
      

 

 
 

The far field radiated by a dipole above a substrate 
with a film 

 
By 

 

Jeroen Schmits 
 
 
 
 
 

in partial fulfilment of the requirements for the degree of 

 
 

Bachelor of Science 
in Applied Physics 

 
at the Delft University of Technology 

Delft, the Netherlands 
January 2020 

 
 
 
 
 
 
 
 

 
Supervisor:   Prof. dr. H.P. Urbach 
Thesis committee:  Dr. S. F. Pereira,  TU Delft 

Dr. O. El Gawhary,  TU Delft 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



       

2 

 



       

3 

 

  
Contents 
 
 

Abstract ............................................................................................................................................ 4 
Acknowledgements .......................................................................................................................... 4 

Introduction ...................................................................................................................................... 5 
1. Theory .......................................................................................................................................... 6 
2. The field of a single dipole............................................................................................................ 9 
3. Validation of the code and results .............................................................................................. 16 
4. Conclusion ................................................................................................................................. 24 

Bibliography ................................................................................................................................... 25 

Appendix A ..................................................................................................................................... 26 

Appendix B ..................................................................................................................................... 29 
 
 



       

4 

 

Abstract 
Dipoles are all around us and the extent to which it is possible to distinguish two dipoles next to each other 
is a very important criterion for optical resolution. This report proposes that the resolution can be enhanced 
by placing a substrate with a film underneath the dipoles. This report specifically looks at the effect on the 
near and far field using a coupling of the field radiated by the dipole and a guided mode in the film. In an 
integral over reflected plane waves, in case a guided wave occurs, the integrand has a singularity which 
has to be dealt with using the Cauchy Principle value technique. Other singularities are dealt with using 
multiple first order Taylor expansions. With the singularities dealt with, a Matlab function has been 
constructed that can compute the reflected field of a single dipole. The substrate underneath the dipole has 
a significant effect on the total field, both in the near and far field areas. Due to the reflection, the 
polarizability is represented more in the intensity and can be determined more easily. Although the influence 
of the film on enhancing the resolution requires to investigate to what extent two dipoles can be 
distinguished better when a film is present, due to lack of time, this report considers the computation of the 
field of a single dipole only. The extension to the case of two dipoles is in principle easy however.  
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Introduction 
 

 
From the physical dipole used in electromagnetism to the molecular dipole used in chemistry, dipoles are all 
around us and their use in scientific research has increased significantly. Also in quantum mechanics, 
dipoles play an important role, making dipoles a diverse physical phenomena.  
 
Any source distribution can be written as superposition of dipoles. Hence a dipole is the basic ingredient of 
which all sources consist. This makes it interesting to study the field of dipoles. 
An important criterium of an optical system is the resolution which is to what extent two close dipoles can be 
distinguished by measuring the emitted fields. The surroundings of the dipole influence the emitted field.   
 
When a single dipole is excited by a given incident field, the far field is different for the case when the dipole 
is situated on a substrate than for the case when the dipole is in free space. In the case of a substrate, the 
far field consists of two contributions namely the field radiated directly and the field reflected by the 
substrate. In addition, the reflected field contributes to the excitation of the dipole, i.e. the dipole strength is 
different when a substrate is present. The latter effect is called the Purcell effect.   
 
When more than one dipole is present, the dipoles influence each other. The dipole moment of a dipole is 
then not only determined by the incident field and the reflected field of this dipole but also by the fields 
emitted by all other dipoles. For many dipoles this leads to a large coupled system of equations for the 
dipole moments. However, this report will only look at the case of a single dipole. The aim is to quantify the 
change of the far field due to the presence of a substrate and in particular of a film on the substrate which 
supports one or several guided modes.  
 
We shall use a scalar theory for simplicity, i.e. effects due to polarisation are neglected. 
 
This report will take a look at the effect of a substrate underneath a single dipole, specifically the field in the 
near field and far field areas. The goal is to develop a theory that could be adapted to work for two or more 
dipoles. A Matlab script is provided that has been used to compute the results for the single dipole case. 
 
This report consists of four chapters and two appendices. The first chapter introduces the problem and the 
configuration that is studied, as well as the background theory needed to solve the problem. The second 
chapter focusses on the derivation of the total field and uses the stationary phase method to simplify the 
expression for the far field. The third chapter will explain the Matlab script and show multiple results using 
the script. The final chapter will be the conclusion of my research. The appendices will contain a full 
derivation of the stationary phase and the Matlab script.  
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1. Theory 
 

 
This chapter gives an overview of the problem which is studied in this report and will give some necessary 
background theory to solve this problem. 
 

All fields that are considered are time-harmonic with frequency 0  . We will use scalar theory and 

complex notation throughout the report. Real fields are typically written as: 
 

                 ( )Re , , ,i tU x y z e −         (1.1) 

 

where ( ), ,U x y z  is the complex field (i.e. without the time dependent factor). Complex fields will be used in 

all computations. 
 
 
1.1. Two dipoles 
The starting situation of this report is that of two dipoles next to each other in free space. When the space 
between the dipoles is small enough, one cannot conclusively state, based on the received fields of the 
dipoles at a detector, what the distance between them is. In other words, the distance between the dipoles 
is smaller than the Rayleigh Criterion. This limits the obtainable resolution of the system.  
 

The next situation, as shown in figure 1 , can be described as follows: Two dipoles are a distance pz  above 

a substrate material consisting of a film of thickness d  and refractive index 
2n  on a half space with 

refractive index 
3n . The half space above the substrate is filled with a material with refractive index 

1n  

(usually 
1 1n = ). The refractive index 

1n  is assumed to be real, but 
2n  and/or 

3n  may be complex numbers 

with a non-negative imaginary part.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The idea is that the dipoles emit a field that hits the substrate which is then reflected back at the dipoles, 
interfering with the total field of the system. The goal of this setup is to find out if the reflection adds a 
usable interference to the total field that could potentially increase the resolution and thus allow for a more 
accurate measurement of the distance between the dipoles and the polarizability of the dipoles. 
 
 
1.2. A single dipole 
To determine the effect of the reflection on the total field of two dipoles, we first take a look at the effect of 

Figure 1: A sketch of two dipoles, depicted by the circles with a plus and a 

minus, a distance pz  above a substrate (with refractive index 
3n ) with a film of 

thickness d  with refractive index 2n . 
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the reflection on a single dipole. In this report the convention is used that the dipole is situated at 

( ), ,p p px y z . 

 
Reflection on the substrate will always occur. However, we restrict ourselves to only consider the coupling 
of the radiated field of the dipole and a guided mode in the film. A guided mode is a wave propagating 

inside a so called wave guide which in this case is a film with thickness d , situated on top of the substrate 

[1]. Figure 2 shows a sketch of this situation. To obtain a guided mode inside the substrate, the wave has to 
be totally reflected inside the film. This only happens when the angle of incidence is larger than the critical 

angle of the material, which on itself can only happen when the index of refraction of the substrate, 
2n , is 

larger than the indices of refraction of the surrounding materials 
1n  and 

3n . Furthermore, the interference of 

multiple reflected fields has to be constructive, meaning that after being reflected twice (once at 0Z = and 

once at Z d= − ) the phase of the field has to be increased by a integer multiple of 2 . As shown in figure 

2, theoretically, the wave inside the substrate goes up and down multiple times. At every reflection, the field 
loses intensity since part of the field is transmitted into the substrate or into the half space above the film, 
indicated in figure 2 by dashed arrows. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In order to determine the reflected field of a given incident plane wave from the half space 0z  , the 

reflection coefficient R  for this particular situation is needed. The Fresnel reflection coefficient for a wave 

incident from a medium with refractive index 
in  on an interface of a medium with refractive index jn  is: 

         
, ,

,

, ,

,
z i z j

i j

z i z j

k k
r

k k

−
=

+
      (1.2) 

 

where ,z ik   is the z-component of the wavevector in the material with refractive index 
in   

 

       2 2 2

, 0 ,z i ik k n k⊥= −        (1.3) 

          2 2 2 ,x yk k k⊥ = +       (1.4) 

 

where 0k  is the wavevector in vacuum. The presence of the film gives rise to corrections of the reflection 

coefficient. These corrections are a transmission at the 1 2n n−  interface, a reflection at the 2 3n n−  interface, 

and lastly a transmission at the 2 1n n−  interface.  These corrections are only valid if, after one roundtrip, the 

particular wave exits the substrate with a phase difference of 2  or an integer multiple of 2 . However, 

part of the wave stays inside the substrate and allows for more reflections. The following equation shows 
how the reflection coefficient is dependent on the extra reflections. 
 

Figure 2: A sketch of a field hitting the film on top of the substrate. The arrows 
indicate the direction of the field. The blue arrows inside the film with refractive  

index 
2n  are a reference to a guided mode. The dashed arrows indicate 

transmissions into the substrate and into the half space above the film. The red 
arrows are not part of a guided mode. 
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       ,2 ,22 2

1,2 2,1 2,3 1,2 2,3 2,1( ) 1 ... ,z zik d ik d
R k r t r t e r r e⊥ = + + +     (1.5) 

 

where 
1,2t  and 

2,1t  are the Fresnel transmission coefficients  

 

              
,

, ,

, ,

2
1 .

z i

i j i j

z i z j

k
t r

k k
= + =

+
      (1.6) 

 

The exponent in (1.5) represents the change of phase due to one round rip of the wave inside the film. 

Since the field goes down and up once, the thickness d  is traversed twice, explaining the 2 in the 

exponent. The wave loses amplitude at every reflection and in Eq. (1.5) only the contribution due to the first 
and second round trip is written (higher order round trips are represented by higher powers).  
Equation (1.5), using (1.6), then becomes 

               
,2

,2

2

1,2 2,3

2

2,3 1,2

( ) .
1

z

z

ik d

ik d

r r e
R k

r r e
⊥

+
=

+
      (1.7) 

 

In the derivation there has been used 
 

        2

1,2 2,1 1,2 1,2 1,2(1 )(1 ) 1 .t t r r r= + − = −      (1.8) 

 

We will use the following formulation for a dipole in a homogeneous space with refractive index n  

                   
2

0

0

1
( ) ,

4

pikn r r

p

p

ke
G r r p p

r r 

−

− = −
−

     (1.9) 

 

where pr r− is given by 

                ( ) ( ) ( )
2 2 2

,p p p pr r x x y y z z− = − + − + −               (1.10) 

 

and 
0  is the permittivity of free space.  
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2. The field of a single dipole 

 
 
This chapter will take an in-depth look at the derivation of the reflected field of a single dipole as well as the 
total field in the near and far field areas. 
 
 
2.1. The total field 

The field incidence on the substrate in a point ( , , )r x y z=  will be indicated as ( )InU r . By taking the Fourier 

transform, one can determine the reflected waves that are reflected on the substrate for every incoming 
plane wave by multiplying the plane wave with the reflection coefficient. Summing over all the reflected 

waves will result in the reflected field ( )rU r . Adding the reflected field to the incidence field results in the 

total field in the upper half space 0z   without the contribution of the dipole: 

 

       ( ) ( ) ( )In In r

totU r U r U r= +                  (2.1) 

       ( ) ( ) ( ( ))

2

1
( ) , , .

4 2 2

x y z pi k x k y k z zyIn In x
p x y

kk
U r R k U z e dk dk

  

+ − +

⊥

 
= +  

 
  

 

Note that the integral in (2.1) is restricted to values of 
xk  and yk  for which the incident waves are 

propagating, i.e. for which 
0 1k k n⊥  , so that 

,1zk  is real. This implies in particular that no guided wave 

occurs in these integrals.  
 
The total field emitted by the dipole consists of a part emitted in free space and a part due to the reflection 
by the surface   
 

              ( ) ( ) ( , ) ,free r

dipole p pU r G r r p G r r p= − +       (2.2) 

 

where the first term in (2.2) is the field emitted in homogeneous space, given by (1.9), the second term is 
the field due to the reflection and p  is the strength of the dipole. We assume here that the dipole strength 

is known. It will be explained below how p  can be computed when the polarizability is known. The reflected 

field uses the same idea as the second term of (2.1): It is the inverse Fourier transform of the reflection 
coefficient times the Fourier transform of the field in homogeneous space and a phase factor due to 

propagation from pz  to z : 

 

       ( ) ( ( ) ( ) )

2

1
( , ) ( ) , , ,

4 2 2

x p y p zi k x x k y y k zyr free x
p p x y

kk
G r r R k G z e dk dk

  

 
− + − +

⊥

− −

 
=  

 
     (2.3) 

 

where 

               ( )
( )

( ) .
2

x p y p z pi k x k y k z z

free

p

z

e
G r r

ik

− + − −

− =                 (2.4) 

 

In contrast to the integral in (2.2) , the integral in (2.3) extends over all real values of xk  and yk .   

The reflected field modifies the strength of the dipole, an effect called the Purcell effect. When the 
polarizability   is known, the dipole strength becomes 

 

                    0 0( ) ( , ) .In r

tot p pp U r G r r p   = +      (2.5) 
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Solving for p  and substituting the result in (2.2) results in the following expression for the total field of the 

dipole 

                 0

0

( )
( ) ( ) ( , ) .

1 ( , )

In

tot pfree r

dipole p p r

p

U r
U r G r r G r r

G r r

 

 
 = − +  −

         (2.6) 

 
 

2.2. Propagation constant β 
For a guided mode, the reflection coefficient is infinitely large which will cause problems for the integral of 
(2.3) . Therefore, we first study guided modes. The situation as shown in figure 1 will be used to explain 
some theory about guided modes in a dielectric wave guide. Because of the rotational symmetry, it suffices 
to consider guided waves which do not depend on the y-coordinate and which propagate in the positive x-

direction, i.e. we assume here that 0yk =  and 0xk  . Hence, we have 
xk k⊥ = . Since scalar theory is used, 

only TE-polarised guided waves are considered here. We assume that all indices of refraction used in figure 

1 are real and that 
2 1n n  and 

2 3n n . If one of these inequalities is violated, no guided mode exists.  

 
The electric field of a TE-guided wave under the stated assumptions has only a y-component which is 
written as: 
 

       ( ) ( ), .
ik x

yE x z u z e ⊥=              (2.7) 

 

Maxwell’s equations imply that the function ( )u z  satisfies the following equations: 

 

      
2

2 2 2

0 1 2
( ) 0

d u
k n k u

dz
⊥− + = , for 0z             (2.8) 

          
2

2 2 2

0 2 2
( ) 0

d u
k n k u

dz
⊥− + = , for 0d z−             (2.9) 

     
2

2 2 2

0 3 2
( ) 0

d u
k n k u

dz
⊥− + = , for z d −           (2.10) 

 

In this situation it is required that there is a guided mode inside the film. This means that the field outside 

the substrate, for 0z  and z d − , will decrease exponentially because the wave is totally reflected inside 

the film at the surfaces 0z =  and z d= − . This can only happen as long as 
2 2 2

0 1k k n⊥   and 
2 2 2

0 3k k n⊥  . 

For (2.8) - (2.10) to satisfy the requirement that the field decreases exponentially outside the substrate,  

( )u z  is then given by 

 

     ( )
2 2 2

0 1 ,    for   0
z k k n

u z Ae z⊥− −
=             (2.11) 

        ( )
2 2 2 2 2 2

0 2 0 2 ,    for   0
iz k n k iz k n k

u z Be Ce z d⊥ ⊥− − −
= +   −           (2.12) 

     ( )
2 2 2

0 3 ,    for   
z k k n

u z De z d⊥ −
=  −            (2.13) 

 

where A , B , C  and D  are amplitudes that have yet to be determined. To simplify upcoming equations, 

abbreviations are used 

      2 2 2

1 0 1 ,k k n ⊥= −             (2.14) 

      2 2 2

2 0 2 ,k n k ⊥= −             (2.15) 

      2 2 2

3 0 3 .k k n ⊥= −             (2.16) 
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The tangential electric and magnetic field components must be continuous at the interfaces 0z =  and 

z d= − . This implies that 
yE  and 

0

y

x

Ei
H

z

 −
=  

 
 are continuous for 0z =  and z d= −  which in turn is 

equivalent to the continuity of u  and 
du

dz
. By requiring this continuity, one can obtain the following 

equations 
 

       0,A B C− − =                                        

               
1 2 2 0,A i B i C  − + − =                   (2.18) 

        3 2 2 0,
d i d i d

De Be Ce
  − −

− − =                  (2.19) 

         3 2 2

3 2 2 0.
d i d i dDe i Be i Ce

    − −
+ − =                  

 

The solution of A , B , C  and D , (2.17) – (2.20) is only non-zero if the determinant of the system of 

equations is equal to zero. Setting this determinant equal to zero and rearranging terms leads to the 
following dispersion relation 

         
( )2 1 3

2 2

2 1 3

tan( ) .d
  


  

+
=

−
           (2.21) 

 

When ( )2 2 2 2 2 2

2 0 2 1 2 3min ,k n n n n  − − , the right hand side becomes purely imaginary. Since the tangent 

does not have an imaginary part, (2.21) can only hold if 
 

      ( )2 2 2 2 2 2

0 1 3 0 2max , .k n n k k n⊥                      (2.22) 

 

Only when (2.21) is satisfied will there be a guided mode. The value of k⊥
for which this is the case can be 

found by plotting the left hand side and right hand side of (2.21) and finding the intersections using a 

program like Matlab. The value of k⊥
 of these intersections will be the value of  . The amount of 

intersections is determined by the indices of refraction used. When 
3 1n n  and either 

2n  or d  is not large 

enough, it is possible that there are no guided modes available. When 
1 3n n=  and 

2 1n n , there will always 

be at least one guided mode. We will explain how to handle multiple guided modes below. 
 

As mentioned before, the reflection coefficient for a guided mode, ( )R k⊥ , is infinitely large (i.e. for k ⊥ = ). 

For this to happen, it is assumed that 

         
( )

( ) .
f k

R k
k 

⊥
⊥

⊥

=
−

           (2.23) 

   

First of all, to find the function ( )f k⊥ , we look at the denominator in (1.7) and denote it as ( )g k⊥ : 

       ,22

2,3 1,2( ) 1 .zik d
g k r r e⊥ = +            (2.24) 

 

The next step is to use a first order Taylor expansion of ( )g k⊥  around k ⊥ = .   has to be such that 

( )R  =  , which means that, looking at (1.7) and (2.23) , ( ) 0g  = . This results in the following, first order 

Taylor expansion 
 

        ( ) ( )( ) ( ) ( ) ( ) ,g k g g k g k    ⊥ ⊥ ⊥
 = + − = −          (2.25) 

 

where ( )g   denotes the first order derivative of ( )g k⊥  evaluated at the point  . Finally, (2.25) is 

substituted in (1.7) to retrieve ( )f k⊥  

(2.17) 

(2.20) 
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( )

,2 ,2 ,2

,2

2 2 2

1,2 2,3 1,2 2,3 1,2 2,3

2

2,3 1,2

( ) 1
( ) .

( ) ( )1

z z z

z

ik d ik d ik d

ik d

r r e r r e r r ef k
R k

k g g kr r e   
⊥

⊥

⊥ ⊥

+ + +
= = = =

− −+
        (2.26) 

 

Hence, 

           
,22

1,2 2,3
( ) .

( )

zik d
r r e

f k
g 

⊥

+
=


                              (2.27) 

 
 
2.3. The reflected field 
To derive the reflected field, it is easier to write (2.3) in polar coordinates. Substituting the Fourier transform 
(2.4) in (2.3) and writing the result in polar coordinates results in the following equation 
 

       
( ) ( ),1

2
cos

2

,10 0

1 1
( , ) ( ) ,

4 2

z pik r ik z zr

p

z

G r r R k e k dk d
ik


 




⊥ ⊥


− + +

⊥ ⊥ ⊥=                (2.28) 

where we used polar coordinates defined such that: 
 

        ( )cos ,xk k ⊥=             (2.29) 

        ( )sin ,yk k ⊥=             (2.30) 

      ( )cos ,px x r ⊥− =             (2.31) 

      ( )sin .py y r ⊥− =             (2.32) 

 

The z-coordinate of the dipole pz  will always be positive and real, therefore the absolute value of pz  is pz  

itself. 
 
The integral over   is a well-known integral and results in a Bessel function [2] 

 

      ( ) ( )
2

cos

0

0

2 .
ik r

e d J k r


 

 ⊥ ⊥ −

⊥ ⊥=            (2.33) 

 

Substituting (2.33) in (2.28) and using (2.23) for ( )R k⊥ : 

            ,1 ( )

0

,10

( )
( , ) ( ) .

4

z pik z zr

p

z

f k ki
G r r J k r e dk

kk 


+⊥ ⊥

⊥ ⊥ ⊥

⊥

−
=

−                       (2.34) 

 

It is important to note two things about (2.34): First is the fact that it is an integral over all positive values of 

k⊥
. This is significant because of the restrictions on   by  (2.22). Since the interval given by (2.22) is within 

the interval posed by (2.34), a singularity will occur when k ⊥ =  due to a division by zero. To cope with the 

singularity at k ⊥ = , the Cauchy Principal Value will be used [3]. The integral of (2.34) will be divided into 

four parts according to the Cauchy Principal Value. Let   be a number such that 0    .  
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,1 ,1

,1 ,1

( ) ( )

0 0

,1 ,10

( ) ( )( )

0 0

,1 ,1

( ) ( )
( , ) ( ) ( )

4 4

( ) ( ) ( ) ( )
( )

4

z p z p

z p z p

ik z z ik z zr

p

z z

ik z z ik z z

z z

f k k f k ki i
G r r J k r e dk J k r e dk

k kk k

k
f k J k r e f J r e

k ki
dk

k

 

 



 

 

  


 



 

− 
+ +⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥+

+ +⊥
⊥ ⊥ ⊥ ⊥+

⊥

⊥−

−
= −

− −

−

−
−

 

,1 ( )( )

0

,1

1
( ) ( ) .

4 ( )

z pik z z

z

i
f J r e dk

k k

 


 


 

  

+
+

⊥ ⊥
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      (2.35) 

 

The integral is divided into an integral just before the singularity, an integral after the singularity, followed by 
two integrals dealing with the singularity itself, respectively. For the last term the following equality holds 
 

                       
Im( ) 0

1 1
lim 0,dk dk

kk

   


  



+ +

⊥ ⊥
→

⊥⊥ −−

= =
−−                        (2.36) 

 

since the integrand is odd around k ⊥ = .  

 

The second important thing to remark about the integral in (2.34) is that   is the complex version of  . It is 

assumed that the film has absorption, meaning that        

              
                  2

2 2 ,n =              (2.37) 

 

has a positive, imaginary part. This leads to  k ⊥ =  also having a positive, imaginary part. Therefore   is 

for a guided mode with absorption and is complex valued, while   is for a guided mode without absorption 

and is real valued. Taking the limit of   to   (i.e. letting the absorption go to 0 ) and combining (2.35) and 

(2.36) gives:  
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      (2.38) 

 

The first and last term of (2.38) both still have singularities. 
 
It is possible for multiple guided modes to be available. Every guided mode has its own singularity and has 
to be dealt with using the same method as described above. This means that (2.38) will have additional 
integrals equal to the amount of guided modes available. This report will focus on the case where only one 
guided mode is available. 
 
The next two parts will discuss a way to deal with the singularities of (2.38). 
 
 
2.4. The first term of (2.38) 

The first term of (2.38) has a singularity at ,1 0zk =  which happens when 
2 2 2

0 1k k n⊥ = . Such a singularity can 

be dealt with effectively by a change of the integration variable as will be explained now. 
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First, we split the integral in two parts as shown in (2.39):  
 

0 1

,1 ,1 ,1

0 1

( ) ( ) ( )

0 0 0

,1 ,1 ,10 0

( ) ( ) ( ) ( ) ( ) ( ) .z p z p z p

k n

ik z z ik z z ik z z

z z zk n

k k k
R k J k r e dk R k J k r e dk R k J k r e dk

k k k

   − −
+ + +⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥= +    (2.39) 

 

In the first integral we change the integration variable into 
,1zk , using: 

 

        ,1

,1

,
z

z

dk k

dk k

⊥

⊥

= −             (2.40) 

           2 2 2

0 1 ,1 .zk k n k⊥ = −             (2.41) 

 

 
This gives:  
 

 
0 1 0 1

,1 ,1( ) ( )2 2 2 2 2 2

0 0 1 ,1 0 0 1 ,1 ,1

,10 0

( ) ( ) ( ) ( ) .z p z p

k n k n

ik z z ik z z

z z z

z

k
R k J k r e dk R k n k J r k n k e dk

k

+ +⊥
⊥ ⊥ ⊥ ⊥ ⊥= − −             (2.42) 

 

For the second integral at the right of (2.39) we use 
2 2 2

0 1s k k n⊥= −  as integration variable . There holds: 

 

          
,1 ,zk is=             (2.43) 

             ,1
,

zdk
i

ds
=             (2.44) 

        2 2 2

0 1 .k k n s⊥ = +             (2.45) 

 

Using (2.43) – (2.45) , the second integral becomes 
 

 

2 2 2
0 1

,1

0 1

( )

( ) ( )2 2 2 2 2 2

0 0 1 0 0 1

,1 0

( ) ( ) ( ) ( ) .z p p

k n

ik z z s z z

zk n

k
R k J k r e dk iR k n s J k n s e ds

k

   − −−
+ − +⊥

⊥ ⊥ ⊥ ⊥ = − + +          (2.46) 

 

This way, all singularities in the first term of (2.38) are dealt with and the integrals in (2.42) and (2.46) can 
be computed numerically without further problems. 
 
 
2.5. The third term in (2.38) 

The third term in (2.38) has a singularity at k ⊥ =  which, however, is removable. The integral can be 

rewritten as follows 
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where  

      ,1 ( )

0

,1

( ) ( ) ( ) .
( )

z pik z z

z

k
j k f k J k r e

k k

+ ⊥
⊥ ⊥ ⊥ ⊥

⊥

=           (2.48) 

 

In this form, a first order Taylor expansion around the point   will solve the issue with the singularity. 



       

15 

 

Using: 
 

         ( ) ( ) ( )( ),j k j j k  ⊥ ⊥
= + −            (2.49) 

 
we obtain 

        
( ) ( )

2 ( ),
j k j

dk j
k

 

 


 



+

⊥
⊥

⊥−

−
=

−            (2.50) 

 

where the apostrophe indicates the first order derivative with respect to k⊥
. Note that this is only an 

accurate approximation for a small enough  . Using the Taylor expansion around   allows the 

circumvention of the singularity and only requires one to determine the derivative of (2.48) .  
 
 
2.6. Far field computations 

The previous formula are valid for an arbitrary point ( , , )r x y z=  in the upper half space, i.e. for 0z  . 

However, when z is very large (the far field), the plane wave expansion for the reflected field is not practical 
because the integrand is strongly oscillating. Since the axis are chosen as shown in figures 1 and 2, doing 
far field computations will require one to take the limit of the z coordinate being very large. Because the 
exponent in (2.3) is imaginary for the propagating plane waves, the integrand in the plane wave expansion 

of the reflected field oscillates rapidly as function of the integration variable k⊥
. However, it is still possible 

to compute the far field, namely using  the method of stationary phase. Appendix A shows the full 
derivation. Here only the final result for the reflected field is given: 
 

                  ( )
0 1

0 1

1
( , ) sin( ) ,

4

pik n r r

r

p

p

e
G r r R k n

r r
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                (2.51) 

 
where 
 

        
( ) ( )

2 2

sin( ) .
p p

p

x x y y

r r




− + −
=

−
           (2.52) 

 
and  
 

               ( , , ).p p p pr x y z= −                   (2.53) 

 

since the reflected field can be described as the field from a dipole at a distance pz   below the film. 

 

The result of (2.51) is effectively the field of a dipole situated at pz−  multiplied by a reflection coefficient that 

is dependent on the angle we are looking at.  
 
 
Finally, the intensity in the far field is: 
 

                             ( )
2

( ) ( , ) .free r

scatI G r r p G r r p = − +                                  (2.54) 
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3. Validation of the code and results 

 
 
The derivation from the previous chapters is implemented numerically in a Matlab script, which is listed  in 
Appendix B. The code consists of four parts: 
1. The far field computations and plots 
2. The near field computations and plots 
3. A function to compute the reflected field 
4. Extra functions.  

The function to compute the reflected field consists of three parts: The first part computes the values of  , 

the second part computes the integral of (2.3) and the third part checks the code for the special case that 
the substrate consists of a perfect mirror. The code was initially tested for a symmetric situation, meaning 

1 3n n=  and 
2 1n n . All values assigned in the code are in terms of the wavelength   hence the unit of 

length is chosen such that the wavelength in vacuum is 1. Lastly, we assume that 
2

0

0

1
k

p


= . A computation 

of the dipole strength as function of the distance pz  will be provided.   

 
 
3.1. Computing β  

To compute the values of  , the solutions of (2.21) have to be found, keeping (2.22) in mind. The shape of 

the plot of (2.21) heavily depends on the thickness d  of the substrate. Due to (2.22), (2.21) has the 

following bounds 
 

          
2 2 2

2 1 3
2 0

2
0 .

2

n n n
a d k

− −
                   (3.1) 

 

In the code, d  has been chosen to be 
4


 because this value allows for a single intersection in (2.21) while 

not making the substrate extremely thin. Figure 3 shows a plot of (2.21) as function of 
2d  using 

4
d


= .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3:  Graphical representation of (2.21). For the symmetric case 

where 1 3 1n n= =  and 2 2n = . 
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The intersection of the left hand side and right hand side of (2.21) as can be seen in figure 3 corresponds to 

where k ⊥ = . To make sure there are solutions to (2.21), an if-statement around the code first checks if 

there are any solutions to (2.21) for the current settings and thus if there are any values for  . 

  
 
3.2. Computing the reflected field 

If the code has been able to compute a value for  , all parts of (2.38) are computed separately. The   has 

been set to 0.1 . After testing with different values, this value seemed to be small enough for the first order 

Taylor expansion to be accurate compared to the computation without the expansion. The integrals are 
computed using the integral function of Matlab. As a test, the code also computes the first integral of (2.38) 
without the substitution (2.40) using the integral function. The integral without the substitution results in a 
warning in the command window of Matlab, showing the necessity of the substitution. The output of the 
function computing the reflected field consists of a vector with five elements: The first element uses both 
substitutions (2.40) and (2.43) and the first order Taylor expansions. The second element also uses both 
substitutions (2.40) and (2.43) but computes the first integral of (2.38) using the integral function of Matlab. 
The third element does not use the substitutions but does use the first order Taylor expansions to compute 
(2.38). The fourth element does not use either the substitutions nor the first order Taylor expansions. The 
fifth and final element is the value computed for the field of a dipole in a homogeneous medium, (1.9). 
 
 
3.3. Checking the code with a perfect mirror 
If the substrate would be a prefect mirror, the reflected of the dipole can be described as  the field of a 

dipole at the position that is on the opposite side of the interface 0z =  (i.e. 
pz z= − ) and with dipole 

strength equal but out of phase with respect to the original dipole. By choosing the values of 
2n  and 

3n  to 

be equal and large, the situation will mimic that of a perfect mirror. However, in this situation there is no 

value for  . Since the code heavily relies on values for  , an if-statement checks if there are any solutions 

for (2.21) . For the particular case when 
2 3n n= , the code assumes the substrate to be a perfect mirror if 

there are no values for  . When 
2 3n n= , ,2 ,3z zk k=  and (1.7)  becomes  

 

                            
,1 ,2

12

,1 ,2

.
z z

z z

k k
R r

k k

−
= =

+
                             (3.2) 

 
 

For the limit 2 1n n , (3.2) becomes 1−  for a large interval of values k⊥
, which represents a perfect mirror. 

Having no value for   means that there is no function ( )f k⊥  and thus no singularity at k ⊥ = , allowing for 

the integral of (2.34) to run from zero to infinity using the substitutions of (2.40) and (2.43). The computed 
reflected field is then compared to the theoretical field (1.9) for both the magnitude and the argument. The 

computed reflected field is plotted on a grid where x runs from 5−  to 5  in 100 equidistant steps while 

the z-coordinate is between 0  and 5 . The theoretical field is plotted on a grid where both x and z run from 

5−  to 5  in 100 equidistant steps. For these plots, the location of the dipole has been set to ( )0,0, . 

The plots are shown in figure 4 and figure 5.  
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Figure 4: The absolute value of the computed reflected field and of the theoretical reflected 

field. We choose 2 3 200n n= =  and 1 1n = . 
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Figure 5: The argument of the computed reflected field and of the theoretical reflected field. 

We choose 2 3 200n n= =  and 1 1n = . 
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3.4. Near field computations 
The methods described in chapter 2 are all combined into a single function. The next step is to calculate the 
total field relatively close to the dipole itself, constructing a near field. For the near field, the dipole is 

situated at ( )0,0, . The y-coordinate is kept at 0 , the x-coordinate runs from 2−  to 2 , and the z-

coordinate from 0  to 2 . We choose the refractive index 
1 1n = , for the film we choose 

2 2n =  and for the 

substrate 
3 1n = , creating a symmetric system. Figure 6 is a plot of the absolute value and figure 7 is a plot 

of the argument of the near field.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The absolute value of the near field. 

We choose 
1 3 1n n= =  and 

2 2n = . 

Figure 7: The argument of the near field. 

We choose 1 3 1n n= =  and 2 2n = . 
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3.5. Far field computations 
The last step is to calculate the far field. This is done by using a for-loop that allows for the computation of 

the field and its intensity over a range of x-coordinates while keeping the z-coordinate at 
310z =  and the 

dipole is situated at ( )0,0,5 . The plots are made using the angle  , which for small angles relates to x  

and z  in the following way 
 

                                        .
x

z
 =                                         (3.3) 

 

 
Figures 8 and 9 have two subplots, one of the calculated far field for a perfect mirror and the other of a test 
field for comparison. The test plots in figures 8 and 9 plot the intensity and phase of  
 

                  
1

,
4 4

pp ikn r rikn r r

test

p p

e R e
G

r r r r 

−−

= − −
− −

                            (3.4) 

 

where, since we assume the system to be a perfect mirror (i.e. 1R = − ), pr r−  is given by (1.10) and pr  is 

given by (2.51). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: On the top: the intensity of a single dipole in the far field as calculated in the script. 
On the bottom: the intensity of a single dipole in the far field as calculated from (3.5).  
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Figure 10 shows the intensity plot of the far field of a single dipole using symmetric settings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With these results, the code has been tested and can be used in further research to compute the reflected 
field of two dipoles.  
 
 
3.6. Dipole strength p 
With the function to compute the reflected field, we will take a look at the dipole strength p . We will look at 

the ratio between the dipole strength due to the reflection and the dipole strength due to the incident field, 

Figure 9: On the top: the argument of a single dipole in the far field as calculated in the script. 
On the bottom: the argument of a single dipole in the far field as calculated from (3.5). 

Figure 10: The intensity of a single dipole in the far field using symmetric settings (i.e. 
1 3n n=  

and 
2 1n n ).  
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which is given by: 
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where   is the polarizability of the dipole which has been estimated to be 
3

10


 =  since 0 ( )r

pG r   can be 

estimated as   
 

                        
2

2 0
0 3

( ) ,r

p

p

k
k G r

z


 


                              (3.6) 

 

which should not be equal to 1 since that will cause a singularity.  
 

Figure 11 shows a plot of (3.5) as function of the distance 
pz  of the dipole above the film.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As can be seen from figure 11, the dipole strength is an oscillating function with a decreasing amplitude as 

function of the distance pz  above the film. For the asymmetric case the amplitude is lower than for the 

mirror case since the asymmetric case can have a guided mode which loses amplitude each round trip in 
the film. 

Figure 11: The dipole strength for two different cases: an asymmetric case (i.e. 
1 3n n , 

1 3n n  and 
3 2n n ) and a mirror case (i.e. 

2 3n n=  and 2 1n n ).  
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4. Conclusion 
 
 
In conclusion, a substrate underneath the dipole has a significant effect on the total field. As my report has 
shown, the influence on the total field will change as the indices of refraction of the different layers change. 
Not only the indices of refraction, but also the thickness of the substrate plays a role in the influence on the 

total field, being essential to the existence of a guided mode. When 
1 3n n=  and 

2 1n n  (i.e. a symmetric 

case), there will always be at least one guided mode available but when 
1 3n n , there will not necessarily 

be a guided mode and when 
2 3n n= , there is no film present and thus no guided mode. 

 
In an integral over reflected plane waves, in case a guided wave occurs, the integrand has a singularity 
which has to be dealt with using the Cauchy Principle value technique. Other singularities are dealt with 
using multiple first order Taylor expansions. With the singularities dealt with, a Matlab function has been 
constructed that can compute the reflected field of a single dipole and near field in any given point in the 

half space 0z  . The far field (i.e. for large z) can be computed using the Matlab code as well only this time 

the method of stationary phase is used. The script has been positively tested using a perfect mirror as 
reference to what should happen to the field of the dipole.  
 
With the computation of the reflected field as a function, it is possible to compute the near- and far field of 
two dipoles next to each other above the substrate once the influence of the reflection on their fields has 
been derived. The main influence of adding a second dipole will be on the dipole strength of both dipoles. It 
is then suggested that for further research this script is implemented to compute and further test the script 
for a two dipole system.  
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Appendix A 
 
 
This appendix will give a full the derivation of the stationary phase method as used for the far field 
computations.  
The reflected field is first rewritten as 
 

            
( , )

2

1
( , ) ( , ) ,

4

x yif k kr

p x y x yG r r q k k e dk dk


 
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where  
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z
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q k k

ik
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and 

            ( , ) ( ) ( ) ( ),x y x p y p z pf k k k x x k y y k z z= − + − + +                (A.3) 

 

where ( )R k⊥  is the reflection coefficient. The integrand in (A.1) will oscillate very quickly as function of 
xk  

and 
yk  when r  is far from 

pr , i.e. when z  is very large. The point of least fast oscillations, ( )0 0,x yk k , are 

the points where the phase is stationary, i.e.:  
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Solving (A.4) gives the following results for 
0xk  and 0yk   
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                          0 0 1 ,
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                  ( ) ( ) ( )
2 2 2 2
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and k⊥
 becomes 
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We have 

                           0 0 1 .
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+
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−
                                       (A.9) 

 
 

At the point of stationary phase, (A.3) can be written as 
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     2 2
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2 2
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where the coefficients a , b  and c  are given by 
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Substituting (A.5) – (A.9) in (A.11) – (A.13) results in 
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Rearranging the integration constants in (A.1) results in the following  
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Where   is given by 
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and 
2ab c−  can be calculated explicitly: 
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Since (A.11) is always negative and (A.18) is always positive,   is  i− . Substituting (A.2), (A.3), (A.18) and 

(A.19) in (A.17) results in  
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Appendix B 

clear all 

close all 

clc 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Input  

n1 = 1;                 %All calculations are made with n1 = 1                      

n2 = 2;                 %Index of refraction of the substrate 

n3 = 1;                 %Index of refraction below the substrate 

lambda = 1;             %Set to 1  

d = lambda/4;           %d/lambda for 1 intersection 

k0 = 2*pi;              %In vacuum and lambda = 1 

rp = [0 0 1*lambda];    %x y z location of dipole in the near field, z = 0 is 

the location of the substrate  

r1 = [0 0 5*lambda];    %Location of the dipole in the far field 

delta = 0.1;            %Small enough difference 

testmode = 1;           %0 will give near and far field plots, 1 will give test 

plots designed to test the code 

Ntest = 10;             %Amount of grid points do to the calculations for the 

half space case 

Nnear = 10;             %Amount of points for the Near field grid 

Nfar = 1e3;             %Amount of points for the Far field computations 

Np = 10;                %Amount of points for the dipole strength calculations 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Near field, dipole at [0 0 1*lambda]  

if testmode == 0 

z = linspace(0,2*lambda,Nnear); 

z(z==rp(3)) = NaN;                      %Remove the z-coordinate of the dipole 

to prevent computational problems 

z = rmmissing(z); 

x = linspace(-2*lambda,2*lambda,Nnear); 

x(x==rp(1)) = NaN;                      %Remove the x-coordinate of the dipole 

to prevent computational problems 

x = rmmissing(x); 

Field = zeros(1,length(x)); 

figure('units','normalized','outerposition',[0 0 1 1]) 

figure('units','normalized','outerposition',[0 0 1 1]) 

for indz = 1:length(z) 

    for indx = 1:length(x) 

        r = [x(indx) 0 z(indz)];         

        Gtotal = G_reflected(n1,n2,n3,lambda,k0,r,rp,delta,testmode,Ntest,d); 

        Field(indz,indx) = Gtotal(1) + Gtotal(5); 

    end     

end 

figure(1) 

surface(x,z,abs(Field)) 

title('Near field - Absolute value','Fontsize',18) 

xlabel('x in terms of \lambda','Fontsize',18) 

ylabel('z in terms of \lambda','Fontsize',18) 

cbabs = colorbar; 

ylabel(cbabs,'Absolute value') 

set(gca,'Fontsize',18) 

figure(2) 

surface(x,z,angle(Field)) 
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title('Near field - Argument','Fontsize',18) 

xlabel('x in terms of \lambda','Fontsize',18) 

ylabel('z in terms of \lambda','Fontsize',18) 

cbarg = colorbar; 

ylabel(cbarg,'Argument') 

set(gca,'Fontsize',18) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

%Far field 

intensity = zeros(Nfar,1); 

free = intensity; 

argument = intensity; 

reflected = free; 

inttest = reflected; 

argtest = inttest; 

count1 = 1; 

z = 1e3*lambda;                     %Far field z 

if n2 == n3 && n2 > 10*n1           %Mimics a mirror, adds a test field in the 

plots 

   for q = linspace(-0.5,0.5,Nfar)    %q = x/z for small angles 

       rinf = [q*z 0 z]; 

       Gff1 = Ginf(k0,rinf,r1,n1,n2,n3,d); 

       free(count1,1) = Gff1(1); 

       reflected(count1,1) = Gff1(2); 

       intensity(count1,1) = abs(Gff1(1)+Gff1(2))^2; 

       argument(count1,1) = angle(Gff1(1)+Gff1(2)); 

       rminrp1 = sqrt((rinf(1)-r1(1))^2+(rinf(2)-r1(2))^2+(rinf(3)-r1(3))^2); 

       rminrp2 = sqrt((rinf(1)-r1(1))^2+(rinf(2)-r1(2))^2+(rinf(3)+r1(3))^2); 

       t1 = -

exp(1i*k0*n1*rminrp1)/(4*pi*rminrp1)+exp(1i*k0*n1*rminrp2)/(4*pi*rminrp2); 

       inttest(count1,1) = abs(t1)^2; 

       argtest(count1,1) = angle(t1); 

       count1 = count1 + 1; 

   end 

   %Intensity  

   figure('units','normalized','outerposition',[0 0 1 1]) 

   subplot(2,1,1) 

   plot(linspace(-0.5,0.5,Nfar), intensity) 

   xlabel('The angle ^{x}/_{z}','Fontsize',18) 

   title(['Intensity of a single dipole for n1 = ',sprintf('%1.2f',n1), ... 

       ', n2 = ',sprintf('%1.2f',n2),', n3 = 

',sprintf('%1.2f',n3)],'Fontsize',18) 

   set(gca,'Fontsize',18) 

   %Test  

   subplot(2,1,2) 

   plot(linspace(-0.5,0.5,Nfar), inttest) 

   title('Intensity test','Fontsize',18) 

   xlabel('The angle ^{x}/_{z}','Fontsize',18) 

   set(gca,'Fontsize',18) 

    

   %Argument 

   figure('units','normalized','outerposition',[0 0 1 1]) 

   subplot(2,1,1) 

   plot(linspace(-0.5,0.5,Nfar), argument) 

   xlabel('The angle ^{x}/_{z}','Fontsize',18) 

   title(['Argument of a single dipole for n1 = ',sprintf('%1.2f',n1), ... 

       ', n2 = ',sprintf('%1.2f',n2),', n3 = 

',sprintf('%1.2f',n3)],'Fontsize',18) 



       

31 

 

   set(gca,'Fontsize',18) 

   %Test  

   subplot(2,1,2) 

   plot(linspace(-0.5,0.5,Nfar), argtest) 

   title('Argument test','Fontsize',18) 

   xlabel('The angle ^{x}/_{z}','Fontsize',18) 

   set(gca,'Fontsize',18) 

    

   %Freespace  

   figure('units','normalized','outerposition',[0 0 1 1]) 

   subplot(2,1,1) 

   plot(linspace(-0.5*z,0.5*z,Nfar),real(free)) 

   title('Freespace field: real part','Fontsize',18) 

   minp = islocalmin(real(free)); 

   maxp = islocalmax(real(free)); 

   xv = linspace(-0.5*z,0.5*z,Nfar); 

   xlabel('x','Fontsize',18) 

   hold on 

   subplot(2,1,2) 

   plot(linspace(-0.5*z,0.5*z,Nfar),abs(free)) 

   title('Freespace field: absolute value','Fontsize',18) 

   xlabel('x','Fontsize',18) 

   %Reflected 

   figure('units','normalized','outerposition',[0 0 1 1]) 

   subplot(2,1,1) 

   plot(linspace(-0.5*z,0.5*z,Nfar),real(reflected)) 

   title('Reflected field: real part','Fontsize',18) 

   xlabel('x','Fontsize',18) 

   hold on 

   subplot(2,1,2) 

   plot(linspace(-0.5*z,0.5*z,Nfar),abs(reflected)) 

   title('Reflected field: absolute value','Fontsize',18) 

   xlabel('x','Fontsize',18) 

else                                    %Non-mirror cases 

    theta = linspace(-0.5,0.5,Nfar); 

    for q = theta       %q = x/z for small angles 

       rinf = [q*z 0 z]; 

       Gff1 = Ginf(k0,rinf,r1,n1,n2,n3,d); 

       free(count1,1) = Gff1(1); 

       reflected(count1,1) = Gff1(2); 

       intensity(count1,1) = abs(Gff1(1)+Gff1(2))^2; 

       count1 = count1 + 1; 

   end 

   %Intensity  

   figure('units','normalized','outerposition',[0 0 1 1]) 

   plot(theta, intensity) 

   ylabel('The intensity of the field of a single dipole','Fontsize',18) 

   xlabel('The angle ^{x}/_{z}','Fontsize',18) 

   title(['Intensity of a single dipole for n1 = ',sprintf('%1.2f',n1), ... 

       ', n2 = ',sprintf('%1.2f',n2),', n3 = 

',sprintf('%1.2f',n3)],'Fontsize',18) 

   set(gca,'Fontsize',18) 

    

   %Freespace  

   figure('units','normalized','outerposition',[0 0 1 1]) 

   subplot(2,1,1) 

   plot(linspace(-0.5*z,0.5*z,Nfar),real(free)) 

   title('Freespace field: real part','Fontsize',18) 
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   minp = islocalmin(real(free)); 

   maxp = islocalmax(real(free)); 

   xv = linspace(-0.5*z,0.5*z,Nfar); 

   xlabel('x','Fontsize',18) 

   hold on 

   subplot(2,1,2) 

   plot(linspace(-0.5*z,0.5*z,Nfar),abs(free)) 

   title('Freespace field: absolute value','Fontsize',18) 

   xlabel('x','Fontsize',18) 

   %Reflected 

   figure('units','normalized','outerposition',[0 0 1 1]) 

   subplot(2,1,1) 

   plot(linspace(-0.5*z,0.5*z,Nfar),real(reflected)) 

   title('Reflected field: real part','Fontsize',18) 

   xlabel('x','Fontsize',18) 

   hold on 

   subplot(2,1,2) 

   plot(linspace(-0.5*z,0.5*z,Nfar),abs(reflected)) 

   title('Reflected field: absolute value','Fontsize',18) 

   xlabel('x','Fontsize',18)  

    

   %Dipole strength p for 2 different cases 

   zp = linspace(1*lambda,10*lambda,Np); 

   p = zeros(length(zp),1); 

   np2 = [2 200]; 

   np3 = [1.5 200]; 

   alpha = lambda^3/10; 

   for o = 1:length(np2) 

       for zi = 1:length(zp) 

           rp = [0 0 zp(zi)]; 

           r = [0 0 1];  

           Gr = 

G_reflected(n1,np2(o),np3(o),lambda,k0,r,rp,delta,testmode,Ntest,d); 

           p(zi,o) = 1/(1-k0^2*alpha*Gr(1));  

       end 

   end 

   figure('units','normalized','outerposition',[0 0 1 1]) 

   plot(zp,real(p(:,1)),'b') 

   hold on 

   plot(zp,real(p(:,2)),'r') 

   legend('Asymmetric case','Mirror case','Fontsize',18) 

   set(gca,'Fontsize',18) 

   xlabel('z_p in terms of \lambda') 

   ylabel('P_d_i_p_o_l_e/P_f_r_e_e') 

end 

else 

    r = [0 0 2*lambda]; 

    rp = [0 0 1*lambda]; 

    Gtest = G_reflected(n1,n2,n3,lambda,k0,r,rp,delta,testmode,Ntest,d); 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function output = G_reflected(n1,n2,n3,lambda,k0,r,rp,delta,testmode,N,d) 

%This function will have four options for the output: 

% Option 1 will give you an array with five outputs for the case when there 

% a guided mode and one looks at a symmetric or asymmetric case with a slab 

% of thickness d (for example when n1~n3 & n1<n2). The array has the 

% following output: 
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%   1. The refelcted field using substitution and a first order Taylor 

%   expansion around the singularity 

%   2. The reflected field using substitution and Matlab around a 

%   singularity 

%   3. The reflected field using Matlab and a first order Taylor expansion 

%   around the singularity 

%   4. The reflected field using only Matlab 

%   5. The theoretical incoming field 

% 

% Option 2 will give you a matrix containing the values for the reflected 

% field for all values of a NxN grid, with x and z being the 

% coordinates of the grid. This happens when the settings are such that the  

% code looks at a halfspace (n2 = n3) and n2 is large enough compared to 

% n1. This option also checks the code and will display if the difference 

% between the code and the incoming field is negligibly small or not. 

% 

% Option 3 will give you an array with five outputs for looking at the case 

% when there is no slab (n1 = n2 = n3). The output consists of the 

% following: 

%   1. The refelcted field using substitution and a first order Taylor 

%   expansion around the singularity 

%   2. The reflected field using substitution and Matlab around a 

%   singularity 

%   3. The reflected field using Matlab and a first order Taylor expansion 

%   around the singularity 

%   4. The reflected field using only Matlab 

%   5. The theoretical incoming field 

% 

% Option 4 will give you an error message  if the used settings are not  

% supported as of yet.  

  

syms x kl 

rl = sqrt((r(1)-rp(1))^2+(r(2)-rp(2))^2); 

lhs = @(x)tan(x); 

rhs = rhsfun(n1,n2,n3,k0,d); 

  

%Test if there is a beta (= intersection of lhs and rhs) 

xvalues = linspace(0,k0*sqrt((2*n2^2-n3^2-n1^2)/2)*d,800); 

betatest = rhs(xvalues); 

betatest(betatest<1e-10) = NaN;     %Replace small values by NaN 

betatest = rmmissing(betatest);     %Remove NaN values 

  

if isempty(betatest) == 0           %Now there is a beta value 

    difflr = @(x) real(lhs(x)-rhs(x)); 

    zrocro = difflr(xvalues).*circshift(difflr(xvalues),[0 -2]); 

    guess = find(zrocro <= 0); 

    for k1 = 1:length(guess) 

       intsct(k1) = fzero(difflr, xvalues(guess(k1)));  

    end 

    intsct = unique(round(intsct*10^6)./10^6); 

     

    %Exclude certain intersection points 

    intsct(intsct == 0) = NaN;                                      %If there 

is an intersection at 0 

    intsct(intsct >= k0*sqrt((2*n2^2-n3^2-n1^2)/2)*d) = NaN;        %All 

intersections located at and past the boundary 

    intsct(abs(intsct-d*k0*sqrt(1/2*(n2^2-n1^2))) <= 1e-6) = NaN;   %Asymptote 

intersections 
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    for k2 = 1:length(intsct) 

        intsct(abs(intsct-double(pi/2+(k2-1)*pi)) < 1e-6) = NaN;    %Asymptote 

intersections 

    end 

    intsct = rmmissing(intsct);  

  

    if testmode == 1 

    %Plot rhs and lhs to find the intersection(s) --> beta value(s)              

    figure('units','normalized','outerposition',[0 0 1 1]) 

    fplot(real(lhs(x)),[0 k0*sqrt((2*n2^2-n3^2-n1^2)/2)*d],'g') 

    hold on 

    fplot(real(rhs(x)),[0 k0*sqrt((2*n2^2-n3^2-n1^2)/2)*d],'r') 

    xlabel('\alpha_2 * d','Fontsize',18) 

    hold on 

    plot(intsct, real(rhs(intsct)),'b*') 

    ylim([-50 50]) 

    xlim([0 k0*sqrt((2*n2^2-n3^2-n1^2)/2)*d]) 

    legend('tan(\alpha_2d)','(\alpha_2(\alpha_1+\alpha_3))/(\alpha_2^2-

\alpha_1\alpha_3)','Intersection','Fontsize',18) 

    set(gca,'Fontsize',18) 

    hold off 

    end 

     

    %Put values of beta in an array 

    beta{1,1} = sqrt(k0^2*n2^2 - (intsct(end)./d).^2);    %Only interested in 

the largest beta 

  

    %1st order Taylor version of the integral term 

    bvalue = beta{1}; 

    f = ffun(k0,n1,n2,n3,d,bvalue); 

    etermfun = efun(k0,n1,r(3),rp(3)); 

    ktermfun = kfun(k0,n1);  

    J0fun = jfun(rl); 

    j = @(kl)f(kl).*J0fun(kl).*etermfun(kl).*ktermfun(kl); 

    dj = diff(j,kl); 

    Gr3all{1,1} = vpa(subs(dj,kl,bvalue)); 

    Gr3Taylor(1) = 2*delta*double(Gr3all{1}); 

     

    %Integrals 

    lower = bvalue-delta;   %Boundaries 

    upper = bvalue+delta;    

    syms kl 

    R = Rfun(k0,n1,n2,n3,d);  

    etermfun = efun(k0,n1,r(3),rp(3)); 

    ktermfun = kfun(k0,n1); J0fun = jfun(rl); 

    intterms = @(kl) R(kl).*etermfun(kl).*ktermfun(kl).*J0fun(kl); 

    Gr1full = integral(intterms, 0, lower);     %Gives an error due to the 

1/kz1  

    Gr2 = integral(intterms, upper, inf);        

    f = ffun(k0,n1,n2,n3,d,bvalue); 

    funGr3 = @(kl) (f(kl).*J0fun(kl).*etermfun(kl).*ktermfun(kl)-

double(j(bvalue)))/(kl-bvalue); 

    Gr3int = integral(funGr3,lower,upper,'ArrayValued',true);      

  

    %First integral with substitution to circumvent the singularity 

    uppersubs1 = k0*n1;      

    lowersubs1 = 0;     %New bounds due to kl*dkl = -kz1*dkz1 & kl = 

sqrt(k0^2*n1^2 - kz1.^2) 
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    uppersubs2 = sqrt((lower).^2-k0^2*n1^2);     

    lowersubs2 = 0;     %New bounds due to dkz1 = ids & kl = sqrt(k0^2*n1^2 + 

s.^2) 

    syms kz1 s             

    integrandsubs1 = @(kz1)R(sqrt(k0^2*n1^2-kz1.^2)).*etermfun(sqrt(k0^2*n1^2-

kz1.^2)).*J0fun(sqrt(k0^2*n1^2-kz1.^2)); 

    Gr1subs1 = integral(integrandsubs1,lowersubs1,uppersubs1); 

    integrandsubs2 = @(s) -

1i*R(sqrt(k0^2*n1^2+s.^2)).*etermfun(sqrt(k0^2*n1^2+s.^2)).*J0fun(sqrt(k0^2*n1^

2+s.^2)); 

    Gr1subs2 = integral(integrandsubs2,lowersubs2,uppersubs2); 

  

    %The full integral  

    Gr_parts_subs_Taylor = -1i/(4*pi)*(Gr1subs1 + Gr1subs2 + Gr2 + Gr3Taylor);  

%Using substitution for Gr1 with Taylor integral 

    Gr_parts_subs_int = -1i/(4*pi)*(Gr1subs1 + Gr1subs2 + Gr2 + Gr3int);        

%Using substitution for Gr1 with Matlab integral 

    Gr_parts_Taylor = -1i/(4*pi)*(Gr1full + Gr2 + Gr3Taylor);                   

%Using first order taylor approximation 

    Gr_parts_Matlab = -1i/(4*pi)*(Gr1full + Gr2 + Gr3int);                      

%Using matlab around the singularity 

    rminrp = sqrt(rl^2+(r(3)+rp(3))^2); 

    Gtheor = 1/(4*pi)*exp(1i*k0*n1*rminrp)/rminrp; 

    output = [Gr_parts_subs_Taylor; Gr_parts_subs_int; Gr_parts_Taylor; 

Gr_parts_Matlab; Gtheor]; 

     

    if testmode == 1 

    %Plots  

    syms kl 

    figure('units','normalized','outerposition',[0 0 1 1]) 

    subplot(2,1,1) 

    fplot(real(intterms(kl)),[0 1.1*upper])    

    title('Real part of the intergrand') 

    xlabel('kl values') 

    hold on 

    xline(bvalue,'r--'); xline(k0*n1,'g--'); 

    legend('real(integrand)', '\beta','k0*n1') 

    hold off 

    subplot(2,1,2) 

    fplot(imag(intterms(kl)),[0 1.1*upper]) 

    hold on 

    title('Imaginary part of the integrand') 

    xlabel('kl values') 

    xline(bvalue,'r--'); xline(k0*n1,'g--'); 

    legend('imag(integrand)', '\beta','k0*n1') 

    hold off 

    figure('units','normalized','outerposition',[0 0 1 1]) 

    subplot(2,1,1) 

    fplot(real(R(kl)),[0 1.1*upper]) 

    title(['Real part of R for n2 = ',sprintf('%1.2f',n2)]) 

    xlabel('kl values') 

    hold on 

    xline(bvalue,'r--'); xline(k0*n1,'g--'); 

    legend('real(R)', '\beta','k0*n1') 

    hold off 

    subplot(2,1,2) 

    fplot(imag(R(kl)),[0 1.1*upper]) 

    title(['Imaginary part of R for n2 = ',sprintf('%1.2f',n2)]) 
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    xlabel('kl values') 

    hold on 

    xline(bvalue,'r--'); xline(k0*n1,'g--'); 

    legend('imag(R)', '\beta','k0*n1') 

    hold off 

    end 

elseif isempty(betatest) == 1 && n2 == n3 && n1 ~= n3     %Halfspace/mirror 

    uppersubs1 = k0*n1;      

    lowersubs1 = 0;     %New bounds due to kl*dkl = -kz1*dkz1 & kl = 

sqrt(k0^2*n1^2 - kz1.^2) 

    uppersubs2 = Inf;     

    lowersubs2 = 0;     %New bounds due to dkz1 = ids & kl = sqrt(k0^2*n1^2 + 

s.^2) 

    syms kl kz1 s  

    rl = sqrt((r(1)-rp(1))^2+(r(2)-rp(2))^2);  

    R = -1;             %Force the reflection coefficient to be -1, this is in 

approximation true 

    etermfun = efun(k0,n1,r(3),rp(3)); 

    J0fun = jfun(rl); 

    integrandsubs1 = @(kz1)R.*etermfun(sqrt(k0^2*n1^2-

kz1.^2)).*J0fun(sqrt(k0^2*n1^2-kz1.^2)); 

    Gr1subs1 = integral(integrandsubs1,lowersubs1,uppersubs1); 

    integrandsubs2 = @(s) -

1i*R.*etermfun(sqrt(k0^2*n1^2+s.^2)).*J0fun(sqrt(k0^2*n1^2+s.^2)); 

    Gr1subs2 = integral(integrandsubs2,lowersubs2,uppersubs2); 

    Gr = -1i/(4*pi)*(Gr1subs1 + Gr1subs2); 

    rminrp = sqrt(rl^2+(r(3)+rp(3))^2); 

    Gtheor = 1/(4*pi)*exp(1i*k0*n1*rminrp)/rminrp; 

    output = [Gr; 0; 0; 0; Gtheor]; 

     

    if testmode == 1 

    %Calculate the field for a grid of NxN 

    Gr = zeros(N,N); 

    clear x z 

    z = linspace(0,5*lambda,N); 

    x = linspace(-5*lambda,5*lambda,N); 

    for indz = 1:N                %To plot for 0 < z < 10lambda 

        for indx = 1:N            %To plot for -3lambda < x <3lambda 

            %Full integral with substitution 

            uppersubs1 = k0*n1;      

            lowersubs1 = 0;     %New bounds due to kl*dkl = -kz1*dkz1 & kl = 

sqrt(k0^2*n1^2 - kz1.^2) 

            uppersubs2 = Inf;     

            lowersubs2 = 0;     %New bounds due to dkz1 = ids & kl = 

sqrt(k0^2*n1^2 + s.^2) 

            syms kl kz1 s  

            r = [x(indx) 0 z(indz)]; 

            rl = sqrt((r(1)-rp(1))^2+(r(2)-rp(2))^2);             

            R = -1;             %Force the reflection coefficient to be -1 

which is a valid approximation for large n2 

            etermfun = efun(k0,n1,r(3),rp(3)); 

            J0fun = jfun(rl); 

            integrandsubs1 = @(kz1)R.*etermfun(sqrt(k0^2*n1^2-

kz1.^2)).*J0fun(sqrt(k0^2*n1^2-kz1.^2)); 

            Gr1subs1 = integral(integrandsubs1,lowersubs1,uppersubs1); 

            integrandsubs2 = @(s) -

1i*R.*etermfun(sqrt(k0^2*n1^2+s.^2)).*J0fun(sqrt(k0^2*n1^2+s.^2)); 

            Gr1subs2 = integral(integrandsubs2,lowersubs2,uppersubs2); 
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            Gr(indz,indx) = -1i/(4*pi)*(Gr1subs1 + Gr1subs2); 

        end       

    end 

    Ntheor = 2*N; 

    Gtheor = zeros(Ntheor,Ntheor); 

    ztheor = linspace(-5*lambda,5*lambda,Ntheor); 

    xtheor = ztheor; 

    for indz = 1:Ntheor 

        for indx = 1:Ntheor 

            r = [xtheor(indx) 0 ztheor(indz)]; 

            rminrp = sqrt((r(1)-rp(1))^2+(r(2)-rp(2))^2+(r(3)+rp(3))^2); 

            Gtheor(indz,indx) = 1/(4*pi)*exp(1i*k0*n1*rminrp)/rminrp; 

        end 

    end 

        %Plots 

        figure('units','normalized','outerposition',[0 0 1 1]) 

        surface(x,z,abs(Gr)) 

        cbabs = colorbar; 

        title('The absolute value of the reflected field','Fontsize',18) 

        xlabel('x in terms of \lambda','Fontsize',18) 

        ylabel('z in terms of \lambda','Fontsize',18) 

        ylabel(cbabs,'Absolute value') 

        set(gca,'Fontsize',18) 

        figure('units','normalized','outerposition',[0 0 1 1]) 

        surface(xtheor,ztheor,abs(Gtheor)) 

        cbabst = colorbar; 

        title('The absolute value of the theoretical reflected 

field','Fontsize',17) 

        xlabel('x in terms of \lambda','Fontsize',18) 

        ylabel('z in terms of \lambda','Fontsize',18) 

        ylabel(cbabst,'Absolute value') 

        set(gca,'Fontsize',18) 

         

        figure('units','normalized','outerposition',[0 0 1 1]) 

        surface(x,z,angle(Gr)) 

        cbarg = colorbar; 

        title('The argument of the reflected field','Fontsize',18) 

        xlabel('x in terms of \lambda','Fontsize',18) 

        ylabel('z in terms of \lambda','Fontsize',18) 

        ylabel(cbarg,'Argument') 

        set(gca,'Fontsize',18) 

        figure('units','normalized','outerposition',[0 0 1 1]) 

        surface(xtheor,ztheor,angle(Gtheor)) 

        cbargt = colorbar; 

        title('The argument of the theoretical reflected field','Fontsize',17) 

        xlabel('x in terms of \lambda','Fontsize',18) 

        ylabel('z in terms of \lambda','Fontsize',18) 

        ylabel(cbargt,'Argument') 

        set(gca,'Fontsize',18) 

         

    end 

elseif n1 == n2 && n3 == n1         %Free space (no substrate) 

    rminrp = sqrt(rl^2+(r(3)+rp(3))^2); 

    Gtheor = 1/(4*pi)*exp(1i*k0*n1*rminrp)/rminrp; 

    output = [0; 0; 0; 0; Gtheor]; 

else 

    output = [0 0 0 0 0]; 

    disp('Code is not yet able to process the used settings') 
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end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Functions 

  

%R, the reflection coefficient 

function r = Rfun(k0,n1,n2,n3,d)  

syms kl 

kz1 = @(kl)sqrt(k0^2*n1.^2-kl.^2);     

kz2 = @(kl)sqrt(k0^2*n2.^2-kl.^2);     

kz3 = @(kl)sqrt(k0^2*n3.^2-kl.^2); 

if n2 == n3 && n2 > 10*n1 

    r12 = @(kl) -1; 

else 

    r12 = @(kl)(kz1(kl)-kz2(kl))./(kz1(kl)+kz2(kl)); 

end 

r23 = @(kl)(kz2(kl)-kz3(kl))./(kz2(kl)+kz3(kl)); 

r = @(kl)(r12(kl) + r23(kl).*exp(2.*1i.*kz2(kl).*d))./(1 + 

r23(kl).*r12(kl).*exp(2.*1i.*kz2(kl).*d)); 

end 

  

%Exponent term in the integral 

function e = efun(k0,n1,z,zp) 

syms kl 

kz1 = @(kl)sqrt(k0^2*n1.^2-kl.^2); 

e = @(kl)exp(1i.*kz1(kl).*(z+abs(zp))); 

end 

  

%kl/k1z term in the integral 

function k = kfun(k0,n1) 

syms kl 

kz1 = @(kl)sqrt(k0^2*n1.^2-kl.^2); 

k = @(kl) kl./kz1(kl); 

end 

  

%Besselfunction as a function 

function j = jfun(rl) 

syms kl 

j =  @(kl)besselj(0,kl.*rl); 

end 

  

%f-function from R 

function F = ffun(k0,n1,n2,n3,d,bvalue) 

syms kl 

kz1 = @(kl)sqrt(k0^2*n1.^2-kl.^2);    

kz2 = @(kl)sqrt(k0^2*n2.^2-kl.^2);     

kz3 = @(kl)sqrt(k0^2*n3.^2-kl.^2); 

if n2 == n3 && n2 > 10*n1 

    r12 = @(kl)-1; 

else 

    r12 = @(kl)(kz1(kl)-kz2(kl))./(kz1(kl)+kz2(kl)); 

end 

r23 = @(kl)(kz2(kl)-kz3(kl))./(kz2(kl)+kz3(kl)); 

gfun = @(kl) 1 + r23(kl).*r12(kl).*exp(2*.1i.*kz2(kl).*d);   dg = 

diff(gfun(kl)); 

if dg ~= 0 &&  n2~=n3 

    dgsubs = vpa(subs(dg,kl,bvalue)); 
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    F = @(kl)1./(double(dgsubs)).*((r12(kl)+r23(kl).*exp(2.*1i.*kz2(kl).*d)));  

else 

    dgsubs = vpa(subs(dg,kl,bvalue)); 

    gsubs = gfun(bvalue); 

    F = @(kl)1./(double(dgsubs)+gsubs/(kl-

bvalue)).*((r12(kl)+r23(kl).*exp(2.*1i.*kz2(kl).*d))); 

end 

end 

  

%Rhs as a function of x = a2*d 

function r = rhsfun(n1,n2,n3,k0,d) 

syms x 

a1 = @(x)sqrt(k0^2.*(n2^2-n1^2)-(x./d).^2); 

a3 = @(x)sqrt(k0^2.*(n2^2-n3^2)-(x./d).^2); 

r = @(x)((x./d).*(a1(x)+a3(x)))./((x./d).^2-a1(x).*a3(x)); 

end 

  

  

%compute Ginf  

function out = Ginf(k0,r,rp,n1,n2,n3,d) 

R = Rfun(k0,n1,n2,n3,d); 

rminrp1 = sqrt((r(1)-rp(1))^2+(r(2)-rp(2))^2+(r(3)-rp(3))^2); 

rminrp2 = sqrt((r(1)-rp(1))^2+(r(2)-rp(2))^2+(r(3)+rp(3))^2); 

out1 = -1/(4*pi)*exp(1i*k0*n1*rminrp1)/rminrp1;   %Incoming field 

out2 = -1/(4*pi)*R(k0*n1*sqrt((r(1)-rp(1))^2+(r(2)-rp(2))^2)/rminrp2)...  

    *exp(1i*k0*n1*rminrp2)/rminrp2; 

out = [out1;out2]; 

end 

  

 
 

 


