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Abstract

For programs controlling industrial processes, it is of vital importance that they
produce results conform their functional specification. Furthermore, it is important
that their running times are bounded, and that we can predict corresponding worst-
case scenarios. Programs written in general purpose programming languages can crash
or produce erroneous output. Data modeling and query languages are typically more
restrictive. However, they either do not guarantee soundness (where values are of a
predefined indivisible type) or functional correctness (including deterministic output).
Alternatively, they have unbounded or unpredictable worst-case running times, or have
limited expressiveness.

We present ALANLIGHT, a data modeling language for expressing complex re-
cursive calculations, while guaranteeing soundness, functional correctness, and poly-
nomial time complexity in the size of user data. To achieve this, we use complex ref-
erential integrity constraints and an elegant, formally defined analysis over constraint
and calculation definitions in ALANLIGHT programs. Furthermore, we give a formal
specification of the dynamic semantics of ALANLIGHT, implying its guarantees, and
demonstrating support for on-demand minimal effort calculation.
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Chapter 1

Introduction

In today’s industry, machines are generally controlled automatically. We give instructions
to machines and they autonomously produce requested results. To further automate control,
we connect machines to each other. This enables them to exchange data for determining
what they should do, without the need for human intervention.

Different machines require different kinds of data in different formats, and use that data
for different purposes. Converting and using data typically involves running programs that
perform complex calculations on large datasets which are subject to frequent modification.

It is of vital importance to industrial processes that these programs always produce cor-
rect results. That is, that these programs do not crash, and that they produce output that
conforms to their functional specification. Furthermore, it is important that their running
time is bounded, and that we can predict worst-case scenarios. The number of calculations
that programs perform – and their execution time by extension – should not increase ex-
ponentially when the input changes. A program that crashes, produces incorrect results,
or runs for long periods of time, can disrupt or halt industrial processes. Sometimes, long
running times are inevitable. In such cases, it is important that we can predict worst-case
running times, so that we can take these running times into account when configuring in-
dustrial processes.

Programs written in general purpose programming languages (such as C++ [67] and
JAVA [17]) can crash or produce erroneous output. Furthermore, their running time is not
bounded. Running times can increase exponentially depending on the input. Programs may
not even terminate, as they can contain infinite loops. We can use program verification [32,
34] for proving that a single program does not crash and produces correct output (and thus
terminates), but this requires additional effort. For guaranteeing sub-exponential running
time bounds, some programs allow deriving time bounds automatically [33, 56]. But, for
other programs we have to do this manually, as corresponding languages provide no such
guarantee.

In this thesis, we present ALANLIGHT, a declarative data modeling language for ex-
pressing complex recursive calculations, while guaranteeing type soundness (where values
are of a predefined indivisible type), functional correctness (including deterministic output),
and polynomial time complexity in the size of user data. By a predefined indivisible type
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1. INTRODUCTION

we mean that output values of calculations are not of a nullable type, error type, ‘unknown’
value type, option type [48, 68], or similar. The running time of ALANLIGHT programs is
bounded by the size of the specification (the program) and the size of user data, enabling
accurate worst-case running time predictions for changing data.

In addition, ALANLIGHT supports on-demand minimal effort calculation of derived
(calculated) values. This means that an ALANLIGHT program performs exactly those calcu-
lations that lead to a final result that a user (or system) demands. Furthermore, ALANLIGHT

programs perform calculations at most once during program execution.

Our research originates from the need to guarantee termination for calculations which
are required for data-exchange among machines and supporting systems. The key idea
behind our approach is ensuring that programs describe an acyclic data flow. To achieve this
while enabling complex recursive calculations, ALANLIGHT supports expressing complex
referential integrity constraints. Furthermore, the language includes an elegant, formally
defined analysis over constraint and calculation definitions in programs.

Existing approaches for supporting complex recursive calculations in databases either
do not guarantee termination [25, 44, 47, 50], require manually bounding recursion to en-
sure termination [53], use methods involving unneeded calculations [21], do not (generally)
guarantee functionally correct output [2, 5, 18, 23], cannot guarantee output of a predefined
indivisible type [18, 53], or limit expressiveness in such a way that some typical problems
become inexpressible [18, 38, 59]. Our approach aims to overcome these (and more) prob-
lems. In particular, our contributions are:

• ALANLIGHT, a hierarchical data modeling language with integrated support for ex-
pressing complex recursive calculations, while guaranteeing soundness, functional
correctness, and bounded, predictable running times

• A formal static semantics for ALANLIGHT, defining an analysis over constraint and
calculation definitions

• A formal operational semantics for ALANLIGHT, demonstrating support for on-demand
minimal effort evaluation

• Complexity bounds for calculations that ALANLIGHT programs perform, demon-
strating a polynomial time complexity in the size of user data, and an exponential
time complexity in the size of a program

• An evaluation of the impact of referential integrity constraints with a correspond-
ing analysis (ALANLIGHT’s key concepts) on expressiveness and on guarantees for
programs performing complex calculations

In addition, we
• give an overview of typical problems resulting from the use of existing programming

languages;

• illustrate the tension between expressiveness and guarantees for recursive calcula-
tions;

• evaluate expressiveness and guarantees for different kinds of recursive calculations
with approaches from related work.
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Products: collection {
parts: collection {

quantity: integer
}
manufacturingCost: integer

}
Orders: collection {

OrderedProducts: collection {
cost: integer

}
totalCost: integer

}

Figure 1.1: Hierarchical ALAN/ALANLIGHT model for a manufacturer and a corresponding
generated user interface.

Contrary to relational databases which store tabular data, ALANLIGHT targets hierar-
chical data. We aim for expressing programs in a way that closely resembles hierarchical
data and data flow. Staying close to the structure and flow of data makes it easier to discuss
and implement customer requirements, which simplifies the software development process.
Furthermore, our language is target (model) driven and is closely related to object oriented
programming languages, lowering the barrier for typical software developers.

Requirements for ALANLIGHT. We developed ALANLIGHT at M-industries. At M-
industries we use ALAN, a more feature-rich version of ALANLIGHT without the analysis
which we present in this thesis. We use ALAN as the principal programming language for
developing data-intensive software systems for manufacturing companies. For example,
one of our customers is a world player in the aluminium extrusion industry.

M-industries’ customers typically have a large connected infrastructure of machines and
supporting systems. At M-industries, we develop software connecting these machines and
supporting systems for optimizing production processes. We have successfully deployed
several systems at manufacturing sites all over Europe which are actively being used as
integral parts of manufacturing processes.

In context of M-industries, our main goal with ALANLIGHT is to provide a solution
for complex (recursive) calculations in ALAN, while guaranteeing soundness, functional
correctness, and bounded, predictable running times. Successfully deployed ALAN-based
systems show that ALAN’s basic concepts are effective tools for the development of data-
intensive software systems. These concepts include hierarchical data modeling, and the data
types that ALAN supports. To ensure that concepts from ALANLIGHT apply to ALAN, we
impose the following functional requirements on ALANLIGHT:

• ALANLIGHT should support (text-based, declarative) hierarchical data modeling.

• ALANLIGHT should support the data types from ALAN, insofar they affect ALAN-
LIGHT’s core concepts: complex referential integrity constraints, and a corresponding
analysis.

3



1. INTRODUCTION

The reasons for ALAN being a hierarchical data modeling language are twofold. First,
our customers typically have hierarchical data. Second, hierarchical data models enable
easy generation of (tree-style) graphical user interfaces that our customers are accustomed
to. Figure 1 illustrates this.

The left side of the figure shows a (simplified) hierarchical ALAN/ALANLIGHT model
for a manufacturer. The right side of the figure depicts a user interface that we generated
from the model. The model expresses that the manufacturer has a collection of Products
and Orders. Products have (a collection of) parts, which have a quantity. Orders
consist of a collection of OrderedProducts with a cost. The left side of the user interface
shows the collections in a tree view for navigating through the data. The right side of
the user interface shows the Products of the manufacturer, which we get by clicking on
‘Products’ in the navigation bar. The first column of the data grid shows that each product
has a unique key (e.g. CPU); that is, a collection is a map holding unique key-value pairs.

The data model and the graphical user interface are closely related. Our customers (with
typically no prior programming experience) can typically understand the model because it
resembles how they think about, and work with their data. This significantly simplifies
discussing customer requirements, and translating customer requirements into a concrete
implementation.

Problems that ALAN targets, require calculations that (recursively) traverse complex
relations. For example, relations between Products and their parts (which are typically
also Products). ALAN neither requires other types of recursive calculations, nor iterative
calculations. From this, we extracted the following requirement for the expressiveness of
ALANLIGHT:

• ALANLIGHT should support recursive calculations that (recursively) traverse com-
plex relations.

From our research perspective, ALANLIGHT adds value if the language is either more ex-
pressive or provides more guarantees than existing languages. Therefore, we specifically
focus on recursive calculations for which related work either provides no support or does
not give aforementioned guarantees. We address problems found in practice, as these can
effectively demonstrate how ALANLIGHT succeeds in going beyond the capabilities of ex-
isting languages in the context of data-intensive software development. Addressing prob-
lems found in practice gives an informal definition of expressiveness; we consider a formal
definition of expressiveness beyond the scope of this thesis. As part of our research, we aim
to demonstrate the tension between expressiveness and guarantees for recursive calculations
with regards to both ALANLIGHT’s concepts as well approaches from related work.

Outline. Chapter 2 gives a problem statement, addressing problems in existing lan-
guages. Chapter 3 introduces ALANLIGHT. Chapter 4 presents a static semantics for
ALANLIGHT. Chapter 5 shows the intended meaning of concepts in ALANLIGHT in the
form of a formal operational semantics, and presents complexity bounds for the full class

4



of ALANLIGHT programs. Chapter 6 evaluates the key concepts of ALANLIGHT, demon-
strates the tension between expressiveness and guarantees for complex calculations, and
discusses the expressiveness and guarantees in context of related work. Chapter 7 more gen-
erally discusses how ALANLIGHT compares to related work. Finally, Chapter 8 presents
conclusions about our work, and suggests some ideas for future work.
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Chapter 2

Problem statement

In this chapter, we discuss different problems with existing languages. We use these prob-
lems to define our notion of soundness, functional correctness, and bounded, predictable
running times. The problems that we address, are organized accordingly. The remainder
of this chapter discusses how related work addresses problems that we present, focusing
mainly on problems involving recursive computations. We conclude this chapter with the
main research question for this thesis.

Soundness. Programs in languages such as C [29], JAVASCRIPT [12], JAVA [17],
SCALA [49], and SQL [15] can produce runtime errors. For example, SCALA allows unsafe
casts, which yield an exception on the JVM (Java Virtual Machine):

val a = "some text";
val b = a.asInstanceOf[Int];

//-> java.lang.ClassCastException:
// java.lang.String cannot be cast to java.lang.Integer

Similarly, C and JAVA allow division by zero, which gives runtime exceptions as well:

int temp_low = 0;
int temp_avg = ( temp_max + temp_low ) / temp_low;

//-> java.lang.ArithmeticException: / by zero

Furthermore, JAVASCRIPT supports applying operators to values of incompatible types,
yielding special implementation-defined values such as NaN (Not-a-Number):

temp = 200 - "ten"; // Incompatible types

//-> NaN (JavaScript)

These errors result from an unsound type system. Our notion of soundness requires that
‘well-typed models (programs) don’t go wrong’ [41, 55, 72]. ALANLIGHT aims for a com-
plete absence of runtime errors: valid ALANLIGHT models are safe. Furthermore, ALAN-
LIGHT guarantees values of a predefined indivisible type. That is, a strong notion of type

7



2. PROBLEM STATEMENT

soundness which excludes null values and values of an option or maybe type, preventing
corresponding exceptions, such as:

public void nullPointerException () {
Product prod = null;
System.out.println(prod.getName ());

}

//-> java.lang.NullPointerException

Typical relational database modeling and query languages, including SQL, have similar
problems. They do not require specific multiplicities for the input to operations applying to
sets or bags of values. Instead, they produce null values or special implementation-defined
values on empty sets or bags:

SELECT MAX(price)
FROM products
WHERE (SELECT COUNT(price)) = 0;

//-> null // always null, because of the WHERE -clause.

Functional correctness. A strong soundness result ensures the absence of runtime er-
rors. However, soundness does not guarantee that programs are correct with respect to
the specification defining the intention of a program or system. Soundness depends on an
operational semantics; an interpreter, that may include hacks or workarounds for ensuring
correctly typed output. For example, a program may be well-typed, but only because of
hacks in the form of ‘fallback values’ that a corresponding operational semantics defines; it
may produce 0 when an integer object value is undefined.

Functional correctness here means that for each input, a program produces expected
output conform a (high-level) specification [6, 30, 34]. To explain this, consider the speci-
fication for the product price calculation from Figure 2.1. A program performing the price
calculation is functionally correct – and its output always correct – if and only if the out-
put always conforms to the specification of the price calculation. Our notion of functional
correctness requires models to explicitly define every possible result of a computation in a
deterministic manner, without falling back on values from an operational semantics (or the
corresponding implementation of an interpreter). As we also require that programs termi-
nate, we cannot guarantee this for the program from the figure (as product price values are
infinite); the compiler should reject the program.

Languages such as SQL do not guarantee the above. For example, SQL queries can
produce non-deterministic output [7]:

SELECT TOP(1) price
FROM products;

//-> 5 OR -500

The TOP clause limits the number of price values (rows) that the query produces. TOP(1)
produces the price of a single product from the table (if the table holds data). As the order

8



Figure 2.1: Recursive product price calculation, where products consist of parts. The arrows
indicate product→part relations. The red, dotted arrow indicates an incorrect relation which
creates a cyclic dependency among products.

of the products is undefined, subsequent runs of the query can yield (different) price values
from different products.

Queries or programs exhibiting such behaviour can produce expected output during test-
ing, but can yield incorrect output in a production environment. Similar non-deterministic
behaviour can occur when comparing pointers to memory locations in C or C++.

Another typical problem where a program does not produce functionally correct output
is overflow (and also underflow):

int x = 987654321;
int y = x * x;

//-> y = -238269855

Instead of y holding the square of x, it holds a negative number value in JAVA and C. In
SQL, we get a runtime error instead: Data truncation.

Bounded, predictable running times. Soundness and functional correctness ensure safe
programs that give correct output; that is, assuming that programs produce any output at all.
Programs in Turing-complete languages such as JAVA can have unpredictably long running
times. Moreover, they may not terminate.

9



2. PROBLEM STATEMENT

To illustrate the above, take the following two JAVA functions which can run infinitely:

public void recurse () {
recurse ();

}

public void loop() {
while (1) { doSomething (); }

}

Programs calling functions such as these can stall production processes indefinitely. Thus,
it is essential that we ensure that running times are bounded; that programs terminate.

However, when guaranteeing program termination, programs may still have long run-
ning times; they can delay production processes for unpredictably long periods of time. To
illustrate this, consider the following part of a JAVA program:

while (x >= threshold) {
x = decrease(x);

}

If the function decrease produces a value less than x, we know that the loop terminates.
However, we cannot predict when x will drop below the threshold. Moreover, suppose that
the running time for a specific value of x and threshold is 10 seconds. Then, even minor
changes to the values can significantly impact the running time of the program, possibly
turning 10 seconds into 10 years.

The problem is that (calculated, numerical) variable values bound the running time of
the program. The size of the datasets (program input) of M-industries’ customers typi-
cally changes slowly and in a predictable manner, while values are subject to frequent,
unpredictable modifications. Therefore, if running times depend on values, they are unpre-
dictable. For running times that depend on the size of customer data, we can give more
accurate predictions. As the datasets can grow very large, it is also important that running
times do not grow exponentially in the size of user data. Therefore, our notion of predictable
running times requires polynomial running time bounds in the size of user data.

Towards a solution. Different approaches exist for ensuring bounded running times. A
simple solution is to limit the expressiveness of a language: we can drop looping constructs
and preclude recursion. However, complex data exchange and transformation processes
typically require recursion. In fact, the main goal of our approach is to support complex
recursive calculations.

A naive approach for ensuring bounded recursive calculations is a time limit. For ex-
ample, PHP supports limiting execution times as follows:

set_time_limit(5);

$i = 0;
while (true) {

$i++;
}

//-> $i = 1 or 2 or 3 or 4 ...

10



Similarly, SQL [61, 47] also lets developers bound the recursion depth of recursive queries:

SELECT SUM(quantity)
FROM recursive_sql_query
OPTION (MAXRECURSION 2);

//-> result after 2 iterations

However, such approaches either produce non-deterministic output or incomplete output
(by only partially evaluating recursive computations).

A fixpoint computation (or fixed-point computation) is a more sophisticated approach
that can ensure bounded running times. A fixpoint computation halts when no new infor-
mation (facts, tuples, a value) is computed during an iteration of a fixpoint algorithm. For
example, recursive DATALOG [18] uses a fixpoint algorithm that halts when it can no longer
derive new tuples describing previously unknown relations among objects.

To further explain this, consider the product graph from Figure 2.1. Recursive DAT-
ALOG supports computing the transitive closure of the product graph (the set of all direct
and indirect relations among products). From the graph, we can only derive a finite set of
relations among products, at which point (the fixpoint) the fixpoint algorithm terminates.

Languages such as DATALOGFS [37] suggest this approach for calculating values such
as the product price from Figure 2.1. The approach ensures termination; the fixpoint al-
gorithm produces finite price values because part prices only count once towards the final
result. However, such price values are incorrect for the cyclic product graph from the fig-
ure. The values do not conform to the functional specification of the price calculation. Finite
price values can give users and systems that receive them a false sense of correctness. It is
important that we prevent that.

As mentioned for the product-part relations, a cyclic dependency should be prevented
in the first place. In fact, many different kinds of relations that computations traverse re-
cursively, require the absence of a cycle among them. ALANLIGHT is based on this idea.
ALANLIGHT focuses on enabling complex recursive calculations – under aforementioned
guarantees – using complex referential integrity constraints, which include acyclicity con-
straints for relations that computations traverse recursively.

The idea of introducing acyclicity constraints on relations is not new [21, 66, 71]. The
need for acyclicity follows immediately from the fact that termination cannot be guaranteed
for calculations which unboundedly traverse circular relations. Furthermore, acyclicity is a
natural requirement for many relation types; for example, for product-part relations, version
relations, and different kinds of time bound relations.

As shown above, data modeling languages and query languages that do not guarantee
acyclic relation traversal for recursive calculations, require a different approach to ensuring
termination. A naive approach is a time limit or a recursion depth limit [53]. More sophisti-
cated approaches discussed in Abiteboul et al. [1] and Green et al. [18] limit expressiveness
instead. For example, they support recursively calculating minima and maxima, but do not
support recursive summation. (Note that minimum inside recursion yields a unique value (a
fixpoint), whereas sum may infinitely increase in the presence of cycles.)
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2. PROBLEM STATEMENT

For more expressiveness, some of these approaches store results from earlier recursive
calls. They use these results to prevent reevaluation of identical recursive calls [3, 64].
However, they do not guarantee functionally correct output. To our knowledge, no existing
data modeling language guarantees our notion of soundness, functional correctness, and
bounded, predictable running times, while providing similar expressive power for express-
ing recursive computations. The research question for this thesis is: to what extent can we
support complex recursive calculations, while guaranteeing soundness, functional correct-
ness, and bounded, predictable running times?
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Chapter 3

ALANLIGHT

This section introduces the key concepts of ALANLIGHT: hierarchical data modeling, data
flow modeling, derived values, and constraints on data. We discuss typical data model-
ing problems in the context of data-intensive software development and show how ALAN-
LIGHT addresses these problems. As running example we use part of an enterprise resource
planning (ERP) system for a company that manufactures and distributes electronics. The
manufacturer has customers, products, purchase orders and sales orders. Figure 3.1 shows a
feature model (extended with crow’s foot notation) for a subset of the manufacturer’s data.
Figure 3.2 presents the ALANLIGHT version of this model.

3.1 Hierarchical data models

ALANLIGHT models are hierarchical models specifying hierarchical data. Our solution for
achieving soundness, functional correctness, and boundedness, uses this hierarchical aspect
of ALANLIGHT models.

An ALANLIGHT model is a hierarchy of nested types with a single root type:

root { ... /* attributes */ ... }

The root type is a complex type that nests other (complex) types. Types are surrounded by
curly braces, and their identification is a path which starts from the root type. We refer to
an instance of a type as a node. Types contain attributes; their members. Attributes have a
unique id and a built-in attribute type. ALANLIGHT supports five different attribute types:
text, integer, natural, collection, and state group. Figure 3.2 shows the use of these attribute
types for the electronics manufacturer.

Text, integer, and natural are primitive attribute types. Text attributes hold an unbounded
string value. Integers attributes hold an integer value, and natural attributes hold an integer
value greater than zero. Primitive attribute types in ALANLIGHT use the following notation:

last_name : text
price : integer /* Alan: eurocent */
release_date : natural /* Alan: date-time */

13
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manufacturer

customer product purchase_order sales_order

productsimple assembled

inventory sales_order

targetlast_name

price part

purchased_product customerrelease-date

Alternative

Mandatory

Zero or more

Figure 3.1: Feature model of an electronics manufacturers’ data.

root {
customers: collection {

last_name: text
}
products: collection {

release_date: natural
product_type: stategroup (

simple {
price: integer

}
assembled {

parts: collection {
part_price: integer // derived from part key

}
}

)
}
purchase_orders: collection {

purchased_product: text
target: stategroup ( // purchase for inventory or sales order fulfillment?

inventory { }
sales_order {

sales_order: text
}

)
}
sales_orders: collection {

customer: text
products: collection { }
order_price: integer // derived from products

}
}

Figure 3.2: ALANLIGHT representation of an electronics manufacturers’ data. The model
corresponds to the feature model from Figure 3.1. The feature model omits attributes hold-
ing derived values.
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3.2. Derived values

For ensuring that number values have an explicit predefined accuracy, ALANLIGHT does not
support number values with a fractional component. The super-language ALAN expresses
the accuracy with unit type annotations, such as date-time or eurocent.

A collection attribute holds a map of key-value pairs. Keys are string values that have
to be unique such that we can reference them unambiguously. Keys are implicitly defined
for collection attributes; values are nodes of an inline defined type:

customers: collection { ... /* attributes */ ... }

A state group attribute holds a value indicating a state. States are alternatives to a property
that a state group attribute indicates. For example, red, orange, or green for a ‘color’ at-
tribute of a traffic-light. The type of the attribute value corresponds to one out of multiple
predefined state types, such as simple or assembled:

product_type: stategroup (
simple { ... /* attributes of this type */ ... }
assembled { ... /* attributes of this type */ ... }

)

Languages such as ML[42] and HASKELL[68] refer to state group attributes as tagged
unions (also: variant records or sum types). State group attributes enable modeling types
with similar traits as a single type, whilst still being able to express their differences. With-
out a state group attribute such as product_type, we would need two different collections
to distinguish between simple and assembled products. Because the types of the products
from these collections would differ, we cannot treat them equally in (type safe) query ex-
pressions.

3.2 Derived values

Some attributes in ALANLIGHT models derive their values from elementary values or from
other derived values. We refer to these attributes as derived value attributes (derived at-
tributes or derivations in short). All attribute types that ALANLIGHT supports, have a set
of operations for deriving values of their respective types. This means that ALANLIGHT

supports deriving primitive values as well as complex relations and nodes.
The manufacturer from our running example needs derived values for gaining insight

into his data. For example, he needs the discounted_price of his sales orders for gaining
insight into their net sales value:

discounted_price: integer = switch (this.discount) as dc (
| coupon = this.order_price - dc.coupon_value
| none = this.order_price )

The notation for derived value attributes in ALANLIGHT is mostly similar to the nota-
tion for elementary value attributes. The difference is an additional =-sign and expression
for calculating the attribute value.
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The previous example derives a primitive value: an integer. Suppose now that the man-
ufacturer wants an overview of all his simple products. For this purpose, ALANLIGHT

supports deriving a collection with a complex type as follows:

simple_products: collection = this.products as p
where(p.product_type|simple) = smpl

{
price: integer = smpl.price

}

The navigation expression this.products selects a collection of nodes to serve as keys of
items in the derived collection. The type of simple_products has derived value attributes.
For deriving the values of these attributes, they use separate expressions determining their
own values.

The keywords this, parent, and key are reserved words with a special meaning. The
keyword this references the node that an expression is part of. The keyword parent ref-
erences the parent node. Contrary to other programming languages, parent navigation in
ALANLIGHT is explicit because we have a nested hierarchy of types. Furthermore, it is
important to the ALANLIGHT runtime, which we further explain in subsequent chapters.
The keyword key references the key of a collection entry. The key value is a string for basic
elementary data, and a node if a collection is derived.

Figure 3.3 presents several other types of operations for deriving values of derived value
attributes. This includes the sum aggregate operation and operators * and - for deriving
integer values, and empty for deriving a state of a state group attribute.

3.3 Data flow representation in hierarchies

An ALANLIGHT data model represents the flow of data, top-down in a textual format (left-
to-right in Figure 3.1). Organizing types and their attributes in a top-down fashion (fol-
lowing the flow of data) is not a prerequisite. However, navigation expressions only use
attributes and types that are fully defined before them:

net_sales_fw: integer = sum(this
:
.
:::::::::::
sales_orders.discounted_price)

// Error: sales_orders references later defined derived attribute
sales_orders: collection {

discounted_price: integer = ...
}
net_sales_bw: integer = sum(this.sales_orders.discounted_price) // OK

Similar behaviour is found in languages such as C that require declaration (of e.g. functions
or structs) before use.

Because navigation expressions require definition before use, it is important that types
and attributes are organized in the way we need them for derivations. This leads to the
three different layers of data that Figure 3.4 presents. The first layer, imported data, does
not concern derivations. We combine the second layer, application data, with imported
data to construct useful derivations for application users. From a mix of imported data and
application data, we derive the third layer: views for external systems.
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3.3. Data flow representation in hierarchies

root {
...
products: collection {

description: text
product_type: stategroup (

simple { price: integer }
assembled {

parts: collection {
amount: natural
part_price: integer // derived from part (a product)
price: integer = this.part_price * this.amount

}
}

)
has_parts: stategroup = empty(this.parts) as nonemptyparts

| true = no
| false = yes (nonemptyparts)

(
yes (nonemptyparts) {

max_part_price: integer = max(nonemptyparts.price)
}
no { }

)
product_price: integer = switch (this.product_type) as pt (

| simple = pt.price
| assembled = sum(pt.parts.price) )

}

incorrectly_configured_products: collection = this.products as p
where(p.product_type|assembled)
where(p.has_parts|no)

{
description: integer = this>key.description

}

simple_products: collection = this.products as p
where(p.product_type|simple) = smpl

{
price: integer = smpl.price

}
...
sales_orders: collection {

products: collection {
product_price: integer // derived from product

}
order_price: integer = sum(this.products.product_price)

discount: stategroup (
coupon { coupon_value: integer }
none { }

)
discounted_price: integer = switch (this.discount) as dc (

| coupon = this.order_price - dc.coupon_value
| none = this.order_price )

}
net_sales: integer = sum(this.sales_orders.discounted_price)

}

Figure 3.3: ALANLIGHT model of the electronics manufacturer extended with expressions
for deriving attribute values.
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Imported data

Application data

Exported data

backward 
references

forward 
references

self references

Figure 3.4: Data flow representation in ALANLIGHT models, and navigation directions for
navigation expressions that follow this data flow. Backward reference expressions are the
default, and follow the flow of data that a model expresses. We extend these with forward
and self reference expressions to increase expressiveness.

3.4 Reference constraints

Sometimes, derived value calculations require following a reference. For example, an or-
der price calculation requires following a reference from a purchase_orders item to the
purchased_product that has a price attribute. For enabling such calculations, ALAN-
LIGHT supports reference constraints. ALANLIGHT models specify reference constraints
as follows:

products: collection { ...
product_price: integer ...

}
purchase_orders: collection {

// we need the purchased product reference...
purchased_product: ∼ ref(this.parent.products)
amount: integer
// for calculating this:
total_price: integer = this>purchased_product.product_price * this.amount

}

The purchased_product attribute is a special attribute holding values which reference
products. The keyword ∼ indicates a constraint or fact about data. The keyword ref
means reference constraint, and the navigation path defines the reference: a reference to a
product from a specific products collection. Finding the correct products collection at
runtime, requires evaluating the navigation path. The reference constraint ensures that the
total_price calculation does not yield undefined behaviour.

Keys of collection items can also reference items in another collection:
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purchased_products: collection ∼ ref(this.parent.products) { ... }

For such collections, the navigation step key is for navigating to the referenced node. When
following a reference, attribute values of the referenced node are available for use in con-
straints and calculations. ALANLIGHT precludes navigating to parent nodes after following
a reference. This prevents verbose alternatives to certain navigation expressions:

my_product : ∼ ref(/*this: */ this.products)
other_product: ∼ ref(/* equals: */ this>my_product

:
.
::::::
parent.products)

Bidirectional references. By default, references in ALANLIGHT are unidirectional.
Sometimes we need bidirectional references for deriving values such as a reference count.
To this end, ALANLIGHT supports storing inverse references on referenced nodes:

products: collection {
orders: root.purchase_orders = inv-refs(>purchased_product)

}
purchase_orders ...

An inv-refs expression specifies the references for which an inverse reference attribute
holds the inverse: orders holds the inverse of purchased_product references.

Forward references. The expressions above use attributes that are undefined at the ex-
pression. ALANLIGHT supports this for elementary bidirectional references as well as for
elementary unidirectional references. This enables expressing calculations for nodes that
require values from equally typed sibling nodes:

base_currency: ∼ ref(this.currencies) // forward reference
currencies: collection {

exchange_rate_pound: integer
exchange_rate_base: integer =

this.exchange_rate_pound / this.parent.base_currency.exchange_rate_pound
}

Every currency has an exchange rate in pounds. For calculating exchange rates in terms of a
configurable base_currency, exchange_rate_base calculations use the base_currency
reference for retrieving its exchange rate in pounds.

Because derivation expressions only use earlier defined attributes, the base_currency
is defined before currencies. We refer to references pointing to nodes of later defined
types as forward references. In contrast, backward references point to nodes of earlier
defined types. Equivalent to backward references, forward references can use earlier defined
forward and backward references:
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fwref1 : ∼ ref(this.col1)
fwref2 : ∼ ref(this>fwref1.col2)
fwref3 : ∼ ref(this>fwref1

:
>
::::
ref1

:
.col3)

// Error: cannot use later defined reference
col1 : collection {

col2 : collection {
col3 : collection { ... }

}
ref1 : ∼ ref(this.parent.col2)

}
bwref3 : ∼ ref(this>fwref1>ref1.col3)

// OK: same expression as fwref3 , but fine here

Derived value calculations use forward references for deriving attribute values. After fol-
lowing a forward reference, calculations can use elementary values of the referenced node.
They can also use derived values of the referenced node; that is, if the type of the referenced
node is defined before the derived value attribute expressing the calculation.

Sometimes, calculations also require values of derived value attributes defined after
the expression. For example, take the following per-product revenue calculation for the
manufacturer from our running example:

products: collection {
product_price: integer ...
orders : root.purchase_orders = inv-refs(>purchased_product)
orders_count : integer = count(this<orders)
revenue : integer = sum(this<orders

:
.
:::::::::::
total_price)

// Error: cannot use derived attribute of later defined orders
}
purchase_orders: collection {

purchased_product: ∼ ref(this.parent.products)
total_price: integer = .../*some expression for deriving the value*/...

}

The revenue calculation requires a later defined derived total_price value. In ALAN-
LIGHT, we typically solve this by placing the calculation (for total_price) on the refer-
encing node:

products: collection {
product_price: integer ...
orders : root.purchase_orders = inv-refs(>purchased_product)
orders_count : integer = count(this<orders)
revenue : integer = this.orders_count * this.product_price

}

Sometimes, a calculation cannot be moved to the referencing node. For this reason, ALAN

also supports using later defined derived values after a following a reference. But, we
omit this for ALANLIGHT, as it does not contribute to demonstrating ALANLIGHT’s core
concepts (while it significantly increases the complexity of the language’s semantics). Note
that this does not mean that ALANLIGHT cannot solve problems requiring later defined
derived values. Instead of using the values directly, calculations for these problems require
introducing an additional derived collection:
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products: collection {
orders: root.purchase_orders = inv-refs(>purchased_product)

}
purchase_orders: collection {

total_price: integer = ...
purchased_product: ∼ ref(this.parent.products)

}
per_product_revenue: collection = this.products {

revenue: integer = sum(this>key<orders.total_price)
}

As the per_product_revenue collection is defined after the purchase_orders collection,
revenue calculations can use total_price values of purchase_orders.

3.5 Graph constraints

Section 3.1 presented a model for an electronics manufacturer (Figure 3.2). The manufac-
turer has two different kinds of products: simple products and assembled products. Assem-
bled products consist of parts that are either simple or assembled products themselves.
Keys of parts point to items in a context (ancestor) collection; they are neither backward
nor forward references. For expressing this, ALANLIGHT supports self references (Fig-
ure 3.4). Self references point to items in context (ancestor) collections:

products: collection {
parts: collection ∼ ref(this.parent.products) { ... } // self reference

}

Self reference constraints ensure referential integrity for parts, but introduce a new prob-
lem for derived value calculations: circular references. A product can reference itself via
parts, either directly or indirectly. If it does, calculating the functionally correct price
yields an infinite loop.

For preventing circular references, – thus to ensure that calculations finite and their
results are unique, functionally correct, and of a predefined indivisible type, – we express a
graph constraint on a collection’s keys:

products: collection
∼ parts_graph = acyclic-graph // graph constraint

{
parts: collection
∼ ref(this.parent.products[parts_graph]) // graph participation

{
amount: natural
price: integer = switch (this>key.product_type) as refpt (

| simple = refpt.price * this.amount
| assembled = sum(refpt.parts.price) * this.amount

)
}

}

Graph constraints ensure that entities (collection items) form a uniquely identified acyclic
graph, such as a parts_graph. A graph consists of nodes, connected via edges. Entities are
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the nodes of a graph. References determine the edges of the graph, but graph constraint ex-
pressions do not specify which references. Instead, reference constraint expressions define
to which graphs references belong.

For deriving values, calculations use earlier defined self references. As we discussed
before, this also applies to backward references and forward references. After following
a self reference, earlier defined attribute values (with respect to the target attribute) are
available for use:

products: collection ∼ version_graph = acyclic-graph {
description: text // Earlier defined attribute w.r.t. price
has_new_version: stategroup (

no { }
yes {

successor : ∼ ref(this.parent.parent.products[version_graph])
description: text = this>successor.description // OK
price : integer = this>successor.

:::::::::::::
product_price

// Error: undefined attribute product_price
}

)
product_price: integer = // Later defined derived attribute w.r.t. price

}

Recursive calculations. For recursively calculating values, expressions use themselves
after a step for following a self reference:

products: collection ...
latest_version: root.products = switch (this.has_new_version) as v (

| no = this
| yes = v>successor>latest_version ) // uses the expression itself

The navigation step >successor follows a self reference to another product. After that step,
the expression for calculating the latest_version points to itself.

Enabling expressions to use themselves after self reference steps, yields potentially un-
bounded calculations. For example, consider the UpgradeKit products from Figure 3.6.
UpgradeKits circularly depend on each other. UpgradeKit V1 implicitly references V3 as
a successor, and V3 includes V1 as a part (extending V1 with a GPU). Without additional
constraints on navigation, the following code compiles:

// Last known product price over all last known prices of parts:
last_known_product_price: integer = switch (this.has_new_version) as v (

| yes = v>version.last_known_product_price
| no = switch (this.product_type) as pt (

| simple = pt.price
| assembled = sum(pt.parts>key.last_known_product_price)

)
)

For UpgradeKit V1, the last_known_product_price (lnpp) calculation yields infinite re-
cursion. UpgradeKit V1 requires calculating the lnpp for V2; V2 depends on the lnpp from
V3. But, the calculation for V3 requires the original lnpp from V1. Guaranteeing bounded
lnpp calculations requires an additional constraint: a constraint ensuring that parts key
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root {
customers: collection { last_name: text }
products: collection
∼ parts_graph = acyclic-graph
∼ version_graph = acyclic-graph
{

product_type: stategroup (
simple { price: integer }
assembled {

parts: collection ∼ ref(this.parent.parent.products[parts_graph]) {
amount: natural
price: integer = switch (this>key.product_type) as refpt (

| simple = refpt.price * this.amount
| assembled = sum(refpt.parts.price) * this.amount

)
}

}
)
has_new_version: stategroup (

no { } //this is the latest version of the product
yes { successor: ∼ ref(this.parent.parent.products[version_graph]) }

)
latest_version: root.products = switch (this.has_new_version) as v (

| no = this
| yes = v>successor>latest_version

)

// price of a product based on prices of its parts
product_price: integer = switch (this.product_type) as pt (

| simple = pt.price
| assembled = sum(pt.parts.price)

)

// maximum price of the product , starting at this version
max_product_price: integer = switch (this.has_new_version) as v (

| no = this.product_price
| yes = max(v>successor.max_product_price , this.product_price)

)
}

sales_orders: collection ∼ order_sequence = acyclic-graph {
has_preceding_order: stategroup (

yes { order: ∼ ref(this.parent.parent.sales_orders[order_sequence]) }
no { }

)
products: collection ∼ ref(this.parent.products) { }
order_price: integer = sum(this.products>key.price)

}
has_sales_orders: stategroup = empty(this.sales_orders) as nonemptyorders

| true = no
| false = yes (nonemptyorders)

(
no { }
yes (orders) { // non-empty orders collection for this state type

max_price: integer = max(orders)
}

)
}

Figure 3.5: ALANLIGHT model for the electronics manufacturer expressing graph con-
straints, self reference constraints, and recursive calculations.
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Figure 3.6: Products with version and part relations, and derived values that use these rela-
tions for calculating their values. The bold edges together form a cyclic graph. Figure 3.5
presents the expressions for calculating the product_price and the max_product_price.

references and successor references together form an acyclic graph. This prevents the
circular dependency among the UpgradeKits from Figure 3.6, ensuring bounded lnpp cal-
culations. The next paragraph discusses this in more detail.

Conditions for recursion. ALANLIGHT implements two conditions for ensuring that
models contain all required constraints for polynomially bounded recursive calculations,
and functionally correct calculation results of a predefined indivisible type. The key idea is
that for each recursive calculation, at least one acyclic graph bounds the recursion.

The first condition is: ‘subsequently followed self references that precede a recursive
navigation step, partake in at least one identical graph’. To explain this condition, consider
the following price calculation for parts of products:

parts: collection ∼ ref(this.parent.parent. products[ parts_graph ]) {
price: integer = switch (this>key. product_type) as refpt (

| simple = refpt. price
| assembled = sum(refpt. parts. price)

)
}

Retrieving price values from parts, requires following parts key references to products.
The parts_graph constraint ensures that parts do not reference themselves. Thus, price
calculations are bounded; the parts_graph bounds the recursion. After following a parts
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key reference to a product, calculations can follow that products’ parts key references. In
fact, calculations can follow any self reference, as long as it partakes in the parts_graph:

part1: ∼ ref(this.parent.parent. products[ parts_graph , version_graph ])
part2: ∼ ref(this.parent.parent. products[ parts_graph , fun_graph])
part3: ∼ ref(this.parent.parent. products[ parts_graph , great_graph ])
sub_sub_part_price: integer = switch (this>part1. product_type) as refpt1 (

| simple = refpt1. price
| assembled = switch (refpt1>part2. product_type) as refpt2 (

| simple = refpt2. price
| assembled = switch (refpt2>part3. product_type) as refpt3 (

| simple = refpt3. price
| assembled = refpt3. sub_sub_part_price

)
)

)

Again, the parts_graph bounds the recursion. It is essential that all followed self refer-
ences partake in one identical graph; the parts_graph. This is because combinations of
graphs can contain cycles; see also Figure 3.6.

Sometimes, expressions consist of multiple independent subexpressions; different pos-
sible branches in a calculation. To achieve ALANLIGHT’s guarantees, the language im-
plements a second condition for such expressions: ‘all first followed self references that
precede a recursive navigation step, partake in at least one identical graph’. The ‘first fol-
lowed self reference’ of a navigation path, is the first self reference step after a this step
(for navigating to a context node). For explaining the second condition, consider the fol-
lowing example where two subexpressions for calculating a preferred_product use the
attribute itself:

products: collection
∼ g_versions = acyclic-graph
∼ g_alts = acyclic-graph

{
has_new_version: stategroup (

no { } // latest version of the product
yes { successor: ∼ ref(this.parent.parent. products[g_versions]) } )

has_alternative: stategroup (
no { } // no alternative to this product
yes { alternative: ∼ ref(this.parent.parent. products[g_alts]) } )

preferred_product: root. products = switch (this. has_new_version) as v (
| no = switch (this. has_alternative) as a (

| no = this
| yes = a> alternative> preferred_product ) // alternative product S1

| yes = v> successor> preferred_product ) // latest version S2
}

The navigation paths of subexpressions S1 and S2 are different. Subexpression S1 uses
the self reference successor, whereas S2 uses the self reference alternative. As the
self references do not partake in least one identical graph, preferred_product calcula-
tions may run infinitely. For example, if an UpgradeKit V1 points to V3 as its successor
and V3 points to V1 as its alternative (Figure 3.6), preferred_product calculations
will unboundedly traverse the cyclic references among UpgradeKits. For precluding this,
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ALANLIGHT requires that either successor references partake in the g_alts graph, or
alternative references partake in the g_versions graph.

Note that the two conditions for recursion do not require using equivalent graphs. Dif-
ferent subexpressions may traverse different graphs and contain recursion. For instance,
suppose that for a cost price analysis, the manufacturer requires the absolute minimum cost
of the parts of his assembled products. The absolute minimum cost is the minimum cost
over all versions and alternatives of a product:

products: collection
∼ g_parts = acyclic-graph
∼ g_versions = acyclic-graph
∼ g_alts = acyclic-graph

{
has_new_version: stategroup (

no {}
yes { successor: ∼ ref(this.parent.parent. products[ g_versions]) } )

has_alternative: stategroup (
no {}
yes { alternative: ∼ ref(this.parent.parent. products[ g_alts]) } )

product_type: stategroup (
simple { cost: integer }
assembled {

parts: collection
∼ ref(this.parent.parent. products[ g_parts , g_versions , g_alts])

{
amount: integer
abs_min_cost: integer = min(

switch (this>key. has_new_version) as nv (
| yes = switch (nv> successor. product_type) as nvass (

| simple = nvass. cost
| assembled = sum(nvass. parts as p mapto(p. amount * p. abs_min_cost)))

| no = switch (this>key. product_type) as ass (
| simple = ass. cost
| assembled = sum(ass. parts as p mapto(p. amount * p. abs_min_cost))))

,switch (this>key. has_alternative) as alt (
| yes = switch (alt> alternative. product_type) as altass (

| simple = altass. cost
| assembled = sum(altass. parts as p mapto(p. amount * p. abs_min_cost)))

| no = switch (this>key. product_type) as ass (
| simple = ass. cost
| assembled = sum(ass. parts as p mapto(p. amount * p. abs_min_cost)))))

}
}

)
}

Expanding the variables from the navigation expressions gives three unique expressions:

this>key[g_parts ,g_versions ,g_alts]
.has_new_version|yes>successor[g_versions]
.product_type|assembled.parts.abs_min_cost

this>key[g_parts ,g_versions ,g_alts]
.product_type|assembled.parts.abs_min_cost

this>key[g_parts ,g_versions ,g_alts]
.has_alternative|yes>alternative[g_alts]
.product_type|assembled.parts.abs_min_cost
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The graph-sets between brackets hold graphs that immediately preceding references are
part of. The first expression contains recursion on the product versions graph g_versions,
while the third expression contains recursion on the alternatives graph g_alts. This is valid
ALANLIGHT code, as it meets both conditions for recursion. Every subsequently (second)
followed self reference partakes in an identical graph; and, the first followed self references
partake in an identical graph.

Implicit graph participation: references. Sometimes, recursive calculations require
following derived self references. For example, suppose that the manufacturer sometimes
upgrades product parts to their latest versions. Determining if these upgrades are cost-
effective requires calculating the cost price reduction:

products: collection
∼ g_versions = acyclic-graph
∼ g_parts = acyclic-graph

{
has_new_version: stategroup (

no { }
yes {

successor: ∼ ref(this.parent.parent.products[g_versions])
latest: root.products

= switch (this>successor.has_new_version) // successor[g_versions]
as nv (
| no = this>successor // successor[g_versions]
| yes = nv>latest ) // nv[g_versions]

}
)
product_type: stategroup (

simple { cost: integer }
assembled {

parts: collection
∼ ref(this.parent.parent.products[g_parts ,g_versions])

{
latest_version: root.products

= switch (this>key.has_new_version) as pnv (
| no = this>key // [g_parts ,g_versions]
| yes = pnv>latest ) // [g_versions]

latest_version_cost: integer
= switch (this>latest_version.product_type) as pt (
| simple = pt.cost
| assembled = sum(pt.parts>key.latest_version_cost) )

current_cost: integer
= switch (this>key.product_type) as pt (
| simple = pt.cost
| assembled = sum(pt.parts>key.current_cost) )

total_cost_reduction: integer
= this.current_cost - this.latest_version_cost

}
}

)
}

The attribute total_cost_reduction uses the latest_version_cost. This is where it
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gets interesting: latest_version_cost calculations are recursive; they follow derived
latest_version references before recursing. That is, even though latest_version ref-
erences do not explicitly partake in a graph. In addition, latest_version references use
recursively calculated latest references themselves, which point to the latest version of a
product.

For supporting latest_version_cost calculations while ensuring boundedness, the
language determines the (implicitly defined) sets of graphs that reference attributes partake
in. This set is the intersection of the graph-sets at the end of subexpressions. For the
latest_version attribute, this is the set containing only g_versions. We call this set the
follow-set of the latest_version attribute.

For explaining how ALANLIGHT determines a follow-set, consider the expression for
calculating the latest product version. Expanding the variable nv gives the following set
of subexpressions determining latest reference values (annotated with graphs):

this> successor[ g_versions]
this> successor[ g_versions]. has_new_version| yes> latest

Both subexpressions implicitly define traversal of a g_versions graph. Therefore, a latest
reference is an edge in the transitive closure of g_versions. That is, the latest reference
is also (implicitly) part of the graph.

A latest_version reference uses a latest reference and parts key reference for
deriving its value. Expanding the variable pnv gives the following set of subexpressions
determining the result of the expression:

this>key[ g_parts , g_versions]
this>key[ g_parts , g_versions]. has_new_version| yes> latest[ g_versions]

The key references partake in both the g_parts graph as well as the g_versions graph.
But, latest references only (implicitly) partake in the g_versions graph. Therefore, it
is only guaranteed that the latest_version reference partakes in the g_versions graph.
This means that the follow-set of the latest_version attribute is the set containing only
g_versions. Chapter 4 gives a formal description of follow-set (δ) calculations.

Implicit graph participation: parameters. Above, we discussed follow-sets for derived
references. These hold graphs that derived references are implicitly part of. State types
optionally have parameters; we also need to calculate follow-sets for these parameters. For
instance, suppose that the electronics manufacturer requires insight into the availability of
a replacement for each of his products. Furthermore, suppose that he wants to know the
minimum replacement cost, given that a replacement is available.
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The minimum replacement cost is the minimum cost over a replacement and replacements
of the replacement itself:

products: collection
∼ g_versions = acyclic-graph
∼ g_alts = acyclic-graph

{
cost: integer
has_new_version: stategroup (

no { }
yes {

successor: ∼ ref(this.parent.parent. products[ g_versions])
}

)
has_alternative: stategroup (

no { }
yes {

alternative: ∼ ref(this.parent.parent. products[ g_alts, g_versions])
}

)
replacement_available: stategroup

= switch (this. has_new_version) as nv (
| no = switch (this. has_alternative) as alt (

| no = no
| yes = yes ( replacement = alt> alternative) )

| yes = yes( replacement = nv> successor)
) (

yes ( replacement /*: root.products */) {
min_replacement_cost: integer

= switch ( replacement. replacement_available) as rra (
| yes = min( replacement. cost, rra. min_replacement_cost)
| no = replacement. cost )

}
no { }

)
}

The state type yes is a parametrized state type with one parameter: the replacement. The
possible values for replacement follow from the expression for calculating if a replacement
is available. A replacement is either a newer version of a product or an alternative to a
product.

A min_replacement_cost calculation requires following a replacement parameter
value, and recursively using its min_replacement_cost value. To ensure correct output,
and efficient on-demand calculation, ALANLIGHT requires that following the replacement
parameter involves acyclic graph traversal. We ensure this in the same way as for references:
we calculate a follow-set for the replacement parameter. For calculating the follow-set,
ALANLIGHT essentially expands the expressions that determine the possible values for the
parameter replacement:

this.has_new_version|yes>successor[g_versions]
this.has_alternative|yes>alternative[g_parts ,g_versions]

The follow-set of the replacement parameter is the set containing (only) g_versions.
Thus, the graph g_versions bounds recursive min_replacement_cost calculations.
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Expression significance. Some recursive calculations require ignoring specific subex-
pressions when calculating follow-sets. Above, our follow-set calculation strategy already
hinted towards this. In follow-set calculations, we only use subexpressions that yield the
actual values of derived references (including referencing parameters).

For showing that ignoring specific subexpressions is useful, suppose that the manufac-
turer requires an overview of all parts per product and the total_cost per part:

products: collection ∼ g_parts = acyclic-graph {
product_type: stategroup (

simple { cost: integer }
assembled {

parts: collection ∼ ref(this.parent.parent. products[ g_parts]) {
amount: integer

}
all_parts: collection

= this.parent.parent. products
in(this. parts>key) = direct
in(this. parts>key. product_type| assembled. all_parts>key) = indirect

{
total_amount: integer = sum( direct. amount) + sum( indirect. amount)
total_cost: integer = this. total_amount *

switch (this>key. product_type) as pt (
| simple = pt. cost
| assembled = sum(pt. all_parts. total_cost)

)
}

}
)

}

The in clauses in the figure aggregate references to products. For each unique referenced
node, the derived collection all_parts holds an item. At runtime, ALANLIGHT groups
referencing nodes by corresponding referenced nodes, and passes corresponding groups of
referencing nodes as variable values to the derived collection items.

The expression for the all_parts collection selects all parts and subparts of a product,
recursively. Thus, the all_parts collection of a product is the transitive closure of a rooted
subgraph of g_parts; the product itself being the root of the subgraph. Because of this
property, calculations using key references of all_parts items, never arrive back at the
product they start at. This ensures boundedness for total_cost calculations.

For enabling such calculations, ALANLIGHT selectively ignores subexpressions when
calculating follow-sets. For example, when collection key expressions contain in clauses,
ALANLIGHT ignores the navigation expression selecting the source collection (after the
=-sign). Furthermore, ALANLIGHT ignores the part between braces for switch (...)
expressions, as it does not yield the actual value of an attribute.

Context navigation. Sometimes, a navigation path containing a single this step – op-
tionally succeeded by parent steps – determines the value of a derived reference. Note
that we cannot follow such references and immediately proceed with a recursive navigation
step. Doing so can yield an infinite loop. But, suppose that the manufacturer requires an
overview of all latest alternatives to the latest versions of his products:
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products: collection ∼ g_alts = acyclic-graph {
latest_version: root.products = switch (...) as v (

| no = this // a "this" step can determine the latest_version
| yes = ... )

has_alternative: stategroup (
no { }
yes {

alternative: ∼ ref(this.parent.parent. products[ g_alts])
latest_alternatives: collection = this.parent.parent. products

in(this.parent> latest_version. has_alternative| yes> alternative)
in(this.parent> latest_version. has_alternative| yes> alternative

. has_alternative|yes. latest_alternatives>key) // recursion
{ ... }

}
)

}

The second in clause expresses recursion after a step for following the latest_version
reference. This is safe because the navigation expression also contains a step for following
an alternative reference, before the recursive step. The alternative reference partakes
in the g_alts graph; we traverse this graph when executing the expression.

For supporting this while guaranteeing bounded calculations, follow-sets store addi-
tional information. Follow-sets for references pointing to this or a parent node store the
fact that the expression does not traverse a graph. Follow-sets containing such facts require
following an additional reference (partaking in a graph) before a recursive step. In the above
example, the alternative reference fulfills this requirement.

Nested graphs. So far, we have presented different forms of recursion over a single
collection with a single set of graphs. But, because of the hierarchical nature of ALAN-
LIGHT models, graphs can also be nested. Sometimes, calculations require traversing
graphs on different hierarchical levels.

To illustrate this, suppose that the manufacturer is expanding his business. As Figure 3.7
expresses, the manufacturer now has multiple semi-independent manufacturing sites. Each
of these sites produces specific (parts of) products. For instance, one site produces cooling
fans, whereas an other site produces graphics cards. The sites depend on each other: the site
that produces graphics cards needs cooling fans for these cards. Because of this, calculating
values such as the cost of an assembled product requires following references to products
from other manufacturing sites.

All extprod references implicitly partake in the g_ext_parts graph; the expression
for extprod uses the reference attribute site. Figure 3.8 presents an instance of the model,
showing relations among products, parts, and sites. Calculating the total_cost for the
product Desktop requires following the references to the GraphicsCard and CPUFan. Both
references partake in the g_ext_parts graph. This prevents circular dependencies among
products of different manufacturing sites. After following a reference to another site, there
is no need for restricting recursion on products of this site. We can first calculate all
total_cost values for the Cooling site, then for the Graphics site, and finally for the
Computers site. In general, after following a reference in an ancestor graph to an ancestor
node, calculations use its child nodes without restriction.
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sites: collection ∼ g_ext_parts = acyclic-graph {
products: collection ∼ g_parts = acyclic-graph {

product_type: stategroup (
simple { cost: integer }
assembled {

parts: collection {
amount: integer
supplier: stategroup (
self { prod: ∼ ref(this.parent.parent.parent.parent. products[ g_parts]) }
other_site {

site: ∼ ref(this.parent.parent.parent.parent.parent. sites[ g_ext_parts ])
extprod: ∼ ref(this> site. products)
transport_cost: integer

}
)
total_cost: integer = this. amount * switch (this. supplier) as s (
| self = switch (s> prod. product_type) as pt (

| simple = pt. cost
| assembled = sum(pt. parts. total_cost) )

| other_site = s. transport_cost + switch(s> extprod. product_type) as pt(
| simple = pt. cost
| assembled = sum(pt. parts. total_cost)))

}
}

)
}

}

Figure 3.7: ALANLIGHT model for the electronics manufacturer, expressing multiple semi-
independent manufacturing sites depending on each others parts.

Figure 3.8: An instance of the model from Figure 3.7, showing multiple manufacturing
sites with their own collections of products and relations among the products. Solid lines
represent product-part relations. Blue dotted lines represent the transitive relations among
sites, which follow from product-part relations.
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Supporting recursion on hierarchically organized graphs in a single expression requires
extending the presented conditions for recursive calculations. Namely, expanding the recur-
sive subexpressions for calculating the total_cost, we get:

this.supplier|self>prod[g_parts]
.product_type|assembled.bill_of_materials.total_cost

this.supplier|other_site>prod[g_ext_parts]
.product_type|assembled.bill_of_materials.total_cost

The graph-sets for the subexpressions are different; the expression does not meet the second
condition. In the first subexpression, the g_parts graph bounds recursion; in the second
subexpression, the external parts graph g_ext_parts bounds recursion. ALANLIGHT sup-
ports this, while guaranteeing type soundness, functional correctness, and boundedness.

To achieve this, ALANLIGHT applies the second condition to all first followed self ref-
erences per level in the hierarchy instead. For the prod reference from an other_site, the
collection of sites determines its level in the hierarchy. This is its most significant (highest
up) dependency in the model hierarchy. We reformulate the second condition as follows:
‘all first followed self references, per level in the hierarchy, that precede a recursive navi-
gation step, partake in at least one identical graph’. That is, while ignoring less significant
self references after following more significant ones.

Other calculations on hierarchically organized graphs require extending the first con-
dition for recursive calculations as well. For instance, suppose that the manufacturer uses
different sites for manufacturing different versions of a product. For each product he wants
to see the latest version; Figure 3.9 expresses the calculation. The sites have their own
self-manufactured latest version of a product. The latest version of a product is usually the
self-manufactured latest version: own_latest. But, if another site manufactures a newer
version of a sites’ own_latest version, then the latest version of the other sites’ product is
the actual latest version of the product.
The two recursive subexpressions for calculating the latest_version expand to:

this.other_site_has_new_version|yes>successor[g_ext_versions]
>latest_version /* L1 */

this.has_new_version|yes>latest[g_versions]
.other_site_has_new_version|yes>successor[g_ext_versions]
>latest_version /* L2 */

The first condition requires that the subsequently followed self references partake in the
same graph. This is not the case for subexpression L2. However, ALANLIGHT supports
this when self references traverse graphs on different hierarchical levels. We reformulate
the first condition, as follows: ‘subsequently followed self references from the same hierar-
chical level that precede a recursive navigation step, partake in at least one identical graph’.
That is, with the additional property that we ignore less significant self references after fol-
lowing more significant ones. Thus, after following a self reference in an ancestor graph,
calculations can freely use any self reference to a child node. We deduced the validity of
this property when discussing Figure 3.8.

From the examples and extensions to the two conditions for recursive calculations fol-
lows that ALANLIGHT supports different kinds of recursion on hierarchies of graphs. These
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sites: collection ∼ g_ext_versions = acyclic-graph {
products: collection ∼ g_versions = acyclic-graph {

has_new_version: stategroup (
no {}
yes {

successor: ∼ ref(this.parent.parent. products[ g_versions])
own_latest: = switch (this> successor. has_new_version) as nv (

| no = this>successor
| yes = nv> own_latest )

} )
other_site_has_new_version: stategroup (

no {}
yes {

site: ∼ ref(this.parent.parent.parent. sites[ g_ext_versions ])
successor: ∼ ref(this> site. products)

} )
latest_version: root.sites.products = switch (this. has_new_version) as nv (

| no = switch (this. other_site_has_new_version) as osnv (
| no = this
| yes = osnv> successor> latest_version ) /* L1 */

| yes = switch (nv> own_latest. other_site_has_new_version) as osnv (
| no = nv> own_latest
| yes = osnv> successor> latest_version )) /* L2 */

}
}

Figure 3.9: ALANLIGHT model for the electronics manufacturer, expressing a
latest_version calculation for a product. The latest version of a product for a man-
ufacturing site is either the self-manufactured own_latest version of a product, or the
latest_version from another site.

put different requirements on the sets of graphs for self references. The following recursion
patterns summarize ALANLIGHT’s support for recursion on hierarchies:

/* following multiple references succeeded by recursion */
best_product : root.sites.products =

/* P1: more significant reference succeeded by less significant reference: */
..>site(sites[g_sites])>prod(products [])>best_product..
/* P2: less significant reference succeeded by more significant reference: */
..>prod(products [])>site(sites[sites_g])>best_product..

/* multiple recursive navigation steps */
/* P3: recursion after more significant reference

succeeded by recursion after less significant reference: */
..>site(sites[g_sites])>best_product>prod(products [])>best_product..

/* P4: recursion after less significant reference ,
succeeded by recursion after more significant reference: */

..>prod(products[g_parts])>best_product>site(sites[g_sites])>best_product..

The patterns show expanded versions of expressions that ALANLIGHT supports. The ex-
pressions derive best_product references. The sea-green annotation includes the collec-
tion attribute name together with the graphs of the references.

Above, we presented two expanded subexpressions for deriving latest_version ref-
erences. Subexpression L2 matches pattern P2. L2 defines following two self references
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on different hierarchical levels: latest and successor. Before recursion, the subexpres-
sion defines following the – less significant – latest reference, succeeded by the – more
significant – successor reference.

Patterns P1 and P2 express that the most significant self references preceding a recursive
step, require graph participation. For less significant self references (prod), ALANLIGHT

does not require graph participation. This summarizes the additional property for the ex-
tended first condition.

Patterns P3 and P4 demonstrate support for successive recursive steps in a navigation
expression. P3 expresses calculating the best_product by first following a self reference
to another site. For example, a site that produces a newer product version. Subsequently,
the calculation uses the best_product according to that site, and follows its reference to
another product prod. For example, a product alternative. From this product, it selects the
best_product.

P4 follows the prod reference first, before the site reference. P4 expresses recursion
on a prod reference, followed by recursion on a more significant site reference. In P4,
both the most significant site reference as well as the less significant prod reference re-
quire graph participation. This requirement ensures a bounded computation; without the
requirement, the first recursive step may run infinitely.

Supporting recursion on hierarchies of graphs affects follow-set calculations. The pre-
vious paragraph discussed these follow-sets: sets of graphs that self references partake in,
implicitly. The previous paragraph considered graphs on a single hierarchical level; from
one specific collection. Therefore, follow-sets only included graphs from one collection.

For self references that traverse graphs on multiple hierarchical levels, follow-sets hold
zero or more graph-sets. Each graph-set in a follow-set corresponds to a different hierarchi-
cal level. Below we explain how ALANLIGHT calculates the follow-sets. We distinguish
two cases: separate expressions (consisting of a single navigation path) and composite ex-
pressions (consisting of multiple subexpressions).

The follow-set for separate expressions contains the most significant traversed graphs
(from the most significant followed self references). For example, for the expression

this.has_new_version|yes>latest[g_versions]
.other_site_has_new_version|yes>successor[g_ext_versions]
>latest_version /* L2 */

the follow-set contains only the graph g_ext_versions. If a follow-set contains less
significant graphs, we ignore these when following references traversing more significant
graphs. For instance, if expressions start with pattern P1 or P2 from the example above, we
ignore the set of graphs from the products collection. We can ignore this graph-set because
the expression traverses a more significant graph, from the sites collection.
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For composite expressions, we combine the follow-sets from their subexpressions. For
example, for two subexpressions

this>product_ref(products[parts_graph])
this>external_product_ref(sites[external_parts_graph])

the follow-set contains both sets of graphs:

{ products: [parts_graph], sites: [external_parts_graph] }

Generalizing conditions for recursion. Sometimes, calculations require following back-
ward references and forward references before recursive steps. For supporting this, ALAN-
LIGHT stores follow-sets for these references as well. This is necessary for ensuring ter-
mination, as the references may (implicitly) traverse ancestor graphs that are also ancestor
graphs with respect to the recursive expression.

Thus, the two conditions for recursion apply to references in general, rather then being
specific to self references. The final two conditions for recursive calculations are:

1. Subsequently followed references, from the same hierarchical level, that precede a
recursive navigation step, partake in at least one identical graph.

2. All first followed references of subexpressions, per level in the hierarchy, that precede
a recursive navigation step, partake in at least one identical graph.

With the following property applying to both conditions: when following references
that (implicitly) navigate via ancestor collections, we ignore less significant collections and
their graphs. This means that we ignore follow-set elements (graph-sets) for less significant
collections, instead of ignoring less significant references themselves.

Follow-sets form the basis for ALANLIGHT’s static semantics (Chapter 4). ALAN-
LIGHT’s static semantics uses follow-sets for determining both implicit graph participation
of derived references, as well as for checking recursive navigation steps.

3.6 Syntax

ALANLIGHT’s grammar follows directly from the concepts and examples we discussed in
this chapter. Figure 3.10 presents the grammar in EBNF notation, using a style that borrows
from regular expression syntax.

The names a, s, v, and g are attribute, state type, expression result, and graph names,
respectively. For NavMem steps, a is either a text, integer, natural, stategroup, or
collection attribute. For NavRe f steps, a is a reference attribute, and for NavInvRe f it is
an inverse reference attribute.

Variable assignment with IntlVarAss is optional. But, before checking the static se-
mantics of an ALANLIGHT program, we inject a fresh name when variable assignment is
omitted. For AST nodes ExtlVarAss we do this as well. The next chapter presents ALAN-
LIGHT’s static semantics.
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Root ::= root Type
Type ::= { (a : Attr)∗ }

Attr ::= text (= TextExp)?
| integer (= NumExp)?
| natural (= NumExp)?
| collection Key? GraphConstr ∗ Type
| stategroup (= SgExp)? State+
| TypePath? (Re fConstr | Re f Exp)
| TypePath * = inv-refs ( NavRe f )

State ::= s (( v (, v)∗ ))? Type
Key ::= Re fConstr |ColExp

Re fConstr ::= ~ ref ( NavT his NavMem [ g (, g)∗ ] )

| ~ ref ( NavExp )

GraphConstr ::= ~ g = acyclic-graph

TextExp ::= NavExp
| switch ( NavExp ) ( IntlVarAss ( (| s = TextExp)∗ )

NumExp ::= NavExp
| ( NumExp )

| NumExp NumBinOp NumExp
| NumBinFn ( NumExp , NumExp )

| NumAggFn ( NavExp (IntlVarAss mapto ( NumExp ))? )

| switch ( NavExp ) IntlVarAss ( (| s = NumExp)∗ )

NumBinOp ::= - | + | / | * | %

NumBinFn ::= min | max | diff
NumAggFn ::= sum | count | min | max | avg
ColExp ::= = NavExp IntlVarAss

((where ( NavExp ) ExtlVarAss)∗
| (in ( NavExp (NavRe f | NavInvRe f ) ) ExtlVarAss)∗)

SgExp ::= s (( NavExp (, NavExp)∗ ))?
| empty ( NavExp ) IntlVarAss | true = SgExp | false = SgExp
| switch ( NavExp ) IntlVarAss ( (| s = SgExp)∗ )

Re f Exp ::= NavExp
| switch ( NavExp ) IntlVarAss ( (| s = Re f Exp)∗ )

IntlVarAss ::= (as v)?
ExtlVarAss ::= (= v)?

TypePath ::= root | TypePath NavMem | TypePath NavState
NavExp ::= NavStart | NavExp (NavMem | NavRe f | NavInvRe f | NavState)
NavStart ::= NavT his | NavVar
NavT his ::= this | NavT his . parent

NavVar ::= v
NavState ::= | s
NavMem ::= . a
NavRe f ::= > (key | a)
NavInvRe f ::= < a

Figure 3.10: EBNF grammar for ALANLIGHT.
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Chapter 4

Static semantics

This chapter presents ALANLIGHT’s static semantics. We mainly focus on rules for achiev-
ing ALANLIGHT’s boundedness properties. The static semantics also includes non-trivial
name binding rules and some type checking rules, but we generally assume that name bind-
ing and type checking is done before running our checker.

Framework. The inference rules defining ALANLIGHT’s static semantics have the fol-
lowing signature (in sequent notation):

τΩ ` expression @ 〈α,γ 〉Ψδ

Variables before the turnstile are environments. Variables after the @-sign are results.
The expression is either a small piece of code or constructor found in the grammar. Rules
omit environments or results when they do not apply.

Figure 4.1 presents the types of the environments and the results. τ is the current po-
sition of the semantics checker when traversing an abstract syntax tree (AST). The current
position is either an attribute or a key. The checker uses τ for recursion detection and defini-
tion before use checking. Ω is a list of ancestor attributes (collections and state groups) and
their corresponding Type AST nodes, with respect to τ. Ω includes the Root and its Type
AST node as well. 〈α,γ 〉 is a tuple of attributes, keys, or the root with corresponding Type
AST nodes. The tuple captures the attribute and type that a navigation expression yields.
Similar to τ, we use the tuple for recursion detection and definition before use checking.
In addition, we use it for checking type equivalence for subexpressions. For expressions
yielding an irrelevant attribute or type, we sometimes use None as value for α and γ instead.

G is a set of graphs which is used in follow-sets and first-sets. δ is the follow-set that
we discussed in Section 3.5. It is a set of mappings from collection attributes to subsets

τ : Attr | Key

Ω : List 〈α,γ 〉
〈α,γ 〉 : 〈Root | Attr | Key | None, Type | None〉

G : Set {GraphId}
δ : Set {CollectionAttr 7→ G | None}

Ψ : Map {CollectionAttr 7→ G}

Figure 4.1: Environment and return type definitions for all rules.
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Ω ` a : e @ X

Ω ` a : text @ X
[Text1]

Ω ` a : integer @ X
[Integer1]

∀State(s, /0, t) ∈ S
Ω∪{〈a, t 〉} ` t @ X

Ω ` a : stategroup S @ X
[StateGroup1]

Ω ` a : natural @ X
[Natural1]

Ω∪{〈a, t 〉} ` t @ X

Ω ` a : collection g∗ t @ X
[Collection1]

` e @ X

{〈Root, t 〉} ` t @ X

` Root(t) @ X
[Root]

Ω ` e @ X

∀a ∈ a∗ Ω ` a @ X

Ω ` Type(a∗) @ X
[Type]

Figure 4.2: Rules for checking a model hierarchy, applying to Root, Type, and Attribute
AST nodes without derivation or reference expressions, as presented in Section 3.1.

of their graphs and sometimes also to None. We use the follow-set for calculating the sets
of graphs that references partake in. Furthermore, we use the follow-set for checking the
first condition from Section 3.5: at every recursive step we check that every item from
δ maps to a non-empty set of graphs. δ contains mappings from collection attributes to
None for expressions ending in this or parent navigation steps. Ψ is the first-set for
checking the second condition that we presented in the previous chapter. Namely, that
references preceding a recursive navigation step partake in an identical graph. Ψ maps
unique collection attributes to subsets of their graphs.

Root, Type, and Attribute rules. Figure 4.2 presents the rules for the root, types, and at-
tributes holding elementary values; introduced in Section 3.1. The labels of the rules follow
constructor names and rule alternatives, typically found on separate lines in the grammar.
The bottom left side of the figure shows the root rule, applying to the root and its Type.
For checking the Type of the root, the [Root] rule emplaces the Root and its Type AST
node in the environment Ω. The rule [Type] checks the attributes of a Type AST node. We
assume that the checker evaluates attributes in the order in which they occur in an ALAN-
LIGHT model. The remaining rules match attributes that hold elementary values. The rules
[StateGroup1] and [Collection1] call the [Type] rule for checking the attributes of their Type
nodes, recursively.

In Section 3.2 and 3.4 we introduced attributes with expressions for deriving and con-
straining values. Figure 4.3 presents rules for checking these attributes. In addition to
checking Type nodes, the rules check expressions for deriving and constraining values. For
the rules [Text2], [Integer2], and [Natural2], the rules for the expressions e do all required
checking. Figure 4.4 presents the rules for these expressions.

For collection attributes with an expression for deriving or constraining keys, [Collection2]

40



Ω ` a : e @ X

aΩ ` e @ _ _ _

Ω ` a : text e @ X
[Text2]

aΩ ` e @ _ _ _

Ω ` a : integer e @ X
[Integer2]

kΩ ` k @ 〈α,γ 〉Ψδ

α≺ a∨α� a
Ω∪{〈a, t 〉} ` t @ X

Ω ` a : collection k g∗ t @ X
[Collection2]

aΩ ` e @ _ _ _
∀State(s,V, t) ∈ S
aΩ ` e # Z Z(s)⊆ Γs

Ω∪{〈a, t 〉} ` t @ X

Ω ` a : stategroup e S @ X
[StateGroup2]

aΩ ` e @ _ _ _

Ω ` a : natural e @ X
[Natural2]

aΩ ` p @ 〈α,γ 〉 _ _
aΩ ` e @ 〈α,γ 〉Ψδ

e ∈ {Re fConstr,Re f Exp}

Ω ` a : p e @ X
[Ref]

aΩ ` p @ 〈α1,γ1 〉Ψδ γ1 = Type(A)
type-o f (r) = Ω.last()
r = key∨ r ∈ A

Ω ` a : p * = inv-refs( > r ) @ X
[InvRefs]

Figure 4.3: Rules for checking attributes with constraint or derivation expressions, as pre-
sented in Section 3.2 and Section 3.4.

calls a rule yielding a collection attribute α and a Type AST node γ. The rule also yields a
first-set Ψ and a follow-set δ. The second premise of the rule ensures that keys of collection
items do not reference other instances of themselves. It also ensures that children of an
entity (collection item) do not define its identity; its key. The precedence operator≺ checks
if the left-hand attribute precedes the right-hand attribute; ancestor attributes precede (and
do not succeed) child attributes. Thus, in the rule the operator checks if α is defined before
a. The operator � checks if α is fully defined after (succeeds) attribute a. Note that the
operators are not each others inverse; child attributes do not succeed ancestor attributes.

We assume that after executing the rule for the Key k, we can always retrieve its result
with the function de f , followed by an @ sign: de f (k) @ 〈α,γ 〉Ψδ. This also applies to
(inverse) reference attributes and reference variables (pointing to Type AST nodes). For
example, de f (a) @ 〈α,γ 〉Ψδ retrieves results for reference attributes a.

The rule [Ref] checks references with constraint expressions, as well as references with
an expression for deriving their value. The path p indicates the attribute and type that a
reference attribute points to; that is, a tuple 〈α,γ 〉. Notice that in the grammar, the TypePath
p is optional for reference attributes. We assume that before running our checker, the tuple
is calculated for p from the expression e when p is omitted. This means that recursive
expressions have at least one branch that determines the result type. Furthermore, it means
that non-recursive branches yield equivalent attributes and types. This also holds for the
Key AST nodes of collection attributes.

[InvRef] uses the referenced attribute and type tuple of a reference for ensuring that it
points to the context attribute and type of the attribute a. For retrieving the tuple, it uses the
function type-o f . For retrieving the context type, it uses the function last() on the list of
ancestors of attribute a. Both function calls should always yield an equivalent result. The
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τΩ ` e @ 〈α,γ 〉Ψδ

τΩ ` e @ 〈α,γ 〉Ψδ

Exp ∈ {TextExp,NumExp}

τΩ ` Exp(e) @ _ Ψδ

[TextExp1,NumExp1,2]

τΩ ` e1 @ 〈α1,γ1 〉Ψ1δ1

τΩ ` e2 @ 〈α2,γ2 〉Ψ2δ2

Ψ3δ3 = cac-Ψδ({Ψ1,Ψ2},{δ1,δ2})

τΩ ` e1 NumBinOp e2 @ _ Ψ3δ3

τΩ ` NumBinFn e1 e2 @ _ Ψ3δ3

[NumExp3,4]

τΩ ` e @ 〈α,γ 〉Ψδ

τΩ ` NumAggFn e @ _ Ψδ

[NumExp5.1]

τΩ ` e1 @ 〈α1,γ1 〉Ψ1δ1

τΩ ` e2 @ 〈α2,γ2 〉Ψ2δ2

Ψ3δ3 = cac-Ψδ({Ψ1,Ψ2},{δ1,δ2})

τΩ ` NumAggFn e1 v e2 @ _ Ψ3δ3

[NumExp5.2]

∀w ∈W τΩ ` w @ 〈αw,γw 〉Ψwδw

de f (s) = State(s,V,_)
Ψrδr = cac-Ψδ(

⋃
w∈W {Ψw},

⋃
w∈W {δw})

τΩ ` SgExp(s,W ) @ _ Ψrδr

[SgExp1]

τΩ ` e @ 〈αe,γe 〉Ψeδe

τΩ ` st @ 〈αt ,γt 〉Ψt δt

τΩ ` s f @ 〈α f ,γ f 〉Ψ f δ f

Ψ3δ3 = cac-Ψδ({Ψe,Ψt ,Ψ f },{δt ,δ f })

τΩ ` empty e v st s f @ _ Ψ3δ3

[SgExp2]

τΩ ` e @ 〈αe,None〉Ψeδe

τΩ ` s @ 〈αs,γs 〉Ψsδs ∀s ∈ S
Ψ3δ3 = cac-Ψδ(

⋃
s∈S{Ψs}∪{Ψe},

⋃
s∈S{δs})

de f (αe) = αe : stategroup _∗ X ∀s ∈ S(∃!x ∈ X)

τΩ ` switch (e) v S @ 〈αs,γs 〉Ψ3δ3

[TextExp2,NumExp6,SgExp3,RefExp2]

Figure 4.4: Rules for derivation expressions producing values.

last premise of the rule [InvRef] checks if r is actually a member of the type that p points
to. Inverse reference attributes in ALANLIGHT hold the inverse of elementary references.

For state group attributes with an expression e for deriving their value, we apply two
rules to the expression. The topmost premise of rule [StateGroup2] checks the expression,
ignoring its result. The third premise is a rule call for retrieving results for the parameters
v of the possible states. We use the results when checking state types t. Figure 3.3 presents
an example of a parameter: the orders parameter, with nonemptyorders as its value.

The result from executing the third premise of [StateGroup2] is Z. Z captures parameter-
specific result sets (〈α,γ 〉Ψδ), for all parameters of all possible states. Figure 4.6 defines
the signature of the rule. Z(s) is the result set for all parameters of a state s. This set is a
subset of the – further omitted – default environment Γ for the Type AST node t of a state.

Expression rules. Figure 4.4 presents rules for derivation expressions that produce val-
ues (in contrast to references which produce nodes). The first rule applies to TextExp and
NumExp AST nodes having a single NavExp AST node. By convention, result types are
checked before executing the rules. Therefore, we omit type checking the resulting attribute
and corresponding type, 〈α,γ 〉. Because further checking 〈α,γ 〉 is not required, the rule
ignores the result tuple (as the _ indicates). The same holds for other rules ignoring the
result tuple. Expression e in rule [TextExp1] has a multiplicity bound of [1,1]. That is,
when evaluated at runtime, the expression yields exactly one value. The same holds for
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combine-δ(B : {δ}) = {c 7→ ∩G∈{Gb |c7→Gb∈b∈B}G | c 7→ Gc ∈ b ∈ B}∪{c 7→ None ∈ b ∈ B} [combine-δ]

combine-Ψ(B : {Ψ}) = {c 7→ ∩G∈{Gb |c7→Gb∈b∈B}G | c 7→ _ ∈ b ∈ B} [combine-Ψ]

cac-Ψ(B : {Ψ}) = D = combine-Ψ(B) ∀c 7→ G ∈ D G 6= /0 [cac-Ψ]

cac-Ψδ(A : {Ψ},B : {δ}) = cac-Ψ(A) combine-δ(B) [cac-Ψδ]

Figure 4.5: Key functions for recursion checking, part one. The functions combine first-sets
and follow-sets from different subexpressions.The third function checks for non-empty sets
of graphs; the second condition from Section 3.5.

expressions e1 and e2 in rule [NumExp3,4], e2 in rule [NumExp5.2], and e in the rule for
switch statements.

Rule [NumExp3,4] has premises for checking two subexpressions e1 and e2. The parts
price attribute from Figure 3.3 depicts such an expression. For calculating the new first-
set and follow-set from the sets of the two subexpressions, we combine their results with
the function cac-Ψδ (combine-and-check). Figure 4.5 defines this function. The function
combines multiple first-sets and follow-sets, and checks the new combined first-set. First
we discuss combining and checking first-sets, and then we discuss combining follow-sets.

Checking the new combined first-set means checking the second condition for recursive
calculations from Section 3.5 (last paragraph). The condition is: all first followed refer-
ences of subexpressions, per level in the hierarchy, that precede a recursive navigation step,
partake in at least one identical graph. First-sets of subexpressions contain the graph-sets
of first followed references preceding a recursive step, per hierarchical level. Therefore, for
checking the second condition we intersects the first-sets of subexpressions, and check that
all sets of graphs from the combined first-set are not empty. If the sets of graphs are not
empty, identical graphs exist; as per the requirement of the second condition.

For combining follow-sets, we also intersect the sets of graphs from the same hierarchi-
cal levels. Follow-sets also contain mappings from collections to None. We add the unique
occurrences from the follow-sets of subexpressions to the combined follow-set. We need
these mappings for subexpressions consisting of a single this step (page 30). In our other
rules, these mappings ensure that valid expressions always define graph traversal before
recursion; see also the first condition.

The remaining rules from Figure 4.4 are similar to rule [NumExp3,4]. All four rules
combine first-sets and follow-sets, and check newly constructed first-sets. But, there are
three important details to consider.

First, the conclusions for rule [NumExp5.2] and the last three rules, include a variable
assignment v; an AST node IntlVarAss. The default environment for e2 in [NumExp5.2]
(after the keyword mapsto) captures v (and only v, to simplify time complexity bounds); the
value of v is the result from checking e1. For the rule SgExp2, only the default environment
for s f contains v. This is because at runtime, the result of the expression e is an empty set
for st ; the state when empty matches true. For the rule matching switch statements, the
default environments for rule calls checking the states s, include v. The value of v is the
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τΩ ` e # {s 7→ {v 7→ 〈α,γ 〉Ψδ}}

∀w ∈W τΩ ` w @ 〈αw,γw 〉Ψwδw

|W |= |V | de f (s) = State(s,V,_)
z = {V (i) 7→ 〈αW (i),γW (i) 〉 ΨW (i)δW (i) | 1≤ i≤ |W |}

τΩ ` SgExp(s,W ) # {s 7→ z}
[SgExp1b]

∀o ∈ O τΩ ` o # Zo Q =
⋃

o∈O{Zo}
S = {s | s 7→ _ ∈ Z ∈ Q} de f (s) = State(s,V,_)}
C(s,v) =

⋃
{s7→V}∈Z∈Q{〈αi,γi 〉 |V (v) 7→ 〈αi,γi 〉 _ _} =〈αC ,γC 〉∈C(s,v) γC

Ψ(s,v) = combine-Ψ(
⋃
{s7→V}∈Z∈Q{Ψv |V (v) 7→ _ Ψv _})

δ(s,v) = combine-δ(
⋃
{s7→V}∈Z∈Q{δv |V (v) 7→ _ _ δv})

ZS = {s ∈ S 7→ {v ∈V 7→ 〈α,γ 〉 ∈C(s,v) Ψ(s,v) δ(s,v)}

τΩ ` empty _ _ O # ZS τΩ ` switch _ _ O # ZS

[SgExp2b,SgExp3b]

Figure 4.6: Additional navigation rules for parametrized state types.

result from evaluating e. But, for each state s ∈ S, None is replaced with its corresponding
state type.

Second, the last two rules ignore follow-set δe when combining follow-sets. In Sec-
tion 3.5 (page 30) we demonstrated that some recursive calculations require this. We can
safely ignore follow-sets from subexpressions that do not produce the final result of a calcu-
lation. For example, suppose that an expression uses a reference matching rule [RefExp2].
Then, subexpressions for the states S determine the referenced node. When following the
reference, we navigate to the referenced node. Therefore, we traverse graphs that the subex-
pressions for the states S traverse. We do not traverse graphs that the expression e from rule
[RefExp2] traverses. Because the follow-set for a reference determines the graphs we tra-
verse when following it, we can ignore graphs from the follow-set for e. Therefore, the
rule ignores the follow-set δe when constructing the resulting follow-set for the switch
statement.

Third, the last line of the rule for switch statements has two premises that are specifi-
cally tailored to switch statements. The first one uses the function de f (α) followed by an
=-sign for retrieving the definition of an attribute. We also use this for retrieving definitions
from names of states and attribute labels. The second one ensures that switch-statements
handle every state of a state group; it prevents undefined and nondeterministic behaviour.

Figure 4.6 presents the rules for calculating the first-sets and follow-sets of state type
parameters. We discussed these in the previous paragraph. The signature of the rules differs
from the signature of the other rules constituting our static semantics. Instead of producing
a single result set 〈α,γ 〉Ψδ, the rules produce a result set per parameter, per state type.
[SgExp1b] matches the end of state group expressions, where we choose a state. There, we
also define the arguments W to the parameters of the state. The first premise calculates the
result sets for the arguments. Subsequently, the second premise checks if every parameter
of the state has a corresponding argument. Finally, the premise on the third line constructs z:
a mapping for all parameters to their specific result sets. The result of the rule is a mapping
from the state to z.
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τΩ ` e @ 〈α,γ 〉Ψδ

τΩ ` e @ 〈αe,γe 〉Ψeδe

τΩ ` w @ 〈αw,γw 〉Ψwδw ∀w ∈ w∗

Ψc = {Ψe}∪
⋃

w∈w∗{Ψw}
Ψ3 = cac-Ψ(Ψc)

τΩ ` = e v w∗ @ 〈αe,γe〉Ψ3δe

[ColExp1.1a]

τΩ ` e @ 〈αe,γe 〉Ψeδe

τΩ ` i @ 〈αe,γe 〉Ψiδi ∀i ∈ i∗ 6= /0

Ψc = {Ψe}∪
⋃

i∈i∗{Ψi}
Ψ3 = cac-Ψ(Ψc)

δ4 = combine-δ(
⋃

i∈i∗{δi})

τΩ ` = e v i∗ @ 〈αe,γe〉Ψ3δ4

[ColExp1.1b]

τΩ ` e @ 〈α,γ 〉Ψδ

τΩ ` where( e ) v @ 〈α,γ 〉Ψδ

[ColExp1.2]

τΩ ` e1 @ 〈α1,γ1 〉Ψ1δ1

τΩ ` e1 r @ 〈α2,γ2 〉Ψ2δ2

τΩ ` in( e1 r ) v @ 〈α2,γ2 〉Ψ2δ2

[ColExp1.3]

τΩ ` e1 e2 @ 〈α,γ 〉Ψδ1

〈α,γ 〉 ∈Ω δ2 = {α 7→ G}

τΩ ` ~ ref(e1 e2 [ G ]) @ 〈α,γ 〉Ψδ2

[RefConstr1]

τΩ ` e @ 〈α,γ 〉Ψδ

τΩ ` Re f Exp(e) @ 〈α,γ 〉Ψδ

[RefExp1]

τΩ ` e @ 〈α,γ 〉Ψδ

τΩ ` ~ ref( e ) @ 〈α,γ 〉Ψδ

[RefConstr2]

Figure 4.7: Rules for reference constraint expressions and derivation expressions producing
references.

Sometimes, different subexpressions of an SgExp expression map to the same state.
Result sets for equivalent parameters may vary. Therefore, the rule with labels [SgExp2b]
and [SgExp3b] combines result sets, per parameter. The first premise evaluates the subex-
pressions. Q captures all result sets for further processing. S is the set of unique states
that occur Q. The three immediately following function premises together construct the
combined result set for a parameter v of a state s. The first function C(s,v) determines the
parameter specific result tuple 〈α,γ 〉. For type safety concerns, ALANLIGHT requires type
equivalence for different arguments matching the same parameter v. The equivalence check
after the function ensures this. The second function Ψ(s,v) calculates the combined first-
set. We purposely omit checking the combined first-set, as the rules [SgExp1], [SgExp2],
and [SgExp3] already do that. The third function δ(s,v) calculates the combined follow-set.
Z4 uses the functions for calculating the result of the inference rule. It maps all states in S
to corresponding parameter mappings, and maps each parameter to its specific result set.

Reference rules. The previous paragraph introduced one rule that applies to references
as well as expressions producing values: Re f Exp2. In addition the paragraph introduced
rules applying to variables, which behave similarly to references. Figure 4.7 presents all
other rules for expressions yielding references.

The rule [ColExp1.1a] applies to expressions for deriving collections using (optional)
filters. The first premise checks the expression e for selecting a unique collection of nodes.
The expression requires exactly one collection navigation step at the end of the expression
in order to guarantee unique keys (unique string key values). The second premise calls a rule
for checking the where clauses w∗ that serve as filters. The default environment for where
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clauses includes the variable v; the result from e. Similar to expressions from the previous
paragraph, the rule combines results from all subexpressions. But, it uses the function
cac-Ψ from Figure 4.5 directly, instead of cac-Ψδ. δe already determines the combined
follow-set; that is, the follow-set for the navigation step >key. Every where clauses has a
separate result set 〈αw,γw 〉Ψwδw. We use these for checking expressions with a NavVar
step referencing the name v of the where clause. Figure 3.3 shows such a step with an
expression for retrieving the price of simple_products.

Section 3.5 (page 30) presented in clauses for deriving collections by aggregating ref-
erences. The rule labeled [ColExp1.1b] applies to expressions with such clauses. The rule
constructs a follow-set for the key using the results from in clause checking. We explained
this in the previous paragraph, when discussing the last rule from Figure 4.4. Notice that
the rule requires equivalent result tuples 〈αe,γe 〉 for e and all in clauses.

[ColExp1.2] presents the rule for where clauses. It has a single premise for checking
the navigation expression e. The variable v stores the result from the expression. The rule
[ColExp1.3] has two premises for checking in clauses. The variable v stores the result set
of the first premise. The second premise determines the actual result set from the in clause.
Child attributes of the collection attributes’ Type can use the variable results from in clauses.
The figure from page 30 demonstrates this.

Rule [RefExp1] from Figure 4.7 checks expressions for deriving references. In Sec-
tion 3.5 we gave several examples of such expressions. Examples included expressions for
calculating preferred_product references and latest product version references. For
checking the expressions we use a single premise that evaluates the NavExp AST node e.

The rules [RefConstr1] and [RefConstr2] check reference constraint expressions. Ref-
erence constraint expressions require a single collection navigation step at the end of the
expression. The rule [RefConstr1] matches explicit self references that define graph partic-
ipation. We first discussed these references in Section 3.5 when introducing graphs. The
follow-sets of such references contain one element: a mapping from the collection attribute
– referenced at the end of the expression e – to the predefined set of respected graphs G.
[RefConstr2] applies to all other reference constraint expressions, not partaking in graphs.
In the next paragraph we discuss the rules for navigation expressions.

Navigation rules. Figures 4.8, 4.10, and 4.11 present the rules for navigation expres-
sions; the bottom section of the grammar: NavExp, TypePath, and their parts. The four
rules from Figure 4.8 check the heads of navigation expressions: the AST node NavStart.
At the start of a navigation expression, we construct the initial attribute-type tuple and the
initial first-set and follow-set.

The ancestor list Ω stores the ancestors of the current position τ. Rule [TypePath1] uses
the function f irst for retrieving the first item from this list: the root and its Type AST node.
Expressions starting at the root may not be recursive; the root has no ancestor graphs to
traverse. For guaranteeing boundedness, the follow-set resulting from a root step stores a
mapping from the root to None. If a follow-set contains None, recursion is not allowed.
Sometimes we ignore less significant items from follow-sets. But, the root is by definition
the most significant item in any follow-set, ensuring no recursion after a root step. The rule
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τΩ ` e @ 〈α,γ 〉Ψδ

〈α1,γ1 〉= Ω.last()
〈α2,γ2 〉= Ω.entity-o f (α1)

δ = {α2 7→ None} Ψ = /0

τΩ ` this @ 〈α1,γ1 〉Ψδ

[NavThis1.1]

τΩ ` e @ 〈α1,γ1 〉Ψδ1

〈α2,γ2 〉= Ω.parent-o f (α1)

〈α3,γ3 〉= Ω.entity-o f (α2)

δ2 = next-δ(δ1,{α3 7→ None})

τΩ ` e.parent @ 〈α2,γ2 〉Ψδ

[NavThis1.2]

de f (v) @ 〈α,γ 〉Ψδ

τΩ ` v @ 〈α,γ 〉Ψδ

[NavVar]

〈α,γ 〉= Ω. f irst()
δ = {α 7→ None} Ψ = /0

τΩ ` root @ 〈α,γ 〉Ψδ

[TypePath1]

Figure 4.8: Rules for NavStart AST nodes and their children (bottom section of grammar),
and the root step in a TypePath.

[NavVar] retrieves the result set for a variable v from the default environment. A variable v
is a variable that an AST node IntlVarAss or ExtlVarAss defines, or a State parameter.

The rule [NavThis1.1] checks a this step. For a this step, the rule retrieves the last
tuple from the list of ancestors. This tuple contains the immediate parent attribute and type
of the current position τ in the AST; this is the result tuple of the this step. The initial
first-set is an empty set, as a navigation expression consisting of only a this step does not
contain recursion. The third premise constructs the initial follow-set. The initial follow-set
maps a single collection attribute to None. We shortly discussed the need for None in the
paragraph on expression rules, and also in Section 3.5 (page 30). We use None for ensuring
that an expression defines graph traversal before a recursive step. For constructing the
follow-set, the second premise retrieves the context collection with the function entity-o f .
If α1 is a collection attribute, the entity-o f α1 is α1 itself.

Rule [NavThis1.2] checks the second alternative to NavT his AST nodes: parent steps.
The first premise calls a rule for evaluating the expression e. For retrieving the parent
attribute and type of the result from e, we use the function parent-o f . For constructing the
follow-set of the navigation step we retrieve the context collection attribute as well. For
constructing the follow-set of the navigation expression e together with the parent step, we
use the function next-δ. This function generalizes follow-set calculation for all navigation
steps requiring it. Figure 4.9 defines next-δ. It calculates a new follow-set from two follow-
sets; δ1 and α3 7→ None in the rule [NavThis1.2]. For the parent navigation step, the follow-
set resulting from executing next-δ equals the follow-set of the step: α3 7→ None. This is
because the grammar ensures that e only contains this steps and additional parent steps.
Below we explain the function in more detail.

In Section 3.5 we extensively discussed follow-set construction. We can ignore less
significant collections when (implicitly) navigating to more significant ones. To this end, the
function next-δ calls the function remove-LSC. remove-LSC filters a follow-set on mappings
for collections that are at least as significant as a collection cLSC. It uses the earlier defined
operator ≺ for checking if a collection is an ancestor of cLSC. The cLSC for follow-sets δ1
and δ2 are the least significant (last) ones from δ2 and δ1, respectively.

Sometimes, follow-sets contain None. In such cases, recursive steps in calculations
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remove-LSC(δ,cLSC : CollectionAttr) = {ci 7→ _ ∈ δ | ci ≺ cLSC ∨ ci ≡ cLSC} [remove-LSC]

next-δ(δ1,δ2) = combine-δ({δ5,δ6}) where
c1 = δ1.collections().last()
c2 = δ2.collections().last()
δ3 = remove-LSC(δ1,c2)

δ4 = remove-LSC(δ2,c1)

δ5 = δ3 \{c2 7→ None | c2 7→ None /∈ δ4 ∧ c2 7→ G ∈ δ4}
δ6 = δ4 \{c1 7→ None | c1 7→ None /∈ δ3 ∧ c1 7→ G ∈ δ3} [next-δ]

next-Ψ(Ψ,δ) = Ψ∪{c ∈ δ | c /∈Ψ} ∀c 7→ P ∈ δ P 6= None∧P 6= /0 [next-Ψ]

Figure 4.9: Key functions for recursion checking, part two. The first function constructs a
new follow-set, dropping collections that are less significant than collection cLSC. The sec-
ond function calculates a new follow-set from two follow-sets; typically a current/context
follow-set, and the follow-set of a navigation step.

require a leading navigation step following a reference in an acyclic graph. Enabling re-
cursion after the reference navigation step, requires modifying the follow-set. Namely,
recursive steps require that all items in a follow-set map to a non-empty set of graphs; they
may not map to None. To this end, the function next-δ calculates δ5 and δ6. We subtract the
None case for the least significant collection c2 from δ3. That is, if and only if δ4 only maps
c2 to a set of graphs, and not to None. For calculating δ6 we repeat the same process, but
for δ4. We subtract {c1 7→ None} from δ4, while checking mappings from δ3. After con-
structing δ5 and δ6, we combine them with the function combine-δ from Figure 4.5. This
yields the follow-set that next-δ returns. Notice that the follow-set {α3 7→ None} for rule
[NavThis1.2] equals the result from calling the function.

Figures 4.10 and 4.11 define the rules for tails of navigation expressions. As they are
always preceded by the head of a navigation expression, their first premise calls a rule for
checking this head e. The rule [NavState] requires that e yields a tuple of a state group
attribute and None. None, because a state step determines the type γ of the tuple; a state
group has no default state type. All other remaining rules also call a rule for evaluating
preceding navigation steps e. By convention, the resulting type γ1 of the rule call is always
a Type AST node. We also assume that every navigation step to an attribute or key is correct.
That is, an attribute reference in a navigation step binds to an attribute of γ1. Furthermore,
a key step binds to the AST node Key of a collection attribute with type γ1.

The rules [NavMem1.1] and [NavMem1.2] match navigation steps attributes a holding
values. The rule [NavMem1.1] checks non-recursive steps, as the second line of the rule
expresses. These are steps where τ is neither the attribute αm nor the Key of collection
attribute αm. [NavMem1.2] checks recursive steps, where the opposite is true.

The third line of [NavMem1.1] ensures that αm either precedes τ, or holds elementary
values. We discussed this requirement in Section 3.4. Expressions use earlier defined
derived value attributes or elementary value attributes. The premise on the fourth line
ensures that reference constraints only depend on elementary values: either the referenced
attribute αm holds elementary values or the target τ holds derived values. The last premise
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τΩ ` e @ 〈α,γ 〉Ψδ

τΩ ` e @ 〈α,None〉Ψδ

de f (α) = α : stategroup _ S
s ∈ S de f (s) = State(s,_, t)

τΩ ` e|s @ 〈α, t 〉Ψδ

[NavState]

τΩ ` e @ 〈α1,γ1 〉Ψ1δ1 αm = de f (a)
αm 6= τ αm 6= a : collection τ _ _
αm ≺ τ∨ elementary(αm)

elementary(αm)∨derived(τ)

γ2 =

{
t if αm = a : collection _∗ t
None otherwise

τΩ ` e . a @ 〈αm,γ2 〉Ψ1δ1

[NavMem1.1]

τΩ ` e @ 〈α1,γ1 〉Ψ1δ1 αm = de f (a)
αm = τ∨αm = a : collection τ _ _

γ2 =

{
t if αm = a : collection _∗ t
None otherwise

Ψ2 = next-Ψ(Ψ1,δ1)

τΩ ` e . a @ 〈αm,γ2 〉Ψ2δ1

[recursion |NavMem1.2]

Figure 4.10: Rules for NavExp and TypePath AST nodes and their children for member
access, after NavStart (bottom section of grammar).

τΩ ` e @ 〈α,γ 〉Ψδ

τΩ ` e @ 〈α1,γ1 〉Ψ1δ1 αm = de f (x)
αm 6= τ αm ≺ τ elementary(am)∨derived(τ)
de f (x) @ 〈α2,γ2 〉Ψ2δ2

δ> = {c 7→ _ ∈ δ2 | 〈c,_〉 ∈Ω}
δ3 = next-δ(δ1,δ>)

τΩ ` e > x @ 〈α2,γ2 〉Ψ1δ3

[NavRef1.1]

xΩ ` e @ 〈α1,γ1 〉Ψ1δ

type-o f (x) = 〈α2,γ2 〉
Ψ2 = next-Ψ(Ψ1,δ)

xΩ ` e > x @ 〈α2,γ2 〉Ψ2δ

[recursion |NavRef1.2]

τΩ ` e @ 〈α1,γ1 〉Ψ1δ1 αm = de f (a)
αm ≺ τ αm = a : p = inv-refs( > x )

de f (p) @ 〈α2,γ2 〉Ψ2δ2

δ< = {c 7→ _ ∈ δ2 | 〈c,_〉 ∈Ω}
δ3 = next-δ(δ1,δ<)

τΩ ` e < a @ 〈α2,γ2 〉Ψ1δ3

[NavInvRef]

Figure 4.11: Rules for NavExp AST nodes and their children for following references
(bottom section of grammar).
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determines the result type γ2 of the rule. For collection attributes, γ2 is the Type t of the col-
lection; for other attributes, it is None. Notice that [NavMem1.1] does not modify first-sets
and follow-sets, as it evaluates navigation to child attributes.

Rule [NavMem1.2] applies to recursive navigation steps; follow-sets determine validity
of recursive navigation steps. The last premise calls the function [next-Ψ]. This function
ensures that the resulting follow-set from e supports recursion; that the follow-set neither
holds a mapping to None, nor a mapping to an empty graph-set. This conforms to the second
condition from Section 3.5. The second condition concerns first followed self references per
hierarchical level. For that reason, Ψ2 consists of Ψ1 combined with mappings from δ2 for
hierarchical levels (collection attributes) that are not found in Ψ1. Function [next-Ψ] also
produces a new first-set, Ψ2 is the new first-set; the first-set after the recursive step.

The rules [NavRef1.1] and [NavRef1.2] check reference navigation steps. Similar to the
rules for NavMem AST nodes, the rule [NavRef1.1] matches non-recursive steps, whereas
[NavRef1.2] matches recursive steps. Reference steps are key steps or navigation steps to
reference attributes. The variable x in rules [NavRef1.1] and [NavRef1.2] match both key
steps as well as attribute steps a.

The second line from rule [NavRef1.1] expresses that the rule is not recursive. Fur-
thermore, it defines that expressions always use earlier defined references. We discussed
this in Section 3.4. The third premise from the third line ensures that elementary refer-
ences only use (other) elementary references to constrain values. The remaining two lines
from [NavRef1.1] define the follow-set after a reference step. To this end, we first construct
δ>. δ> filters the follow-set from the reference x on mappings for ancestors of the target
attribute τ. We explained this in Section 3.5 (page 36). Namely, forward and backward
reference may traverse ancestor graphs of the target attribute τ. For safely supporting recur-
sion after following such references, the ancestor graphs are important. They determine the
allowed recursive navigation steps for which ALANLIGHT can guarantee boundedness. For
calculating the final follow-set after the reference step, we add the filtered follow-set to δ1.
For this purpose, we use the earlier presented function next-δ.

Valid recursively defined references match rule [NavRef1.2]. For checking the expres-
sions defining such references, the first-set and follow-set are unknown during rule evalu-
ation. To this end, the rule uses the function type-o f for retrieving the result attribute and
type. Instead of explicitly retrieving the definition of x with de f , we assume that the rule re-
trieves it automatically. Equivalent to [NavMem1.2], the last premise calls [next-Ψ], which
checks the follow-set and constructs a new first-set.

The rule [NavInvRef] evaluates inverse reference attribute navigation steps. The first
line of the rule evaluates the expression e and retrieves the definition of the inverse refer-
ence attribute. The second line ensures that expressions only use earlier defined inverse
references, and that a points to an inverse reference attribute. x is the reference for which
am stores the inverse. This reference is the key of a collection item or a reference attribute.
The remaining two premises are equivalent to those from rule NavRe f 1.1.

Many modifications to our grammar and semantics are possible for supporting even
more complex calculations. We discuss some of those in our recommendations for future
work. In the next chapter we cover a dynamic semantics for ALANLIGHT.
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Chapter 5

Dynamic Semantics

This chapter presents a straight-forward dynamic semantics for ALANLIGHT, in the form of
a big step operational semantics. The purpose of our operational semantics is to demonstrate
the intended interpretation of concepts found in ALANLIGHT. In addition, its purpose is to
show that ALANLIGHT prevents duplicate calculations. Our operational semantics defines
a recursive on-read strategy for calculating derived values, enabling on-demand minimal
effort evaluation. We conclude this chapter showing that the number of calculations for
ALANLIGHT programs is bounded above in terms of the size of the specification (the model)
and input.

ALANLIGHT guarantees bounded calculations; constraints on data ensure this. More-
over, ALANLIGHT guarantees that expressions for an attribute yield a value of a corre-
sponding predefined (or inferable) type. Thus, ALANLIGHT ensures that expressions meet
all multiplicity bounds for operations. For example, the operation max requires a non-empty
set of nodes, meaning that using the operation requires first checking for a non-empty set
of nodes. For this purpose, ALANLIGHT requires using the empty expression for deriving
the state of a state group attribute (Section 3.4). In addition, we assume that ALANLIGHT

ensures that numerical expressions are valid, meaning that division by zero cannot occur. It
also means that expressions for natural numbers produce a value greater than zero.

Initialization and modification. For the rules defining the operational semantics of
ALANLIGHT, we assume the existence of an in memory data structure; a store. This store
holds basic elementary data conforming to the data structure that an ALANLIGHT model
defines.

After loading data into the store, we query all elementary references once for check-
ing referential integrity (reference constraints and graph constraints). A dataset satisfies all
constraints if every elementary reference yields a non-empty result (containing a node, an
instance of a Type AST node), and every graph constraint is satisfied. We assume recheck-
ing all constraints after updating elementary values in the store, discarding earlier calculated
results. For querying derived values, our semantics supports calculating derived values on
the fly, caching intermediate calculated values. In summary, we check all constraints on
initialization and modification, and calculate derived values on demand.
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Before applying rules defining ALANLIGHT’s operational semantics, we assume that
all required semantic information is available. For example, we assume that names are
bound to corresponding definitions (and we can use them interchangeably). Furthermore,
we assume that all names are unique. For attributes or keys with reference constraints, a
set named InvRe f s holds inverse references attributes that point to it (with r in our static
semantics).

5.1 Evaluation rules

The evaluation rules defining the operational semantics of ALANLIGHT, have the following
signature:

Θσ ` expression / Σ ⇓ µ / Σ

Similar to the static semantics rule signature, variables before the turnstile are environments.
Variables after the ⇓-sign are return values; the values that the rule evaluates to. Σ is the
store, storing user data and calculated values. All rules evaluate expressions in the context
of a store and yield a new store (after the ⇓-sign). We omit the store in evaluation rules
not explicitly using (i.e. reading or modifying) it. When omitted, we assume top-down
left-to-right threading of the store through the different premises. For evaluation rules that
are executed more than once (because of ∀ premises), we assume sequential threading of
the store. That is, a subsequent rule evaluation uses the store resulting from its immediately
preceding rule evaluation.

The store has the following signature:

Σ : {Ob ject 7→Member 7→ Set〈 type〉}

That is, the store maps objects to members to a set of equivalently typed objects, where

type ∈ {text,integer,Type}

The store holds a set for each member, such that evaluation rules can treat all attribute types
identically. An instance of a text attribute in ALANLIGHT corresponds to a Member map-
ping to a Set storing a single text object; a string value. For integer and natural attributes,
the object is of type integer; a number value. For state group attributes, it is an object
conforming to a Type AST node of one of its states. For collection attributes, the set holds
multiple objects conforming to its Type AST node.

The environment Θ maps variable names to a bag holding equivalently typed values:
{VarName 7→ Bag〈 type〉}. Navigation expressions use Θ for retrieving (sub)expression-
scoped variable values that IntlVarAss AST nodes specify. The environment σ is a pointer
to the context node (the this node) when evaluating an expression; it is an instance of a
user defined Type. The evaluation rules use it for executing the this step in navigation
expressions.

The result of an expression is µ, a bag of equivalently typed objects: Bag〈 type〉. Notice
that Θ maps variable names to µ instances. The store holds sets that support interpretation
as µ instances.
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Θσ ` expression / Σ ⇓ µ / Σ

Θσ ` this ⇓ {σ}
[NavThis1.1]

Θσ ` e / Σ ⇓ µ / Σ

µp =
⋃

o∈µ{Σ(o,parent)}

Θσ ` e.parent / Σ ⇓ µp / Σ

[NavThis1.2]

Σ(σ,v) = µ

Θσ ` v / Σ ⇓ µ / Σ

[NavVar1]
Θ(v) = µ

Θσ ` v ⇓ µ
[NavVar2]

Figure 5.1: Operational semantics for NavStart.

We discuss the operational semantics of ALANLIGHT by starting at the smallest syn-
tactical components, working our way up. The organization of evaluation rules strongly
corresponds to the organization of the rules defining ALANLIGHT static semantics. Labels
of the rules follow constructor names and rule alternatives, typically found on separate lines
of the grammar (Figure 3.10).

Navigation expression evaluation. Figure 5.1 presents the rules for NavStart compo-
nents. Rule [NavThis1.1] evaluates to a bag holding the context object σ. Every instance µ
of a Type AST node stores the location of its parent object. Rule [NavThis1.2] retrieves
the parent for each object o in the bag µ.

Rule [NavVar1] evaluates references to state parameter values and to results from in or
where clause of a collection expression. The context object σ stores the values; the rule
retrieves the value of a variable v from the store. Rule [NavVar2] evaluates references to
expression-scoped variables (assigned with an as statement). It retrieves the value of a vari-
able v from the variables environment Θ. The static semantics of ALANLIGHT guarantees
successful retrieval of a value for each variable reference.

Figure 5.2 presents rules evaluating navigation steps. [NavState] evaluates state nav-
igation steps. The first premise evaluates the expression e, which yields a bag of nodes
µ. Subsequently, it filters out nodes with state definitions not matching state s. All object
instances of states store a member _state; a special member holding the state definition of
a state group attribute instance. The rule retrieves the state definition _state of µ from the
store for checking against s.

Rules [NavMem], [NavRef], and [NavInvRef] evaluate member navigation steps using a
function get for retrieving a member a from every object in µ. Figure 5.3 defines different
variants of this function, matching different types of members (attributes and keys). Below
we explain these functions.

Rule [get1] retrieves basic elementary attribute values. The rule retrieves a set µa from
the store: the value of member a from node o. Rule [get2.1] retrieves the calculated value
of an attribute holding a derived value (or reference). Similarly, [get3.1] retrieves the cal-
culated referenced node that a reference attribute or key points to. Note that all rules that
are not related to a syntactic component use a bold format.

Sometimes, retrieving attribute or key values requires calculating them first. Rules
[get2.2] and [get3.2] match these cases; when the store does not contain a value for the
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Θσ ` expression / Σ ⇓ µ / Σ

Θσ ` e / Σ ⇓ µ / Σe

µs =
⋃

o∈µ{o | Σe(o,_state) = s}

Θσ ` e | s / Σ ⇓ µs / Σe

[NavState]

Θσ ` e ⇓ µ
µa =

⋃
{µo | o ∈ µ,o.get(a) ⇓ µo}

Θσ ` e . a ⇓ µa

[NavMem]

Θσ ` e ⇓ µ
µa =

⋃
{µo | o ∈ µ,o.get(a) ⇓ µo}

Θσ ` e > a ⇓ µa

[NavRef]

Θσ ` e ⇓ µ
µa =

⋃
{µo | o ∈ µ,o.get(a) ⇓ µo}

Θσ ` e < a ⇓ µa

[NavInvRef]

Figure 5.2: Operational semantics for NavExp and TypePath AST node children.

Θσ ` expression / Σ ⇓ µ / Σ

basic(a) Σ(o,a) = µa

o.get(a) / Σ ⇓ µa / Σ

[basic | get1]

derived(a) Σ(o,a) = µa

o.get(a) / Σ ⇓ µa / Σa

[calc | get2.1]

derived(a) Σ(o,a) 6= µx

{} o ` a.Exp / Σ ⇓ µa / Σa

Σn = Σa,{o 7→ a 7→ µa}

o.get(a) / Σ ⇓ µa / Σn

[uncalc | get2.2]

re f erence(a) elementary(a)
Σ(o,a) = {oa : Type}

o.get(a) / Σ ⇓ {oa} / Σ

[calc | get3.1]

re f erence(a) elementary(a)
Σ(o,a) 6= µx Σ(o,_a) = {ok : text}
{} o ok ` a.Re fConstr / Σ ⇓ µa / Σe

Σ2 = Σe,{o 7→ a 7→ µa}
Σi =

⋃
oa∈µa{oa 7→ ai 7→ Σ2(oa,ai)∪{o}

| ai ∈ a.InvRe f s}
Σ3 = Σ2,Σi

o.get(a) / Σ ⇓ µe / Σ3

[uncalc | get3.2]

a : collection Σ(o,a) = µa

∃oe ∈ µa[Σ(oe,_key) = k]

o.getEntry(a,k) / Σ ⇓ {oe} / Σ

[found | getEntry]

a : collection Σ(o,a) = µa

@oe ∈ µa[Σ(oe,_key) = k]

o.getEntry(a,k) / Σ ⇓ {} / Σ

[notfound | getEntry]

Figure 5.3: Operational semantics for getters that evaluation rules use.

attribute. Rule [get2.2] matches if a derived attribute value is uncalculated. The rule eval-
uates the expression Exp of an attribute holding derived values; e.g. the NumExp for an
integer attribute. The third premise of the rule constructs a new store that includes the result
from the expression evaluation.

Rule [get3.2] matches unresolved elementary references (members with a Re fConstr
AST node). For elementary reference attributes, objects holds a special member _a storing a
text key value. This value should correspond to the key value of an object in a collection. For
checking referential integrity, rule [get3.2] evaluates the constraint expression Re fConstr.
The rule passes an additional environment ok to the rule evaluating Re fConstr; the key
of the object. The rule evaluating Re fConstr uses the key for retrieving an object from a
collection with the function getEntry. With the result from Re fConstr, [get3.2] constructs
a new store, Σ2. Σ2 holds a mapping from member a to the expression result. After adding a
reference to the store, we also need to update inverse reference attributes on the referenced
node. That is, if the result contains such a node. To this end, we construct Σi. Σi holds
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Θσ ` expression / Σ ⇓ µ / Σ

Θσ ` e ⇓ {o}

Θσ ` TextExp(e) ⇓ {o}
[TextExp1]

Θσ ` e ⇓ µ

Θσ ` NumExp(e) ⇓ µ
[NumExp1,2]

Θσ ` e1 ⇓ {o1} Θσ ` e2 ⇓ {o2}

Θσ ` e1 ⊕ e2 ⇓ {⊕(o1,o2)}
[NumExp3]

Θσ ` e1 ⇓ {o1} Θσ ` e2 ⇓ {o2}

Θσ ` ⊕ e1 e2 ⇓ {⊕(o1,o2)}
[NumExp4]

Θσ ` e ⇓ µ1

Θσ ` ] e ⇓ {](µ1)}
[NumExp5.1]

Θ σ ` e1 ⇓ µ1

µ3 =
⋃

o∈µ1
{or | {v 7→ o} σ ` e2 ⇓ {or}}

Θσ ` ] e1 v e2 ⇓ {](µ3)}
[NumExp5.2]

ow = {w 7→ µw | w ∈W,Θσ ` ew ⇓ µw}
onew = {_state 7→ s}∪ow

Θσ ` SgExp(s,W ) ⇓ {onew}
[SgExp1]

Θσ ` e ⇓ µe µe = {}
Θ σ ` st ⇓ µs

Θσ ` empty e _ st _ ⇓ µs

[SgExp2a]

Θ σ ` e / Σ ⇓ µe / Σe

Σe(µe,_state) = s ∈ S
Θ∪{v 7→ µe} σ ` s.Exp / Σe ⇓ µs / Σs

Θσ ` switch e v S / Σ ⇓ µs / Σs

[TextExp2,

NumExp6,

SgExp3,

RefExp2]

Θσ ` e ⇓ µe µe 6= {}
Θ∪{v 7→ µe} σ ` s f ⇓ µs

Θσ ` empty e v _ s f ⇓ µs

[SgExp2b]

Figure 5.4: Operational semantics for expressions producing derived values.

the new values for inverse references attributes on the referenced node. The last premise of
[get3.2] constructs a new store combining Σ2 with Σi.

As mentioned above, the function getEntry retrieves an object with a specific key from
a collection. If an object with a key k exists, the rule evaluates to a bag holding this object.
Otherwise, it evaluates to an empty bag.

Derivation expression evaluation. For calculating derived attribute values, getters eval-
uate expressions of the attributes. Figure 5.4 presents rules for evaluating the expressions.
The rules [TextExp1] and [TextExp2] evaluate to the result of the navigation expression e.
For [TextExp1], ALANLIGHT’s static semantics guarantees evaluation to a bag holding a
single object o.

Rules [NumExp3] and [NumExp4] both evaluate subexpressions, combining results with
the operator ⊕. Again, for the subexpressions ALANLIGHT guarantees evaluation to a bag
holding a single object. The operator ⊕ calculates a result using mathematical operations
corresponding to NumBinOp and NumBinFn. Rules [NumExp5.1] and [NumExp5.2] apply
the operator ] to a bag of results. This operator applies the operation corresponding to
NumAggFn to a bag of integer objects. Rule [NumExp5.2] evaluates e2 per object from
the bag µ1; the result from evaluating e1. For each evaluation, the rule constructs a variable
environment mapping v to a single object o from µ1. Rules [SgExp2b] and [SgExp3b] also
construct new variable environments for their subexpressions. Rule [SgExp3a] matches
when the expression e evaluates to an empty set; [SgExp3b] matches the opposite case.

Unlike results from other rules in the figure, the result for rule [SgExp1] is special; it is
a new object, a state node. The state node has a member storing its state definition _state,
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Θσ(k) ` expression / Σ ⇓ µ / Σ

Θσ ` e ⇓ µe Θe(o) = Θ∪{v 7→ o}
f (o) =

⋃
w∈w∗{w.v 7→ µw |Θe(o)σ `w⇓µw}

g(o) = {key 7→ o}∪ f (o)
µnew =

⋃
o∈µe{g(o) | ∀v 7→ µ ∈ f (o), µ 6= {}}

Θσ ` = e v w∗ ⇓ µnew

[ColExp1.1a]

Θσ ` e ⇓ µe

Θσ ` where( e ) v ⇓ µe

[ColExp1.2]

Θσ ` e ⇓ µe

Θσ ` Re f Exp(e) ⇓ µe

[RefExp1]

Θσ ` e ⇓ µe

h(k, i) = {i 7→ µi |Θσk ` i ⇓ µi}
g(o) = {key 7→ o}∪{i.v 7→ h(o, i) | i ∈ i∗}
µnew =

⋃
o∈µe{g(o) | ∃i ∈ i∗, h(o, i) 6= {}}

Θσ ` = e v i∗ ⇓ µnew

[ColExp1.1b]

Θσ ` e ⇓ µe

µv = {ov ∈ µe | ov.get(r) ⇓ µk, k ∈ µk}

Θσk ` in( e r ) v ⇓ µv

[ColExp1.3]

Figure 5.5: Operational semantics for expressions producing derived references.

which we described earlier. The state node also holds mappings for all parameters W to
their corresponding values.

Figure 5.5 presents the operational semantics for expressions producing derived refer-
ences. The rule signature indicates an additional optional environment k; an object, which
rule [ColExp1.3] uses. Rules [ColExp1.1a] and [ColExp1.1b] construct new objects: de-
rived entities. Rule [ColExp1.1a] interprets collection expressions with where clauses; rule
[ColExp1.1b] interprets collection expressions with in clauses. The first premise of both
rules interprets the expression e for selecting a collection, yielding a bag of nodes.

The second line of rule [ColExp1.1a] is a function, evaluating where clauses for a spe-
cific object o. The third line constructs a new object with a key mapping to o. The new
object stores corresponding variable results from where clause evaluation. The last premise
for rule [ColExp1.1a] constructs a new collection, holding a new object for each object in
µe that satisfies all where clauses. Rule [ColExp1.2] evaluates where clauses, calling a rule
for evaluating the navigation expression e and returning its result. Note that the rule ignores
v. Rule [ColExp1.1a] retrieves v from w when calling the function f .

To explain rule [ColExp1.1b], we first explain rule [ColExp1.3], which evaluates separate
in clauses. An in clause consists of two parts: a navigation expression e and a reference or
inverse reference navigation step r. The navigation expression e produces a bag of objects
µe, as the first premise of the rule expresses. The last premise filters the bag: µv holds
objects for which the result from evaluating r holds a key object k.

The key object k is object for which [ColExp1.1b] creates a new object in a derived
collection. That is, if and only if at least one in clause produces a bag holding an object:
a node object which references k. The second premise of [ColExp1.1b] defines a function
evaluating a single in clause for a specific object k. The third premise defines a function
for constructing a new object, which holds a mapping from each in clause variable name
v to a corresponding bag of objects. The last premise of [ColExp1.1b] construct the actual
collection. The collection holds an object for each result from e where at least one in clause
produces a non-empty bag of objects.
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Θσk ` expression / Σ ⇓ µ / Σ

Θσ ` e ⇓ {}

Θσk ` ~ ref(e .a [ G ])) ⇓ {}
[RefConstr1a]

Θσ ` e ⇓ {}

Θσk ` ~ ref( e. a ) ⇓ {}
[RefConstr2a]

Θσ ` e ⇓ {o}
o.getEntry(a,k) ⇓ {}

Θσk ` ~ ref(e .a [ G ])) ⇓ {}
[RefConstr1b]

Θσ ` e ⇓ {o}
o.getEntry(a,k) ⇓ µ

Θσk ` ~ ref( e. a ) ⇓ µ
[RefConstr2b]

Θσ ` e ⇓ {oe}
Θσ ` e.parent ⇓ {o}
o.getEntry(a,k) ⇓ {ok}
o.addEdge(〈oe,ok 〉,G) ⇓ µ

Θσk ` ~ ref(e .parent .a [ G ])) ⇓ µ
[RefConstr1c]

ΣG = Σ,
⋃

g∈G{o 7→ g 7→ Σ(o,g)∪{〈os,or 〉}}

µ =

{
{or} if ∀g ∈ G[†(ΣG(o,g))]
{} else

o.addEdge(〈os,or 〉,G) / Σ ⇓ µ / ΣG

[addEdge]

Figure 5.6: Operational semantics for constraint expressions.

The remaining rule [RefExp1] evaluates an expression e for deriving a reference. In the
next paragraph we discuss constraints and graph construction.

Constraint expression evaluation. ALANLIGHT’s operational semantics for evaluating
constraints consists of six rules (Figure 5.6). The first two rules match reference constraint
expressions where the expression e evaluates to an empty bag. In such cases, the rule also
yields an empty bag, meaning that the constraint is not satisfied.

Rule [RefConstr1b] matches self reference constraint expressions where the entry with
key k does not exist. This rule also evaluates to an empty bag. Rule [RefConstr2b] matches
other reference constraint expressions, yielding a bag holding zero or one item.

Rule [RefConstr1c] matches self reference constraint expressions where the entry with
key k exists. If it exists, the rule adds an edge to all graphs G that the newly resolved
reference partakes in. To this end, the rule calls the function addEdge on object o, which
stores special graph members together with the collection member. Note that the we use
oe for the new edge; oe is an entry from collection attribute a on o (and an ancestor of the
referencing object σ, or otherwise σ itself). We use oe because we only need to ensure
acyclicity for entries from the collection a on object o.

Rule [addEdge] constructs a new store holding graphs containing a new edge. The
function uses the operator † to check if all graphs in the new store are acyclic. If they are
acyclic, the rule evaluates to a bag holding the referenced node; otherwise, it evaluates to
an empty bag. A non-empty bag means satisfaction of all graph constraints G.

For checking constraints on initialization, we visit all elementary reference members
once and execute the function get for the member. If the function yields an empty result, we
reject the dataset: it is not conform the model. After processing updates, we do this again,
rejecting the update when finding an empty result.
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5.2 Complexity bounds

In this section, we discuss bounds on the number of calculations and the time complexity of
ALANLIGHT programs. ALANLIGHT programs perform each calculation exactly once dur-
ing program execution. Program execution means evaluating (all) expressions for any store
Σ, storing elementary (user) data. The number of calculations for ALANLIGHT programs is
bounded in the size of the specification and the size of the input data. The time complexity
of ALANLIGHT programs is polynomially bounded (PTIME) in the size of the input data.

Calculations. According to our operational semantics, member values are calculated
exactly once when checking constraints and calculating derived values. The evaluation
rules ensure this: if a value is calculated, the getters retrieve it from the store. If an attribute
value is uncalculated, we evaluate the expression for calculating it, storing the resulting
value. An upper bound on the number of calculations of an ALANLIGHT program is (using
big-O notation [65]):

O(#Calcs) = O(m ·nd) (5.1)

where d is the maximum depth of a model hierarchy when taking only collection at-
tributes into account, and m is the total number of attribute and key members. Note that
d ≤ m, but we distinguish d from m as the typical depth of a model hierarchy is signifi-
cantly smaller than m. n is the maximum size of a collection in the input; n is at least one
(for the root node). Below we derive this upper bound.

A data store consists of hierarchically organized nodes. The root level consists of a
exactly one root node. Let m0 be the number of members of the root node (level 0), and ml
the total number of members on level l, where 0 ≤ l ≤ d. A member corresponds to a cal-
culation, meaning that stores consisting of only a root node require at most m0 calculations.

An expression for deriving a value yields at most a collection of size n; the size of largest
input collection. Therefore, the root node holds at most m0 collections of size n. The items
of different collections c0 ∈ m0 are of different types; each collection attribute defines the
Type of its items.

Let tc0 be the number of members of such a Type; specifically, the number of members
on the next hierarchical level (l = 1). Thus, each item i in a collection c0 requires tc0 calcu-
lations, not counting calculations for items in collections that i nests (i.e. only calculations
on level l = 1). As m1 is the total number of members on level l = 1, we know that:

∑
c0∈m0

tc0 = m1

Because an item requires at most tc0 calculations, a single collection c0 on the root level
requires at most tc0 · n calculations for level l = 1. As the root level holds at most m0 of
these collections, the number of calculations for hierarchical level l = 1 is bounded above
by:

∑
c0∈m0

tc0 ·n = m1 ·n
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ALANLIGHT supports manually repeating derived collection attributes, recursively. Every
nested collection can store all n nodes from the largest input collection, yielding at most
nd equally typed nodes on the d-th level. Consequently, the total maximum number of
calculations for the d-th level is:

∑
c0∈m0

∑
c1∈tc0

... ∑
cd−1∈tcd−2

tcd−1 ·n
d = md ·nd

Combining the total maximum number of calculations per level in a data store, we get the
aforementioned upper bound on the number of calculations for any given ALANLIGHT data
store:

O(m0 +m1 ·n+m2 ·n2 + ...+md ·nd) = O(m ·nd)

Note that the total number of members m = m0+m1+ ...+md . We can statically determine
m and d in trivial manner: counting members and the model depth; the height and the
width of an ALANLIGHT model, respectively. We conclude that the dynamic number of
calculations of every ALANLIGHT program is bounded above by a d-th order polynomial
in the size of the input:

O(#Calcsruntime) = O(nd) (5.2)

where d is the constant, design-time calculated model-depth. Using this upper bound
and ALANLIGHT’s operational semantics, we can determine an upper bound on the time
complexity of ALANLIGHT programs. Specifically, we focus on an upper bound on the
time complexity for expressions calculating derived values in an ALAN program.

Time complexity. Calculating a derived value requires evaluating expressions. Expres-
sions for deriving values consist of navigation expressions which ultimately determine the
cost for deriving a value. An ALANLIGHT model defines the number of navigation expres-
sions (subexpressions) needed for calculating a derived value.

Navigation expressions consist of navigation steps. Text attribute, integer attribute, nat-
ural attribute, state group attribute, state, and key steps yield (a bag holding) zero or one
value. The same holds for this steps and parent steps. Collection navigation steps yield
n nodes (where n is maximum collection size that we mentioned above). Inverse reference
attributes store inverse references to nodes of a specific Type in a model. The maximum
number of nodes of a specific type is nd . Therefore, a subsequent navigation step multiplies
a previous result by at most nd values.

If every navigation step produces at most nd values, then every fully expanded navi-
gation expression produces at most (nd)e = nde values, where e is the maximum number
of navigation steps of a fully expanded navigation expression. (Recall that fully expanded
means that variables are replaced by their corresponding expressions.) For example, sup-
pose that we have a model with only the following expression from Chapter 3:

latest_version_cost: integer
= switch (this>latest_version.product_type) as pt ( // e = 3
| simple = pt.cost // e = 3 + 1 (inline pt)
| assembled = sum(pt.parts>key.latest_version_cost) ) // e = 3 + 3 (inline pt)
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For the expression, the maximum e-value is 3+ 3 = 6. That is, the e-value for the fully
expanded navigation expression for the assembled state. Note that for producing nde val-
ues, a fully expanded navigation expression has to consist of e inverse reference attribute
navigation steps. As every navigation expression starts with a this navigation step and
optional parent navigation steps, the actual maximum number of values is strictly less than
nde. Furthermore, ALAN models typically contain at most one inverse reference step (and
also, inverse reference steps occur infrequently).

From the bound on the number of values that navigation expressions produce, we can
derive an upper bound on their time complexity. Assuming that the retrieval of a single value
from memory requires constant time, the first navigation step requires O(nd) time. For sub-
sequent navigation steps 2..e, we have to multiply this by the maximum number of values
from the previous result. This gives the following upper bound on the time complexity of a
navigation expression:

TNavExp = O(nd +(nd)2 + ...+(nd)e) = O((nd)e) = O(nde) (5.3)

An expression for deriving a value consists of at most s subexpressions (which is 3 for
the latest_version_cost above). Taking the subexpressions into account, we get the
following upper bound on the time complexity of navigation expressions:

TNavExps∈Exp = O(s ·nde) (5.4)

This is also an upper bound on the time complexity of an expression for calculating a derived
value, such as an integer. We explain this next.

Separate evaluation rules for deriving values (Figure 5.4) and references (Figure 5.5), ei-
ther produce (at most) nde values (the upper bound on the number of values for a navigation
expression), or a single value by value aggregation (e.g. with sum). The rules [TextExp1],
[NumExp1], [RefExp1], and [ColExp1.2] evaluate a single navigation expression. Therefore,
corresponding expressions require O(nde) time, as shown above.

The remaining rules from Figure 5.4 and [ColExp1.3] evaluate one or more subexpres-
sions (which can be navigation expressions), and perform operations on these values (except
for rule [NumExp5.2] which we discuss separately). The rules perform either (1) a fixed
number of basic operations on a single value per subexpression they nest, or (2) a basic
operation on at most nde values (which is the upper bound mentioned above). To this end,
the rules use the operators ⊕ and ]; for example, to multiply or sum values. Alternatively,
the rules use basic equality checks; for instance, for checking if a bag is empty. Because of
this, the maximum number of values for which the rules perform an operation, is bounded
above by:

Valuesop = O(s+nde) = O(nde) (5.5)

for large enough n, and d,e≥ 1.
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Assuming that the operators ⊕ and ] require constant time per value, the rules require
O(nde) time for operations such as sum. The maximum number of subexpressions for which
we have to perform such operations, is s. If we also include s for the full expression for
deriving a value, we get the following upper bound on the time complexity of expressions
deriving a value:

TExp = O(s ·nde) (5.6)

This bound is identical to the presented complexity bound for navigation expressions.

Unlike other rules from Figure 5.4, rule [NumExp5.2] evaluates a subexpression e1,
and subsequently evaluates another subexpression e2 for each value that e1 produces. The
following figure shows an expression matching [NumExp5.2]:

sum(this. products as p mapto(p. amount * p. cost))

Subexpression this.products matches e1; the subexpression after mapto matches e2. A
useful property of e2 is that – conform to our static semantics (Chapter 4) – the expression
only uses the variable p (where p is a single product value in e2). Furthermore, mapto
guarantees a single output value per input value (a products value). Therefore, if we omit
* p.cost, the resulting expression is equivalent to:

sum(this. products. amount)

For this expression we derived a time complexity of O(nde). Note that the mapto construct
essentially just extends a navigation expression, supporting (recursively nested) numerical
operations beside common navigation steps with the dot- and >-operator. An important
difference with regard to the time complexity is that mapto supports multiple subexpressions
smapto. Because of this, the time complexity of [NumExp5.2] is O(smapto ·nde). For instance,
for the above figure expressing the product of amount and cost, we have:

O(ndep ∗ (nd(e−ep)+nd(e−ep)) = O(2 ·ndep ∗nde−dep) = O(smapto ·nde)

Variable ep corresponds to the length of e1 (the expression this.products); we multiply
ndep by the complexity of e2 as we evaluate e2 ndep times. Because we map ndep on a per
value basis, p corresponds to one value in e2. Therefore, a single evaluation of e2 requires
O(nd(e−ep)) time. By applying some basic rewrite rules, we get the above-mentioned upper
bound.

However, the total number of subexpressions s for calculating a derived value already
includes smapto. Consequently, the bound O(s · nde) also holds for expressions defining a
mapto operation.
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Figure 5.5 presents two rules that we have not discussed so far: the main rules for
deriving collections. The rules behave in similar manner: they both evaluate a navigation
expression e, which produces at most n objects from one specific collection. A derived
collection holds at most one new object for each of these (n) objects; the n objects are the
potential candidates for becoming keys of the new objects. For determining the objects
for which to create a corresponding object in a derived collection, the rules evaluate where
clauses and in clauses per potential key object. Above, we showed that evaluating separate
clauses requires O(nde) time. Therefore, evaluating all clauses for a potential key object
requires O(s ·nde) time. Consequently, the two rules require O(n ·s ·nde) time for calculating
a derived collection; an additional n for number of potential key candidate objects. However,
this bound does not affect the upper bound on the time complexity for calculations that an
ALANLIGHT program performs; we show this next.

For deriving an upper bound on the time complexity for calculations that an ALAN-
LIGHT program performs, recall that we showed a bound of O(m · nd) on the number of
calculations. The variable m represents the total count of all members: attributes plus key
members (one per collection). Let k be the total number of key members; we know that
k <= m. Furthermore, let a be the total number of attributes; thus m = a+ k. Combining
this with the upper bound on the number of calculations, we get O(k ·nd): an upper bound
on the number of keys. As deriving a single key value requires O(s · nde) time, an upper
bound on the time complexity for all expressions determining key values is

O(k ·nd · s ·nde) (5.7)

For collections, we now only need to consider the expression determining key candidates
(the above bound includes the expressions for key candidates). Therefore, we get a similar
upper bound for attributes, as calculating a derived attribute value requires O(s ·nde) time:

O(a ·nd · s ·nde) (5.8)

Combining these two bounds gives the following upper bound on the time complexity for
calculations that ALAN programs perform:

TCalcs = O(a ·nd · s ·nde + k ·nd · s ·nde)

= O((a+ k) ·nd · s ·nde)

= O(m ·nd · s ·nde)

= O(m · s ·nd(e+1))

(5.9)

Again, we can statically determine m and d by counting members and the model depth;
the height and the width of an ALANLIGHT model, respectively. We can also statically
determine s and e by counting subexpressions and navigation steps, respectively. This gives
us the following PTIME bound for ALANLIGHT programs:

T (n) = O(nc) (5.10)

where c is a design-time constant, calculated from d and e.
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5.3 Discussion

Note that for actual ALANLIGHT models, we can automate the computation of tighter
bounds using information about attribute types. Specifically, we can use the information
that collection attribute navigation steps multiply a previous result by at most n, inverse
reference attributes multiply a previous result by at most nd , and other navigation steps
multiply a previous result by a constant value of 1.

With regard to the dynamic semantics, note that ALANLIGHT does not commit to a
specific calculation strategy for derived values. Harkes et al. [22, 23] discuss different
strategies for calculating and maintaining derived values. This includes on-read, on-write,
eventual, incremental calculation, including mixing of different calculation strategies. Their
research focuses on the language IceDust, but we can apply these strategies to ALANLIGHT

as well. In addition to strategies from their research, ALANLIGHT also supports deter-
ministic top-down calculation of derived values. But, we consider evaluating calculation
strategies beyond the scope of this thesis. In the next chapter we evaluate ALANLIGHT. We
compare it against other approaches, focusing on the main contributions.
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Chapter 6

Evaluation

In our problem statement (Chapter 2), we presented the following research question: to
what extent can we support complex recursive calculations, while guaranteeing soundness,
functional correctness, and bounded, predictable running times? In previous chapters, we
showed how ALANLIGHT achieves the guarantees from this question. Specifically, we
demonstrated that ALANLIGHT guarantees:

• soundness, where values are always of a predefined indivisible type,

• functional correctness (which includes deterministic output),

• polynomial time complexity in the size of user data, and

• a combined complexity in the size of (trivially countable properties of) the specifica-
tion.

To our knowledge, no existing data modeling language simultaneously (1) guarantees
the above properties, (2) uses explicit acyclicity constraints (graph constraints) from models
in their type system as a condition for enabling complex recursive calculations, (3) achieves
the same level of expressiveness as ALANLIGHT, and (4) integrates expressing calculations.

In this chapter, we evaluate ALANLIGHT’s support for complex recursive calculations.
To this end, Section 6.1 addresses problems and solutions involving recursive calculations,
found in related work. We present modeling problems requiring complex calculations and
discuss how existing approaches to solving these problems compare to ALANLIGHT. Sec-
tion 6.2 discusses potential threats to the validity of our approach.

6.1 Expressiveness and Guarantees

Data modeling and query languages typically make a trade-off between expressiveness and
guarantees such as termination, specific running time bounds, soundness, functional cor-
rectness, and simplicity. For example, (safe, stratified) DATALOG has a simple syntax, a
well-understood semantics, and queries can be evaluated in polynomial time [18], but the
language cannot express (recursive) aggregation.
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Methodology. The goal of ALANLIGHT is to support expressing complex (recursive)
calculations, while providing aforementioned guarantees. ALANLIGHT adds value if the
language is either more expressive or provides more guarantees than existing languages.
The question is: to what extent does ALANLIGHT succeed in going beyond the capabilities
of existing languages?

To address this question, we compare ALANLIGHT to existing languages that restrict
expressiveness, for providing guarantees such as termination. Because of ALANLIGHT’s
goals, we direct our comparison towards languages that at least have rudimentary support
for recursion and address boundedness. We start with more restrictive languages, continuing
towards languages providing more expressive power or different guarantees.

We focus on the concepts of ALANLIGHT which form the basis for its semantics (Chap-
ter 4 and 5): graph constraints and reference constraints. Therefore, extensions to ALAN-
LIGHT are fine, if (and only if) they do not undermine the fundamental concepts constituting
the language’s semantics.

ALANLIGHT is a data modeling language with integrated support for modeling con-
straints and derivations in a declarative manner. But, many approaches do not have such
integrated support. Furthermore, ALANLIGHT strictly separates models from conform-
ing data, while other approaches do not make this separation [31, 18, 38]. More similar
approaches allow for a more detailed comparison. As such, we discuss more similar ap-
proaches in more detail than other (less similar) approaches.

To discuss expressiveness and guarantees of data modeling languages and query lan-
guages, we start by introducing a typical problem involving recursion in the field of manu-
facturing: the bill of materials. This problem typically involves calculating all (basic) parts
for a product that recursively consists of multiple parts. The problem is identical to the more
general all pairs reachability problem (see also: summarized explosion query). Calculating
all parts of a product is equivalent to calculating the transitive closure of a graph.

Basic relational recursion. SQL features an extensive set of operators and other lan-
guage constructs for performing complex calculations [40]. But, originally, SQL did not
support recursive queries, and could thus not express recursive transitive closure compu-
tations. The SQL99 standard introduced support for recursive queries with common table
expressions (CTEs) [53]. Nowadays, most major database systems support this, includ-
ing PostgreSQL [44] and Microsoft SQL Server [25]. Other database systems have im-
plemented different (proprietary) solutions for supporting recursion. For example, Oracle
Database supports recursive SQL queries with CONNECT BY statements [45]. The following
CTE calculates the transitive closure of a product graph:

WITH RECURSIVE transitive_closure(product_id, part_id) AS
( SELECT product_id, part_id FROM products_parts // Anchor

UNION ALL
SELECT tc.product_id, i.part_id // Recursive Member
FROM products_parts AS i JOIN transitive_closure AS tc

ON i.product_id = tc.part_id
)
SELECT product_id, part_id FROM transitive_closure
GROUP BY product_id, part_id;
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A recursive CTE (transitive_closure in the figure) starts with one or more anchors; the
first SELECT statement in the figure. The anchor from the figure produces all rows from the
product_parts table with columns (product_id,part_id), where each row describes a
reference from a product to a part. The statement UNION ALL combines the result from the
anchor with results from subsequently defined recursive members of the CTE.

The anchor provides the input to the first recursive call. The second SELECT statement
uses the result from the anchor (with JOIN transitive_closure) for a JOIN. The second
statement should be interpreted as:

select all (x=TC.product_id,z=I.part_id)
given (x,y=TC.part_id) and (y=I.product_id,z)

The result of the statement is passed as input to the recursive member for the next
iteration. The recursion ends when the select statement no longer produces (new) rows.
Oracle SQL supports expressing the query using a CONNECT BY statement, as follows:

SELECT product_id, part_id
FROM products_parts
CONNECT BY PRIOR part_id = product_id;

We ran the query on five known SQL implementations, including PostgreSQL 9.6, Mi-
crosoft SQL Server 2014, Oracle DB 11gR2, MySQL 8.0 [47], and SQLLite 3.18 [51].
With acyclic data, the implementations produced expected output.

However, with cyclic data, all five implementations yielded an error or exception, such
as ‘out of bounds’ or ‘timeout’. To prevent that, developers can manually limit the num-
ber of iterations [2]. But, such limits can elicit incomplete results (when calculations halt
because of them). Alternatively, developers can create database triggers or write custom
code ensuring acyclic relations before accepting database transactions. But, this places the
burden of checking and ensuring termination and functional correctness on the developer,
while ALANLIGHT guarantees it.

Stratification and fixpoint recursion. Although the transitive closure query fails on the
SQL implementations mentioned above, guaranteeing termination and even correct output
for cyclic graphs is entirely possible. We explained this in Chapter 2: the query will – at
some point – stop generating new rows: the output converges to a fixpoint. Note that this
requires filtering out duplicate rows; that is, a set semantics (rather than a bag semantics,
where duplicates may occur). Using a stratified fixpoint semantics, we can guarantee that
the transitive closure query terminates and produces correct output.

Aranda et al. [2] made similar observations, leading to the development of R-SQL [2,
58]. R-SQL extends SQL, implementing ideas from the field of deductive database sys-
tems, including stratification and fixpoint computation. The basic idea is to restrict the
expressions of a program in such a way that a fixpoint always exists; the restriction being
that the program (set of query expressions or logical predicates) is stratifiable.
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A stratification of a program is an ordered partitioning of its expressions. Stratified
negation and stratified aggregation determine the conditions for this ordered partitioning, as
Green et al. [16, 18] define. Negation stratified programs do not contain recursion through
negation; aggregation stratified programs do not contain recursion through aggregation. To
explain this, consider the following recursive DATALOG program for counting the distinct
parts of a product:

cpart(X,Y) <- part(X,Y) //r1 ; stratum S1
cpart(X,Y) <- cpart(X,Z),part(Z,Y) //r2 ; stratum S1
numDistinctParts(X,count <X>) <- cpart(X,_) //r3 ; stratum S2

This program is aggregation stratified. Strata S1 and S2 indicate a possible stratification
(an ordered partitioning) of the clauses. Clauses r1 and r2 are part of the first stratum: S1;
clause r3 is part of a second stratum: S2. Clause r3 cannot occur in stratum S1. This is be-
cause stratification requires that predicates occurring in the right-hand side of an aggregate
rule are strictly defined in an earlier stratum. Thus, that the cpart predicate is defined in an
earlier stratum (S1) than numParts (defined in stratum S2).

A stratified fixpoint semantics ensures termination for transitive closure computations.
Specifically: a stratified fixpoint semantics in which the algorithm terminates when it is
unable to produce new rows or tuples. To explain this, suppose that a manufacturer has
products. When releasing a new version of a product, he registers this new version on
the old product. Sometimes, after the release of a product, it appears to be unreliable and
is marked as such. Customers can put in a request for a free replacement if a product
fails. When the manufacturer deems the product unreliable, the manufacturer sends the first
reliable version as a replacement. If a reliable version does not exist, he sends the latest
version as a replacement. The following ALANLIGHT model expresses the replacement
calculation:

products: collection ∼ g_versions = acyclic-graph {
new_version: stategroup (

no { }
yes {

successor: ∼ ref(this.parent.parent. persons[ g_versions])
}

)
is_unreliable: stategroup (

yes {
replacement: = switch (this.parent. new_version) as nv (

| no = this.parent
| yes = switch (nv> successor. is_unreliable) as ur (

| no = nv> successor
| yes = ur> replacement

)
)

}
no {}

)
}
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Suppose now that the manufacturer just registered ten products in his brand-new system.
All ten products are different versions of a DustBuster product; we assume that they form
a linked list. Only one of these DustBusters is deemed unreliable: DustBusterV1; the
oldest one, as it has a bad battery. For calculating the replacement for DustBusterV1, a
fixpoint algorithm will iteratively attempt to find a possible replacement for DustBusterV1.
For example, in the first iteration it traverses the successor relation for DustBusterV1.
Subsequently, it traverses the successor relation for DustBusterV2, and so on.

At every iteration, a fixpoint algorithm checks if a fixpoint is reached: it essentially
checks if it already traversed the path from one DustBuster to another. For this purpose,
the algorithm stores information about each traversed relation (generated tuple or row).
The check ensures termination in the presence of cycles. Different fixpoint computation
strategies exist (e.g. top-down, starting at the target and bottom-up, starting at the known –
user provided – references). But, the basic idea is the same; the algorithms check at every
iteration if a fixpoint is reached.

As a natural consequence of its semantics, ALANLIGHT does not require such checks.
Note that the checks are redundant when relations are acyclic, which may negatively affect
efficiency. But, we consider investigating this beyond the scope of this thesis; we merely
establish that ALANLIGHT uses a more elegant approach. Instead of performing checks
during computations, ALANLIGHT requires acyclic graph traversal. For ensuring acyclic
graph traversal, ALANLIGHT checks graph constraints before accepting changes to user
data. (Note that graph constraints often also serve to ensure data integrity, and are thus not
solely meant for the purpose of enabling specific recursive calculations.)

Because ALANLIGHT requires acyclic graph traversal, the language precludes com-
putations that recursively traverse potentially cyclic relations. For example, ALANLIGHT

does not support computing the shortest path between nodes in a cyclic graph. A typical fix-
point semantics supports such computations, but imposes specific restrictions on operations
for ensuring boundedness. Furthermore, graph constraints are often essential for ensuring
correct output. The next paragraph discusses this in more detail.

Monotonic aggregation and arithmetic. Although a stratified fixpoint computation for
the transitive closure query terminates, it fails when introducing even basic arithmetic. For
example, the bill-of-material problem typically involves calculating required quantities per
part of a product. For expressing this, we introduce the ∗ operator, and use it in the recursive
member of the transitive closure query:

WITH RECURSIVE transitive_closure_q(product_id, part_id, quantity) AS
( SELECT product_id, part_id, quantity FROM products_parts

UNION ALL // combine with:
SELECT tc.product_id, i.part_id, tc.quantity * i.quantity
FROM products_parts AS i JOIN transitive_closure_q AS tc
ON i.product_id = tc.part_id

)
SELECT product_id, part_id, SUM(quantity)
FROM transitive_closure_q
GROUP BY product_id, part_id;
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Each recursive call potentially produces new rows with a different quantity. The calculated
quantity is an infinitely increasing number in the presence of a cycle (if the quantity is
greater than zero). Therefore, a fixpoint computation for this query does not necessarily
terminate.

The field of deductive databases proposes several solutions to this problem [18]. How-
ever, the community seems not to have converged on any specific proposal. One of the
proposals is monotonic aggregation, presented by Ross and Sagiv [57]. Monotonic aggrega-
tion has received much attention in the field of deductive databases [11, 18, 38, 57]. Several
concrete implementations exist, including DATALOGFS [38], DEALS [63], and BIGDATA-
LOG [62]. The semantics of monotonic aggregates in the latter two is based on the semantics
of DATALOGFS.

The following program from Mazuran et al. [38] expresses the quantity calculation in
DATALOGFS:

cassb(Prod , Part) : Qty <- prodpart(Prod , Part , Qty). // r1
need(Part , Part) : 1 <- prodpart(_, Part , _). // r2
need(Prod , Part) : K <- K:[cassb(Prod , P1), need(P1, Part )]. // r3
total(Prod , Part , K) <- K =![ need(Prod , Part )]. // r4

The program uses the three extensions to DATALOG that DATALOGFS introduces: multi-
occurring predicates (r1), running-FS goals (r3), and final-FS goals (r4). The basic idea
behind the extensions is to add a frequency (a counter) to clauses, and to sum (or count)
frequencies, producing a result equivalent to that of an aggregate such as sum in recursion.

Rule r1 indicates that a product-part relation with a quantity Qty gives a predicate cassb
with a frequency support of Qty. Rule r2 and r3 constitute the recursive part of the quantity
calculation. Rule r2 ends the recursion. It indicates that a part needing itself counts as 1
towards the final result. The body of rule r3 contains a running-FS goal; the bracketed part
is called a b-expression. At every recursive iteration of need, the frequency of cassb is
multiplied by the frequency of a matching need predicate, yielding a need tuple with a new
K-value.

Mazuran et al. define the formal semantics of a running-FS goal by rewriting it into a
negation-free logic program. The basic idea behind the semantics is that a b-expression can
be rewritten as follows:

cassb(Prod ,P1),cassb(P1,P2),cassb(P2,P3),..,cassb(PX,PN), P1 6=P2 6=P3.. 6=PN

This rewriting indicates that a cassb tuple is never used twice when evaluating the running-
FS goal. The maximum recursion depth equals the cardinality of the set of cassb instances,
and the recursive need query always terminates.
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Note that every prodpart item initially produces a need tuple with a frequency support
of 1. Thus, rule r3 in fact generates all possible need tuples with a frequency of 1 up to
the maximum value for K for which the running-FS goal holds. The maximum value for K
corresponds to the result we require; the final-FS goal from rule r4 is needed for retrieving
it. Its semantics is defined as follows:

total(Prod , Part , K) <- K :[need(Prod , Part)], ¬morethan(Prod ,Part ,K).
morethan(Prod ,Part ,N) <- N1:[need(Prod , Part)], N1 > N.

Thus, r4 retrieves the need tuple with the highest frequency K for every distinct product-
part pair. The expression ¬morethan ensures that K is indeed the highest frequency. To this
end, morethan checks K against the frequencies of other need tuples for identical product-
part pairs.

This DATALOGFS program for the quantity calculation poses several concerns, three
of which we address below. First, in the presence of a cycle, the program produces finite
total quantities. From a logical (DATALOG’s least-fixpoint semantics’) perspective, this
result is ‘correct’ output to the program. But, from a functional point of view it is incorrect;
the correct solution to the problem is an infinite number. Note that in this particular case, a
cycle should not be allowed to exist in the first place.

Second, programs such as the above, use complex combinations of optimization tech-
niques needed for achieving efficient evaluation; for example, magic set optimization, copy
rule optimization, max-based optimization, differential fixpoint optimization, Monotonic
Aggregate Semi-naive Evaluation (MASN), Eager Monotonic Aggregate Semi-naive eval-
uation (EMSN), and Constraint Pushing into Recursion (CPR) [38, 63, 75]. But, different
optimizations apply to different kinds of calculations, and can lead to erroneous behaviour
of other calculations, or otherwise require very specific restrictions in the compiler. For
example, suppose that we use the max-based optimization for evaluating a running-FS goal.
Then, for querying product-part pairs where products require 3 or more instances of the part,
we can use: K:[need(Prod,Part)], K >= 3. However, for querying product-part pairs
where products require less than 3 instances of the part, we cannot use the natural counter-
part: K:[need(Prod,Part)], K < 3. This running-FS goal produces every product-part
pair instead of the ones with at most two instances of a part. This is because of the semantics
of the running-FS goal: a need tuple is generated for frequencies 1 up to K for all prodpart
tuples.

In contrast, ALANLIGHT imposes no specific restrictions on operators. More impor-
tantly: ALANLIGHT guarantees correct results and in addition has a simple yet efficient
evaluation strategy. Efficient, as ALANLIGHT only calculates values that lead to the final
result; that is, on-demand and on a per-attribute-instance basis.
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So far, we have shown how to express a bill of material calculation (with quantities)
in other languages, highlighting the main differences between these languages and ALAN-
LIGHT. The following model expresses the bill of material calculation with quantities in
ALANLIGHT:

products: collection ∼ g_parts = acyclic-graph {
parts: collection ∼ ref(this.parent. products[ g_parts]) {

quantity: integer
sub_parts: collection = this.parent.parent. products

in(this>key. parts>key) = direct
in(this>key. parts. sub_parts>key) = indirect

{
quantity: integer = this.parent. quantity *

(sum( direct. quantity) + sum( indirect. quantity))
}

}
all_parts: collection = this.parent. products

in(this. parts>key) = direct
in(this. parts. sub_parts>key) = indirect

{
quantity: integer = sum( direct. quantity) + sum( indirect. quantity)

}
}

The sub_parts calculation recursively aggregates sub_parts of parts, and calculates the
quantity per subpart. Subsequently, the all_parts calculation combines the results. Note
that with some minor modifications to ALANLIGHT we can omit the sub_parts collection,
making the expression more concise. For example, we can track the parts items leading to
a specific indirect part, enabling us to express the calculation as follows:

products: collection ∼ g_parts = acyclic-graph {
parts: collection ∼ ref(this.parent. products[ g_parts]) {

quantity: integer
}
all_parts: collection = this.parent. products
in(this. parts>key) = direct
in(this. parts as part in part>key. all_parts>key) = ( indirect , part) //tuple

{
quantity: integer = sum( direct. quantity)

+ sum( part. quantity) * sum( indirect. quantity)
}

}

Language extensions such as these do not affect the core concepts constituting the (static)
semantics of ALANLIGHT. The same holds for language extensions adding support for
features such as mutual recursion. For supporting mutual recursion, we can simply inline
expressions before running our static semantics checker [26]. The next paragraph uses some
basic extensions for further discussing other important properties of ALANLIGHT.
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module lms (incremental)
entity Student {

name : String
}
entity Assignment (eventual) {

name : String
question : String?
deadline : Datetime?
minimum : Float
avgGrade : Float? = avg(submissions.grade)
passPerc : Float? = count(submissions.filter(x=>x.pass)) / count(submissions)

}
entity Submission {

name : String = assignment.name + " " + student.name (on-demand)
answer : String?
deadline : Datetime? = assignment.deadline <+ parent.deadline (default)
finished : Datetime?
onTime : Boolean = finished <= deadline <+ true
grade : Float? = if(conj(children.pass)) avg(children.grade) (default)
pass : Boolean = grade >= assignment.minimum && onTime <+ false

}
relation Submission.student 1 <-> * Student.submissions
relation Submission.assignment 1 <-> * Assignment.submissions
relation Assignment.parent ? <-> * Assignment.children
relation Submission.parent ? =

assignment.parent.submissions.find(x => x.student == student)
<-> * Submission.children

Figure 6.1: ICEDUST model of a simplified learning management system [23].

Bidirectional recursion. Similar to ALANLIGHT, ICEDUST [23] is data modeling lan-
guage with integrated support for declaratively modeling constraints and derivations as an
integral part of an object specification. ICEDUST also admits recursion, but neither guar-
antees functionally correct output nor termination. For demonstrating the capabilities of
ICEDUST, Harkes et al. [23] use a running example containing a complex calculation re-
quiring bidirectional recursion on a graph (by recursively following references and their
inverse).

ALANLIGHT supports recursion on graphs that references explicitly partake in. ALAN-
LIGHT also supports inverse references, but the presented static semantics (Chapter 4) does
not cover recursive traversal of inverse references. However, a minor extension to ALAN-
LIGHT solves this problem; our semantics checker implements this extension. For demon-
strating this, we use the running example from a paper presenting ICEDUST [23]. We also
use this example to highlight differences between ALANLIGHT and ICEDUST, and to fur-
ther evaluate important properties of ALANLIGHT.

The paper presenting ICEDUST uses a simplified learning management system as run-
ning example. The system consists of Students submitting Submissions to Assignments.
Assignments form trees (they recursively consist of sub-assignments), and it is assumed
(not guaranteed by the ICEDUST model) that Submissions mirror these trees. Figure 6.1
shows the ICEDUST model from the paper.

The recursive calculation determines if Submissions pass, and includes determining
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root {
Students: collection { name: text }
Assignments: collection ∼ ass_g = acyclic-graph {

question: text
minimum: natural
hasParent: stategroup (

yes { paren: ∼ ref(this.parent.parent. Assignments [ ass_g]) }
no {} )

hasDeadline: stategroup ( yes { deadline: natural } no { } )
children: root. Assignments = inv-refs (. hasParent|no> paren)
Submissions: collection ∼ ref(this.parent. Students) {

answer: text
finished: natural
gradeType: stategroup ( manual { grade: natural } computed {} )
deadlineType: stategroup ( custom { deadline: natural } default {} )
hasDeadline: stategroup = switch (this. deadlineType) as dT (

| custom = yes ( date = dT. deadline)
| default = switch(this.parent. hasDeadline) as hD (// assignment deadline?

| yes = yes ( date = hD. deadline)
| no = switch (this.parent. hasParent) as pA ( // assignment has parent?

| yes = empty (pA> paren. Submissions [this>key]) as pS
| true = switch (pA> paren. hasDeadline) as pAD (//ass paren deadline?

| yes = yes ( date = pAD. deadline)
| no = no )

| false = switch (pS. hasDeadline) as pSD ( // parent subm. deadline?
| yes = yes ( date = pSD@ date)
| no = no )

| no = no ) ) )
( yes ( date: natural) { deadline: natural = date } no {} )
onTime: stategroup = switch (this. hasDeadline) as dl (

| yes = match (this. finished <= dl. deadline) | true = yes | false = no
| no = yes )

( yes {} no {} )
pass: stategroup = switch (this. onTime) ( // finished on time?

| yes = switch (this. gradeType) as gt (
| manual = match ( grade >= this.parent. minimum) // grade above minimum?

| true = yes ( grade = gt. grade) | false = no
| computed

= empty (this.parent< children. Submissions [this>key]. pass| yes) as cpass
| true = no
| false = match(count( cpass) == count(this.parent<children))

| true = match (avg( cpass@ grade) >= this.parent. minimum)// avg pass?
| true = yes ( grade = avg( cpass@ grade))
| false = no

| false = no )
| no = no

) (
yes ( grade: natural) { finalGrade: natural = grade }
no {}

)
}
avgGrade: natural = empty (this. Submissions. pass| yes) as s

| true = one | false = avg(s. finalGrade)
passPerc: integer = empty (this. Submissions) as s

| true = zero | false = count(s. pass| yes) / count(s)
}

}

Figure 6.2: ALANLIGHT implementation of the ICEDUST model from Figure 6.1.
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grades for Submissions. The calculation essentially consists of two parts: (1) calculating
if submissions are onTime using user-provided references and (2) calculating if submissions
pass corresponding requirements using derived inverse references.

As for the first part, Assignments have deadlines. These deadlines are optional;
Submissions inherit them if they exist. If they do not exist, Submissions use the dead-
line from their parent submission, if it exists. Assignment instructors can also override
deadlines of Submissions with custom submission-specific deadlines.

For the second part of the calculation, instructors grade leaf Submissions by assigning
a grade. Leaf Submissions pass when finished before the deadline passes and their grade
is greater than or equal to the minimum assignment grade. Other (composite) Submissions
pass if their children pass and the average grade of their children is greater than or equal
to the minimum assignment grade.

Figure 6.2 presents an ALANLIGHT implementation of the learning management sys-
tem. The figure uses minor extensions to ALANLIGHT, including boolean comparison, a
match expression matching boolean comparison results, key lookup in a collection, and the
option to reference a state input parameter (e.g. @grade) inside an expression.

More importantly, the model uses the inverse reference attribute children in the recur-
sive pass calculation. If a reference partakes in a graph, its inverse implicitly partakes in
the inverse of that graph (which is also acyclic). For ensuring termination, ALANLIGHT’s
extended semantics creates inverse graph-sets G for inverse references. Furthermore, it per-
forms one additional operation when combining graph-sets (from first-sets and follow-sets):
if one graph-set contains a graph and another contains its inverse, the combined graph-set
contains neither.

ICEDUST models consist of a list of objects types, and relations among these object
types. Attributes in ICEDUST hold atomic values. Therefore, Assignments, Submissions,
Students, and the relations among them are defined as a list. In contrast, ALANLIGHT

supports complex (nested) object structures, and requires expressing these as such. That
is, Assignments in the ALANLIGHT model nest Submissions and relations among the
object types. This is important, as ALANLIGHT’s static semantics requires this for the re-
cursive calculations. (We can extend ALANLIGHT to support recursion without the nesting
requirement as well, but we consider this beyond the scope of this thesis.)

The ICEDUST example assumes that Submissions trees mirror Assignments trees.
ICEDUST requires this assumption for ensuring consistency. In contrast, ALANLIGHT re-
quires no such assumption; Submissions are added when Students submit them. The
finished attribute values correspond to the submit date.

As mentioned before, the recursive calculation consists of two parts: calculating if a
submission is onTime and calculating if it is a pass. For calculating if a Submission is
onTime, we recursively calculate its deadline. The deadline calculation uses the paren
reference for retrieving a parent submission. That is, if the submission has a default
deadline and the assignment has no deadline. If a parent submission exists on the parent
assignment, the empty clause produces this submission, and the calculation recursively uses
its deadline. The onTime calculation checks the calculated deadline against finished,
yielding the required result.
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Students only receive grades for composite Submissions that pass. If the submission
is onTime (state yes), it may pass: we check the gradeType. If the gradeType is manual,
we check if the entered grade conforms to the minimum required grade. Otherwise, we
check if (1) the student has child Submissions that pass (recursively using inverse refer-
ences), (2) if the student submitted Submissions to all child Assignments, and (3) if the
average child-submission grade conforms to the minimum required grade of the composite
assignment. Only then, the student gets a finalGrade for a composite submission, which
conforms to the system specification.

The ICEDUST model allows violations of the system specification, leading to incor-
rect or inconsistent data. For example, the ICEDUST model allows circular dependencies
among Assignments. In addition, the ICEDUST model allows Students to submit multiple
times to the same assignment, because ICEDUST neither supports nesting nor more com-
plex constraints on relations. In the presence of cycles, calculations in ICEDUST can fail or
produce incorrect results. The type of failure depends on the calculation strategy; ICEDUST

implements several different strategies. Eager incremental evaluation neither guarantees
functional correctness nor termination. The lazy incremental evaluation strategy and the
on-demand evaluation strategy can run infinitely. In contrast, ALANLIGHT guarantees cor-
rect and consistent results.

Numerically bounded recursion. In some recursive calculations, atomic (typically nu-
merical) values bound the recursion. ALANLIGHT cannot express this; by design, as we
further explain below. For example, ALANLIGHT cannot generate all Fibonacci numbers
up to a certain numerical bound, while R-SQL [2] supports this:

fib1(n float, f float) := SELECT fib.n, fib.f FROM fib;
fib2(n float, f float) := SELECT fib.n, fib.f FROM fib;

fib(n float, f float) := SELECT 0,1 UNION SELECT 1,1 UNION
SELECT fib1.n+1,fib1.f+fib2.f FROM fib1,fib2
WHERE fib1.n=fib2.n+1 AND fib1.n<10;

Note that R-SQL does not guarantee termination; without the bound fib1.n<10, the query
runs infinitely.

Although ALANLIGHT precludes generating (rows holding) Fibonacci numbers, the
language does support calculating Fibonacci numbers. To this end, the language requires
either a fixed number of copies of the expression, or alternatively requires creating entities
(rows) in advance:

fib_numbers: collection ∼ g_iter = acyclic-graph {
has_previous: stategroup (

yes { prev: ∼ ref (this.parent.parent. fib_numbers [ g_iter]) }
no { }

)
fib: integer = switch (this. has_previous) as fib2 (

| no = one
| yes = switch ( fib2> prev. has_previous) as fib1 (

| no = one
| yes = fib1> prev. fib_number + fib2> prev. fib_number ) )

}
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Observe that this requirement is essential for guaranteeing ALANLIGHT’s boundedness
properties; without this requirement, boundedness in trivially countable size properties of
a model would no longer hold. Instead, the running time would also depend on numerical
values. What is more, the PTIME bound in the maximum size of a user provided collection
would no longer hold when supporting concepts required for the R-SQL query. R-SQL
generates rows (collection items) from atomic values. The number of generated rows can
easily exceed the maximum size of a user provided collection.

Similar to the above problem, ALANLIGHT cannot express algorithms involving a dy-
namic number of iterations; that is, if this dynamic number is calculated from atomic nu-
merical values in a dataset. An example is the PageRank [52] algorithm, which calcu-
lates ranks for web pages. To this end, the algorithm repeatedly traverses graphs of web
nodes, modifying rank values until convergence – in the form of a numerical rank differ-
ence threshold – is reached. Many systems for complex data processing support such algo-
rithms, including DEALS [64], GRAPHX [73] (Apache Spark library), GELLY [9] (Apache
Flink library), HUSKY [74], and NAIAD [46] which includes differential dataflow [39] and
GRAPHLINQ. The following figure shows a PageRank algorithm for a single web node
expressed in GRAPHX, GELLY, and HUSKY using the Pregel API [35]:

def web_node_exec(v): pr = (v.get_msgs ()) * 0.85 + 0.15
v.set_value(pr)
for nb in v.get_nbs ():

v.send_msg(pr/len(v.get_nbs ()), nb.id)

The algorithm iterates over the web nodes, updating their PageRank (pr) value using the
PageRank equation. For the next iteration, each vertex sends an equally divided part of its
PageRank value to the neighbouring nodes that it references. The algorithm stops iterat-
ing web nodes when the PageRank value converges, which is after a dynamic number of
iterations.

However, a dynamic number of iterations gives unpredictable running times for large
datasets. Furthermore, computations may diverge, and queries may not terminate or yield
incorrect values. Therefore, the number of iterations is sometimes bounded by a static
number value indicating a maximum number of iterations. The bound enables expressing
PageRank in ALANLIGHT as well. We can apply the presented approach for calculating a
bounded amount of Fibonacci numbers.

Note that preventing a dynamically calculated number of iterations is in fact essen-
tial to guaranteeing ALANLIGHT’s time bounds. ALANLIGHT guarantees boundedness in
trivially countable size properties of a model and a corresponding dataset. Supporting a dy-
namically calculated number of iterations precludes that, yielding running times that depend
on atomic values in a dataset.

Summary. In summary, ALANLIGHT requires acyclic graph traversal for recursive cal-
culations, and thus precludes recursion on potentially cyclic graphs. In addition, ALAN-
LIGHT precludes generating entities (rows) from atomic values. The language only creates
new entities for existing entities, essentially augmenting them. Furthermore, ALANLIGHT

precludes expressing algorithms where dynamically calculated atomic values determine the
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number of iterations of a looping construct. These limitations are essential for achieving
ALANLIGHT’s key properties.

6.2 Threats to validity

A threat to the validity of our approach is that ALANLIGHT’s semantics lacks a formal
proof of termination. Our future work may include such a proof. As part of this work,
we developed a tool implementing the analysis (ALANLIGHT’s static semantics). The tool
produced expected results for all programs that we ran it on. These programs include an
accounting system that we ported from ALAN to ALANLIGHT, programs describing parts
of other ALAN systems that use recursive computations, and examples from this chapter.

As mentioned in Chapter 1, ALAN is being used as the principal programming lan-
guage for engineering data-intensive software systems at M-industries. M-industries has
successfully deployed several ALAN-based systems at manufacturing sites all over Europe
which are actively being used as integral parts of manufacturing processes. We verified that
ALANLIGHT’s concepts cover all recursive computations that these systems require. From
this, we conclude that our approach works for real-life use cases.
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Chapter 7

Related Work

This chapter compares ALAN to related work, addressing several aspects of ALAN that
we have not discussed so far. First, we discuss support for expressing the structure of
data, constraints on data, and derivations from data. Subsequently, we evaluate support
for recursive computations, and recapitulate approaches for providing guarantees such as
termination. We conclude this chapter with a discussion on dependent typing.

Structure, constraints, and derivations. Equivalent to ALANLIGHT, XML schema
languages (XML SCHEMA [36], SML [66], RELAX NG [70], SCHEMATRON [14], etc.)
support specifying hierarchical data structures in hierarchical manner. To a varying ex-
tent, XML schema languages also support expressing referential integrity constraints. For
example, SML [66] supports expressing graph (acyclicity) constraints, but only between
different XML documents. XML schema languages are meant for validating XML doc-
uments, and do not support expressing derived values. For deriving values from XML
documents, XML based technologies typically use XSLT or XQUERY. But, as XSLT and
XQUERY are Turing-complete [28, 50] languages, they are unable to generally guarantee
bounded running times. In contrast, ALANLIGHT enables inline declarative specification
of derived values, has a type system that uses referential integrity constraints (including
acyclicity constraints) ensuring correctness, and is not Turing-complete.

SQL databases store data in a tabular format, and SQL database schemas describe a flat
list of tables. SQL databases have several limitations, as Kent [27] and Reiter [54] point out.
For example, they allow incompleteness (NULL values) and lack a built-in mechanism for
subtyping. SQL also has only rudimentary support for referential integrity constraints [19].
Enforcing more complex constraints requires writing custom code in a GPL, or a separate
language such as OCL [13].

OCL is a widely adopted navigation-based query language for object graphs [69]. It
was originally designed to overcome limitations of the UML [8]. The Eclipse Modeling
Framework (EMF) offers the UML dialect ECORE for modeling data, and supports express-
ing constraints and derivations in ECLIPSE OCL 1. VIATRA QUERY (formerly 2 EMF-

1https://wiki.eclipse.org/OCL/OCLinEcore
2https://viatra.net/news/2016/2/say-goodbye-to-emf-incquery-say-hello-to-viatra-query
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IncQuery [69]) offers an alternative solution for defining constraints and derivations over
ECORE models. However, VIATRA QUERY cannot guarantee values of a predefined in-
divisible type, as it provides no multiplicity guarantees. Furthermore, ECLIPSE OCL and
VIATRA QUERY both allow the use of arbitrary JAVA code, making them Turing-complete.

Deductive database languages such as DATALOG [31] declaratively define programs
(including the structure of data, constraints, and derivations) as a flat list of rules called
logical predicates. A rule essentially defines an object, consisting of atomic attribute values
and relations with other rules which themselves recursively consist of atomic attribute val-
ues. However, many practical applications in different fields require storing, manipulating,
and computing complex nested objects [10]; for example, applications for exchanging data
between machines and supporting systems. These objects typically require a strict prede-
fined structure and conformance to complex constraints. Contrary to typical (rule based)
deductive database languages, ALANLIGHT supports expressing complex nested objects,
and guarantees strict schema conformance.

As DATALOG itself is too limiting for practical applications, many extensions have been
proposed [10, 18]. For example, LOGIQL [21] extends DATALOG featuring advanced con-
straints, including graph constraints. However, contrary to ALANLIGHT, LOGIQL does
not use these constraints in its type system for ensuring safe and correct recursive calcula-
tions. Furthermore, LOGIQL does not guarantee termination [18, 59]. To our knowledge,
the aforementioned extended DATALOG DEAL [63], does not support constraints. In the
DATALOG community, supporting recursive calculations (aggregation and negation) is an
important subject of discussion. Different proposals for supporting it exist, but the commu-
nity has not converged to any specific proposal [18].

As mentioned before, ICEDUST [23] is a data modeling language with integrated sup-
port for expressing constraints and derivations. Similar to ALANLIGHT, it uses expressions
for inline specification of derived values at attributes (unlike DATALOG which uses rules that
are independent of an object structure, and other approaches we mentioned so far, which use
separate query languages). ICEDUST also features multiplicity guarantees.

ICEDUST models consist of a list of object type definitions and separately defined rela-
tions among these object types. ICEDUST objects hold atomic values, meaning that object
definitions in IceDust are conceptually identical to table definitions in SQL. ICEDUST has
rudimentary support for referential integrity constraints; the expressiveness is equivalent to
single field foreign key constraints in SQL. That is, ICEDUST supports expressing relations
among objects, but relations cannot use (complex) navigation paths expressing dependence
on other relations. ICEDUST supports deriving atomic values and relations. In contrast,
ALANLIGHT featuring complex nested object type definitions and complex referential in-
tegrity constraints. Furthermore, ALANLIGHT supports deriving complex nested objects.

In summary: in contrast to related work, ALANLIGHT offers integrated support for
specifying data and data flow in a very precise and detailed manner. This enables ALAN-
LIGHT’s soundness and functional correctness guarantees, contrasting related work: satis-
fying the requirements for these guarantees requires developers to give a very detailed and
precise specification of data and data flow.
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Recursion and operational semantics. R-SQL, ECLIPSE OCL, VIATRA QUERY,
LOGIQL, and DEALS all use a fixpoint semantics for ensuring terminating recursive cal-
culations yielding potentially incorrect values. In contrast, ALANLIGHT prevents cycles for
recursive calculations before performing them.

Typical XML query languages such as XSLT and XQUERY, are Turing-complete; they
do not guarantee termination. Typical SQL implementations bound recursion with timeouts
or user specified bounds on the number of iterations in recursion. R-SQL implements
stratified fixpoint computation, ensuring terminating transitive closure computations. But,
as the termination condition of the fixpoint algorithm is based on the inability to generate
new rows, termination is not guaranteed in the presence of (arbitrary) arithmetic inside
recursion (i.e. arithmetic can yield an infinite number of unique rows).

VIATRA QUERY features stratified recursion, and uses a fixpoint algorithm for re-
cursive calculations. The default algorithm for evaluating recursion in VIATRA QUERY

does not guarantee correct (least fixpoint) results. For guaranteed least fixpoint results, the
developer can enable the DRED [20] algorithm which ensures a least fixpoint, but incurs
additional overhead. VIATRA QUERY also allows the use of arbitrary JAVA code, making
it Turing-complete. Another example of a language applying the DRed algorithm for incre-
mental recursive computation is I3QL [43]. I3QL is a Turing-complete language; a general
purpose programming language designed for specifying incremental computations.

LOGIQL features stratified recursion (behind a compiler flag [23]), and the engine uses
a stratified partial fixpoint semantics for evaluating recursive programs 3. However, this se-
mantics does not guarantee fixpoint convergence in the presence of arithmetic. According
to Zinn 3, LOGIQL detects cases where an earlier state is reproduced, and consequently
aborts the transaction with an error. This means that LOGIQL (1) requires tracking earlier
states in a computation and requires checking earlier states against subsequent states, (2)
does not support on-demand evaluation of derived values (while guaranteeing correct out-
put), and (3) does not guarantee (correct) output for recursive calculations before evaluating
them. Furthermore, as stated before, LOGIQL does not guarantee termination [18, 59].

DATALOGFS [38] features more advanced support for recursion, while also guaranteeing
termination. The language supports a limited form of aggregation inside recursion: mono-
tonic aggregation. DEAL supports this as well; monotonic aggregation in DEAL is based
on DATALOGFS work [38, 37]. In addition, DEAL also supports user defined aggregates.
Furthermore, DEAL features XY-stratified recursion, which further increases the expres-
siveness of the language. XY-stratification is a form of local stratification that incorporates
an iteration counter (a temporal argument) in rules. In this approach, subsequent iterations
of a fixpoint algorithm check newly derived facts against earlier derived facts from previous
iterations to prevent reevaluation.

Other DATALOG extensions with concrete implementations include BIGDATALOG and
SOCIALITE. BIGDATALOG is a DATALOG implementation on Apache Spark, incorporating
extensions for monotonic aggregation found in DEAL (it is developed as part of the DEALS
project [62]). SOCIALITE [59, 60] has very limited support for recursive aggregation. For
example, unlike DEAL it does not support recursive summation.

3https://developer.logicblox.com/2013/08/logiql-4-x-fixpoint-semantics/
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ICEDUST utilizes a value-oriented (instead of tuple/row/fact-oriented) fixpoint algo-
rithm for recursive aggregation of atomic values. The algorithm terminates when the (atomic)
calculated value no longer changes between successive iterations of the algorithm. How-
ever, ICEDUST neither guarantees correct output (a unique least fixpoint) nor termination;
computations may diverge.

Dependent types. SCALA [48] features a limited form of dependent types: path-dependent
types. Path-dependent types in SCALA enable constructing object instances of a (nested) de-
scendant type using a parent object. Because ALANLIGHT models define type hierarchies,
object construction does not use path-dependent typing.

ALANLIGHT supports a similar restricted form of dependent typing: path-dependent
relation typing. Reference attributes and keys representing references have navigation path
that are interpretated relative to their context node on the instance level. They can depend
on other reference attributes or collection keys:

products: collection {
parts: collection ∼ ref(this.parent. products) { .. }

}
my_product: ∼ ref(this. products)
broken_part: ∼ ref(this> my_product. parts)

VIATRA QUERY supports expressing path-dependent relations with constraints on top of
references [24]. However, the language requires expressing references themselves in a sep-
arate language such as ECore, while ALANLIGHT supports expressing a path-dependent
relation as an integral part of a reference definition.
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Chapter 8

Conclusions and Future Work

In the introduction we already summarized our main contributions; for convenience we re-
peat them here. The contribution of this thesis is a declarative data modeling language, for
expressing complex recursive calculations, while guaranteeing soundness (where values are
always of a predefined indivisible type), functional correctness (which includes determinis-
tic output), polynomial time complexity in the size of user data, and a combined complexity
in the size of (trivially countable properties of) the specification.

In Chapter 2 we have provided an extensive overview of problems with existing lan-
guages for data transformation. In Chapter 3 we have demonstrated the need for recursive
calculations. Furthermore, we have discussed the requirements that ALANLIGHT imposes
on recursive calculations, for ensuring soundness, functionally correctness, and bounded,
predictable running times. For statically checking requirements for safe, functionally cor-
rect, and bounded ALANLIGHT programs, we have presented a formal static semantics
(Chapter 4), focusing mainly on non-trivial rules.

For understanding the meaning of concepts in ALANLIGHT, and also for guarantee-
ing the aforementioned boundedness properties, we provided an operational semantics for
constraint checking and for on-demand minimal effort calculation of derived values (Chap-
ter 5). ALANLIGHT’s operational semantics shows that ALANLIGHT performs exactly
those calculations that lead to a final demanded result. Furthermore, the semantics shows
that ALANLIGHT performs calculations at most once during expression evaluation. We
designed ALANLIGHT’s semantics such that evaluation rules trivially map to a concrete
implementation.

From ALANLIGHT’s operational semantics, we derived upper bounds on the dynamic
number of calculations and the running time of programs in the language. These bounds
show that ALANLIGHT indeed guarantees polynomial time complexity in the size of user
data, and a combined complexity in the size of trivially countable properties of ALANLIGHT

models. ALANLIGHT’s boundedness guarantees enable accurate worst-case running time
predictions for changing data.

The question we asked in our problem statement was: to what extent can we support
complex recursive calculations, while guaranteeing soundness, functional correctness, and
bounded, predictable running times? To answer this question, we addressed different kinds
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of recursive (and iterative) computations. We showed that ALANLIGHT’s concepts enable
many complex recursive calculations found in related work, while providing aforemen-
tioned guarantees. ALANLIGHT exceeds the capabilities of existing approaches with regard
to support for recursive calculations under aforementioned guarantees.

Two specific classes of problems are not expressible in ALANLIGHT: problems where
atomic (numerical) values bound computations, and problems involving recursion on cyclic
graphs. Precluding the first class of problems is essential to guaranteeing aforementioned
running time bounds. We can typically reformulate problems from this class, such that
ALANLIGHT can express them. For the second class of problems, we can use a fixpoint
semantics. However, ensuring correct output requires very specific restrictions on operators;
for example, restricting to operators min and max in a recursive expression. As future work,
we consider investigating the possibility of mixing ALANLIGHT’s semantics with such a
semantics.

8.1 Future work

Expressiveness and conciseness. We would like to formalize several features already
present in ALAN for more concise models and more expressiveness. First, we would like to
formalize type reuse. For type reuse, ALAN supports component types; named types defined
alongside the root type, similar to classes in JAVA. Second, we would like to formalize
support for mutual recursion among earlier and later defined attributes. Note that we can
integrate type reuse and mutual recursion into ALANLIGHT’s semantics by simply inlining
component types and expressions, respectively.

Apart from features already present in ALAN, we would like to investigate the possibil-
ity of graph inheritance in ALANLIGHT’s static semantics. To demonstrate what we mean
by this, consider the following model:

Products: collection ∼ parts = acyclic-graph { .. }
ConfProducts: collection ∼ ref(this.Products) { .. }

ConfProducts are Products that a manufacturer has configured. Because Products
form an acyclic graph, ConfProducts also form an acyclic graph, implicitly. That is,
ConfProducts inherit the acyclic parts property of Products. From references among
Products, we can derive references among ConfProducts. These references implicitly
partake in the inherited acyclic parts graph. As such, we can safely support calculations
that recursively traverse them. That is, without the need to explicitly provide a graph and
corresponding elementary references among ConfProducts. We are currently extending
ALANLIGHT with features such as these, and gradually replacing ALAN with the extended
version of ALANLIGHT.

We would also like to investigate the possibility of combining ALAN’s semantics with a
fixpoint semantics for enabling recursive calculations on cyclic graphs where correct output
can be guaranteed. For example, for for a shortest path calculation on a cyclic graph.

84



8.1. Future work

Formal definition of expressiveness. Our evaluation gives insight into the types of prob-
lems that ALANLIGHT can express. However, we would like a formal definition of the
class of problems that ALANLIGHT covers. That is, we would like an answer to the ques-
tion: which class of problems can ALANLIGHT express, and which class of problems is
inexpressible in ALANLIGHT?

Formal proof of termination. A thread to the validity of our approach is the lack of a
formal proof of termination. We would like to construct such a proof with a formal proof
management system such as COQ [4].

Calculation strategies. On a different note, we would like to research the impact of
ALANLIGHT restrictiveness on incremental computation of derived values. In addition, we
would like to compare the real-world performance of ALANLIGHT to existing approaches,
and investigate distributed and parallel computation of derived values.

Furthermore, we would like to compare the real-world performance of approaches ap-
plying a fixed-point semantics to the real-world performance of ALANLIGHT’s (extended)
semantics. This is interesting because a fixed-point semantics induces overhead during (on-
demand) derived value computation, while ALANLIGHT induces overhead in the form of
graph maintenance during transaction processing.
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