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SUMMARY

Spaceborne sensors, particularly Synthetic Aperture Radar (SAR), provide valuable tools
for monitoring agricultural resources, improving yield predictions, and ensuring sus-
tainable farming practices. In this research, we explore several venues to advance the
use of SAR observation time series for agricultural and vegetation monitoring applica-
tions.

The first part of this research evaluates the added value of Sentinel-1 InSAR coher-
ence time series for land cover classification, using an agricultural region in São Paulo,
Brazil, as a case study. This region is characterized by a mixture of crops, pastures, and
sugarcane plantations, all managed asynchronously. The findings demonstrate that in-
corporating InSAR coherence alongside SAR backscatter improves classification accu-
racy, particularly during the dry season when the distinctions between vegetation and
bare soil are more pronounced. The research employed machine learning approaches
to analyze pixel-level and field-level classifications using different sampling schemes.
It highlights how multi-looking strategies can be adjusted to improve the accuracy of
the classification outcomes in agricultural settings. This research highlights the useful-
ness of coherence data for the detection of events such as harvesting, offering valuable
insights for more dynamic agricultural monitoring. The sensitivity of the coherence to
agricultural changes leads to the observed improvement in Land Use Land Cover (LULC)
mapping.

Forward models, or observation operators, are essential for the interpretation of radar
observations and for the development of assimilation frameworks. In particular, in this
research, we are interested in forward modeling the relation between crop bio-geophysical
parameters, such as Leaf Area Index (LAI), Above Ground Biomass (AGB), and soil mois-
ture, the inputs to our data-driven model, and radar observables, the outputs.

In the second part of this research, we integrate an existing crop growth model, the
Decision Support System for Agrotechnology Transfer (DSSAT), with machine learning
techniques to train a forward model to predict SAR observables over silage maize fields in
The Netherlands across multiple years. Using crop growth models circumvents the de-
pendency on limitedly available field measurements. When we use training and valida-
tion data from the same growth season, we obtain accurate predictions, with a mean ab-
solute error (MAE) of less than 1.23 dB. Some of the field-to-field variability is accounted
for by including the mean backscatter intensity during a few acquisitions before crop
emergence. The obtained performance suggests the potential of using this approach to
generate observation operators for data assimilation frameworks or for anomaly detec-
tion, supporting large-scale agricultural monitoring. However, the results also highlight
one of the main challenges: the resulting data-driven model fails to generalize when
presented with input bio-geophysical parameters that fall outside the regions of the pa-
rameter space spanned by the training dataset, as can happen, for example, during a
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drought period.
In the final part, we develop a physics-guided machine learning approach to address

the limitations of data-driven models: lack of generalizability, tendency to overfitting,
and reliance on extensive training data sets. We introduce physical constraints in an ar-
tificial neural network (ANN) in two ways. First, by modifying the loss function, used
to train the ANN, by including a penalty for unphysical behavior, in particular by pe-
nalizing negative values of the partial derivative of the predicted backscatter intensity
with respect to the surface soil moisture, since we assume this should always be positive.
Second, by mirroring the architecture of the widely used Water Cloud Model (WCM) in
the network topology. The added physical term to the loss function improves the ANN
performance in all cases considered, with an R2 increase of 3 percentage points (p.p).
The WCM-inspired model performs slightly worse when trained and tested with data
from the same year, but it generalizes better, producing significantly better results for
unseen conditions. In addition, the WCM-inspired model also produces individual con-
tributions to the observed intensity, such as the surface-scattering component and the
vegetation backscatter component.



SAMENVATTING

Aardobservatiesatellieten, in bijzonder radar satellieten, zijn waardevol voor het moni-
toren van landbouw, het verbeteren van opbrengstvoorspellingen en het waarborgen
van duurzame landbouwpraktijken. In dit onderzoek verkennen we verschillende mo-
gelijkheden om SAR-tijdreeksen in te zetten voor het verbeteren van toepassingen in
landbouw- en vegetatiemonitoring.

Het eerste deel van dit onderzoek evalueert de toegevoegde waarde van Sentinel-1
InSAR-coherentietijdreeksen voor landbedekkingsclassificatie, waarbij een landbouw-
regio in São Paulo, Brazilië, als casestudy wordt gebruikt. Deze regio wordt gekenmerkt
door een mix van gewassen, weilanden en suikerrietplantages, die allemaal asynchroon
worden beheerd. De bevindingen tonen aan dat het combineren van InSAR-coherentie
met SAR-weerkaatsing de classificatienauwkeurigheid verbetert, vooral tijdens het droge
seizoen, wanneer de verschillen tussen vegetatie en kale grond beter te onderscheiden
zijn. Het onderzoek maakte gebruik van machine learning-technieken om pixel- en veld-
niveausclassificaties te analyseren met verschillende bemonsteringsstrategieën. Het be-
nadrukt hoe strategieën zoals multi-looking kunnen worden aangepast om de nauwkeu-
righeid van classificatieresultaten in landbouwcontexten te verbeteren. Dit onderzoek
toont het nut aan van coherentiegegevens voor het detecteren van gebeurtenissen zoals
oogsten, wat waardevolle inzichten biedt voor dynamischer landbouwmonitoring. De
gevoeligheid van de coherentie voor veranderingen in de landbouw draagt bij aan de
waargenomen verbeteringen in Land Use Land Cover (LULC)-kaarten.

Forward models, oftewel observation operators, zijn essentieel voor de interpretatie
van radarwaarnemingen en voor de ontwikkeling van assimilatiekaders. In dit werk zijn
we in het bijzonder geïnteresseerd in het forward modelleren van de relatie tussen bio-
geofysische parameters van gewassen, zoals het bladoppervlakte-index (Leaf Area Index,
LAI), bovengrondse biomassa (Above Ground Biomass, AGB) en bodemvocht, de input
voor ons data-gedreven model, en radarwaarnemingen, de output.

In het tweede deel van dit onderzoek integreren we een gewasgroeimodel, het Deci-
sion Support System for Agrotechnology Transfer (DSSAT), met machine learning-technieken
om een forward-model te trainen dat SAR-metingen voorspelt voor maïsvelden in Ne-
derland over meerdere jaren. Het gebruik van gewasgroeimodellen lost de afhankelijk-
heid van beperkt beschikbare veldmetingen op. Wanneer we trainings- en validatiege-
gevens uit hetzelfde groeiseizoen gebruiken, verkrijgen we nauwkeurige voorspellingen
met een mean absolute error (MAE) van minder dan 1,23 dB. Een deel van de varia-
biliteit tussen velden is uit te leggen door het gemiddelde weerkaatsingsniveau tijdens
enkele waarnemingen vóór de opkomst van het gewas toe te voegen. De behaalde resul-
taten suggereren dat deze aanpak potentieel heeft om observation operators te genere-
ren voor data-assimilatiekaders of voor anomaliedetectie, ter ondersteuning van groot-
schalige landbouwmonitoring. De resultaten benadrukken echter ook een belangrijke
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uitdaging: het datagedreven model generaliseert niet goed wanneer het wordt gecon-
fronteerd met invoerparameters buiten het bereik van de trainingsdataset, zoals tijdens
een droogteperiode.

In het laatste deel ontwikkelen we een door fysiche kennis gestuurde machine learning-
aanpak om de beperkingen van datagedreven modellen te trotseren: gebrek aan genera-
liseerbaarheid, neiging tot overfitting en afhankelijkheid van omvangrijke trainingsda-
tasets. We introduceren inherente fysische beperkingen in een artifical neural netwerk
(ANN) op twee manieren. Ten eerste door de loss function, die wordt gebruikt om het
ANN te trainen, te wijzigen door een strafterm op te nemen voor fysisch onrealistisch
gedrag, in het bijzonder door negatieve waarden van de partiële afgeleide van de voor-
spelde werrkaatsingsintensiteit met betrekking tot het bodemvocht te bestraffen, omdat
we aannemen dat deze altijd positief moet zijn. Ten tweede door de architectuur van
het veelgebruikte Water Cloud Model (WCM) te spiegelen in de netwerktopologie. De
aangepaste loss function verbetert de prestaties van het ANN in alle beschouwde ge-
vallen met een R2-toename van 3 procentpunten (p.p). Het WCM-geïnspireerde model
presteert iets slechter bij testen en trainen met gegevens uit hetzelfde jaar, maar gene-
raliseert beter en levert aanzienlijk betere resultaten voor onbekende omstandigheden.
Bovendien produceert het WCM-geïnspireerde model ook afzonderlijke bijdragen aan
de waargenomen intensiteit, zoals de oppervlakverspreidingscomponent en de vegeta-
tieterugstrooiingscomponent.
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1
INTRODUCTION

Perhaps you are overvaluing what you don’t have
and undervaluing what you do.

Jordan B. Peterson

1
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2 1. INTRODUCTION

1.1. BACKGROUND AND MOTIVATION
Space-borne remote sensing images play a key role in vegetation monitoring by
providing repeated observations over large areas. These observations are essential for
understanding vegetation dynamics, detecting changes in land cover, and supporting
agricultural and environmental management.

Synthetic Aperture Radar (SAR) products complement optical images by offering
sensitivity to bio-geophysical parameters such as soil moisture, dry and wet biomass,
or structural parameters of the canopy, while being independent of weather
conditions and solar illumination. By acquiring data over the same area at regular
time intervals, SAR enables the study of vegetation dynamics over time, such as
seasonal growth patterns, and responses to environmental changes or agricultural
practices. Radar backscatter from vegetation is a superposition of the electromagnetic
signal reflected by the vegetation, the underlying soil, as well as multiple reflections
involving both [1]. This sensitivity allows SAR data to be used for agricultural
applications such as crop monitoring [2, 3], crop mapping [4], drought monitoring
[5] and detecting waterlogging [6].

1.1.1. LAND COVER MAPPING AND MONITORING

Cropland and pastureland maps are important for a range of land monitoring
applications, including food security monitoring and early warning [7, 8], water
use efficiency [9], soil erosion prevention [10] and fraud detection in agricultural
practices [11]. One of the primary challenges in these scenarios is managing the
high spatial complexity and dynamic nature of these environments, which evolve
due to various land uses and management practices over time.

Over the past twenty years, advancements in space-based remote sensing
technology and the increasing computational resources available for processing large
datasets have considerably improved the quality of land cover products [12, 13].
These improvements are pronounced in the spatial resolution, which has shifted
from scales of tens of kilometers to tens of meters, and in update frequency, with
some products updated annually and others as often as every few days [14–20].
Such progress has allowed for more precise and timely land cover monitoring,
supporting applications in environmental management and agricultural monitoring.
Previous studies provide a summary of the current state of available global land
covers including their challenges [21–24]. Despite these advancements, most current
land cover products rely on optical remote sensing data. This reliance presents
challenges, particularly when addressing the temporal dynamics of land. The acreage
and conditions of cropland and pastureland are continuously affected by climate
variations and anthropogenic management. In cloud-prone regions, such as tropical
areas experiencing frequent land-use and land-cover (LULC) changes [25], reliance
on optical imagery alone can limit temporal coverage. This makes the land cover
maps less effective and highlights the need to incorporate SAR sensors to overcome
these limitations. As a result, there is growing interest in LULC products based on
SAR [26] or fusion of SAR with optical data [27].

Long and dense time series are important for LULC mapping and monitoring
as they allow for the detection of dissimilarities in the signature of different crop
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types during specific days of the year. Time series of SAR images have been proven
effective in discriminating different crop types and producing classification maps of
good quality [2, 28]. The two satellites belonging to the Sentinel-1 (S1) constellation
provide C-band intensity and coherence time series in dual-polarization (VV and
VH) with revisit intervals of 6 or 12 days for consecutive acquisitions in the
same geometry. These short revisit times make it possible to monitor crops and
pasture conditions in near-real time and keep track of land cover changes. Time
series analysis is invaluable for tracking phenological events, assessing crop health,
and predicting yields. Furthermore, dual-polarized SAR enriches the information
gathered, as different polarizations can reflect different aspects of vegetation structure
and moisture content. This dual perspective enhances the differentiation between
various types of vegetation and land cover, allowing for more accurate classification
and monitoring.

In the past, most agricultural mapping studies using Sentinel-1 relied exclusively
on backscatter intensities [29–32]. Coherence received less attention, primarily due
to its more time-consuming processing and its noisy nature, and the fact that
it represents the difference between epochs, unlike intensity or amplitude, which
correspond to a single epoch. However, recent studies have highlighted its potential
for identifying specific events such as mowing or grazing events [33–35], monitoring
crop growth stages [36–38].

As land use monitoring techniques continue to advance, the impact of
multitemporal coherence data should be considered in vegetation mapping methods.
Developing robust models that effectively monitor and characterize crops and
pastures using multitemporal Sentinel-1 data represents an essential next step.

1.1.2. CROP GROWTH MONITORING

Crop monitoring is essential for assessing crop development and productivity of
agricultural systems. It involves tracking key indicators such as leaf area index
(LAI), above ground biomass (AGB), and other indicators of vegetation health to
ensure that crops are growing optimally. Monitoring these variables helps identify
growth anomalies or stressors, enabling timely interventions to optimize yields.
Remote sensing technologies, such as SAR, are valuable tools for monitoring these
parameters [2, 39].

Radar backscattered intensity and coherence are highly sensitive to changes in
canopy structures, variations in soil moisture, and vegetation water content (VWC)
[40]. This high sensitivity to multiple bio-geophysical variables complicates the
accurate retrieval of soil moisture and vegetation parameters, particularly in areas
with dense vegetation. Converting SAR microwave data into measurable crop and/or
soil-related parameters such as soil moisture and VWC, requires inversion models.
However, these models often struggle to encapsulate the complex interactions of the
electromagnetic wave with the soil and vegetation. Integrating SAR observations with
modeled soil moisture and vegetation can be approached in two ways: i) converting
the observed SAR signal directly into retrieval products such as soil moisture or
VWC; or ii) mapping modeled bio-geophysical parameters to satellite observables
using a forward operator. The first approach often uses algorithms that rely on
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pattern changes between consecutive SAR images [41, 42] or other techniques [43].
The second approach involves mapping the crop model outputs to observations
using a forward model. This model predicts the signal that would be received by the
sensor, based on the simulated states of soil moisture and vegetation [44, 45]. This
capability is important for applications such as data assimilation, where integrating
SAR observations into crop models can improve predictions, anomaly detection for
identifying deviations from normal conditions, and mission design for optimizing
sensor specifications and data acquisition strategies.

Crop growth models (CGMs) predict the life cycle of crops, from planting to
harvest, by simulating key growth processes and environmental interactions. These
models provide quantitative forecasts of crop attributes including LAI, AGB, soil
moisture, height, and yield. When field measurement data is scarce, the value
of CGMs becomes particularly evident. They can use available data efficiently to
mitigate the impact of data gaps and provide reliable predictions, making them
invaluable where comprehensive data collection is challenging. These models
rely on inputs such as meteorological data (such as solar radiation, temperature,
and precipitation), soil characteristics, crop genetic traits, and field management
practices, all of which are critical for accurate simulations of crop [46]. Figure. 1.1
provides an overview of the most relevant inputs and outputs for CGMs, specifically
for the Decision Support System for Agrotechnology Transfer (DSSAT) crop-growth
model [47, 48]. While CGMs perform well in theoretical studies and small-scale
applications, they face difficulties when applied to larger regional scales. These
models are typically tuned to individual plots or fields, with simplified parameters
and structures, making it challenging to account for the complex interactions of
weather, soil, and farming practices at a broader scale. One way to address
these limitations is through data assimilation (DA), which involves updating model
variables with observations [49–51]. DA techniques integrate multisource remote
sensing data with CGM simulation results, aiming to enhance the accuracy of crop
growth analysis [52, 53]. DA can involve either satellite observation (e.g. backscatter)
directly or retrieval products (e.g. soil moisture). Previous studies have explored the
direct assimilation of microwave data [54, 55]. The assimilation of directly observed
signals limits the inconsistencies and cross-correlation errors between retrievals and
model simulations [56].

Analytical, numerical models or data-driven ones can address this direct mapping
between crop model variables and observed signals. Forward models, also known
as observation operators, play a crucial role in analyzing and interpreting remote
sensing data, designing observational frameworks, and integrating measurements
into numerical models. Traditionally, these models rely on simple empirical
approaches, basic physical models, or combinations of the two (e.g., physical models
with empirically adjusted parameters). The water cloud model (WCM) [57] is one of
the most commonly used forward operators. Although these methods are practical,
they often fall short of capturing the full complexity of the physical system and the
various phenomena it encompasses. There are more sophisticated physics-based
models e.g. Tor Vergata [58] but the difficulties in their parametrization limit their
usage. In practice, parameters in physical models are adjusted to minimize the
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Figure 1.1.: Depiction of key inputs and outputs of the DSSAT [47, 48] crop-growth
model.

difference between model predictions and observations. As physical models become
more sophisticated, it becomes harder to determine if this parameter adjustment can
be interpreted as a tuning of the targeted bio-geophysical parameter or a general
model tuning that may account for missing contributions. Considering this general
tuning exercise, a natural next step is to consider fully data-driven approaches.

During the last decades, ML algorithms have been widely adopted as an approach
to modeling complex systems when a theoretical understanding of the systems
is incomplete but data capturing the relations between inputs and outputs are
abundant. Previous studies showed the potential of ML algorithms as a forward
observation [55, 59, 60].

1.1.3. MACHINE LEARNING IN SAR-BASED VEGETATION MONITORING

The use of ML in remote sensing has advanced agricultural mapping and monitoring.
The integration of ML with remotely sensed data has emerged as a powerful tool,
providing insight into biomass estimation [61, 62], crop health [63, 64], crop mapping
[65] and yield prediction [66]. ML in agricultural applications has been used for
various purposes, from classification [67–69] to functioning as a regression model
between vegetation parameters and earth observation (EO) datasets [55, 60].

Recently, ML models have been employed as forward models to map model
variables to SAR observations [70]. ML methods can learn patterns and relationships
from large datasets without requiring explicit governing equations. However, it is
essential to use ML models with caution due to potential issues such as overfitting
and the risk of losing important physical insights. Purely data-driven approaches
may disregard fundamental physical laws, resulting in predictions that lack physical
plausibility and interpretability. To address these challenges, physics-informed ML
models are emerging as a valuable solution [71].
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1.1.4. PHYSICS-GUIDED MACHINE LEARNING

In recent years, the integration of ML with physics-based knowledge has shown
considerable promise in enhancing the accuracy and interpretability of model
outputs in different applications [72]. This approach leverages the robust theoretical
foundations of physics to guide and constrain ML models, resulting in predictions
that are both accurate and physically plausible [73, 74].

Figure 1.2.: Depiction of the relationship between a neural network, numerical
model, and physics-informed ML ([72, 75, 76]).

While ML algorithms, particularly deep learning networks, excel at detecting
complex patterns, they often require large amounts of data to train effectively and
can produce results that, while statistically accurate, may not align with physical
principles [77]. As ML models are typically training on limited data, they may
struggle to generalize beyond their training domain, a challenge that is especially
prominent in remote sensing where in-situ measurements are often scarce.

On the other hand, physical models represent reality using a set of equations and
require extensive calibration to fine-tune parameters. It may happen that they cannot
capture the full complexity of real-world phenomena due to either an incomplete
understanding of the underlying physics or omitted variables. Integrating physical
principles with ML can help mitigate these shortcomings by leveraging the strengths
of both approaches. This integration enhances the transferability of models across
different domains, ensuring that they remain robust and relevant under varying
conditions. Figure. 1.2 represents a depiction of the relationship between different
types of models.
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1.2. OBJECTIVES AND RESEARCH QUESTIONS
This research explores the use of SAR data in agricultural monitoring by integrating
the potential of machine learning and crop growth models. The main goal of this
thesis is:

To advance Synthetic Aperture Radar-based vegetation monitoring capabilities
exploiting the full range of radar observables combined with machine learning

techniques.

Driven by the previous motivation and general objective, the research presented
in the remainder of this dissertation is articulated around the following research
questions:

1. To what extent does the inclusion of short-term interferometric coherence time
series improve the accuracy of vegetation mapping?

2. How can we address the unavoidable scarcity of field measurement data to train
a data-driven forward model that relates crop bio-geophysical parameters to
radar observables?

3. How can we guide neural network architectures with physical principles to
improve the prediction of SAR observables for vegetation?

1.3. OUTLINE
To address the first research question, Chapter 2 examines the potential of Sentinel-1
InSAR coherence time-series for vegetation classification in a complex agricultural
area in São Paulo, Brazil. It evaluates the added value resulting from combining
dual-polarized (VV and VH) InSAR coherence with backscatter intensity time series
to improve land-cover classification accuracy. Machine learning techniques provide
us with an ideal tool to explore this added value, as well as a framework in which to
analyze the importance of the different radar observables considered. We examine
the impact of different classification methods and data preparation processes on
the quality of land cover classification results and the effect of sampling strategies
on the validity of the analysis. We investigate how multi-looking and field-based
coherence estimation enhances the quality of coherence as an observable, leading to
more accurate classification.

Chapter 3 addresses the second question. We train a machine learning model to
predict the observed radar observables using the outputs of a crop-growth model as
input. Insofar as the outputs of the crop-growth model are reliable, the result is a
data-driven forward model. We obtain a close fit between modeled and observed
C-band SAR observables.

In Chapter 4 we turn our attention to the last question, exploring two approaches
to combine physical understanding of electromagnetic scattering over vegetated
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surfaces with artificial neural networks to yield a more accurate and/or robust
forward model of radar observables. The chapter is a natural continuation of the
work presented in Chapter 3, and it addresses some of the shortcomings of purely
data-driven models.

Chapter 5 gives an overview of the main findings and recommendations for
further research. Figure 1.3 presents a schematic overview that illustrates the various
contributions made in this thesis.

Figure 1.3.: Overview of study methods and chapters.
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2
ON THE VALUE OF SENTINEL-1

INSAR COHERENCE TIME-SERIES

FOR VEGETATION CLASSIFICATION

SAR acquisitions are mainly deemed suitable for mapping dynamic land-cover and
land-use scenarios due to their timeliness and reliability. This particularly applies to
Sentinel-1 imagery. Nevertheless, the accurate mapping of regions characterized by a
mixture of crops and grasses can still represent a challenge. Radar time-series have to date
mainly been exploited through backscatter intensities, whereas only fewer contributions
have focused on analyzing the potential of interferometric information, intuitively
enhanced by the short revisit. In this study, we evaluate, as primary objective, the added
value of short-temporal baseline coherences over a complex agricultural area in the São
Paulo state, cultivated with heterogeneously (asynchronously) managed annual crops,
grasses for pasture and sugarcane plantations. We also investigated the sensitivity of the
radar information to the classification methods as well as to the data preparation and
sampling practices. Two supervised machine learning methods—namely support vector
machine (SVM) and random forest (RF)—were applied to the Sentinel-1 time-series at the
pixel and field levels. The results highlight that an improvement of 10 percentage points
(p.p.) in the classification accuracy can be achieved by using the coherence in addition to
the backscatter intensity and by combining co-polarized (VV) and cross-polarized (VH)
information. It is shown that the largest contribution in class discrimination is brought
during winter, when dry vegetation and bare soils can be expected. One of the added
values of coherence was indeed identified in the enhanced sensitivity to harvest events in
a small but significant number of cases.

Parts of this chapter have been published in: Nikaein, T., Iannini, L., Molijn, R.A. and Lopez-Dekker, P.,
2021. On the Value of Sentinel-1 InSAR Coherence Time-Series for Vegetation Classification. Remote
Sensing, 13(16), p.3300.
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2. ON THE VALUE OF SENTINEL-1 INSAR COHERENCE TIME-SERIES

FOR VEGETATION CLASSIFICATION

2.1. INTRODUCTION

Space-borne radar sensors are deemed to play an important role in agriculture and
land cover monitoring, mainly due to their potential to provide images independently
of the weather and solar illumination conditions, but also for their complementary
sensitivity to physical retrievables with respect to optical sensors. The use of SAR data to
discriminate different land cover types was already demonstrated using ERS-1/2 data [1,
2]. The Sentinel-1 mission [3] provided, for the first time, dense systematic time-series
of radar scattering and interferometric coherences in C-Band and dual-polarization
(VV and VH) with a repeat-sampling interval of 6 or 12 days. Its interferometric wide
(IW) swath mode provides data with swath widths of approximately 250 km at 5 m by
20 m single-look spatial resolution.

Land use/land cover (LULC) mapping using SAR data is commonly implemented
using data-driven methods [4–7] which do not require the statistical modeling of the
land cover signatures and of their patterns in time, often characterized by significant
complexities. Data-driven methods, such as random forest (RF), support vector
machine (SVM) and neural network classifiers, can account for underlying relationships
between features in dense data series in a cost- and performance-effective way. Dense
time series are known to be the key for reliable mapping as they enable the exploitation
of the dissimilarities in the signature of different LULC classes during specific days
of the year, particularly useful for vegetated classes with dynamic phenology such as
crops [8].

Most of the land cover mapping studies exploit SAR intensity. However, the complex-
valued correlation coefficients between SAR images, i.e., the interferometric coherence,
also provide information about the land cover classes’ characteristics [9]. The
time-series of coherence images can provide information about events, such as mowing
events [10, 11], which can serve as the smoking gun that distinguishes one LULC type
from another.

Considering InSAR information as an input feature for land cover classification is
not a new concept. Previous studies have already confirmed the potential of InSAR
coherence for LULC classification, e.g., using time-series of ERS data with a one day
revisit time [1, 12] and a stack of 12 days of Sentinel-1 images [13]. Single-pass
interferometric coherence acquired by TanDEM-X and repeat-pass coherence from the
TerraSAR-X mission was employed for crop-type mapping in [14] and [15], respectively.
Furthermore, in [9], the authors showed that the temporal dynamics and spatial
context of the multi-temporal InSAR coherence can enhance the performance of land
cover classification.

In addition, the study by [16] utilized backscattering with estimated parameters from
a temporal decorrelation model as input features for large scale land cover mapping
over short-time-series of Sentinel-1 images. The study by [6] presented the LULC
classification map by applying SVM and RF on different combinations of Sentinel-1
attributes including backscattering, interferometric coherence and polarimetric H-α
decomposition attributes of two single look complex (SLC) images. It showed that the
best performance was achieved by providing all the available features to an RF classifier.
Moreover, mean backscatter, backscatter difference and the coherence information of
two SLC Sentinel-1 images were employed to separate the water, barren, vegetation and
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built-up classes through maximum likelihood classification [17]. However, despite the
noteworthy efforts, the benefits of using the coherence time-series for LULC mapping
have not been fully understood and exploited yet. The identification of the physical
events, highlighted by the coherence, which help in discriminating between different
land cover types, still represents an open investigation area.

The objective of this chapter is then to shed further light on the added value of
coherence, when combined with the backscattered intensities, for mapping naturally
vegetated and cultivated areas with dual-polarized (VV and VH) Sentinel-1 data
time-series. The use of coherence information heavily increases the numbers of
features in the classification problem. Whereas only one value per acquisition shall
be considered for amplitudes, and therefore a total of N values for N acquisitions,
the number of image pairs that can be potentially addressed for coherence features
is N (N −1)/2. However, since previous efforts [13] showed that most of the sensitive
information is carried in short-term coherences, only consecutive acquisitions will be
used to estimate the cross-correlation between SAR images. The objective of this
study is to evaluate the added value of coherence in SAR-based land cover mapping.
Our aim is then to identify which kind of exploitable information, complementary
to the VH and VV amplitude, the coherence can provide. Coherences are typically
low, which leads to significant uncertainties in their estimates. Therefore, we also
explore and compare two different approaches to estimate the coherences: one based
on a standard fixed-resolution multi-looking approach, and one taking advantage of
contextual information by averaging per field.

2.2. STUDY AREA AND DATA

The study area is situated near Campinas in the São Paulo state, Brazil. São Paulo has a
tropical and subtropical climate with long and hot summers. The mean temperature
reaches 30 ◦C in the warmest months with heavy rainfall. Conversely, the winter
months are mostly dry. The vegetation shows lower biomass and also lower greenness
due to these seasonality changes. Crop and pasture fields are commonly rain-fed.
Irrigation can be occasionally applied to annual crops at the beginning of the growth
cycle [18]. The reference dataset consists of the LULC information collected both from
ground surveying activities in 2015 and from the visual inspection and interpretation
of 2016–2017 high resolution optical imagery such as Google Earth imagery, Landsat
and MODIS time series, manually digitized into polygons. The fields are grouped into
five LULC classes/categories: crop, forest, pasture, sugarcane and urban. The crop
class includes mostly soybean, wheat and corn. The forest class contains native and
production forests. Pasture fields, used for cattle grazing, and sugarcane, with a
crop cycle of 12–18 months, expand over grasslands [19]. As conveyed by Table 2.1,
the sugarcane cycle typically starts between September and November, whereas annual
crops are characterized by two different emerging periods throughout the year, in
autumn (April–June) and in spring (November–December), and can be subject to
double cropping practices. The spatial map of the reference LULC and some of the
polygons’ characteristics, arranged per class, are shown in Figure 2.1.

A total of 28 available Sentinel-1 (S1) Interferometric Wide (IW) acquisitions were
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Table 2.1.: Distribution of the start of growth dates throughout the year (percentages
are reported) for annual crops and sugarcane fields.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Sugarcane 3 0 0 1 1 0 1 1 10 35 36 12
Crop 2 3 3 8 17 18 5 2 6 4 14 18

employed, covering one year between November 2016 and October 2017. Since only
one satellite (Sentinel-1B) is active in IW mode over this region, the revisit time is
12 days. The study area is illuminated with an average incidence angle of 35◦. The
sensor has a resolution of 20 m (in the azimuth direction) × 4.5 m (in the ground
range direction). As a result, approximately 4.5 looks are available in a 20×20 m cell
and 110 over a 100×100 m cell. Although the classification is only performed by
using radar features, the normalized difference vegetation index (NDVI) from Landsat-8
data is also employed in this study for the visual interpretation of the Sentinel-1
behavior. The NDVI index expresses the greenness of canopies and can hence be
readily related to crop cycles and plant status throughout the seasons. According to [20,
21], the NDVI can be affected by topography but in our study, for visual inspection
purposes, the impact of this variable can be considered negligible. The Landsat-8
surface reflectance products, provided by USGS, have been retrieved using the Google
Earth Engine (GEE). Only Landsat products with less than 40% of the total tile area
covered by clouds were used in order to ensure that the collected NDVI series is only
negligibly affected by atmospheric effects. Although it will not include all the cloud-free
acquisitions, such an arbitrary choice is deemed a convenient compromise for our
visual interpretation purposes.

2.3. METHODS

2.3.1. PRE-PROCESSING

The S1 IW acquisitions are downloaded in their SLC product format from the ESA hub.
The data processing is performed using the Radar Interferometric Parallel Processing
Lab (RIPPL), a TU Delft’s in-house Sentinel-1 InSAR processing tool. Figure 2.2 provides
an overview of the processing steps performed to obtain the interferometric coherences.
Only the interferograms between the consecutive (12-days interval) image pairs are
formed and subsequently geo-referenced. The backscatter intensity computation
includes the radiometric calibration and terrain correction steps. SRTM-3 [22] is used
as an external digital elevation model (DEM) for processing. For both backscatter
and coherences, two types of outputs are produced by the final spatial averaging
step: one by using the conventional boxcar filter for spatial multi-looking (for the
pixel-based classification); and the other by averaging within the reference polygons
(for object/polygon-based classification) addressed in Section 2.3.3. For the pixel-based
approach, three filter sizes, i.e., 40, 100 and 200 m, were tested in order to evaluate
the most convenient trade-off between the radiometric quality (as a reference, 100
independent looks would lead to a precision of approximately 0.5 dB) and the mixed
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Figure 2.1.: Location of the study area (top left); spatial map of the reference LULC
(right); and characteristics of the LULC based on the collected ground truth
data (bottom left).
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Figure 2.2.: Processing chain for coherence feature extraction from the SLC Sentinel-
1 images.

field effects (most of the fields are larger than 2–3 ha, as can be seen in Figure 2.1).

Figure 2.3 shows the temporal signatures of the coherence and backscatter intensity
for the vegetation classes extracted from the object-based features. The statistics
strongly convey the need for multi-temporal classification as the distance between the
classes, evaluated on single features per epoch, is insufficient. This is particularly true
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for the coherence that presents inter-class dynamics only at the end of the dry season
(June–September).

2.3.2. INTERFEROMETRIC COHERENCE

The interferometric coherence, which is commonly used as an indicator of the quality
of the interferometric phase, is defined as the normalized cross-correlation between
two coregistered SAR images. The absolute value of the coherence varies between 0 and
1. Here, for each new image, the coherence is computed with respect to the previous
image. The coherence measures the relative stability of the scattering mechanisms
within a spatial neighborhood between a pair of images. If all the backscattering
elements maintain their relative position and scattering strength during the 12-day
time-interval, the coherence will be high. This is typically the case for bare soil and
urban areas. In contrast, if the elements move or alter their microwave signature, a low
value of coherence will be the outcome. This typically occurs for vegetated surfaces with
high fractional canopy cover and for water. The interferometric coherence is defined as

γ= E
{
S1S∗

2

}√
E

{|S1|2
}

E
{|S2|2

} , (2.1)

where S1 and S2 represent two coregistered complex images, E {.} represents the
mathematical expectation, and ∗ denotes the complex conjugate operator. Following
common practice in the InSAR literature (e.g., [23]), the coherence is estimated by
replacing the expectation operator by a sampled average over a given spatial window.
This assumes that the signal is ergodic and locally homogeneous:

γ̂=
〈

S1S∗
2

〉√〈|S1|2
〉〈|S2|2

〉 . (2.2)

The average number of samples and the coherence map resolution have a significant
impact on the coherence magnitude estimate accuracy [24]. The estimated coherence
is typically noisy with a large estimation uncertainty, particularly for the small averaging
windows and low coherence values.

It is worth noting that computing space-averaged coherence magnitude over entire
fields improves the estimation of the coherence as the number of averaged samples
increases and the quality of the estimator now depends on the field extent. Specifically,
under the assumption of homogeneity, larger fields have higher coherence estimation
precision and lower bias, while the smaller fields provide more bias [25]. The bias of the
coherence for a homogeneous area is given by [26]

E(
∣∣γ̂∣∣) = Γ(L)Γ(1+1/2)

Γ(L+1/2)
× 3F2(3/2,L,L;L+1/2,1;

∣∣γ∣∣2)× (1− ∣∣γ∣∣2)L , (2.3)

where 3F2 is the hypergeometric function and L is the number of independent samples.
Figure 2.4 shows the coherence magnitude estimate as a function of coherence
magnitude (

∣∣γ∣∣) for the number of pixels for each sugarcane field used in this study.
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Figure 2.3.: Temporal statistics of the backscatter intensity (top) and coherence (bottom)
for the vegetation classes. The 50th percentiles (solid lines) and the
20th–80th percentiles (transparent buffer) are based on the features derived
from the field sampling approach.
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We can see that the coherence magnitude estimate is positively biased, especially for
low coherences. Bias and/or coherence estimation uncertainty reduces for fields with
more independent samples.

Figure 2.4.: Coherence magnitude bias of sugarcane fields with different number of
samples L. The color refers to the number of fields.

2.3.3. LAND COVER CLASSIFICATION

In this study, the supervised classifications are performed at a pixel- and object-level.
The pixel-based approach has a clear advantage in terms of implementation, as no
further processing steps in addition to the spatial multi-looking in the earlier data
preparation stages is required. In the most common case, a moving average filter with
the desired spatial support is used for both amplitude and coherence. The major
drawback of pixel-based approaches is that the spatial context of the scene is not fully
exploited [27, 28]. This aspect would be particularly relevant over distributed scatterers,
due to their intrinsic noisy nature. Identifying homogeneous segments, i.e., groups
of pixels that share similar land cover, in order to average as many looks as possible,
naturally leads to the so-called object-based classification.

We consider three schemes to generate training and validation sub-sets, the first two
associated to the pixel-based approach and the third to the object-based approach.
A visual representation of these schemes is provided in Figure 2.5. For all three
schemes, a common cross-validation procedure is used to avoid positively biased
results. Algorithms are therefore trained with 70% of the dataset, while the remaining
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30% is used for testing. More specifically, the three addressed strategies are:

1. Random-Pixel Sampling: The pixel samples are randomly assigned to the
training and test sets without any spatial context constraint. The outcome is
that any arbitrary field is allowed to have part of its pixels in the training set
and part in the test set. This is expected to lead to a positive bias in accuracy
due to eventual overfitting, which occurs when the intra-polygon variability is
lower than the variability between polygons of the same class. The risk in this
random sampling approach is therefore that the algorithm learns the behavior of
the individual fields rather than modeling their common statistical traits.

2. Field-Pixel Sampling: In this approach, the pixels from the same polygon are
entirely assigned either to the training or the test set. For each class, the training
set is built by iterative growth, i.e., by adding a field at a time to the set until 70%
of the total pixels are allocated. The pixels from the excluded fields are assigned
to the test set.

3. Field Sampling: This refers to object-based classification, as the samples
correspond to the polygons themselves. The coherence magnitude and the
backscatter intensity features are computed through multi-looking over the entire
field. The differences with the field-pixels sampling are found in the impact of
intra-field heterogeneities and in the different sensitivity to speckle noise. We
are using the digitalized polygons (or objects or segments) from our ground
surveying activities.

For each of these schemes, SVM [29] and RF [30] supervised classification are
individually tested on the intensity and on the coherence stacks and then applied to the
combination of the intensity and coherence in the two polarizations. The classification
methods are implemented in Python using the scikit-learn package [31]. With concern
to the SVM, the radius basis function (RBF) kernel [32] has been used. Two important
parameters for the RBF kernel must be considered: the trade-off between margin and
misclassification (C ) and the kernel width (γ) that controls the influence of the feature
data point on the decision boundary. In our study, SVM was run with C = 1 and γ= 1.
As regards the RF, the algorithm was applied by adopting a number of trees (Ntree)
equal to 100 and default values for the other parameters.

The accuracy assessment was carried out by analyzing the overall accuracy, the kappa
index, and the producer’s and user’s accuracies [33]. The producer’s accuracy is related
to the omission error and is defined as the number of correctly classified samples
divided by the total number of reference samples in the given class. The user’s accuracy
instead represents the commission error and is defined as the number of correctly
classified samples divided by the total number of classified samples in the given class.
Such well-known metrics are computed after normalizing the confusion matrix by the
number of samples for each class, therefore forcing an equivalent true area for all the
classes. The rationale is to prevent the accuracy being dominated by the classes with
larger coverage.

To fairly compare the results of the field sampling with the two pixel sampling
strategies, we consider the statistics based on the number of pixels, i.e., considering the
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classified area. As a result, larger objects have more weight than smaller ones in the
validation but not in the training part. This represents a reasonable evaluation practice,
provided that the objective of the mapping application is to minimize the misclassified
area rather than the number of objects. The steps of the methodology so far discussed
are summarized in Figure 2.5.

2.3.4. FEATURE RELEVANCE

In order to assess the set of available features, we carried out a feature relevance
analysis. This can help in identifying the physical processes that make a given feature
useful, and lead to more robust or more optimal classification strategies. Feature
relevance can be evaluated using different metrics such as the correlation between the
feature and the target variable (class membership), mutual information or information
gain. These metrics are independent of the classification algorithm used [34]. The most
common feature selection methods are based on mutual information. However, often
they do not address the correlation between features that causes feature redundancy.
In this study, we adopted the minimum-redundancy–maximum-relevance (mRMR)
algorithm. The algorithm searches for the subset of features (S), containing n features
(xi , i = 1,2, ...,n), that maximizes the dependency (D) of the feature set on the target
class through the mean value of the mutual information:

D = 1

|S|
∑

xi∈S
I (xi ;c) (2.4)

where c is the target class and |S| is the size (number of elements) of S. I is the mutual
information, defined by

I(x;c) =
∫ ∫

p(x,c)log
p(x,c)

p(x)p(c)
d xdc (2.5)

with p(x,c) being the joint probability density function (PDF) of the two variables and
p(x) and p(c) standing for the corresponding marginal PDFs.

Merely maximizing D is likely to result in sets of features that are highly correlated.
This redundancy can be quantified using the mean mutual information between the
features within the set:

R = 1

|S|2
∑

xi ,x j ∈S
I (xi , x j ) (2.6)

which should be minimized. The mRMR algorithm combines the two mentioned
constraints [35, 36] by maximizing D −R.

2.4. RESULTS AND DISCUSSION

2.4.1. QUANTITATIVE ACCURACY

The impact on the SAR classification performance of the three factors of interest,
i.e., the sampling scheme (random pixel, field pixel, field), the classification method
(SVM and RF) and the radar feature set (amplitude, coherences and their combination)
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Figure 2.5.: (Top) Sketched illustration of the pixel-based and field-based sampling
schemes for three polygons belonging to the same class. The different
patterns in the polygon background represent intra-class diversity;
(Bottom) For each sampling scheme, the methodology steps from image
pre-processing to accuracy evaluation are briefly summarized.
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is herein analyzed. The overall accuracies (OA) and kappa indices for the most effective
configurations in terms of performance are presented in Table 2.2. It can be observed
that the SVM classification approach has better performance than the RF method. In the
SVM case with random-pixel sampling, when the amplitude of only one polarization
is given as an input to the classifier, the overall accuracy (OA) and kappa coefficient
are approximately 60% and 0.50, respectively, for both VV and VH. When using both
polarization intensities, the algorithm has an improvement of roughly 8 p.p., reaching
68% OA. The VV and VH coherences, γ0

v v , γ0
vh , add a further 2 p.p. enhancement to the

overall accuracy, and a 0.03 increase in the kappa coefficient. A similar behavior is also
observed in the RF case with random-pixel sampling, although with lower accuracies.

In the field-pixel sampling configurations, the accuracies are lower compared to the
random-pixel sampling for both classifiers. This is indeed in line with our expectations.
Such an approach is nevertheless deemed more reliable, since the chances of model
overfitting are lower. In the field sampling approach, i.e., using averages based on
polygons instead of averages based on pixels, the accuracy of SVM experiences a 7 p.p.
increase when compared to the field-pixel approach. Still with reference to Table 2.2,
we observe that the incorporation of the coherences leads to a statistically significant
improvement in accuracy in all configurations. The added value of the coherence in
crop mapping was also registered by TanDEM-X data covering a shorter time interval
(three months), in [14], and by Sentinel-1 time-series covering a different agricultural
environment in [37].

As mentioned in Section 2.3.1, the impact of the multi-looking window size for the
pixel-based approaches was evaluated. The overall accuracy achieved by the three
window sizes (40 × 40 m, 100 × 100 m and 200 × 200 m) with the SVM classifier is

Table 2.2.: The calculated overall accuracy and kappa coefficient for different features
with SVM and RF.

Sampling Features
SVM RF

OA Kappa OA Kappa

Random pixel

σV V 0.61 0.51 0.54 0.43
σV H 0.60 0.50 0.54 0.42

σV V &V H 0.68 0.60 0.59 0.49
σV V &V H & γV V &V H 0.70 0.63 0.62 0.52

Field pixel

σV V 0.58 0.47 0.53 0.42
σV H 0.57 0.46 0.53 0.41

σV V &V H 0.64 0.55 0.58 0.47
σV V &V H & γV V &V H 0.68 0.60 0.60 0.50

Field

σV V 0.65 0.56 0.63 0.53
σV H 0.57 0.46 0.55 0.44

σV V &V H 0.65 0.56 0.63 0.53
σV V &V H & γV V &V H 0.75 0.69 0.68 0.60
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compared in Figure 2.6. The figure shows that when 40 × 40 m windows are used,
the accuracies are low due to speckle noise. The accuracies for the 200 × 200 m
windows are then lower compared to the 100 × 100 m configuration due to an increased
amount of mixed pixel, i.e., pixels that cover two or more neighboring fields.

Although the overall accuracy gives a general understanding of a classifier’s
performance, it does not reveal any information about the error partition among
the classes, e.g., whether some land covers are identified more correctly than others.
Confusion matrices, producer and user accuracy are then used to provide more
insight. As SVM performed better than RF, in the following, only the results of SVM
are presented.

From the producer and user accuracies, as shown in Figure 2.7, it is straightforward to
notice that the intensities perform significantly better than the coherences. By looking
at their combination, it can be seen, however, that the coherence has added value
for each land cover class. The largest benefits are registered by the polygon-based
classification, with a fundamental 6–10 p.p. user accuracy increment for the crop and
pasture classes, that are the lowest scoring classes in absolute terms.

The confusion matrices, as shown in Figure 2.8, provide a more detailed picture,
also including the urban/built-in class. In each cell, the upper value (light green)
corresponds to the results obtained using only the backscattered intensities, while the
lower value (dark green) corresponds to the joint use of intensities and coherences.
As already specified in Section 2.3.3, the columns were normalized by the number of
samples of the corresponding class. With such a setting, the diagonal cells contain
the producer accuracy. As expected, the dark green cells show higher values than
light green ones. For the object-based classification, this difference is more apparent.
The matrices also confirm that the most significant accuracy issues regard the crop
omission and pasture commission errors. A relevant percentage of crop fields (>40%) is
indeed classified either as pasture or as sugarcane. This is mainly due to the similarities
between the seasonality behavior of the pasture and crop growth cycles. Pasture is then
also receiving misclassified samples from forest and urban areas. The largest part of
such errors can be justified by the broad range of vegetation typologies included in
the pasture class. On the one hand, it can include shrubs and tall grasses that can
be easily confused with forest or even with sugarcane when mature. On the other
hand, it can include short grasses or degraded land that leads to the omission errors
for urban/built-in areas. However, it cannot be excluded that a minor part could be
due to errors in labeling the reference data (i.e., in the ground truth). Notice that the
omission error for urban areas is lower in the field-pixel sampling than in field/polygon
sampling approach. This is probably due to the fact that the urban polygons are highly
heterogeneous and could contain vegetation patches. These latter would be more
correctly filtered out by the pixel-based classification.

2.4.2. SPATIAL ANALYSIS

We analyze in more explicit spatial detail the output from the two most relevant feature
configurations: (1) σ0

v v , σ0
vh—only backscattering coefficients are used; and (2) σ0

v v ,

σ0
vh , γ0

v v , γ0
vh—a combination of all SAR features is used. The classified maps are

shown in Figure 2.9 for field pixel and field sampling schemes and the results related
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Figure 2.6.: The comparison between the impact of the different multi-looking window
sizes on overall accuracy achieved by SVM in pixel sampling.

to the pixel sampling are not presented due to the fact that they include overfitting.
As field sampling performs better according to the OA and confusion matrices, it is
considered a reference for the remaining analysis in this chapter. The blue circles in
Figure 2.9b highlight two examples of fields presenting mixed pasture and forest pixels
in the pixel-based classification maps, possibly denoting spatial heterogeneities not
properly accounted for within the reference polygons. It can, however, be observed that
the integration of the coherence in the field-based approach allows one to correctly
identify the land cover majority, i.e., pasture cover for the upper field and forest for
the lower one. From a qualitative standpoint, the classified maps convey that the
two approaches are characterized by a substantial agreement which manifests in the
difficulty to spot a total classification mismatch on large polygons. The differences
between the pixel-based and the field-based polygons shall be rather found in single
pixel errors (similarly to a salt and pepper noise). It is for instant evident in the presence
of yellow (sugarcane) pixels in areas where no sugarcane is expected. This issue could
be partly mitigated by the application of a majority filter as a post-processing step [38].
The use of such a filter on areas with small and medium parcels (compared to the
sensor resolution), such as the one shown in Figure 2.9, however, could be detrimental
and its impact should be more carefully investigated in future works.

The impact of the coherence on the field-based classification is further highlighted
by the differential map in Figure 2.10. The figure shows the whole area with four
colors; the orange stands for those fields correctly classified only with the combined
use of coherence and amplitude, where the purple represents correctly classified fields
only by the exclusive use of the amplitude, and the yellow and the blue indicate the
areas correctly and incorrectly classified in both configurations, respectively. The map
conveys that the integration of the coherence does not only yield positive changes.
Several fields are indeed correctly classified only when the single amplitude is used.
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Figure 2.7.: Producer (top) and user (bottom) accuracy achieved by the SVM
classification for different sampling schemes and feature configurations.

In accordance with the performance in Table 2.2, it can be therefore inferred that the
coherence introduces a small but significant noise in the classification output but that
its effect is overall positive.

2.4.3. FEATURE RELEVANCE ANALYSIS

To illustrate the importance of the use of InSAR coherence information in land cover
classification, the time-series of coherence and backscattered intensity in both channels
was analyzed for those correctly classified fields only through the use of coherence in
Figure 2.11a. The radar cross-polarized backscatter (VH) is known to be sensitive to the
canopy volume, whereas it is less sensitive to the soil surface. The soil backscatter is
stronger on the co-polarized signal (VV), which hence becomes a better proxy for soil
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(a)

Figure 2.8.: Cont.

(b)

Figure 2.8.: Confusion matrix of (a) field-pixel and (b) field sampling; with SVM
classifier: each cell included two values, where upper ones are only based
on using intensity while the lower values are related to using intensity and
coherence together.

moisture. However, both polarizations are sensitive to the water content of the medium,
either in the soil or in the canopy, showing fluctuations after watering events (rain in
our studied area) that can be used to infer information on the land cover conditions,
as proven in [18]. Such fluctuations are clearly visible in Figure 2.11. From the panels, it
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(a)

(b)

Figure 2.9.: Comparison of the SVM classifier maps over a 10 × 7 km close-up of the
study area: (a) reference data and (b) results from: (1) amplitude and field
pixel sampling; (2) amplitude and field sampling; (3) amplitude + coherence
and field pixel sampling; (4) amplitude + coherence and field sampling.

is evident that the radar has a clear advantage over optical sensors in terms of temporal
coverage, as the crop cycle is missed for some months by Landsat (the filled NDVI in
the plot is the data that are estimated by interpolation). It can also be noticed that the
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Figure 2.10.: Representation of match and mismatch, with respect to the ground truth,
for the SVM-based maps obtained from intensity only and from the
combination of intensities and coherence.

radar signal is noisier, although, as already specified, part of the fluctuations has to be
considered as water-related signal.

This first panel in Figure 2.11 shows that the coherence is sensitive to the harvest
event in a crop field at the end of 2017, which appears as a sharp increase from a
near zero value to approximately 0.4. Such clear change (a large backscatter drop is
expected) cannot be found in the amplitude, which probably remains high either due
to the straws in the field, or to possible enhanced Bragg scattering effects (although
unlikely, since only VV would be expected to suffer from it) or to high moisture in the
soil. It is likely that such sensitivity in the coherence is the key factor for enabling
correct labeling from the algorithm.

Figure 2.11b corresponds to a pasture field that is classified correctly only with
amplitudes. It is indeed confused by the algorithm with a crop field when the
coherence is integrated. In light of the previous example, the confusion is introduced
by the strong spike in coherence in September 2017, which is more characteristic for
crop fields in bare soil state than for pasture fields. From the NDVI value closest to
the spike, amounting to approximately 0.4, it can be inferred that the vegetation has
sparse, dry or underdeveloped canopy, but it is not in bare soil state. The last panel
in Figure 2.11c illustrates the time-series of a crop field which classified correctly both
with and without the use of the coherence. In this case, both the coherence and the
amplitude behavior clearly reveal the crop cycles, with two harvest events, the first in
summer (at the end of March) and the second in winter (September). Notice a similar
sensitivity in summer would also be expected from the first time-series (Figure 2.11a),
as two distinct cycles can be identified from the NDVI. However, due to the fact that the
harvest is performed on a portion of the field at a time, the bare soil condition is never
reached on the whole reference polygon.

The coherences and the intensities in the two winter months of August and September
are illustrated in Figure 2.12 with the aim of conveying, qualitatively, their partial
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(a)

(b)

(c)

Figure 2.11.: SAR and optical time-series over different land covers: (a) for a field
that is only correctly classified with the combined use of coherence and
amplitude; (b) for a field that is only correctly classified by the exclusive
use of the amplitude; and (c) for a field that is correctly classified with
both configurations.
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complementary. At the beginning of August, the VH intensities and the coherences
appear in a large part inversely correlated. However, it is possible to spot a few field
locations with simultaneous moderate coherence and intensity values. This conveys
that a minor, although significant, number of fields in senescence and post-harvest
conditions can be exclusively identified through the coherence. The different sensitivity
of the two features is further confirmed by the last acquisition of August (second
column in the figure), where high backscatter values are registered over the whole
image (possibly due to a rain event), including bare soil areas. It is interesting to notice
that the coherence is instead only marginally affected, revealing, in this particular
circumstance, an improved robustness.

In order to have a deeper understanding of the added value of the feature integration,
the feature selection is applied through mRMR based on the mutual information, as it
was explained in Section 2.3.4. Table 2.3 reports the first four features selected by
mRMR. For coherence, the date of the first SAR acquisition in the pair is reported.
Notice that three out of the first four features are associated to winter acquisitions.
The winter season is in fact the time of the year where the classes are most different.

Figure 2.13 illustrates the distributions of the high ranking features in Table 2.3 for
the vegetation classes. The amplitude histograms in the first and in the fourth panel
clearly convey that annual crops and sugarcane fields respond with lower backscatter,
on average, than pasture fields. This offset is mainly due to the harvesting and
ploughing operations that are often carried out on temporary and permanent crops.
The two amplitude histograms similarly show that distinguishing between sugarcane
and crop from a single amplitude image in winter is not possible, whereas the pasture
and the forest have more distinct profiles.

The two coherence panels are associated with a dry period in summer (12–24
February) and a rain event in winter (11–23 August). The histogram of coherence in
August is related to the period during which most of the annual crops and sugarcane
are either harvested or in senescent conditions. As conveyed by Figure 2.3, the second
acquisition in the pair (23 August) experiences an increase in amplitude that can be
interpreted as the effect of rain during previous days. The historic rain data (both
from weather stations and satellite) indeed confirm the occurrence of precipitations
on the 19th and the 20th of August. The effect on VH is a generalized drop in the
sugarcane coherence, whereas the impacts are not so evident for the other classes.
For the sugarcane fields that are already harvested, this is due to the residues left on the
ground, whereas for the fields in dry senescent state, the drop is caused by an increase
in the canopy returns. Such a generalized response of sugarcane is less visible in the
VV channel, where a significant portion of the harvested field manages to retain some
coherence (see Figure 2.3). A similar behavior in the histograms can be observed for
the February coherence, although with less separability between forest, pasture and
crops. The reasons for the discrepancy between sugarcane and the other classes are,
however, opposite in this feature, as the scene is illuminated at the end of a dry period
in summer. The coherence values in summer are in fact extremely low for all classes
and they incrementally rise during temporary droughts or after harvest events (for
annual crop fields with double cropping management). Sugarcane fields are, however,
less affected by such events since most of the fields are either in the vegetative or



2

40
2. ON THE VALUE OF SENTINEL-1 INSAR COHERENCE TIME-SERIES

FOR VEGETATION CLASSIFICATION

Figure 2.12.: Images of coherence and intensities in the two winter months of August
and September for both polarization. The coherence colors range from 0
(black) to 1 (white). The intensity values are shown in decibels. For the VV
channel, the color range is set between −15 and −5 and for the VH channel
it is set between −20 and −10. In all the images, lighter colors indicate
higher values.
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grand growth stages, characterized by high biomass and canopy water content [18].
The values therefore remain extremely low or null.

Figure 2.13.: Histograms of the vegetated classes for the four most relevant features, as
can be seen in Table 2.3, as selected by the mRMR method.

Table 2.3.: First four selected features through the mutual information based mRMR.

Number Date Feature Channel

1 28 September 2017 Amplitude VH
2 11 August 2017 Coherence VH
3 12 February 2017 Coherence VH
4 4 September 2017 Amplitude VH

Two further aspects are worth noting. The first is that the analysis elaborated
thus far led to general principles that hold for different areas and different years,
as well as to quantitative outcomes that are strongly dataset dependent. For instance,
the high relevance of the winter acquisitions is easily applicable to different case studies
and dataset in Brazil. The double cropping consideration for the summer/spring
acquisitions also fall in this category, when considered in a broad sense. However,
the score and the exact date of these features shall be intended as area-, year- and
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dataset-specific and cannot be generalized. The second consideration concerns the
low-class separability on single images, expressed by Figure 2.13. It is for instance
not possible to distinguish between sugarcane and forest in winter, since not all the
sugarcane fields are harvested at the same time. Such an issue conveys the need to
use multi-temporal datasets and properly exploit the non-linear information of land
cover events. Among these, the harvest event is deemed the key for the classification
performance of both amplitudes and coherences.

2.5. CONCLUSIONS
In this study, the added value of short-term coherence information in discriminating
vegetation land covers was evaluated for Sentinel-1 dual-polarized SAR. The work was
conducted on a site characterized by native vegetation and rain-fed pasture and crops,
with a critical overlap of the class signatures in every amplitude and coherence feature.

Consistently with previous work, we found that the use of InSAR coherence leads
to a significant improvement of the classification performances, for example, with
improvements in the user accuracy for most classes considered in the order of 5 p.p.
However, contrary to the results reported in [13], for our case study, we observed that
the radar intensities guarantee higher separability than coherences by themselves.

The most sensitive information brought by coherence is found in the winter months,
when crops are harvested, and during the short droughts in summer. In winter,
the coherence increase experienced by annual crops help in discriminating them from
forest and high grass pastures. During dry summer periods, the crops and the low grass
pastures are then more likely to stand out from the near-null coherences of sugarcane.

The analysis further revealed that the capability of classifiers to exploit such a
marginal amount of informative interferometric pairs (for sugarcane and pasture
time-series, a single non-null coherence feature can be for instance observed) can
significantly vary. In our case study, it was found that SVM classifiers are more effective
than RF algorithms, although the improvements are only incremental. On such a note,
it shall be specified that the impact of year-specific variables, i.e., the season-dependent
weather and field management practices on the results is still poorly addressed, as only
one season has been processed. The events leading to the complementary coherence
information has been in fact effectively outlined, however, the extent of the associated
performance improvement shall be object of further assessments.

A point of attention in the use of coherence time-series is that the coherences remain
generally low throughout the time-series, making its estimation unreliable if the number
of samples averaged to estimate it is low. The estimation of coherence on fields brings
substantial performance improvement over conventional fixed-filter multi-looking.

A final recommendation from the study concerns the generation of training and
validation data sets for pixel-based classification. Our position is that it is not sufficient
to select a disjoint set of pixels for training and validation, but that the pixels used
for training and validation should correspond to different fields. The analysis indeed
conveys that failing to do so leads to substantial positive biases.
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3
MODELING SAR OBSERVABLES BY

COMBINING A CROP-GROWTH

MODEL WITH MACHINE LEARNING

Our aim is to estimate Synthetic Aperture Radar (SAR) observables, such as backscatter in
VV and VH polarizations, as well as the VH/VV ratio, cross-ratio (CR), and interferometric
coherence in VV, from agricultural fields. In this study, we use the Decision Support
System for Agrotechnology Transfer (DSSAT) crop growth simulation model to simulate
parcel-level phenological and growth parameters for over 1500 parcels of silage maize in
the Netherlands. The crop model was calibrated using field data, including silage maize
phenological phases, leaf area index (LAI), and above-ground dry biomass (AGB). The
simulations incorporate fine-resolution gridded precipitation data and soil parameters
to model the interaction between soil-plant-atmosphere and genotype in DSSAT. The crop
variables produced by DSSAT are then used as inputs to a Support Vector Regression (SVR)
model. This model is trained to simulate SAR observables in 2017, 2018, and 2019, and
its performance is evaluated using independent fields in each of these years. The results
show a close fit between modeled and observed SAR C-band observables. The importance
of vegetation variables in the estimation of SAR observables is assessed. The AGB showed
significant importance in the estimation of backscatter. This study demonstrates the
potential value of combining crop growth simulation models and machine learning to
simulate SAR observables. For example, the SVR model developed here could be used as
an observation operator in an assimilation context to constrain vegetation and soil water
dynamics in a crop growth model.

Parts of this chapter have been published in: Nikaein, T., Lopez-Dekker, P., Steele-Dunne, S., Kumar, V.
and Huber, M., 2023. Modeling SAR Observables by Combining a Crop-Growth Model With Machine
Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
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3.1. INTRODUCTION

The launch of the Sentinel-1 Synthetic Aperture Radar (SAR) constellation [1] has
provided unprecedented opportunities for agricultural monitoring. This is due to its
dense time series of radar scattering and interferometric coherence in C-band, which
offers a short revisit time of 6 days in Europe and 12 days globally. Additionally, the
dataset is freely accessible. Satellite observations from active and passive microwave
sensors are sensitive to vegetation structure [2] and water content [3].

Space-borne SAR observations have been used for many years for agricultural
applications and vegetation monitoring because of microwave signal sensitivity to
changes during the crop growth period [4, 5]. Several studies highlighted the potential
of Sentinel-1 SAR data for crop growth monitoring [6–8], crop water content estimation
and soil moisture mapping [9, 10] and parameter retrieval [11]. Vreugdenhil et al. [12]
demonstrated using in situ observations that C-band backscatter from Sentinel-1 is
sensitive to vegetation parameters such as vegetation water content (VWC), biomass,
height, and leaf area index (LAI).

In addition to monitoring dynamics directly, Sentinel-1 data could be assimilated
into a crop growth model to constrain the estimates of bio-geophysical variables.
The assimilation of Earth Observation (EO) data in agricultural models has been
demonstrated in several studies. For example, the assimilation of LAI and soil moisture
derived from Sentinel-1 and Sentinel-2 data into the Word Food Studies (WOFOST)
model to estimate crop yield was studied in [13]. Assimilating LAI and dry biomass
from optical and SAR data into a model to estimate soybean yield was studied in [14].
In another study, [15] they assimilated LAI from SAR product to Decision Support
System for Agrotechnology Transfer (DSSAT) for rice yield estimation. These studies
collectively demonstrate that the assimilation of EO data or products can be used to
improve yield estimates. In addition, assimilation could provide improved estimates
of the growth and development of the crop to support agricultural management and
decision-making.

To integrate SAR observations with modeled soil moisture and vegetation, two
approaches can be employed. The first approach involves converting the SAR signal
into retrievals of geophysical variables using change detection algorithms [16] or other
methods [17]. However, this approach is limited by the availability of high-resolution
retrievals from the C-band with global coverage. The second approach focuses on
estimating and combining the backscatter components of soil moisture and vegetation
to simulate the expected signal at the sensor level using a backscatter model as a
forward model. This study specifically adopts the second approach, utilizing a forward
operator to convert model simulations into a backscatter signal. Our aim is to assimilate
Sentinel-1 observables directly rather than retrieved parameters. This approach
allows us to utilize all the information related to the incidence angle dependence
while avoiding any potential for cross-correlated errors between retrievals and model
simulations [18]. The objective is to prepare for a data assimilation system, where SAR
observations will be utilized to update crop model simulations of soil moisture and
biomass [19].

To exploit Sentinel-1 backscatter and coherence for agricultural monitoring, we need
to be able to model the observables given a description of the soil and vegetation.
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Furthermore, it is essential to be able to understand and quantify the effect of crop
bio-geophysical variables on SAR observables. The most common way to model radar
observables is using a model, the complexity and requirements of which can vary
considerably. The most widely used model is the Water Cloud Model (WCM). The WCM
is a semi-empirical parameterized model to relate the Normalized Radar Cross Section
(NRCS) to the characteristics of the vegetation and the surface. The model is relatively
simple, as it models the vegetation as a collection of identical water droplets randomly
distributed within the canopy [20, 21]. As a recent example, [22] used the WCM as a
measurement operator to assimilate Sentinel-1 data into the Global Land Evaporation
Amsterdam Model (GLEAM). More sophisticated models, such as Michigan microwave
canopy scattering (MIMICS) [23], can also be used to simulate microwave observables
[24]. However, they require descriptions of vegetation geometry, architecture, and
dielectric properties that are seldom available. An alternative to using the WCM as
a forward operator is employing machine learning techniques. Machine learning
offers advantages due to its flexibility, adaptability, and ability to handle nonlinear
relationships. It can extract meaningful insights directly from data and generalize well
to new instances. It is important to note that they also have limitations. They may
require large amounts of high-quality labeled data for training.

This study aims to provide a model capable of simulating Sentinel-1 observables
that require readily-available crop descriptors. We propose circumventing the limited
availability of in-situ data by using a crop growth model instead. This is a significant
step towards developing a robust and reliable system for assimilating high-resolution
Sentinel-1 observables over vegetation areas. Davitt et al. [24] demonstrated that
DSSAT could be used to provide a description of the growing crop to be used as input
to MIMICS. Here, instead, we will use this description as input to a machine-learning
model to map the crop descriptors to the SAR observables. The biophysical parameters
generated by the crop-growth model reflect the state of the crop at a given time, which
reflects all the past inputs to the model. The radar observables depend only on the
state of the crop and the soil at the time the data are acquired. Our approach, of using
modeled land surface states as input to a machine-learning model has been used to
map snow and land parameters to brightness temperature [25], to map land surface
variables to Advanced Scatterometer (ASCAT) backscatter, slope, and curvature [26]
and recently, to map daily 1- km AquaCrop model biomass and surface soil moisture to
backscatter [27].

The objectives of this study are to:

• Demonstrate that a crop-growth model can be used together with a machine-
learning model to simulate SAR observables to optimize the future assimilation
of SAR observables into the regional DSSAT model.

• Show that the relationships between crop bio-geophysical variables and modeled
SAR observables are physically plausible.

• Discuss/identify the potential limitations of applying this technique in agricultural
applications.

The analysis will be conducted over 1500 maize fields in the Netherlands. The DSSAT
model will be used to simulate a description of the growing vegetation in terms of LAI,
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AGB, surface soil moisture (SMS), and root zone soil moisture (SMR). To establish
the link between the observables and the biophysical parameters we use a Support
Vector Regression (SVR) model. Feature analysis, the Minimum Redundancy Maximum
Relevance (MRMR), will be used to examine the sensitivity of the SAR observables to
the DSSAT variables.

3.2. STUDY AREA
The study is performed in the Noord-Brabant province (5081 km²) in the South of
The Netherlands. Province boundaries and location of agricultural fields with their
associated crop types were retrieved from the Basisregistratie Gewaspercelen (BRP)
[28], an open national database of crop parcel boundaries and crop type in The
Netherlands. The average temperature in this area varies between 2◦C to 24◦C and the
average annual precipitation is around 646 mm. Mean monthly sunshine hours range
from 5 to 14 hours [29].

The study area location and the spatial distribution of the maize fields are shown
in Fig. 3.1. Almost all maize grown by farmers in The Netherlands is silage maize.
It is planted between mid-April and the beginning of May, and the emergence is in
mid-May. It is left to ripen in the field, and is harvested in September [30]. Silage maize
is grown in approximately 20% (about 20000#) of parcels in Noord-Brabant. 10% of
these fields were used for this study, ensuring that they were randomly spread all over
the province (see Fig. 3.1).

For calibration, data were available at an experimental site in Reusel, 51.319◦N,
5.173◦E, in 2019 [31]. The field is on sandy soil and can be irrigated with a gun sprinkler
irrigation system. In 2019, the maize was watered twice during the summer, relying on
the rain during the rest of the growth period.

3.3. DATA AND METHODOLOGY
Fig. 3.2 provides an overview of the workflow followed in this study.

3.3.1. DSSAT
Crop growth models, such as the Decision Support System for Agrotechnology Transfer
(DSSAT) model, simulate the interaction between plants and their environment, in
daily steps, to estimate the growth, development, and yield of different crops [32,
33]. Basically, they are scientific tools with a set of equations that take environmental
information as inputs and determine the phenological development, and growth stage
as outputs and these require precise parameterization. DSSAT has been used for years
for different crops and regions across the world [34]. The CERES-Maize module (Crop
Environment Resource Synthesis) [35] is part of DSSAT v4.7, and is one of the most
broadly used maize models. The CERES-Maize module has been used and evaluated in
several studies in different parts of the world. For instance, in [36] DSSAT performance
was validated and then used to determine the best management practices of nitrogen
fertilization and irrigation. In another study, the impact of climate variability on maize
in the semi-arid area by CERES-Maize module was assessed [37].



3.3. DATA AND METHODOLOGY

3

51

Figure 3.1.: Location of the study area. The maize fields analyzed in this study are shown
in red. Black circles display the location of four automatic meteorological
stations over the province. The red star indicates the location of the site
used for calibration.
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Figure 3.2.: DSSAT-SVR SAR observables simulation workflow.

3.3.2. INPUT DATA FOR DSSAT

DSSAT requires a minimum set of input data to simulate crop growth: daily weather
information during the growth period; soil characteristics of the area; crop management
data (sowing and harvest date, row spacing, irrigation, and fertilization information);
and cultivar coefficients.

WEATHER DATA

The required weather data including daily solar radiation (SRAD), precipitation, and
maximum and minimum air temperature (TMAX, TMIN), were obtained from Royal
Dutch Meteorological Institute (KNMI) weather station data [29]. There are over 40
weather stations in The Netherlands, of which four are within the Noord-Brabant
province. The point-wise meteorological data was interpolated to raster format using
Inverse Distance Weighting (IDW) spatial interpolation.

Precipitation is a key parameter. So, as an alternative to interpolated gauge data
at a limited number of locations, the daily precipitation sum data in gridded format
measured on approximately 300 locations of a voluntary network over The Netherlands
has been used to obtain precipitation data with higher spatial resolution [38]. The
gridded data is not available for all the other features. Daily weather files in the required
DSSAT file format were generated for each crop parcel, and each year.
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SOIL DATA

Bulk density, soil organic carbon, sand, silt, clay fractions, coarse fragments, soil pH,
and total nitrogen were obtained from the ISRIC’s global Soil Information System
(SoilGrids) [39]. Soil data at six different depth layers 0-5, 5-10, 15-30, 30-60, 60-100,
and 100-200 cm were obtained with a 250 m grid spacing from SoilGrids250m [40].

Soil properties required by DSSAT that are not available in SoilGrids250m, are
obtained from HarvestChoice HC27 [41]. HC27 is a soil database containing 27 soil
profiles that are provided by considering only three criteria: soil texture, organic
carbon content (proxy for soil fertility), and rooting depth (water availability proxy).
In this study, values for soil color, albedo, evaporation limit, drainage rate, runoff
curve number, mineralization factor, photosynthesis factor, pH in buffer determination
method, extractable phosphorus determination code, and potassium determination
method were obtained from the corresponding HC27 soil profiles.

We calculated the values for Saturated hydraulic conductivity (SSKS), Saturation
(SSAT), Drained Upper limit (SDUL), and Lower limit (SLLL) by pedo-transfer functions
following [42–44].

Table 3.1 lists the most relevant soil parameters and the range of values assumed in
this study.

Table 3.1.: Soil parameters for DSSAT.

Parameters Range
Depth (cm) 5-200
Porosity (cm3/cm3) 0.376-0.417
Field capacity (cm3/cm3) 0.155-0.187
Wilting point (cm3/cm3) 0.069-0.097
Bulk density(g /cm3) 1.11-1.51
Organic carbon (%) 1.33-6.55
Total nitrogen (%) 0.16-0.48

MANAGEMENT AND GENETICS

Table 3.2 provides details on planting, emergence, harvest dates, and planting density
assumed in this study. In Noord-Brabant, they prepare the field in April, the growing
season of maize starts in May and lasts until the end of September. During the
simulation, water stress simulation is enabled but all the other nutrient stresses are
turned off as all the crops growing over the area, are well fertilized. The planting density
was measured by [31], and these are typical values for maize planted in this area.

The DSSAT model requires some calibration. Specifically, we need to define a set of
genetic coefficients controlling the growth, development, and yield of the crop such
as ecotype and cultivar coefficients [35]. Ecotype coefficients are a set of coefficients
for a group of cultivars (cultivar means a type of cultivated crop) that show similar
responses to environmental conditions. Genetic coefficients in DSSAT have been
calibrated for maize grown in tropical and semi-arid areas [45]. However, the day
length, radiation use efficiency, and temperature mean that different kinds of maize are
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Table 3.2.: Maize input management parameters into DSSAT model from Noord-Brabant
province.

Parameters Value
Density (#/m2) 8
Row Spacing (cm) 75
Depth (cm) 12
Planting date Beginning of May
Flowering date End of July
Physiological maturity date End of August
Harvest date End of September

grown in Northern Europe. Furthermore, the maize grown in the Netherlands is grown
for silage. Therefore, some ecotype coefficients such as radiation use efficiency (RUE)
[46] and canopy light extinction coefficient for daily PAR (photosynthetically active
radiation) (KCAN) [47, 48], have to be tuned. These are important drivers controlling
the maximum value of the growth parameters [49].

The medium season cultivar, was selected as an initial maize cultivar in the area
and the calibration started based on those primary values. The cultivar coefficients
are calibrated by comparison between observed and simulated variables. First, we
calibrate the phenology coefficients (P1, P2, and P5 in Table 3.3) by finding the
values that provide the best agreement between simulated and observed flowering and
physiological maturity dates. Then, we calibrate the growth coefficients (G2 and G3) in
order to minimize the root mean square difference between observed and simulated
LAI and dry biomass for the calibration field. Calibration data were available at an
experimental site in Reusel [31]. Table 3.3 shows the calibrated cultivar coefficients for
CERES-Maize.

Table 3.3.: DSSAT Maize cultivar coefficients definition and calibrated values.

Cultivar parameters Value
P1: Thermal time from emergence to end of juvenile phase. 140
P2: Photoperiod sensitivity coefficient. 0.856
P5: Thermal time from silking to physiological maturity. 890.7
G2: Potential kernel number. 983.3
G3: Potential kernel growth rate (mg/day). 7.09
PHINT: Phylochron interval; the interval in thermal
time (degree days) between successive leaf tip appearances.

38.9

The key biophysical parameters of maize, like LAI, canopy height, AGB, SMS, and
SMR provided by DSSAT, are entered as inputs to the SVR forward model to simulate
the SAR observables.
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3.3.3. SAR AND OPTICAL DATA

Sentinel-1 C-band Interferometric Wide (IW) swath data with a 6-day repeat cycle
(relative orbit 37) have been used. For this relative orbit, the incidence angle range varies
between 36 to 40 degrees over the study area. We used the spatially averaged parcel-level
NRCS in VV and VH polarizations (σ0

V V and σ0
V H ), the cross-ratio (CR = σ0

V H /σ0
V V )

and the interferometric coherence in VV polarization. All these radar observables
were extracted from the Agricultural SandboxNL database [50, 51]. This database was
generated by utilizing the openly available annual BRP vector layers and Sentinel-1 SAR
ground range detected (GRD) data over The Netherlands in the Google Earth Engine
(GEE) using data collected between 2017 and 2019. The GEE-provided Sentinel-1
GRD images are pre-processed with orbit file update, radiometric calibration, border,
thermal noise correction, and terrain correction [52]. The Agricultural SandboxNL
database contains parcel averaged Sentinel-1 backscatter (σ0

V V , σ0
V H and CR) and

associated attributes (local incidence angle, azimuth look angle, and pixel count) for six
different relative orbits (37, 110, 139, 15, 88, and 161).

The interferometric coherence is defined as the normalized cross-correlation between
two coregistered SAR images. The coherence is defined as [53]:

γest =
〈

S1S∗
2

〉√〈|S1|2
〉〈|S2|2

〉 , (3.1)

where S1 and S2 represent two co-registered complex images, and ∗ denotes the
complex conjugate operator, and < · > represents the spatial averaging operator. We
have estimated the coherence values implementing standard InSAR pre-processing
steps[54] in ESA SNAP software[55] for VV polarization with a 6-day repeat cycle.
The parcel-level spatially averaged coherence product is generated similarly to the
Sentinel-1 SAR backscatter in the Agricultural SandboxNL database.

The coherence values range from 0 to 1, where low values correspond to high
decorrelation between the two acquisitions. High coherence is achieved when
the physical properties and position of scatterers remain the same between two
acquisitions. This happens during the bare soil or after harvest, which makes the
coherence a valuable indicator to detect agricultural events.

The SandboxNL was extended to include parcel-level averaged Sentinel-2 optical
data. In this study, we used these optical data to obtain estimates of LAI over our
study area. The parcel-level LAI values for maize were estimated from the Normalized
Difference Vegetation Index (NDVI) using the relationship for maize adopted from Kang
et. al. 2016 [56, 57].

3.3.4. SUPPORT VECTOR REGRESSION (SVR)
To model the relation between the biophysical parameters and SAR observables (NRCS
and coherence), we used a SVR [58] algorithm. SVR has been employed in previous
studies for different applications. For example, in [22], the performance of the WCM and
SVR as a forward model was compared, in order to assimilate Sentinel-1 data into the
Global Land Evaporation Amsterdam Model (GLEAM). Their results show the capability
of machine learning as an alternative to semi-empirical models to predict backscatter.
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Additionally, soil moisture was retrieved by [59] through the inversion of both the
theoretical integral equation model (IEM) and the semi-empirical model (Oh), and the
results were compared with SVR. They showed that the data-driven machine-learning
approach outperforms the other mentioned models. As mentioned in [60] SVR has
limited complexity in the training phase and produces high accuracy with the less
computational load. The purpose of this study is not to compare machine-learning
algorithms nor to determine the best algorithm. In this study, we chose to use a proven
machine learning algorithm as a data-driven forward modeling technique to predict
SAR observables based on its positive track record in similar applications [22, 25].

The SVR model is fed with LAI, dry biomass, SMS and SMR from the DSSAT model to
predict NRCS in VV and VH polarizations, and the cross-ratio. In the case of coherence,
canopy height from DSSAT is also added to the inputs, and SVR is fed with the values
corresponding to the dates of the first acquisition in the interferometric pair and with
the differences between the values of the first and second acquisition.

We trained and tested the SVR model in three ways:

1. Training with data of individual years and testing on the same year (Same-year).

2. Training on individual years and testing on multiple years (Cross-year).

3. Training with multiple-year data and testing on multiple years (Multi-year).

In all cases, we follow standard practices by first training the algorithm to find the best
model fit and then testing the model on the separate test data sets. In cases 1 and 3, the
algorithm is trained using 80% of the fields, and the remaining 20% fields are used for
test of the model, with the fields being randomly assigned to the training and testing
sets.

Each field at each Sentinel-1 acquisition time counts as an individual sample. During
the growth period of each year (planting to harvest), 25 SAR acquisitions are available.
We applied 10-fold cross-validation to avoid overfitting. It means that the model is
trained using 9 of the folds and validated on the remaining part. Still, the 20% test data
are kept and used exclusively for the final assessment. Grid-search is used in order
to obtain the hyper-parameters with the highest cross-validation accuracy. The cost
parameter C and the hyperparameter γ have to be tuned. The best (C ,γ) values are
used to train and generate the model. The values of all input variables are scaled so
that they are between 0 and 1. The optimum kernel was the radial basis function (RBF)
kernel which is defined as

K (xi , x j ) = e−γ
∥∥xi−x j

∥∥2

, (3.2)

where xi and x j are the a pair of samples.

3.3.5. SURFACE ROUGHNESS

Rough surface scattering contributes to the observed radar signal. This contribution
is dominant at the beginning of the growth period, when fields are mostly bare or
covered with a small amount of vegetation [21]. Rough surface scattering is controlled
by the dielectric constant, which in turn depends on the soil composition and the soil
moisture content, and on the roughness spectrum. The latter is not represented in any
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of the DSSAT variables, which implies that field-to-field variations of the rough surface
scattering term cannot be modeled with the available biophysical parameters. This
contributes to inter-field differences in the observed NRCS values during the planting
and emergence period.

Conceptually, we can assume that the rough surface contribution to the radar
observables can be directly measured in the period between planting and emergence.
Therefore, we assume that the properties controlling this rough surface component,
with the exception of the soil moisture, remain constant during the growth season (in
particular during the initial period).

We consider a reference backscatter value for each parcel as a proxy for the effect of
roughness/geometry on the variability between parcels and included that as a label for
each parcel (along with other parameters for the parcel). This reference backscatter
value is calculated as the mean NRCS value for the parcel in the three acquisitions
following the planting date.

3.3.6. EVALUATION OF MODEL PERFORMANCE

Five error metrics are used to evaluate the performance of the regression model. The
simulated and observed backscatter and coherence values are compared using standard
statistical metrics:

MAE = 1

n

n∑
i=1

∣∣yi − ŷi
∣∣ , (3.3)

MSE = 1

n

n∑
i=1

(yi − ŷi )2, (3.4)

and

R2 = 1−
∑n

i=1(yi − ŷi )2∑n
i=1(yi − ȳ)2 , (3.5)

where yi represents the i th observation , ŷi is the i th predicted value, n is the number
of observations. The Mean Absolute Error (MAE) gives the average absolute difference
between the predicted and the actual values. The Mean Square Error (MSE) is used to
measure the error of the model in simulating SAR observables [61] that is magnifying
large errors. The coefficient of determination, R2, is used to show the capability of the
model in explaining the variation of the actual data. In an ideal case, R2 is equal to 1.
In addition, we use Pearson and Spearman’s correlation, which shows the correlation
between predicted and observed backscatter.

3.3.7. FEATURE ANALYSIS

In order to understand and quantify the importance of different features in defining the
regression model, we used a feature analysis algorithm. The Minimum Redundancy
Maximum Relevance (MRMR) algorithm is applied to maximize the relevance of a
feature set with the dependent variable and minimize the redundancy in a feature
set [62]. The MRMR algorithm searches to find an optimal subset of features (S)
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that maximize V , the relevance of a feature set with response variable (y), where this
relevance is quantified through the mean value of the mutual information (I ),

V = 1

|S|
∑
x∈S

I (x, y) (3.6)

where |S| is the number of features in S. The redundancy, W , is quantified by the mean
of the mutual information between the features within the set

W = 1

|S|2
∑

x,z∈S
I (x, z) (3.7)

.
The MRMR algorithm ranks features by using the mutual information quotient (MIQ)

value:

MIQ = V

W
(3.8)

.

3.4. RESULTS AND DISCUSSION

3.4.1. DSSAT CALIBRATION AND PERFORMANCE

Fig. 3.3 shows three years of meteorological data, including TMIN, TMAX, SRAD, and
cumulative precipitation in daily steps. DSSAT needs to be calibrated for the specific
crop variety of interest. The model was calibrated using data collected during field
experiment in Reusel, Noord-Brabant (See Figure 3.1 and Section 3.2.)

As illustrated in Fig. 3.4, after calibration, DSSAT simulated the LAI and biomass with
95% and 98% accuracy, respectively. Fig. 3.4a compares the time series of predicted and
observed LAI and AGB. LAI estimates were derived from Sentinel-2 NDVI observation
and from in-situ measurements. NDVI-derived and simulated LAI have a downward
trend after the end of August while the LAI value from field measurement increases.
As reported in [63], the field measurements of LAI were obtained by multiplying the
averaged leaf area by the plant density. Consequently, the loss of LAI (related to primary
productivity) due to leaf degradation after the crop reaches maturity is not reflected
in the field data. The quality of NDVI-derived LAI estimates is limited by the spatial
resolution of the Sentinel-2 data and by the density of the crop, as the visible and
near-infrared reflectances depend also on bare soil exposure [64]. Fig. 3.4b displays
the simulated LAI and biomass versus the predicted values. Generally, there is a good
agreement between the simulated and observed values for LAI and biomass, showing
that the model is well-calibrated.

Fig. 3.5 provides an inter-annual comparison between DSSAT-simulated crop
bio-geophysical parameter outputs of the maize fields for normal (2017) and
drought-affected (2018 and 2019) years. In 2018, Europe experienced a very hot and dry
summer. Drought in 2018 and 2019 affected agricultural production in The Netherlands.
The 2018 drought influenced the groundwater levels, and hence crop production [65].
The influence of the drought on Sentinel-1 SAR observables was discussed by [30].

Starting in July 2018, reduced soil moisture levels lead to a significant drop in the
simulated LAI and the rate of growth of the simulated dry biomass. The maximum daily
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Figure 3.3.: Daily time-series of meteorological forcing inputs to the DSSAT model. (a)
Minimum temperature. (b) Maximum temperature. (c) Solar radiation. (d)
Cumulative precipitation. Solid lines show the mean value of the variable
over studied maize fields, and the bounded area represents one standard
deviation of the variables.

average of LAI reaches approximately 3.5, compared to around 4.5 in 2017. Similarly,
the biomass accumulation was substantially lower. Fig. 3.5 also illustrates that, in our
case, the simulated LAI and AGB have higher variances during drought periods than in
normal conditions. For example, this is clearly visible in 2018 for LAI, after it reaches its
highest value in July. This illustrates that the anomaly in root zone soil moisture was
sufficient to constrain crop growth.
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Figure 3.4.: DSSAT model calibration. (a) Time-series fit between (top): estimated
LAI from Sentinel-2 data, simulated LAI from DSSAT model and in-situ
measurements, (down) simulated biomass from DSSAT and ground
measurements. (b) Comparison between simulated and measured LAI and
biomass.

3.4.2. MODELED VS MEASURED RADAR OBSERVABLES

Fig. 3.6 provides the comparison of NRCS in VV and VH, cross-ratio (CR, VH/VV), and
interferometric coherence VV between DSSAT-SVR estimated (in red) and Sentinel-1
observations (in blue). The results are calculated for the independent test data sets. In
this figure, training and test data are from the same year in this case.

Before crop emergence, radar backscatter is controlled by the surface roughness and
moisture content of the exposed soil. During this period, sudden variations of the NRCS
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Figure 3.5.: Vegetation and soil parameters during the growing season in daily steps
from DSSAT model that are considered relevant inputs to simulate SAR
observables. (a) LAI, (b) Above ground dry biomass, (c) Surface soil
moisture, (d) Root zone soil moisture. Solid lines show the mean value of
the variable over studied maize fields and the bounded area represents one
standard deviation of the variable.

are caused by precipitation events. Starting from late May, when maize enters the leaf
development stage, radar backscatter increases as the plant grows. During the stem
elongation stage to tassel initiation in July, LAI rapidly reaches its maximum, leading
to an increase in both co- and cross-polarized NRCS and in the cross-ratio. Once the
crop reaches maximum LAI, the sensitivity of backscatter to growth decreases. The
fluctuations in backscatter are probably due to the rain events on June 6th 2017, June
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Figure 3.6.: Comparison of NRCS in VV, VH, cross-ratio (CR, VH/VV), and interferometric
coherence VV between DSSAT-SVR estimated and Sentinel-1 observations.
Each column is associated with a different year. Solid lines indicate the
mean value of the feature over maize parcels in the test set, and the bounded
area shows the 20th-80th percentiles. Training and test data are from the
same year in this case.

1st and 7th 2018, and May 28th and June 5th, 2019. When maize reaches physiological
maturity, in the last week of August, radar backscatter begins to decrease until harvest.
This happens due to the decrease in vegetation water content. The inter-field variability
ranges from 1 to 4 dB. Other studies also established similar temporal behavior of the
radar observables for maize fields [24, 66]. In 2018, dry conditions resulted in an earlier
ripening and harvest, leading to a shorter growing season compared to 2017 [30]. This
is evident in the observed NRCS values, particularly in the cross-pol channel and the
CR. The jump in NRCS co-pol in August 2018 was caused by the rain event on 7th
August. Fig. 3.5(C) shows that in July and the beginning of August, surface soil moisture
was lower than in 2017 and a rain event on 7th August 2018 led to higher soil moisture
values.

As expected, coherence values are higher before the maize emergence. After crop
emergence, coherence drops quickly due to temporal decorrelation associated with
crop growth [67]. The coherence value remains low (<0.3) through the vegetative period
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of maize. The lower panels in Fig. 3.6 illustrate the reasonable agreement between
estimated and observed SAR observables.

In Section 3.3.5, it is argued that the average backscatter of three acquisitions after
planting can serve as an indicator of the rough surface contribution to the backscatter
for each parcel. This variable, referred to as offset, is included along with LAI, biomass,
SMS, and SMR in the analysis. To assess the impact of the offset parameter, the SVR
model was trained and tested with and without taking it into account. Fig. 3.7 shows the
time-series of the difference between the observed and the estimated VV backscatter
with and without using the offset, when the model is trained and tested on normal 2017
data. This figure illustrates that including the offset reduces the difference between the
estimated and observed backscatter at the beginning of the vegetative period when the
total backscatter is still sensitive to surface scattering. Similar results were obtained in
other years and channels, as shown in supplementary Fig. A.1. We calculate statistics
for the entire growing period and also for the period where the surface scattering
contribution is expected to be significant. This period covers the start of the vegetative
stage, from emergence, typically the last week of May, until the beginning of tassel
emergence, around the first week of July each year. Including the offset reduces the
error, improves the accuracy, and increases the correlation coefficients. For example,
the R2 score increases from 0.45, 0.15, and 0.27 to 0.55, 0.30, and 0.44 at the beginning
of the vegetative period for 2017, 2018, and 2019, respectively. Supplementary Fig. A.2
shows standard regression performance metrics for backscatter using train and test
sets from the same year, both with and without the offset at the beginning of the
vegetative period. Because including the offset to account for e.g. roughness in the
surface scattering, all results discussed hereafter have been obtained including the
offset parameter.

Tables 3.4 and 3.5 display the MAE and Pearson correlation for different years and
channels over the beginning of the vegetative period and the whole growing period
(the values within the parentheses). The first column of the tables indicates the
year in which the train data was selected. Other statistical metrics are presented in
supplementary Table A.1 to A.5.

Given the significantly different conditions during the three years considered, we
expect low model accuracy in the case that the training data set does not include data
from the year to which the SVR model is applied. This is confirmed by the results
presented. For instance, using 2018 VV and VH backscatter data to train the model
and applying it to 2017 results in a high MAE and very low correlation. Likewise,
using VV and VH backscatter in 2017 as training data to predict backscatter in 2018,
produces similar results. This happens because the trained model is applied to sets of
inputs for which it has not been trained. As an illustrative example, Fig. 3.8 shows the
bivariate histogram of LAI and AGB for each year. The figure shows how in this 2-D
subspace of our 4-D parameter space, the crop state follows similar trajectories during
the beginning of the vegetative periods, where both LAI and AGB grow rapidly, after
which we can observe distinct trajectories. The consequence is that some regions of
the parameter space are only visited in particular years.

Training the model with backscatter in 2018 to predict it in 2019, performs reasonably
during the start of the vegetative stage of 2019 as these two periods suffer from
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Figure 3.7.: Time series difference between observed and estimated backscatter VV in
2017 with and without using the offset.

drought. The CR produces better results as it suppresses the influence of soil moisture.
The CR generally follows the overall temporal behavior of LAI. Notably, year-to-year
transferability is improved in the CR results. When the model is trained on multiple
years (2017, 2018, and 2019), it performs almost as well as when it is trained on the
same year.

The CR is not an independent observable, while we already have σ0
V H and σ0

V V .
However, this does not necessarily mean that the best possible forward models of σ0

V H
and σ0

V V would give the best possible model of the CR. In particular, the CR is often
used because it partially suppresses some contributions, for example, soil moisture
that affects σ0

V H and σ0
V V in similar ways. The quality of the forward model for the

backscattering coefficients may be limited by its ability to correctly represent the effect
of soil moisture effects or by errors in the soil moisture input data, which would result
in errors in the ratio of these forward-modeled coefficients. In contrast, the CR forward
model will be less affected by these errors.

We see a similar general behavior for the coherence, with a high correlation between
the predicted and observed coherences in the Same-year and Multi-year cases but
relatively low in the cross-year cases. In particular, the results for 2018 if the model
is trained with 2017 or 2019 data are very poor. As discussed in Section 3.4.3, the
trained coherence model is sensitive to the dry biomass difference. Indeed, one can
expect the coherence to be higher if the biomass is not changing. Fig. 3.5 suggests
that in 2018, for a significant number of fields, the dry biomass predicted by DSSAT
stagnates around August, which can cause the model to predict high coherences during
that period. When we train including 2018 data the model learns to put much less
emphasis on the biomass difference. In a physical conceptual model, we would take
the biomass difference as a good indicator of coherence during the beginning of the
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growth period, but not anymore at later stages, where the wind-induced motion of the
crop is sufficient to explain a low coherence. Other coherence statistics are presented
in supplementary Table A.6.

Table 3.4.: Mean absolute error between estimated and observed σ0
V V , σ0

V H , CR and
γV V , over the beginning of the vegetative period and the whole growing
period (the values within the parenthesis).

2017 MAE σ0
V V σ0

V H CR γV V

2017 1.01 (0.98) 1.05 (0.93) 0.78 (0.77) 0.05
2018 2.89 (2.64) 2.53 (2.03) 0.91 (0.98) 0.07
2019 1.47 (1.37) 1.40 (1.34) 0.91 (0.92) 0.06
2018 + 2019 1.64 (1.42) 1.53 (1.31) 0.90 (0.89) 0.06
2017+2018+2019 1.17 (1.05) 1.45 (1.32) 0.80 (0.78) 0.05

2018 MAE
2017 1.88 (1.91) 1.99 (2.44) 1.09 (1.92) 0.15
2018 1.04 (1.18) 1.18 (1.33) 0.95 (1.02) 0.07
2019 1.38 (1.70) 1.65 (1.70) 1.07 (1.18) 0.10
2017 + 2019 1.42 (1.55) 1.64 (1.60) 1.05 (1.18) 0.10
2017+2018+2019 1.14 (1.23) 1.28 (1.37) 0.95 (1.02) 0.07

2019 MAE
2017 1.72 (1.64) 1.93 (1.66) 1.05 (1.05) 0.07
2018 1.46 (1.76) 1.53 (1.66) 0.98 (0.97) 0.06
2019 1.12 (1.00) 1.18 (1.00) 0.82 (0.83) 0.05
2017 + 2018 1.46 (1.30) 1.43 (1.26) 0.98 (0.96) 0.06
2017+2018+2019 1.20 (1.06) 1.25 (1.05) 0.84 (0.85) 0.05

Fig. 3.9 shows the time series of observed backscatter in different years and channels
(in blue) and estimated backscatter from the combination of three years (Multi-year)
in green and estimated backscatter from a year that behaves differently with the
estimating year (Cross-year) 2017 in red and 2018 in black. The transparent buffer
shows 20th-80th percentiles. This figure demonstrates the impact of having partially
disjoint sets of SVR input parameters (or DSSAT outputs) for different years. In early
vegetative stages, inter-annual variation in the SMS will cause errors in the predicted
backscatter. For example, when we apply the 2018-trained model to 2017 inputs, we see
large errors in the NRCS at times where the SMS in 2018 was consistently lower than in
2017 (see Fig. 3.5). This problem does not affect the CR because it is much less sensitive
to SMS variations [68]. At later vegetative stages, the NRCS is much more controlled by
LAI and dry biomass. This explains, for example, the large error in the prediction of all
the 2018 observables, including CR, for a 2017-trained model: the low LAI values (Fig.
3.8) of 2018 where never encountered in the 2017 training data set. Similar results were
obtained using all other combinations of training and testing years (See Supplementary
Fig. A.3).
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Table 3.5.: Pearson correlation between estimated and observed σ0
V V , σ0

V H , CR and
γV V , over the beginning of the vegetative period and the whole growing
period (the values within the parenthesis).

2017 Pearson σ0
V V σ0

V H CR γV V

2017 0.75 (0.69) 0.80 (0.80) 0.68 (0.63) 0.77
2018 -0.2 (-0.09) 0.09 (0.40) 0.61 (0.54) 0.50
2019 0.45 (0.33) 0.69 (0.57) 0.56 (0.50) 0.57
2018 + 2019 0.27 (0.30) 0.63 (0.68) 0.57 (0.53) 0.57
2017+2018+2019 0.67 (0.63) 0.67 (0.70) 0.67 (0.63) 0.75

2018 Pearson
2017 0.17 (-0.02) 0.16 (0.08) 0.49 (0.15) 0.10
2018 0.55 (0.53) 0.61 (0.60) 0.58 (0.55) 0.50
2019 0.33 (0.21) 0.42 (0.33) 0.50 (0.35) 0.04
2017 + 2019 0.21 (0.21) 0.33 (0.32) 0.50 (0.36) 0.17
2017+2018+2019 0.44 (0.48) 0.53 (0.58) 0.60 (0.56) 0.50

2019 Pearson
2017 0.44 (0.22) 0.45 (0.39) 0.64 (0.47) 0.54
2018 0.45 (0.19) 0.59 (0.40) 0.65 (0.57) 0.52
2019 0.67 (0.63) 0.74 (0.71) 0.75 (0.67) 0.74
2017 + 2018 0.50 (0.40) 0.62 (0.59) 0.66 (0.58) 0.58
2017+2018+2019 0.62 (0.58) 0.71 (0.69) 0.74 (0.66) 0.70

Fig. 3.10 displays the same time series for the VV coherence. In general, the highest
correlation and lowest error are observed when the training and testing data are from
the same year or when data from all three years is used. As expected, the model
wrongly shows high coherences for part of 2018 growth when we trained the model with
2017. This can be explained by considering the quite constant slope of 2017 biomass
time series as compared to the wide range of biomass differences for 2018. Similar
results were obtained for coherence from all training and testing year combinations
(See Supplementary Fig. A.5).

3.4.3. FEATURE ANALYSIS

The feature analysis aims to understand the drivers of SAR observables and to ensure
that they are physically plausible. The MRMR algorithm is applied to assess the
importance of the different variables in the regression model.

Fig. 3.11 displays the feature importance scores of the different parameters fed to the
SVR model for the estimation of the VV and VH backscatter and the CR for different
years, in the Same-year and Multi-year cases.In general, dry biomass and the offset
parameter have the highest scores. Significant correlations between dry biomass and
C-band radar backscatter were also observed by [66]. In CR, because the sensitivity
to soil moisture is minimized, we expect the higher importance to AGB always would
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Figure 3.8.: Bivariate histogram of LAI and dry biomass for 2017 (blue), 2018 (green),
and 2019 (red). The color bars show the normalized density of samples on a
logarithmic scale for each year.

be the case unless LAI and AGB are inter-changeable so that one is picked up in the
Same-year and the other in the Multi-year case. The impact of LAI in VV and VH
was found to be minimal for all three years, possibly due to the strong correlation
between LAI and dry biomass. Similarly, the influence of soil moisture was relatively
low, likely because the analysis covers the entire growing season. The influence of
soil moisture varies with the growth stage, as backscatter sensitivity to soil moisture
decreases with increasing biomass. According to Fig. 3.12, the biomass difference is
the most important factor for coherence VV across different years, as this parameter
represents the overall growth throughout the entire period, making it a significant
indicator. A non-zero difference in biomass implies a low coherence, which happens
from emergence till harvest. While surface soil moisture difference has the least impact.
(The feature importance scores of other training years are presented in supplementary
Fig. A.4 and A.6).

3.5. CONCLUSIONS

This study aimed at demonstrating the feasibility of using machine learning techniques
to create a forward model linking bio-geophysical crop parameters to C-band radar
observables. This forward model serves as a bridge between the observed SAR data and
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Figure 3.9.: Time-series of observed and estimated backscatter in 2017 (1st column),
2018 (2nd column) and 2019 (3rd column) for different channels. The years
that training data are selected from are shown in the legend.

Figure 3.10.: Time-series of observed and estimated coherence VV in different years.
The legend shows the year in which the training data belongs. Different
year training and test data were used for the estimation of observables.

the crop model simulations, enabling the integration of the two. We used a crop growth
model as an alternative to in-situ data to provide crop descriptors over 1500 maize
fields in the Netherlands. The Minimum Redundancy Maximum Relevance (MRMR)
was used to quantify the sensitivity of the SAR observables to the DSSAT variables. We
demonstrate that the connections between crop bio-geophysical variables, such as LAI,
AGB, SMS and SMR and the modeled SAR observables, such as NRCS and coherence, are
plausible and consistent with known physical principles of microwave remote sensing
of vegetated surfaces.

In the early season, surface scattering plays an important role in the interaction
with the soil surface, so the mean value of backscatter in three acquisitions after the
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Figure 3.11.: Rank features for SVR with backscatter using the MRMR algorithm. The
bars in each plot are positioned on the left side for Same-year and on the
right side for Multi-year.

Figure 3.12.: Rank features for SVR with coherence VV using MRMR algorithm. The bars
in each plot are positioned on the left side for Same-year and on the right
side for Multi-year. The variables with the "Delta" extension represent the
difference between the dates of the pair of consecutive acquisitions used
to create the interferograms.

planting date in each year is used as a proxy for information about the roughness, row
geometry and other static parameters that influence surface scattering. Adding this
proxy improves the estimations in the early season. We demonstrate that the difference
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in environmental conditions (drought and non-drought situations) affects the model
accuracy when the training data set does not include data from the year to which the
SVR model is applied. The reason is that there is not enough spatial intra-variability
within the area of study due to the similarity in soil texture and rainfall patterns across
the province. However, DSSAT-SVR can estimate SAR observables with reasonable
accuracy including the effect of surface roughness and using three years of training
data. The CR shows better transferability from year to year as it minimizes the influence
of soil moisture. Applying the method over a larger area with more heterogeneity or a
longer time frame of the observations should result in an improved performance as the
model would train with a much wider set of data.

Like all models, crop growth model performance itself depends on the quality of the
input data and the calibration of the model parameters. Therefore, there is always some
degree of uncertainty associated with them. This uncertainty can be reduced, to some
degree, by the availability of accurate meteorological forcing data at suitably fine spatial
resolutions as well as in-situ observations of biomass and LAI for model calibration.

Combining crop growth models with machine learning methods has the potential to
estimate remote sensing observations without solely relying on ground measurements.
Ongoing research will consider the suitability of this approach for anomaly detection
in agricultural applications, and its use in a data assimilation context where Sentinel-1
data are used to constrain the state and parameters of the crop growth model.
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4
PHYSICS-GUIDED MACHINE

LEARNING BASED

FORWARD-MODELING OF RADAR

OBSERVABLES: A CASE STUDY ON

SENTINEL-1 OBSERVATIONS OF

CORN-FIELDS

Artificial neural networks have the potential to model the interaction of radar signals
with vegetation but often do not follow the physical rules. This paper aims to develop
a new physics-guided machine learning approach that combines neural networks
and physics-based models to leverage their complementary strengths and improve the
modeling of physical processes. We propose a data-driven framework to model Synthetic
Aperture Radar (SAR) observables by incorporating physical knowledge in two ways:
through the network architecture and the loss function. A key aspect of our approach
is its ability to integrate knowledge encoded in physics-based models. The results show
that by using scientific knowledge to guide the construction and learning of the neural
network, we can provide a framework with better generalizability and stability.

Parts of this chapter have been published in: Nikaein, T., Lopez-Dekker, P., 2025. Physics-Guided Machine
Learning Based Forward-Modeling of Radar Observables: a Case Study on Sentinel-1 Observations of
Corn-Fields. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
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4.1. INTRODUCTION

Forward models, or observation operators, are important for the analysis and
interpretation of remote sensing data, for the conceptualization and development of
observational concepts, and for the assimilation of measurements in numerical models.
As in many other fields of study, traditional approaches use either simple empirical
models, simplified physical models, or a mixture of both (e.g. physical models with
empirically tuned parameters). While robust and easy to work with, these types of
models often fail to account for many of the phenomena present in the full physical
system.

To address this shortcoming, remote sensing scientists are increasingly adopting
machine learning (ML) algorithms. These algorithms can learn complex relations and
patterns that are not well captured by theoretical models due to the complexity of the
underlying physics [1, 2]. On the other hand, supervised machine learning algorithms,
particularly deep learning networks, often require vast amounts of training data and
can sometimes yield results that, while statistically accurate, may not always align with
physical laws [3]. Another issue with purely data-driven models is that they may work
well for the region of input vector-values covered by the training data, but often fail to
generalize for input values outside this region [4].

An emerging trend in physical sciences is to use the robust theoretical foundations
of physics to guide and constrain machine learning models, leading to predictions
that are not only more accurate but also physically plausible. In this work, we follow
this approach to model satellite-based radar observables over crop fields. While we
apply the methodology to the particular case of Sentinel-1[5] Normalized Radar Cross
Section (NRCS) over corn fields, the approach should apply to other crops and other
observables.

Recently, there has been an increasing interest in the integration of physics with
machine learning, as discussed in detail in [6, 7]. Previous studies demonstrated
that physics-informed machine learning can improve the accuracy and generalizability
of the model in different applications. For example, in [8] an improvement in the
prediction of the chemical reflectance signature was studied using a physics-guided
neural network (PGNN). In another study to predict lake temperature [9], PGNN
was used in two different approaches; 1) the simulated output of the physics-based
model was fed into the neural network as additional inputs and 2) including physics
knowledge into the loss function. Their results showed better accuracy and lower
physical inconsistency. Jia et al. [10] pre-trained a model using simulated data from
a generic physics-based model to improve prediction accuracy with limited observed
data. An effective method for guiding the initialization process to aid in model
training and avoiding local minima is to employ transfer learning, an ML approach.
With transfer learning, a model can be first pre-trained using simulated data from a
physics-based model and subsequently fine-tuned with a limited amount of training
data to adapt to the specific task at hand. Their results show that using physical model
data for pre-training, even with imperfect parameters, can reduce the training data
requirements. They incorporate the knowledge encoded in the physical model with a
recurrent neural network (RNN) model to leverage their complementary strengths to
predict lake water temperature. Zhong et al. [11] developed a physics-informed deep
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learning model to simulate runoff changes in alpine catchments under climate change,
outperforming traditional models. Their model combines deep learning techniques
with the physics of hydrological processes, providing more credible projections.
Previous studies showed the efficiency of including physical knowledge into the
architecture of the model, for example in [12, 13], where prior system knowledge was
incorporated in the architecture, for lake temperature modeling and dynamic system
modeling, respectively. In all state-of-the-art applications, the integration of ML with
physical knowledge has led to significant improvements in adaptability. To the best
of our knowledge, the application of these advancements to modeling microwave
signals from vegetation remains unexplored. This gap presents a unique opportunity
for research, where methodologies developed in other contexts could be adapted to
enhance the accuracy and efficiency of remote sensing in vegetative environments.

The advantages of direct assimilation of microwave satellite observation, which
circumvents the need for retrievals, were studied in [14, 15]. Forward models are
required to map biogeophysical parameters to satellite observations. In the context of
this paper, our aim is to model the dependence of NRCS, σ0, on crop and soil-related
parameters, in order to use this model for direct assimilation. A commonly used
radiative transfer model is the so-called water cloud model (WCM) [16], which often
serves as a forward operator. There are more complex models to simulate radar
backscatter, like the Tor Vergata model[17] and the Michigan microwave canopy
scattering model (MIMICS) [18]. While these models offer detailed simulations, their
use is often limited due to the difficulty in parameterizing them accurately. These
models require a large number of input parameters, many of which are challenging
to measure or estimate with high precision in real-world conditions. More recently,
the advantage of using machine learning as an observation operator has been studied
by [19–22]. The challenge in accurately predicting NRCS lies in the complex interplay
of numerous factors influencing the returned signal, including surface roughness,
moisture content, vegetation cover, and geometric properties of the observed scene.
The study by Nikaein et al.[22], highlights the difficulties in using data-driven models
alone to simulate Synthetic Aperture Radar (SAR) observables, such as backscatter,
during anomalous conditions for example drought years. This challenge arises when
the model encounters scenarios for which it has not been trained, such as vegetation
parameters under dry conditions, resulting in predictions that are not representative
of the actual conditions. This research builds on these insights and seeks to address
these limitations by demonstrating how the integration of physical knowledge into
ML models can improve their performance as an observation operator. Specifically,
the focus is on the development of physics-guided machine learning frameworks
that incorporate domain knowledge into both the architecture and learning process
of ML models. By doing so, this approach not only ensures that the predictions
remain consistent with fundamental physical principles but also enhances the ability
of the model to generalize to previously unseen conditions, such as drought or other
environmental anomalies. We used machine learning as an observation operator to
map biogeophysical parameters from crop growth models, such as the Decision Support
System for Agrotechnology Transfer (DSSAT), to SAR observables. This approach
provides a more robust framework for simulating SAR observables.
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The main aim of the paper is to investigate how incorporating physical constraints
into ML models can enhance their robustness, generalizability, and interpretability.
Rather than focusing on developing the best-performing ML model, our objective is
to understand how physical principles can be embedded into the modeling process.
To achieve this, we explore two complementary approaches. The first approach
incorporates physical knowledge directly into the learning process by adding a custom
constraint to the loss function. A positive gradient constraint enforces consistency
with the expected relationship between radar backscatter and soil moisture. The
second approach mirrors the structure of the WCM, decomposing radar backscatter
into physically meaningful components (soil and vegetation) and constraining their
contributions to the total signal. This implementation enables explicit modeling of
attenuation effects, providing deeper insights into the physical processes governing
SAR observables.
The contributions of this work are multifold:

1. We demonstrate that incorporating physical constraints improves model
robustness and transferability across different environmental conditions, such as
year-to-year variability.

2. We highlight the potential of gradient-based constraints, as an effective way to
embed physical principles into ML models for modeling radar observables.

3. We show that mirroring the WCM structure in the neural network architecture
allows for intermediate outputs that are physically interpretable, enabling the
analysis of specific contributions from soil and vegetation to backscatter.

4. By using synthetic data derived from the WCM, we validate the accuracy and
behavior of the proposed models under controlled conditions, providing a
benchmark for real-world applications.

This paper provides a practical framework for integrating physical principles into ML
models, with the dual goal of improving performance and gaining deeper insights
into the underlying processes. The findings contribute to advancing the state of
physics-informed machine learning and its applications in remote sensing.

4.2. STUDY AREA AND DATA
Building on the work presented in [22], we select maize fields in the province of
Noord-Brabant, The Netherlands for our study. The CERES (Crop Environment
Resource Synthesis)-Maize model, which is among the various crop models included in
the DSSAT [23, 24], were used to simulate crop growth for each field. This model uses
input data on soil characteristics, climatic conditions, crop genetics, and management
practices to simulate daily growth stages, biomass development, and crop yield. Our
research focuses on key biophysical parameters of maize, such as the Leaf Area Index
(LAI), Above-Ground Biomass (AGB), surface soil moisture (SMS), and root zone soil
moisture (SMR), to simulate SAR observables. More details, including details about the
study area and the crop growth modeling steps, can be found in [22].
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Following [22], we utilize Sentinel-1 C-band data acquired in the Interferometric Wide
Swath (IW) mode with a 6-day repeat cycle (relative orbit 37). NRCS values in both VV
and VH polarizations were retrieved from the Agricultural SandboxNL database[25]. In
order to to validate the rationale of our proposed approach, we generate synthetic data
based on the principles of WCM. This synthetic data allows us to test and validate the
accuracy, robustness, and ability of the model to generalize across different scenarios
in an idealized case.

4.3. METHODOLOGY
In this section, we describe the two main approaches to incorporate physical knowledge
into neural networks: 1) physics-based loss function and 2) physics-guided network
topology.

4.3.1. PHYSICS-BASED LOSS FUNCTION

One way to incorporate physical knowledge into ML algorithms is by enforcing
constraints on the outputs of these algorithms. This can be accomplished through
the formulation of a custom loss function, as shown in [9]. Consider a learning
system characterized by a function f , which operates on a set of input parameters X
that possess a physical relationship with the target variable Y . In this context, we
can express the relationship as Ŷ = fNN(X), where fNN denotes the neural network
function approximating the mapping from X to Ŷ across our training samples. In
the conventional training paradigm, the goal is to minimize the discrepancy between
the predicted values (Ŷ ) and the observed values (Y ). However, while this standard
approach is effective in reducing predictive error, it may not ensure that predictions
are in accordance with the underlying physical principles. To address this gap, the
custom loss function comes into play, integrating physical constraints directly into the
learning process. By doing so, the loss function not only penalizes deviations from
observed data points but also incorporates penalties for violations of known physical
laws. This dual-purpose loss function ensures that the learning process is not merely
data-driven but is also guided by the underlying physical principles. The modified
learning objective, incorporating this physical constraint, is defined as

argmin
f

(
Ldata(Y , Ŷ )+λLphys(Ŷ )

)
with

Ldata(Y , Ŷ ) = 1

n

n∑
i=1

(yi − ŷi )2, (4.1)

where f is the model, Ldata is the data term of the loss function, Lphys is the physical
constraint term and λ is a hyperparameter that balances the contributions of Ldata and
Lphys to the overall loss function. For the data term of the loss function, we use the
mean square error (MSE) function. To operationalize this physical constraint within
our machine learning model, we developed a custom loss function with an additional
term specifically designed to ensure the partial derivative of backscatter with respect to
surface soil moisture remains positive [26], as
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Lphys(Ŷ ) = 1

n

n∑
i=1

ReLU

(
− Çŷi

ÇSMs

)
, (4.2)

where index i iterates over the training samples, and ReLU(·) is a Rectified Linear
Unit function applied within the Lphys term to enforce the positive partial derivative
constraint by penalizing negative values of the predicted partial derivative.

This adjustment is critical for maintaining the physical integrity of the predictions of
the model, ensuring they are consistent with the known behavior of microwave radar
signals interacting with varying levels of soil moisture.

4.3.2. PHYSICS GUIDED NETWORK TOPOLOGY

In this case, we are constraining the internal architecture of ML models with physical
insights to enhance their interpretability. This approach involves integrating physical
principles directly into the structure of neural network, as shown in Fig. 4.1. By doing
so, we give an implicit physical meaning to some intermediate outputs, which also
means that we can apply physical constraints to them. In this framework, we try to limit
the existing freedom of a standard neural network to simulate NRCS. For this approach,
we tried two steps: 1) bound the freedom of the model in the architecture and 2)
incorporate the physical knowledge through the loss function. The network topology
tested follows the architecture of the WCM [16], a widely used model for backscatter.
Here, the total NRCS during the growth period (from planting to harvest) is decomposed
in a vegetation component, and underlying soil term, and a term representing their
interaction. The general form of the WCM equations is represented in equations (4.3)
to (4.6), where the WCM neglects the interactions between the ground and vegetation,
implicitly assuming that it is small compared to the other terms.

σ0
total =σ0

veg +σ0
soilT

2, (4.3)

σ0
veg = AV1 cosθ(1−T 2) (4.4)

T 2 = exp(
−2BV2

cosθ
) (4.5)

σ0
soil =C +D ·SMs (4.6)

Here, θ is the incidence angle, σ0
total is the total backscattering coefficient, σ0

veg is

the backscatter contribution from the vegetation, σ0
soil is the backscatter contribution

from the soil and T 2 is the two-way transmissivity of the vegetation layer. There are
more sophisticated ways to estimate σ0

soil (e.g. [27]) but generally, it is a reasonable
assumption that there is a linear relationship between backscattering coefficient and
soil moisture over bare soil. σ0

soil influenced by soil moisture, surface roughness, and
the incidence angle of the radar signal. The attenuation term depends on the density
and water content of the vegetation. Scattering from the vegetation depends on
vegetation water content, structure, and orientation of leaves and stems [28]. The WCM
contains four coefficients, A, B, C and D related to vegetation scattering, vegetation
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Figure 4.1.: A depiction of the WCM-inspired NN, where prior knowledge from physics
is embedded in a structured format.

attenuation, surface roughness, and soil moisture respectively. All of these coefficients
are polarization- and frequency-dependent. A and B depend on vegetation type, while
C and D are related to soil texture. Several quantities can be used to describe the
vegetation by setting V1 and/or V2 to quantities such as vegetation water content
(VWC), vegetation optical depth (VOD), AGB or LAI. As LAI is readily available from the
DSSAT model outputs, we follow [29, 30] by assuming V1 = V2 = LAI.

We defined a multiple input network that separates the inputs for the vegetation
component from the inputs for the soil component. The vegetation components inputs
are LAI, AGB, and SMR (as an indication of the availability of root zone moisture to
replace transpired water) and SMS is the input for the soil component. As illustrated in
Fig. 4.1, the network produces internal outputs denoted as σ0

veg and σ0
soil. We anticipate

that any increase in σ0
veg will result in a diminished direct impact from σ0

soil. This

modulation effect is represented by the term T 2 within the framework and multiplied
by NRCS from the soil term. Note that in the attenuation term of the constrained
model architecture, we prescribe a behavior inspired by the reverse exponential nature
of attenuation and vegetation effects as it is shown in equation (4.7). This term has a
trainable coefficient α, which is defined by the training procedure.

T 2 = exp(−ασ0
veg) (4.7)

The proposed framework incorporates physics-based prior knowledge into the structure
of the neural network and imposes constraints on the internal states of the model and
the output values. In this architecture, the loss function constraint is applied to σ0

soil
rather than σ0

total. This choice is based on the observation that the partial derivative
with respect to SMS for σ0

soil is consistently positive. The sensitivity of σ0
total to SMS

can approach zero when the LAI is high, so in the presence of noise, this can lead to
excessive penalties for slightly negative values.

The remainder of the paper is devoted to analyzing the outcomes, testing, and
comparing the four combinations discussed: Standard NN and WCM-inspired NN,
each with either a regular or modified loss function. As mentioned in Section 4.2,
synthetic data were generated using the WCM formula, which allows the extraction of
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intermediate layer output. This data enables us to validate the performance of the
WCM-inspired NN model. In this study, we formulate three key hypotheses that we aim
to test and validate through our results:

1. When training and testing on consistent data sets, adding any constraints would
lead to a higher MSE, given that this is our default (unconstrained) loss function.

2. Both our positive partial derivative and topology constraint should enhance the
robustness of the model and, consequently, its transferability.

3. We anticipate that our WCM-inspired neural network will learn to produce
meaningful intermediate results.

4.3.3. NN IMPLEMENTATION

We implemented the neural network models using the Keras library [31]. The dataset
was partitioned field-wise into training and testing subsets, following a 70:30 ratio
to ensure independence between the two datasets. We used the Adaptive Moment
Estimation (Adam) optimization algorithm to minimize the loss function. To mitigate
the risk of overfitting, we incorporated an early stopping mechanism, adjusting the
patience parameter to 50. The input features were rescaled between 0 and 1 to prevent
saturation at the tails of the activation functions; the same transformation was applied
to the test data. Our fully connected network architecture consists of 3 hidden layers
and neuron numbers of 32, 16, 4 with ReLU activation functions in each hidden layer.
In the constrained model architecture, ReLU was used in the hidden layers, while the
sigmoid activation function was used in each output layer to produce outputs between
0 and 1. The weights of the neural network were randomly initialized and each
experiment was run 50 times where the standard deviation of accuracy was around 2%.

We present results and compare outcomes in the following scenarios: standard NN,
standard NN with constraints, WCM-inspired NN, and WCM-inspired with constraints.

4.4. EXPERIMENT WORKFLOW
In this section, we present the results from each approach for two scenarios: 1) when
the model is tested on data from the same year, incorporating the environmental
conditions present in the training phase, and 2) when the model is tested on data from
a different year, which includes different environmental conditions not represented in
the training data. The details of these environmental differences are detailed in [22].
Fig. 4.2 illustrates the general workflow of our proposed framework, demonstrating the
simulation of NRCS using machine learning for corn parcels. The dashed arrows in this
figure highlight the added value of this method to the data-driven study, enhancing it
with physical principles not addressed in our previous work [22].

As mentioned in the previous section, these models aim to improve transferability.
Specifically, the proposed method is tested in two distinct situations: training and
testing on the same year and testing on a different year with varying meteorological
conditions. The lack of separate signals for soil and vegetation in satellite data limits the
ability to validate the model effectively. To address this limitation, synthetic data can be
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Figure 4.2.: A general workflow of our proposed framework. The simulated data from
the crop growth model was fed to the model. The details of data simulation
and modeling the NRCS using machine learning are discussed in [22]. (The
map of The Netherlands is sourced from [25]).
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used to understand better whether the model behaves as expected. We expect that the
model performs optimally under these controlled conditions. We generate synthetic
data by using soil and vegetation states modeled by DSSAT for both years as inputs to
the WCM. The values for WCM parameters were optimized by the range provided in
[21].

4.5. RESULTS

4.5.1. SYNTHETIC DATA

Fig. 4.3 shows the results obtained by training the physics-guided model on synthetic
data for 2017, testing on data for the same year Fig. 4.3(i) and on data for 2018
Fig. 4.3(ii). This figure illustrates how constraints on the network topology by physical
properties such as soil moisture and vegetation characteristics can improve remote
sensing models’ accuracy. The figure provides insight into the contributions to total
backscatter. Fig. 4.3(ii)a illustrates a rapid decrease in LAI during July, along with
lower maximum AGB and greater variability across the parcels (indicated by the shaded
area). In Fig. 4.3(ii)b, T2σ0

soil is overestimated in late-June/early-July; however, this has
limited impact on σ0

total since σ0
veg dominates during this period. Similarly, while σ0

veg is

overestimated in June, it has a negligible effect on σ0
total because σ0

veg is much smaller

than σ0
soil at that time. The graph highlights that the largest deviation between the

estimated and synthetic truth σ0
total occurs from mid-July onwards, coinciding with an

anomaly in the LAI, which leads to a poor estimate of σ0
veg. However, this difference

remains minimal, as shown in Fig. 4.3(ii)(d). The inclusion of a constraint in the loss
function helps to reduce this deviation, bringing the estimate slightly closer to the
synthetic truth, and improving the accuracy of the model despite the anomaly. In
subplot (c), while the difference between synthetic (WCM) and estimated backscatter
looks large prior to June 2017, note that in linear units, these initial values are all close
to zero, so the absolute difference is very small.

The physics-guided network topology (Fig. 4.3d) with R2 ≈ 0.99 and an MSE close to
zero, effectively captures the interactions between the soil and attenuation (Fig. 4.3b)
and the vegetation (Fig. 4.3c). This integration is consistent with the principles of the
WCM. The variability and trends observed in Fig. 4.3d are direct results of the dynamic
changes in soil moisture and vegetation properties captured in Fig. 4.3b and c.

Maybe the most salient observation is that our WCM-inspired model produces
accurate values of σ0

soil and σ0
veg without being trained with corresponding data. This

happens because the WCM-inspired topology cannot find another way to minimize the
MSE in a situation where the NN topology is a perfect match to the actual model. It
would be risky to conclude that the same behavior will automatically happen with real
data given the simplifying assumptions of the WCM.

4.5.2. SENTINEL-1 DATA

After assessing the performance of the proposed method on synthetic data, we now
proceed to evaluate its performance using satellite data. Fig. 4.4 provides a comparison
of the NRCS in VV polarization between the two approaches that incorporate physical
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Figure 4.3.: Time series of synthetic and estimated NRCS values are presented, based
on training using synthetic data generated from 2017 vegetation and soil
parameters. The models were tested on (i) synthetic data from the same
year (2017) and (ii) synthetic data generated from 2018 vegetation and
soil parameters. (b) to (d) illustrate the following: blue lines represent
unconstrained estimations, red ones indicate constrained estimations and
the black lines represent the estimated backscatter from WCM.
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knowledge into neural networks, with each model trained and tested on data from
2017. Fig. 4.4a illustrates the simulated biogeophysical parameters of maize fields in
2017, which are important to understand the subfigures (b), (c), and (d). Fig. 4.4 (b-d)
show the T2σsoil, σveg and σtot generated by our trained WCM-inspired neural network.
Fig. 4.4e shows the total NRCS for the regular fully-connected dense network.

Fig. 4.4b shows the contributions of NRCS from the interaction between soil and
attenuation. The blue line corresponds to the model trained without physical
constraints, while the red line corresponds to the model trained with the modified loss
function. Both models follow a similar trend, but the constrained model shows more
variability, particularly from early June onward. This suggests that the constrained
model is more responsive to fluctuations in soil moisture. Fig. 4.4c shows the NRCS
contributions from vegetation. Both models show an increasing trend from June, are
aligned with the growing season, and follow the same behavior as LAI. Fig. 4.4d shows
the overall NRCS simulated by the physics-guided network topology. The variability
seen in subplot (b) due to soil and attenuation interactions directly impacts the
overall NRCS in subplot (d). Peaks and troughs in soil moisture (subplots (a) and
(b)) correspond to similar variations in the total NRCS, highlighting the sensitivity of
the model to soil moisture dynamics. The increasing trend observed in subplot (d)
from mid- to late-2017 aligns with the progression of the growth season, as indicated
by increasing LAI and AGB in subplot (a). This demonstrates that the physics-guided
network effectively integrates the seasonal growth patterns of vegetation and changes
in soil conditions. Fig. 4.4e illustrates the NRCS values obtained using a standard
neural network. It compares the observed NRCS (black line) with estimates from
the standard neural network without constraints (blue line) and with constraints (red
line). The constrained model shows a closer alignment with the observed NRCS data.
The constraint enforces a positive gradient with respect to soil moisture, improving
the responsiveness of the model to changes in soil conditions. Interestingly, the
total NRCS from the WCM-inspired NN does not improve much with the additional
constraint. However, the primary effect of incorporating the constraint into the loss
function is to reduce the T2σ0

soil term and increase σ0
veg as soon as LAI begins to rise.

Notably, throughout most of the growing season, the estimates of σ0
total from both the

WCM-inspired NN and the standard NN are quite similar. The notable exception occurs
during the bare soil period, where the standard NN appears to perform slightly better.

Now we turn our attention to how the different models, trained on 2017 data, behave
and perform on test data corresponding to 2018. As discussed before, the 2018 period
includes combinations of input values not seen in 2017. This cross-year analysis
helps to evaluate the transferability and robustness of the model under different
environmental conditions.

Fig. 4.5 shows the model inputs and outputs in this case. Fig. 4.5a presents the
DSSAT generated SMS, LAI, and AGB over time in 2018. A comparison with Fig. 4.4a
immediately reveals the severe drought during the summer months, as noted in[32],
and its impact on the LAI and AGB. Panel (b) shows that the constrained WCM-inspired
model predicts significantly lower values for the T2σ0

soil term during the drought period.
Subplot (c) shows that, as in the 2017 case, the constrained model produces higher
contributions of the vegetation to the total NRCS and, more importantly, a sharper



4.5. RESULTS

4

91

Figure 4.4.: Time-series of observed and estimated NRCS for training and test data on
the same year data (2017). Solid lines indicate the mean value of the feature
over maize parcels in the test set, and the bounded area shows the 20th-80th
percentiles. (a) Vegetation and soil parameters during the growing season
in daily steps in 2017. (b) to (e) illustrate the following: blue lines represent
unconstrained estimations, red ones indicate constrained estimations, in
(d) and (e), the black lines represent the observed backscatter. The dashed
rectangle around subplots (b), (c), and (d) highlights that these are related
to the physics-guided network topology method.
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contrast between the bare-soil period and the growth period. The estimated NRCS
without constraint in Fig. 4.5d follows the observed data but shows some deviations,
especially between mid-June and August. The constrained model aligns well with the
observed data, demonstrating improved accuracy in capturing NRCS variations due to
changes in soil moisture and vegetation. The NRCS values obtained using the standard
neural network are shown in Fig. 4.5e. In the standard NN, the estimate is poor during
the LAI anomaly, and the constraint brings the estimate closer to the observed σ0

total.
When both NNs include a constraint in the loss function, the overall performance is
better for the WCM-inspired NN.

Table 4.1 provides the performance metrics for different models for both years. As
it was shown and discussed in [22], if the trained model is applied to sets of inputs
corresponding to conditions (e.g. severe drought) for which it has not been trained
we expect decreased model performance. The fully connected dense neural network
demonstrates higher accuracy in predicting NRCS values when trained and tested on
data from the same year. Although constraints improve the performance of the standard
network, the improvement is less pronounced than in the physics-guided network
case. When trained on 2017 data and tested on 2018 data, the WCM-inspired network
predicts NRCS values with a higher accuracy. The correlation coefficients for 2018 are
relatively low. However, it is crucial to emphasize that these metrics are calculated for
the entire period under consideration. Notably, a significant improvement in these
metrics is observed during the anomaly in late summer 2018. Constraints further
improve both models, but the physics-guided network remains superior in terms of
accuracy and robustness.

The results indicate that our physics-constrained method improves the forward
modeling of SAR observables, demonstrating the potential to combine machine
learning with scientific knowledge for advanced remote sensing applications.

4.6. CONCLUSION

In this paper, we introduced a physics-guided neural network to model SAR observables
over vegetation. Unlike traditional black-box neural networks, our approach integrates
physical principles directly into the network architecture and the loss function, resulting
in a model that is not only data-driven but also physically consistent. Specifically,
we incorporated physics-guided constraints into the neural network by (1) adding a
physics-based term to the loss function and (2) modifying the network architecture to
reflect the underlying physical processes.

Our proposed network topology follows that of the WCM, which is widely used to
model NRCS over crop fields. Through data-driven training, the model learns behaviors
that are not reflected in a standard analytical WCM formulation. At the same time,
the model inherits some simplifications embedded in the WCM. For example, the
WCM does not represent double bounce (e.g. stem-ground) scattering. It is therefore
possible that a network topology inspired by more sophisticated physical models would
produce better results. However, a more complex topology may gravitate towards a fully
connected dense NN, which as our results showed, is harder to train and generalizes
worse.
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Figure 4.5.: Time-series of observed and estimated NRCS for training on 2017 data
and testing on 2018 data. (a) Vegetation and soil parameters during
the growing season in daily steps in 2018. (b) to (e) illustrate the
following: blue lines represent unconstrained estimations, red ones indicate
constrained estimations, in (d) and (e), the black lines represent the
observed backscatter. The dashed rectangle around subplots (b), (c), and
(d) highlights that these are related to the physics-guided network topology
method.
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Table 4.1.: Comparison of model’s performance with and without constraints for testing
on data from 2017 and 2018.

Year Model Constrained MAE MSE R2 Pearson Spearman

2017
Standard

No 1.06 1.83 0.45 0.67 0.62
Yes 1.03 1.76 0.47 0.69 0.63

Topology
No 1.18 2.28 0.32 0.60 0.54
Yes 1.14 2.16 0.35 0.62 0.58

2018
Standard

No 1.64 4.43 -0.35 0.34 0.33
Yes 1.39 3.32 -0.01 0.30 0.31

Topology
No 1.41 3.18 0.03 0.34 0.33
Yes 1.33 2.94 0.10 0.38 0.36

For our physics-guided loss function, we added a single constraint, requiring the
partial derivative of the NRCS with respect to the soil moisture to be positive. This
constraint makes sense from a physical modeling point of view and is consistent with
the WCM topology. It is also a very simple constraint, and therefore easy to implement,
which we assume to be valid at all times. However, in reality, there can be a correlation
between the SMS and the VWC which can affect the NRCS in complex ways. More
importantly, there is additional physical knowledge that could be incorporated into the
loss function.

Back to our key hypotheses, according to our results, we can see that:

1. In line with expectations, the WCM-inspired model does perform worse than the
regular dense network when trained and tested on data from the same year. The
WCM-inspired limits what the model can learn, for example, hidden correlations
between SMS and VWC. However, contrary to our expectations, but in line with
the literature, the results produced by the constrained models have a lower MSE
for both training and test datasets. This suggests that these constraints not
only prevent overfitting but also aid the training process. Our interpretation is
that constraints can effectively reshape the loss landscape, potentially smoothing
out poor local minima and leading the optimizer toward more generalizable
and accurate solutions. Thus, when constraints align well with the underlying
physical or statistical realities of the data, they can be a powerful tool to enhance
the learning process and overall model performance.

2. As expected, both proposed approaches produce models that generalize better to
completely unseen situations.

3. With synthetic data, the results are encouraging; the simplicity of the WCM
model suggests that the neural network should learn it perfectly, yet achieving
this was nontrivial and required considerable effort. This success highlights the
capabilities of the network. With actual data, the intermediate outputs appear
reasonable and generally consistent with typical WCM behavior. In particular, the
outputs in the constrained case are quantitatively better, indicating a potential
advantage of incorporating constraints.
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Looking ahead, one promising direction for further research is the application of
transfer learning techniques, which could leverage pre-trained models to improve
performance on new datasets or under different environmental conditions. In addition,
addressing the challenge of local minima in neural network training remains a critical
area of focus. Various strategies, including fine-tuning the network architecture and
optimizing hyperparameters, may mitigate these issues and lead to more optimal
solutions.

We also recommend that future studies research expand this work by extending the
area of interest to cover a broader range of agricultural landscapes and by including
multiple seasons to better capture seasonal dynamics. Furthermore, future efforts could
focus on integrating the developed method in data assimilation or anomaly detection to
enhance the practical applications of the model in agricultural monitoring. If possible,
simulate the model under controlled conditions in which the expected behavior of the
soil and vegetation components is known. This can help identify whether the model
systematically biases towards one component or another.
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5
CONCLUSIONS AND

RECOMMENDATIONS

In this final chapter, we examine how the findings of this research address the initial
research questions presented in Chapter 1. Additionally, recommendations for future
research are proposed.

5.1. CONCLUSIONS AND MAIN CONTRIBUTIONS
The main goal of this research is to explore the use of SAR data in agricultural monitoring
by exploiting the potential of machine learning, crop growth models, and the analysis of
InSAR coherence time series.

The main findings of this research can be summarized as:

• Including interferometric coherence time series alongside backscatter intensity in
both polarizations improves land cover classification. This is mainly due to the
sensitivity of coherence to seasonal transitions, especially during winter months
(Chapter 2).

• A crop-growth model can be used to estimate bio-geophysical parameters as a
valid alternative to in-situ data, capturing the dynamic growth patterns of crops
as well as the short and long-term impact of weather (Chapter 3).

• Machine learning techniques can be employed to develop a forward model that
links bio-geophysical crop parameters to radar observables (Chapter 3).

• Physical knowledge can be incorporated into ANNs by mirroring the structure
of physical models in the network architecture, and by penalizing non-physical
model behaviors through the loss function used for training. This improves the
performance of the machine learning-based observation operator, particularly in
terms of generalizability (Chapter 4).

The findings of this research address the main research questions:
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1. To what extent does the inclusion of short-term interferometric coherence time series
improve the accuracy of vegetation mapping?

In Chapter 2, we evaluated the added value of Sentinel-1 InSAR coherence time se-
ries for vegetation classification in São Paulo, Brazil. It demonstrated that integrat-
ing coherence and backscatter intensities from SAR data improves the accuracy of
land cover mapping in complex agricultural regions by 10 percentage points (p.p).
The largest contribution to class discrimination occurred in winter, a period char-
acterized by dry vegetation and bare soils.

As expected, InSAR coherence showed high sensitivity to physical changes in the
landscape resulting from activities like harvesting. Despite low coherence in veg-
etated areas, its temporal evolution contributed to improving classification accu-
racy. We examined the impact of different classification methods and data prepa-
ration on classification results. Multi-looking and spatial averaging at the field
level improved the quality of the observables, which in turn improved the accuracy
of the classification. This approach maximizes the use of spatial context by pre-
serving the inherent relationships within each field, thereby enabling the model to
learn more generalized patterns and reducing the likelihood of memorizing noise
associated with individual pixel variations. This approach was an important as-
pect that was applied consistently across other chapters. We further investigated
the effects of various training and testing dataset selection strategies—random-
pixel, field-pixel, and field-based sampling—on our analysis. Among these strate-
gies, field-pixel and field-based sampling ensure that data from the same field are
exclusively allocated to training or validation sets, preventing the model from hav-
ing prior exposure to test data. This setup is crucial for maintaining truly inde-
pendent test datasets. The size of the multilooking window was also crucial, with
a 100 × 100 m window providing an optimal balance between radiometric qual-
ity and the mixed-pixel effect. While field-level sampling sometimes resulted in
slightly lower accuracy, it proved to be more reliable and unbiased. This suggests
that incorporating spatial context, such as averaging over fields, is key to reducing
misclassification errors. Furthermore, the findings of our research indicated that
coherences enhance the classification matrix by highlighting temporal and spa-
tial changes in vegetation, unseen by backscatter intensities alone. The study also
highlighted the temporal dynamics and spatial heterogeneities in the agricultural
region, stressing the importance of seasonal variability in classification tasks. The
integration of coherence information helps to correctly identify the predominant
land cover within reference polygons. Even though the overall improvement re-
sulting from the addition of coherence is limited, we observed that it helps pro-
duce the right classification in mixed land cover polygons, where classification
based only on backscatter intensity is, logically, more prone to errors.

2. How can we address the unavoidable scarcity of field measurement data to train a
data-driven forward model that relates crop bio-geophysical parameters to radar
observables?

Machine learning approaches rely on extensive datasets for training, testing, and
validation. Considering that, as discussed in Chapter 2, SAR observables start to
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become reliable when we average them down to field-level scales. Training with
in-situ observations of the relevant bio-geophysical parameters, and accounting
of their spatio-temporal variability, would require an unrealistic amount of sam-
ples, in space and in time. To address this, Chapter 3 uses a crop-growth model as
an alternative to relying solely on in-situ measurements. This approach generates
the necessary crop bio-geophysical parameters, which reflect the dynamic states
of crops and soil conditions over time, thereby compensating for limited observa-
tional data.

We initially set up a crop growth model in part of The Netherlands to simulate corn
growth and development, considering factors like soil characteristics, weather con-
ditions, crop genetics, and specific farming practices for each field. The model
generated outputs such as LAI, AGB, surface soil moisture, and root zone moisture
( which can be used as a proxy for VWC). This crop-growth model was fine-tuned
using detailed field measurement data, including LAI and AGB measurements.
Subsequently, a forward model employing machine learning was developed to link
SAR observations with the simulated crop growth variables.

The combination of crop-growth model outputs with machine learning also of-
fers the advantage of reduced dependency on field measurements, though it in-
troduces limitations, including the need for well-calibrated model parameters and
high-quality meteorological inputs, and potential biases or inaccuracies from the
crop model itself.

We developed a forward model within a controlled environment featuring a mono-
cultural agricultural system to understand how various conditions and changes
affect the SAR signal. While accurate outputs from the crop-growth model are es-
sential for training a reliable forward model, they are less critical when the primary
goal is operational tasks like anomaly detection or data assimilation. In these ap-
plications, even if the outputs of the crop-growth model have calibration issues,
the combined model can still effectively identify deviations from the expected crop
behavior. This capability makes the integration of radar observables with crop-
growth model outputs valuable for detecting anomalies and continuously refining
model predictions through data assimilation.

Chapter 3 demonstrates the integration of a crop-growth model with a machine
learning algorithm to model SAR observables, including NRCS, CR, and coher-
ence. This approach effectively bridges the gap between agricultural modeling and
remote sensing observations by simulating bio-geophysical parameters of maize
fields and linking them with SAR data from Sentinel-1. As established in Chapter 2,
coherence provides valuable supplementary information in vegetation monitor-
ing alongside intensities, hence its inclusion in the analysis.

The combined DSSAT-SVR model predicts SAR observables with a close fit to ob-
served values, especially when trained and tested using data acquired during the
same growth season. However, model accuracy declines when applied to data
spanning across different growing seasons, particularly in extreme conditions, such
as during the drought of 2018. Expanding the training dataset to include data
from multiple growing seasons enhances the adaptability of the model, enabling
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it to better account for varied environmental conditions and improve year-to-year
transferability.

We demonstrated that the CR observable, which minimizes sensitivity to soil mois-
ture, shows better year-to-year transferability compared to individual polarization
backscatter channels. Coherence was found to be highly sensitive to changes in
biomass, highlighting its potential for monitoring crop development. Additionally,
including a proxy for surface roughness, calculated by averaging the early-season
backscatter values, enhances model accuracy during early vegetative stages, sug-
gesting that surface roughness is important for accurate radar signal interpreta-
tion.

The methodology provides a foundational step toward integrating SAR data di-
rectly into crop models, enabling better estimation of crop growth and soil mois-
ture dynamics.

3. How can we guide neural network architectures with physical principles to improve
the prediction of SAR observables for vegetation?

In Chapter 4 we investigate two complementary approaches to physically guide
an artificial neural network trained to predict SAR observables, to improve the ac-
curacy and generalization capabilities of the resulting PGNN while also improving
the physical interpretability of its behavior. This approach addresses some of the
limitations highlighted in Chapter 3. Incorporating physical principles into neural
networks was approached in two ways: 1) using a physics-based loss function and
2) through a physics-guided network topology. This approach was demonstrated
through a case study of corn fields in The Netherlands, showcasing how the PGNN
can improve modeling SAR observables.

For the first approach, a straightforward constraint was introduced by adding a
term to ensure that the partial derivative of the NRCS with respect to surface soil
moisture remains positive. In the second approach, we designed the network
topology and chose the activation functions aiming to mimic the structure of the
widely used WCM. This integration of data-driven methods with physical princi-
ples allows the model to learn behaviors from data that standard physical mod-
els do not explicitly capture, while remaining physically grounded. Integrating
physical principles into the network topology constrains the hidden relationships
between SMS and VWC that the model might otherwise learn purely from data.
This approach, however, enhances the training process by reducing overfitting and
smoothing out local minima of the loss function with respect to the model coeffi-
cients, leading to a more robust learning model.

Performance evaluations on synthetic datasets demonstrate that the PGNN not
only reproduces the reference values with high accuracy but also predicts correct
intermediate products. When trained with real observations, the model also pro-
duces intermediate outputs that are consistent with our expectations, even though
they cannot be verified independently. In our case study, physics-constrained
methods improve the prediction of SAR observables, which should lead to bet-
ter performances when used for data assimilation, anomaly detection, or in cases
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where understanding of the underlying physical processes is crucial for the in-
terpretation of the observed data. However, the study also acknowledges certain
limitations:

a) Simplifications in network topology: while the PGNN benefits from the in-
clusion of physical principles, its current topology may be overly simplified.
Future work could explore more complex network structures that can cap-
ture a broader range of interactions and dependencies within the data.

b) Training complexities: the training of PGNNs involves balancing the tradi-
tional data-driven learning objectives with the need to adhere to physical
constraints. This can introduce complexities in network optimization and
require more sophisticated training algorithms to ensure convergence and
stability.

5.2. FURTHER RESEARCH
While this dissertation demonstrates the potential of machine learning for modeling SAR
observables, the focus has been primarily on developing and validating the methodol-
ogy. However, for practical applications, the model would benefit from a more extensive
dataset that captures the range of environmental conditions encountered in real-world
agricultural settings. To achieve this, future research should prioritize expanding the
temporal and spatial scope of the data used to train these models. Extending the tem-
poral scope to capture multi-year variability in vegetation growth and land management
practices would allow the model to account for inter-annual fluctuations and seasonal
patterns. Additionally, expanding the geographic range to encompass a broader range
of agricultural landscapes and crop types would further validate the adaptability and
robustness of the model. A major effort associated with this extension relates to the cal-
ibration and validation of the crop growth models used for this purpose. It is important
to note that the in-situ measurements are critical for the development of remote sensing
products to support agricultural applications.

Following the work presented in Chapter 3 and 4, the next logical step is to integrate
the resulting forward models into a data assimilation framework, where real-time SAR
data could be used to update and constrain the state variables of the crop-growth model,
improving the accuracy of predictions for crop yield and water use. This method was
explored by [1] who assimilated normalized backscatter and slope data from ASCAT into
the ISBA LSM to better constrain soil water and vegetation dynamics. A question to be
answered is if the introduction of physical constraints can lead to better Jacobians, and
therefore to improved assimilation.

Chapter 4 demonstrates the effectiveness of adding physics-guided constraints in neu-
ral networks. Future research should extend the method to accommodate additional
constraints, possibly valid only during certain periods. Additionally, integrating uncer-
tainty quantification techniques within the PGNN framework could enhance its robust-
ness [2]. Exploring a PGNN framework inspired by more sophisticated physical models
could further improve modeling, allowing for a more detailed representation of the com-
plex interactions. However, increasing complexity too much can lead to fully connected
network architectures, hereby losing the benefits of incorporating physical constraints.



5

106 5. CONCLUSIONS AND RECOMMENDATIONS

Explore the modeling of different radar wavelengths, particularly transitioning from C-
band to L-band SAR data as crops mature. While C-band is more responsive to smaller
vegetation structures and upper canopy dynamics early in the growth cycle, integrat-
ing L-band data as crops mature could provide improved sensitivity to the full canopy
structure and underlying soil moisture. This transition could improve the overall predic-
tive capability of models. This approach aligns well with existing L-band satellites and
upcoming missions like ROSE-L, which aim to provide extensive L-band radar coverage
for monitoring land and vegetation dynamics. This can become particularly interesting
if we consider a unified network to predict all SAR observables simultaneously or across
different wavelengths, incorporating constraints based on known interdependencies be-
tween observables.

Although backscatter is highly sensitive to water content, current crop model out-
puts lack information on VWC, which is important for accurately modeling SAR observ-
ables. Addressing this gap by incorporating VWC and/or wet biomass into SAR observ-
able modeling can improve predictions related to drought stress [3].

Given the promising results demonstrated by the PGNN framework, future research
should focus on expanding its application to encapsulate more complex physical rela-
tionships across various scientific domains beyond just vegetation studies. For instance,
applying the PGNN framework to model SAR observables over the ocean could repre-
sent a compelling research direction. This approach leverages the framework’s strength
in integrating domain-specific knowledge with data-driven learning, ensuring accurate
modeling across diverse contexts.
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APPENDIX-A:

SUPPLEMENTARY MATERIAL

A.1. SUPPLEMENTARY MATERIAL FOR CHAPTER 3

2017 MAE VV VH CR

2017 without offset 1.10 (1.09) 1.09 (1.02) 0.84 (0.86)
2017 1.01 (0.98) 1.05 (0.93) 0.78 (0.77)
2018 2.89 (2.64) 2.53 (2.03) 0.91 (0.98)
2019 1.47 (1.37) 1.40 (1.34) 0.91 (0.92)
2018 + 2019 1.64 (1.42) 1.53 (1.31) 0.90 (0.89)
2017+2018+2019 1.17 (1.05) 1.45 (1.32) 0.80 (0.78)

2018 MAE
2018 without offset 1.11 (1.26) 1.21 (1.41) 0.95 (1.09)
2017 1.88 (1.91) 1.99 (2.44) 1.09 (1.92)
2018 1.04 (1.18) 1.18 (1.33) 0.95 (1.02)
2019 1.38 (1.70) 1.65 (1.70) 1.07 (1.18)
2017 + 2019 1.42 (1.55) 1.64 (1.60) 1.05 (1.18)
2017+2018+2019 1.14 (1.23) 1.28 (1.37) 0.95 (1.02)

2019 MAE
2019 without offset 1.20 (1.11) 1.23 (1.10) 0.96 (0.95)
2017 1.72 (1.64) 1.93 (1.66) 1.05 (1.05)
2018 1.46 (1.76) 1.53 (1.66) 0.98 (0.97)
2019 1.12 (1.00) 1.18 (1.00) 0.82 (0.83)
2017 + 2018 1.46 (1.30) 1.43 (1.26) 0.98 (0.96)
2017+2018+2019 1.20 (1.06) 1.25 (1.05) 0.84 (0.85)
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2017 MAE VV VH CR

Table A.1.: Mean absolute error for backscatter. The presented stats belong to the veg-
etative period, the stats within the parenthesis belong to the whole growth
period.

2017 MSE VV VH CR

2017 without offset 2.13 (2.16) 2.31 (2.05) 1.24 (1.50)
2017 1.73 (1.60) 2.23 (1.76) 1.07 (1.07)
2018 18.60 (12.98) 13.5 (7.87) 1.42 (1.59)
2019 3.48 (3.09) 3.50 (3.52) 1.41 (1.46)
2018 + 2019 4.23 (3.23) 3.77 (2.83) 1.39 (1.36)
2017+2018+2019 2.27 (1.84) 3.49 (2.84) 1.09 (1.09)

2018 MSE
2018 without offset 2.22 (2.85) 2.69 (3.89) 1.80 (2.32)
2017 5.70 (6.00) 6.41 (9.82) 2.10 (6.31)
2018 1.81 (2.34) 2.57 (3.47) 1.73 (1.95)
2019 3.28 (5.06) 4.88 (5.46) 2.03 (2.47)
2017 + 2019 3.35 (4.08) 4.82 (5.18) 1.97 (2.42)
2017+2018+2019 2.17 (2.52) 3.05 (3.72) 1.72 (1.95)

2019 MSE
2019 without offset 2.70 (2.30) 2.65 (2.35) 1.78 (1.73)
2017 4.54 (4.61) 6.28 (5.17) 1.85 (1.97)
2018 3.42 (5.53) 3.74 (4.97) 1.66 (1.63)
2019 2.12 (1.76) 2.47 (1.98) 1.20 (1.22)
2017 + 2018 3.36 (2.75) 3.38 (2.80) 1.64 (1.58)
2017+2018+2019 2.34 (1.91) 2.68 (2.10) 1.23 (1.26)

Table A.2.: Mean squared error of backscatter.

2017 R2 VV VH CR

2017 without offset 0.45 (0.40) 0.62 (0.68) 0.37 (0.50)
2017 0.55 (0.47) 0.63 (0.64) 0.46 (0.40)
2018 -3.87 (-3.38) -1.24 (-0.61) 0.30 (0.12)
2019 0.08 (-0.04) 0.41 (0.27) 0.30 (0.19)
2018 + 2019 -0.10 (-0.09) 0.37 (0.41) 0.31 (0.25)
2017+2018+2019 0.41 (0.40) 0.43 (0.42) 0.44 (0.40)

2018 R2
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2017 R2 VV VH CR

2018 without offset 0.15 (0.22) 0.35 (0.40) 0.31 (0.35)
2017 -1.13 (-0.85) -0.50 (-0.83) 0.14 (-1.31)
2018 0.30 (0.28) 0.38 (0.36) 0.33 (0.30)
2019 -0.22 (-0.56) -0.14 (-0.02) 0.17 (0.09)
2017 + 2019 -0.24 (-0.25) -0.13 (0.03) 0.20 (0.11)
2017+2018+2019 0.17 (0.22) 0.26 (0.31) 0.33 (0.30)

2019 R2
2019 without offset 0.27 (0.36) 0.51 (0.65) 0.34 (0.50)
2017 -0.16 (-0.55) -0.15 (-0.30) 0.34 (0.14)
2018 0.12 (-0.87) 0.31 (-0.25) 0.41 (0.29)
2019 0.44 (0.39) 0.54 (0.50) 0.56 (0.45)
2017 + 2018 0.13 (0.06) 0.38 (0.30) 0.41 (0.31)
2017+2018+2019 0.38 (0.34) 0.50 (0.47) 0.54 (0.44)

Table A.3.: R2 score of backscatter.

2017 Pearson VV VH CR

2017 without offset 0.67 (0.63) 0.79 (0.82) 0.61 (0.71)
2017 0.75 (0.69) 0.80 (0.80) 0.68 (0.63)
2018 -0.20 (-0.09) 0.09 (0.40) 0.61 (0.54)
2019 0.45 (0.33) 0.69 (0.57) 0.56 (0.50)
2018 + 2019 0.27 (0.30) 0.63 (0.68) 0.57 (0.53)
2017+2018+2019 0.67 (0.63) 0.67 (0.70) 0.67 (0.63)

2018 Pearson
2018 without offset 0.38 (0.47) 0.60 (0.64) 0.56 (0.59)
2017 0.17 (-0.02) 0.16 (0.08) 0.49 (0.15)
2018 0.55 (0.53) 0.61 (0.60) 0.58 (0.55)
2019 0.33 (0.21) 0.42 (0.33) 0.50 (0.35)
2017 + 2019 0.21 (0.21) 0.33 (0.32) 0.50 (0.36)
2017+2018+2019 0.44 (0.48) 0.53 (0.58) 0.60 (0.56)

2019 Pearson
2019 without offset 0.53 (0.60) 0.72 (0.81) 0.59 (0.71)
2017 0.44 (0.22) 0.45 (0.39) 0.64 (0.47)
2018 0.45 (0.19) 0.59 (0.40) 0.65 (0.57)
2019 0.67 (0.63) 0.74 (0.71) 0.75 (0.67)
2017 + 2018 0.50 (0.40) 0.62 (0.59) 0.66 (0.58)
2017+2018+2019 0.62 (0.58) 0.71 (0.69) 0.74 (0.66)

Table A.4.: Pearson correlation of backscatter.
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2017 Spearman VV VH CR

2017 without offset 0.69 (0.61) 0.78 (0.78) 0.58 (0.64)
2017 0.75 (0.63) 0.79 (0.72) 0.61 (0.54)
2018 -0.07 (-0.12) 0.10 (0.39) 0.52 (0.41)
2019 0.34 (0.19) 0.54 (0.36) 0.44 (0.38)
2018 + 2019 0.18 (0.20) 0.41 (0.49) 0.47 (0.40)
2017+2018+2019 0.66 (0.58) 0.46 (0.51) 0.54 (0.52)

2018 Spearman
2018 without offset 0.40 (0.48) 0.56 (0.63) 0.55 (0.59)
2017 0.09 (-0.03) 0.08 (0.01) 0.42 (0.10)
2018 0.49 (0.50) 0.56 (0.56) 0.53 (0.52)
2019 0.30 (0.20) 0.31 (0.25) 0.40 (0.29)
2017 + 2019 0.12 (0.19) 0.16 (0.22) 0.40 (0.30)
2017+2018+2019 0.32 (0.44) 0.40 (0.52) 0.53 (0.52)

2019 Spearman
2019 without offset 0.50 (0.58) 0.70 (0.75) 0.60 (0.65)
2017 0.37 (0.17) 0.32 (0.27) 0.56 (0.32)
2018 0.37 (0.20) 0.51 (0.37) 0.57 (0.42)
2019 0.60 (0.60) 0.72 (0.67) 0.66 (0.54)
2017 + 2018 0.40 (0.31) 0.50 (0.46) 0.57 (0.41)
2017+2018+2019 0.53 (0.53) 0.65 (0.62) 0.64 (0.52)

Table A.5.: Spearman correlation of backscatter

2017 MAE MSE R2 Pearson Spearman

2017 0.05 0.005 0.56 0.77 0.54
2018 0.07 0.009 0.22 0.50 0.45
2019 0.06 0.008 0.30 0.57 0.29
2018 + 2019 0.06 0.008 0.29 0.57 0.44
2017+2018+2019 0.05 0.005 0.54 0.75 0.53

2018 MAE MSE R2 Pearson Spearman
2017 0.15 0.04 -3.12 0.10 0.15
2018 0.07 0.008 0.22 0.50 0.44
2019 0.10 0.01 -0.84 0.04 0.04
2018 + 2019 0.10 0.01 -0.84 0.17 0.17
2017+2018+2019 0.07 0.008 0.22 0.50 0.43

2019 MAE MSE R2 Pearson Spearman
2017 0.07 0.01 0.08 0.54 0.40
2018 0.066 0.008 0.26 0.52 0.47
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2017 MAE MSE R2 Pearson Spearman

2019 0.05 0.006 0.52 0.74 0.57
2018 + 2019 0.06 0.008 0.24 0.58 0.48
2017+2018+2019 0.05 0.006 0.47 0.70 0.55

Table A.6.: Stats of coherence VV.
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Figure A.1.: Time series difference between observed and estimated backscatter with
and without using the offset in different years and channels.
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Figure A.2.: Standard metrics to evaluate the regression performance for backscatter
when training and test data set belong to the same year with and without
offset in the beginning of the vegetative period.
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Figure A.3.: Time-series of observed and estimated backscatter in 2017 (1st column),
2018 (2nd column) and 2019 (3rd column) for different channels. The years
that training data are selected from are shown in the legend.
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Figure A.4.: Rank features for SVR with backscatter using the MRMR algorithm.
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Figure A.5.: Time-series of observed and predicted coherence VV. The legend shows the
year in which the training data belongs.
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Figure A.6.: Rank features for SVR with coherence VV using MRMR algorithm. The vari-
ables with the "Delta" extension represent the difference between the dates.
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