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Bipartite quantum interactions have applications in a number of different areas of quantum physics,
reaching from fundamental areas such as quantum thermodynamics and the theory of quantum
measurements to other applications such as quantum computers, quantum key distribution, and other
information processing protocols. A particular aspect of the study of bipartite interactions is concerned with
the entanglement that can be created from such interactions. In this Letter, we present our work on two
basic building blocks of bipartite quantum protocols, namely, the generation of maximally entangled states
and secret key via bipartite quantum interactions. In particular, we provide a nontrivial, efficiently
computable upper bound on the positive-partial-transpose-assisted quantum capacity of a bipartite quantum
interaction. In addition, we provide an upper bound on the secret-key-agreement capacity of a bipartite
quantum interaction assisted by local operations and classical communication. As an application, we
introduce a cryptographic protocol for the readout of a digital memory device that is secure against a
passive eavesdropper.

DOI: 10.1103/PhysRevLett.121.250504

Introduction.—Bipartite quantum interactions are a fun-
damental feature in numerous areas of quantumphysics.Any
interaction described by a Hamiltonian of an otherwise
closed quantum system with a heat bath realizes a bipartite
unitary operation that acts on the quantum system and the
bath collectively (cf. Ref. [1]). Similarly, any noisy evolution
or measurement of a quantum system can be described in
terms of a bipartite unitary operation acting on the system, as
well as an environment or measurement probe system [2,3].
Quantum computation, error correction, and many more
information-theoretical applications of quantum physics rely
on bipartite unitary quantum operations known as bipartite
quantum gates. Examples include the swap gate, the con-
trolled-NOT (CNOT) gate, or the controlled phase gate [4].
Going beyond unitary bipartite interactions, one can

consider noisy interactions between two quantum systems
held by separate parties, Alice and Bob, which can be
described by a tripartite unitary operation acting on the
two quantum systems as well as an uncorrelated environ-
ment, or by a completely positive, trace-preserving map, a
bidirectional quantum channel [5], acting only on Alice and
Bob’s systems. Examples of such bidirectional quantum
channels are noisy bipartite quantum gates [6], which occur
in every realistic implementation of quantum computing,
quantum error correction, interactions of two separate
quantum systems with a heat bath [1], or joint measurements

of two quantum systems, as are performed in teleportation or
entanglement swapping [7,8].
Depending on the kind of bipartite interaction and the

input states, entanglement can be created, destroyed, or
changed by the interaction [9–11]. Whereas the environ-
ment is assumed to be inaccessible to Alice and Bob, it does
play a crucial role whenever Alice and Bob are performing
bipartite operations in a cryptographic protocol, such as
secret key agreement [12–15]. In such a case, it has to be
assumed that the eavesdropper can access part of or even
the entire environment system.
In this work, we analyze bipartite interactions in terms of

their abilities to create entanglement, as well as secret key. In
particular, we focus on determining bounds on the non-
asymptotic quantum and private capacities of bipartite
interactions, i.e., the maximum rates at which maximally
entangled states or bits of secret key, respectively, can be
distilled when a finite number of interactions are allowed.
Previous results in this direction include Refs. [5,16,17],
which introduce capacities for classical and quantum com-
munication via bipartite unitary and nonunitary interactions,
respectively, as well as a number of results on the entangle-
ment generating capacities or the entangling power of
bipartite unitary interactions [5,18–23].
What has been an open question since Ref. [5] is whether

there exists a nontrivial, efficiently computable upper bound
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on the entanglement generating capacity of a bipartite
quantum interaction. The difficulty in addressing this ques-
tion is that the protocols for entanglement generation are
allowed to use local quantum systems of arbitrarily large
dimension, and it might not be clear a priori whether such
bounds would be possible. Another question left open from
prior work is that of considering private communication in
the bidirectional context, that is, characterizing the rate at
which secret key bits can be distilled by Alice and Bob via a
bidirectional channel.
In this Letter, we answer the aforementioned questions

affirmatively, and our bounds thus serve as benchmarks
for assessing the entanglement and secret key agreement
capabilities of bipartite interactions. To begin with, we
determine an efficiently computable upper bound on the
entanglement generating capacity of a bipartite quantum
interaction. As examples, we compute this bound for the
partial swap operation [24], which is related to how
photons interact at a beam splitter, as well as for the
swap gate concatenated with collective dephasing [25],
which is a kind of bipartite interaction that can occur in a
quantum computer. Next, we introduce the secret-key-
agreement capacity of a bipartite quantum interaction and
provide a general upper bound on it, based on the max-
relative entropy of entanglement [26,27]. Our upper
bounds on the quantum and private capacities involve
an optimization over bounded quantum systems having a
fixed dimension.
As another contribution, we introduce a cryptographic

protocol, which we call private reading, for the readout of a
digital read-only memory device secure against a passive
eavesdropper. The protocol of private reading is related to
quantum reading [16,28], in which a classical message is
sent to a reader, after being stored in a read-only memory
device. Physically, the device contains codewords that are
sequences of quantum channels, which are chosen from a
memory cell (a collection of quantum channels). The
information is stored in the choice of channels, and the
reader can retrieve the message by using a quantum state to
distinguish the channels. In private quantum reading, the
message is assumed to be secret, and the reader has to
retrieve it in the presence of an eavesdropper. We determine
upper bounds on the performance of any private reading
protocol by leveraging the fact that reading digital infor-
mation stored in a memory device can be understood as a
specific kind of bipartite quantum interaction.
Bounds on quantum and private capacities.—Let us

begin our discussion of entanglement and secret key
distillation via bipartite interactions by defining the
relevant entanglement measures and capacities. Let A0,
LA, and A denote quantum systems held locally by Alice,
and let B0, LB, and B denote those held by Bob. Given a
bidirectional channel N A0B0→AB, a completely positive,
trace-preserving map from quantum systems A0B0 to AB,
we define the bidirectional max-Rains information of N as

R2→2
max ðN Þ ≔ logΓ2→2ðN Þ, where Γ2→2ðN Þ is the solution

to the following semidefinite program (SDP):

minimizekTrABfVLAABLB
þ YLAABLB

gk∞
subject toVLAABLB

; YLAABLB
≥ 0;

TBLB
ðVLAABLB

− YLAABLB
Þ ≥ JNLAABLB

; ð1Þ

such that LA ≃ A0, and LB ≃ B0. The notation VLAABLA
,

YLAABLB
≥ 0 means that VLAABLA

and YLAABLB
are con-

strained to be positive semidefinite operators acting on the
Hilbert space of the composite quantum system LAABLB.
Furthermore, the notation LA ≃ A0 means that quantum
system LA is isomorphic to system A0, which in this case
simply means that these systems have the same dimension.
Here TX denotes the partial transposition with respect
to subsystem X and JN ≔ N A0B0→ABðjϒihϒjLALB∶A0B0 Þ
is the Choi operator of N , with jϒiLALB∶A0B0 ≔P

ijjijiLALB
jijiA0B0 . The SDP is a generalization of the

SDP formulation of the max-Rains information of a point-
to-point channel [29]. Whereas R2→2

max is sufficient to bound
entanglement distillation rates, the existence of positive-
partial-transpose (PPT) entanglement useful for quantum
key distribution [14,15] motivates the introduction of a
second measure of entanglement, the bidirectional max-
relative entropy of entanglement:

E2→2
max ðN Þ ≔ sup

ψLAA
0⊗φB0LB

EmaxðLAA;BLBÞN ðψ⊗φÞ; ð2Þ

where ψLAA0 ⊗ φB0LB
is a pure product state such that

LA≃A0, and LB≃B0 and EmaxðA;BÞρ ≔ inffλ∶ρAB ≤ 2λσAB;
σAB ∈ SEPðA∶BÞg denotes the max-relative entropy of
entanglement of a state ρAB [26,27], with SEPðA∶BÞ
denoting the set of all separable states of the bipartite
system AB.
Let us formalize what we mean by entanglement and

secret key distillation via a bipartite interaction [30], as
depicted in Fig. 1. Given a bidirectional channelN A0B0→AB,
we consider entanglement (or key) distillation protocols as
follows: an initial PPT-preserving (or LOCC) channel

between Alice and Bob creates a state ρð1ÞLA1
A0
1
∶B0

1
LB1

, where

subsystems LA1
A0
1 and B0

1LB1
are held by Alice and Bob,

respectively. Note that a bipartite channel PA0B0→AB is PPT

FIG. 1. A model of an adaptive PPT-assisted entanglement
generation protocol using a bidirectional channel N . Secret-key
agreement proceeds analogously if we replace the PPT-preserving
channels by LOCC channels.
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preserving if TB ∘ PA0B0→AB ∘ TB0 is a channel [31,32].
Furthermore, a bipartite channel is PPT preserving if and
only if its Choi operator is a PPT state [32]. An LOCC
channel is a particular example of a PPT-preserving channel
[31,32]. The dimensions of the auxiliary systems LA1

and
LB1

are finite, but can be arbitrarily large. Subsystems A0
1

and B0
1 of ρ

ð1Þ
LA1

A0
1
∶B0

1
LB1

are then inserted into the channelN ,

yielding a state σð1ÞLA1
A1∶B1LB1

. This is followed by n more

PPT-preserving (or LOCC) channels interleaved with n
uses of the channel. After n channel uses, the final PPT-
preserving (or LOCC) channel should yield a state ωMAMB

that has fidelity [33] larger than 1 − ε with a maximally
entangled state ΦMAMB

containing log2M ebits (or a private
state containing log2K private bits between Alice and
Bob). Such a protocol is called an [n,M (or K), ε] protocol.
A rate R is achievable if for ε ∈ ð0; 1Þ, δ > 0, and
sufficiently large n, there exists an ½n; 2nðR−δÞ; ε� protocol.
The largest achievable rate is the PPT-assisted quantum
capacity Q2→2

PPT (or secret-key agreement capacity P2→2
LOCC)

of N .
By private states containing log2K private bits, we mean

states γKASA∶KBSB , such that measurement of the KA;B

subsystems, the key part, yields logK bits of secret key
as long as the SA;B subsystems, the shield part, are kept
secure from Eve, who is allowed to be in control of the
purification of γ. See the seminal works Refs. [14,15] for
further details.
The main results of this Letter are strong converse

bounds on Q2→2
PPT and P2→2

LOCC, in terms of the bidirectional
max-Rains information and bidirectional max-relative
entropy of entanglement, respectively. The strong-converse
nature of the bound means that the error ε tends to one in
the limit of many channel uses if the communication rate
exceeds the bound. Our first result is as follows:
Theorem 1.—The PPT-assisted quantum communica-

tion capacity of a bidirectional channel N is bounded
from above by its bidirectional max-Rains information:
Q2→2

PPT ðN Þ ≤ R2→2
max ðN Þ, and this upper bound is a strong

converse bound.
Theorem 1 is a consequence of the observation that the

bidirectional max-Rains information of a bidirectional
channel N cannot be enhanced by amortization; i.e., for
an input state ρLAA0B0LB

, the following holds:

RmaxðLAA;BLBÞN ðρÞ ≤ RmaxðLAA0;B0LBÞρ þ R2→2
max ðN Þ;

ð3Þ

where RmaxðA;BÞρ≔ inffλ∶ρAB≤2λσ0AB;σ
0
AB∈PPT0ðA∶BÞg

denotes themax-Rains information of the state ρAB [34], with
PPT0ðA∶BÞ denoting the set of all positive semidefinite
operators σ0AB such that the trace norm kTBðσ0ABÞk1 ≤ 1

[35]. This observationwasmade in the case of point-to-point
channels [36] and constitutes a contribution of our

companion paper [30]. By successive application of the
amortization relation in Eq. (3) to every use of N in an
ðn;M; εÞ protocol, it follows that RmaxðMA;MBÞω ≤
nR2→2

max ðN Þ, where jMAj ¼ jMBj ¼ M. As, by assumption,
Tr½ΦMAMB

ωMAMB
� ≥ 1 − ε, whereas by [31], (Lemma 2)

Tr½ΦMAMB
σ0MAMB

� ≤ ð1=MÞ for any σ0MAMB
∈ PPT0ðA∶BÞ,

it follows by a data-processing argument that
RmaxðMA;MBÞω ≥ log½ð1 − εÞM�. Hence we obtain

1

n
log2M ≤ R2→2

max ðN Þ þ 1

n
log2

�
1

1 − ε

�
; ð4Þ

which implies Theorem 1. Solving Eq. (4) for ε shows that
the error increases exponentially fast to 1 if the rate
exceeds R2→2

max ðN Þ, establishing the strong converse nature
of the bound.
As an example, we have numerically computed R2→2

max for
the qubit partial swap operation [24,37], which is performed
by application of the unitaryUp ¼ ffiffiffiffi

p
p

I þ ι
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
S, where

S ¼ P
ijjijihjij is the swap operator. Such an operation can

be compared to a beam splitter [38]. We also consider when
the partial swap is followed by a traceout of Alice’s
subsystem. As another example, we have computed R2→2

max
for a qubit swap operator with collective dephasing [25],
which is a typical model for noise in a quantum computer. In
the qubit case, a collective phase rotation acts as j0i → j0i,
j1i → eιϕj1i for some phase ϕ. Hence j00i → j00i,
j01i → eιϕj01i, j10i → eιϕj10i, and j11i → e2ιϕj11i. The
collective phase rotation occurs with probability 1 − p.
Our results are plotted in Fig. 2. For the partial swap, the

top plot shows the expected decline from two ebits to zero,
as the channel tends towards total depolarization. For the
partial swap and traceout, the decline is from one ebit to
zero. In the example of collective dephasing, as expected,
the performance is the worst at p ¼ 1=2, where there is the
most uncertainty about whether the collective phase rota-
tion has taken place. For ϕ ¼ π, we can have a reduction of
a factor of 1=2. Let us remark that this bound can actually
be achieved. To do so, Alice and Bob both locally create
two Bell states Φþ

LAA0 and Φþ
B0LB

, which are maximally
entangled. After the swap operation and the collective
dephasing, they end up sharing the state 1

2
Φþ

ALB
⊗ Φþ

BLA
þ

1
2
Φ−

ALB
⊗ Φ−

BLA
. To find out the phase, Alice and Bob can

locally measure either A and LB or LA and B in the Pauli-X
basis, thus sacrificing one ebit. If their results agree, they
haveΦþ, and otherwiseΦ−, which can be rotated toΦþ via
local unitary.
For the generation of secret key, we have the following:
Theorem 2.—The secret-key agreement capacity of

a bidirectional channel N is bounded from above by
its bidirectional max-relative entropy of entanglement:
P2→2
LOCCðN Þ ≤ E2→2

max ðN Þ, and this upper bound is a strong
converse bound.
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Theorem 2 is a consequence of the amortization property
of the bidirectional max-relative entropy of entanglement,
which follows from the data processed triangle inequality
for the max-relative entropy of entanglement [39]. The
proof then follows along the lines of that for Theorem 1,
while making use of the relation between tripartite key
states and bipartite private states and the privacy test
from Ref. [40].
If a bidirectional channel has certain symmetries, tighter

bounds than the ones given in Theorems 1 and 2 can be
obtained: A bidirectional channel N A0B0→AB is said to be
PPT simulable (or teleportation-simulable [41]) with asso-
ciated resource state θDADB

, for some auxiliary quantum
systems DA and DB, if there exists a PPT-preserving (or
LOCC) channel PDAA0B0DB→AB such thatN A0B0→ABðρA0B0 Þ ¼
PDAA0B0DB→ABðρA0B0 ⊗ θDADB

Þ. If a bidirectional channel is
PPT simulable (or teleportation simulable), then the bounds
given in Theorem 1 (or Theorem 2) reduce to the standard
Rains relative entropy [31] (or the relative entropy of
entanglement [42]) of the resource state.

In particular, it can be shown that any bicovariant
bidirectional channel is teleportation simulable, hence also
PPT simulable, with the normalized Choi state as the
associated resource state. By bicovariant, we mean that for
finite groups G and H, with representations as unitary one
designs, the following holds for all g ∈ G, h ∈ H and all
input states ρA0B0 : N A0B0→AB½ðUA0 ðgÞ ⊗ VB0 ðhÞÞðρA0B0 Þ� ¼
½WAðg; hÞ ⊗ T Bðg; hÞ�½N A0B0→ABðρA0B0 Þ�, for unitary rep-
resentations g→UA0 ðgÞ, h→VB0 ðhÞ, ðg; hÞ → WAðg; hÞ
and ðg;hÞ→TBðg;hÞ, where we have defined UðgÞð·Þ ≔
UðgÞð·Þ½UðgÞ�†. An example of a bicovariant channel is the
CNOT gate [43,44], or one that applies the CNOT gate with
some probability and replaces with the maximally mixed
state with the complementary probability.
Private reading.—Consider the task of reading a mes-

sage stored in a memory device, while under the surveil-
lance of a passive eavesdropper Eve. The readout of the
stored message should be private, under the assumption
that Eve has complete access to the environment but no
direct access to the device. Such a private reading protocol
is a private version of the quantum reading protocol from
Ref. [45] (see also Refs. [16,28]). Formally, in a private
reading protocol, the encoder, Alice, encodes a secret
classical message k ∈ K into a sequence of wiretap
channels chosen from a set MX ≔ fN x

B0→BEgx∈X , by
means of codewords xnðkÞ ¼ x1ðkÞ � � � xnðkÞ. We call the
set of wiretap channels a wiretap memory cell, where the
dimensions of the systems B0, B, and E are independent of
x. It is assumed that Eve has access to the E systems only,
but her computational power may be unbounded. As a
special case, we can consider isometric memory cells,
which map the input space B0 reversibly into the output
space BE. The memory device containing the channels is
then delivered to the reader, Bob, as a read-only device.
Bob can use quantum inputs, channels, and measure-

ments to read out the message encoded in the device. In
particular, he can apply an adaptive strategy consisting of
creating an initial state ρð1ÞB0

1
SB1

, inserting B0
1 into the channel

N x1 , applying a quantum channel on the output B1LB1
,

which results in a new state ρð2ÞB0
2
LB2

, the B0
2 subsystem of

which is then entered into N x2 and so on. After using all n
channels, interleaved by quantum channels, Bob then
performs a final measurement, yielding an estimate k̂ of
the encoded message.
As mentioned above, the channels are wiretapped by an

eavesdropper Eve. As is the case for Bob, the device is
assumed to be read only for Eve as well. So she assumes the
role of a passive eavesdropper and only has access to the
output systems E1;…; En of the channels N x1 ;…;N xn ,
respectively. The goal is to maximize Bob’s success
probability of guessing the message, while restricting
Eve to obtain negligible information about the message.
In the case of an isometric wiretap memory cell MX ¼

fUx
B0→BEgx∈X , Theorem 2 provides a (strong converse)
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FIG. 2. Our bounds plotted versus the channel parameter p.
From top to bottom, they are (i) qubit partial swap operation and
qubit partial swap operation followed by traceout of Alice’s
output and (ii) a qubit swap operation with collective dephasing
for various phases ϕ.
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upper bound on the maximum achievable rate of a private
reading protocol. This follows from the observation that in
a purified setting [14,15,40], in which purifications of
all input states are considered and for every operation
the ancillary subsystems are being considered as well, a
private reading protocol can be used to create a private
state, containing K ¼ jKj bits of secret key, between Alice
and Bob. To do so, Alice prepares a purification
ð1= ffiffiffiffi

K
p ÞPk∈Kjk; k; kiKAK̂C

of a maximally classically cor-
related state ð1=KÞPk∈Kjk; kihk; kjKAC and encodes sub-
system C by means of an isometry jkiC → jxnðkÞiXn. For
every letter xiðkÞ of the codeword, the combined operation
of Alice’s writing and Bob’s readout of the memory device
is then described by a controlled isometry

UMX
XiB0

i→XiBiEi
≔

X
x∈X

jxihxjXi
⊗ Ux

B0
i→BiEi

: ð5Þ

In an adaptive protocol, the Ui’s are interleaved with Bob’s
operations. This is then followed by a decoding channel on
Bob’s side, after which Alice and Bob’s state should be ε
close to a private state γKASA∶KBSB , where SA and SB denote
the shield parts containing all ancillary systems that
Alice and Bob have created during the purified protocol
(see Ref. [30], Sec. 6.3). Defining a bidirectional channel
NMX

XB0→XBð·Þ≔TrE½UMX
XB0→XBEð·ÞðUMX

XB0→XBEÞ†�, it is straight-
forward to conclude that the purified reading protocol is an
example of a bidirectional secret-key-agreement protocol.
Hence, by Theorem 2, its capacity is bounded from above
by E2→2

max ðNMX
XB0→XBÞ.

As a concrete example, let us consider a qudit
erasure wiretap memory cell [45]. It is defined as
Q̄p

X ¼fQp;x
B0→BEgx∈X , where Qp;xð·Þ ¼ Upσxð·ÞðσxÞ†ðUpÞ†,

with Heisenberg-Weyl operators σx and UpjψiB0 ¼ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p jψiBjeiE þ ffiffiffiffi
p

p jeiBjψiE the isometric extension
of the erasure channel. Using a covariance argument, we
reduce the upper bound in Theorem 2 to the relative entropy
of entanglement of the Choi state, which provides a strong
converse upper bound of 2ð1 − pÞ log2 d on the private
reading capacity of Q̄p

X .
Summary and outlook.—We have provided strong con-

verse upper bounds on the PPT-assisted quantum capacity
and the LOCC-assisted private capacity of a bidirectional
quantum channel. The bound on the quantum capacity is
related to the Rains bound [31,32], as well as that in
Ref. [29], and can be efficiently computed by SDP solvers.
We have provided examples that demonstrate the appli-
cability of our bound. The bound on the private capacity is
in terms of the max-relative entropy of entanglement
[26,27,39]. As an application, we have considered the task
of private reading in the presence of a passive eavesdropper.
Both bounds can be improved in the case of a bicovariant
bidirectional channel. As an example, we have upper
bounded the private reading capacity of a qudit erasure

wiretap memory cell. Future directions from here include
generalizing our results from bi- to multipartite quantum
interactions, which could be effectively applied in the
theory of quantum networks.
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