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Chapter 1 

The Korteweg de Vries 
Equation 

1.1 The Solitary Wave 

The origins of the subject of solitons date to detailed observations and exper­
iments by John Scott Russell, F.R.S. Edinburgh. Russell initially observed a 
solitary wave in a barge canal and, for a period of over ten years, made ex­
tensive observations and experiments on these waves. These scientific studies 
were reported to the British Association for the Advancement of Science in 
1844; the following passage from his paper is quoted very often [38]: 

/ believe I shall best introduce this phenomenon by describing the circum­
stances of my own first acquaintance with it. I was observing the motion of 
a boat which was rapidly drawn along a narrow channel by a pair of horses, 
rohen the boat .suddenly stopped . . . not so the mass of water in the channel 
which it had put in motion; it accumulated round the prow of the vessel in a 
state of violent agitation, then suddenly leaving it behind, rolled forward with 
great velocity, assuming the form of a large solitary elevation, a rounded, 
smooth and well-defined head of water, which continued its course along the 
channel apparently without change of form or diminution of speed. I followed 
it on horseback, and overtook it still rolling on a a rate of some eight or nine 
miles an hour, preserving its original figure some thirty feet long and a foot 
to a foot and a half in height. Its height gradually diminished, and after a 
chase of one or two miles I lost it in the windings of the channel. Such, in 
the month of August 1834, ^os my first chance interview with that singular 
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2 CHAPTER 1. THE KORTEWEG DEVRIES EQUATION 

and beautiful phenomenon which I have called the Wave of Translation, a 
name which it now very generally bears; which I have since found to be an 
important element in almost every case of fluid resistance, and ascertained to 
be the type of that great moving elevation of the sea, which, with the regularity 
of a planet, ascends our rivers and rolls along our shores. 

Russell constructed a device for generating waves, 

a long narrow channel or box a foot wide, eight or nine inches deep, and 
twenty or thirty feet long, filled with water to the height of say four inches 

and carried out extensive experiments: 
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Figure 1.1: Solution ofthe Kortweg-de Vries equation with a Gaussian initial 
pulse. 5 = .05; u{x, 0) = 6 - 2 ( ^ - 2 ° ) ' 



1.1. THE SOLITARY WAVE 3 

If the volume of the generating fluid considerably exceed the length of the 
wave of a height equal to that of the fluid, the wave will assume its usual form 
W notwithstanding, and will pass forward with its usual volume and height. 
It will free itself from the redundant matter w by which it is accompanied, 
leaving it behind, and this residuary wave, W2, will follow after it, only with 
a less velocity, so that although the two waves were at first united in the 
compound wave, they advance afterwards separate, . . . and are more and 
more apart the further they travel. 

Disintegration of large Wave Masses.- . . . The existence of a moving 
heap of water of any arbitrary shape or magnitude is not sufficient to entitle 
it to designation of a wave of the first order. If such a heap be by any means 
forced into existence, it will rapidly fall to pieces and become disintegrated 
and resolved into a series of different waves, which do not move forward in 
company with each other, but move on separately, each with a velocity of its 
own, and each of course continuing to depart from the other. Thus a large 
compound heap or wave becomes resolved into the principal and resiudary 
waves by a species of spontaneous analysis. 

The phenomenon observed experimentally by Russell for water waves is 
mimicked by the evolution of an initial Gaussian pulse for the Kortweg-
deVries equation, which is the main character in our play. In Chapter §5 1 
have given a Matlab code which animates this phenomenon. 

Modern researches have focused on the solitary wave of elevation, that 
which Russell termed postive. But Russell also described waves of depression 
in the fluid, as well as compound waves consisting of a positive and nega­
tive wave. Russell also described the dissipation in the waves, which is not 
modeled in the Euler equations or in the KdV approximation to them. 

He was particularly concerned with the factors determining the velocity 
of the wave, and made extensive measurements. He arrived at the follow­
ing heuristic formula, which gave very good agreement with experimental 
observation: 

V = \/g{h + k) 

where g is the acceleration due to gravity, h is the depth of the fluid "in 
repose", and "k is the height of the crest of the wave above the plane of 
repose". Russell produced a table of experimental results comparing this 
formula with observed speeds (Table I I , p. 327). 
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I have not found the phaeonenon, which I have called the wave of the first 
order, or the great solitary wave of translation, described in any observations, 
nor predicted in any theory of hydrodynamics. 

After publication of his first observations of a solitary wave, a theoretical 
study was taken up by Kelland in the Edinburgh Philosophical Transactions. 
A theoretical formula for the velocity of the wave, based on the general 
equations of fluid dynamics was obtained; but the result did not agree very 
accurately with observation. 

Airy took up the same study, in an extensive paper published in the 'En­
cyclopedia Metropolitana', and obtained a modification of Kelland's formula. 

Mr. Airy has obtained for the velocity of a wave, an expression of a form 
closely representing that which Mr. Kelland had previously obtained. From 
the resemblance of this form of expression to the form previously obtained 
by Mr. Kelland, we are prepared for the conclusion that Mr. Airy has ad­
vanced in this direction little beyond his predecessor. . . . As however Mr. 
Airy appears to intimate to his readers that his own formula is as close an 
approximation to my experiments as the nature of these experiments will war­
rant, I have thought it necessary to make a complete re-examination of my 
experiments . . . 

The result of the whole is, that there is an irresistible body of evidence in 
favour of the conclusion that Mr. Airy's formulae do not present anything 
like even a plausible representation of the velocity of the wave of the first 
order, and that the formula I have adopted does as accruately represent them 
as the inevitable imperfections of all observations will admit. 

Russell's subsequent experiments stimulated great interest in the subject 
of water waves, and his discoveries were immediately taken up by Airy [3] and 
Stokes [44]. Stokes computed the Fourier series of the formal approximations 
to second order in the case of finite depth, and to third order in the case of 
infinite depth. 

/ have proceeded to a third approximation in the particular case in which 
the depth of the fluid is very great . . . This term gives an increase in the 
velocity of propagation depending on the square of the ratio of the height of 
the waves to their length. 

Among the many conclusions of his investigations. Stokes concluded, er-
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roneously, as i t turns out, "that i t is only an indefinite series of waves which 
possesses the property of being propagated with a uniform velocity." On the 
other hand. 

There is one result of a second approximation which may possibly be of 
practical importance. It appears that the forward motion ofthe particles is not 
altogether compensated by their backward motion; so that, in addition to their 
motion of oscillation, the particles have a progressive motion in the direction 
of the propagation of the waves. . . . Now when a ship at sea is overtaken 
by a storm, and the sky remains overcast, so as to prevent astronomical 
observations, there is nothing to trust to for finding the ship's place but the 
dead reckoning. But the estimated velocity and direction of the motion of 
the ship are her velocity and direction of motion relatively to the water. If 
then the whole of the water near the surface be moving in the direction of 
the waves, it is evident that the ship's estimated place will be erroneous. If 
however, the velocity of the water can be expressed in terms of the length and 
height of the waves, both which can be observed approximately from the ship, 
the motion of the water can be aUowed for in the dead reckoning. 

1.2 The Euler Equations 

The mathematical analysis of wave motion on the surface of an incompress­
ible, inviscid fluid with irrotational flow is based on the equations 

Aifi = 0 0<y<h + v, 

Vt + VxVx = Vy on XJ =h + r]{x, t ) 

p(</'t + + 7̂?) = 0 ony =h-\-r}(x,t) 

^Py = 0 on y =0. 

Here g is the acceleration due to gravity, and p is the density. The function cp 
is the velocity potential; that is, the fluid velocity u is given by the gradient 
of (p: 

Ü = {u, v) = V<^ 
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The function t] is the height of the free surface of the fluid above the equi­
librium level y = h. Surface tension is ignored, and the solutions are called 
gravity waves, since there are no other forces acting on the fluid. 

The mathematical difficulty surrounding the discovery of the solitary wave 
was due precisely to the problem of correctly balancing the effects of disper­
sion and nonlinearity in the asymptotic perturbation series, which are highly 
singular. I f dispersion is ignored, one obtains the shallow water equations, 
of which the equation 

Ut + UUx = 0 

is a simple prototype. This equation produces shocks, or breaking of waves. 
At the other limit, i f the nonlinear effects are ignored, one obtains essentially 
the Airy equation 

which exhibits only a dispersive decay of the waves, and supports neither 
periodic wave trains, nor solitary waves. 

There are three relevant length scales in the theory, h, the depth of the 
fluid; I, the length of the wave; and a, the amplitude ofthe wave. Accordingly, 
there are two dimensionless parameters, 

h a 

The Korteweg-deVries (KdV) equation, 

is presumed to be valid in a regime where / i = 0{e'^); and this is where the 
solitary wave occurs. 

The Korteweg deVries equation may be solved explicitly and exhibits 
both periodic wave trains (the cnoidal waves), and, in the limit of infinite 
period, the solitary wave: 

u{x,t) = 3csech^|A/c(a; - ct). 

We note that for the solitary wave of the KdV equation, the amplitude is 
directly proportional to the speed. 

The KdV equation, named for Korteweg and de Vries [21] was in fact first 
found by Boussinesq [8]; and, moreover, referring specifically to Russell's 
observations, he found the exact solution for the solitary wave of the nonlinear 
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equation Boussinesq's treatise was, however, 680 pages long, and much of his 
work was not fully appreciated. 

Rigorous proofs of the the existence of periodic wave trains were finally 
given^ by Levi-Civita [27] in the case of infinitely deep water and a year later 
by Struik [45] for periodic wave trains in water of finite depth. Levi-Civita 
used a conformal mapping technique to map the unknown domain confor-
mally into a half-plane. Friedrichs and Hyers [16] gave a rigorous construction 
of the solitary wave. Walter Craig [11] has given a rigorous justification of the 
validity of the KdV approximation over long time intervals of order e~^. The 
formal derivation of the KdV equation water waves is considerably involved. 

1.3 The Fermi-Pasta-Ulam Experiment 

The remarkable mathematical structure of the KdV equation came to light 
not from the theory of water waves, but as a fall-out from a famous experi­
ment by Fermi,Pasta, and Ulam [13] in 1955. Fermi, Pasta, and Ulam were 
attempting to use the computational power of the new computers to observe 
thermalization of energy in a nonlinear dynamical system with a large num­
ber (in this case, 64) degrees of freedom. They took as a simple model a 
coupled chain of 64 masses coupled by nonlinear springs. The equations of 
motion of such a system are 

myn = fiVn+l-Vn)- fiVn-Vn-x), (1.2) 

where ƒ is a nonlinear restoring force, e.g. f{y) = y + ay'^. 

Instead of thermalization of the energy, that is, a tendency toward a sta­
tionary distribution of energy among the modes, they observed a quasiperi-
odic exchange of energy between the modes. This was unexpected, and led 
to a number of computer experiments on such nonlinear systems with a large 
number of degrees of freedom. 

A continuum limit of this model is obtained formally as follows. We 
assume that yn{t)=y{nh,t), where y{x,t) is a smooth function. By Taylor's 
theorem, 

/j2 /j3 /j4 

yn±l =yn± hDyn + ^D^Vn ± -^D^Vn + -^D^Vn ± • • • 

^Geometers take note! 
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where Dy„ = yx{nh,t), etc. I f we take y = yn, substitute these expansions 
into (1.2), and expand in powers of h, we find 

mytt = h^yxX + 2ah?yxyxx + -^Vxxxx + • • •, 

where the dots denote higher order terms in h. Now consider the formal limit 
of this equation as the spacing / i 0. We must assume that the masses also 
decrease, and in fact, that m = Y? ji?. Then, dropping terms of order n? 
and higher, the equation becomes 

-ilVti = Vxx + 2a^/rnyxyxx + -^Vxxxx (1-3) 

This equation is similar to the Boussinesq equation that arises in the 
theory of water waves. The equation was shown to be integrable by the 
inverse scattering method by V.E. Zakharov [54]; I will discuss Zakharov's 
paper in Chapter (3.3). 

An account of this experiment and subsequent investigations of Kruskal 
and Zabusky [23] is given by Cercignani [10] and Palais [33 . 

1.4 The Kruskal-Zabusky Experiments 

A very simple derivation of the KdV equation is given by Kruskal [22]. He 
begins with the weakly nonlinear dispersive wave equation 

Utt = Uxx{l +£Ux) + (^"^xxxxi 

where e, a; <C 1 are small parameters measuring nonlinearity and dispersion 
respectively. The linear equation, with e = 0, has the dispersion relation 

For a = e = 0 the equation reduces to the linear wave equation, which 
has as a general solution left and right progressing wave-forms. We look for 
a solution of the fu l l equation which is right progressing, with only a slow 
variation in time. To make this precise, we look for a solution of the form 

u{xf,e,a) = w{^,r) ^ = x — t, T = et. 
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Initial Profile, cos{7t x) t=.2 t=.4 
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Figure 1.2: Steepening and development of oscillations by the Korteweg-
deVries equation with intial data cos nx; one of Kruskal and Zabusky's orig­
inal experiments. 

du _ dw 

By the chain rule 

dw du dw 

and, in the variables ^, r the equation becomes 

E^WT-J. — 2ew^r + w^^ = w^^{l + ew^) + aw^^^^. 

We drop the quadratic term in e since it is second order. Putting U = W(^/2 
we obtain the KdV equation for U: 
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This simple derivation indicates two of the primary ingredients in the 
KdV approximation: First, one must specialize to a unidirectional frame; 
and second, one must scale the time variable in an appropriate way. These 
two features also appear in the more complicated derivation of the KdV 
approximation to the plasma and Euler equations. 

The KdV equation has as a special solution the solitary wave, 

u{x,t) = 12uj\edl[u{x - 4ooH)' 

These waves move to the right with speed 4^^. Note that their amplitude 
depends on the wave speed, and that larger waves travel faster. One could 
choose as initial data two solitons separated by a distance great enough so 
that their interaction was extremely small, since they decay exponentially in 
either direction. Suppose the soliton to the left is larger. As time evolves, the 
larger soliton wil l overtake the smaller one. Since the equation is nonlinear 
they wil l react in a nonlinear way. After a period of time the two solitons 
again separate, the larger one moving ahead to the right and regaining its 
original shape. For large time, the two solitons are perturbed only by a 
phase shift: they are not quite where they would be had they been purely 
solitary waves. These facts were discovered by computational experiments 
by Kruskal and Zabusky in the early 60's [23]. 

Moreover, the same thing happens when the initial data consists of several 
solitons, separated originally into distinguishable solitary waves. As time 
progresses, the faster solitons overtake the slower ones, and as time goes 
to infinity, the solution evolves into separated solitons, each with its own 
original amplitude and speed, but with slightly displaced phase. 

Even though the Korteweg-deVries equation is nonlinear, there is a closed 
formula for the n-soliton solution: 

u{x,t) =12^^1ogdet (1.4) 

=ujj{x - aj -4uj]t). (1.5) 

1.5 Pseudospectral codes 

A survey of numerical methods for weakly nonlinear dispersive wave equa­
tions appears in the book by Drazin and Johnson [35]. Comparative studies 
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Figure 1.3: The interaction of 2 solitary waves in the exact solution. Two 
solitary waves are pictured in the first frame. As time progresses the two 
solitary waves interact and separate. Note the dip in the larger wave as they 
interact, indicating clearly that the interaction is nonlinear and not a simple 
superpostion. After the interaction they have regained their shape, but are 
displaced from where they would have been had there been no interaction. 

of various methods for the nonlinear Schrödinger equation have been carried 
out by Taha and Ablowitz [46], [47]. The split-step method introduced by 
F. Tappert [48] has been discussed by R.S. Palais [33'. 

Fornberg and Whitham [15] used a leap-frog method with an explicit time 
step to solve numerically the KdV equation. To achieve any kind of accuracy 
with an explicit method, one must take very small time steps. In the case of 
the third order operator D^ one must have At = 0{{Ax)^). 
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Y. L i , a postdoctoral fellow at Minnesota, and I wrote some simple codes 
in Matlab to numerically integrate the KdV equation and animate the so­
lutions. We chose an implicit pseudo-spectral scheme, based on the method 
discussed in [51], for its simplicity, speed and versatility. A number of these 
codes are given in Chapter 5. We reconstructed one of Kruskal and Zabusky's 
original experiments, [23] taking as initial data cos nx for the KdV equation. 
A sequence of frames is given in Figure 1.4. 

The codes use a pseduo-spectral method with an impHcit method for the 
time step. This leads to a nonlinear equation to solve at each time step, 
and the scheme uses a simple iteration at each stage to solve the nonlinear 
equation by successive approximations. An implicit method which uses the 
solution u at the preceeding step is generally unstable. We got much better 
numerical results by averaging the nonlinear term over the previous and 
current time step, and incorporating an iteration on the nonlinear term in 
the scheme. The size of the time step is determined by the requirement 
that the iteration scheme converge sufficiently rapidly. Wineberg et. al. [51 
remark that they found i t sufficient to simply carry out two iterations at each 
step. 

We summarize here the derivation of the scheme for the KdV equation: 

Ut + D^u + D — = 0 . 
v 2 y 

We first illustrate the trapezoid method with the simple equation 

Ut + Du = 0. 

Write the equation in the form 

Ut = -Du, 

and integrate from t to t + At: 

nt+At 
u{x,t +At) ~u{x,t) = - J Dudt. 

Now approximate the integral on the right by the trapezoid rule to obtain 

/ X Du(x,t +At) + Du(x,t) 
u{x, t + At)- u{x, t) = ^ At . 
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This equation may be written in the form 

(7 + ^AtD)u{x, t + At) = { I - ^AtD)u{x, t), 
ZJ ZJ 

or symbolically, by 

u 'x,t + At) = Uu{x,t), U = 
I - kAtD 

2 

I + IMD 

There is no problem in inverting 7 + | A t 7 ) since D is skew adjoint and its 
eigenvalues are imaginary. The operator U is unitary^, and its norm is 1, 
regardless of the size of At. 

Applying the 'trapezoid' argument to the fu l l KdV equation, we get 

u{t + At) = Uu{t) - B{u^{t + At) + 

where 

I -\AtD^ _ .25AtD 

^ ~ I+lAtD^' ^ - 1 + .5AtD3 • (1-6) 

The operator U is unitary. U and B are evaluated using the fast Fourier 
transform algorithm. The fast Fourier transform in Matlab is called by ' f f t ' . 
The inverse fast Fourier transform is called up by ' i f f t ' . Let us set 

v = m{u), u = im{v). 

Then the above equation can be written in the form 

v{t + At) = Uv{t) - Bm{u'^{t) +u^{t + At)). 

The nonlinear terms are best computed in the spatial representation, so we 
transform back to the original spatial picture, carry out the multiplication, 
which is pointwise on the x side, and then transform back. This is a nonlinear, 
implicit scheme, since i t is nonlinear in u{t + At). 

The final step in the procedure is to solve this nonlinear scheme by suc­
cessive approximations.^ That is, we write a subroutine to carry out the 
iterations 

Vj+i{t + At) = Uv{t) - BSt{u^{t) +u^Jt + At)), 

is the Cayley transform of ^D; cf. Riesz and Nagy [37] 
^One could try to set up a Newton iteration scheme, which converges quadratically, 

but this is complicated by use of the Fourier transform, since then one has to invert a full 
matrix. 
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Uj = i f f t (uj) ; Vj = Et{uj{t)). 

This scheme is quite robust and gives extremely good accuracy for A'' 
sufficiently large (say N = 512) and the time steps sufficiently small (say 
At = .005). We compared the computed two soliton solution with the ex­
act solution and found the difference was negligible after the interaction. A 
simple routine which carries out this comparision is given in the code kdv-
comp.m 

The calculations are carried out on 27r periodic functions, since we are 
using the finite Fourier transform. However, in order to place two solitary 
waves in the interval [0, 2TT] one finds that the velocities Ci and C2 must be 
relatively large (of the order of 3,5) in order that the solitons be sufficiently 
narrow. The solitary waveform for the equation Ut + u^xx + uUx = 0 is 

12o ŝech^a;a: 

so its height is proportional to w^; and this leads to numerical instability due 
to the nonlinear terms. With w = 5 the amplitude of the solitary wave is 
then 300, and this large amplitude causes instability in the numerical scheme, 
necessitating very small time steps. 

I t is therefore necessary to rescale the problem to an interval 0 < y < L. 
We let w satisfy 

Wt + Wyyy + WWy = 0, 0 < y < L , 

and define ^ ^ 

u(x,t) =-w(ax,t), a=—-. 
a M 

Then u satisfies the equation 

Ut - f \uxxx + = 0 0 < a: < 27r. 

We found it suflttcient to take L — 40. We have also included a coefficient 
of dispersion, disp, in the code. 

We can also see from this numerical scheme the mechanism by which the 
dispersive term smooths out the shocks developed by the nonlinear term. The 
operator B defined in (1.6) acts as a low-pass filter for the Fourier modes. 
To see this, note that on the spectral side B is multiphcation by 

•25iAtA: 

1 - .5iAt{disp)a'^^k^' 
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The graph of the spectral properties of the operator B not only makes 
clear how dispersion and nonlinearity compete, but it also suggests why this 
numerical algorithm is so effective for nonlinear systems with strong disper­
sion. The nonlinear terms push energy into the higher modes; but i t is in 
turn filtered out by the high frequency cut-off. This cut-off is characterisitic 
of weak nonlinearity, since the operator B wil l always consist of lower order 
differential operators divided by higher order operators. 

High frequency cut off 
0.12r 

0' ' 1 1 1 I I 

0 100 200 300 400 500 600 

Figure 1.4: High frequency cut-off due to the dispersion acting on the non­
linear terms. At = .05, disp=.05, L = iO, N = 256. 
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Chapter 2 

The Plasma Equations 

2.1 The K d V Approximation 

The formal derivation of the KdV approximation for the plasma equations 
is considerably easier than in the case of water waves [50], [24]. We carry 
out the details here with an emphasis on the fundamental role played by the 
Galilean and scaling groups in the approximation. 

A plasma consists of negatively charged electrons and positively charged 
ions. The electrons are treated as a gas and equations of motion for the ions 
are derived. The ion density is denoted by n, the electron density by ng, the 
electric force field by E and the velocity of the ions by v. The equations of 
the plasma may be written in the following form [24], [43 

nt + {nv)x = 0, vt + vvx = E, 

E + (log ne)x = 0, Ex + ne = n, 

where n is the ion density, rig is the electron density, v is the ion velocity, 
and E is the electric field. We eliminate Ue from the equation by defining 

= log Ue, <f being the electric potential, and the equations reduce to three 
equations in three unknowns 

nt + {nv)x = 0, vt+ — + cp) = 0 , ip^x - e'^ + n = 0. (2.1) 
V 2 Jx 

First we determine the dispersion relation from a formal perturbation for 
small disturbances ofthe equihbrium states. We look for small perturbations 

17 
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about the quiescent state n = l , v = c, (p = 0: 

n = l+£ni+e'^n2 + ..., cp = eipi+e'^cp2 +..., v = c+evi+e'^V2 + . • • • 

Substituting these expansions into (2.1) we obtain, at lowest order, the linear 
equations for small disturbances 

ni,t + {vi + cni)x = 0, 

vi,t + {cvi + cpi)x = 0, 

Vi,xx - (pi + ni = 0. 

The dispersion relation for this linear system is obtained by looking at 

the Fourier modes 

v l ^ I A''^-^^) 

This leads to the linear algebraic system 

— ck —k 0 
0 UJ — ck —k 

- 1 0 l + k"" 

The system has a nontrivial solution iff the determinant of the above matrix 
vanishes, and this leads to the condition {üJ-ckY{l + k'^)-k'^ = 0, or, solving 
for w, 

k 
W = CK dz . 

1TT¥ 
First we consider the case c = 0: 

Waves traveling to the right are then obtained by taking the positive sign, 

since then the phase velocity is 

tu _ 1 

k ~ V F T i ' 
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The Taylor expansion of the dispersion relation for general c is then u = 
(c + l)k - i/c^ + 0{k^). This is a good approximation for small k, that is, 
for long waves. The leading term (c+ l)/c in this approximation corresponds 
to a dispersionless system with a wave speed c + 1. By taking c = —1 we 
remove the linear term in the dispersion relation. 

The plasma equations are Galilean invariant; that is, they are unchanged 
under the one-parameter group of transformations 

n'{x',t') = n { x , t ) , cp'{x',t') = cp{x,t), v'{x',t') = v { x , t ) - c. 

This means that the equations are the same in any Galilean frame, and we 
can shift to a moving frame of reference simply by subtracting the speed of 
the moving frame from the velocity v. In the moving frame, the velocity 
v' tends to - c at infinity. In particular, the collection of Galilean frames is 
labeled by the values of v at infinity. This amounts to expanding about the 
quiescent state n = l,v = -c, (p = 0, where c is the velocity of the reference 
frame. 

In particular, t; = —1 at infinity in a Galilean frame with speed 1; hence 
the dispersion relation is 

and we obtain, in the long wave approximation. 

The partial differential operator associated with this dispersion relation 
is 

d_ l d / _ 

dt 2dx^' 
for which the natural scahng is x' = ex, t' = e^t. If we introduce this scaling 
into the equations (2.1) we obtain (after division by e) 

e^Uf + {nv)x' = 0, 

e^vt, + ( ^ + j ^ = 0, 

- e cpx'x' + e' v _ n. 
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This perturbation scheme is singular, since the character of the equations 
is changed when e = 0. Since only s'^ appears in these equations, we formally 
expand all quantities in powers of ê : 

n = l + e^ni + v = ~1 + e'^Vi + . . . , cp = e'^cpi + . . . . 

When we do this, substitute the expansions into the above equations, and 
collect terms, we get at order ê : 

{ - n i + v i ) x ' = 0, { - v i + (pi)x' = 0, <pi=ni. 

Since all quantities tend to zero as a; —> oo we have 

n i = v i = (pi. 

At next order we obtain 

ni,t' + {niVi)x' + (^2 - n2)x' = 0, 

Vl,t' + -^-V2 + cp2) = 0 , 

V / X' 

1 2 

-Vl,x'x' +V2 + ^Vl = ^2. 

The second order quantities ^2 , V2, and cp2 may be eliminated from this sys­
tem; and, dropping the primes, one obtains the Korteweg-de Vries equation 
for vi: 

vi,t + vivi^x + ]^vi^xxx = 0. (2.2) 

2.2 The two soHton coUision 

The derivation of the KdV approximation in the preceding section was, of 
course, formal. To what extent is i t a valid approximation? For example, 
which of the various phenomena of the KdV equation hold also for the fu l l 
set of plasma equations? In particular, does the elastic collision of a pair 
of solitons for the KdV equation hold also, in some restricted sense, for the 
plasma equations? 
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Jiirgen Moser and Robert Sachs looked at this question for the Euler 
equations of water waves, but were unable to prove that the two soliton 
solution of the KdV equation could be extended to the fu l l Euler equations. 
The KdV approximation is a singular approximation to the Euler equations, 
as well as to the Plasma equations. 

Y. Li , a postdoc at Minnesota, and I carried out a numerical experiment 
on the plasma equations to see the interaction of two solitary waves [28 . 
We first showed that the plasma equations have solitary waves that travel 
at speeds proportional to their amplitude, and then superposed two solitary 
waves of different amplitudes, and numerically computed their interaction. 

In equations (2.1) we replace n by 1 + n, where now n —>• 0 at infinity. 
Then the equations for a traveling wave with speed c in the Galilean frame 
moving with the same speed are 

{{l + n)v)x = 0, — + ip = 0 , cp" -e'^ + l + n = 0. 
V 2 J X 

Moreover, ti —>• — c as a; —> ±oo. We therefore obtain 

l + n = - ^ , V = - - 2cp, (2.3) 

and, therefore, 

V" = e ' - ^ ^ . (2.4) 
V - 2(p 

Equation (2.4) is easily analyzed by standard phase plane methods cL 
28]. One may then superpose two solitary waves, suitably separated. 

We should not expect that two solitary waves of the plasma equations 
interact cleanly and leave no trace of the their interaction in the form of 
dispersive tails, as happens for the KdV equation. Rather, we should expect 
that as the amplitude of the solitary waves vanishes, the collision becomes 
more and more elastic. 

Numerically, i t is impractical to study the interaction of very small am­
plitude waves. As the amplitude decreases, the spread of the wave increases. 
The solitary waves decrease exponentially from their maximum, but slower 
waves have a smaller rate of decrease, and so one must set the solitons on a 
larger interval and integrate over a longer time. This results in longer and 
longer computation times as the amplitude diminishes. 
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Despite these obvious caveats, wlien we ran the experiment, we saw that 
tlie collisions were virtually elastic. Here is a sequence of frames of the 
interaction: 

Initial Profile t=1700 
0.4 

0.3 

0.2 

0.1 

50 100 150 200 50 100 150 200 

t=1900 t=2600 
0.4 

0.3 

0.2 

0.1 

0 50 100 150 200 
0 

0 50 100 150 200 

Figure 2.1: Interaction of two solitary waves for the ion acoustic plasma 
equations, by a pseudo-spectral method. The time step was dt = .008, 
A'" = 2̂ ^ = 8192 Fourier modes. The computation is done in a moving frame 
moving at speed c=1.07. The speed of the slower wave is 1.5; while that of 
the larger wave is 1.1. The sequence indicates a nearly elastic collision. 

The code integrates the equations in a moving frame. The speed of the 
moving frame is 1.07. The speed ofthe larger wave is 1.1; that of the smaller 
wave is 1.05. The speed of the maximum wave is approximately 1.5852. 
In the moving frame, the smaller wave drops back, while the larger wave 
advances. This has the advantage of keeping both waves within a fixed 
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interval throughout the interaction. 
Our first attempts to apply this numerical method broke down because 

of very small 'discontinuities' at the endpoints of the interval. Though the 
solitary wave decays exponentially fast, and is of the order of 10"^ at the 
endpoints of the interval, there is nevertheless a small jump at the endpoints, 
due to the fact that we used a solitary wave, rather than a periodic wave. 

The small discrepancies at the endpoints contribute energy to the high 
frequency modes. These are cascaded into the higher modes by the nonlinear 
terms, and show up as highly oscillatory noise at the endpoints. These low 
amplitude, high frequency oscillations propagate into the interior from the 
boundaries, and eventually cause a break-down in the computation. 

To deal with this problem we did two things: 1. Rather than computing 
the solitary wave, which is a homocUnic orbit, we instead computed a periodic 
wave very close to the homoclinic orbit; 2. we introduced a very mild filtering 
into the scheme. 

Numerical error introduces high frequency "noise". For example, the 
fact that in any numerical process the solution is essentially a piecewise 
linear function introduces certain errors, albeit very small, into the process. 
For the KdV equation this high frequency noise causes no problems in the 
computation, since the dispersion relation of the KdV equation grows like 
k^, i t acts like a high frequency cut-off and filters out high frequency noise 
automatically, as I explained in §1.5. 

But the plasma equations have much weaker dispersion, namely 

and high frequency energies are not attenuated.^ Moreover, nonlinear terms 
transfer energy from lower to higher modes. The result is that the high 
frequency data corrupts the calculations over time. Because of the scaling 
involved, the code must be integrated over a very long time scale in order to 
see the interaction of the two solitary waves, in this case, to T=2600. We 
actually carried the calculations further, to T = 3800 in order to see the 
waves separate completely. 

To compensate for this problem, we introduced a very mild filtering into 
the scheme. The filtration is accomplished by multiplying the Fourier trans­
form of the functions by a function which "cuts off" the high frequencies; a 

^The dispersion of the Euler equations is even weaker. 
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Figure 2.2; Filtered Fourier transform of the initial data, with the high fre­
quency modes magnified. The unfiltered data shows up as a highly oscillatory 
function; while the filtered data appears as the line y = 0. 

graph is shown in Figure 6. We filtered the initial data, and then filtered the 
solution at every time interval of 50 units. Since the time step was .008, this 
means that the solution was filtered once in every 6250 time steps. 

The filter we used is the 'sharpened raised cosine' (cf. [9], p. 248): 

a{e) = 4{3b - 84(70 + 70al - 20al), ao = ^ ( l - f cos 9). 

The filtering is extremely mild. There is no apparent difference between 
the initial data and its filtration on the spatial side; but the suppression 
of the high frequency noise is apparent when the Fourier transforms of the 
initial data and the filtered data are enlarged, as in Figure 2.2. 
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4000 

Figure 2.3: Sharpened Raised Cosine low pass filter function used in the 
numerical computations, from Spectral Methods in Fluid Mechanics, Canute, 
Hussaini, Quarteroni, & Zang [9]. 

The filtering, of course, removes energy from the system; but we calcu­
lated the energy and momentum, 

S= -{cpxf - f e'̂  - 1 - ((p + v'^/2){l + n)- cnv dx, P= nv dx, 

over the course of the interaction. They deviated from their original values 
by .37% and .2%, respectively, showing that the filtering is indeed very mild. 
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2.3 Comparision wi th K d V 

Let us compare the numerical data with a suitably chosen exact two soliton 
solution of the Korteweg de Vries equation. This procedure will introduce us 
to some of the more subtle properties of the two soliton solution of the KdV 
equation, namely the scattering of solitons during the interaction. First note 
that there is a factor of 1/2 in the KdV approximation (2.2). This is easily 
accounted for by a simple rescaling: 

1 / 1 \ 
v{x,t) = -u x,-t , 

2 \ 2 J 

where u satisfies the KdV equation 

Ut + UUx + Uxxx = 0. 

By expanding the determinant in (1.4), and renaming the phase shifts cti, 
« 2 , the two-soliton solution of (2.2) can be written 

i ; = 6 ^ 1 o g r ( ö i , Ö 2 ) , 

where 

9i =uJi{x - a i - (c + 2ujl)t), 02 =uj2{x - « 2 - {c + 2ujl)t), 

ÜÜ2 + W i 
a = log . 

012 - UJi 

The parameter c is the relative speed of the reference frame, c = 1.07. 
The two soliton solutions form a four parameter family, a i , 0 : 2 ,Wi ,W2 . 

The Hnearized KdV equation at the 2 soliton solution therefore has a four 
dimensional null space, obtained by differentiating the equation with respect 
to the four parameters. In [20] a Fredholm alternative for the time dependent 
operator was proved, and a formal perturbation scheme was described by 
which one could construct a series solution of the fu l l Euler (or in this case 
plasma) equations whose leading term was a two-soliton solution of KdV. 

In that perturbation series, the four parameters « i , « 2 , wi ,a j2 must be 
allowed to vary in order to eliminate the resonance terms which lie in the 
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Figure 2.4: Fit of the two-soliton KdV solution to the initial plasma data at 
time t = 0. 

null space of the linearized operator. Such arguments have been used in [39 
in the study of the stability of travehng waves of paraboUc systems, and 
more specifically by Pego and Weinstein [34] in their study of the stability 
of solitary waves of generalized KdV type equations. 

In the perturbation scheme, the four parameters depend on the small 
parameter of the expansion, and are determined in the course of the per­
turbation series, as in a bifurcation problem. For now, we simply determine 
them by fitting the two soliton solution to the numerical data. The locations 
of the large and small waves before and after the interaction lead to four 
equations. Moreover, the waves are sufficiently separated before and after 
the interaction that we can apply the known formulae for the phase shifts 
incurred in the interaction [30]. We wil l discuss the scattering shifts later in 
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these lectures. 

Lemma 2.3.1 The two soliton solution has the asymptotic behavior 

u = 6—^logr ~ e^isech^f^i + a) + 6u)lsech'^92, t ^ oo; 

and 
u ~ Gwisech^^i + 6w2sech^(6'2 + a), t ^ -oo. 

The proof of Lemma 2.3.1 wil l be given in §4.3. The peaks of the two 
solitary waves occur at = 0, 02 + a = 0 at time t = 0. Therefore, we take 
our matching conditions to be 

t = 0 : Ö1 = 0, + a = 0; 

t = T : Ö1 + a = 0, Ö2 = 0. 

These four conditions lead to the equations 

Oil =Xi, 

_ 1 W 2 + a ; i 
a2 =X2 + — log , 

UJ2 W2 - iOi 

« , = < - ( c + 2 . ; ) T + i l o g ^ , 
ÜJ\ U)2 — W i 

02 =xt - (c + 2a;^)T. 

Here xf denote the locations of the wave at times t = 0 and t = T, the 
total elapsed time, and c is the relative speed of the computation frame to 
the Galilean frame. 

The phase constants can be eliminated from these equations, and we 
obtain two equations in W i and U2: 

2ulT - - log ̂ ^ ^ ^ ^ =Ax, - cT (2.5) 
W i 002 — OOi 

2UJIT + - log ^ ^ ^ ^ =Ax2 - cT, (2.6) 

ÜJ2 ÜO2 - Ull 
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0.3 -

160 180 200 

Figure 2.5: Comparison of the two soHton KdV solution (dashed) with the 
plasma data (sohd) during the interaction, t — 1900. 

where Axj is the total distance traversed by the wave. 
These equations are easily solved by successive approximations for uji, u>2 

iteratively. As an initial guess we took the values obtained by matching the 
speeds of the two KdV waves exactly with the speeds of the soliton waves. 
The speed of the solitary wave 6ujhech'^{uj{x - 2LOH) is 20;̂ . The speeds of 
the two solitary plasma waves (relative to the Gahlean frame) are .05 and .1 . 
Therefore, as a first approximation, we take 

LOl = \/.05/2 = .1581; ^ 2 = = .2236. 

Our data are 

T = 3800; c = -.07; x^ = 147.7349; x^ = 50.0468; 

Axi = -85.2439; Ax2 = 120.4166 

We obtained 

ÜÜI = .1589; UJ2 = .2231; 
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The relative phases ai and 02 are then determined by any of the four equa­

tions above. 
Here we see the interaction of the two waves compared with the two 

soliton KdV solution: 

0.3 h 

160 180 200 

Figure 2.6: Comparison of the two soliton KdV solution with the plasma 
data after the interaction, t = 2600. 



Chapter 3 

Hierarchies of Commuting 
Flows 

3.1 The K d V Hierarchy 

The computational discovery of the highly unusual behavior of solutions of 
the KdV equation prompted an intense, and, as i t turned out, highly fruit­
fu l theoretical investigation of the KdV equation. The original theoretical 
breakthrough was made by Gardner, Greene, Kruskal, and Miura [17]. An 
account of the early developments in the subject is given by Cercignani [10 
and Palais [33 

Later researchers clarified and simplified their arguments, and ultimately 
constructed myriad further examples of such special systems. One of the 
early papers which has had a fundamental influence on the development of 
the subject was the 1968 paper by Peter Lax [25]. Gardner, Greene, Kruskal, 
and Miura [17] had found that the eigenvalues of the Schrödinger operator 

are constant in time if u evolves according to the KdV equation. 
Lax simplified and clarified the situation conceptually by casting the sit­

uation in what is known as the Heisenberg picture in quantum mechanics. 
Suppose that the family of operators {L{t)} is unitarily equivalent under the 
flow. Assume [/ is a one-parameter family of unitary operators: 

UU*=I, Ut = BU, U*L{t)U = L{0), 

31 
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where B is a sicew-adjoint operator. Differentiating the third equation with 
respect to time we get 

U*B*L{t)U + U*LtU + WLBU = 0, 

hence 
Lt + B*L + LB = 0. 

In these calculations we interpret Lt as the operation of multiphcation by 
the function Ut- Since B* = -B this equation reduces to the Lax equation 

Lt = [B,L] (3.1) 

where [B, L] is the commutator BL - LB. The pair of operators L and B is 
called a Lax pair. Equation (3.1) is none other than the Heisenberg picture 
of the Korteweg-deVries equation. 

Since Lt is a multiplication operator, the commutator [B, L] must also be 
a pure multiphcation operator. For example, taking B = D we find 

D, L] = ^Ux, Lt = ^ut 
6 D 

and the Lax equation is Ut = u^. This equation generates the one parameter 
family of translations, u{x,t) = Uo{x +1); and so, of course, L is unitarily 
equivalent under the fiow. 

The KdV equation itself is obtained by taking a third order skew adjoint 

operator 

B = -AD^ - huD + Du) 

The details of the calculation are left as an exercise. 
In all these calculations we may replace L by L + fc^, so the KdV equation 

is formally obtained as a consistency condition for the overdetermined system 
of partial differential equations 

( i )^ + ^ « + fe> = o, ^ = 5V'. 

The two isospectral fiows 

Ut = Ug;, Ut + Uxxx + = 0 
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are only two flows in an infinite hierarchy of commuting Hamiltonian flows, 
this hierarchy of fiows is generated by a recursion relation, namely [26 

DFj+, = i-D' -l{uD + Du))Fj, F^ = u. (3.2) 

The f ^ flow is then given by 

Ut = DFj. 

This recursion relation was first proposed by A. Lenard; Peter Lax [26 
showed that each Fj in the recursion relation is a differential polynomial 
in u and, furthermore, is the gradient of a functional, Hj, so that the fiows 
have the form 

ut = D—^. 
ou 

For example, the first two terms in this recursion relation and their corre­
sponding functionals and flows are 

/

oo -j^ 

-u^ dx, Ut = u^; 
-oo 

F2 = -D'^u - j 2^^ ~ "e" ^* ^ ~ 

The operators D, —{D^ + ^{uD+Du) are an example of a bi-Hamiltonian 
pair. Bi-Hamiltonian pairs of operators can be used to generate hierarchies 
of commuting Hamiltonian flows: cL Magri, [29], Olver and Rosenau, [32], 
Fokas and Fuchsteiner [14]; although one drawback ofthe method is that i t 
does not produce a Lax pair for the equations obtained. 

3.2 The A K N S hierarchy 

After the remarkable properties of the Korteweg de Vries equation were dis­
covered, i t was first thought that this was a rather unusual case and would 
not be repeated. I t was soon discovered, however, that there were other, 
indeed many other, examples of such remarkable equations. In particular, i t 
was discovered that the sine Gordon equation [1 

Uxt = sin u 
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and the nonhnear Schrödinger equation [52 

iut = Uxx + 2\ufu (3.3) 

are also examples of completely integrable systems. These equations are de­
rived as compatibility equations for a pair of first order differential operators, 
as follows: Let 

1 0 \ fo i \ fo 0 
= l o - 1 ' ""+= 0 0 ' VI 0 

and define 

Dx = ~ - izai - pa+ - (3.4) 

A = ^ - ^̂ 3̂ - Ba+ - Ca_ (3.5) 

Set p = u, q = —u, A = —2iz'^+i\u\'^, B = —2zu+iUx, and C = 2zu+iu, 
Then the equation 

[Dx, Dt] = 0 

leads to the nonlinear Schrödinger equation (3.3). This is sometimes called 
the "zero-curvature" condition, since i t formally expresses the fact that the 
connection with components Dx and A is flat. The nonlinear Schrödinger 
equation had been studied for many years, but was flrst obtained in this 
way by Zakharov and Shabat [52]; they developed a scattering theory for the 
operator Dx and showed how to solve the nonlinear Schrödinger equation by 
the inverse scattering method. 

The sine-Gordon equation is obtained by setting p — —q = 'Uk / 2 , A = 
—i cos u/Az, and B = C = ism u/Az. Then it is easily seen that 

Dx,Dt] = (ll2){uxt - sin m)((T+ - a_). 

Hence the sine-Gordon equation also arises as a zero curvature equation. The 
sine-Gordon equation was already known in the nineteenth century; i t arose 
as the equation for the embedding of a surface of constant negative curvature 
in W. 

The general theory of integrable systems based on zero curvature condi­
tions for 2 x 2 matrix differential operators was initiated by Zakharov and 
Shabat for the nonlinear Schrödinger equation and extended in a significant 
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way by Ablowitz, Kaup, Newell, and Segur [2]. They constructed not one 
equation, but an infinite hierarchy of equations, just as the KdV equation is 
only one equation in an infinite set of commuting flows. 

Ablowitz et. al. worked only for 2 x 2 systems, but their ideas are easily 
extended to the n x n case, as follows [7], [4], [40]. We construct an inflnite 
hierarchy of commuting flows generated by the flrst order nx n operator 

d 
Dx = — -zJ 

ox 
(3.6) 

where 

J 

/Ar 

V 

q{x) = 

k ) 

( 0 gi2 
?2n 

We look for wave functions t/) satisfying = 0 of the form -i/) = me^^"^. 
Then m satisfies the system of differential equations 

rUx = z[J, m] + qm (3.7) 

Lemma 3.2.1 There exist solutions of (3.7) with the foUowing properties: 

1. m{x,z) is sectionally meromorphic as a function of z in the domain 

n = {z:di z{Xj - Xk) 0}. 

2. mix, z) ^ I as X —oo 

3. sup ,̂ \m{x, z)\ < + 0 0 for regular values of z. 

The solutions of (3.7) are uniquely determined hy items 2,3. 
If q G S then m has an asymptotic expansion 

oo 

m'^^mj{x)z~^, mo = I 
j=0 

uniformly valid as z tends to infinity in each sector ofü. 
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A proof of this result may be found in the fundamental paper by Beals and 
Coifman on the inverse scattering problem for the operator [6 . 

Let / i be a diagonal matrix with tr / i = 0 and set F = mum"^. Then 

Fx =mx/J.m~^ - miim'^mxTrr^ = [mj,m~^,F 

= 'zJ-zmJm~^+ q,F] = [zJ + q,F]. (3.8) 

li q e S then F has an asymptotic expansion in each sector of Ü: 

oo 
F ^ Y ^ F j Z - ^ , Fo = / i . 

i=o 

Substituting this series into the equation for F we obtain the recursion rela­

tions 

lJ,F,,,] = l l - , , F , ] = 'Jl-l,M (3.9) 

These are the analog of the Lenard recursion relations for the KdV hier­

archy. 
Now define 

A = | - ( ^ ' i ^ ) + , ( / i ^ ) + = E^i '̂"'-

Then i t is a simple consequence of the recursion relations (3.9) that: 

Dx, Dt] = 5t ~ " ^1=^ ^ ~ t"̂ ' 

Hence {Dx,Dt} is a fiat connection if and only i f q satisfies the nonlinear 

evolution equation 

qt = [J,Fk+i] = [ - ^ - q , F k ] (3.10) 

Given the first order diflPerential operator Dx i t is therefore straightfor­
ward, though somewhat tedious, to calculate the fiows in the hierarchy. I t 
was shown in [40] that Fk is a polynomial in q and its derivatives up to order 
A; - 1, so that (3.10) is local, i.e. a system of partial differential equations. 
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As an example of this procedure, we obtain the modified KdV equation. 
This was first shown to be integrable by the inverse scattering method by 
Wadati [49]. We take 

, A 0 \ _ ( 0 u 
VO - i ; ' ^ \-u 0 

Since jj, must be a traceless diagonal matrix, we must take // to be a 
multiple of J; the simplest thing to do is to take / i = J. Then FQ = p.. Then 

'J,Fi] = [dx-q,Fo] = -[q,J[. 

The general solution of this equation is 

Fl = q + ciJ, 

where ci is a general function of x and t. Then 

J, F2] = [dx - q, Fl] = [dx-q,q + CiJ 

= Qx + dxCiJ + Ci[J,q . 

The hnear equation [J, F] = G is in general not solvable; in fact, a direct 
calculation shows that for and matrix F, [J, F] has zeroes on the diagonal. 
Therefore, the above equation for F2 is solvable only if all the diagonal entries 
of the right side of the equation vanish. This leads to a condition on ci, 
namely, Ci^^ = 0. Thus ci is a constant; and we may take ci = 0. This gives 
J, F2] = qx] the general solution of this equation is 

2 \Ux 0 

The equation for F3 reduces to 

[J, F3] =[dx - q, F2] 

^2^xx + 2c2ujl^^ 0)+9^[c^-2^ )J 

To solve for F^ the diagonal entries on the right side must vanish; this means 
we must take 

1 2 
C2 = -u\ 
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We then find 

We can continue in this way as far as we want. To solve for Fk at each 
stage, we must set the diagonal entries of [d^-q, i^/c-i] equal to zero. At each 
stage Fk-i = Ok-i + Cfc_i J, where Ok-i is an off-diagonal matrix and Ck-i 
is a coefficient to be determined. The solvability condition therefore reduces 
to an equation of the form 

dxCk-i = ... 

where the . . . denote known terms which depend on u and its derivatives up 
to order k-1. I f Ck-i{x) is to be a local function of u, that is, to depend only 
on the values of u and its derivatives at x, then the . . . must be an exact 
derivative. 

That this is always the case, even for n x n AKNS systems, was proven 

in [40;. 

Theorem 3.2.2 Each matrix function F^ obtained from the recursion rela­
tion (3.9) is a function of q and its derivatives up to order n — I. 

To compute C3 we must set the diagonal entries of [d^ - q, Fs] equal to 
zero. But the diagonal entries of this expression simply turn out to be c^^xJ', 
so we may take C3 = 0, and 

^ f l I 3\ f 0 l\ 
\ 4 2 y V i uy 

The MKdV fiow is then given by^ 

qt=[J,F^] = [dx- q.F^ 

_ ( l 3 2 \ / 0 1 \ 

\A 2 y v-"-"- uy 
hence ^ ^ 

Ut = -^Uxxx + -^^U^Ux-

^Note that [q,F^] = 0 
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This equation is of third order in x. A simple check shows that there are 
no flows at even order. For example, at second order in x the equation 

qt = [J,F3], 

is incompatible, since 

/ 0 1 \ 

whereas 

3.3 The Gel'fand-Dikii Flows 

The Lax pair for the KdV equation can be obtained in the foUowing way, 
18], [19]. We first construct a formal square root of L, call it M : 

RL^=D^ + u, M = D + wo + WiD-^+W2D-^ + .... (3.11) 

The operators D^'' are formal inverses of the differential operator D. M 
is considered to be a pseudodifferential operator. The Lax equation for the 
KdV equation is then [42 

L = [{M')+,L] (3.12) 

where (M^)+ denotes the differential part of That is, formally truncate 
by throwing away all the negative powers of D. In fact, there is an entire 

hierarchy of equations given by 

L = [iM%,L], fc = 1,3,5,.... (3.13) 

The details are outlined in a series of exercises below. 
This method extends to the case where L is an n*'' order scalar differential 

operator: 

j=0 
(3.14) 
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where Uj = U j { x , t ) , UQ = 1, and l i i = 0. (By a simple transformation we 
may always transform away the coefiicient of D'^"^.) The flows now are 

where k^O mod n, L^^" denotes the differential part of L^l"^ considered as 
a pseudodifferential operator, and 

This time L is a differential operator of order n - 2, so the commutator 
X^''", L] must also be a differential operator of the same order. 

For each n there is an entire hierarchy of nonlinear evolution equations. 
We leave i t as an exercise to show that L^.^" is a differential operator of order k 
whose coefficients are differential polynomials in « 2 , • • •, The flows (3.15) 
are known as the GeVfand-Dikii flows. 

The Gel'fand-Dikii flows can be formally integrated by the inverse scat­
tering theory for v}^ order ordinary differential operators. This theory has 
been worked out in detail by Beals, Deift, and Tomei [5 . 

The equation (1.3), which arose in the continuum hmit of the Fermi-
Pasta-Ulam model, is an example of a Gel'fand-Dikii flow. In 1973, V.E. 
Zakharov [54] gave a Lax pair for this equation. Zakharov took the equation 
in the form: 

L = [4/",L] (3.15) 

n 
L = 

ytt = Vxx + {vDx + -^Vx 

Set u = Ux and differentiate with respect to x: 

Utt = Uxx + {u'^)xx + 7̂ *: 

xxxx' 

Now introduce a new function $ by 

Ut = ^t = u + u^ + -jU, 

Then a Lax pair for this system is given by 
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The system above is Hamiltonian, with Hamiltonian 

and Zakharov's construction of a Lax pair shows that i t is completely in­
tegrable. In fact, Zakharov shows how to construct an infinite hierarchy of 
conservation laws. The fact that the continuum model (1.3) is completely 
integrable suggests why quasiperiodic motions were observed in the compu­
tational experiments. Zakharov points out, however, that 

It must be emphasized from the very outset, however, that this explana­
tion can only be qualitative, since we consider equation [(1.3)] with periodic 
boundary conditions, whereas in the numerical experiments the ends of the 
chains were regarded as fixed. 

One really wants to find isospectral deformations of the operator L with 
boundary conditions appropriate to the fourth order partial differential equa­
tion for u or u. Isospectral deformations of Sturm-Liouville (second order 
self-adjoint) operators on finite intervals have been discussed in detail in the 
book by Pöschel and Trubowitz; but, to my knowledge, no work has been 
done on deformations of higher order operators on finite intervals. Thus the 
issue raised by Zakharov represents an apparently open field of research. 

3.4 Notes, Exercises, and Remarks 

1. Show by direct calculation that 

.B,L]^ -~~{uxxx + uux), 

where L = D^ + lu and B = -W^ -\{uD + Du). 

2. a) Show that Df = f + fD. h) Show that formally 

oo 

D-'f = fD-' - f'D-'' + f'D-' + ••• = Y,{~'^y{D'f)D-^^+'^ 
i=o 

c) Show that = L determines a sequence of recursion relations for the 
coefficients Wj, where M is given in (3.11), and that Wj is a differential 
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polynomial in u. d) Compute WQ, 101,^02 and ( M ^ ) ^ ; show that a Lax pair 
for a KdV equation with a different time scale is obtained in this way. 

Ans. {M^)+ = + {3/A){uD + Du). 

3. Prove that 

k 

D''f =Y { ]D'fD''-^, k>0 (3.16) 

D-^f = (" ) D^fD-^-\ k>0. (3.17) 

j=0 

where the negative binomial coefficients are: 

3. Show that L^^" is a k^'' order diflFerential operator. Its coefficients are 
polynomials in the x derivatives of the coefficients of the n*'' order scalar 
operator L in (3.14). cL [19 

5. Let L = D^ + pD + q; calculate the Gel'fand-Dikii flow at order k = 2. 
This leads to [5] B = D^ + {2/3)p] pt = 2qx-Pxx, Qt = qxx-{'^/^)iPxxx+PPx)-
Ehminating q we obtain 

Ptt = ^ {Pxxxx - {P'^)xx) • 

This differs from the equation (1.3) that arises as the continuum limit in 
the Fermi-Pasta-Ulam experiment. I t is ill-posed and does not have global 
solutions for smooth initial data [5], [7]. On the other hand, the iso-spectral 
operator L given by Zakharov for (1.3) is self adjoint; and Beals, Deift and 
Tomei have shown that, on the real line, the corresponding scattering problem 
is invertible, so that global solutions are guaranteed by the inverse scattering 
method. 

Solution to 1: 

We write down the calculation for the Lax pair for the KdV equation. 

We take 

L = D^ + - , B = -W^ - -{uD + Du). 
6 2 
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The associated KdV equation is 

Ut + Uxxx + UUx = 0. 

This equation is written in the form 

Lt = lut = [B, L . 
6 

We have 

[B,L] = - [AD^ + l{uD + Du),D'' + -] 
z o 

2 1 1 
= --[D\u]- -[uD + Du, D^] ---[uD + Du, u . 

Now 

D^,u] = SUXD"^ + 3uxxD + Uxxx, [uD + Du, u] = 2uUx 

uD + Du, D^] = -Uxxx - 4.iuxxD + UxD'^). 

Hence 

B, L] = --{Uxxx + UUx), 

and Lt = [B, L] gives the KdV equation above. 
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Chapter 4 

Scattering Theory: 

Schrödinger operator 

4.1 The Gel'fand-Levitan Equation 

Consider tlie eigenvalue problem for the Schrödinger equation 

(4.1) 

where q is real and hes in the Schwartz class (S(R): all C°° functions q on 
the real line for which 

for all non-negative integers m and n. I t follows that all derivatives of q tend 
to zero as a; —)• ± 0 0 faster than any power of x. Such functions are said to 
be rapidly decreasing. 

Equation (4.1) can be converted to a Volterra integral equation, for ex­
ample: 

I t is convenient to consider the reduced wave functions; these are defined 
by m+(a;,/c) = e-'^^^'ip^{x,k). The reduced wave functions satisfy following 
Volterra integral equation for m+: 

sup \X' D^'q < +00 

X 

45 
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Since 
\ _ Q-2ik{x—y) 

2ik 

is uniformly bounded on the interval of integration for Im > 0, this integral 
equation can be solved by succesive approximations when g G L i . Its solution 
m+ is analytic in the upper half k plane, continous onto the real axis at /c 7^ 0 
and tends to 1 as a; tends to + 0 0 or as k tends to infinity in Im > 0. 

Letting k tend to zero we obtain the integral equation for m{x, 0): 

m(a;,0) = l - / {x-y)qmdy. 
J X 

This equation may be solved by successive approximations if 

/

oo 

(1 + \y\)qdy < + 0 0 . 
-00 

Thus a shghtly stronger condition integrability condition on the potential is 
needed in order to construct the wave functions for /c = 0. This is thus the 
minimal condition on the potential needed to construct the wave functions, 
and hence to solve the forward scattering problem. For later purposes, we 
shall always assume the much stronger condition q £ S. 

The wave function IJJ-^ = m+e*''^ is analytic in the upper half k plane and 
is asymptotic to ê*̂^ as x —̂  0 0 . Similarly, by constructing other Volterra 
integral equations for the wave functions of (4.1) we also find solutions V- , 
(f)± to (4.1) which are analytic in the half planes ± ö k > 0 and have the 
asymptotic behavior 

(j)^ ^ ê *̂̂ ,̂ X - 0 0 ; ip± ~ e±^^^ x~~^oo. 

From the asymptotic behavior of these wave functions, it is clear that for 

real k 
</)+(a;, k) = (j)-{x, k); ip+{x, k) = ip-{x, k). 

Furthermore, the asymptotic behavior of •0+ and ip- shows that they must 
be hnearly independent, so may be expressed as linear combinations of 
ip^. We leave it to the reader to prove that for real k there exist constants a 
and b such that 

0+ = aik)ip- + b{k)ij+; 0_ = b{k)ip- + a{k)ip+. (4.2) 
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The Wronskian of two functions ƒ and g is given by W (ƒ, g) = fg' - f'g. 
I t is a simple matter to show that the Wronskian of two solutions of (4.1) 
is independent of x. Therefore one may evaluate Wronskians of the wave 
functions as a; ^ ±oo and verify the following relations 

W{(t)+, = 2ika{k), W(ij., cj)^) = 2ikb{k) (4.3) 

I t foUows immediately that a{k) is analytic in the upper half k plane; fur­
thermore, using the Wronskians one can show 

a{k) = a{-k); b{k) = b{-k); \a{k)\^ - \b{k)\^ = 1 (4.4) 

The zeroes of a in the upper half plane are bound states of L; at a zero 
kj of a we have 

(t)+{x,kj) = Cji)+{x,kj) 

for some constant cj. Since ip+ and cf)^ decay as x —)- ±oo respectively, they 
each in fact decay at both ends, and so constitute a bound state for L. 

Lemma 4.1.1 The zeroes of a in the upper half plane lie on the imaginary 
axis, the corresponding eigenfunctions of L are real, and the zeroes of a are 
simple. In fact, 

/

oo 

4>'^jdx 
•oo 

where (f)j is the eigenfunction associated with the zero kj of a. 

Proof: For a proof see [30], [41'. 
Define the transmission and refiection coefiicients by 

rik)='M, tik)= ' 
a{k)' ' ' a{k\ 

Then \t{k)f - f | r(A;)p=l. The scattering data for L is the set 

{r{k),kj,Cj}. 

We shall see below that this data is sufficient to reconstruct the potential 
g. We shall restrict our discussion to the case where there are only a finite 
number of bound states kj, j = 1,..., N. 
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Theorem 4.1.2 Under the KdV flow the scattering data evolves as follows: 
a is constant, 

r{k,t) = e^'^\{k, 0), kj = const. Cj{t) = c,-(0)e'^^^ 

This is the remarlcable fact discovered by Gardner, Greene, Kruskal, and 
Zabusky [17]: the scattering data evolves linearly even though the evolu­
tion equation for q is nonlinear. The transformation to scattering data thus 
linearizes the flow. 

Proof: Let (f)^{x,t,k) be the wave function of L which is asymptotic to 
g-ifcï ^ _^ _QQ_ gi^gg g _ -u/6, i t satisfies the KdV equation qt - 6qqx + 
Qxxx = 0, and we have 

0 = - B){D' + k ' - q)<j>+ = {D' + e - q){dt -

hence {dt — is also a wave function for L. We may assume that q lies 
in the Schwartz class for aU time. (This fact may be proved rigorously using 
the infinite sequence of conservations laws for solutions of the KdV equation; 
cf §3.1) Now 

{dt - B)(f>+ - 40^6-' '=^ = Aik^e-'^'' X -+ -oo. 

Since the wave functions are uniquely determined by their asymptotic be­

havior at infinity, 

{dt - B)(t>+ = Aik'(P+. 

On the other hand, </>+ ~ a{k,t)e~''''' + h{k,t)e^^'' as x ^ -foo, so 

{dt - B)i)+ ~(a -f Aik^a)e-'^'' + (Ö - AikH)é'''' 

=Uk\ae-^^^ + hé^'^), 

and i t follows that a = 0, h = Sik^b. This establishes that a is constant and 
r evolves as given above. 

Since a is constant its zeroes are fixed, so the kj are constant. The 
evolution of the coupling coefiicients is derived by a similar argument. • 

We now derive the Gel'fand-Levitan-Marcenko integral equation. The 
Fourier transform and its inverse for a function in L2(R) is 

e-'^^f{k)dk, f{k) = - j J ' ^ ' f { s ) d s . 
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Let K{x, s) denote the Fourier transform of m.^{x, k) — 1 with respect to 
the variable k: 

/

oo 

e-''''{m+{x,k) - l)dk. 
-oo 

Since m^. — 1 is analytic in the upper half /c-plane and tends to 0 as A; tends 
to infinity, K{x, s) = 0 for s < 0 by the Paley-Wiener theorem. ^ Hence 

1 r°° 
m+{x, k ) - l = — / é^'K{x, s)ds. 

and 

/•oo 

ip+{x, k) = 6'^=" + / e''''G{x, s)ds, (4.5) 

where G{x, s) = {2Tr)~''K{x, s - x). From the symmetry 
ip+{x,k) ='ip+{x,-k), keR, 

we find that K and G are real, hence 

/•oo 

{x,k) = e-^''^ + / e-^'''G{x, s)ds. 
J X 

Theorem 4.1.3 Let r{k), kj, Cj, j = 1,..., N be the scattering data for 
the operator L = —D"^ + q and let G{x, s) be the Fourier transform of ip^ 
as given in (4.5). Then G satisfies the Gel'fand-Levitan-Marcenko integral 
equation 

POO 

G{x,s)-{-f{x-^s)-\- G{x,t)f{t + s)dt = 0, s>x, (4.6) 
J X 

where 

N 

Moreover G satisfies the hyperbolic equation 

1 poo N 

« V W * + E-^e.'.'. (47) 

Gxx-Gss-q{x)G{x,s) = 0, q{x)^-2-^G{x,x). (4.8) 

^This can be shown by closing the contour in the upper half plane when s < 0. 
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Proof: Using the representations for 'il)± write the first equation of (4.2) 

as: 

a 
e-''''G{x,s)ds + ré'''' + r I é'''G{x,s)ds. Akx 

The Gel'fand-Levitan-Marcenlco equation is the obtained by taldng the 
inverse Fourier transform of this equation. Write 

1 / '°° 

The inverse transforms of the terms on the right side above are 
-1 poo POO 

' iks „-ikt/ G{x,s)=— I e"" I e~"'^G{x,t)dtdk, e 
oo J X 

1 7°° 
fi{x + s) =— / é^'é'"'r{k)dk, 

27r J_oo 

and 
roo 

27r 
e'^'rik) I é^'G{x,t)dtdk = / G{x,t) 

27r 
é^^'+''^r{k)dkdt 

G{x,t)fi{s + t)dt. 

The inverse Fourier transform of the left side can be evaluated by closing 
the contour in the upper half plane for s > x and using the residue theorem: 

roo 

2TX 

Jks M^^k) _ ikx 
dk 

1 

'2^ 
Jk{s—x) 

—oo 

^ ' ikiS 

(j)+{x, k)e ikx 

- 1 dk 

N ikts 

N 

^ikj{x+s)^ / e'''J^'+'^G{x,t)dt 

POO 

= -f2{x + s)-J ƒ 2 ( S + t)G{x, t)dt, 
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where 

Putting these together, we get (2.1.10), with ƒ = / i + ƒ2-
To establish (4.8) we apply + k'^ - q to (4.5) to get 

poo 

0 = xPxx + {k' -q)iP= (Gxxix, s) + (P - q{x))G{x, s)) é^^ds 
Jx 

- é""^ {GX{X, X ) + ^G(a; , x) + %kG{x, x) + q[x)) 
dx 

Now 

"OO roo a2„iks poo poo Q 2 „ i / c s 

J k^e''"G{x, s)ds = - y - ^ G { x , s)ds 
poo 

= ikG{x, x)é^'' - Gsix, x)e''''' - / Gss{x, s)é^'ds. 
J X 

Combining these two calculations and multiplying by e"*'̂ ^ we get 

J^""(Gxx - Gss - qG){x,s)e''^'-^^ds - (2-^G{x,x) + q{x)) = 0 . 

This holds for A; > 0. Letting k tend to infinity in the upper half plane, we 
see that the integral tends to zero. Since the other term does not depend on k 
i t must vanish identically. But then the integral must also vanish identically; 
and, by the uniqueness of the Fourier transform, the integrand must also 
vanish identically, thus proving the result. • 

4.2 The inverse problem 

We now consider the inverse scattering problem, that of reconstructing q 
from the scattering data { r , kj, Cj}. We shall do this by solving the Gel'fand-
Levitan-Marcenko equation. First note that while a is not given as part of 
the scattering data, i t appears, albeit inconspicuously, in the construction 
of ƒ in (4.7). This dependence could be finessed, for example, by defining 
the scattering data to be ƒ. But such a step occurs in some of the more 
comphcated inverse problems, and so we carry it out here as an illustration. 
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We shall derive the following representation for a: 

> 0 8 « W = p o g i ^ + ^ £ ! ? ^ * . ^ * > 0 (4.9) 

The derivation of (4.9) is carried out as follows. We know |ap from r and 
the relation |tp + | rp = 1, and we know the location of the zeroes of a in the 
upper half plane since we are given the kj. I f we define a by 

then a is analytic in the upper half plane, tends to 1 as /c tends to infinity, 
and \a\ = \a\ on the real axis. Therefore log a is analytic in the upper half 
k plane and tends to zero at infinity. 

The function A defined by 

^ ' \-\oga{k) '^k<0. 

is sectionally holomorphic in S A; 7̂  0 and tends to zero as k tends to infinity. 
Its jump across the real axis is 

A[k + iO) - A{k - iO) = [A] = \oga{k) + loga(/c) = log \a f = log \a\^. 

These properties uniquely determine A. We claim that 

2m t - k ' 

In fact, the expression on the right is sectionally holomorphic and tends to 
zero as k tends to infinity. By the Plemelj formulae, 

1 log l ap , , 1 2 P P log 

z^k±io 27r̂  J_oo 2 2m J_f^ t - k 

Hence the sectionally holomorphic function defined by the Cauchy integral 
has the same jump across the real axis as A. 
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The next step is to solve the GLM equation using the Fredholm theory 
of integral equations. We fix x and consider (4.6) as an integral equation on 
the half line {x, oo). I t involves the integral operator defined by 

We first observe that if f{s) decays sufficiently rapidly as s tends to +oo, 
then Fx is a Hilbert-Schmidt operator, i.e. 

In fact, the simple change of variables y = s + t, v = s shows that this 
integral is equal to 

so Fx is a Hilbert-Schmidt operator i f is in L2{2x,oo). 
Now look at (4.7). The discrete sum decays exponentially as s +QO. 

The integral term decays if r is differentiable. (This is a standard fact about 
Fourier transforms). For example, the second derivative of r is in Li then 
ƒ decays like s" .̂ In fact, if q e S then so does r and hence so is ƒ. (cf. 
exercise 2 above) 

Therefore, for each x the GLM equation is a Fredholm integral equation. 
The Fredholm alternative states that the integral operator I + Fx has a 
bounded inverse i f and only i f the homogeneous equation [I + Fx)G = 0 has 
only the trivial solution. (Note that Fx is a symmetric integral operator. 
Therefore, to prove the existence of a solution of (4.6) i t is enough to prove 
that ker ( / -|- Fx) is trivial. 

s > X. 

(4.10) 

Suppose 

s > X. 

Since G is real 

But f = fi + f2, where 

N 
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Therefore 

f2{s + t)G{t)G{s)dsdt 
oo poo 

-" noo POO 

^ d j I e-''J'e-'^^'G{t)G{s)dsdt 
j=i ^ ''^ 

W ^ O O 

= ^ d , - / e-''''G{t)dt > 0 

Similarly, 

OO fOO 

fi{s + t)G{t)G{s)dsdt 
X J X 

OO poo -1 poo 1 

^ I r{k)e'''^'+'^G{t)G{s)dkdsdt 
)0 

r{k){G{k)fdk 

X Jx J-oo 

where 

G(k) = — / G{t)é^'dt. 
271" Jx 

This latter quantity is real, since both ƒ and G are real; hence 

/

CO ^ /"OO ^ 

{|Öp + r(A;)(G'(fe))2dfc> / \G\\l - \r{k)\)dk, 
-oo J —oo 

where we have used the Plancherel theorem for the Fourier transform. Since 
+ | rp = 1, |r(A;)| = 1 implies t = 0. In that case a = is infinite; 

and this can happen only at k = 0. Therefore G and hence G must vanish 
identically. 

We have proved: 

Theorem 4.2,1 The Gel'fand-Levitan-Marcenko equation is uniquely solv­
able whenever the integral in (4.10) is finite. 
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The GLM equation can be solved explicitly in the so-called reflectionless 
potential case where r(k) = 0, and kj = icoji the choice 

ƒ(*) = d.(t) = eH *̂+̂ °*̂ '̂ (̂o) > 0 , 

leads to the multisoliton solutions. 
We look for a solution of the GLM equation of the form 

n 

Gix,y;t) = J29ji^'^>"'''-

This Ansatz leads to the linear system 

gj + dje-^^^ + J2 ^-^^ = 0. 

k=l 
ujk 4- uJj 

Writing gj = d^'^hj, we obtain the system 

e-^'^+hj + y2hk = 0, 

where 

9j{x, t) — Uj{x - icop - aj), aj = — logdj(O). 

The kernel G is then given by 

(4.11) 

G{x,y,t) = J2hj{x,t)e-'^^y''^ 

3=1 

where the hj are the solutions to (4.11). 
The solution to equation (4.11) is obtained in closed form as follows. Let 

Djk = Sjk + 
UJj + Uk ' 

E = 
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and let Ck denote the /c*" column vector of the matrix \Djk • By Cramer's 
rule, 

, Dk 
hk = 

where D = D{x,t) is the determinant of the matrix Djk, and 

Dk = det\\Ci,...,E,...,Cn\\. 

Hence 

G{x,y;t) = - 2 ^ — 

Now note that C'^ = -Ee~^'' , so that 

D 

dx 
D = det | | C ; , . . . , C „ ] | + --- + det | | C i , . . . , c ; 

n 

= - J]Z?j-(a;,t)e-^^(=^'*) = G{x,x;t)D, 

or 

G{x,x;t) = 4 - log D. 

From (4.8), and the fact that q = —u/Q we find 

u{x,t) = 12-^ logde t 5jk + 
COj + COk 

(4.12) 

(4.13) 

4.3 Elastic scattering of solitons 

In this section we derive the formulae for the scattering shifts of the sohtons 
in the multi-soliton equations. A formal theory, based on the wave functions, 
is given in [30]. We describe here^ the method in [20]; this method shows 
also the uniform decay of the multi-soliton solutions in the regions between 
the solitons. 

^We have incorporated the phase constants into the definition of 9j here; but the results 
are equivalent 
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Theorem 4.3.1 The n-soliton solution of the KdV equation can be written 
in the form 

u{x,t) = 12 5^a;Jsech2(ö,. +7,0 + 1 2 — l o g ( l + (4.14) 

i = i 

where 

öj = ujj{x - iup) + - log 2ujj, 

^ /wfe + . . . . 1 

and 

sup I cosh(aa;)E(a;, t) \ < Ce"^*, (4.15) 
x,t>0 

for some a,b > 0 and some positive constant C. 

A similar result is true as t —> — oo, but with different phase shifts 7j . 
This theorem shows that the n-soliton solution is asymptotic to a sum of 
n travelling solitary waves plus a remainder term that decays exponentially 
fast to zero as i —>• oo, uniformly in x. 

The general result is reduced to the 2-soliton case by induction. In the 
case of 2-solitons, the tau function takes the simple form 

where 
, ÜJ2 + OJ1 

7 = log . 

We factor r as 
r = 2e"̂ 2 cosh 62X1, 

where 

r i = l + e - ^ ^ ^ - A - 7 r + e - ' ^ ' ^ + ^ ) -
2 cosh 02 2 cosh 

_ 1 + t a n h ^2 -201 , l - t a n h ^ a _2(gi+^) 
2 ^ 2 
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We in turn factor TI as 

j^^^ l + tanh^2 ^-e, 1 - tanli ^2 

=2 cosh(öi + 7)e-(^i+'^) f 1 + sinii 
e-^i 1 + tanh Ö2 

7 cosh(öi + 7 ) 2 

This leads, ultimately, to the factorization 

r = 4e-(^i+^=+T) cosh(Ö2) cosh(öi + 7)(1 + i?), 

with 

\ 2 / \ 2 / 

As t —)• 00, 

i ± i ^ ^ l - tanh(g . + , ) ^ ,̂ ^^^^j 

hence —> 1, and its derivatives tend to zero, uniformly on compact subsets 
of M as t ^ oo, and 

u [x, t) ~ 12a;isech^(6'i + 7) + 12w2sech^6'2, t 00. 

Similarly, by reversing the roles of 9i and $2 in the factorizations, we find 
that 

u{x,t) ~ 12a;isech^6'i + 12a;|sech^(6'2 + 7), t -> - 0 0 . 

Since 7 > 0, the faster wave is shifted forward in the course of the inter­
action, while the slower wave is shifted back. 

4.4 Fredholm determinants 

This formula for the multisoliton potentials can be extended to the general 
solution of the GLM equation by the method of Fredholm determinants [31], 
36]. I f the integral in (4.10) is finite for all x then a solution to the GLM 

equation is given by 

G ( . , . ) = - ^ (4.18) 
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where 

^ nl Jx Jx Vl *2 • • • tnj 
dtn 

n=0 

and 

The relation (4.18) is an infinite dimensional version of Cramer's rule. The 
series D{x) and D{x, s) are respectively called the Fredholm determinant and 
Fredholm minor for the integral operator F^. For a discussion of Fredholm's 
method, see Riesz and Nagy [37]; but i t is not hard to give a direct verification 
that (4.18) is a solution of the GLM equation, provided the series converge. 
The following result is due to Dyson and Jost 

Lemma 4.4.1 The potential in the Schrödinger operator is given by 

q{x) = -2—logdet{I + Fx) 

where here det denotes the Fredholm determinant. 

Proof: The result foUows from (4.8) and 

G{x,x) =-^log D{x). (4.19) 
dx 

which we now prove.The derivative of the n*'̂  term in the series for D{x) is 

d 1 r _ r (tl t2 ... tA 

dxnijx Ix ^2 . . . t^)'^''---^'-

= ~nl2^Jx '"Ix ••• - ,Jdti...dtj...dt^ 

where dtj means that the integration with respect to tj is omitted. Noting 
that 

^Si S2 . . . Sn 
^ ^ tl t2 . . . tn 
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is unclianged under the permutation of its columns we can rewrite this as 

1 r r , f x h . . . 

{ n - l ) \ J x A \ x tr . . . tn-1 

Hence 

^D{x) = -D{x,x), 

and (4.19) follows. • 
A somewhat different proof was given by Dyson [12], who credits the 

result to unpublished lecture notes of Jost, written in 1954. This result was 
discovered independently and applied to the KdV equation by Oishi and 
Pöppe. 

4.5 EXERCISES 

1. Show that the integral equation for m+ can be solved by successive ap­
proximations. (Hint: 

POO 

nij+i = 1 + / K{x, y)mj{y)dy, where K{x, y) = 2ik 

Show by induction that 

" " i + i - ^ i ^ "(7TI)!' 

where ^ 

Q{x) = f \q\dy.) 
J X 

I f q is infinitely differentiable, show that m_|- has an asymptotic expansion 

^ m j [ x ^ m4x 

j 

Find a recursion relation for the coefficients ruj. What is mi? 

2. Show that a —>• 1 in the upper half k plane. (Hint: Show that ~ e^^''^ 
and xj)^ ~ e''̂ ^ as /c —)• oo in the upper half plane.) Show that the map u ^ f , 
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where ƒ is given by (4.7) linearizes the KdV flow, and find the corresponding 
linear partial differential equation for ƒ. 

3. Let K± be the Volterra integral operators 
poo px 

K+ij{x)= K+{x,s)ij{s)ds K_ip{x)= K_{x,s)il){s)ds. 
J X J —oo 

Suppose that K± both "dress" the operator D"^ io L = D"^ — q'm the sense 
that: 

[D'- q){I + K±) = {I + K^)D\ 

where I is the identity operator. Show that K±{x,s) satisfy (4.8) and that 
[I K±)e^'^^^ are wave functions for L whenever they are well-defined. This 
is the basis of the dressing method for the Schrödinger operator. [53 . 

4. Let k tend to zero in the integral equation for m{x, k) and find the equation 
for m{x,Q). Prove this equation is solvable by successive approximations if 
(1 + \x\)u G Ll. The refiection coefficient r is in general not defined at /c = 0 
unless this condition is satisfied. 

5. Prove that the Fredholm determinant representation (4.18) formally sat­
isfies the GLM equation. Hint: 

J. f x tl t2 . . . tr/ _ƒ^^_|_g^ƒ ^ 1 h ... tn 
\S tl t2 ••• tn) \ti t2 . . . tn 

- f { s + t i ) f ( ' / I' • • • l A - f { s + t 2 ) f ( ' : I' ] 

\ti t2 . . . tnj \t2 tl t 

• • • - f { s + tn)f 

3 ••• 

ts . . . tn. 

X tl ... tn-l 

tn tl ... tn-l 

6. Obtain the solitary wave from the Fredholm determinant and Theorem 
4.4.1 when ƒ = die^'^^ Calculate the Fredholm determinant when 

A series expansion for the Fredholm determinant (called the Hirota series) 
for the N soliton solution is given by Pöppe [36]. 

7. Show that for any matrix A 

det{I + A) = Y[{l + Xj) 
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If the norm of A is less than 1 then 

det(/ + A) = e'' = exp 5] ^ 
\ n = l 

-tr A' n 

8. Let K be the integral operator on L2{a, b) with kernel K{x, y). Assume K 
is compact and symmetric and has eigenvalues Aj and eigenfunctions (f>j{x). 

Then 
K{x,y) ̂ Y X j ( f > j { x ) ( j ) j { y ) 

j 

Assume that K{x,x) is continuous and that the series 

K{x,x) = ^ A j | ( / ) 

converges uniformly. Prove that 

n\Ja Ja \tl ^2 . . . tnJ 

Hint: use Warings formula: 

e. n 
TteSn 

where 

and 

— 'Y ' ^ . ' 1 " ' " ' 
jl<-<jn 

Here yr has Pj cycles of length j, with Pi + 2P2 + h nPn = n. 
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Matlab codes 

The foUowing are a sequence of Matlab codes that numerically integrate the 

kdV equation and animate the results: 

This code animates the breakup of a Gaussian pulse into a sequence of 

solitons. This mimicks actual experimental observations by Russell in 1834. 

yokdvdis.m; isospectral i n t e g r a t i o n of u_t+ uu_x +disp*u_xxx =0; 

%d i s i n t e g r a t i o n of an i n i t i a l Gaussian pulse i n t o solitons. 
clear; 
N=512; 
L = 30; 
a=L/(2*pi); 

T=10; 

h=2*pi/N; 

dt=.005; 

x =(h:h:2*pi)'; 
y=a*x; 
u= exp(-2*(y-.25*L) .'^2)/a; 
k=[(0:N/2)';(l-N/2:-l)'] ; 

disp = 0.01; 7,disp=input('disp=?'); 7.0.05 works well 
m=disp*a'^ (-3) * . 5*dt*k. "3; 
dl=(l+i*m) . / ( l - i * i n ) ; 
d2= - . 5 * i * d t * k . / ( l - i * m ) ; 
d3=.5*d2; 

sol= plot(y,a*u,'Erasemode', 'background'); 
axisCC 2 13 -.1 1.4]); 

63 
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zoom; 
ti t l e C K d V : Disintegration of a Gaussian Pulse'); drawnow; 
t=0; 
while t<T; 

v=real ( i f f t ( d l . * f f t (u) +d3. * f f t (u. "̂2 ) ) ) ; 
w = r e a l ( i f f t ( d l . * f f t ( u ) + d 2 . * f f t (u. " 2 ) ) ) ; 
f o r n=l:3; 

w=v+real ( i f f t (d3. * f f t (w. -~2))) ; 
end 
u=w; 

t=t+dt; 
set(sol,'ydata',a*u); 

end 

This code gives the 2 soliton interaction: 

yokdv2sol .m: isospectral i n t e g r a t i o n of u_t+ uu_x +u_xxx =0 

clear; 

N=512; 

L = 50; 
a=L/(2*pi); 

T = l l ; 
h=2*pi/N; 

dt=.005; 
X =(h:h:2*pi)'; 
y=a*x; 
cl=.8;c2=.5; 
u=(12/a ) * ( c r 2*sech(cl*(y-.l*L)) . ̂ 2+c2'^2*sech(c2* (y-. 3*L)) .'"2); 

k=C(0:N/2)';(l-N/2:-l)']; 

m=a'"(-3)*.5*dt*k."3; 

dl=(l+i*in) . / ( l - i * m ) ; 
d2= - . 5 * i * d t * k . / ( l - i * i n ) ; 

d3=.5*d2; 
sol= plot(y,a*u,'Erasemode','background'); 
a x i s ( [ 0 L -.1 8 ] ) ; 
t i t l e C K d V : 2 s o l i t o n interaction');drawnow 
t=0; 
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while t<T; 

f f t u = f f t ( u ) ; f f t u u = f f t ( u . ' - 2 ) ; 

v = r e a l ( i f f t ( d l . * f f t u + 0 . 5 * d 2 . * f f t u u ) ) ; 
w = r e a l ( i f f t ( d l . * f f t u + d 2 . * f f t u u ) ) ; 

f o r n=l:3; 
w = v + r e a l ( i f f t ( d 3 . * f f t ( w . " 2 ) ) ) ; 

end 
u=w; 

t=t+dt; 

set(sol,'ydata',a*u); 
end 

This code compares the exact two soliton solution with the numerically 
computed solution: 

%kdvcomp.m: comparison of numerical computation with 
%exact 2 s o l i t o n s o l u t i o n of kdv equation 
clear; 

M=512; '/.input('N=') ; 
L=40; "/.input ('L=') 
a=L/(2*pi); 

T=5; '/.input('T='); 

h=2*pi/N; 
dt=.005; 
X =(h:h:2*pi)'; 
y=a*x; 

cl=1.2;c2=.8; '/. s o l i t a r y wave speeds; 

'/.Computation of Exact 2 s o l i t o n solution; 

A=(cl-c2)~2/(4*cl*c2*(cl+c2)"2); 
t=0; 
thl= c l * ( y - 7 - 4 * c l ' - 2 * t ) ; 
th2=c2*(y-15-4*c2'-2*t) ; 
tau=l+exp(-2*thl)/(2*cl)+ 

exp(-2*th2)/(2*c2)+A*exp(-2*(thl+th2)); 
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w w l = d i f f ( l o g ( t a u ) ) / ( a * h ) ; 

ww2=diff(wwl)/(a*h); 

u0=12*[0;ww2;0]; 
clear t h l th2 wwl ww2 tau; 

t=T; 
t h l = c l * ( y - 7 - 4 * c l " 2 * t ) ; 
th2=c2*(y-15-4*c2"2H<t) ; 
tau=l+exp(-2*thl)/(2*cl)+exp(-2*th2)/(2*c2) 

+A*exp(-2*(thl+th2)); 

w w l = d i f f ( l o g ( t a u ) ) / ( a * h ) ; 

ww2=diff(wwl)/(a*h); 

uT=12*[0;ww2;0]; 

plot(y,uO,'r'); 
box o f f ; 

t i t l e ( ' 2 s o l i t o n solution, i n i t i a l value'); 

drawnow; 

yoNumerical computation; 

k=C(0:N/2)';(l-N/2:-l)']; 
m=a"(-3)*.5*dt*k."3; 
d l = ( l + i * m ) . / ( l - i * m ) ; 
d2= - . 5 * i * d t * k . / ( l - i * m ) ; 
d3=.5*d2; 

u=uO/a; t=0; 

while t<T; 
f f t u = f f t ( u ) ; f f t u u = f f t ( u . ' ' 2 ) ; 
v = r e a l ( i f f t ( d l . * f f t u + 0 . 5 * d 2 . * f f t u u ) ) ; 
w = r e a l ( i f f t ( d l . * f f t u + d 2 . * f f t u u ) ) ; 

f o r n=l:3; 

w=v+real ( i f f t (d3. * f f t (w. "^2))) ; 

end 
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u=w; 
t=t+dt; 

end 

f i g u r e ; 

plot(y,uT/a/r',y,u,'b'); 
zoom; 

ti t l e ( ' T w o Soliton Solution: Numerical vs. Exact'); 
t e x t ( 2 , 2.5, 'dt=.005; N=5i2;'); 

t e x t ( 2 , 2.2, 'Exact Red: Numerical Blue; zoom on'); 

This code reproduces one of the original experiments of Kruskal and 
Zabusky: 

%kz.m: Experiment of Kruskal and Zabusky; 
clear; 
N=512; 
L=2; a=L/(2*pi); 

T=1.146; 

h=2*pi/N; 
dt=.005; 
X =(h:h:2*pi)'; 
y=a*x; 

u=cos(pi*y)/a; 
k=C(0:N/2)';(l-N/2:-l)'] ; 
disp=.000484; %input('disp='); 
m=disp*a'" (-3) * . 5*dt*k. ''S; 
d i = ( l + i * m ) . / ( l - i * m ) ; 
d2= - . 5 * i * d t * k . / ( l - i * m ) ; 
d3=.5*d2; 

sol= plot(y,a*u,'Erasemode','background'); 
a x i s ( [ 0 L -1.5 3 ] ) ; 
box o f f 

title('Kruskal-Zabusky Experiment'); 

t e x t ( . 8 , 2.2,'u_t+\delta"2u_{xxx}+uu_x=0, \delta=.022') 
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text(1.0,1.9,'u(x,0) = cos(x)'); 
drawnow; 
t-0; 

while t<T; 
f f t u = f f t ( u ) ; f f t u u = f f t ( u . " 2 ) ; 

v = r e a l ( i f f t ( d i . * f f t u + d 3 . * f f t u u ) ) ; 
w = r e a l ( i f f t ( d l . * f f t u + d 2 . * f f t u u ) ) ; 

f o r n=l:5; 

w = v + r e a l ( i f f t ( d S . * f f t ( w . " 2 ) ) ) ; 
end 

u=w; 
t=t+dt; 

set(sol,'ydata',a*u); 

end 
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