cloud applications”. In: (2022).

[59] Field Notes: Monitoring the Java Virtual Machine Garbage Collection on AWS Lambda.
url: https://aws.amazon.com/blogs/architecture/field-notes-monitoring-
the-java-virtual-machine-garbage-collection-on-aws-lambda/.

[60] Ismael Figueroa, Paul Leger, and Hiroaki Fukuda. “Which monads Haskell developers
use: An exploratory study”. In:Science of Computer Programming 201 (2021), p. 102523.

https://nitric.io/blog/lambda-container-coldstarts
https://nitric.io/blog/lambda-container-coldstarts
https://learn.microsoft.com/en-us/azure/azure-functions/functions-deploy-container-apps?tabs=acr%2Cbash&pivots=programming-language-csharp
https://learn.microsoft.com/en-us/azure/azure-functions/functions-deploy-container-apps?tabs=acr%2Cbash&pivots=programming-language-csharp
https://learn.microsoft.com/en-us/azure/azure-functions/functions-deploy-container-apps?tabs=acr%2Cbash&pivots=programming-language-csharp
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://cloud.google.com/function/docs/building#view_your_build_image_logs
https://cloud.google.com/function/docs/building#view_your_build_image_logs
https://darklang.com/
https://jclouds.apache.org/
https://hackage.haskell.org/package/base-4.19.1.0/docs/Data-Either.html
https://hackage.haskell.org/package/base-4.19.1.0/docs/Data-Either.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/deploy-lambda-functions-with-container-images.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/deploy-lambda-functions-with-container-images.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/deploy-lambda-functions-with-container-images.html
https://docs.docker.com/desktop/kubernetes/
https://docs.docker.com/desktop/kubernetes/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/notification-how-to-event-types-and-destinations.html#supported-notification-event-types
https://docs.aws.amazon.com/AmazonS3/latest/userguide/notification-how-to-event-types-and-destinations.html#supported-notification-event-types
https://docs.aws.amazon.com/AmazonS3/latest/userguide/notification-how-to-event-types-and-destinations.html#supported-notification-event-types
https://docs.powertools.aws.dev/lambda/python/latest/utilities/data_classes/
https://docs.powertools.aws.dev/lambda/python/latest/utilities/data_classes/
https://aws.amazon.com/blogs/architecture/field-notes-monitoring-the-java-virtual-machine-garbage-collection-on-aws-lambda/
https://aws.amazon.com/blogs/architecture/field-notes-monitoring-the-java-virtual-machine-garbage-collection-on-aws-lambda/

70 Bibliography

[61] Firecracker – Lightweight Virtualization for Serverless Computing. url: https://aws.
amazon . com / blogs / aws / firecracker - lightweight - virtualization -
for-serverless-computing/.

[62] Fissiom. url: https://fission.io/.
[63] Focus on your application, and leave the database to us. url: https://cloud.google.

com/sql/?hl=en.
[64] From code to fully-managed AWSworkloads in seconds. url: https://getampt.com/.
[65] Function as a Service. url: https://en.wikipedia.org/wiki/Function_as_a_

service.
[66] Function timeout. url: https://cloud.google.com/functions/docs/configuring/

timeout.
[67] Functions. url: https://learn.microsoft.com/en-us/azure/architecture/

gcp-professional/services#functions.
[68] GCPFunctions FrameworkGithubRepository. url: https://github.com/GoogleCloudPlatform/

functions-framework-python.
[69] GCP implementation. url: https://github.com/spcl/faaskeeper/pull/41.
[70] GCP Workflows. url: https://cloud.google.com/workflows?hl=en.
[71] gcp.sql.User. url: https://www.pulumi.com/registry/packages/gcp/api-

docs/sql/user/.
[72] gcp.storage.Notification Inputs. url: https://www.pulumi.com/registry/packages/

gcp/api-docs/storage/notification/#inputs.
[73] Get started with Pulumi policy as code. url: https://www.pulumi.com/docs/

using-pulumi/crossguard/get-started/.
[74] Fotis Gonidis et al. “Cloud application portability: an initial view”. In: Proceedings of the

6th Balkan Conference in Informatics. 2013, pp. 275–282.
[75] Jasper A Hasenoot, Jan S Rellermeyer, and Alexandru Uta. “The Performance of Dis-

tributed Applications: A Traffic Shaping Perspective”. In:Proceedings of the 2023 ACM/SPEC
International Conference on Performance Engineering. 2023, pp. 207–220.

[76] Joseph M Hellerstein et al. “Serverless computing: One step forward, two steps back”.
In: arXiv preprint arXiv:1812.03651 (2018).

[77] Tony Hoare and Robin Milner. “Grand challenges for computing research”. In: The Com-
puter Journal 48.1 (2005), pp. 49–52.

[78] Sanghyun Hong et al. “Go serverless: Securing cloud via serverless design patterns”. In:
10th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 18). 2018.

[79] How to configure monitoring for Azure Functions. url: https://learn.microsoft.
com/en-us/azure/azure-functions/configure-monitoring?tabs=v2#
enable-application-insights-integration.

[80] How to develop and test your Cloud Functions locally. url: https://cloud.google.
com/blog/topics/developers- practitioners/how- to- develop- and-
test-your-cloud-functions-locally.

https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://fission.io/
https://cloud.google.com/sql/?hl=en
https://cloud.google.com/sql/?hl=en
https://getampt.com/
https://en.wikipedia.org/wiki/Function_as_a_service
https://en.wikipedia.org/wiki/Function_as_a_service
https://cloud.google.com/functions/docs/configuring/timeout
https://cloud.google.com/functions/docs/configuring/timeout
https://learn.microsoft.com/en-us/azure/architecture/gcp-professional/services#functions
https://learn.microsoft.com/en-us/azure/architecture/gcp-professional/services#functions
https://github.com/GoogleCloudPlatform/functions-framework-python
https://github.com/GoogleCloudPlatform/functions-framework-python
https://github.com/spcl/faaskeeper/pull/41
https://cloud.google.com/workflows?hl=en
https://www.pulumi.com/registry/packages/gcp/api-docs/sql/user/
https://www.pulumi.com/registry/packages/gcp/api-docs/sql/user/
https://www.pulumi.com/registry/packages/gcp/api-docs/storage/notification/#inputs
https://www.pulumi.com/registry/packages/gcp/api-docs/storage/notification/#inputs
https://www.pulumi.com/docs/using-pulumi/crossguard/get-started/
https://www.pulumi.com/docs/using-pulumi/crossguard/get-started/
https://learn.microsoft.com/en-us/azure/azure-functions/configure-monitoring?tabs=v2#enable-application-insights-integration
https://learn.microsoft.com/en-us/azure/azure-functions/configure-monitoring?tabs=v2#enable-application-insights-integration
https://learn.microsoft.com/en-us/azure/azure-functions/configure-monitoring?tabs=v2#enable-application-insights-integration
https://cloud.google.com/blog/topics/developers-practitioners/how-to-develop-and-test-your-cloud-functions-locally
https://cloud.google.com/blog/topics/developers-practitioners/how-to-develop-and-test-your-cloud-functions-locally
https://cloud.google.com/blog/topics/developers-practitioners/how-to-develop-and-test-your-cloud-functions-locally

Bibliography 71

[81] HTTP triggers. url: https://cloud.google.com/functions/docs/calling/
http.

[82] Patrick Hunt et al. “{ZooKeeper}: Wait-free coordination for internet-scale systems”. In:
2010 USENIX Annual Technical Conference (USENIX ATC 10). 2010.

[83] Infrastructure as code. url: https://en.wikipedia.org/wiki/Infrastructure_
as_code.

[84] Init Containers. url: https://kubernetes.io/docs/concepts/workloads/
pods/init-containers/.

[85] Java Profiler for Azure Monitor Application Insights. url: https://learn.microsoft.
com/en-us/azure/azure-monitor/app/java-standalone-profiler.

[86] Eric Jonas et al. “Cloud programming simplified: A berkeley view on serverless comput-
ing”. In: arXiv preprint arXiv:1902.03383 (2019).

[87] JVM. url: https://cloud.google.com/monitoring/agent/ops- agent/
third-party/jvm.

[88] Klotho. url: https://klo.dev/docs/.
[89] Klotho: develop for local, deploy for the cloud. url: https://github.com/KlothoPlatform/

Klotho.
[90] KNative. url: https://knative.dev/docs/.
[91] Hirohiko Kuramata, Mitsuo Okano, and Hikaru Obata. “Possible Solutions for the Vendor

Lock-In Control Protocol in IP-Based Production Systems”. In: SMPTE Motion Imaging
Journal 132.5 (2023), pp. 38–45.

[92] Lambda execution environment. url: https://docs.aws.amazon.com/lambda/
latest/dg/lambda-runtime-environment.html#runtimes-lifecycle-ib.

[93] Lambda function URLs. url: https://docs.aws.amazon.com/lambda/latest/
dg/lambda-urls.html.

[94] Lambda runtimes. url: https://docs.aws.amazon.com/lambda/latest/dg/
lambda-runtimes.html.

[95] Lambda runtimes. url: https://docs.aws.amazon.com/lambda/latest/dg/
lambda-runtimes.html.

[96] Lambda Telemetry API. url: https://docs.aws.amazon.com/lambda/latest/
dg/telemetry-api.html.

[97] Xing Li, Xue Leng, and Yan Chen. “Securing serverless computing: Challenges, solu-
tions, and opportunities”. In: IEEE Network (2022).

[98] Wes Lloyd et al. “Improving application migration to serverless computing platforms: La-
tencymitigation with keep-alive workloads”. In: 2018 IEEE/ACM International Conference
on Utility and Cloud Computing Companion (UCC Companion). IEEE. 2018, pp. 195–
200.

[99] Local development, testing, and debugging of serverless applications defined in Ter-
raform using AWS SAM CLI. url: https://stackoverflow.com/collectives/
aws/articles/75585198/local-development-testing-and-debugging-
of-serverless-applications-defined-in.

https://cloud.google.com/functions/docs/calling/http
https://cloud.google.com/functions/docs/calling/http
https://en.wikipedia.org/wiki/Infrastructure_as_code
https://en.wikipedia.org/wiki/Infrastructure_as_code
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://learn.microsoft.com/en-us/azure/azure-monitor/app/java-standalone-profiler
https://learn.microsoft.com/en-us/azure/azure-monitor/app/java-standalone-profiler
https://cloud.google.com/monitoring/agent/ops-agent/third-party/jvm
https://cloud.google.com/monitoring/agent/ops-agent/third-party/jvm
https://klo.dev/docs/
https://github.com/KlothoPlatform/Klotho
https://github.com/KlothoPlatform/Klotho
https://knative.dev/docs/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtime-environment.html#runtimes-lifecycle-ib
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtime-environment.html#runtimes-lifecycle-ib
https://docs.aws.amazon.com/lambda/latest/dg/lambda-urls.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-urls.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/telemetry-api.html
https://docs.aws.amazon.com/lambda/latest/dg/telemetry-api.html
https://stackoverflow.com/collectives/aws/articles/75585198/local-development-testing-and-debugging-of-serverless-applications-defined-in
https://stackoverflow.com/collectives/aws/articles/75585198/local-development-testing-and-debugging-of-serverless-applications-defined-in
https://stackoverflow.com/collectives/aws/articles/75585198/local-development-testing-and-debugging-of-serverless-applications-defined-in

72 Bibliography

[100] Logger. url: https://docs.powertools.aws.dev/lambda/python/latest/
core/logger/.

[101] Logger: Bring your own Formatter. url: https://docs.powertools.aws.dev/
lambda/python/latest/core/logger/#bring-your-own-formatter.

[102] Logger: LambdaPowertoolsFormatter. url: https://docs.powertools.aws.dev/
lambda/python/latest/core/logger/#lambdapowertoolsformatter.

[103] Looking for an explanation of function composition. url: https://stackoverflow.
com/a/1475927/12555857.

[104] Pascal Maissen et al. “Faasdom: A benchmark suite for serverless computing”. In: Pro-
ceedings of the 14th ACM international conference on distributed and event-based sys-
tems. 2020, pp. 73–84.

[105] Manage your function app. url: https://learn.microsoft.com/en-us/azure/
azure-functions/functions-how-to-use-azure-function-app-settings?
tabs=portal.

[106] Eduard Marin, Diego Perino, and Roberto Di Pietro. “Serverless computing: a security
perspective”. In: Journal of Cloud Computing 11.1 (2022), pp. 1–12.

[107] MBrace on AWS. url: https://github.com/mbraceproject/MBrace.AWS.
[108] MBrace on Azure. url: https://github.com/mbraceproject/MBrace.Azure.
[109] Garrett McGrath and Paul R Brenner. “Serverless computing: Design, implementation,

and performance”. In: 2017 IEEE 37th International Conference on Distributed Comput-
ing Systems Workshops (ICDCSW). IEEE. 2017, pp. 405–410.

[110] Metrics. url: https://docs.powertools.aws.dev/lambda/python/latest/
core/metrics/.

[111] Middleware factory. url: https://docs.powertools.aws.dev/lambda/python/
latest/utilities/middleware_factory/.

[112] Di Mo et al. “Addressing Serverless Computing Vendor Lock-In through Cloud Service
Abstraction”. In: ().

[113] Sunil Kumar Mohanty, Gopika Premsankar, Mario Di Francesco, et al. “An Evaluation of
Open Source Serverless Computing Frameworks.” In: CloudCom 2018 (2018), pp. 115–
120.

[114] Multiversion concurrency control. url: https://en.wikipedia.org/wiki/Multiversion_
concurrency_control.

[115] mvcc-db. url: https://github.com/rkochar/mvcc-db/.
[116] Nitric multi-cloud demo for PulumiUP 2023. url: https://github.com/nitrictech/

nitric-multi-cloud-demo.
[117] Justice Opara-Martins, Reza Sahandi, and Feng Tian. “Critical analysis of vendor lock-

in and its impact on cloud computing migration: a business perspective”. In: Journal of
Cloud Computing 5 (2016), pp. 1–18.

[118] OpenFaaS. url: https://www.openfaas.com/.
[119] OpenTelemetry Lambda. url: https://baselime.io/.

https://docs.powertools.aws.dev/lambda/python/latest/core/logger/
https://docs.powertools.aws.dev/lambda/python/latest/core/logger/
https://docs.powertools.aws.dev/lambda/python/latest/core/logger/#bring-your-own-formatter
https://docs.powertools.aws.dev/lambda/python/latest/core/logger/#bring-your-own-formatter
https://docs.powertools.aws.dev/lambda/python/latest/core/logger/#lambdapowertoolsformatter
https://docs.powertools.aws.dev/lambda/python/latest/core/logger/#lambdapowertoolsformatter
https://stackoverflow.com/a/1475927/12555857
https://stackoverflow.com/a/1475927/12555857
https://learn.microsoft.com/en-us/azure/azure-functions/functions-how-to-use-azure-function-app-settings?tabs=portal
https://learn.microsoft.com/en-us/azure/azure-functions/functions-how-to-use-azure-function-app-settings?tabs=portal
https://learn.microsoft.com/en-us/azure/azure-functions/functions-how-to-use-azure-function-app-settings?tabs=portal
https://github.com/mbraceproject/MBrace.AWS
https://github.com/mbraceproject/MBrace.Azure
https://docs.powertools.aws.dev/lambda/python/latest/core/metrics/
https://docs.powertools.aws.dev/lambda/python/latest/core/metrics/
https://docs.powertools.aws.dev/lambda/python/latest/utilities/middleware_factory/
https://docs.powertools.aws.dev/lambda/python/latest/utilities/middleware_factory/
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://github.com/rkochar/mvcc-db/
https://github.com/nitrictech/nitric-multi-cloud-demo
https://github.com/nitrictech/nitric-multi-cloud-demo
https://www.openfaas.com/
https://baselime.io/

Bibliography 73

[120] OpenTelemetry Lambda. url: https://github.com/open-telemetry/opentelemetry-
lambda.

[121] OpenTelemetry Trace 1.0 is now available. url: https : / / cloud . google . com /
blog/products/operations/opentelemetry- specification- enables-
standardized-tracing.

[122] OpenWhisk. url: https://openwhisk.apache.org/.
[123] Parser. url: https://docs.powertools.aws.dev/lambda/python/latest/

utilities/parser.
[124] Dana Petcu. “Portability and interoperability between clouds: challenges and case study”.

In: Towards a Service-Based Internet: 4th European Conference, ServiceWave 2011,
Poznan, Poland, October 26-28, 2011. Proceedings 4. Springer. 2011, pp. 62–74.

[125] pkgcloud. url: https://github.com/pkgcloud/pkgcloud.
[126] Pub/Sub. url: https://cloud.google.com/pubsub/?hl=en.
[127] Pulumi. url: https://www.pulumi.com/.
[128] Pulumi & Continuous delivery. url: https://www.pulumi.com/docs/using-

pulumi/continuous-delivery/.
[129] Pulumi Cloud. url: https://github.com/pulumi/pulumi-cloud.
[130] Pulumi ESC. url: https://www.pulumi.com/product/esc/.
[131] Pulumi vs. Nitric. url: https://nitric.io/docs/faq/comparison/pulumi.
[132] Pydantic. url: https://docs.pydantic.dev/latest/.
[133] Python Client for Google Cloud Storage. url: https://cloud.google.com/python/

docs/reference/storage/latest.
[134] Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie Williams. “A systematic mapping

study of infrastructure as code research”. In: Information and Software Technology 108
(2019), pp. 65–77.

[135] Resource. url: https://docs.python.org/3/library/resource.html.
[136] Retrieving parameters and secrets with Powertools for AWS Lambda (TypeScript). url:

https://aws.amazon.com/blogs/compute/retrieving-parameters-and-
secrets-with-powertools-for-aws-lambda-typescript/.

[137] Michael Roberts and John Chapin. What is Serverless? O’Reilly Media, Incorporated,
2017.

[138] Pedro Rodrigues, Filipe Freitas, and José Simão. “QuickFaaS: Providing Portability and
Interoperability between FaaS Platforms”. In: Future Internet 14.12 (2022), p. 360.

[139] Runtime Support. url: https://cloud.google.com/functions/docs/runtime-
support.

[140] S3 Client. url: https://boto3.amazonaws.com/v1/documentation/api/
latest/reference/services/s3.html.

[141] Serverless. url: https://glossary.cncf.io/serverless/.
[142] Serverless Application Model. url: https://aws.amazon.com/serverless/sam/.

https://github.com/open-telemetry/opentelemetry-lambda
https://github.com/open-telemetry/opentelemetry-lambda
https://cloud.google.com/blog/products/operations/opentelemetry-specification-enables-standardized-tracing
https://cloud.google.com/blog/products/operations/opentelemetry-specification-enables-standardized-tracing
https://cloud.google.com/blog/products/operations/opentelemetry-specification-enables-standardized-tracing
https://openwhisk.apache.org/
https://docs.powertools.aws.dev/lambda/python/latest/utilities/parser
https://docs.powertools.aws.dev/lambda/python/latest/utilities/parser
https://github.com/pkgcloud/pkgcloud
https://cloud.google.com/pubsub/?hl=en
https://www.pulumi.com/
https://www.pulumi.com/docs/using-pulumi/continuous-delivery/
https://www.pulumi.com/docs/using-pulumi/continuous-delivery/
https://github.com/pulumi/pulumi-cloud
https://www.pulumi.com/product/esc/
https://nitric.io/docs/faq/comparison/pulumi
https://docs.pydantic.dev/latest/
https://cloud.google.com/python/docs/reference/storage/latest
https://cloud.google.com/python/docs/reference/storage/latest
https://docs.python.org/3/library/resource.html
https://aws.amazon.com/blogs/compute/retrieving-parameters-and-secrets-with-powertools-for-aws-lambda-typescript/
https://aws.amazon.com/blogs/compute/retrieving-parameters-and-secrets-with-powertools-for-aws-lambda-typescript/
https://cloud.google.com/functions/docs/runtime-support
https://cloud.google.com/functions/docs/runtime-support
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html
https://glossary.cncf.io/serverless/
https://aws.amazon.com/serverless/sam/

74 Bibliography

[143] Serverless computing. url: https://en.wikipedia.org/wiki/Serverless_
computing/.

[144] Serverless computing. url: https://learn.microsoft.com/en- us/azure/
architecture/aws-professional/services#serverless-computing.

[145] Serverless Framework. url: https://www.serverless.com/framework.
[146] Serverless Reference Architecture: MapReduce. url: https://github.com/awslabs/

lambda-refarch-mapreduce.
[147] Mazen Shawosh andNicholas Berente. “Software development outsourcing, asset speci-

ficity, and vendor lock-in”. In: (2019).
[148] Simplifying serverless best practices with Lambda Powertools. url: https://aws.

amazon.com/blogs/opensource/simplifying-serverless-best-practices-
with-lambda-powertools/.

[149] Spanner. url: https://cloud.google.com/spanner/.
[150] Spanner DB Functions and Triggers. url: https://www.googlecloudcommunity.

com/gc/Databases/Spanner-DB-Functions-and-Triggers/m-p/174216.
[151] Spark on Google Cloud. url: https://cloud.google.com/solutions/spark.
[152] Josef Spillner. “Transformation of python applications into function-as-a-service deploy-

ments”. In: arXiv preprint arXiv:1705.08169 (2017).
[153] StackOverflow: HTTPmiddleware and google cloud functions. url: https://stackoverflow.

com/a/68353981/12555857.
[154] Status of Python versions. url: https://devguide.python.org/versions/.
[155] Step Functions. url: https://docs.aws.amazon.com/step-functions/.
[156] Davide Taibi, Josef Spillner, and Konrad Wawruch. “Serverless computing-where are we

now, and where are we heading?” In: IEEE software 38.1 (2020), pp. 25–31.
[157] Terraform. url: https://www.terraform.io/.
[158] Terraform vs. Nitric. url: https://nitric.io/docs/faq/comparison/terraform.
[159] The cloud aware application framework. url: https://nitric.io/.
[160] The Current State of Infrastructure From Code. url: https://www.readysetcloud.

io/blog/allen.helton/infrastructure-from-code-benchmark/.
[161] The serverless platform for data teams. url: https://modal.com/.
[162] The stylish Node.js middleware engine for AWS Lambda. url: https://middy.js.

org/.
[163] Tracer. url: https://docs.powertools.aws.dev/lambda/python/latest/

core/tracer/.
[164] Unpacking Observability: Understanding Logs, Events, Traces, and Spans. url: https:

//medium.com/dzerolabs/observability-journey-understanding-logs-
events-traces-and-spans-836524d63172.

[165] Using AWS Lambda with Amazon Lex. url: https://docs.aws.amazon.com/
lambda/latest/dg/services-lex.html.

https://en.wikipedia.org/wiki/Serverless_computing/
https://en.wikipedia.org/wiki/Serverless_computing/
https://learn.microsoft.com/en-us/azure/architecture/aws-professional/services#serverless-computing
https://learn.microsoft.com/en-us/azure/architecture/aws-professional/services#serverless-computing
https://www.serverless.com/framework
https://github.com/awslabs/lambda-refarch-mapreduce
https://github.com/awslabs/lambda-refarch-mapreduce
https://aws.amazon.com/blogs/opensource/simplifying-serverless-best-practices-with-lambda-powertools/
https://aws.amazon.com/blogs/opensource/simplifying-serverless-best-practices-with-lambda-powertools/
https://aws.amazon.com/blogs/opensource/simplifying-serverless-best-practices-with-lambda-powertools/
https://cloud.google.com/spanner/
https://www.googlecloudcommunity.com/gc/Databases/Spanner-DB-Functions-and-Triggers/m-p/174216
https://www.googlecloudcommunity.com/gc/Databases/Spanner-DB-Functions-and-Triggers/m-p/174216
https://cloud.google.com/solutions/spark
https://stackoverflow.com/a/68353981/12555857
https://stackoverflow.com/a/68353981/12555857
https://devguide.python.org/versions/
https://docs.aws.amazon.com/step-functions/
https://www.terraform.io/
https://nitric.io/docs/faq/comparison/terraform
https://nitric.io/
https://www.readysetcloud.io/blog/allen.helton/infrastructure-from-code-benchmark/
https://www.readysetcloud.io/blog/allen.helton/infrastructure-from-code-benchmark/
https://modal.com/
https://middy.js.org/
https://middy.js.org/
https://docs.powertools.aws.dev/lambda/python/latest/core/tracer/
https://docs.powertools.aws.dev/lambda/python/latest/core/tracer/
https://medium.com/dzerolabs/observability-journey-understanding-logs-events-traces-and-spans-836524d63172
https://medium.com/dzerolabs/observability-journey-understanding-logs-events-traces-and-spans-836524d63172
https://medium.com/dzerolabs/observability-journey-understanding-logs-events-traces-and-spans-836524d63172
https://docs.aws.amazon.com/lambda/latest/dg/services-lex.html
https://docs.aws.amazon.com/lambda/latest/dg/services-lex.html

Bibliography 75

[166] Validation. url: https://docs.powertools.aws.dev/lambda/python/latest/
utilities/validation/.

[167] Vercel is the Frontend Cloud. Build, scale, and secure a faster, personalized web. url:
https://vercel.com/.

[168] What is OpenTelemetry? url: https://opentelemetry.io/docs/what- is-
opentelemetry/.

[169] What is serverless? 2022. url: https://www.redhat.com/en/topics/cloud-
native-apps/what-is-serverless.

[170] What is the Azure equivalent of AWS Lambda? url: https://stackoverflow.com/
a/36341710/12555857.

[171] Why do we need monads? url: https://stackoverflow.com/a/28139260/
12555857.

[172] Working with Lambda container images. url: https://docs.aws.amazon.com/
lambda/latest/dg/images-create.html.

[173] Working with Lambda layers. url: https://docs.aws.amazon.com/lambda/
latest/dg/chapter-layers.html.

[174] Vladimir Yussupov et al. “Facing the unplanned migration of serverless applications: A
study on portability problems, solutions, and dead ends”. In: Proceedings of the 12th
IEEE/ACM International Conference on Utility and Cloud Computing. 2019, pp. 273–
283.

[175] Vladimir Yussupov et al. “SEAPORT: Assessing the Portability of Serverless Applica-
tions.” In: CLOSER. 2020, pp. 456–467.

[176] Alex van der Zeeuw, Alexander JAM van Deursen, and Giedo Jansen. “The orchestrated
digital inequalities of the IoT: How vendor lock-in hinders and playfulness creates IoT
benefits in every life”. In: new media & society (2022), p. 14614448221138075.

[177] Haidong Zhao. “Managing Vendor Lock-in in Serverless Edge-to-Cloud Computing from
the Client Side”. PhD thesis. Technical University of Berlin, 2022.

[178] ZooKeeper design goals. url: https://zookeeper.apache.org/doc/current/
zookeeperOver.html.

https://docs.powertools.aws.dev/lambda/python/latest/utilities/validation/
https://docs.powertools.aws.dev/lambda/python/latest/utilities/validation/
https://vercel.com/
https://opentelemetry.io/docs/what-is-opentelemetry/
https://opentelemetry.io/docs/what-is-opentelemetry/
https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless
https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless
https://stackoverflow.com/a/36341710/12555857
https://stackoverflow.com/a/36341710/12555857
https://stackoverflow.com/a/28139260/12555857
https://stackoverflow.com/a/28139260/12555857
https://docs.aws.amazon.com/lambda/latest/dg/images-create.html
https://docs.aws.amazon.com/lambda/latest/dg/images-create.html
https://docs.aws.amazon.com/lambda/latest/dg/chapter-layers.html
https://docs.aws.amazon.com/lambda/latest/dg/chapter-layers.html
https://zookeeper.apache.org/doc/current/zookeeperOver.html
https://zookeeper.apache.org/doc/current/zookeeperOver.html

	Introduction
	Research Questions
	Thesis Structure

	Background
	Serverless Compute
	Loss of Control
	Differences Between Commercial Serverless Function Offerings
	A Closer Look at the Anomalies in Azure Function Application

	Infrastructure as Code
	Specific Code for Serverless Functions
	Monads

	Related Work
	Design of Monadic Serverless Applications
	Tooling
	FooBar
	Cloud Monads
	Serverless Functions
	API Gateway
	Message Queue
	SQL Database
	Blob Storage (S3)

	Other Cloud Monads
	Telemetry
	Execution Time
	RAM
	Input Validation

	Supported Programming Languages
	Policy as Code
	Conclusion

	Building Cloud Agnostic Applications
	MVCC
	Serverless MapReduce
	Serverless ZooKeeper

	Evaluation
	Procedure
	MVCC Database
	Serverless MapReduce
	Serverless ZooKeeper
	Latency
	Discussion

	User Survey
	User Survey
	Setup
	The Experiment
	Questionnaire

	Discussion and Future Work
	Discussion
	Future Work

