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ABSTRACT:

Automatic generation of indoor navigable models is mostly based on 2D floor plans. However, in many cases the floor plans are out of
date. Buildings are not always built according to their blue prints, interiors might change after a few years because of modified walls
and doors, and furniture may be repositioned to the user’s preferences. Therefore, new approaches for the quick recording of indoor
environments should be investigated. This paper concentrates on laser scanning with a Mobile Laser Scanner (MLS) device. The MLS
device stores a point cloud and its trajectory. If the MLS device is operated by a human, the trajectory contains information which
can be used to distinguish different surfaces. In this paper a method is presented for the identification of walkable surfaces based on
the analysis of the point cloud and the trajectory of the MLS scanner. This method consists of several steps. First, the point cloud
is voxelized. Second, the trajectory is analysing and projecting to acquire seed voxels. Third, these seed voxels are generated into
floor regions by the use of a region growing process. By identifying dynamic objects, doors and furniture, these floor regions can be
modified so that each region represents a specific navigable space inside a building as a free navigable voxel space. By combining the
point cloud and its corresponding trajectory, the walkable space can be identified for any type of building even if the interior is scanned
during business hours.

1. INTRODUCTION

Navigation from a room inside a building to a room inside another
building across the street consists of three parts: a first indoor part
in the building where you start your journey, an outdoor part and a
second indoor part in the destination building (Thill et al., 2011).
In the outdoor environment, a navigation aid is well implemented
and used in all kinds of applications but a navigation aid inside a
building is still lacking. This aid is not necessary in small, sim-
ple buildings, but it is required in more complex ones like hos-
pitals, airports, conference venues and large shopping malls. To
aid visitors inside these buildings, an indoor navigation system is
required. These systems exist of several elements like an indoor
positioning system, an indoor navigable map, specific destina-
tions (points of interest) and an appropriate guidance to follow
the path (Brown et al., 2013, Boguslawski et al., 2016). An im-
portant aspect is the creation of an indoor map that can be dis-
played and used to plan possible routes throughout the building.
Since the indoor environment is far more complex than the out-
door environment, automating the generation of indoor maps is
challenging and time consuming (Zlatanova et al., 2014, Diakité
and Zlatanova, 2016).

Most research on automatic generation of indoor maps is focused
at the available 2D floor plans and only a few of them use the
complex 3D representations (Zlatanova et al., 2014). Using 2D
floor plans has its limitations. First of all, the 2D maps are a
simplification of the complex 3D environment which can lead to
difficulties in representation. Secondly, the connectivity between
different floor plans can be difficult (Zlatanova et al., 2014). Thirdly,
the maps that are available do not always contain furniture and
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most existing methods only focus on the reconstruction of the in-
door space as an empty hull with less attention to obstacle detec-
tion (Dı́az Vilariño et al., 2016). At last, as discussed by Turner
et al. (2015), most floor plans are out of date. Buildings are
not always built according to their blue prints, interiors might
change after a few years by modification of walls and doors and
furniture may be repositioned to the users preferences. There-
fore, new approaches for the efficient 3D recording of indoor en-
vironments should be investigated. This paper concentrates on
the automatic generation of indoor navigable space for pedestri-
ans based on laser scanning with a Mobile Laser Scanner (MLS)
device. These devices scan the environment continuously along
a trajectory which makes them more time efficient than static ter-
restrial laser scanners (Holenstein et al., 2011).

The output of a MLS device is a point cloud. To aid pedestri-
ans during their indoor navigation, features needed for path com-
putation such as floors, stairs, walls and furniture objects, need
to be extracted. Many other approaches are built on constraints,
like a Manhattan World or a flat/planar/horizontal surface con-
straint (Fichtner, 2016, Macher et al., 2016, Khoshelham and
Dı́az-Vilariño, 2014, Anagnostopoulos et al., 2016, Budroni and
Boehm, 2010). These constraints and limitations are not prob-
lematic for a regular office building but they are in more complex
environments, so a focus on a method with less or without con-
straints is needed.

If a building is scanned during business hours, or a building can-
not be closed like hospitals or airports, the captured point cloud
contains dynamic elements like pedestrians or small vehicles. These
dynamic elements do not represent any type of building element
like furniture and thus need to be identified and removed.

Beside the point cloud, the MLS also stores the trajectory that the
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MLS device took during the scanning procedure. If the MLS de-
vice is operated by a human, the trajectory contains information,
which can be used to distinguish between different surfaces. The
points, which are directly below the trajectory, indicate pedestrian
walkable areas (Yan et al., 2016, Li, 2014). The height differ-
ence between neighbouring trajectory points can be used to detect
stairs, slopes and flat surfaces. The trajectory also provides con-
nection information and represents the complexity of the building
when data is captured according to certain rules.

In this paper a method is presented for the identification of walk-
able surfaces based on analysis of the point cloud in combination
with the trajectory of the MLS scanner. The method consists of
two stages: a surface reconstruction phase and a cleaning phase.
By combining the point cloud and the trajectory, the walkable
spaces can be identified for any type of room without any con-
straints because the complexity of the building is already present
in the trajectory of the MLS.

2. RELATED WORK

An indoor navigable space can be defined as the free surfaces
that are used to navigate inside a building without bumping into
any obstacles. To identify the indoor navigable space, building
surfaces need to be constructed. The reconstruction of indoor en-
vironments is researched a lot and different approaches exist. In
this section, a few examples of different techniques in the field of
3D reconstruction are discussed. How to filter humans and other
dynamic obstacles in point clouds has also been investigated. A
short overview on the research in the detection of dynamic ob-
jects in point clouds is also presented.

A common approach for surface reconstruction is the calculation
of the normal of each point in the point cloud. By grouping the
points with the same normals, smooth surfaces can be defined
(Rabbani et al., 2006). Dı́az Vilariño et al. (2016) proposed a
method which segments a point cloud into regions based on these
normals. A plane is fit to each region and these planar regions
are then intersected and classified as walls, ceilings and floors
based on the tilt and the position regarding to the centre of the
room. The resulting unclassified points are marked as furniture.
After classification of doors, obstacle aware navigation can be
implemented by combining the planar regions and the furniture
points.

Budroni and Boehm (2010) developed a method to reconstruct
buildings from point clouds by using plane sweeps. First, ceilings
and floors are found by horizontal plane sweeps. If the amount of
points inside a specific plane reaches a threshold, floors or ceil-
ings are detected. The next step consists of a few vertical plane
sweeps at random locations. For each location histograms are
computed by using the information of the vertical pane sweeps.
These histograms are then combined which results in the main di-
rection of walls in the entire building. The last step is cell decom-
position of the entire space and extrusion of walls into the final
building model. This method focusses on perpendicular, parallel
walls and flat surfaces (Budroni and Boehm, 2010).

A similar approach is introduced by Fichtner (2016). This method
uses an octree structure proposed by Broersen et al. (2016) to
structure the input point cloud into voxels. The use of a voxel
model has several advantages. Firstly, the number of voxels is
much smaller than the number of points which makes storage, re-
trieval and processing far more efficient. Secondly, the voxel grid

possesses a spatial structure, which makes searching for neigh-
bour voxels quick and easy (Vo et al., 2015, Suzuki et al., 2010).
Since the voxelization is a generalization of the point cloud, the
representativeness of the voxelized point cloud heavily depends
on the voxel size. The method of Fichtner (2016) first replaces
and rotates the entire point cloud so that the walls and floors in
the model are aligned with the x, y and z axis. After the vox-
elization, the method continues by deriving histograms of the oc-
cupied leaves (voxels) in the z direction. If a peak is detected,
it indicates a possible floor. The next step consists of wall iden-
tification by applying histograms in the x and y direction. Fur-
thermore, stairs are detected using a filter based approach. This
method only works on Manhattan worlds and small floors cannot
be defined in larger point clouds.

The proposed method by Vo et al. (2015) combines the voxel ap-
proach of Fichtner (2016) with the smoothness approach of Rab-
bani et al. (2016) . In approach, the point cloud is structured in an
octree/voxel model. For the points in each voxel, the normals are
calculated. These voxels are then grouped according to the nor-
mal classification. This method improves the speed and accuracy
of the classification of the final result.

Turner et al. (2015) uses a ray tracing method through a voxel
space with an ambulatory scanning platform. If a laser beam
crosses through a voxel it is marked as an interior voxel. The final
voxel is marked as a boundary voxel. By partitioning the voxel
faces in planar regions and representing these regions as a quad
tree, a triangulation is performed. In this way, a building repre-
sentation which contains furniture is created. A second model
without furniture is created based on a 2D floor plan. These floor
plans are found by the creation of a histogram of the input point
cloud. As discussed earlier, the use of a histogram method limits
the detection of small floor areas across the building.

The 3D reconstruction of the indoor free space is a complex prob-
lem because of the variety of shapes of spaces and objects, a
high level of dynamic objects like walking humans or small mov-
ing vehicles, occlusions and cluttered surfaces. Therefore, most
of the 3D reconstruction approaches introduce assumptions like
Manhattan worlds or planarity of surfaces and are avoiding the re-
construction of furniture. Our approach concentrates on the spe-
cific objects used for reconstruction which are of interest for the
navigation of humans: stairs, flat, sloped surfaces and furniture
objects.

2.1 Detecting dynamic objects

Commonly, public buildings like hospitals or airports cannot be
closed during the data capture. Therefore, the generated point
cloud contains dynamic objects like people or small moving ve-
hicles. These elements have effect on the final output and should
be filtered before further processing. The detection of moving
objects is largely investigated in robotics and mostly done using
specific technologies like range scans, stereo cameras, monocular
cameras and recently also with consumer RGB-D cameras.

However, identifying dynamic objects based on point clouds is
not yet extensively explored (Litomisky and Bhanu, 2013). The
detection of dynamic elements is even more difficult because they
are only present on a specific position at a given time, which
makes the dynamic elements long-drawn shadows in the final reg-
istered point cloud (Józsa, 2012).

The approach of Litomisky and Bhanu (2013) to detect dynamic
objects is based on splitting the point cloud into two data frames.
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These data frames should have a significant overlap and a time
difference. Large planes inside these data frames are subtracted,
which is followed by the segmentation of the remaining points.
The individually segmented clusters are then compared to the
clusters of the other data frame and the dynamic elements can
be removed.

A different approach is presented by Holenstein et al. (2011).
They also work with a ray tracing method to divide the entire
space in free and occupied voxels, just like Turner et al. (2015).
By combining rays of multiple measurements, points from dy-
namic objects are identified and removed. Ray tracing methods
are costly because of their computation time. As described by
Holenstein et al. (2011), a point cloud of 5 million points with a
voxel size of 5 centimetres took 8 hours and 45 minutes to pro-
cess. Ray tracing methods are therefore not advised to use.
The detection of dynamic elements in this paper is based on the
notion of Józsa (2012). A dynamic object is only present on a spe-
cific position at a given time. The SLAM algorithm that is used
to form the final output point cloud of the MLS devices gives
a more reliable result when the data is captured in closed loops
(GeoSLAM, 2016). This is why multiple rooms are scanned mul-
tiple times. These different scanning times are split into different
data frames as proposed by Litomisky and Bhanu (2013).

3. METHOD

The proposed method is based on the two datasets of the MLS de-
vice that are simultaneously produced during the data acquisition:
the trajectory and the point cloud, as can be seen in figure 1. The
proposed method starts with the voxelization of the point cloud.
As described by Vo et al. (2015), voxelizing a point cloud has two
advantages. Firstly, it introduces a spatial structure and secondly,
it decreases the amount of data points which improves the pro-
cessing speed. After the voxelization, dynamic objects that were
present during the data capture are detected and removed. The
next step consists of the classification of the trajectory into three
types: stairs, flat and sloped surfaces. This is done by using dif-
ferent angle parameters between the successive points. The cor-
rectness of this classification depends on the changes in height of
the MLS device during the data capture and therefore this clas-
sification is only a first indication of the type of floor element.
The analysed trajectory is then voxelized to the same voxel space
as the voxelized point cloud. By projecting these trajectory vox-
els on the voxelized point cloud, seed voxels are identified. The
next step is the identification of doors. Doors form one of the two
stopping criteria in the region growing process. This is important
because users will navigate to a specific room inside a building
and not to multiple rooms at once. The seed voxels and identified
doors are further processed by a region growing algorithm imple-
mented in a PostgreSQL database to form floor regions in every
room. It is assumed that all the remaining voxels above the floor
regions represent furniture objects. To derive the navigable voxel
space inside a building, these furniture objects need to be marked
as non-navigable spaces.

The last step consists of several checks of the identified navigable
voxel space. First, the classification into flat floors, stairs and
slopes is checked by analysing the ordered seed points through
the floor regions. Second, small gaps in the final navigable space
are filled to form the final output data. These steps provide the
final navigable voxel space.

The point cloud and trajectory are captured using a Zeb Revo
laser scanner. The method is implemented using Python 2.7 and

PostgreSQL and tested on a DELL laptop running windows 7
with an Intel(R) Core i7-6820HQ CPU at 2.70 GHz, 16.00 GB
RAM and a 250 GB solid state disk (SSD).

Figure 1. Overview of the proposed methodology

4. IMPLEMENTATION

This section introduces the proposed methodology step by step.
This methodology is split into two parts. The first part discusses
the reconstruction of navigable voxel space per room, classified
as the three types: stairs, flat and sloped surfaces. The second
part presents the different cleaning methods that are necessary to
arrive at the final navigable voxel space. After these two steps,
the final navigable voxel space is identified.

4.1 Surface reconstruction

The surface reconstruction process of the proposed method starts
with the voxelization of the point cloud. Afterwards, the trajec-
tory is analysed to identify stairs, flat and sloped surfaces. Next,
seed voxels are identified and these seeds are region grow into
floor regions.

4.1.1 Voxelization: As discussed in chapter 2, the voxeliza-
tion of a point cloud creates a spatial structure and reduces the
amount of data points which increases the processing speed (Vo
et al., 2015). The voxelization is implemented using the octree
method introduced by Broersen et al. (2016). The smallest octree
leaves are saved in the final voxel model. The size of this smallest
leave depends on the amount of subdivisions of the octree struc-
ture. The method of Broersen et al. (2016) automatically scales
and replaces the point cloud so that the entire point cloud fits to a
dimension array of 0 to 2 times the power of the number of sub-
divisions. The point cloud is scaled until the smallest voxel has a
size of 1. The voxel size of 1 is an integer value which is used for
calculation purposes. This value corresponds to a specific voxel
size in cm. If a smaller voxel size is required, the octree needs to
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be subdivided once more. The whole point cloud is translated so
that all the points are located in the quadrant where both x and y
are positive. This method is scalable to any size of point cloud
with an almost linear increase of processing time (Broersen et
al., 2016). The smallest none-empty octree leaves are stored in a
PostgreSQL database.

The voxel size has a large influence on the representation of the
indoor space and the final product. If a threshold below a door
needs to be distinguished from the rest of the floor, the voxel size
should be very small. In this research the different risers of a stair
need to be identified and therefore, the voxel size can be bigger.
According to the ISO 21542 (2011) standard, the risers of a step
of a stair should not be higher than 15 cm. If a riser of a stair
and the voxel size are both 15 cm, a riser is represented by one
voxel. If noise is present before the step, a voxel is added and
the riser is instantly deformed. Since the risers should always be
identifiable, a smaller voxel size is needed. To identify risers of
15 cm, a voxel size of 5 to 7, cm is chosen. Defining a specific
voxel size is currently not possible due to the automatic scaling
of the point cloud as described above. This parameter can vary
with respect to the type of stair.

4.1.2 Trajectory analysis: The classification of the trajectory
forms the basis of the following processing steps. The trajectory
is classified into three types of surfaces: stairs, flat and sloped
surfaces. In order to identify these different elements, the angles
between successive trajectory points are analysed. There are dif-
ferent angle parameters for stairs and slopes and for each surface
type there are a number of fixed successive points that fulfil the
angle criteria as described in table 1. These values are derived
from numerous tests performed on the trajectories of different
point clouds. The classification of stairs and flat surfaces is visu-
alised in figure 2.

Type Min. angle Max. angle Connecting
in degree in degree elements

Stair 7,1 60 4
Slope 2,3 18,4 2

Table 1. Thresholds for the trajectory analysis

Figure 2. Analysed trajectory in the point cloud: green
represents a flat surface and red represents a stair

4.1.3 Voxel model + seed voxels: The identification of seed
voxels is done by voxelizing the classified trajectory in the same
spatial structure as the voxelized point cloud. Seed voxels are

identified by projecting the voxelized trajectory onto the vox-
elized point cloud. The records of these seed voxels are updated
with the notation of being a seed voxel combined with the trajec-
tory type of: flat, stair, slope or mixed as illustrated in figure 3.
The mixed class is introduced because one voxel of the voxelized
trajectory can contain multiple types of points. If halve of the
points in a voxel are classified as a stair and the other half as a
flat, it is unclear what the voxel type should be. In that case the
voxel is marked as a mixed class.

Figure 3. Identified seed voxels in the voxelized point cloud:
blue corresponds with a flat surface

4.1.4 Voxel model + seed voxels + identified doors: The des-
tination of an indoor navigation activity is most of the time lo-
cated inside a specific room in a building. Therefore, it is impor-
tant to distinguish different rooms in the final output data model.
Doors form the connecting elements between different rooms.
When the doors are identified, these rooms can be split during
the region growing process. The doors are detected by the height
difference between the trajectory seed voxels and the ceiling. A
door is found if there is a sudden drop in the distance between the
seed voxels and the corresponding ceiling voxel. Furthermore,
the distance to the right and left in the x and y plane, first needs
to be big first, than small and then big again for a few voxels.
Both criteria are calculated based on the trajectory seed voxels, by
computing the distance to the ceiling or the left and right voxels.
The identified doors are a stopping criteria in the region growing
process.

4.1.5 Region grow seed voxels per room: The final stage is
the region growing process in which the floor regions will be
generated from the identified seed voxels. The region growing
process is implemented in the PostgresSQL database using the
ST ClusterDBSCAN algorithm (PostgresSQL, 2017). This algo-
rithm only processes 2D clusters in one x,y (or x, z) plane. There-
fore, the x,y regions are obtained per unique seed voxel height.
Only the regions that contain trajectory points are saved. The re-
gion growing process is implemented to consider the eight neigh-
bour adjacency of a seed voxel at one height value (so only on the
x, y plane). There are two stopping criteria for the region grow-
ing process. First, the region growing stops when a door voxel is
reached. Second, voxels with 2 voxels above the possible region
voxel are not added to the current region.

4.2 Cleaning

The cleaning consists of four steps. First, dynamic objects that
were present during the data capture are detected and removed.
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Figure 4. Regions in the voxel model: green represents a slope,
blue represents a flat surface and red represents a stair

Second, the classified types and generated surface regions will be
checked on their correctness. After this, small gaps in the floor
regions are filled with new voxels. The final relates to the sub-
traction of furniture from the floor regions. In this way, the final
navigable voxel space, in which pedestrians can navigate with-
out any obstructions, is realised. The following sections provide
further details on the individual steps.

4.2.1 Remove dynamic objects: The Zeb Revo, which is used
for the data capture, uses a SLAM algorithm to register the differ-
ent scans in one point cloud. Each point in the point cloud con-
tains its original scanning time. A dynamic object is only present
on a specific position for a short amount of time. Therefore, the
points that represent the pedestrian form a long-drawn shadow
(Józsa, 2012). Each voxel in the voxelized point cloud contains
a different number of points. To detect the dynamic objects, the
points inside a voxel are grouped by each second. If a voxel con-
tains less than 2 scanning seconds, the voxel is marked as a dy-
namic object and removed from the voxelized point cloud. This
value is based on various tests. These tests showed that whole
dynamic objects were removed when this value of 2 was used.
Increasing this threshold resulted in the partly detection of dy-
namic objects. When the parameter was increased parts of the
model that were not scanned thoroughly, like the borders of the
point cloud, were also removed. To be able to keep the most
data, this threshold needs to be as low as possible. Cleaning the
voxelized point cloud removes most dynamic objects in the voxel
model, as can be seen in figure 5 and 6.

However, there is still some residual noise left, as illustrated in
figure 6. This is caused by dynamic objects that were on the same
position during the data capture. When a a dynamic object stays
at the same position during the data capture, it is better repre-
sented in the final point cloud. A better representation means that
more points per voxel were captured. Therefore, these objects are
not detected by the described cleaning process.

4.2.2 Surface identification check: Sometimes elements are
wrongly classified. The first riser and part of a slope can be de-
fined as flat surfaces, see figure 4. The MLS device is held before
the data gatherer. If a stair is entered, the scanner can already
be above the second riser before the data gatherer enters the first
riser. This results in a rise of the trajectory above the second riser.
Based on the trajectory, this first riser cannot be detected. More-
over, furniture objects can be marked as flat surfaces, see figure
7. Furniture objects can be wrongly classified because the MLS
is held above furniture objects during the data capture. If the

Figure 5. Uncleaned voxel
model

Figure 6. Cleaned voxel
model

trajectory is projected down on top of the voxelized point cloud,
the furniture voxels are marked as seed voxels and region grown
which turns them into floor regions.

To detect these wrongly classified elements, the change in height
of the identified seed voxels is checked. If there is a sudden height
change which is larger than the ramp and stair parameters, which
are defined in table 1, it represents a wrongly classified element
which can be detected and corrected. If the change is smaller than
the ramp and stair parameters, risers or the first part of the slope
can be detected.

Figure 7. Region grown surface containing furniture as a floor

4.2.3 Repair gaps in the voxel model: Due to the occlusion
of dynamic objects, missing data or the removal of some voxels
during the cleaning, described in section 4.2.1, gaps can emerge
in the floor regions. This is by ordering the individual floor re-
gions and group them by the y-axis in the database. This way, the
x-axis can be checked. If the distance between two following x
positions is less than two voxels, it represents a gap and will be
filled with new voxels. This process is repeated for the y-axis.
The filling distance of two voxels depends on the voxel size and
the filling requests of the operator. In this research this parameter
is set manually but can be calculated in future developments.

4.2.4 Subtract furniture: The MLS device scans the whole
interior of a room. Therefore, also points below furniture objects
are present. A navigable space is the space where a pedestrian
can navigate without bumping into any obstacles. For this rea-
son, the space below furniture objects needs to be marked as an
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unnavigable voxel space. After cleaning the dynamic voxels in
the voxelized point cloud, the resulting voxels above the floor are
assumed to be furniture objects. Dynamic objects that were on the
same position during the data capture are for now also marked as
furniture objects. Such furniture objects will be removed from
the floor regions to get the final navigable voxel space.

4.3 Final navigable voxel space

After the surface reconstruction and the cleaning, the final navi-
gable voxel space is identified. The wrongly classified elements
are corrected see 8, as can be seen in the image, the navigable
voxels are removed from the green slope where residual dynamic
objects were present, see figure 6. Further research is needed to
detect these residual dynamic objects and to prevent that these
objects are removed from the navigable space. Furthermore, the
wrongly classified furniture elements should be removed.

Figure 8. The regions of figure 4 (above) and the final navigable
voxel space (below)

If the m2 of the modelled final navigable voxel space is compared
to the actual m2 in the real world situation, the m2 accuracy can
be computed. The m2 of the model is calculated based on the
amount of floor voxels of its floor region. The m2 of the real
world situation is measured in a from furniture cleaned computer
aided design (CAD) drawing of the same space. This is done for
two different spaces in the indoor environment: a corridor and a
part of the first floor. The results are illustrated in table 2. The
difference between these two models is around 10%.

Checking type Hallway First floor Orange rock
in m2 in m2

CAD model 74.0 68.0
7.3 cm voxel model 67.7 61.3
Difference between CAD -8.5 % -9.9 %
and 7.3 cm

Table 2. Area of the CAD model and the identified floor spaces
with an voxel size of 7.3 and 3.7 cm

5. DISCUSSION

The performed tests have clearly illustrated that by combining
the trajectory with the point cloud of the MLS important infor-
mation can be derived to identify surfaces for navigation and that

dynamic objects can be removed. It should be noted that in this
implementation the voxel size depends on the number of subdi-
visions of the octree, as described in section 4.1.1. Therefore,
each point cloud will have a different voxel size. Before point
clouds of the same environment can be compared, they need to
be rescaled to their original sizes. It would be useful to ask the
operator for the preferred voxel size.

Furthermore, it is currently only possible to detect objects which
moved during the data capture. Dynamic objects which remained
static at the same position during the data capture cannot be dis-
tinguished yet. An example of such objects are humans waiting in
queue near the coffee machine. Therefore, such objects are clas-
sified as furniture elements and removed from the final navigable
voxel space. It is also possible that a room is scanned multiple
times, see figure 9. If a dynamic voxel contains a dynamic object
both times, the voxel contains points from both scanning times.
In this case, the voxel contains more than two scan seconds and
is therefore marked as static. To solve this problem, the individ-
ual points inside a voxel should be split into different time zones.
The points are in a different time zone when the time difference
of successive points is more than for example twenty seconds. In
this case, each time zone inside the voxel needs to be checked
again for the detection of these dynamic elements.

Figure 9. Multiple scanning times: orange is scan time one and
green is scan time two

The classification of a stair, flat and sloped surface type is based
on the trajectory analysis described in section 4.1.2 combined
with the surface identification check described in 4.2.2. If the
trajectory voxels with the seed voxels are compared, the x and
y location are the same which results in a 2D image illustrated
in figure 10. The z-value of the trajectory voxels is based on
the original changes in height of the MLS device during the data
capture (red line), whereas the z of the seed voxels (blue line) is
based on the actual geometry of the point cloud itself. The green
box in figure 10 is actually a small stair. The exact start and end
point are not clearly identifiable in the trajectory voxels but they
are identifiable in the seed voxels below. Furthermore, the green
line shows that the trajectory rises later on a stair than the seed
voxels do which results in the wrong classification of stair risers
or slope parts. Therefore, the surface identification check is im-
plemented. This requires a specific amount of processing time
twice to get the right classification. If the classification is directly
based on the seed voxel themselves, the classification and check-
ing is done at once which is probably quicker than the currently
implemented method.

The identification of doors is also based on the trajectory of the
mobile laser scanner. In the currently implemented method, doors
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Figure 10. Trajectory voxels are represented in red, seed voxels
are represented in blue per trajectory ID. The black line
represents a split in the data for visualization purposes

can only be found when there is enough distance between the top
of the door and the ceiling, is not yet implemented in an automatic
way and doors can only be crossed during the data capture.

The region growing process is implemented in the PostgresSQL
database using the ST ClusterDBSCAN algorithm. This algo-
rithm is quite fast and works fine for the voxelized point cloud
because there is always one specific z-value for each floor region.
The clustering algorithm only clusters the voxels of one z-value
into regions. Therefore, the voxels that apply to the two stop-
ping criteria need to be subtracted from the floor voxels before
the clustering begins. Section 4.1.5 described the two stopping
criteria: the first consists of the doors, which form the boundary
of a room and the second consists of the subtraction of a voxel if
it has 2 voxels above. In some cases, it is possible that these 2
voxels do not exist in the model but do exist in reality, for exam-
ple in the case of a railing or a door of glass. In these cases, the
stopping criteria is not applied and the region growing can con-
tinue underneath the railing or outside of a building or a room.
This results in a over-estimation of the available navigable voxel
space and the possibly merging of different rooms.

The cleaning parameter of less than 2 scanning seconds, as de-
scribed in 4.2.1, is chosen after multiple tests. This parameter
works for a 5 to 7.5 cm voxels but needs to be changed if a
smaller or larger voxel size is chosen. If a smaller voxel size
is used, a voxel contains less points which probably results in a
smaller cleaning parameter. If the voxel size increases, the vox-
els contain more points which means that the cleaning parameter
probably needs to be increased as well.

The processing time of the implemented method is illustrated in
figure 11. When the amount of points is doubled, the processing
time approximately doubles as well. As can be seen, the vox-
elization time represents more than half of the total processing
time. The current method is tested on point clouds of 4, 8 and
16 million points. Future tests should be conducted with larger
clouds. It is not suspected that this will cause any type of problem
in the current implementation.

The indoor environment is highly cluttered with all kinds of fur-
niture. If a good representation of the navigable voxel space is
required, occluded areas behind chairs or tables also need to be
scanned. If these spaces are not scanned, the navigable space

Figure 11. Processing time: blue is the total amount of time and
red is the time which was necessary for the voxelization

cannot be detected behind these objects. This results in a lower
amount of navigable space in the final model than it is in reality.

As discussed in 4.2.3, gaps in the floor regions are filled with new
voxels if a gap is 2 voxels or smaller in length. This can lead to
difficulties with boarding’s of stairs because the space between a
boarding and a risers can be filled up. In this case, the corners
of the risers are not straight but rounded. A possible solution of
this problem is to cross-check the repaired gaps with the original
voxelized point cloud. If a match is found, the voxel is restored
and otherwise it represents new data and can cause problems as
described above. This can result in an over representation of the
final navigable voxel space.

The difference in m2 between the real world situation and the out-
put of the model is around 10 %, as discussed in 4.3. This value is
only based on two test cases of a floor region. To check its valid-
ity, more tests with different environments should be conducted.

Currently it is not possible to process different point clouds which
have the same voxel size. As mentioned above, the voxel size
cannot be controlled because it depends on the amount of sub-
divisions of the octree and the automatically scaling of the point
cloud introduced by Broersen et al. (2016).

6. FUTURE WORK

This paper proposed a method to identify floors, stairs, slopes
and furniture objects based on the point cloud and the trajectory
of a MLS device. Future research could be done concerning the
following topics:

1. Identification of walls: A stopping criteria during the region
growing process is to stop adding voxels when 2 voxels directly
above a voxel exist. This gives an indication for the location of
possible walls. If the total number of voxels above the current
voxel are counted until a specific height, it results in a heat map
of the indoor space. By detecting linear elements, walls can be
identified. A different approach for the detection of walls is by
slicing the different rooms close to the ceiling in the x, y plane.
2. Identify furniture objects: All the resulting voxels above the
floor regions are now marked as furniture objects. These voxels
are just subtracted from the end result. It would be better to group
these features and identify the type of furniture which is present.
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A chair for example, can be located in the middle of the room but
because it is more dynamic than a table it could also be replaced.
This way, the furniture types and the usage of the space can be
described in more detail.
3. Identification of dynamic objects, which do not move during
the scanning: As discussed in section 5, static dynamic objects
are now marked as furniture. Future research should be done on
the identification and the removal of these elements from the vox-
elized point cloud since they can block a path which is normally
available and thus should be included in the final result.
4. Generation of a node network: Navigation applications are
mostly based on node networks. With the identification of doors,
stairs, flat and sloped surfaces, such a network can be generated.
It would be useful to extend this method with the automatic gen-
eration of navigation networks in a standard like IndoorGML.

7. CONCLUSION

The proposed method efficiently identifies three different kinds
of navigable voxel spaces based on the trajectory and the point
cloud of a MLS device. This method makes it possible to create a
continuous navigable space in buildings including several floors,
stairs and elevations. Data can be captured during business hours
since the method detects and removes dynamic objects. The pro-
posed method can be used for any type of room without any con-
straints because the complexity of the building is already present
in the trajectory of the MLS.
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