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CHAPTER I

INTRODUCTION

The flow of electrically conducting media under the influence of
magnetic and electric fields has received much attention during the
last decennia.

Its behaviour was studied by scientists in many branches of physics’
and engineering. Perhaps the first workers in this field were astro-
physicists, who studied phenomena of this kind in stellar space and on
the sun.

Geophysicists were attracted to this field in studying the motion of
liquid metals in the earth-core in the presence of the magnetic field
of the earth.

Not only the representants of the very old science of astrophysics paid
attention to the flow of conducting media, but also those who studied
man's interplanetary travelling. For owing to the high temperature
behind the shock wave that precedes the space~vehicle, when reentering
in the atmosphere, the medium is ionized and hence conducting.

A strong impetus to the study of the motion of conducting media in the
presence of electric and magnetic fields, was received from the chal-
lenging problem of nuclear fusion.

Here one attempts to heat a gas to such temperatures that light nuclei
fuse. During such a fusion a certain amount of energy is set free, when
one uses the right elements. Now for such a fusion temperatures of
several millions degree Kelvin are required. To confine a gas at these
temperatures, one cannot use material tubes, because it would be hard
to find material walls able to suffer such temperatures, but above all
because the heat would leak out through the wall. Therefore one takes
advantage of the fact that an ionized gas is a good conductor and tries
to confine the gas (in this fully ionized state it is called a plasma) by
the action of externally applied electric and magnetic fields.

The behaviour of the gas under such circumstances is studied by plasma
physics.

In engineering a most promising application is in the field of electric-
power production. This is achieved by forcing an ionized gas through
a magnetic field transverse tothe flow. Inthe other directiontransverse
to the flow an electric field is induced which can be connected with an
external load. In this generator the temperature is several thousands
degree Kelvin and the conductivity is usually realized by seeding the
gas with potassium or cesium, which have low ionization potentials.
Depending on the field where one encounters the flow of a conducting
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fluid or gas, one meets the expressions plasma physics, magnetogas-
dynamics, magnetohydrodynamics, magnetofluiddynamics and many
other epithets.

It will be not too difficult for the reader to label the applications men-
tioned with one of the names here above.

In the following we shall use the expression magnetohydrodynamics,
without regard of the field of application and use the shorthand M.H.D.
for this rather lengthy expression.

For the theorist there is a vast amount of new problems set by this
extension of hydrodynamics and much work has already been done by
hydrodynamicists, physicists, mathematicians and engineers.

Initially there were two different methods of approach to M. H. D. pro-
blems. The first is to add to the Navier-Stokes equations (or Euler-
equations when viscosity is neglected) a term, representing the Lorentz
force. Together with the continuity equation, Maxwell's equations and
Ohm!'s law one then has a set of equations with which M.H.D. problems
can betackled. As in ordinary electromagnetic theory this set must be
completed with statements about the permittivity, the permeability and
the conductivity of the medium considered.

In order to simplify most authors take all these properties constant.
Many problems have been treated on this base.

Experimentalists have been able to execute beautiful experiments with
e.g. mercury, and have in some cases found good agreement with
theory.

However, if we consider a fully or partially ionized gas, it is not very
likely that results of this one-fluid or one-component theory apply to
suchgases, because the one-fluid theory ignores the particle character
of the medium. Therefore a number of authors have again taken up the
study of the motion of a single charged particle in a magnetic field.
This is not a new problem; it was studied before in connection with the
theory of diamagnetism. So we have two extrema. The continuum case,
where the number of particles in a volume element is infinite and the
case where there is only one particle, unaware of the presence of other
ones. For both cases equations of motion are available. But the ques-
tion is, to what extent do they apply to a gas, say consisting of equal
amounts of protons and electrons.

It is evident that none of them apply completely.

The gas consists of particles, which is not incorporated in the con-
tinuum approximation, but these particles interact, which is disregarded
in one-particle theory.

Therefore one has tried to derive M. H. D. equations directly, starting
from the Boltzmann equation, which is the fundament of the kinetic
theory of neutral gases.

For ordinary gases successive approximations to the solution of the
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Boltzmann equation can be obtained by the methods given inthe book by
Chapman and Cowling 1) .

The first approximation leads to the Euler equations of motion, the
second approximation to the Navier-Stokes equations etc.

The physical picture, underlying the Boltzmann equation for neutral
gases, is that the force on a particle results from external forces, if
present, on the one side and from interactions, involving two particles
only, on the other side.

In the case of an ionized gas one can try to apply the same method.
One then can make a distinction between the forces resulting from
macroscopic fields and currents and forces, arising from other inter-
actions. But it is not clear how the latter must be described.

A description, involving only binary encounters under the influence of
the electric Coulomb potential is not satisfactory, since actually there
are also many multiple interactions. This fact manifests itself in the
mathematical treatment as a diverging integral.

This difficulty can be circumvent when inthe expression for the potential
it is taken into account that at a certain distance from a charge its.
field is shielded by surrounding charges of opposite sign.

It is shown in chapter II that with use of this modified potential M.H.D.
equations can be derived from the Boltzmann equation.

These equations are of restricted validity because certain assumptions
about the state of the gas have to be made.

However, as far as now, it has not been possible, to derive M. H.D.
equations from first principles without any additional assumptions.
When the gas is very dilute, one can hope that encounters are so rare,
that the action on a particle can be described with macroscopic fields
only. Under these circumstances the collision term in the Boltzmann
equation can be omitted. The resulting equation is frequently called
Vlasow equation or Boltzmann-Vlasow equation, widely studied in con~
nection with electrostatic waves in a plasma.

However this equation cannot be a fundament for M. H.D. equations,
because the Maxwell distribution is not obtained after a longtime, when
an arbitrary initial distribution is given.

Therefore a collision term is needed. The problem to find this collision
term from first principles has not been solved yet.

In this work we shall use M.H.D. equations for a fully ionized gas con-
sisting of protons and electrons, derived from the Boltzmann equation
with help of a modified Coulomb potential.

Preceded by a discussion of the one-fluid model, the derivation of
these equations is outlined in chapter II. The equations of this two-fluid
model differ in several respects from those of the one-fluid model.
It is the purpose of the present work to treat some M. H. D. problems,
using both the one-and the two-fluid modeland to study the influence of
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the effects, incorporated in the two-fluid model, which are not present
in the one-fluid model.

The point of view taken here is rather that of the hydrodynamicist than
that of the plasma physicist, who is interested primarily in equilibrium
conditions, where the gas is confined by magnetic walls. Here the
problems considered are flow problems.

Chapter III deals with application of the models mentioned to the
forced flow of an inviscid, conducting fluid between parallel plates, a
magnetic field being present in the direction normal to the flow.

In chapter IV again such a flow is considered, but viscosity is taken
into account there, the flow being engendered by the uniform motion of
one of the plates in its own plane. This type of flow corresponds with
so-called Couette flow in ordinary hydrodynamics.

In chapter V we consider the flow along a thin plate with a wavy profile
on both sides. To this problem we are lead by the experience that in
ordinary aerodynamics the study of the flow along such a configuration,
has not only intrinsic interest, but also provides soms insight in the
flow around thin airfoils.

In chapter V we apply the one-fluid model to the flow of a conducting
fluid along a thin plate, waveshaped on both sides, in the presence of
a magnetic field parallel to the plate.

The governing equations are linearized and solutions are obtained for
several values of the phase difference between upper and lower side
of the plate. The validity of the linearization is inspected for each of
these configurations.

Chapter V deals only with steady motion. In chapter VI we consider
the unsteady phenomena occurring when the plate, moving at times
t < 0 with the fluid in the direction of the magnetic field, is suddenly
brought to rest at time t=0.

In the subsequent and last chapter we apply the two-fluid model to one
of the configurations treated in chapter V.
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THE ONE- AND TWO-FLUIDS MODELS

1. General remarks.

In this chapter we shall briefly expose the ideas on which the M.H.D.
equations, used in the subsequent chapters are based. It should be
mentioned at the outset that the purpose of the present work is to apply
several existing theories to M.H.D. problems and not to make a critical
study of the M. H. D. equations properly.

Therefore the derivations of the equations given here are mainly meant
to give an idea about the limitations of their applicability.

In section 2 we treat the one-component model, which is a coupling of
the Navier-Stokes equations with Maxwell's equations.

In section 3 the two-component modelis discussed in which the medium
is considered as a mixture of two constituents, namely negatively and
positively charged particles.

2. The one-fluid model.

The behaviour of a non-conducting viscous fluid is governed by the
Navier-Stokes equations

) 4 _ 1 2
ﬁ+(v.v)v—-pr+vV v (2.1)

and the continuity equation
V.v=0, (2.2)

which is valid when the influence of pressure variations on the density
is negligible.

In the following we shall assume that this condition is fulfilled.

In (2.1) and (2.2) the symbols have the following meaning

velocity,

density,

static pressure,
kinematic viscosity,
time.

v
P
p
v
t

*¥) We use rationalized m.k.s. units throughout this work.
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Because there is no coupling between p and p, the flow is completely
determined by (2.1) and (2.2), when a sufficient number of initial and
boundary conditions are available.

Let us now assume that the fluid has a scalar conductivity c. Then
electric currents can be transported by the fluid. When the medium is
atrest the relation between electric current j and electric field strength
E is given by Ohm's law

i=ocE. (2.3)

When an element of the fluid moves with velocity v through a magnetic
field B, it experiences an electric field

ExvxB. (2.4)
Hence the appropriate form of Ohm's law in a moving medium is
j-Qv=0(E+vxB), (2.5)

where Q is the charge density.

The current j exerts a body force on the fluid, the well-known Lorentz-
force, which is given by j x B. This force must be added to the pres-
sure and to the viscous force in (2. 1), which reads now:

g—!t-+(v.v)v=-v7p+ sz'+i:l_ (2. 6)
Further the field quantities must obey Maxwell's laws
V.B=Q, (2.7)
V..B=0, (2.8)
VXE=- -g-t! 3 (2.9)
qu=;+2—‘t-’, (2. 10)
where
D = displacement,
H = magnetic field strength,
and the constitutive relations
D= cE, (2.11)
B = uH. (2.12)

e and p are respectively the permittivity and permeability of the
medium, coupled by the relation

e (2.13)
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where c is the velocity of light in the medium.
The constitutive relations take the form (2.11) and (2.12) only when

Efﬁ—o - 1), e, and p, being the vacuum values of ¢ and, is negligibly
mall. When there is polarization, the moving dipoles cause a current

loop and hence have the same effect as a magnetization. Therefore we

assume henceforth that ¢ and p are equal to the values in vacuo.

In M. H.D. problems the velocities are nearly always small with res-

pect to ¢ and under these circumstances eqs. (2.5) and (2.10) can be

simplified.

Denoting the field in a moving frame of reference with E' we have,

since for non-relativistic velocities the charge density is not affected

by the state of motion of the observer.

v.E'=Q (2.14)

From (2.5), (2.14) and the conservation of charge we have for a mo-
ving observer

cQ , 2Q
-—e-—- + -a—F = 0. (2. 15)

Hence a given charge density decays as exp-o/ct, so that unless high-
frequency oscillations are involved, Q is negligibly small because of

the large value of %.

Therefore we shall neglect Qv in (2.5).

When L is a characteristic length and U a characteristic velocity, the
3D . cU?B

term 3t is of the order T

order UB. On account of (2.12), V x H is of the order E% which is ﬁg-g
times the magnitude of g—?. Therefore we neglect the latter in (2.10),
which then becomes

, since in M. H.D. problems E is of th(za

VxB=puj (2.10)%

The equations (2. 5) - (2. 12), together with the continuity equation, which
takes the form (2.2) when the influence of pressure variations on the
density can be neglected, constitute the framework for one-fluid M.H.D.
theory.

3. The two-fluid model.

Consider a mixture of two gases, one consisting of protons (mass mj,
charge e, number density n;j) and the other of electrons (mass meg,
charge -e, number density ng).

We shall assume that both gases have the same temperature T and
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that the gas as a whole is electrically neutral.

Locally a small charge density e (nj - ne) may occur.

Consider the positive constituent. Let the distributionfunction, that is
the number of particles at time t in an element of volume of the phase
space, be given by f.

f is a function of time, of the position r in space and of the position w
in velocity space.

The number density n(r,t) is given by

n =ffds w, (2. 16)

where d°w means a volume-element, dwaded say, invelocity space.
Now we write down the Boltzmann equation for f

3f
at
V is the nabla operator referring to the velocity space.
The equation (2.17) expresses the conservation of particles in the (r,w)
or phase space.

The situation envisaged in writing down the Boltzmann equation is that
one can distinguisH between long-range forces and short-range forces.
The long-range forces act in the same way on many neighbouring par-
ticles. They are caused by macroscopic fields and currents and are
given in the third term on the left-hand side of (2. 17).

The short-range forces are assumed to be sufficiently described by
two-particles encounters. The rate of change of f resulting from these
binary encounters is expressed by the right-hand side of (2.17), where
"coll" stands for "by collisions".

For a neutral gas and in the absence of external forces, the last term
on the left-hand side of (2. 17) vanishes.

It is possible to derive transport equations for the macroscopic va-
riables of the gas then by approximative solution of the remaining
equation.

For dilute gases, for which the assumption, that only binary encounters
are important, is justifiable, a method of solution is given by Chapman
and Enskog. This method is exposed in the classic work of Chapman
and Cowling 1).

A different method of solution of the Boltzmann equation for ordinary
dilute gases, has been given by Grad 2),

Applying similar methods to (2. 17), one meets several serious diffi-
culties as will be shown in the following.

Equations for the macroscopic variables n and v can be obtained by
taking appropriate moments of the Boltzmann equation.

We consider a function ¢ of w. ¢ (w) may be a scalar or vector function
of the position in velocity space.

of 3
5-{+ (wV)f + =

) (2.19)

coll’

(E+wa).VW$f=(



el

Moments of (2. 17) are obtained by multiplying (2. 17) with ¢ and inte-
grating over all possible velocities.
The first term on the left-hand side of (2. 17) becomes upon multipli-
cation with ¢ and integration over w

f w2 j Puls Xoyn
f«p atdw_at fcpdw-at no, (2.18)
where the averaged value ¢ of ¢ is defined by

-]
fwde = rl'i f fod®w, on account of (2.16).

A typical term obtained from the second term at the left-hand side of
(2.17) is

f(pwaaf dw =2 f (ftpwa)dsw " o nwo,

where again the bar denotes the averaged value over all velocities.
Takingall terms of this kind together, we obtain from the second term
at the left-hand side of (2.17) upon multiplication with ¢ and integration
over w

V. (nwo). (2.19)

Note that when ¢ is a vector function of w, (w¢) is a dyad or tensor of
the second rank.

Now consider the third term in (2. 17). Upon multiplication with ¢ and
integration over velocity, a typical element is, when (E + wx B) = F,

of
f<0 Fa Wa awadwﬂdw,y =

(2. 20)
Vo™t ™ 9¢Y .3
f(p Faf dwdw ff(p—dw- JfFaawd
Wy =
Now it is assumed that ¢ F f vanishes for w ™ t o
F
Further it follows from the definition of F that ?___. = 0.

W,
(]
Hence only the last term on the right-hand side of (2.20) remains,
which can be written as
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This, and similar terms give together, when the last term on the left-
hand side of (2.17) is multiplied with ¢ and integrated over velocity

ne -
-E{(E+wx BV, Jo. (2.21)
Summing the results (2. 18), (2. 19) and (2. 21), it follows that multipli-

cation of ¢ and integration over w transforms (2. 17) in

2 @3) + v (awp) - = {(E+ wxB).V_Jo = f«p (g—f o & 222

Upon labeling ¢, w, n and f with the subscript i, (2.22) holds for the
protons. Changing i into e and the charge into -e gives the correspon-
ding equation for the electrons.

Before defining ¢ we formulate the macroscopic variables of the gas.
We define the density p by

P = Pi + Pe = DjMmj + NgMmg, (2.23)

the mass-velocity v by

pv = piWj + peWe, (2.24)

and the electric current by /

j = enjWj - engwg (2.25)

In a simple gas the velocity of a particle can be written as

=v (2. 26)

1 Tt i L
where vg is the mean velocity and ug the random or thermal velocity.

As ig = 0, we have

ig =vg (2.27)

In the case of a gas-mixture it is convenient to refer the velocities to
the mass-velocity v.
Therefore we write

'i =V + vi (2- 28)
and
we=v+ ¥V, (2. 29)
mg 1
Because — ~ === << 1 and because n; ~ n,, we deduce from the
m; — 180 1 €
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above relations,
n;m:¥. + n.m_,¥
g n L ee%e
V= ~ ¥. (2.30)
nlml + neme

Then it follows from (2. 27), (2.28) and (2. 30) that Vi is small, so that
the current

j=en;#W; -en W, = enivi - eneve =en;¥ - engvy ~ - eneve.(2.31)
From (2.24), (2.28) and (2. 29) we obtain the useful relation
pi¥i + pg Vo = O. (2.32)
Let us now return to (2. 22) and insert ¢ = 1 for the ions.
Then the first term in (2. 22) becomes
on;
-] =y _ 1
'a'i:' (n]_(P) o at ’
and the second one becomes on account of (2. 28)
v,(nm = V.niTi = V. (niV+ nivi) = V.niv - V.nivi.

Since V¢ = 0 and since the total number of ions is not changed by
collisions, we obtain

an4 e

a_t1+ v-(njv)+ v.(niVi) = 0. (2.33)
For the electrons we obtain in the same way

ang -

56t v (ngv) + v-(n¥e) = 0 (2. 34)

Upon multiplying (2.33) with mj and (2.34) with mg we find by addition,
using (2. 23) and (2. 32):

28+ v.(ow) = 0, (2.35)
which is the continuity equation for the gas.
When multiplying both (2. 33) and (2. 34) with e and subtracting we get

2Q
at

where Q is the charge density.
Since enj ~ eng, this can in most cases be reduced to

+ v.@Qv) + v.i= 0,

V,i=0. (2.36)
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Next we take ¢ = mjwj. The first term in (2. 22) gives
-aa_t (njm;v) + bét_ (nym;V;) , (2.37)

the second term
V(njm;iwiwj) = V(njmjvv) + v(njm;V; Vj) + V(nimivv ) + V(njmy iiv).(2.38)

The third term in (2. 22) becomes
-nie(E+‘Vixl)=-nie(E+va+iixB). (2. 39)

By addition of (2.37) ~ (2.39), we obtain from (2. 22)

A

at,(nimivi) + V (njmjwv) + ¢ (nym;V;V;)

-;E (nimiv) +
+ V (njm¥V;) + V (njm;V;v) - nje (E+ vx B+ V;xB) =

of;j -
mw; (=) d"w; . (2. 40)
f bl coll 2
The corresponding equation for the electrons is obtained by changing
the subscript i'into e, and changing the sign of the last term on the

left-hand side of (2. 40).
Addition of the two equations yields with help of (2.23), (2.31) and (2.32)

% (ow) + V (owvw) + V (Pj + Pg) -~ jx B=0. (2.41)

In (2.41) P; and P, are the stress-tensors for ions and electrons res-
pectively, defined as

P.

i = nym; V; V4 (2. 42)

Pe = nimi Ve Ve (2. 43)

In obtaining (2.41) we have againused the fact that en; ~ eng and further
the fact that the total momentum is not changed by collisions.
We can simplify (2. 41) by using the continuity equation (2. 35) and the
identity

V(b) =av.b+ (b.V)a. (2.44)

Then (2. 41) can be written as

p:—'t+(pv.7)v+V(Pi+Pe)- ixB=0 (2. 45)
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Next we multiply (2.40) with r_ne_- and the corresponding equation for the
i

electrons with—:;— and subtract.
e

With help of (2.23), (2.31), (2.32), (2.36), (2.44) and remembering that

gg << 1 and that en;j »~ eng, we obtain
i g

Sa_t' j+ @i+ ({J.V)v+jV.w+

n.e YR af,
g E+vxl-,xn+ 4l - miw-(-—l) d’w; +
mg eng eng mj 1%at o 1

o [ afo s
- — | mgWe (=) d°we. (2. 46)
Me J ok coll

On account of Newton's third law the integrals in (2. 46) have the same
value, so that we have only to take the second one into account since
mj > mg .

Rearranging terms we write (2. 46) then as

me 2 .
ier |3t + (w.9)j+ (f.V)Vv+ jV.v | =
e
vP of
E+vxB - LXK! £ - E%‘ fmewe(—a-f—) d°wg . (2.47)
@Re e 3 coll

Equation (2.47) is sometimes called the 'generalized Ohm's Law'",
because it takes the place of Ohm's law in the one-fluid model.

The terms still unknown in (2.45) and (2.47) are the stress-tensors and
the collisionterm.

Let us first consider the collisionintegral. Suppose that there is a
collisiontime 7, independent of wg, and that there is only a small de-

parture from equilibrium so that (—a—tg) soll can be approximated by

(o]
fe "fe

)
T

where fo° is the Maxwell-Boltzmann distribution

m a/= m. V2
feo = DNg (iﬁ%) exp- —2—§—f2 . (248)
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1 afe 3
e '} —_— =
Then o .(me e ( at) olld We
(o]
1 3t s g N
% [me (v + ve)(at)colld We = r%jmeve - 9%
1 o.M = i
" en eVe 7 d'VWe = - e’ner Ng¥e =g

where we have used (2. 31) and where

e’ngr

Mg

s (2. 49)

o=

Of course this is not a real evaluation of the collision term, because,
even when indeed the departure from equilibrium is small, we have not
defined 7.

Let us therefore consider the action on a particle in the gas.

Part of the force on a particle is given by the third term on the left-
hand side of the Boltzmann equation (2. 17). It is assumed that the rest
of the interactions is describable interms of binary encounters. During
a collision with an other particle, a particle is deflected over a small
angle. The deflection depends on the relative velocity, the mutual dis-
tance and last but not least onthe potentialfor the central force between
the particles. The total deflection during a certain time is given by
integration over all possible velocities and distances.

In a gas as described here the potential is the Coulomb potential.
However, when performingthe integration, mentionedabove, it appears
that the resulting integrals diverge (cf. e.g. Rose and Clark 3)p. 163),
because the Coulomb potential falls off very slowly.

The reason for this difficulty is, that not all the interactions, not
accounted for in the E + w x B term of the Boltzmann equation, are
binary Coulomb interactions. In an intermediate range the field of
other particles plays a roéle too and the interactions are multiple.
At this point it is useful to introduce the concept of the ''shielded" or
Debye-potential.

Consider an ion in the gas. Because of its positive charge it is sur-
rounded by electrons, having in equilibrium the Maxwell-Boltzmann
distribution.

n = n, exp l%%’ (2. 50)
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where @ is the electrostatic potential, n, is the "neutral" number den-
sity and k is Boltzmann's constant.

When e® < kKT, we can in the expansion of (2.50) in a series restrict
ourselves to the first two terms, obtaining for the charge density
e(n, - n)

2
ne“g
- T (2:51)
Hence we have p
2. _ ne’d es(r)
~ Vit - L5t Ty -
where -46-;—:)5 is Dirac's delta-function in spherical coordinates.

Without the first term on the right-hand side (2.52) has the '"bare"
Coulomb potential

as solution.
The solution of (2. 52) is the shielded potential
e

$ = a—ﬂgo—r exp - r/h, (2. 54)

where h is the Debye-length, defined by

e kT
h? = 5—. (2. 55)

e“n,

The potential is at small distances equal to the Coulomb potential, but
at larger distances the ion potentialis attenuated by the presence of the
surrounding electrons. When r > h the potential is practically zero.
The shielded potential gives account of the fact that at distances inter-
mediate between the particle diameter, which will be defined hereafter,
and h the field of the electrons surrounding the ion plays a rdle in the
electric interaction and therefore gives an improvement with respect
to the bare Coulomb potential.

When using the shielded Coulomb potential in the Bolizmann collision
integrals, no divergence difficulties occur and a collision time T can
be calculated, defined as the time during which a particle by many
small deflections is deflected over 900.

Another procedure is to use the ordinary Coulomb potential and to
restrict the integration over all possible distances to h. Liboff 4) has
shown that the results are very nearly the same.

Although in this way a collisiontime can be defined the situation is un-
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satisfactory, for apart from the rather heuristic introduction of the
shielded Coulomb potential, the treatment, outlined above, is incon-
sistent.

Upon recognizing that only short-range encounters are binary Coulomb
interactions, but that at a larger distance the interactions are multiple,
which is accounted for in the shielding factor in (2.54), still the binary
collision methods are used to calculate 7.

It seems therefore better to leave the concept of binary collisions and
to treat the multiple interactions as a diffusion process. The appro-
priate equation to use for this purpose is not the Boltzmann equation,
but a Fokker-Planck equation. The derivation of the Fokker-Planck
equation for a fully ionized gas is exposed e.g. by Kaufman in "The
theory of neutral and ionized gases" 5),

It appears' (see again Kaufman's contribution to reference 5), that the
diffusion coefficients display the shielding effect and that the relaxation
time, following from these coefficients, is equal to the collision time
calculated with the Debye potential and the binary collision method.
This agreement gives, in spite of the inconsistency mentioned above,
confidence in the binary collision method.

In this connection it has been pointed out by Grad 6) that the agreement
is not overly surprising, because, although the binary collision method
refers to a hypothetical situation, the mathematical model is the same
as in the Fokker-Planck philosophy. In the latter case one considers
the effect of many simultaneous independent deflections, while in the
Boltzmann case, one considers the deflection resulting from a sequence
in time of many independent deflections of one particle.

Because the influence of this charge on the other charges is neglected,
this particle is representative for the behaviour of the other charges.
Therefore the mathematical model is the same, although the physical
picture is quite different.

The calculation of T either with the Fokker-Planck method or with the
binary collision method, can be performed with various degrees of
precision. The results do not differ much. Rose and Clark 3) find

32 N2me, 2 myt? @T)?/?
ol % elnN( ) (2. 56)
e n;
1

In (2.56) N is twice the ratio between h and the "particle diameter"
or distance of closest approach. This distance is defined by

e2

D = Gre kT

(2.57)

and thus we have N =2 % (2. 58)
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Inserting (2. 56) in (2. 49) we obtain

m_/?e® mN
1a g et (2. 59)
o 32\/1!30 kT)
1 1.09 x 10° InN
or '6 = —T— ohm - m, (2. 60)

where we have used the numerical values

9,10 x 10~ * kg,

1.6 x 10~ * coulomb,
= 8.8 x 10" farad/m,
= 1.38 x 10”* joule/°K.

Me
e

n

™

o

o

Herdan and Liley 7 use the value

1 1.29x 102 InN
;“ T3/2

As we need only qualitative results we shall use, when necessary the
value

ohm - m.

2
L. lo—T—al;‘z—N ohm - m. (2. 61)

Ferraro and Plumpton 8) give also about this value.

Although the physical picture underlying (2. 61), is a rather rough ap-
proximation, it appears from the literature that the estimation (2. 61)
is fairly good supported by experiment.

We mention in this connection the work of Lin, Resler and Kantrowitzg),
and that of Kino 10),

Now we want to know the consequences of the two important assump-
tions made in deriving the results given above. These are:

small departure from the Maxwell-Boltzmann equilibrium and the as-
sumption that e < kT.

Let us consider the first one. In the absence of collisions the particles
perform spiralling motions about the lines of magnetic induction. The
number of revolutions per unit time is given by the cyclotron frequency
which is for the ions

W = — (2. 62)




and for the electrons

We === (2. 63)

It is well-known from the single-particle theory that under these cir-
cumstances the motion can be split up in the motion around the lines
of induction and the motion along the induction. (cf.e.g. Spitzer 11).)
These two motions are largely different, which leads to a stronganiso-
tropy in the gas. Collisions can restore the isotropy, provided the
collision frequency is of the order of magnitude of the largest cyclotron-
frequency, which is wg.
We shall require

wer < 1, (2. 64)
in which case the assumption of near-equilibrium can be justified.
The second assumption e < kT amounts to the requirement

% o 0 (2. 65)

which can be easily verified with help of (2. 54) and (2. 57).
In order to have an idea about the kind of gases for which (2.65) holds,
we define some other lengthé next to h and D, viz.

L = characteristic macroscopic length

PR interparticle distance
= ;n—})——z = mean free path.

1 is the distance between two close-encounters, from which deflection
of 90° results.
From the definitions of these lengths we deduce the relations

3
=6 ;nhs=aa—=——- (2.66)

L}
D

Silre

From (2. 58) and (2. 66) we see that N is just nine-times the number of
particles in a sphere with radius equal to h, and further we deduce
from (2. 65) and (2. 66) :

V2> e di > Bi (2.67)

The situation given by (2. 67) is sketched in fig. 1, which is taken from
Delcroix 12),



Fig. 1

Electron trajectory
under circumstances,
where (2.67) is obeyed.

As an example we take a gas with the following properties
n=10°%m®;T=10° °k
Then we find
h=69x%x10"°m
D=11x10""m
d=10"°m

1=25x10""m

With N = 2 = = 1,2 x 10* we find from (2. 61) and (2. 49) for 7

O

T=0,35x10""°

If we choose B = 0,1 W/m?, we have from (2. 63)

we = 1.76 x 10 and thus weT = 0,62.

Now that we found an appropriate expression for the collision integral
in (2.47), we turn our attention to the still unknown stress-tensors
Pl and Pe .

We can find expressions for the rate of change of these quantities by
taking higher moments of the Boltzmann equation. The resulting equa-
tions involve terms still one order higher than the stress~tensors etc.
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Hence the chain of equations generated by taking moments of the Boltz~
mann equation is not closed. A closed set of equations can only be
obtained if on a certain level of information the distribution function
is known.

This difficulty can be solved by writing f as a series, the first term
f, being the Maxwell-Boltzmann distribution. With help of the moment-
equations the second term can then be found and also expressions for
the stress-tensors in the several approximations can be obtained. For
simple neutral gases two approximative methods have been developed.
The first one, due to Chapman and Enskog, is described in the book
by Chapman and Cowling 1) , the other one, based on development of f
in a series of Hermite polynomals, is due to Grad?). The latter theory
bears the name "thirteen moment approximation" because thirteen
moments of the Boltzmann equation are considered.

The first approximation to the pressure is the scalar pressure.

p=nkT (2. 68)
The second approximation is
P=pl-2n U, (2. 69)
where U stands for the tensor |
U=1/2 (Vv + ¥vV) - 1/3 (V.v) I, (2. 70)

I is the unit tensor and 7, the dynamic viscosity.

For the case of a fully ionized gas in the presence of a magnetic field,
the same methods can be used, provided the departure from equilibrium
is not too large, so that we must require that (2. 64) holds.

The first approximation is again (2. 68) for each component.

Chapman and Cowling give the results of the calculation of the second
approximation, based on the methods described in their book.
Grad's thirteen moment approximation is used by Herdan and Liley ),
A survey is recently given by Kaufman 13), The results obtained by
these authors are the same. If we assume the magnetic field to be in
the x direction of a Cartesian frame, they find for the components of
the nonhydrostatic part P! of the stress-tensor of the constituent
considered

Plygy = = 2N Ugy,

-2n f 4w?r? 2wWT
Plyy = Tw Uyy + I/Z(Uyy + UZZ) ——"—'82 + Uyz —B— )
-2n [ 422 2wr

Py = TraemmE? | Vaz* U2Upy + Upp) =5 -Uyp 5 |

i 2n [ 2wt
Plyz = - Trdweryg | Uyz * Y2WUzz - Uyy) 73
L
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2n wT

Plxy = Pyx = - T quaryjg [ny+‘za' Uz ] Sl i
2n wT

P!XZ = Psz = - —-—7—1+4wa7_z 5 '[sz - —B— ny ] =

In (2. 71) m is the coefficient of viscosity of the constituent considered,
w the cyclotron frequency and 7 the "self collisiontime' that is the
time for collisions between particles of the same kind.

The value of the constant 8 is of order one. The relation between 7 and
T is roughly

n
= =, 2.7
THS (2.72)

Now between the various collision times the following relations exist
(cf. Rose and Clark 3) chapter 8).

m
Toim Tee = (—) 5 (2.173)

ei ee m; iie

Combining (2. 73) with (2. 62) and (2. 63) we find

wiTi i = (nTi) TeiWe = (nTi) WT ~ 75 WT-

Since we assume wT to be less than one, we can neglect the influence
of the magnetic fieldon the stress-tensor P';. Further we deduce from
(2.72) and (2.73) that ng < 7y, so that we can neglect the nonhydrostatic
part of the electron stress-tensor with respect tothat of the ion stress-
tensor (here we have used the fact that in gases, as considered here
Pj ~ Pg)-

Hlence %ve can write the second approximation to the total stress-tensor
as pj + Pe + P!y, and putting wr = 0 in (2.71) we see that the total
stress-tensor reduces to (2. 63), with p = pj + Pe, and 1 = 7j.

Thus the equation of motion (2. 45) becomes with help of (2. 70)

P %%+ (pv.V)Y +Vp - jV3y - 1/3 ;VV.v+ jx B = 0.
(2.74)

(It is noteworthy that in this approximation there is no secondviscosity
coefficient). vPe
Finally we consider the term P in (2. 47).

In the second approximation Pg = pe + Plg. Since wT ~ wWTg ¢ < 1,
we deduce from (2.70) and (2. 71) that P?¢ is of the order 7g %‘ , and
* In dealing with wg we henceforth omit the subscript e.
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v
hence VP'e of the order 7, iz &

Using (2. 72) and the relation pg ~ ngmg }5 we have

VPe ~ NeMg 12

en €ng T

v
i (2.175)

Now let us estimate the order of magnitude of the term ! in (2. 47).
From (2. 31) and (2. 49) we have 1

=

eneV m

i e _ o e
Sa e w & Ny Ve ezne'r' (2.76)
VP, I.
From (2.75) and (2.76) we find that the ratio of e to - is of the order
2
le g ‘_’v__ . Because this is a small quantity, we shall neglect the non-
e

hydrostatic part of the electron stress-tensor in(2.47), which equation
thus becomes:

me o g
o'ng | 3t + (W) j+ (j.V)v+ jV.v} =
E+'x.-LX—B+_V_p_e__.!_ (2.77)

€ng ene o

In the two-fluid or two-component model (2.77) takes the place of Ohm's
Law in the one-fluid theory.

The Maxwell-equations are the same in both models.

We conclude this chapter with some remarks about (2. 77).

Let us consider a motion where the left-hand side of this equation is
zero or negligibly small. This will be the case in our applications.

P
Denoting E + vx B - Ye—% by E', (2.77) reduces to
gl d28 (2.78)

[+ en

When the induced magnetic fields can be neglected or do not play a role
in (2.78), this equation can be considered as a relation between j and E

E = Rj. (2.79)
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where R is the resistivity. Clearly the resistivity is a tensor with array

1 b 0
o o
wT 1
- ! 0 (2. 80)
0 0 1
o

Alternatively we can define the conductivity S by
i =S E.
The array of S can be found by inverting (2. 80)

g -WTO 0
1+weT? T+were
| wTo o
S = R P Tra?r? 0 . (2.81)

0 0 o

When wr < 1, we can to a first approximation in wr, write S as

-WTOo 0
S = wTo o 0 (2.82)
0 0 )

g

We see that the term ie_xn! , the Hall-term, in (2.77), which is not

present in the one-fluid theory, causes the conductivity to be anisotropic.
To what kind of phenomena this leads, will be investigated in the fol-
lowing chapters.




CHAPTER 111

INVISCID FLOW BETWEEN PARALLEL PLATES

We start our applications of the theory devgloped in the preeeding
chapter with the following simple problem. 14

A fully ionized gas, as considered in chapter II, section 3, but without
viscosity, flows between two infinite parallel plates, which we assume
to be perfect conductors. A magnetic field B, is externally applied
in the direction normal to the plates. The gas is driven by a piston,
situated between the plates and moving with constant velocity U. The
situation is sketched in fig.2. The distance between the plates is h.

NN
3 c
J

Fig. 2

Ionized gas, driven through
a magnetic field.

We choose a righthanded Cartesian frame of reference so, that the
x-axis is in the direction of U, the y-axis in the direction of B,, the
x-z plane being halfway between the plates. We assume that the motion
of the piston is slow enough to permit the neglect of density variations.
When in this configuration, the piston is infinite in z direction, all
quantities with the exception of the pressure, depend only on y. !
Hence we deduce from the conservation of mass and from the condition
that vy must vanish at the plates, that

vy=0,vx=U. (3.1)
From Maxwell's equation

VXB=ypj (3.2)

it follows on account of the independency on x and z that

jy = 0. (3.3)
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The electric field has no curl and hence

Ex = const; E, = const. (3.4)
Further it follows fromV. B = 0, that
By = constant. (3. 5)

In view of (3.1) and (3.3) the equation of motion (2.74) takes the simple
form:

0=-Vp+jxB, (3. 6)
while (2. 77) reads here
i vVp
0=E+va-'x—!+———g-!. 3.7
en en o
We shall assume
d
B 0. (3.8)

V pwill have X andy components. It is convenient in this and in following
problems to eliminate pg from (3.7). When the charge density Q can be
neglected the number density of protons and electrons is equal, there-
fore we have not labeled n. In chapter VII we will meet a situation where
the charge density cannot be neglected everywhere. This is not the case
here, so we put

Pj = P =n kT = 1/2p, (3.9)

because we neglect viscosity and replace the stress-tensors P; and Pg
both by the first approximation, being the scalar pressures pj and pg .
We can now eliminate pg from (3.7) with help of (3.6) and (3.9), obtaining

0=E+vxB -LXB I (3.10)
2en o

Before proceeding we examine the boundary conditions.
For the flow this is (3.1).
Of importance are now the electromagnetic boundary conditions which
do not occur in ordinary fluid mechanics.
Because these boundary conditions are derived in any textbook on
electromagnetism, (see for instance Stratton 15) or Panofsky and
* Phillips16)), we give not a derivation, but only the results.
For the magnetic field it is necessary that the component normal to
the boundary is always continuous.
Therefore as outside the plate the magnetic field has only the y -
component B,, we conclude on account of (3. 5) that

By = B,. (3.11)
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When finite conductivities (including zero conductivity) are involved
only, the tangential components of the magnetic field strength must be
continuous. However when one of the adjacent media has infinite con-
ductivity, current sheets may be present, allowing a discontinuity in
the tangential components. So in our present problem the perfect con-
ducting plates may be the carriers of such current sheets and therefore
we can allow for discontinuities in Bx and By at the plates.

Turning now to the electric field we require that the tangential com-
ponents are always continuous. A discontinuity of the normal component
however may occur when the boundary bears a surface charge. In the
present case the plates are perfect conductors, so the tangential com-
ponents of E are zero, since in a stationary perfect conductor no
electric field can exist.

Thus (3. 4) becomes

Ex = E, = 0 (3.12)

The z-component of (3. 6) gives with help of (3. 3) and (3. 8)

jx = 0. (3.13)
or on account of (3.2)

B, = const.
The boundary condition for B, is satisfied by

B, = 0. (3.14)
Using (3. 1) and (3. 11) - (3. 13) we find from the z-component of (3. 10)

iz = OUB, . (3.15)
Then from (3. 11) and (3. 15) and the x-components of (3. 6) we find

® - . ouB,*. (3.16)

The other quantities can now easily be derived from these results. We
obtain

vy = 1/2 wTU, (3.17)
By = - 0UB,y, (3.18)
gg = -(0UB,)%y, (3.19)
Ey = 0. (3. 20)

eB
In (3.17) w = -E—t’ and T is the collision time defined by (2. 56).
e
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From (3. 18) it follows that at the plates Bx has the value £ 1/2 cUB,h,
+ referring to the lower and - to the upper plate.

From the discussion of the boundary condition it follows that in each
plate a current J, flows equal to 1/2 cUB,h in the negative z direction.
Together they constitute the return current for the total current,

+ h/2
f jz dy = oUB.h, in the gas.
- h/2

In the one-fluid theory wT = 0, so from inspection of the above results,
it appears that the only difference in the two-fluid model is a velocity
in the direction tangential to the piston.

In the first order in w7 this drift velocity is proportional to U in the
ratio 1/2 wr.

Electrons and protons obtain both this drift velocity, but in opposite
direction. To the mass velocity only I1:1he positive charges contribute

(this is a consequence of the fact that m—? is neglected with respect to
i

one), but both electrons and protons contribute to the electric current,
which follows from (3.15) by observing that, since on account of (2.49)
and (2.63)

oB

o

|

wT = X (3.21)

[¢]
e

the current can be written as

Iz
Due to this additional velocity component vy, we see that there is an
angle 9 between the velocity of the fluid and that of the piston, given by

tg 6 = 1/2 wr.

=2env, .

When we now construct a rectangular duct by inserting two walls in the
gas parallel to U and B,, the result obtained above means that the
pressure gradient now has a z component given by

dp

dp
3= .- 1/2 wt i = 1/2 wToUB,2. (3.22)

This effect is a mechanical analogue to the Hall-effect, which name is
assigned to the phenomenon that in a conductor an electric field is set
up in the direction J x B, when a current J and a magnetic field B are
present.




CHAPTER IV

MAGNETOHYDRODYNAMIC COUETTE FLOW

1. Introduction.

In order to studya flow, involving viscosity effects, we now consider
magnetohydrodynamic Couette flow. This flow is as follows: A viscous
fully ionized gas flows between two infinite parallel plates. One of the
plates moves with a constant velocity U, in its own plane, while the
other is at rest. As in the preceding chapter, a magnetic field B, is
externally applied in the direction normal to the plates. Again the
distance between the plates is h.

Inordinary fluid mechanics Couette flow has been extensively studied
both for compressible and incompressible fluids, because it is one of
the (few) problems in viscous fluid mechanics, where exact solution is
possible. Also the M. H.D. Couette flow has received attention. The
one-fluid model has been treated e. g. by Liepmann1'7) (including com-
pressibility effects, but without pressure gradient) and by Agarwal 18)
(with pressure gradient, without compressibility effects). Till thus far
Couette flow in the two-fluid theoryhas been considered by Peletier and
van Wijngaarden 19), We shall restrict ourselves to the case where
there is onlya pressure drop normal to the plates and where U, is low
enough to make compressibility effects negligible.

The behaviour of the flow is strongly affected by the electromagnetic
properties of the plates. Therefore we study two cases. In the first
one the lower plate (the one at rest) is a perfect conductor and the
upper plate an insulator, in the second case both plates are insulators.

2. Equations for the two-fluid model.

It is convenient to introduce dimensionless variables here.
Denoting the physicalquantities with asteriks, we locate the x*z* plane
of a right-handed Cartesian frame in the lower plate, x* in the direction
of U,, and take B, in the direction of the positive y* axis.

We define dimensionless quantities by

xX*=xh ; y*=yh ; z*=zh ;v* = uU, ; B* = bB, ;

U (4.1)
E*:EUOBO ;,'*=iO‘U°B° ;p*:p,_h.g.
X
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When compressibility effects can be neglected, as is assumed here,
the continuity equation is

V.u=0. (4. 2)
The conservation of charge requires
v.i =0. (4. 3)

In this problem all quantities depend only on y, so that we have from
Maxwell's equation (2. 10)2

jy =0, (4.4)

Further we conclude from (4. 2) and the condition that u. must vanish

at the plates *
uy =0. (4. 5)
With help of (4.1) - (4.5) we obtain from (2. 74)
M*jxb-Vp+Viku=0, (4.6)
where M? is defined by
M2 = Bg:2°. (4.7)

M is the Hartmann-number and represents the ratio between electro-
magnetic dissipation (joule heat) and viscous dissipation.
For gases, as considered here, reasonable values of o are

10° - 10* ohm™ m™* and of n 10™° - 1077 Rl_{sg&_:’ so that from (4.7) it

follows that M is large. When B, is 0,1 weber /m? and h = 10™* m we
find with the indicated ranges for ¢ and 7

M ~ 10°.
The equation (2. 77) reads here, on account of (4.1) - (4. 5)
E+uxb-q,'xb+1€l—2Vpe-,'=0, (4.8)
where q = wr. (4.9)
The dimensionless Maxwell equations are
V .b=0, (4. 10)
VXE=0, (4.11)
Vxb=Rj. (4.12)
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In (4. 12) the magnetic Reynoldsnumber appears, defined by
R = opU,h. (4.13)
In ordinary fluid mechanics the Reynoldsnumber Re, given by

U,h
Re=’3; ; (4.14)

represents the ratio between inertia forces and viscous forces.

In M. H.D. the quantity (@o)~?, having the dimension g‘g , plays the
rdle of g = v, and is frequently called the "magnetic viscosity". From
(4.13) and (4. 14) we see that

R = opvRe.

R is the ratio between the work done bythe Lorentz force and the joule
dissipation.
From (4. 10) it follows that

by = 1, (4.15)

and from (4. 11) that
E; = constant, E, = constant. (4.16)
As already mentioned in the introduction, we exclude the presence of

a pressuredrop in the x and z directions. Then the x and z components
of (4. 6) are, using 5_4. 4), (4.5) and (4. 15)

o duy
-MJZ+F=O’ - (4. 17)

d?u,
M?j, + ——= = 0 4.18
JX dyz ’ ( )

while the x and z components of (4. 8) become

Eg -u, +qiy -ig=0, (4.19)
E, + uy - j, - qix = 0. (4.20)

When the solution of (4.17) - (4.20) is known, the y components of (4.6)
dp

dy *

The set (4.17) ~ (4. 20) is not yet complete, since the electromagnetic
properties of the plates have to be specified. In the next sections two
different choices are made.

and (4.8) determine Ey and
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3. Ex = E, = 0.

In this section we assume that the upper plate is insulating and that
the lower plate is a perfect conductor. Because in the lower plate no
electric field can exist, the continuity of the tangential components of
E at the lower plate requires on account of (4. 16) that

Ex = E; = 0..
Hence (4. 19) and (4. 20) reduce to
-u, +qjy - ix =0, (4.21)
uy - jz & qjx 0. (4.22)
In the one~fluid model the motion is two-dimensional and jx = 0.
Hence the term qjy in (4.22) is of higher order than q and can be

neglected, since we look for effects of the first order in q.
Therefore (4. 22) yields in the present approximation

ug = jy - (4.23)

Inserting this in (4. 17) gives

d?uy %

—d-y—z— - M llx = 0. (4. 24)
Apparently there is no influence of q on uy up to the second order in q.
The boundary conditions for uy are:

y=0: Uy = 0,

y=1:u=1
Solution of (4. 24) with these conditions gives

sinh My

Uy = —S—in_—h_lT. (4.25)
From (4. 18), (4.21) and (4. 23) it follows that
d?u
u, = qug + 1 -] (4. 26)

M® dy?’
The driving force for the motion in z-direction is here the resulting
shear stress working in x-direction on a volume element. The first
term on the right-hand side of (4.26) resembles the effect found in
chapter III. The second term represents the shearstressin the z-
direction.

The drift velocity u, must be subjected to the boundary conditions

y=0:u; =0,
y=1l:uz=0,
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The solution of (4. 20), satisfying these conditions, is

Mq i ;
u, = ———=-—— | cosh M sinh My - y cosh My sinh M | .(4.27
Z  2sinh®*M [ 485 . ] i
We have observed that usually M is large, so that we can put

sinhM ~ coshM > M > 1. (4.28)

Using (4. 28) and introducing the variable £ = 1 - y, we can simplify
(4. 25) and (4. 27) to

Uy ~ € 3 (4.29)
and
w i 3380 AN (4.30)

The flow in x-direction is restricted toa region of the order %measured

from the upper plate, from where uy decreases rapidly towards the
value zero at the lower plate. The velocity in z-direction starts at a

value zero at the upper plate, reaches a maximumat y = 1 - % and
and decays from the maximum value % e”! to the value zero at the
lower plate slower than uy because of the factor M in (4. 30),2 At the

; 2 2 . Z
point y = 1 - ¥ °F ¢ = e Ve have uy = quy, since there ok =0
(cf (4.26)).

From (4.23) and (4. 29) we obtain
5 -M
iz ~ e g, (4.31)
and hence (4. 12) yields upon integration
R -M¢ ;
bx ~ ﬁ (1 - e ). (4. 32)

The integration constant has been adjusted to the condition that at the
upper (insulating) plate by = 0.
Likewise we find for j; and bz:

ix = al, e ME (3 _ M),

bz;:-q—g- 1-eM (1 -mp .

3%
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The values of b, and byat the lower plate determine the return currents
in the lower plate.

Quantities of interest are the forces exerted on the plates.

In hydrodynamics the stress Ty at the wall is usually expressed in
terms of 1/2 pU.°.

Tw = Cw.1/2 pUZ. (4.33)
Without magnetic fields cy is a function of the Reynoldsnumber,

defined by (4. 14). nU duy
In our case Ty at the upper plate is given by T" (TE) g=0

nU,  duy )

w (T e-o0
From (4.14), (4.29), (4.30) and (4.33) we find, that for the stress in
the negative x-direction

in the x-~direction and in the z-direction.

g = B (4.34)
and for the stress in the z-direction
- M
Cw, = Rg ° (4. 35)

The presence of a shear stress in z-direction is analogous to the
pressure drop in z-direction, found in studying the problem of Chapter
11,

It follows from (4.29) and (4. 30) that the forces on the lower plate are
of order e~M and hence are negligibly small in the approximation
formulated by (4. 28).

4, Nonconductive plates.
We now return to eqs. (4.17) - (4.20) and consider the case where

both plates are insulators. We assume that the conditions at infinite
require that the current lines are closed in the gas:

1
/ ix dy = 0, (4. 36)
0
1
/ iz dy = 0. (4.37)
0

With these conditions we obtain from (4.17) and (4.18) upon integration
between 0 and 1
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(d“x) - (3ix y (4. 38)
y=0 dy y= 1

(d:z ) ity (4. 39)

Vy= 0 @ y=1

From (4.17) and (4.20) we obtain, again dropping the term qjy in (4.20)
1 d’ug
M? dy?

-uy = E,;.

The solution that gives uy = 0 fory = 0, uy = 1 for y = 1 and satisfies
(4. 38) is:

% o 1 i sinh M (y - 1/2) : (4. 40)
2 oo NG
sinh 3

E, = - 1/2. (4.41)

The equation for u, reads on account of (4. 18) - (4. 20) and (4. 41)

1 d’ug
q(ux - 1/2) + i[—a—;yT-F EZ'

The solution, satisfying (4.39) and vanishing both at the upper and at
the lower plate, is

g Mg i [§ cosh 1\24 sinh M(y-1/2) - (y-1/2) sinh %d-cosh M(y-llz)] (4.42)
4sinh®%

g
and
Ey = 0. (4. 43)

The solution of the problem of this section can be related with that
of the foregoing one by the following transformation. h
Let us move in the physical system of reference the x* axis to y* = 3
The relation between the new ordinate y*' and y* is

When we refer to g in the dimensionless coordinates and take { = e

then =
v £ ,

y-12="F-12=;. (4.44)




gl [ s

With the transformation (4. 44), (4. 40) yields

sinh % &
u - 12 =172 R .

sinh &

; 2

Comparison of this result with (4.25) learns, that in the upper half of

the space between the plates, 0 < £ < 1, ux - 1/2 behaves just like

uy in the problem of section 3, when in that case we take the distance

(4. 45)

between the plates % instead of h and the velocity of the upper plate 1_122
instead of U, .

The same holds for uy, which becomes in terms of ¢

u, =_Mq__ costhinhh—aC-CsinhMcoshh—dg . (4.46)
g 8si 2 M 2 2 2 2
sinh 5

This expression can be obtained either directly from (4.42) or from

(4. 27) by multiplying the right-hand side by 1/2 and changing M in %{—
andy in {.

We infer from (4.45) and (4.46) that uy - 1/2 and u, are antisymmetric
with respect to £ = 0.

Since in cases of interest M is large, we can reduce (4. 46) to

M
Mg -5 |gimmM M
up = e 2 [smh 3 -Ccosh 2{;] . (4. 47)
From (4. 17) and (4. 45) we obtain for j,
lsinh%-t
z=5—% >
: sinh%I

and from (4.12) and this result, remembering that now by and b, must
vanish at both plates,

cosh » g
e s SETRAS L Ky
bl o Mty e
sinh —+
2
In the same way expressions for jx and b, can be obtained from (4.12),
(4. 18) and (4. 46).
We observe that in the present configuration boundary layers of the
type discussed in section 3 occur at both plates. Applying the scaling
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rules mentioned in the foregoing, we obtain from (4.29) and (4.30),
that near the plates for large M

ug - 1/2 2 % % exp[— %- (F e+ 1)], (4. 48)

and
uz:i'ylgq(ic+ 1) exp[—%{—(IC+ lﬂ. (4. 49)

The upper sign refers to the upper -, the lower sign to the lower plate.
The forces on the plates are equal but opposite in sign.
From (4. 34), (4.35) and the scaling rules we find

vl LT
VX " 1u2puz  Re’
and
»
Wy qM

C = = .
W 1/2 pUg 2Re

5. Concluding remarks.

In the foregoing sections we have shown that in the Couette flow of
a fully ionized gas, the motion of the upper plate engenders a trans-
verse motion of the gas. Our results are also applicable to problems,
involving the relative motion of two concentric cylinders, the magnetic
field pointing radially outward.

When the difference between the radii is small with respect to both
of them, the influence of curvature can be neglected and in that case
the annulus between the cylinders can be considered as the space
between two parallel plates.

The problem of section 3 corresponds for instance with the uniform
translation of the outer cylinder in axial direction. The results of
section 3 show that a torque is exerted on this cylinder, causing a
rotation about its axis, when such a motion is not prevented by external
means.

Regarding the problem of section 4, we can think of a constant
angular velocity of the outer cylinder, the inner one being fixed. The
results of section 4 learn us that the rotation of the gas is accompanied
bya secondary motion inaxial direction. This motion can be considered
as a vortex motion, the vorticity given by the y~derivative of formula
(4. 42).



CHAPTER V

WAVY PLATE; ONE-FLUID MODEL; STEADY MOTION

1. Introduction.

In this and the following chapters we shall occupy ourselves with
magnetohydrodynamic flow along a thin plate with a wavy profile on
both sides.

The concept of flow along a wave shaped boundary is due to Ackeretzo),
who published in 1928 a paper dealing with the motion of a gas along a
wavy wall, the purpose being to study the effects of compressibility.
When the amplitude is small with respect tothe wave length the equation
for the velocity potential (viscosity effects are ignored) can be linearized
and due to this linearization solutions can easily be obtained.

The solution of the wavy wall problem gives some insight inthe particular
flow properties one wants to study and further it provides the means
to arrive at solutions for more complicated problems such as the flow
round thin airfoils. Since the theory isa linearized one, these solutions
can be obtained from the wavy wall solutions by Fourier synthesis.
Therefore it suggests itself to consider the wavy wall problem in M.H.D.
The first paper on this subject was written by Sears and Resler21) in
1959. They considered a perfectly conducting fluid, moving along the
wavy boundary of an insulating medium, occupying the lower half plane,
while the fluid moves in the upper half-plane. The influence of com-
pressibility is neglected. They found that, when a magnetic field is
present parallel to the undisturbed velocity, the flow is the same as
in the nonmagnetic case, but due to the presence of the magnetic field
current sheets occur at the boundary.

When the undisturbed magnetic field is perpendicular to the undisturbed
velocity, the flow is largely different from the nonmagnetic case. The
main part of this paper deals with this case.

In so far as thin airfoils are treated, it is indicated that for fluids
of infinite conductivity the linearized theory is not valid for the flow
around thin airfoils, when the undisturbed fields are parallel. No
particular configuration however is treated.

The paper by Sears and Resler was followed by other ones, from
this authors and their collaborators at Cornell University.
Mc.Cune22) gave a theory for thin airfoils moving in a fluid with finite
conductivity for the case where the undisturbed velocity and undisturbed
magnetic field are perpendicular to each other.

In the book by Bershader23), a survey of the work at Cornell was given
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by Resler and Mc Cune. In this contribution compressibility effects
are also taken into account, and attention is paid to the case where the
undisturbed field is parallel to the flow and the conductivity is finite.
No complete solution however is given.

Compressibility effects were also considered for the aligned fields case
by Bhutani24) , assuming an infinite conductivity of the fluid. Following
Sears and Reslerzl), he treats the case where the wave shaped boundary
separates the fluid from an infinite insulating medium.

Since the situation in the crossed fields case is fairly clear by now, we
restrict ourselvesto the case where the undisturbed fields are parallel.
We shall deal with the flow of a fluid of finite conductivity over a thin
plate of sinusoidal shape at both sides, because a complete solution for
such a configuration has not been given in the cited references. We
shall assume that compressibility effects can be neglected. In this
chapter we shall deal with steady motion and use the one-fluid model.
The study of time-dependent flow will be the subject of chapter VI,
while we leave the application of the two-~fluid model to chapter VII.

2. Development of equations.

Consider a thin plate with a wave shaped surface on both sides.
The upper side is given by the real part of

y* = ¢ exp iAx*. (5.1)

Symbols, marked with * represent physical quantities. In the following
we shall make use of dimensionless quantities. In (5.1) € is the am-
plitude, 27 the wave length of the upper side. They are in the present

problem restricted in their magnitude by the condition
ex & 1y (5.2)

A conducting fluid moves parallel to this plate with a velocity, which
is U, in the direction of the positive x* axis, when the plate is absent.
In the undisturbed state a magnetic induction B, is present parallel to
U,. The presence of the plate causes a disturbance of flowand magnetic
field. We want to know the magnitude of these disturbances.

The lower side of the plate is sinusoidal too and has the same wave
length and amplitude as the upper side, but there may be a difference
in phase. We shall consider the cases where the phase difference is
zero and where it is 7. These configurations are sketched in fig. 3
(antisymmetric case) and fig. 4 (symmetric case). We shall assume
that the material of the plate has zero conductivity and the same per -
meability as vacuum. In the fluid the permittivity and permeability are
those of empty space. This is required by what is said about the



Fig. 3

Wavy plate; no phase difference
between upper and lower side.
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Fig. 4

Wavy plate; phase difference
between upper and lower side equal
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constitutive relations in chapter II.

We neglect viscosity effects and compressibility effects. Here, as in
the foregoing chapter, it is convenient to write the equations in terms
of dimensionless quantities. Therefore we define

= ;y=L;22=2; v =Uv; B*=B,B;
A A A 2 2 5.3
2 . B, Li. (5.3)
p* = pUgp ; E* = EU,B, ; j* = | ; = 2
H o
Using (5. 3) the continuity equation (2. 2) and equation (2. 6) become,
V.v=0, (5.4)
14 34
§+(v.v)v=-Vp+B|xl. (5. 5)
In (5.5) B2 is given by
2
B A2
8 = sror (5. 6)

B? is the ratio between magnetic and kinetic energy. The quantity
Gﬁm is the speed of propagation of hydromagnetic waves and is
called the Alfvén velocity. In aerodynamics one distinguishes between
supersonic and subsonic flow. In M.H.D. a flow is in analogy herewith
frequently called superalfvénic when 8 < 1, subalfvénic when g > 1.
From (2.5) and (5.3) we obtain, remembering that the convective
current Qv can be neglected,

3 ot
£+vx3=ﬁ,, (5.7

where R is the magnetic Reynoldsnumber, introduced in chapter IV and
here given by

opU,
R = TR (5.8)
Maxwell's equations (2.8), (2.9) and (2. 10)® become
VvV .B =0, (5.9)
_ 58
VXE=-3, (5. 10)
VXB=j. (5.11)

Now we assume that the disturbances created by the plate, which is
assumed to have infinite length and width, are small with respect to
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the undisturbed fields.
Therefore we write, k being the unit vector in x-direction 5

v=k+ u, (5-12)
B=k+b. (5. 13)

We suppose onaccount of (5.2) that u and b are small with respect to one.
In the undisturbed state j is zero. Then if follows from (5.7) that
also E iszeroin the undisturbed state. We assume in view of the infinite
width that all quantities depend only on X, y and t. Then in this one-
fluid model the equations are satisfied by u, = b, = 0, so that we have
only to deal with the components of wand b in the x-y plane. We intro-
duce the streamfunction § by writing

ux=§§,uy=-2—;€, (5.14)

and the function A with

A A
bx =37 by=-5;- (5. 15)

A is the z-component of the vector potential. By the introduction of g
and A, (5.4) and (5. 9) are automatically satisfied.

Now we take the curl of (5.5) and obtain, using (5.9) - (5.15) and
neglecting quantities of the second order in € )

v? gﬁth.:-}"-:-gzg‘%( - 0 (5.16)

In the same way we obtain from (5. 7)

3A 3A 1 2
'é'-f-}‘ax-a'*;—RVA. (5.17)
In deriving this equation from the curl of (5.7) , it is assumed that far
from the plate A and ¥ are zero.
To solve (5. 16) and (5. 17) we need boundary and initial conditions.
Let us consider the antisymmetric case of fig. 3.
For y > 0 we have the conditions

y=0: uy=-§£= ic) exp (ix), (5.18)
y =@ ;1):0’ (5.19)
A=0. (5. 20)

Anticipating the treatment of the unsteady motion in the next chapter,
we require
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t=0: 9= &) (5.21)
A=0. (5.22)

We do not consider boundary effects in x-direction, and take all
quantities proportional to exp (i x).

Yet the problem is not determined, because a boundary condition for A
is lacking.

Therefore we consider the lower half-plane. Let the stream function
be given there by ' and the vector potential by A?. They must satisfy
(5. 16) and (5. 17) and the conditions

y=0:uy=-%'§=iekexp(ix), (5.23)
y= - lb' =0, (5.24)
A! = 0. (5. 25)
t=0 P = 'po (X, . Y), (5. 26)
A! = 0. (5.27)

In the problem in the lower half-plane another boundary condition is
lacking. Both problems however turn 4nto a single well-posed problem,
when it is taken into account that both bg and b, must be continuous at
the boundary. In the linearized theorythis means that we must require

24 _

y =0 : T TRy (5. 28)
3A _ 2A!

" —-—ay " (5.29)

We state that the problem is solved by first looking for the solution of
(5. 16) ~ (5. 22) with the additional condition

3A _

et im0, (5.30)

and then defining ¢! and A! by the relations
¥ (t,x,y) = ¥(t,x,-y), (5.31)
At(t,x,y) = A(t,x,-y). (5.32)

The proof of this is as follows. By (5.16) - (5.22) and (5.30) the solution
in the upper half-plane is uniquely determined.

Since » and A satisfy (5.16) and (5.17) and since the operators working
on ¥ and A in these equations are even in y, ¥' and A', connected with
b and A by (5.31) and (5. 32), are also solutions of (5. 16) and (5. 17).
Because ¢ and A satisfy (5.18) - (5.22), we conclude on account of
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(5.31) and (5.32), that §'and A’ satisfy (5.23) - (5.27). Finally it follows
from (5.30) - (5. 32) that the conditions (5.28) and (5. 29) are fulfilled.
Streamfunction and vector potential, obtained in this way, satisfy all
the equations, initial and boundary conditions, and hence constitute the
unique solution of the problem.

Now we turn to the symmetric case of fig. 4. In the upper half-plane
the conditions are the same as in the configuration of fig. 3. They are
given by (5.18) - (5.22). In the lower half-plane, (5.24), (5.25) and
(5. 27) hold here too, but, owing to the phase difference, we must have

T
y=0:uy=_§£ =-i€kexp(ix),

while in stead of (5.26) we must require here
t=0: ' ==y (x, -y).

The condition, corresponding with (5.30), that determines in this case
the problem in the upper half-plane, is

A

=0 : e 0, (5. 33)

whilst here we have in the lower half-plane
Pt x,y) = - »(t,x%,-y), (5.34)
Al (t,x,y) = - A(t,x,-y). (5. 35)

These statements are easily proved by arguments analogous to those
used in connection with the problem of fig. 3.

From the above consideration we conclude that in both cases, the
problem in the upper half-plane is not determined by the available
conditions. Consideration of the lower half-plane leads to the conclusion
that the condition of continuity of the magnetic field at the plate is
equivalent tothe condition that the x-~component of the magnetic induction
must vanish at the plate in the case of fig. 3, the y~component in the
case of fig. 4.

The physical reason for the fact that the problem in the upper half-plane
is not determined, is.that upper- and lower half-plane are separated
by the plate only in a mechanical sense, not electromagnetically.
In the next sections we shall deal with the steady solutions for the con-
figurations of fig. 3 and fig. 4.

In chapter VI a type of unsteady motion will be treated.
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3. Steady motion. Configuration of fig. 3.

In the case of steady motion, (5.16) and (5. 17) reduce to

2 (3 _ L2 oA ¢
VIS -) =0, (5. 36)
24 3 _1g:
Sl RV A. (5.37)
Because §) and A are periodicin x, we separate the variables by writing
» = £(y) exp (i x), (5.38)
A =g(y) exp (i x). (5.39)
Inserting these expressions in (5. 36) yields
d2
(ag,—z - 1) (f- g%) = 0, (5. 40)
whilst (5. 37) becomes
d? :
(d? - l)g = lR(g - f). (5.41)
The boundary conditions (5.18) - (5.20)and (5.30)are in terms of f and g
y=0:1£f==c¢A, (5. 42)
dg _
" 0, (5. 43)
y=o : f=g=0. (5. 44)

The independent solutions of (5.40)and (5.41) are exp + y and exp + ay,

where e
a=[1+1iR@ - 0]V (5. 45)

When B = 1, these solutions are identical and we have to find other
solutions. This will be done in section 5. For the moment we assume

B # 1.
On account of (5.44) we have to choose the - sign in both exponentials.

Writing g = k, exp -y + k, exp -ay, we obtain from (5.40) or (5.41)
f = k, exp -y + B’k, exp - oy.
Using (5. 42) and (5. 43) we find for k, and k, :

€la
k = - T,
W

a-8%
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Inserting these values in the expressions for f and g, yields with help
of (5.38) and (5. 39)

ap:f’l‘g—z [ﬂzexp-ay-anp-y] exp (ix), (5.46)
e :
=_?2 [exp -Qy - 0 exp -y] exp (i x). (5.47)
a—

The corresponding expressions for the lower half-plane follow from
(5.31) and (5. 32)

P o= :;a [Bz exp ay - a exp y] exp (i x),
Al =2 i
_;_?2 expoy - aexpy | exp (ix).

When B2 is zero, A is identically zero, and the nonvanishing part of ¥
represents the nonmagnetic potential flow. The last term within the
brackets in (5.46) represents an irrotational flow of the same type as
the nonmagnetic solution. The corresponding term in (5. 47) defines a
magnetic field which is everywhere parallel and proportional to the
flow. This field is irrotational too and therefore does not give rise to
currents and Lorentz forces. Now the boundary conditions for flow
and field are not identical, so that the solution for flow and field given
by the irrotational terms is not complete. The first terms in the
brackets in (5.46) and (5.47) represent the system of currents and
vortices, required to adapt flow and field to these boundary conditions.
The perturbations of the undisturbed flow and field, resulting from
(5. 46) and (5. 47) are

aw eX [ 2 3
Ux = 5y =@ | XY - of® exp ~ay | exp(ix), (5.48)
w o= . o0 _ dex (aexp_ - B% exp - exp(ix), (5.49)
Y& T ex T 4.2 Y 4 ki ’
A
bx = géy = ::——ﬁ—z (oz exp -y - « exp ~ay ] exp(ix), (5'50)
d i€ r 5
by = - Séx = -1-—;‘—2 o exp -y - exp -ay ] exp(ix). (5.51)
a—

As an illustration we have drawn in fig.5 the by lines for severalvalues
of y in the case of the flow of sodium along an antisymmetric wavy plate.
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Fig. 5

by lines in the case of the flow of sodium
along an antisymmetric wavy plate.
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The values of the various quantities are given in the figure.

Note that, when y increases, the phase shifts in the downstream
direction.

The direction of the phase shift depends on the sign of 1 - 33. This can
be demonstrated in the easiest way when R is large.

Then it follows from (5. 45) that we can write exp(ix) exp -oy as

oo [ S st B

+ corresponding to sub -, - to superalfvénic flow. Hence the lines of
constant phase point upstream when B > 1, downstream when 8 < 1.
We have presumed that the disturbances are small with respect to the
undisturbed flow and field. Let us now verify this.
From (5.45) it follows that o is large when R is large or when B is large.
When B is of order one, it follows from (5.48) - (5.51) that the dis-
turbances are of order e¢ A whatever the value of R.
In section 5 it will be shown that this holds for B = 1 too. Now let us
consider the situation when R is of order one, but the magnetic field
is very strong, resulting in a large value of 8. Then from (5. 45) we
have o ~ RY2B, Inspection of (5.48) - (5.51) shows that, except in a
thin layer at the plate, the disturbances are very small. The magnetic
field is only slightly disturbed and the streamlines are tied to them.
However at the plate, the fluid must follow its slope, and is compelled
to move across the magnetic field lines. This causes a current in the
layer near the plate. Denotingthe vorticity V x u with w, we have from
(5. 5)

W= ﬁzi. (5.52)

Hence the current arising from the prescribed value of uy at the plate,
causes a large vorticity and large ux. From (5. 48) it follows that near
the plate uy is of order e\f. Thus we obtain the condition eXg < 1 for
the validity of the linearization.

We conclude that apart from this case, the disturbances are always of
order e)\. In particular we have for large R (B being of order one)from
(5.48) - (5.51)

ug = ex(exp -y - g® exp -ay) exp (i x),
uy = ieX exp (-y) exp (i x),
bx = €X(exp -y - exp -ay) exp (i x),

by = ieXx exp (-y) exp (i x).
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These relations show that although the disturbances are of order €A,
: : . ux dbx
terms neglected in the equation of motion, such as uy 3 or by W
are of order (e))3a.
Since under the circumstances, envisaged here, o is large (cf. (5.45)),
we have to inspect, whether this invalidates the linearization.
Therefore we insert the linearized solution in the full nonlinearized
equations (5.5), which can with help of (5.4) be written in the form

v (p + B%2 B?) + (v.V)v - B?(B.V)B = 0.

The linearized version is
2 4 24 _ gz 30 _
v(p + B%bg) + 52 - B* 52 =0,
from which equation we obtain

P =P, - ux.”

Since this expression for p is obtained from the linearized equation,
we are free to add any terms of order (¢))?. B2b2 ﬁzbya
It appears to be appropriate to correct p with the terms g

otherwise said to goz;rect p with the second order terms in the "mag-

netic pressure" g ol

il A,
2 2

together with the linearized solution for uy, Uy, by and in the com-
plete equations, only terms of order (e))? remain, terms of order
(e 1)?a cancelling out. Hence the fact that some of the terms, neglected
in the momentum equation are large when « is large, does not affect
the validity of the linearization, but it must be borne in mind that the
pressure as obtained from the lizneaérized eguaiéion has to be corrected
with the second order terms L gx and B tz)y . In fact, the former

suffices, because the derivatives of by are of order eA.

When we take p - po + =-uy and subsequently insert this

4, Steady motion; configuration of fig. 4.

The analysis of the configuration of fig.4 runs parallel to that of
section 3. The difference is that the constants k, and k; must now be
deduced from (5.42) and the continuity condition (5. 33).

Using (5. 39), this condition gives for g

* p, is the undisturbed pressure.
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Y= 00 g =l
Upon replacing (5. 43) by (5. 53) we obtain for k, and k.

-€X
1 =—1_Bz )

€A
kz = '1—-52—.

Substitution of these values into the expressions for g and f, leads ‘with
help of (5.38) and (5. 39) to

b = Te%z [32 exp -0y - exp -y] exp (i x), (5. 54)
e [exp -0y - exp -y] exp (i x). (5. 55)

In the lower half-plane we get on account of (5.34) and (5. 35)
Yt = __197*3_2 [,32 exp oy - expy] exp (i x), (5.56)
A’:-—f%—z [expoty-expy] exp (ix), (5.57)

Also here we inspect the validity of the linearization.

As in the configuration, discussed in section 3, large disturbances
result when B > 1 (R being of order one).

Another limitation presents itself in this symmetric configuration.
Consider the x-components of u and b. These are

A '
uyg = —1-:3—2 [exp ty-offexpt azy] exp (i x), (5.58)

+

by = 16)\32 [exp y -aexpiay] exp (i x). (5.59)
In the exponentials + refers to the lower, - to the upper half-plane.
When « is large, the second terms in (5.58)and (5.59)are in the vicinity
of the plate dominant. Remembering the definition (5.45) of o, we
deduce from (5. 58) and (5. 59) that in that case ux and bx are of order
e XRY? near the plate. Therefore the linearization breaks down here.
The same result will undoubtedly be valid for thin symmetric airfoils,
as the solution for this problem could be obtained by Fourier synthesis
from the present results. In the introduction to this chapter we men-
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tioned the work of Sears and Resler21) and Mc Cune22) on thin airfoils
moving in perpendicular fields at large and infinite conductivity of the
ambient fluid. In that case no calamities occur. In parallel fields
indiscriminate linearization is not possible.

Inorderto understand this difficulty, we consider the current densities.
These are given by - ¥ 2A in the upper, - v 2A! in the lower half-plane.
The relation (5.32) shows that in the antisymmetric case (fig. 3) j, and
iz are equal, both in magnitude and direction.

However from (5.35) it follows that they are equal but opposite in the
symmetric case (fig. 4), which leads to by # 0 at the plate.

Now (5. 55) shows that when « is large, the currents are comprised in
thin layers at both sides of the plate. The thickness of these boundary

layers is of order é .

In this linearized theory both sides of the plate are taken aty = 0.
Hence the itwo systems of currents are brought infinitely close together.
This causes a large value of by at the plate.

This discussion suggests to consider a plate with finite thickness in
order to separate the currents. We undertake this in section 6, but we
want to study first the configurations of this and the preceding section
for the special case B = 1.

S48=10

When B = 1, we have from (5. 6)
B,

Uy = ——75 -
IS T b
In this special case the equations (5.40) and (5. 41) take the form

(5. 60)

(c-“‘-y-z 1) (f-g)=0, (5. 61)
((‘;’y—; - 1)g = iR(g - f). (5. 62)

The independent solutions, vanishing at infinity, are now exp - y and
y exp -y. For the antisymmetric case the remaining conditions are
(5.42) and (5. 43). Herewith we obtain

f

n

IR
et LGN [1 + R-Zi] exp -y, (5. 63)

g=- ei;‘ [1 + y] exp -y. (5. 64)

=
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Inserting these results in (5. 38) and (5. 39), yields for ¥ and A
yR £ i
) [1 i R—-Zi] exp { i(x+iy) }, (5. 65)

A=-g [1 + y] exp { i(x+y) }. (5. 66)

- B
€A

v}

Obviously the disturbances produced, are of order € for all values
of R. There is no boundary layer, for the current densities and vortices
occupy the whole region where the disturbances are nonzero.

It is worth while to remark that (5.63)and (5.64) can be directly obtained
from (5.46) and (5. 47) by taking the limit 8 - 1.

With help of (5.38) and (5. 39) we obtain for f and g, associated with
(5. 46) and (5. 47)

£ c\a exg?

= - exp -y + exp - 5. 67

- v+ oy, (5. 67)

g = - ekaz exp -y + exp -ay. (5. 68)
a-B a-B?

From the definition of e, (5.45), we have to the first order in (1 -8%)
a=1+ 3 (- (5. 69)

Using (5. 69) we obtain for the first term in (5. 67) to the first order in
(1-8%)
___E-‘_&__ [1 + %‘1 (- Bz)] exp -y, (5.170)
(142 (1-8)

and for the second term

Y Ry ;_ge B
(1+'£Rzi.)(1-/33) [1 - = (1-8 )] exp =Y. (5.71)

It is easily seen, that upon addition of (5.70) and (5.71), the factors
(1-B?) cancel. Putting B = 1 in the remaining expression, gives again
(5. 63).

The same procedure, applied to (5.68), leads to (5.64). We see here,
that (5.67) and (5.68) are well-defined for B = 1, although at first sight
one might be under the impression that difficulties arise in this case.
For the symmetric case we must find solutions of (5. 61) and (5. 62),
vanishing at infinity and satisfying (5. 42) and (5. 53). We obtain
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f==c¢) [ -%IIE] exp -y, (5.72)
g = 38 exp . (5.73)
From (5. 38) and (5.39), we have in this case
P = - el [ -%%]exp{i(x+iy)}, (5.74)
A=£—)2\-iBX exp{i(x+iy)}. (5.75)

Again (5. 74) and (5. 75) can directly be found from (5. 54) and (5. 55) by
expanding in terms of (1-8%) and taking the limit g —~ 1.

As for the disturbances, (5.74) and (5.75) show that the situation is
even more serious than in the case g # 1. For there we found that,
when R is large, uy and by are of order eARY in the vicinity of the
plate, whilst from (5. 74) and (5. 75) it follows that they are of order
€AR when B =1 and R is large. At some larger distance of the plate,
uy and by also obtain values of this order.

6. Symmetric configuration with finite thickness.

Upon this interruption for the case g = 1, we continue the discussion
of the symmetric case, starting from the point where we left it at the
end of section 4.

In order to separate the currents, we take a finite thickness of the plate
into account and therefore locate the upper surface at y= 6\ + el exp(ix)
and the lower surface at y = - 6\ - e) exp(ix).

Then we must also take the magnetic field in the plate into account.
This field has no curl and divergence, since we have assumed that the
plate is an insulator, and can therefore be described by a vector
potential with z-component

A = exp (ix) [ ks sinhy + k, coshy | , (5.176)

where k; and k, are constants.
In section 3 we found that the solutions of (5.40) and (5.41) which vanish
at infinity, are in the upper half-plane

f =k exp -y + p%k; exp -ay, (5.77)
g =k, exp -y + k, exp -ay. (5.178)

The corresponding functions in the lower half-plane follow from (5.34)
and (5. 35).
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Since the magnetic field must be continuous at both sides of the plate,
we conclude on account of (5. 35) and (5. 76) that k, = 0.
The remaining unknowns k, - k; are determined by the boundary con-
dition for the flow

y=0x : f= <igA,
and the continuity conditions for the magnetic field

y =0Xx : g = kg sinh 62,

dg _
& ° ks cosh 6.
We obtain

2-(1-0) (1-exp -262)

2(1-B?) - (1-0) (1-exp -261) § ’

k, = - el exp )

b 2€el exp abl
2 7 2(1-8%) - (1-a) (1-exp -261) ’
ks - e (1-c)

(B?-1) cosh 6 + (B%-q) sinh 6 °

For large R, i.e. large ¢, this set reduces to

ki = - exexp 6,
_ 2e)exp ab)
K2 = o(i-exp -260) ° 510
€
ks = - Smhoa -

Inserting (5. 79) into (5. 78), gives on account of (5.38) and (5. 39)

exp(6r-y) - 3 e ol ) f exp (ix), (5.80)

vo=sEd a(l - exp -261)

2 exp a6A-y)

A=-c¢) exp(ék-y) - am exp (ix). (5.81)

From (5.76) and the value of k;, given in (5.79), we obtain for X,
remembering that k, = 0:

- €\ sinh y exp (ix)

ik sinh 6

(5.82)
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From (5.80) and (5.81) it follows, that outside a layer 0 < y - 6 < i,

the stream function is that of the nonmagnetic potential flow and the
magnetic field is given by

A=, (5.83)

Hence the field and velocity vectors are parallel in this region.
Inside the boundary layer we have from (5.80) and (5. 81), neglecting

terms of order %—‘ .

uy = iex exp (6 - y) exp(ix), (5. 84)
ug = €A [exp}(b)\-y) & %"_‘g;‘;ﬂ] exp(ix), (5.85)
by = iex exp (6) - y) exp (ix), (5.86)
by = €) [exp(éx-y) - %%%f_—’z‘g—’;‘)] exp(ix).  (5.87)

These expressions show that u,, and in the boundary layer have the
same ratio as they have outside. For the x-components this is not
true, so that in the boundary layer the magnetic inductionvector is not
parallel to the velocity vector. Further it follows from (5.82), (5.84)
and (5. 86) that uy and by are of order e¢) everywhere. Outside the
boundary layer ux and by are also of this order of magnitude, but they
have larger values near the plate and, so far as by is concerned, in
the plate. In particular we have for y = 6 from (5.82) or (5. 87)

) A
bg = €A % exp (ix).

Assuming 6\ < 1, we can approximate this with

€ 5
bg = - 5 exp (ix) (5.88)
This result shows that the linearization is valid when % is small with

respect to one. For thin airfoils this ratio is of the order one rather
than small, so in that case we may expect x-disturbances of flow and
magnetic field, which are near the plate comparable in magnitude with
the undisturbed fields.

Stewartson 25), considering the motion of a perfect conducting fluid
along thin bodies, the undisturbed fields being parallel, came to the
same result with respect to the validity of the linearization. His argu-
ments, different from ours?, are cited here.
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Consider a symmetric thin body, given by
lyl = 68(x).

6 is a small dimensionless parameter, S(x) determines the surface of
the thin body.
On the body we require to the first order in 6

uy = 6 Up d_%x) sgn y. (5.89)

Taking the curl of Ohm's law (5. 7) for a steady motion leads to
vx(vxB) =£v®B. (5.90)

When R is allowed to become infinite, the right-hand side of (5.90)

vanishes, which leads tothe conclusion that v and B are parallelevery-

where. :
Then we have at the body, on account of (5.89):

ds
by =9 By ﬁ) sgny. (5.91)

In the body by = const. y in a first approxingation.
The constant can be found by integration of 3y through the body from

lower side to upper side, resulting in

Then by = - %X dx = - B, In S(x) + const,

which means that disturbances of order B, can be expected.

The results of our more close study of the similar problem in this
section, showed that the fields are parallel outside the boundary layer,
but not inside. It is easily verified, using (5.81), that the right-hand
side of (5.90) does not vanish uniformly, but has a finite value in the
boundary layer. :
Nevertheless (5.91) holds, since, as we showed previously in this
section the y components have the same ratio everywhere, when the
conductivity is sufficiently large.

Therefore Stewartson's qualitative result is confirmed by the present
investigation.
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7. Evacuated lower half-plane.

In order to compare results, we calculated also the stream function
and vector potential for the case treated by Sears and Resler, where
there is unbounded vacuum for y < 0.

Then the magnetic field in the lower half-plane is harmonic and since
it must vanish for y -» - «, it can be represented by

A = e)ks exp {i(x-iy) }, (5.92)

kg being a constant.
The disturbances in the upper half-plane are again given by (5.77) and
(5.78). The constants k,, k, and k; are determined by

Yy =0 iif=i=ced,
0= eAkE;
(;g; = G)\ks o
We obtain
K, = Sr(lta) (5.93)
1+a»282
2€)
ke = $ 5.94
. 1+a-282 A
R o SR (5. 95)
1+a-2p2

Substitution of (5.93) and (5.94) in (5. 77) and (5. 78), yields with help
of (5.38) and (5. 39)

b = L8N z [2/52 exp - ay - (1+a)exp -yJ exp(ix), (5.96)
1+o-28
ool i) 2 :
e 1+a-28° [2 exp -oy - (1+a) exp y] exp (ix). (5.97)

(5. 92) together with (5. 95) yields for the vector potential in the plate

B el
A = g exp { i(x-iy) }. (5.98)

The disturbances, following from (5.96) and (5.97) are for large a,
in the fluid
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ug = €l [ exp -y - 28% exp -oy ] exp(ix),
uy = iex exp{i(x + iy) },
bg = €X [exp-y - 2 exp -ay ] exp(ix),
by = iex exp{i(x + iy) },

and in the lower half-plane
by = - ex-exp{i(x - iy)},
by =iex exp{i(x - iy) }.

Here again as in section 3, the disturbances remain of order €\, when
the conductivity is large. Linearization therefore is not suspect here .
The above expressions differ from those obtained by Sears and Resler
by the terms containing a, because these authors put R equal to =
a priori and got no rotational parts of ¥ and A. Then a discontinuity of
bx at the boundary occurs. In order to account for this discontinuity
Sears and Resler introduced a surface current,

J=-2e) exp(ix). (5.99)
Now from (5.97), we have

iy = - V?A = - 20 exp -oy exp (ix),
which results in a total current

iz dy = - 2eX exp(ix).
o

This current has the value (5.99). Therefore the solution obtained by
Sears and Resler is indeed the solution, valid when the conductivity is
infinite.




CHAPTER VI

WAVY PLATE; ONE-FLUID MODEL; UNSTEADY MOTION

1. Intrcduction; Discussion of the initial conditions.

We have already mentioned Stewartson's paper 25) on the motion of
a thin body through a perfect conducting fluid in the presence of a
magnetic field, which is in the undisturbed state parallel to the velocity.
In this paper the author develops a qualitative picture of the flow and
conjectures that, when the perturbations are assumed to be small, the
motion, set up from undisturbed conditions, cannot become ultimately
steady. When a steady motion is assumed, the perturbations are no
longer small. Although our investigation pertains to the somewhat
artificial concept of an infinite plate, it certainly can be useful for the
study of finite bodies. In the preceding chapter we showed that, when
the body is symmetric and g° not too large, the breakdown of the linea-
rization at large conductivity is due to the small thickness.
The work of Stewartson stimulated the present author to investigate,
whether steady solutions as obtained in the foregoing chapter, can be
realized, when the motion starts from undisturbed conditions.
The type of unsteady motion we choose for this purpose is an impulsive
motion. Well-known in hydrodynamics is the Rayleighproblem. Rayleigh
considered an infinite flat plate immersed in an incompressible viscous
fluid, The plate is at time t = 0 set impulsively into motion with a
velocity U in its own plane. For t > 0 this velocity remains constant.
Rayleigh showed that the velocity in the fluid, which is parallel to U,
is given by

y
Uerte [ =—=— 1, 6.1
( 2NVt ) iR
where y is the distance from the plate and v the kmematlc viscosity.
With erfc(x)the complementary error function \—% J dv is denoted.
X

(6. 1) shows how viscous effects diffuse outwards. This type of motion
has been extended to compressible flowalso. A survey is given recently
by Stewartson 26),

In our case the influence of viscosity is neglected, but diffusion takes

place through the action of the magnetic viscosity Tf&" ¢
In analogy to the Rayleigh problem, we shall consider the following
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problem. A wavy plate of the type considered in chapter V moves when
t < 0 with a constant velocity U, parallel to its own plane in a con-
ducting fluid which has the same velocity. A magnetic field B, is present
parallel to U,. At time t = 0, the plate is suddenly brought to rest.
We ask for the subsequent behaviour of fluid and magnetic field. We
are in particular interested in the behaviour for t - ~», when the
conductivity of the fluid is large. The solution for this type of impulsive
motion will be obtained by means of Laplace transformations. The
available methods to obtain asymptotic solutions, valid when a certain
time has elapsed, will enable us to find expressions, representing the
ultimate behaviour of fluid and magnetic field.
Before dealing with the magnetic case, we treat the case where there
is no magnetic field, but where compressibility is taken into account.
The use of this problem for our investigation is two-fold. First it
enables us to determine the initial conditions for the magnetic problem
and further it gives opportunity to expose the way in which solutions
with help of Laplace transformations can be obtained.
When there is no magnetic field, the flows in upper and lower half-plane
are independent, so we shall deal with the upper half-plane only.
Using the same variables as in the preceding chapter and taking in
addition p* = p,p, where p, is the density of the undisturbed gas, the
linearized continuity equation is

g‘% +V.u + g—% = 0.
The momentum equation is in the acoustic approximation

du  du 1
sty

U
where M = 53 . 2, is the velocity of sound in the undisturbed gas and
o

M is here the well-known Mach number. The undisturbed motion is
irrotational. Hence the flow remains free of vorticity and we write
therefore: '

u =V &, where @ is the velocity potential.
Then we eliminate p, obtaining

323 %  3%3 1
et 3wt a2 gV ot s

The boundary conditions are

s N uy =ieX exp(ix), (6.3)

¥ =0
t>0 %y

VA




y>/0:¢=ﬁ=0, (6.4)
t=0
y-o o : &=0. (6. 5)
t* =

The last condition amounts to the requirement that disturbances origi-
nate from the wall only and not from infinity.
Now we separate the variables by writing

@ = ¢(y,t) exp(ix), (6.6)
and introduce the Laplace transform

<

o= [ e o@,bat (6.7)
o]

In (6.7) s is a positive variable. We introduce (6. 6) and (6. 7) in (6. 2)

and transform the equation (6. 2) with help of (6. 4).*
The transformed equation becomes

1 d%op

- g 1
l—VI_z a;; - @ { (s+i)® + i/I_z ; = 0.

The solution satisfying (6. 5) is
© = a(s) exp -yM V{ (s+i)® + ﬁl—z}, where a(s) is a function of s alone.

From transformation of (6.3), we obtain for a
ie)

iy it
Ms V{(s+1) + .M_z}

a =

Hence

1
. . exp -yM |A(s+i)® + 77}
- ). 4 V .. (6.8)

s V{(s+i ¥+ ml-z}

Then we have from the Inversion Theorem*

* For the general theory of Laplace transformations, see Carslaw and
Jaeger2T) or Mc Lachlan28),
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C+i
gy / exp [st - yM V{ (s+i)? + %}]
P’ - — ds. (6. 9)
27i s i
ey s V{ (s+i)? + ﬁz}

In (6.9) s is complex and the integration is to be performed along a

straight line parallel tothe imaginary axis at the right of the singularities

of the integrand. It is noteworthy that this problem is from a mathe-

matical point of view the same as a problem in the theory of electric

transmission lines.

In references 27)and 28)the problem of a uniform semi-infinite trans-

mission line with zero initial current and potential is considered. When

at t = 0 a constant e. m.f. is applied, the potential for t > 0 is re—

presented by an integral of the type (6. 9).

The singularities of the integrand in (6.9)are a polein s = 0 and branch
: : . i

pomtsms=-1‘_tm-.

As isusual in evaluating integrals following from the Inversion Theorem,

we deform the path of integration in a closed contour by addition of a

large semi-circle to the straight path, introducing suitable barriers

from the branch points to infinity.

T
» N,
4 \
/I S--i## “ \‘
T i \
=0 |
L /
e - /
\\s i '/
N 7
\\\ ./_/

Fig. 6

Contourintegration in complex s plane.
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In fig. 6 two possible contours are sketched. Now it follows from (6. 9)
that the integral along the large semi-circle in the right half-plane
tends to zero, when the radius tends to =, provided t < My or (from
(6.3)) 7" > agt*.

Since the integrand in (6.9)is analytic in the right half-plane, it follows
from Cauchy’s theorem that the integral along the closed contour in

*
the right half-plane is zero. Hence & is zero as long as t* < %;— .

When t > yM, the integral along the semi-circle in the left half-plane
vanishes.
Then, applying Cauchy's theorem, we find, due to the singularities,
a nonzero & The physical picture is that a wave front propagates with
the velocity of sound from the plate into the gas. At a point y* the gas
is at rest till it is reached by the wave.
From reference.27) p. 200 we obtain for t > yM

t

: - 13/
o= =-1ieAM / e JQ{HV(TZ'YzMZ)}dT’
yM
where J, is the Bessel function of zeroth order.

For further reference it is of interest to consider the case where
a, - = and hence M - 0, and to look at the ultimate behaviour of the
flow. The Laplace transform of uy is simpler than that of ¢ and there~
fore we consider

g_a _ic)exp -yM V{(S+i)a + I/Mz}, (6. 10)
y S

We ask for the value for large time of
Ct+iw o
1 st do
i e dy ds. (6.11)
Cmic
Evaluating the residu in s = 0, we have from Cauchy's theorem

C+ie

A A e ) [
At =iexexp{ -yN(1-M?)} - 5 J- 35 1 (6.12)
c-iw I i

The transient part is given by the integrals around the cuts I and II in
fig. 6.
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To evaluate the integral along I we shift the origin to s = i(ﬁl— -1)
and write

i A
Szﬁ-l+t.

Then, neglecting unity with respect to ﬁ, we have from (6.10)and (6.11)

1 j ex o VM "eCt-yM V{%(l'%s)}
'2'17i1 i 2m I i/M"'c dg.

When t is large, only the neighbourhood of £ = 0 gives a contribution.
Expanding the integrand, we obtain for the first term that gives a
contribution

yM? /21 V2 B
pal | R

Therefore we calculate —2-—;1;; I e‘:t Cyg dg.

1
Along the upper side of the cut I we have ¢ = xem, along the lower side
= xe—m. On the upper side x runs from « to 0, on the lower side from
0tow.

Together we obtain

=

-xt 12 1 .
X R g -3.2
f ® o WV b

QA=

(]

Taking all factors into account we obtain for the leading term in the
asymptotic expansion of the integral along I

2 €A
/
2it" W

1/2 eit/M+i1r/4 ’ Ma/z

(The integral along the small circle around € = 0 gives no contribution
when the radius tends to zero).

To obtain the result of the integral along the path II, we change i into
-i in this expression. Then addition of the two results gives for the
transient part 1/2

oA sin(t/M + n/4) y (31;1‘:‘-:-) . (6.13)
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6/2
The next term in the expansion appears to be proportional to 3—1’—‘5’5-2—— 5

so that for sufficiently large t the transient part is adequately described
by (6. 13).

From (6. 12) and (6. 13) it follows that, when a, —~ = and hence M - 0,
uy is, for any finite y and t, given by the residu in (6. 12), which gives
with help of (6. 6)

uy = ie) exp i(x + iy).
The stream function connected herewith is
Yo =.-€X expi(x + iy). (6. 14)

In the actual problem we want to investigate, there is a magnetic field
present. However the velocities involved in the interaction between the
flow and the magnetic field, are the Alfvén-velocity given by (5. 60)

and the diffusion velocity arising from the magnetic viscosity ‘—}‘-y.
Both these velocities are finite.

Since in our approximation, where the effects of pressure variations
on the density have been neglected, the velocity of sound can be con-
sidered as infinite, we assume that at time t = 0" the nonmagnetic flow
is already present, but the magnetic field is still undisturbed.
Therefore the appropriate initial conditions, to apply in the following,
are to require that at t = 0" the streamfunction is given by (6. 14) and
that the vector potential is zero.

Inspection of Ohm's law (5. 7) shows that at t = 0" an electric field is
present, given by the y-component of the nonmagnetic velocity. The
velocity involved in the establishment of this electric field is the velocity
of light, so there is a short period in which the displacement current
cannot be neglected.

The velocity of light however is still larger than the velocity of sound
and therefore in the present approximation ought to be considered as
infinite too. Then it is consistent to neglect the displacement current
and assume that at t = 0" the electric field, mentioned above, suddenly
arises.

2. General solution in terms of Laplace transforms .

The initial conditions given in the preceding section are chosen
already in chapter V without further reference, (cf.(5.21) and (5. 22)).
Hence we can use the results of the symmetry considerations, given
in chapter V, and therefore have only to deal with the upper half-plane.
In view of the fact that at t = 0* the stream function is given by (6. 14),
we shall denote the actual stream function with ¥ and the difference
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between § and Yo with ¥.
Hence

=9 - e) exp(ix)exp ~y. (6. 15)
Introducing this, the equations (5. 16) and (5. 17) become

Y 2 OA

z —
v -a-—{+-a—§-ﬁ S;—O, (6. 16)

A  OATRD 1 ig ; )
-5-{-+5——§-5§-EV A + iexexp(ix)exp -y = 0. (6.17)

At y = 0 we must have Uy = - g—g = iegd exp (ix).
Then from (6. 15) we must require for all t
y=0 : % =0. (6.18)

The other conditions for ¥ and A, independent of the situation in the
lower half-plane, are

y = lp = 0, (6. 19)
t#e
A =0. (6.20)
t=0": P =0, (6.21)
A =0. (6.22)

With help of (5. 38) and (5. 39), f and g here being functions of y and t,
(6. 16) yields upon integration

g% + if ~ ig%g ~ K(t) exp -y = 0, (6. 23)

where K(t) is a still unknown function of t, while (6. 17) becomes in
termsof f and g

og | . . 1 955 i =
ﬁ+1g-1f-§(ayz-g)-leXeXP-Y—O- (6. 24)

Let now the Laplace transforms of f, g, and K be F, G and K.
Then (6. 23) and (6. 24) become upon transformation and with help of
(6.21) and (6. 22)

(s+i)F - ig?G - Kexp ~y = 0, (6. 25)
B

2 7
(s+)G - iF - 1—11 (g—y% - &'s lEL:ﬂ_'X 6 (6. 26)

Elimination of F between (6. 25) and (6. 26), gives for G
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(s+1) %‘;} - G{R(s+i)? + (s+i) + RB*} + i—? {sK(s) - (s+i) e exp =y} = 0.

(6.27)
The general solution of (6. 27), satisfaying (6. 20), is
=i -S—K—(s—z)—'-(iﬂ—)-si exp -y + M(s) exp ~yC. (6. 28)
s{p? + (s+i)?}
Here M(s) is a function of s alone and C is defined by
3 \2 : 2] 1/=2
C = [R(s+1) + ‘(s+1) + RB ] i (6. 29)
S+i
When G is known, F can be found from (6. 25).
From (6. 18) we deduce that at y = 0, F must be zero.
This means for G, using (6. 25)
gm0 : G=‘-KB—(:’-). (6.30)

Another condition for G, necessary to determine K (s) and M(s)follows
from the results of the symmetry conditions given in chapter V.

In the following we shall treat first the antisymmetric case without
thickness and subsequently the symmetric case with thickness.

3. Antisymmetric case.

Here the additional relation for the magnetic field is the condition
(5.43), which is in terms of G

y=0 : %=o. (6.31)
From (6. 28), (6.30) and (6.31), we obtain
G = ;{1—;—;‘—"—257;:—;-2—} [exp ~Cy =~ C exp -y] : (6.32)
Then from (6. 25) and (6. 32) we get
o i — [exp -y - exp -Cy ] i (6.33)
s{pg?+C(s+i)?}

This solution for F satisfies the condition (6. 19).

Obviously F and G behave similarly. Therefore we shall restrict our-
selves to the magnetic field and try to deduce the behaviour of the
magnetic field, when t is large, from (6.32)and the Inversion Theorem.
We shall assume that the electrical conductivity and hence R is large .
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From the Inversion Theorem it follows that we must evaluate

1 " st
i e Gly,s)ds, (6. 34)

for large t.

The pathof integration in (6. 34)is a straight line in the complex s plane
to the right of the singularities of G.

It is convenient to shift the origin to s = ~i. Thereforewe put s = ~i+2z.
Then (6. 32), (6.29) and (6. 34) become

ierz
= —————— Cy = C -y, 6.35
(a-1)(*+C) [exp il y] e
o [RZ“_+_:_LW]" & 38
-itp zt
g = m e J.e G(y,z)dz. (6- 37)

G has a simple pole in z = i and when R is large, it follows from (6.35)
and (6. 36) that the other singularities are in the vicinity of z = 0 and
near the points where C = 0. When z - 0, G behaves on account of
(6. 35) and (6. 36) as
eEAZ -1/2_1j2 1/2, w=1/2
G’l = m [Z R B exp -y = exp(-yR BZ )]. (6. 38)
The singularities of (6.38)are: a branchpoint in z =0 and simple poles in
2/3

2 = o (12149, (6. 39)

which are indeed near z = 0 when R is large.

C vanishes when
1 3 e
Z=-h51¥ti [ﬁz -ZE'Z]- (6-40)

These points are associated with hydromagnetic or Alfvén waves.
In a perfect conducting fluid, hydromagnetic waves would travel with
the Alfvén velocity G’W , upstream and downstream with respect to

the undisturbed flow. When there is a finite conductivity the waves are
damped and the propagation speed is modified.
When R is large we can replace the square root in (6. 40) by




- e

B (1 "8—3:_Rz)-

We shall assume that R is large enough to allow the neglect of (,SR)'z
with respect to one and shall only take the damping into account.
Therefore we situate the relevant branch points in

1
M - — i ig. 6.4
z o = 18 (6.41)

The real part of these branchpoints is Jlarger than that of (6. 39), so
that we shall ignore the poles (6.39) in calculating the asymptotic
behaviour.

Now we close the path of integration in the complex z plane as shown
in fig. 7.

% ol
”
Ve
/' #
/ g
l-——#lp
/n 2 ;
[
I 1 Za i
=‘ 220
m
\ 1
\ x--z—R-lP
\
\\
a8
>
~ il
Fig. 7

Path of integration in z plane.

When the radius of the semi-circle is r, it follows from (6.35) and
(6.36) that G = 0(r™?) on the circle. Then it is easily verified that the
integral along the arc in fig. 7 tends to zero when r - «.
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Therefore, applying Cauchy's theorem, we find that (6. 37) equals the
residu in z = i minus the contribution of the contours I, II and III.
The residu in z = i is, when B # 1,

e

i (6-42)
elR
%R [y €Xp -y + exp -y] ’ (6.43)
when B =

These expressions give the steady solutions found in chapter V, sections
3 and 5, (cf (5.47) and (5. 64)).
The transient part of the magnetic field is

2,171 exp(-it) (eZt G(y, z)dz + ’ ™ Gy, z)dz + / e Gy, z)dz

I I m 6. 44)
The dominant contribution to the asymptotic value of the time-dependent
part, comes from the singularity with largest real part. In order how=-
ever to obtain some knowledge about the contribution of the Alfvén-
waves, we also take the branchpoints (6. 41) into account.

Let us first consider the integral along the contour I.

When t is large, only the neighbourhood of z = 0 tributes to the first
integral in (6. 44).

Therefore we replace in the integrand G by (6. 38) and consider

e-1i:
gl"‘z ’GI(Y,z)e
I
Using (6. 38) we write

exp ~it ’eARuz 5% g &Y

81 =8la * 81b = - Top B® + RV22°/28 dz +

12 =1/2
exp -it [erz YR B3 az (6. 45)
2mi B® + R:./azalaﬁ ‘ y

An integral of the type g1, is discussed by Mc Lachlan28) (p. 113 and
seq.). From this reference we obtain that for large t
1/2

g1a = €A (5==3) exp -(y +it). (6. 46)

4Bt3
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In obtaining this expression the poles (6.39) are ignored.
The contribution g1j is small with respect to gy, .

Proof:
Along the upper side of the contour I we have z = X em, and thus the
integral along this side is

) Y
. L e(iyRI/aﬁx-llz-xt)

A ~it
€ ze}fpz J R“"’ S dx.
mB 1- i'-'E- X
-im

Likewise we obtain for the lower side, where z = xe
@©

s /2 wl2
"xel=lVR gx " -xt)

€ exp ~it
2mip® J 141 B pone B
0 1.
Together
2 Rl/z
el exp -it [ e_xt TXS/QCOS(YR"’QBX'IIQ) L
TTBZ ¥ g B
o 1+ —B-E X
[ -; i 128 x=V2
e 7K xt x sm(yIl{2 Bx-V2) i
. 1+——5 %
o B

The first integral in [ ] is less than

o

T :
B-— extxsredx=l§ —-—"Ré .
B 8 It'g
o]
o xt —-l-

and the second one is less than / e xdx = 3 .

o

-

On account of (6. 46)both are small with respect to g15 when t is large.

To evaluate the integral along the small circle around the origin, put
i6

2 =08

Then the absolute value of the integral around the origin is
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+7
1 e{-yR” 28r~Y?(cos 6/2 - i sin 6/2) + rt(cos 6+ isin 6 + 2i0)}
=— err? de
2m B? + RY?r*?(cos 36/2+ isin 36/2)
wr
+m
: e(-yR”a Br-/2cos /2 + rt cos 6)
EAT de
(B*+ Rr® + 282RY2r*2cos 362)7
“r

This integral tends to zero when r -~ 0.

Hence the main contribution to the transient part associated with the
integral along I is given by (6. 46).

To obtain the contributions of the branchpoints (6.41), we apply the
method used in the introductory example. This method is based on the
following theorem in the theory of Laplace transformations (see Carslaw
and Jaeger 27) p, 280). Let s, be the singularity with largest real part
of a Laplace transform L(s). Let L(s) possess near s = s, a series
expansion, convergent for |s~s,] < v,

b an(s_so)n-l-;-(s_so)b-1 b dn(s-so)n, with 0 < b < 1. (6.47)
n=0 n=0

Then the original has for large t the asymptotic expansion

oot oy SO E (P rmm P L (648)

n=0

When s = £ + in and s, = £, + in,, it is required that L(s)-o for % =,
uniformly in £ when &, -6 < £ < c.

Here c is the distance from the path of integration prescribed by the
Inversion Theorem (see fig. 8) to the imaginary axis, and 6 is smaller
than the radius of convergence y of the series (6. 47).

Further it is required that | | L(s)|dn converges for n = £ = , when
g = €o - 6.

These conditions are satisfied by the Laplace transforms we have to
deal with.




$.
|
|
I

Fig. 8

Deformations of path of integration,
when an asymptotic solution is required.

Another way to arrive at the asymptotic expansion (6.48) is adopted by
Mc Lachlan 28)., Let us for convenience assume that s, is the only
singularity, so that, provided that the integral along the large semi-
circle vanishes when the radius tends to -, the path I in fig. 8 can be
replaced by the path II. When t —+ =, then, due to the factor eét, the
main contribution comes from the neighbourhood of s,, in which point
£ has its maximum value. When in

[eSt L(s)ds,

1

L(s) can be expanded in a series convergent in a neighbourhood of s,,
then term by term integration gives (6. 48).

Now it can be shown that both methods are equivalent. For it is clear
that when the integral along the semi-circle vanishes and to the integral
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along II only the neighbourhood of s, contributes, the path II + semi-
circle can be replaced by the broken path of integration in fig. 8. Such
a path is envisaged by Carslaw and Jaeger in discussing (6. 48).

When several singularities are present, it is enough to consider the
singularity with largest real part. In our problem the singularity with
largest real part is z = 0, but we take also the branchpoints (6.41) into
account, because we want to know of what kind the transient effects,
arising from these points, are.

Considering the branchpoint z = - + i, we write

ZR

1
z=-2R+1B+C

Introducing this into (6. 35) and (6. 36), we expand G in a series, which

is convergent for [{| < &= 2R

The first term in the expansion is
(28 \f(2RC)(1-y-exp -y)
B i(pe1) -

Gy = = =

In deriving this expression we have there, where this is harmless,

neglected with respect to B.

2R
Then by applying (6. 48) or by integration of (from (6. 44))

. :
J e':t G, dg,
I

along the path II in fig. 7, we obtain for large t

-~ exp ~ i———- + i(1-B)
2mi

R e (1~y~exp ~y) exp - 3—2}R~+ i(l—,s)f t
g2 € A ( 3)

i (6.49)
i(B-1) - 5
The point z = ~ §-lﬁ- - i, yields in the same way
R vz | (l-y-exp -y)exp - 'é”lﬁ"" i(1+8)  t
B = - A(s nis) (8.50)

2mg°t® -i(B+1) - L.
i(g+1) 5
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With help of (5.39), we obtain, taking (6. 46), (6.49) and (6.50) together,
‘for the transient part of A

R 1 1/2 t
Ay ed (s ats exp {=y+i(x-t)} + e A(1-y-exp ~y)s—org p=ts) exp ( ZR)

(6.51)
exp I{X-(l—-ﬁ)t} exp I{X~(1+B)t}
i(g~1) - ﬁz i(g+1) + 5

The first term in (6.51) is an irrotational disturbance convected with
the fluid. The other terms constitute two systems of Alfvén waves,
travelling upstream and downstream with respect to the undisturbed
fluid. Eventually A; vanishes, the time necessary to arrive at the
steady state being determined by the quantity (e 5’t3)m' The Alfvén
waves de-ay faster due to the additional factor exp - %R

In general there are two systems of Alfvén waves. However when
the Alfvén velocity equals U,, i.e. B = 1, the second term on the right-
hand side of (6.51) is no longer periodic in time, and only the down~

stream wave remailrllg. The other one is aperiodically damped and tends
3

to zero as (—g—t-s, exp -5_;—! , Which is appreciably slower than in the
M

case 8 # 1, due to the extra factor R.

Further we remark that (6.49) and (6.50) vanish when y = 0. This

means that at the plate the asymptotic behaviour of the Alfvén waves

is described by further terms of the asymptotic expansion.

4, Symmetric case.

The results of chapter V, section 4, indicate that we cannot, as in the
antisymmetric case, neglect the thickness of the plate.
Therefore we take here a finite thickness into account and locate again
the upper surface at

y = 6\ + e exp(ix).
Hence the appropriate form of (6. 28) is here
i sK(s) ~ (s+i)er 3

P Ry ~(y-81) + M(s)exp C(y~6A).  (6.52)
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Inside the plate there is a harmonic potential K, which is, as has been
shown in chapter V, section 6, odd with respect to y. Therefore we
write

A = ¢ h(t) exp (ix) sinh y. (6. 53)
Let the Laplace transform of h(t) be H(s). Then we have for H(s), K(s)
and M(s), the relation (6. 30), which is here
i K(s)

gr

y=06L : G=

and from (6. 52) and (6. 53) the continuity conditions
y = 60 : G = H(s) sinh 6},

-::—G}; = H(s) cosh 6x.
After some algebra, we find
et (C-1)(s+i)er 4
His) = 8 {(s+i)?+8%} cosh 6 + {2+ C(s+i)?} sinh 61’ ket
R(s) = - L. B*(C~1)(s+i) &) sinh 6) (6. 55)
8 {(s+i)®+B%} cosh 6 + {82+C(s+i)?} sinh 61
M(S) = % (S+i)e)t exp O} (6. 56)

{(s+i)®+g?} cosh 6) + {B+C(s+i)?} sinh 6x

With (6. 55) and (6. 56) we can write down G and once G is obtained, F
follows from (6.55) and (6.25). These are complicated expressions and
therefore we shall restrict ourselves here to H(s). For if we can show
that A becomes ultimately steady, the same will be true for A and ¥.
We consider

C+ie
%5 @ﬁz_’%(_li) sish ¥ J et H(s)ds, (6.57)
Cmie

where H(s) is given by (6. 54) and (6. 29). )
H(s) has a simple pole in s = 0, where the residu is
eX [{1+iR(1-*) 1" -1]

. (6. 58)
(B?~1) cosh & + [82~{ 1+iR(1-8%) }}?] sinh &)

From (5.45), (6.53) and (6. 58), we find the steady solution
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e (o=1) sinh y

G i
(B%2~1) cosh 6\ + (B%~a) sinh 6)

exp (ix). (6.59)

In dealing with the steady motion, we have already discussed (6.59)and
shown that when ¢ ~ 8, the disturbance in x direction becomes of order
one in the plate.

To investigate the transient effects, we consider on account of the

results of the foregoing section, the points s+i = 0 and s+i = ~ R tig.
We write again z = s+i. Then H(z) becomes
ieX (C-1)z

H(z) = - : (6. 60)
(z-~1) (B?+2?) cosh 8 + (B%+Cz?) sinh 6\ :
C being given by (6. 36).
* va 12
Expanding H(z) for z ~+ 0, we obtain for the first term , which
gives upon transformation and remembering that z = s+i,
hy, ~ (e ", t 6. 61
1,,e(xp1)(4ﬁt3) (6. 61)
an expression similar to (6. 46) and independent of 6.
sinh 6

ALY )

Higher terms, containing 6, are proportional to R LTI

positive powers of this quantity.

Therefore we conclude, that difficulties, arising when 6 is small, must,
if present, be due to other singularities

Consider the singularity z = - fﬁ + ig. We introduce & =2z + 5= 2R - ig.
For small £ and small 6\ we approximate (6. 60) with

ALeX 1 - N(2RE)
PBE-D) 1 _ ame) + 215

Here we have taken B # 1, which permits us to neglect the term - -
2R
with respect to (1-8).

Hy (L) w (6. 62)

The contribution to the asymptotic behaviour of h(t) for large t follows
from evaluation for large t of

-t/2R + i(B-1)t f

% (-1) H,(C) R
along the path II in fig. 7.

We obtain, omitting numerical factors

2
12 ~t/2R
("B— ) e (6. 63)

el
[n=®)| = gTa-1Te% \Boe
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From (6. 63) it follows that for every finite 6 there is a time t large
enough to render hs(t) small. Therefore we conclude that a steady
state is attained for every finite 6.

We showed on the other hand, that when 6 ~ ¢ and R is large, the dis~
turbance of the magnetic field in x-direction, resulting from the steady
solution (6. 59), is of order one, which invalidates the linearization.
Therefore we inspect the behaviour for small times. Since by and by
are zero at t = 0, there will be a period during which the linearization
is valid, whatever the value of A6 and R.

Because the discussion will also involve the magnetic field in the fluid,
we first write (6. 52) with help of (6. 55) and (6. 56), thereby assuming
6\ to be small, as

e eX(s+i)(Cox + 1) e
— s {(s+1)%48%} + 61 { g%+ C(s+i)?} SXR My ABL) e
(6. 64)
& _;_ e\ (s+i) (1+6)) o ClyBL.

{(s+i)%+ B2} + 61 { B2+ C(s+i)?}

From the theory of Laplace transformations it follows (Carslaw and
Jaeger 27) p. 255) that

lim f(t) = lim sL{f(t)}*.

t—+0 S +w
Therefore
oby dG
lim 33~ = lim s? qy exp(ix),
t - 0 S v y
and
aby
lim <3 = - ilim s%G exp (ix).

t—~0 S +»

Using these relations and (6. 29), we obtain for t = 0 and y = 6} from
(6. 64)
3b

st = ied exp(ix) - ”*;—?9—” exp (ix), (6. 65)
?
a_lt’_y = ~ e) exp (ix). (6. 66)

In the same way we obtain from (6.53) and (6. 54) that for t = 0 and
y = 0\ we have in the plate

* Here L{ } means: "Laplace transform of { }"
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b

o/

st =~ 1 5 exp(ix), (6. 67)
:_bfz i aXp (hak (6. 68)

We recall that at t = 0 the current is zero and the velocity is given by
the nonmagnetic streamfunction

Yo = - e exp (ix)exp ~(y~61). - (6. 69)
The electric field, present at t = 0, then follows from (6. 69) and (5. 7)

E; = ig) exp (ix)exp ~(y=01). (6.70)
Likewise in the lower half-plane

EP = - ie) exp(ix)exp (y+0)). (8.71)

On account of the continuity of the electric field at y = £ 60, we have
in the plate at t = 0

e lyepin) (6.72)
From Maxwell’s equations
JE d
== - S;Y_ g (6.73)
3E db
P x
T Al il (6.74)
it follows that the electric field causes a change of the magnetic field.
3Ey 3EY
Aty = 8}, — and z— , calculated from (6. 70) and (6. 72) are both

9X X

equal to ~e ) exp (ix).
Comparison with (8.66) and (6.68) then shows that the change of by and
by is initially accounted for by the electric field present at t = 0.
3Ey, JEY
However W and -a—y— are different at y = 0A.

In the fluid we have from (6. 70)
aEz

whilst in the plate, from (6. 72),
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aEY . "
Then we conclude on account of (6. 74) and the corresponding relation
for the fields in the plate, that the change of the x component of the
magnetic field, due to the initial electric field, is given by (6. 67) for
the plate and by the first term on the right~hand side of (6. 65) for the
fluid.

The second term on the right-hand side of (6. 65) is apparently due to
the Alfvén waves, set up to ensure the continuity of byg.

The sum of the two terms at the right-hand side of (6. 65) is equal to
the right-hand side of (6. 67).

In order to find the development of the disturbance in x direction, we
try to find an expression for by, valid when t is small. The theory of
Laplace transformations learns that a series representation of f(t) can
be found from a series development of L{f(t)} for large s. From (6.29)
it follows that we can approximate C for large s by

C = RY? (g+i)V? (6.75)
Using (6. 53), (6.54) and (6. 75), we obtain for large s
Ty e exp (ix) | 1 _
L{bx} =) 6 S(S+i) [1 - l + GXR’-/Q(S-{.i)I’a ] . (6. 76)
The fraction in the brackets in (6.76) can be expanded in a series con-
1
)12
vergent when | (s+i)2] > o

Then we obtain

~ ie 1 1 3
L{bx} = __6 Ss+i [1 - mz + ...] exp(lx).
(6.77)

By inversion of (6.77) a series representation for Sx is obtained.
Because (6.76) represents L{bx | only for large s this series is
asymptotic.

Inversion of (6. 77) yields

t t .
~ ie| [ -it 1 Y eiT 12 ;
e @ Y o it n T dr e ix).
by = ) ' T SR T (3R) ‘ E xp (ix)
0 o

For t < 1 this can be written as

~ ie [, e
i . ———————— } .. ix). 6.78
bx g [} [t GAR’JE ,.(5/2) ® ] exp (1x) ( 7 )
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The first term on the right-hand side of (6. 78) has already been dis-
cussed.

To understand the second term we note that we find from (6.64) for the
first term of the asymptotic expansion of the current j, = - ¥ 2A

ie RY2¢Y®

jo o~ - — exp (ix), at y = 6. 6.79
N YIET) xp (ix), at y (6.79)
The z component of (5.7) is
iz
EZ = lly - by of ‘R— 2|

3y,
To the order t'%, uy = - sz 2nd by = 0, so that we have at y = &)

to the order t'/?
iet¥?

e ix). 6.80
6R™ 1'(3/2) s iy g

Ez = ie) exp(ix) -

The Alfvén waves are rotational and currents arise given by (6. 79).
Consequently the electric field decreases according to (6.80). From
the continuity of Ej it follows that in the plate

leyexp(x) = ieyt’®  .x).  (6.81)
6 A62RY? I'(3/2)

Then by applying (6.74)to the fields in the plate we find upon integration
the expression (6.78). When 6AR*2? > 1, the first term on the right-

hand side of (6. 78) suffices up till t ~ 1. If in addition % = 0 (1), we

E, =

conclude from (6. 78) that Bx becomes of order one during the time in
which only the first term at the right-hand side of (6. 78) needs to be
considered. This causes the breakdown of the linearization. The
physical reason is that because of the large conductivity the electric
fields decreases slowly.

When the conductivity is lower so that 6ARY? < 1, soon after t = 0 the
second and higher terms at the right-hand side of (6.78) become im~
portant and by stays small during the time for which the first term is
enough.

After a time determined by the magnitude of 61 and R the asymptotic
solution for large t can be used. This solution given by (6.59), (6. 61)
and (6. 63) shows that eventually a steady state is attained.

From (6. 59) it follows that when 6\ is small, we have in the plate in
the steady state.

~ ex(o-1)

% * (55.1) + oA (g ) O U%) (6.82)
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From (5.45) we obtain « ~ R¥?, when R is large and B is of order one
but not equal to one.

Then (6. 82) shows that for SARY? < 1 and = 5= 0(1), by is in the steady
state of the order e ARY? ~ \6RY? < 1.

We conclude that for small 6) the linearized theory is in the symmetric
case valid both for small and large time, provided 6ARY? < 1.

In general the range of applicability of the asymptotic expansion for
large t will not overlap that of the expansion for small t.

A convergent expansion for bx valid for all t can be obtained by ex~
panding L { by }, using the full expression (6. 54).

This is not done here, because it is in view of the satisfactory results
obtained both for small and large t, when 6ARY? < 1, not hkely that
large disturbances occur at mtermedlate values of t.




CHAPTER VII

* ANTISYMMETRIC WAVY PLATE; TWO-FLUID MODEL;
STEADY MOTION

1. Introduction.

In this chapter we shall apply the two~fluid model to the steady flow
of a fully ionized gas along the antisymmetric wavy plate, considered
in chapter V, section 3.

Work along the same lines has been done by Sonnerup29)for the Sears-
Resler configuration, discussed in chapter V, section 7.

This author considered the cases where the magnetic Reynoldsnumber
R is either very large or very small. In the latter case this is accom~
panied by the assumption that q = wr is large.

The two-~fluid theory, as developed in chapter II, section 3, and used
essentially in that form by Sonnerup, holds only for small values of q.
From some numerical examples, given in this chapter, it follows
further, that in cases of interest R has moderate values.

We shall therefore develop a two~-éomponent theory for the wavy wall
problem, assuming q to be small, but leaving other parameters free.
Again however we shall neglect compressibility effects. The governing
equations of the two-fluid model are, as in chapter V for the one~fluid
model, solved by means of a linearization process.

2. Equations for the two~fluid model.

The equation of motion in the two~fluid model is the same as in the
one~fluid model. From (5.5) we obtain for steady motion, using (5.11) ~
(5. 13) and neglecting quantities of order (ea)?.

- 9P+ B (3]~ by, (1.1
We expect that now uw and b also have components in z~direction. These
are not present in the one~fluid theory and, to the first approximation
in q, will be of order q ¢A. We remember the reader that q stands for
the product of the electron cyclotronfrequency w and the ion-electron
collisiontime 7.

We assume that

(er)® <qexr<el. (7.2)

Instead of Ohm's law (5. 7), we must use now the relation (2. 77).
In the left~hand side only the second term remains upon linearization.
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We write the remaining equation in dimensionless form by means of
the relations (5. 3).
Then we obtain with help of (2. 49), (2.63) and (5. 8)

. -}
R(E+vxl)-'+AUo1’a—i+q|xl--qvpe. (7.3)

The quantity AU,7 in the second term at the right-hand side of (7.3)
measures the number of crests of the wavy profile passed by the fluid
during a collisiontime.

Since this number is very small we shall omit the corresponding term
in (7. 3).

We assume that the kinetic energy is small with respect to the thermal
energy. Since mj > mg, this amounts to the assumption

m; U3 < kT. (7.4)

Then we can neglect the influence of pressure variation on the density
and take nj =ng =n, .

We can replace now pg in (7.3) by & p.

Elimination of p between (7. 1) and (7. 3) yields

q 3w, g 2b
R(E+vxl)=be+§-B—3—ax+2(ax-\7bx). (7.5)
In (7.3) j has been replaced by V x b, and the j x B term has been

linearized. Just as in the one~fluid model we take E, = 0 and p = 0,
The components of (7. 1) are

ke S

x - T ax? (7.6)
3 by dby
TR - 52 h (7.7)

i R (1.8)

x P &

while the components of '(7.5) become, linearizing also the v x B term,

Bbz ou.
q X
%bz g %y g Oby 23bx
R(Ey + uz - bg) = ~ 53~ + g 53 + 3 (5g - 55> (1110

9 9
R(by-uy)ﬂ(%y-—a'—y—)-}'z'gz -a—x—-'l'%aT- (7.11)
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With help of (7. 8) we can reduce (7. 11) to

ab ab
Riby -~ uy) = (55 2y Tx)+qrxi. (1.12)

In the one-fluid model u; and bz are zero. We are investigating pheng-

mena of the first order in q. Therefore we can neglect the term 4 -ge=
in (7. 13), since this term will be of the second order in q.
Doing this, (7.12) becomes

3b

R(by - uy) = (— -5 ) (7.13)

The equations (7.6), (7.7) and (7.13) form together with (5.4) the same
set of equations for p and the disturbances in the x,y plane, as in the
one~fluid model.

Apparently the Hall-effect and the electron pressure, taken into account
in the two~fluid theory, don't affect the components of flow and field in
the X,y plane up to the second order in q.

In chapter IV a similar effect was noticed with respect to the Couette
flow.

Hence the components of velocity and magnetic field can be obtained
from the solution in the one~fluid model.

The expressions (5.46) and (5. 47) for respectively the streamfunction
and the vector potential in the upper half-plane, are repeated here for
convenience

EX

) = mz [ B% exp ~oy ~ aexp -y | exp(ix), (7.14)
A= :;2 -2y ~ aexp -y ] exp(ix). (7. 15)

We recall that in the lower half-plane
‘bx(x’ Y) " w(x; -Y), (7. 16)
A'(x,y) = A(x,-y). (7.17)

3. Determination of u,, by, Ey4 and Ey.

The components in the direction of the z-axis of the disturbances .
and the electric field components are determined by (7. 8) - (7. 10) and
the z-component of Maxwell's equation (5.10), which reads in the steady
state

aEy BE

;i W = 0. (7.18)
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This equation is satisfied by the scalar potential &(x,y) defined by
E=-Vao. (7.19)

Elimination of the electric field between (7.9) and (7. 10) with help of
(7. 18), gives using (5.11), (5.52) and (7.8),

bjz

v2p R("’l)abz (7.20
z + RE -z = a5 1 20)

Now we must determine the boundary conditions for b,. In the first

place we require that by, = 0 for y = «.

A second condition follows from the fact that the plate is nonconductive.
3

Therefore jy gt o vanishes at the plate and hence the second con~
dition is in view of the periodicity in x direction
y=0 : b, =0.
The right-hand side of (7.20) follows from (7. 15) through the relation
) iy = - V2A.
Upon evaluating —:—}Jf with help of (7.15), the solution of (7.20), that
vanishes at y = 0 and y = », appears to be

3 2
- ige) (@®~1)

- 20 a-6%) y exp -ay exp (ix). (7.21)
Then we obtain from (7.8) and (7.21)
: 2 2
= %27‘_1) y exp ~ay exp (ix). (7.22)

For comparison we list againthe x andy components of the disturbances,
given in chapter V, egs. (5 48) - (5. 51).

_iex exp(lx)[ wexp -y ~ g% exp ~ay |, (7. 24)
y o - ‘3
bx - €A expélx) [ Q exXp ~y = o eXP ~ay ] N (7.25)
o -
by=_1_e_)‘_e_xPL(l§.)[aexp-.y—exp—-ay ] . (7.26)

a - g
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At this point it is worth while to give for cases of interest the numerical
values of the various parameters.
Wetake A = 1 m-* ; ex = 1073,

Example 1.
/2
We choose T = 10° °K. From (2.55)and (2.57) we obtain 5 = 10" .

For T = 10*, we deduce from this relation and (2. 65) that n is not
allowed to exceed the value 10°/m?,

We take n = 10%/m°. Then % = 100 and from (2.58) it follows that

N = 200. Since p = nmj (cf 2.23) and mi = 1.7 x 10~*7 kg, we have
p = 1.7 x 10-° kg/m®.
The relation (7. 4) requires Uy, < (——-) ~ 10%,

2 weber

We take U, = 5 x 10° m/s. Further we choose Bo=5x 10 —.
m

From these values of U,, B,, p and the value 1.3 x 10~° for u, we
obtain, using (5. 6)

B = 21

Note that this relatively large value of B is due to the low density of

the gas.
Computation of ¢ from (2.61) gives: ¢ = 0.2 x 10* ohm™'m
Then the magnetic Reynoldsnumber becomes (cf (5. 8)),

= 1.3.
0B,
Finally the relationq = — ylelds

q = 0.06,
while from (5. 45) we obtain
lal ~ RY2 g = 24.

In discussing (7. 23) ~ (7.26) in chapter V, section 3, we observed that
uy becomes large in the vicinity of the plate, when B is large. From
this example it follows that such situations can occur here, due to the
low density of the gas.

In our example uy is of the order ¢ ARY? g = 0.24 inthe neighbourhood
of the plates. This value can still be accepted.

Example 2.
We take now
T = 10°°K; U, = 10° mjg; n = 10*/m®; B, = 10!

weber
-

Using the relations, mentioned in discussing the foregoing example,
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we obtain here
h 1 -« kg | e
25=N=2000,p=1.7x10 a,c-:OAxlO"ohm m
m

and thus
B = 6.7

R = 18
q= 0.25
Ja| ~ ﬁRua = 28.

From these examples it follows that in general R has moderate values
but B can become large.
In order that uy remains small and hence the linearization is valid we
must require for large g

eARY3g < 1. (7.27)

Since in most cases o > 1, we can use the concept of a magneto-
hydrodynamic boundary layer, separating the plate from the region,
where flow and field are irrotational.

From (7.21) and (7.22) it follows that u, and by are nonzero only in the
boundary layer. 1

The maximum value of uy occurs at y = = and is

_ aexgi(e?-1)

[¥z,max] = = ) (7.28)
This expression shows that uy remains small when g is large.
Therefore the condition (7.27) for the validity of the linearization is
solely due to the fact that uy becomes large when g is large.

Inthe one~fluid theory we found that the electric field has no components
in x and y~direction.

In the two-fluid theory these components are nonzero. From (7.9) we
obtain, using (7.19), (7.21) and (7. 23)

- Qa6 exp-ay
2R(a~g?) o

+ (o?=1) y exp-ay - % exp -y :IEXP(iX)- (7.29)

This expression gives the electric field in the upper half-plane.

The relation, valid in the lower half-plane, can be obtained in the
following way :

Because j, = - V?A, it follows from (7. 17) and (7. 20), that b, keeps
its sigan in passing y = 0.

Then 3}-,—z changes in sign in passing y = 0 and the same is on account
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aux
of (5.14) and (7. 16) true for T

The sum of these two expressions forms the right-hand side of (7.9),
so that Ex and also ® change in sign at y = 0.
Therefore we have for y < 0

&' =§% [-ga expy + (¢®-1)y exp ay - ex;;ay:l exp(ix). (7.30)

'The electric field being known, we can calculate its sources, the charge
density Q, from (2.7), which relation reads here (cf (5. 3))

U,B,\V.E = eg.* (7.31)
(o]

We take the divergence of (7.5) and obtain, expressing vsz with help
of the divergence of (7.1) in terms of V?p,

v.E:ﬁ—ﬁzv“p~v.(vxl). (7.32)

We denote the ""neutral' density with n,. Remembering that we can write
oB
e_no for q (cf (3.21)), and using the definitions (5.6) and (5.8) for R and

g%, we deduce from (7.31) and (7. 32) that the first term on the right-
hand side of (7.32) corresponds with a charge density

A?m; U2
Q, = % Vv 2p. (7.33)

Q, arises from the density variations caused by the pressure variations,
The density variations are neglected in our theory on account of (7. 4).
Since we have replaced pg by 1/2 p in the "generalized" Ohm's law
(2.77), the variations in p cause a small depart from neutrality in the
negative constituent. The corresponding charge density is given by
(7.33). We recall that we have neglected the convective current Qw
with respect to j.

Since V?p = - V?uy is of the order of magnitude ¢\ and the current

density of the order e)‘f° . , it follows that the ratio between the

current density and Q,v is of the order

* Since it is customary to use the symbol €, for the permittivity of free
space, we have not chosen another symbol, in spite of the fact that
the amplitude of the wavy plate is indicated with €. No confusion can
arise however, owing to the use of the subscript o when the permit-
tivity is meant.
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AU, s
o g (7.34)

where we have used (2. 13) and (2. 62).

Both fractions in (7.34) are very small, so that the neglect of Q,¥ is
certainly permitted.

It is useful for further reference to write (7. 33) with help of (2. 55) as

232 2
Qs A mUc o, (7. 35)
en, 2kT

The secoxaxd term on the right~hand side of (7. 32) is in linearized form

ou,

A a—yﬁ 5y~ O, With help of (5.11) and (7.9), (1-g*)ix-

Then it follows from (5. 3) and (7. 31) that the charge density connected
with this expression is

+

2y: *

Q. = (W : (7. 36)
Q. represents a relativistic effect.
Relativistically the charge density is the fourth component of a four -
vector, the other three components being the current densities. When
changing the frame of reference, this four~vector must be transformed
according to the Lorentz-transformation (see Panofsky and Phillipsle)).
Then it appears that the charge density depends on the state of motion
of the observer. Since we are dealing with nonrelativistic velocities,
we neglect Q..
Inspection of (7.29) and (7.30) shows that the potential & displays a
discontinuity at y = 0.
From the point of view of potential theory the plate is a singular surface
and the discontinuity can be ascribed to a dipole distribution.
In the next section we shall discuss in a first approximation the charge
distribution at the plate.

4, The electric field in the vicinity of the plate.

Well-known in plasmaphysics is the concept of Debye sheaths, i.e.
regions near solid walls where appreciable charge separation occurs
and where the component of the electric field normal to the wall is
large.

The order of magnitude of the thickness of these regions is the Debye
length h. In most textbooks (e.g. Spitzer11)p.17)this is made plausible
on the basis of the Debye potential, discussed in chapter II, section 3.
From that discussion it follows that the Debye length is a measure for
the distance over which an appreciable depart from neutrality can exist
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in a plasma at rest.

The concept of Debye sheaths has been proved to be a useful tool in
dealing with surface phenomena. A description in terms of the Debye
potential is necessarily approximative, since the variation of the
macroscopic electric field is considered over distances of the order
of magnitude h.

Itis difficult to sayto what extent this can be justified and consequently
how good the approximation is. With this in mind, we shall apply the
concept of Debye sheaths to our problem.

Doing this, we assume that there are on both sides of the plate thin
layers, in which the electric field and the charge density vary as

Y
exXp =53 -
We expect that the charge density Qs will be large with respect to Q,.
In the following discussion we shalluse physical variables and suppress
for convenience the asteriks.
To avoid confusion, we shall explicitly announce the returntodimension-
less variables.
Then considering the Debye sheath on the upper side of the plate, we
write in this region

pi = n, (1 + y)KT, (7. 37)
Pe = no (1 + y")KT. (7.38)
We assume that both ¥ and ¥' are small with respect to one.
We shall prove now, that under the circumstances envisaged here
v+ 9y = 0. (7.39)

For this purpose we consider the y~component of the momentum equation
(2. 40) for the ions.

We replace the stress~tensor Pj by (7.37) and recall that the motion
is steady.

When the potential & varies as exp ~y/h, then the term

0%
~ nje Ey = en°(1+'y)a—}7,

is large near the plate.
The only other term, which can become large is the term
S = nykT 5 (cf (7. 37)).

Therefore these terms must balance each other.
Hence

9
& Bl (1+~/)§;;’ = okt L. (7. 40)
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Note that when U, is large (mjUZ > kT), also the acceleration term
can compete with these terms.
A case, towhich this remark pertains, has been studied by Yoshihara30),
For the electrons we obtain in the same way
0® oyt
1)ias -l A
eny (1+y )ay = n kT =5 (7.41)

Elimination of @ between (7.40) and (7. 41) yields, bearing in mind that
Y and ' are assumed to be small with respect to one

- '
3% 1n (1+y+y*) = O,

or
v+ 9yt = 0.
Using this result, we write (7.38) as
Pe = N, (1-Y)KT. (7.42)
Since p = pe + pPi = 2n.kT, an alternative expression is
Pe = 1/2 p - no7kT. (7.43)

In evaluating the pressure term in (2.77) we have till thus far considered
only the first term on the right~hand side of (7. 43).
The contribution of the second term to the pressure term in (2. 77) is

kT

= Y (7. 44)
On the other hand we have, when the charge density Q, can be neglected
V. B 2of¥ (7. 45)

€

Therefore we can write (7. 44) as

- e—":(z v 2 E, which is on account of (2. 55) equal to
2e“n,
2
_l%.vzz. (7.46)

The expression (7.46) is of importance only in the Debye sheath.
Outside this layer the potential & is given by (7.29).
(7. 46) gives in the dimensionless equation (7. 5) a term
h?)2
T2
which must be added to the right-hand side of (7. 5).

R V?E, (7.47)
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In (7.47) E is the dimensionless electric field.
Taking (7. 47) into account, the x-component of (7. 5) becomes
A2h? dby, q ouy

2 = — — —
R(Ex~—2—- v Ex)—ay + 253 =

(7. 48)
Since Ah << 1, we can for the right~hand side of (7.48)take the value of
i AT g
oy 2p% 9X
is calculated from (7. 29).

Doing this we obtain from (7.48) and (7. 29)

at y = 0. This value is equal to RE; at y = 0, when Ey

ol Ah® gagi _ acr (8- i 7.49
3 2R(0~E"Jof* exp (ix), (7. 49)

where the potential inside the Debye sheath is distinguished from that
outside by means of a superscript i.

In the Debye sheath at the lower side of the plate an equation similar
to (7.48) holds for the electric field E;(, the difference being that com~
pared with (7. 48) the right-hand side is of opposite sign.

Therefore we have in the sheath at thg lower side

oi' . %"2 veei - . ;I:(._z_(_g_:;)(:‘?? sxp(ix). (7. 50)

We assume now that there is no affinity of the plate for either ions or
electrons, sothat there is no potential difference between gas and plate
in the undisturbed state.

Then the electric field is solely caused by the motion of the gas.
Under these circumstances &! is in view of the antisymmetry zero at
the plate.

The appropriate solutions of (7. 49) and (7. 50) then are

i _ qaex(p*-a?) W2 |
el = W [1 - exp (= 'A_h)] exp (ix). (7. 51)

and

i’ 262 (8o v T ix), (7.5
P exp (557) ~ 1 | exp(ix) (7.52)

The charge density Qs = - ¢oU,B,AV?&! is equal to 2n,ey (cf. (7.45)).

For the charge density Q,, associated with (7. 29) through
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Q; = - Uy BoAV2@

we. found the relation (7. 35).
Comparison of (7.29) with (7.51) shows that Qg
Then it follows from (7. 35) that

times Q;.

12
_93 =2‘y';f..niU_2Vzp.
en, kT

We conclude on account of (7.4) that ¥ is indeed small with respect to
one. The assumptions, used in the analysis of this section, that Qs is
large with respect to Q, and that y is small with respect to one, are
therefore justified by the results.

It follows further from (7.51) and (7.52) that the charge densities in
the Debye sheaths are at the same x equal in magnitude but opposite
in sign.

The plate behaves therefore from a macroscopic point of view as a
dipole layer.
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OVERZICHT

De stroming van electrisch geleidende vloeistoffen en gassen door
electromagnetische velden vormt het onderwerp van beschouwing in de
magnetohydrodynamica.

In dit proefschrift worden een aantal magnetohydrodynamische proble-
men geanalyseerd met behulp van de theorie van het één-vloeistof (one-
fluid) en van het twee~vloeistoffen (two~fluid) model.

In het eerstgenoemde model is het medium een continuum, waaraan,
naast andere, uit de gewone hydrodynamica bekende, eigenschappen,
een constant geleidingsvermogen wordt toegekend.

Een medium dat goed aan het één-vloeistof model beantwoordt is b. v.
De vergelijkingen van het één-vloeistof model bestaan uit de, met de
Lorentzkracht uitgebreide, vergelijkingen van Navier-Stokes, de ver=
gelijkingen van Maxwell en de Wet van Ohm.

De vergelijkingen van het één-vloeistof model worden gegeven in hoofd-
stuk II, paragraaf 2. %

Een voor de practijk belangrijk geleidend medium is een geioniseerd
gas (kernfusie, magnetohydrodynamische generator). Een dergelijk
gas bestaat uit geladen deeltjes en beantwoordt niet of onvolledig aan
de voorstelling, gemaakt in het &én~vloeistof model, omdat daarin het
deeltjeskarakter niet is verdisconteerd.

Het twee-vloeistoffen model dient om de magnetohydrodynamica tot
volledig geioniseerde gassen uit te breiden. (In het gevalvan onvolledig
geioniseerde gassen moet ook een derde, neutrale, component worden
beschouwd).

In het twee-vloeistoffen model beschouwt men een mengsel van een
gas, bestaande uit negatief geladen deeltjes, en een gas, bestaande uit
positief geladen deeltjes.

In dit proefschrift wordt voor de eenvoud verondersteld, dat de posi~
tief geladen deeltjes protonen zijn.

Om voor een dergelijk gas transportvergelijkingen op te stellen, gaat
men uit van de Boltzmann~vergelijkingen voor de distributiefuncties
van de beide componenten. Voor een gewoon, verdund, gas kunnen n.lL
de transportvergelijkingen uit de Boltzmann-vergelijking worden af-
geleid. Het blijkt dat analoge methodes voor een volledig geioniseerd
gas niet zonder meer opgaan. De oorzaak hiervoor is, dat, terwijl
voor een gewoon gas, bij voldoend lage dichtheid, de onderlinge wis~
selwerking tussen de deeltjes beschouwd kan worden als te bestaan uit
binaire botsingen, dit bij een geioniseerd gas niet het geval is, vanwege
het lange-afstands karakter van de Coulombkrachten. In hoofdstuk II,
paragraaf 3, wordt in grote lijnen geschetst, hoe de hierdoor ontstane
moeilijkheden kunnen worden ondervangen door het invoeren van een
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gewijzigde Coulombpotentiaal en hoe onder gebruikmaking van deze
zogenaamde Debye~potentiaal, transportvergelijkingen kunnen worden
gevonden.

Het is nodig hierbij enige veronderstellingen te maken, waarvan de
consequentie is, dat de gassen waarvoor de resulterende vergelijkingen
gelden, moeten voldoen aan verschillende eisen. Met name moet het
product van de cyclotronfrequentie van electronen en-de botsingstijd
voor botsingen tussen electronen en protonen klein zijn ten opzichte
van één.

Het voornaamste verschil tussen de vergelijkingen van het één-vloeistof
model en het twee-vloeistoffen model is gelegen in de Wet van Ohm,
die in het twee-vloeistoffen model met enige termen is uitgebreid en
in de aldus ontstane vorm wel de ''gegeneraliseerde Wet van Ohm"
wordt genoemd.

Tengevolge van deze uitbreiding van de Wet van Ohm, is de geleid~-
baarheid niet langer isotroop.

Na een algemene inleiding in hoofdstuk I en een uiteenzetting van het
&én~vloeistof model envan het twee~vloeistoffen model in hoofdstuk II,
worden in de volgende hoofdstukken enige magnetohydrodynamische
problemen behandeld, met de theorie van beide modellen, teneinde na
te gaan op welke wijze de tussen de vergelijkingen aanwezige verschil-
len in de resultaten tot uiting komen. Compressibiliteitseffecten wor-
den buiten beschouwing gelaten.

In hoofdstuk II wordt de stroming beschouwd van een niet-visceus
volledig geioniseerd gas tussen twee evenwijdige platen. Er is een
magneetveld aanwezig, gericht volgens de normaal op de platen. Het
gas wordt voortgedreven door een zuiger, die zich met constante snel~
heid beweegt. Het blijkt dat het gas zich in het kader van de twee~
vloeistoffen theorie scheef ten opzichte van de zuiger beweegt.
Hoofdstuk IV behandelt magnetohydrodynamische Couette stroming.
Hierbij bevindt het gas, waarvan de viscositeit thans niet buiten be~
schouwing wordt gelaten, zich eveneens tussen twee evenwijdige platen.
Een van de platen wordt met constante snelheid voortbewogen, terwijl
de andere in rust is. Ook hier is een magneetveld, gericht volgens de
normaal op de platen, aanwezig.

Beschouwd wordt het geval, waarin de bewegende plaat een isolator is,
terwijl de stilstaande plaat een ideale geleider is, en het geval, waar-
in beide platen isolatoren zijn.

Ook hier levert de theorie van het twee-vloeistoffen model een compo~
nent van de gassnelheid, loodrecht op het vlak door de snelheidsvector
van de bewegende plaat en de normaal op de platen. Tevens oefent het
gas in deze richting krachten uit op de platen. Deze effecten worden
niet gevonden in het één-vloeistof model.

De volgende hoofdstukken handelen over de stromingvan een geleidend
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medium langs een dunne niet geleidende plaat, waarvan boven- en
onderzijde golfvormig zijn. De amplitude van het golfprofiel wordt
aangeduid met ¢, de golflengte met L. Er is een magneetveld aanwezig,
dat ver van de plaat evenwijdig is aan de snelheidsvector van de vloei~
stof.
In hoofdstuk V wordt de theorie van het één-vloeistof model toegepast
op stationnaire stroming langs de gegolfde plaat.
worden de vergelijkingen gelineariseerd. In paragraaf 2 worden de
gelineariseerde vergelijkingen en randvoorwaarden opgesteld voor de
gevallen waarin het faseverschil tussen onder - en bovenzijde nul,
resp. 7 is. Hierbij wordt de dikte van de plaat verwaarloosd.
In paragraaf 3 wordtde oplossing van de gelineariseerde vergelijkingen
voor het eerstgenoemde (antisymmetrische) geval gegeven, in para-
graaf 4 die voor het tweede (symmetrische).
Het blijkt dat in het laatste geval de verstoringenvan snelheid en mag-
neetveld, veroorzaakt door de plaat, van de orde ¢ ARY® worden, wan~
ouU,
A
K = permeabiliteit; U, = snelheid van ongestoorde vloeistof) groot is.
Linearisering is dan niet meer geoorloofd.
Nadat in paragraaf 5 het speciale geval, waarin de ongestoorde snelheid
gelijk is aan de voortplantingssnelheid van magnetohydrodynamische
golven, is behandeld, wordt in paragraaf 6 opnieuw het symmetrische
geval beschouwd, maar nu met eindige dikte 2 6.

Het blijkt dat wanneer §XRY? >> 1, storingen van de orde % voorko-

men, zodat bij groot geleidingsvermogen linearisering niet geoorloofd
is voor dunne vleugels (¢ ~ 6).

In paragraaf 7 wordt nog het geval beschouwd, waarin de vloeistof
stroomt langs de golfvormige begrenzing van een oneindig uitgestrekt
vacuum.

In hoofdstuk VI wordt instationnaire stroming langs een gegolfde plaat
beschouwd, eveneens in het kader van het één-vloeistof model. De
plaat beweegt voor tijden t < 0 met de vloeistof mee, terwijl een mag-
neetveld, als in hoofdstuk V, aanwezig is, en wordt ten tijde t = 0
plotseling tot rust gebracht.

In paragraaf 1 wordt als inleiding de niet-magnetische compressibele
versie van dit probleem beschouwd, op grond waarvan de beginvoor-
waarden voor het magnetohydrodynamische probleem kunnen worden
bepaald.

In paragraaf 2 worden de gelineariseerde instationnaire vergelijkingen
getransformeerdvolgens de transformatie van Laplace. In paragraaf 3

In verband met het feit dat ¢ A, waarbij A = klein is verondersteld,

neer het magnetisch Reynoldsgetal R(R =

; 0=geleidingsvermogen;
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worden asymptotische oplossingen, geldig voor t —+ =, verkregen voor
het antisymmetrische geval, zonder dikte, in paragraaf 4 voor het
symmetrische geval, met eindige dikte.

In beide gevallen worden voor t — = de stationnaire oplossingen van
hoofdstuk V gevonden, Voor het symmetrische geval wordt, op grond
van een analyse van de verschijnselen kort na t = 0, verklaard waarom
de gelineariseerde theorie niet meer geldig is bij kleine dikte van de
plaat en groot geleidingsvermogen van de vloeistof.

Hoofdstuk VII handelt over de twee-vloeistoffen theorie van de station~
naire stroming om de antisymmetrische plaat. De snelheid en de mag-~
netische inductie blijken behalve de componenten, gevonden in hoofdstuk
V, tevens loodrecht op het vlak daarvan componenten te hebben.
Terwijl in hoofdstuk V geen electrischveld aanwezig is in een referen~
tiesysteem, verbonden aan de plaat, is er thans een electrisch veld,
waarvan de veldsterkte-vector ligt in het vlak door de ongestoorde
snelheid en de normaal op de plaat.

Wanneer ladingsscheiding wordt verwaarloosd, is de electrische poten-
tiaal discontinu op de plaat.

Aan het slot van dit hoofdstuk wordt de ladingsscheiding in de buurt
van de plaat niet langer verwaarloosd en wordt bovengenoemde discon-
tinuiteit in verband gebracht met zogenaamde Debye-lagen ter weers-
zijden van de plaat.
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STELLINGEN

De oplossingen, verkregen door Sonnerup, voor de verstoringen van
snelheid en magneetveld, optredende bij de stroming van een elec-
trisch geleidend gas langs een gegolfde wand in de aanwezigheid van
een magneetveld, dat ver van de wand evenwijdig is aan de snelheid
van het gas, blijven, in tegenstelling tot wat Sonnerup meent, geldig
wanneer de geleidbaarheid van het gas groot is.

B. Sonnerup, Journal of the Aerospace
Sciences, 28,8,1961.

Voor een neutraal gas kan uit de Boltzmann vergelijking een for-
mele betrekking worden afgeleid voor de verandering van de, over
alle snelheden gemiddelde, waarde van een bepaalde eigenschap.
Deze betrekking kan niet zonder meer, zoals Ferraro en Plumpton
hebben gedaan, worden gebruikt voor een geioniseerd gas, omdat
hierbij in het algemeen de op de deeltjes uitgeoefende krachten van
de snelheid afhangen.

V.C.A. Ferraro and C.Plumpton,
An Introductionto Magnetofluiddynamics,
Oxford University Press, 1961,p. 123.

Het is bekend dat uit de wet van Ohm volgt, dat in het kader van de
één-vloeistof theorie van de magnetohydrodynamica de vloeistof met
het magneetveld maebeweegt, wanneer de geleidbaarheid groot is.
De conclusie van Tayler en van Ware, dat op analoge wijze uit de,
in de twee-vloeistoffen theorie geldende, ""gegeneraliseerde wet van
Ohm'" volgt, dat, wanneer de electron cyclotronfrequentie groot is
t.o.v. de botsingsfrequentie voor botsingen tussen electronen en
ionen, de electronen met het magneetveld meebewegen, is onjuist.

A.A.Ware,Conference on Plasma Physics
and Controlled Nuclear Fusion Research,
CN-20/47, Salzburg 1961.

R.J.Tayler, Conference on Plasma Physics
and Controlled Nuclear Fusion Research,
CN-10/ 63, Salzburg 1961.




4.
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De door Phillips opgestelde uitdrukking voor het rendement van
magnetohydrodynamische voortstuwing van schepen is onjuist.

De gecorrigeerde formule voor het rendement laat zien, dat vooral
bij gebruik van sterke magneetvelden een aanzienlijk hoger rende-
ment kan worden verkregen dan uit de formule van Phillips volgt.

Owen M. Phillips, Journal of Ship Research,
5,4,1962. ;

Van het ontstaan van de circulatie om een tweedimsnsionaal draag-
vlak, wordt in meerdere leerboeken een inconsistente verklaring

gegeven.

J.C. Hunsaker and B.G. Rightmire,
Engineering Applications of Fluid Mechanics,
McGraw-Hill, 1947, p.240-241.

L. A.v.d. Putte, Dictaat Technische
Stromingsleer, Delft, 1958, p.110.

H.Schlichting und E. Truckenbrodt,
Aerodynamik des Flugzeuges, Band I,
Springer Verlag 1959, p.371-374.

De door Whittaker en Watson in ‘hun boek '"A Course of Modern
Analysis' gegeven vergelijking voor de analytische voorizetting van
de hypergeomeatrische functie is niet geheel juist. De argumenten
van de in deze vergelijking’ voorkomende gammafuncties moeten,

“voor zover die argumenten uit twee termen bestaan, met min één

i .worden vermenigvuldigd.

. De infég'raal 7 J, (at) J,, ‘('bt:) et at" ‘kan tot een elliptische
- :

(. mfégraal van eenvoudiger gédaa.tit_e dan die, door A.van Wijngaarden

gevonden, worden herleid.

_A. .van Wijngaarden, Enige toepassingen van
a Fourrier-integralen op elastische problemen
Proefschrift Delft, 1945, p. 56-57.

Wiskundige opgaven met de oplossingen, uit-
gegeven door het Wiskundig Genootschap te
Amsterdam, deel 21 no. 2, 1961.

oplossing door L. van Wijngaarden van
opgave 50.
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10.

11.
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In Markus 5 vers 13 is geen enkele reden te vinden om, zoals
Benjamin en Lighthill hebben gedaan, aan bepaalde oplossingen
de voor zwaartekrachtsgolven geldende vergelijkingen de naam van
"Gadareense oplossingen' te verbinden.

T.B. Benjamin and M.J. Lighthill,
Proc. of the Royal Society of London,
A 224, 1954, p. 454.

Het door S. Vestdijk in zijn essay '"De geheimen van Wuthering
Heights "' gevoerde betoog is niet bij machte de uitspraak van
A. Roland Holst ""Heathcliff is een element" te weerleggen.

S. Vestdijk, De Poolse Ruiter,
Bert Bakker/ Daamen N.V., 1958.

Door Euwe wordt in de vierpaardenvariant van de Siciliaanse ver-
dediging na 1.e4, c5 2.Pf3, e6 3.d4, cd4 4.Pd4, Pf6 5.Pc3, Pc6,
de voortzetting 6. Lgb als minder goed gekwalificeerd vanwege het
antwoord 6 .. DbS. Deze opvatting is aanvechtbaar, daar wit na
bv. 7. Pb3, Lb4 8.Lf6, gf6 9.Df3, Ke7 10.0-0-0 goed staat.

Dr. M. Euwe, Theorie der Schaakopeningen,
deel 9, Half-open spelen, 1953, p. 119-120.

In voetbalcompetities en voetbaltournooien wordt de onderlinge
rangschikking van teams, wier aantal wedstrijdpunten hetzelfde is,
bepaald door het zogenaamde doelgemiddelde.

Deze maatstaf beloont aan de top van de ranglijst verdedigen meer
dan aanvallen en kan daardoor tot de factoren worden gerekend,
die, met name in tournooien zoals het tournooi om het wereld-
kampioenschap, verdedigend spel in de hand werken. Een beter
criterium zou het verschil tussen doelpunten v6ér en doelpunten
tegen zijn.




